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We present limit theorems for locally stationary processes that have a one sided
time-varying moving average representation. In particular, we prove a central limit
theorem (CLT), a weak and a strong law of large numbers (WLLN, SLLN) and a
law of the iterated logarithm (LIL) under mild assumptions that are closely related
to those originally imposed by Dahlhaus and Polonik (2006).

1 Introduction

In this paper we consider locally stationary processes, defined via a triangular sequence of
stochastic processes {ηt,T }t=1,...,T with T ∈ N, where every ηt,T has a representation of the
form

ηt,T =
∞∑
j=0

ψj,t,T εt−j , t = 1, . . . , T. (1)

Throughout this paper we impose the following assumption on the error sequence {εt}t∈Z and
the moving average coefficients ψj,t,T .

Assumption 1.1. The random variables {εt}t∈Z are independent and identically distributed
with Eεt = 0, Eε2t = 1 and E|εt|2+κ <∞ for some κ > 0. The coefficients ψj,t,T in the moving
average representation (1) fulfill

sup
t,T
|ψj,t,T | ≤

K

l(j)
,

with constant K independent of T and some positive deterministic sequence {l(j)}j∈N0 satis-
fying

∞∑
j=0

j

l(j)
<∞.

Remark 1.2. In contrast to the definition of Dahlhaus and Polonik (2006) we restrict locally
stationary processes to have a one-sided moving average representation. Nonetheless, our def-
inition covers most of the important examples of locally stationary processes. For instance, it
follows from Dahlhaus and Polonik (2009, Proposition 2.4) that time-varying ARMA processes
have a representation of the form (1).

The idea behind locally stationary processes is that, after rescaling the time domain to the
unit interval, the process can be approximated by a stationary process. Therefore, one usually
assumes that ψj,t,T ≈ ψj(t/T ) for some well behaving functions ψj .
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Assumption 1.3. There exist functions ψj : [0, 1]→ R with

‖ψj‖∞ ≤
K

l(j)
, (2)

V (ψj) ≤
K

l(j)
(3)

and
T∑
t=1

∣∣∣∣ψj,t,T − ψj ( t

T

)∣∣∣∣ ≤ K

l(j)
, for all T ∈ N, (4)

where V (f) denotes the total variation of a function f on [0, 1].

Remark 1.4. The coefficient functions are uniquely defined almost everywhere. To see this
let {ηt,T }t=1,...,T be locally stationary process with moving average coefficients ψj,t,T and cor-
responding coefficient functions ψj . Let φj be another set of coefficient functions that fulfills
Assumption 1.1. Then it holds that

‖ψj − φj‖L1 = lim
T→∞

1

T

T∑
t=1

∥∥∥∥ψj ( t

T

)
− φj

(
t

T

)∥∥∥∥
≤ lim

T→∞

1

T

{
T∑
t=1

∥∥∥∥ψj,t,T − ψj ( t

T

)∥∥∥∥+

T∑
t=1

∥∥∥∥ψj,t,T − φj ( t

T

)∥∥∥∥
}

≤ lim
T→∞

2K

Tl(j)
= 0,

implying ψj = φj almost everywhere.

For every u ∈ [0, 1] we define the process {ηt(u)}t∈Z via

ηt(u) =

∞∑
j=0

ψj(u)εt−j .

By Assumption 1.3 this process is weakly stationary with long-run variance given by Ψ2(u),
where

Ψ(u) =
∞∑
j=0

ψj(u).

The main purpose of the process {ηt(u)}t∈Z is to approximate {ηt,T }t=1,...,T . In particular, the
process {ηt,T }t=1,...,T should approximately behave like {ηt(u)}t∈Z in the rescaled time point
u = t/T . For brevity, we define the auxiliary process {η̃t,T }t=1,...,T via η̃t,T = ηt(t/T ), i.e.

η̃t,T =
∞∑
j=0

ψj

(
t

T

)
εt−j . (5)

Under the stated assumptions it holds that (cf. Lemma A.2 in the Appendix)

1

T

T∑
t=1

(ηt,T − η̃t,T )
P→ 0.
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Hence, the process {ηt(u)}t∈Z approximates the locally stationary process on average over all
rescaled time points 1/T, 2/T . . . , 1. Later we will strenghten condition (4) in order to obtain
a pointwise approximation.

Remark 1.5. The construction of locally stationary processes with time dependent moving-
average coefficients ψj,t,T on the one hand and approximating functions ψj on the other hand
looks cumbersome at first glance. It seems more natural to define locally stationary processes
directly via (5). However, it was already pointed out by Künsch (1995) and Dahlhaus and
Polonik (2009) that this rules out interesting examples such as time-varying autoregressive
processes.

2 Main Results

The first limit theorem we present is a CLT for locally stationary processes. To motivate the
outcome, we first derive the result for an easy example. Let {ηt,T }t=1,...,T be defined by

ηt,T = φ

(
t

T

)
εt, t = 1, . . . , T,

for some bounded variation function φ : [0, 1]→ R and {εt}t∈Z being a sequence of independent
and identically N (0, 1) distributed random variables. Then it holds that

1√
T

T∑
t=1

ηt,T ∼ N

(
0,

1

T

T∑
t=1

φ2
(
t

T

))
.

Since φ is of bounded variation it is square-integrable on the unit interval and it holds that

lim
T→∞

1

T

T∑
t=1

φ2
(
t

T

)
=

∫ 1

0
φ2(u) du

and Lévy’s continuity theorem implies that

1√
T

T∑
t=1

ηt,T
d→ N

(
0,

∫ 1

0
φ2(u) du

)
. (6)

Note that the approximating stationary process {ηt(u)}t∈Z is defined by ηt(u) = φ(u)εt with
long-run variance given by φ2(u). Hence, the variance of the limiting distribution in (6) is equal
to the integrated long-run variance of the auxiliary process. This result also holds for arbitrary
locally stationary processes.

Theorem 2.1 (CLT). Let {ηt,T }t=1,...,T be a locally stationary process with moving-average
representation (1) that satisfies Assumptions 1.1 and 1.3. Then, as T →∞, it holds that

1√
T

T∑
t=1

ηt,T
d→ N

(
0, ‖Ψ‖2L2

)
,

where ‖Ψ‖L2 denotes the L2 norm of Ψ on the unit interval.
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Proof. It suffices to show the claim for the auxiliary process {η̃t,T }t=1,...,T since

1√
T

T∑
t=1

ηt,T =
1√
T

T∑
t=1

η̃t,T +
1√
T

T∑
t=1

(ηt,T − η̃t,T )

and the second term goes to zero in probability by Lemma A.2. By Lemma A.1 it holds that

1√
T

T∑
t=1

η̃t,T =
1√
T

T∑
t=1

Ψ

(
t

T

)
εt −

1√
T

T∑
t=1

∞∑
j=0

ψ̃j

(
t

T

)
(εt−j − εt−1−j). (7)

We show that the first term in (7) converges in distribution and the second term vanishes in
probability. By the i.i.d. assumption on the innovation terms it holds that

Var

(
1√
T

T∑
t=1

Ψ

(
t

T

)
εt

)
=

1

T

T∑
t=1

Ψ2

(
t

T

)
→
∫ 1

0
Ψ2(u) du.

Next, we verify the Lyapunov condition. By Assumption 1.1 there exists some κ > 0 such that
E|εt|2+κ is finite. Hence,

lim
T→∞

∑T
t=1 E

∣∣∣ 1√
T

Ψ
(
t
T

)
εt

∣∣∣2+κ(
Var

(
1√
T

∑T
t=1 Ψ

(
t
T

)
εt

)) = lim
T→∞

E|ε1|2+κ

T κ/2
lim
T→∞

1
T

∑T
t=1 Ψ2+κ

(
t
T

)(
1
T

∑T
t=1 Ψ

(
t
T

))1+κ/2 = 0.

From the Lindeberg-CLT for triangular arrays we deduce that

1√
T

T∑
t=1

Ψ

(
t

T

)
εt

d→ N
(

0,

∫ 1

0
Ψ2(u) du

)
.

To finish the proof it remains to show that the second term in (7) goes to zero in probability.
It holds that
∞∑
j=0

ψ̃j

(
t

T

)
(εt−j − εt−1−j) =

∞∑
j=0

{
ψ̃j

(
t

T

)
εt−j − ψ̃j

(
t

T

)
εt−1−j

}

=

∞∑
j=0

{
ψ̃j

(
t

T

)
εt−j − ψ̃j

(
t− 1

T

)
εt−1−j + ψ̃j

(
t− 1

T

)
εt−1−j − ψ̃j

(
t

T

)
εt−1−j

}

=

∞∑
j=0

{
ψ̃j

(
t

T

)
εt−j − ψ̃j

(
t− 1

T

)
εt−1−j

}
+

∞∑
j=0

{
ψ̃j

(
t− 1

T

)
εt−1−j − ψ̃j

(
t

T

)
εt−1−j

}
.

(8)

Taking partial sum of the first term and dividing by T 1/2 leads to:

1√
T

T∑
t=1

∞∑
j=0

{
ψ̃j

(
t

T

)
εt−j − ψ̃j

(
t− 1

T

)
εt−1−j

}
=

1√
T

∞∑
j=0

{
ψ̃j (1) εT−j − ψ̃j(0)ε−j

}
, (9)
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as the sum over t is telescopic. Since

E

∣∣∣∣∣∣
∞∑
j=0

sup
u∈(0,1)

|ψ̃j(u)|εt−j

∣∣∣∣∣∣ ≤
∞∑
j=0

∞∑
k=j+1

sup
u∈(0,1)

|ψk(u)|E|ε1| ≤
∞∑
j=0

jKE|ε1|
l(j)

<∞

for an arbitrary t ∈ {1, . . . , T} it follows that the term on the right hand side of (9) converges
to zero in probability.

It remains to prove that the scaled partial sum of the second term in (8) also vanishes asymp-
totically. It holds that

E

∣∣∣∣∣∣ 1√
T

T∑
t=1

∞∑
j=0

{
ψ̃j

(
t

T

)
− ψ̃j

(
t− 1

T

)}
εt−1−j

∣∣∣∣∣∣
≤ 1√

T

T∑
t=1

∞∑
j=0

∣∣∣∣ψ̃j ( t

T

)
− ψ̃j

(
t− 1

T

)∣∣∣∣E|ε1|
≤ 1√

T

∞∑
j=0

V (ψ̃j)E|ε1|,

which converges to zero if the V (ψ̃j) are summable. Using the definition of the total variation
we obtain

∞∑
j=0

V (ψ̃j) =
∞∑
j=0

sup
0≤x1<...<xM≤1

M∈N

M∑
i=1

|ψ̃j(xi+1)− ψ̃j(xi)|

≤
∞∑
j=0

∞∑
k=j+1

sup
0≤x1<...<xM≤1

M∈N

M∑
i=1

|ψj(xi+1)− ψj(xi)|

=
∞∑
j=0

∞∑
k=j+1

V (ψj)

≤
∞∑
j=0

jK

l(j)
,

which is finite by Assumption 1.3, condition (3).

From Theorem 2.1 we immediately obtain a WLLN.

Corollary 2.2 (WLLN). Let {ηt,T }t=1,...,T be a locally stationary process defined via its moving-
average representation (1) with Assumptions 1.1 and 1.3 in place. Then, as T → ∞, it holds
that

1

T

T∑
t=1

ηt,T
P→ 0.

In order to prove a SLLN and a LIL we require a stronger assumption that connects the
coefficient functions ψj,t,T and the approximating functions ψj . The following assumption, that
immediately implies condition (4), corresponds to assumption (69) in Dahlhaus (2012).
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Assumption 2.3. The functions ψj and the moving average coefficients ψj,t,T satisfy

sup
1≤t≤T

∣∣∣∣ψj,t,T − ψj ( t

T

)∣∣∣∣ ≤ K

Tl(j)
, for all T ∈ N.

Previously, we observed that the stationary process {ηt(u)}t∈Z approximates the locally station-
ary process on average over the series. Under Assumption 2.3 we have a better approximation
as it now holds that ηt,T = ηt(t/T ) +OP (T−1). This follows from the fact that

lim
T→∞

E
∣∣∣∣ηt,T − ηt( t

T

)∣∣∣∣ ≤ lim
T→∞

∞∑
j=0

∣∣∣∣ψj,t,T − ψj ( t

T

)∣∣∣∣E|εt−j | ≤ lim
T→∞

∞∑
j=0

KE|ε0|
T l(j)

= 0.

Consequently, the stationary process {ηt(u)}t∈Z approximates the locally stationary process
{ηt,T }t=1,...,T in every rescaled time point u = t/T . In fact, we even have a strong approxima-
tion, i.e. ηt,T = ηt(t/T ) + oa.s(1) (cf. Lemma A.3 in the appendix).

Theorem 2.4 (SLLN). Let {ηt,T }t=1,...,T be a locally stationary process defined via its moving-
average representation (1) with Assumptions 1.1, 1.3 and 2.3 in place. Then, as T → ∞, it
holds that

1

T

T∑
t=1

ηt,T
a.s.→ 0.

Proof. It suffices to show the claim for the auxiliary process {η̃t,T }t=1,...,T since by Lemma A.4,

1

T

T∑
t=1

ηt,T =
1

T

T∑
t=1

η̃t,T + oa.s.(1).

Using Lemma A.1 we first need to verify that

1

T

T∑
t=1

Ψ

(
t

T

)
εt

a.s.→ 0. (10)

It holds that

sup
u∈(0,1)

|Ψ(u)| ≤ sup
u∈(0,1)

∞∑
j=0

|ψj(u)| ≤
∞∑
j=0

sup
u∈(0,1)

|ψj(u)| ≤
∞∑
j=0

K

l(j)
<∞.

Since the εt’s are independent and identically distributed with E(ε1) = 0 and Eε21 <∞ almost
sure convergence of (10) follows from Cuzick (1995, Theorem 1.1) or Choi and Sung (1987,
Theorem 5).

It remains to show that
1

T

∞∑
j=0

ψ̃j(1)εT−j
a.s.→ 0, (11)

1

T

∞∑
j=0

ψ̃j(0)ε−j
a.s.→ 0 (12)
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and
1

T

T∑
t=1

∞∑
j=0

{
ψ̃j

(
t− 1

T

)
− ψ̃j

(
t

T

)}
εt−1−j

a.s.→ 0. (13)

It holds that

E

 1

T

∞∑
j=0

ψ̃j(1)εT−j

2

=
1

T 2

∞∑
j=0

ψ̃j(1)2 =
1

T 2

∞∑
j=0

 ∞∑
i=j+1

ψi(1)

2

= O
(

1

T 2

)
,

since
∞∑
j=0

∞∑
i=j+1

ψi(1) ≤
∞∑
j=0

∞∑
i=j+1

‖ψi‖∞ =
∞∑
j=0

j‖ψj‖∞ <∞.

Hence, the term in (11) converges sufficiently fast to zero in probability and almost sure con-
vergence follows from the Borel-Cantelli lemma. The proof of (12) is identical. At last we have
to show (13). It holds that

E

 1

T

T∑
t=1

∞∑
j=0

{
ψ̃j

(
t− 1

T

)
− ψ̃j

(
t

T

)}
εt−1−j

2

≤ 1

T 2

∞∑
j1,j2=0

T∑
t1,t2=1

∣∣∣∣ψ̃j1 ( t1 − 1

T

)
− ψ̃j1

(
t1
T

)∣∣∣∣ ∣∣∣∣ψ̃j2 ( t2 − 1

T

)
− ψ̃j2

(
t2
T

)∣∣∣∣
≤ 1

T 2

∞∑
j=0

V (ψ̃j)
∞∑
k=0

V (ψ̃k) = O
(

1

T 2

)
.

Hence, the second moment of the term in (13) converges sufficiently fast to zero implying almost
sure convergence.

Our last result is a LIL. In order to prove the theorem we impose some additional moment
condition on the sequence {εt}t∈Z. In particular, we assume that at least the fourth moment
of εt is finite.

Theorem 2.5 (LIL). Let {ηt,T }t=1,...,T be a locally stationary process with Assumptions 1.1,
1.3 and 2.3 in place and let dT = T log log T . Assume further that the innovation sequence
{εt}t∈Z satisfies Eε4t = µ4 <∞. Then, as T →∞, it holds that

lim sup
T→∞

1√
dT

T∑
t=1

ηt,T
a.s.
=
√

2‖Ψ‖L2 .

Proof. Again, by Lemma A.4 it suffices to show the claim for the auxiliary process {η̃t,T }t=1,...,T .
Following the lines of the proof of Theorem 2.4 we first prove

lim sup
T→∞

1√
dT

T∑
t=1

Ψ

(
t

T

)
εt

a.s.
=
√

2‖Ψ‖L2 .
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Since {εt}t∈Z is a sequence of independent random variables with finite variance the claim
follows immediately from Tomkins (1975, Theorem 1) and Wichura (1973, page 279). Therefore,
it remains to prove

1√
dT

∞∑
j=0

ψ̃j(1)εT−j
a.s.→ 0, (14)

1√
dT

∞∑
j=0

ψ̃j(0)ε−j
a.s.→ 0 (15)

and
1√
dT

T∑
t=1

∞∑
j=0

(
ψ̃j

(
t− 1

T

)
− ψ̃j

(
t

T

))
εt−1−j

a.s.→ 0. (16)

In contrast to the proof of Theorem 2.4 it is not sufficient to investigate the second moments
of these terms, as d−1T decays too slowly. However, we adapt the proof using fourth moments.
For the term in (14) it holds that

E

 ∞∑
j=0

ψ̃j(1)εT−j

4

=
∞∑

j1,...,j4=0

{
4∏

m=1

ψ̃jm(1)

}
E

(
4∏

m=1

εT−jm

)
≤ µ4

 ∞∑
j=0

ψ̃j(1)

4

,

implying
∞∑
T=1

E

 1√
dT

∞∑
j=0

ψ̃j(1)εT−j

4

≤
∞∑
T=1

C

T 2(log log T )2
<∞

and, by the Borel-Cantelli Lemma, almost sure convergence. The claim in (15) is proven in
exactly the same way. To show (16) consider

E

 1√
dT

T∑
t=1

∞∑
j=0

(
ψ̃j

(
t− 1

T

)
− ψ̃j

(
t

T

))
εt−1−j

4

=
1

d2T

T∑
t1,...,t4=1

∞∑
j1,...,j4=0

{
4∏

m=1

(
ψ̃j

(
t− 1

T

)
− ψ̃j

(
t

T

))}
E

(
4∏

m=1

εtm−1−jm

)

≤ 1

d2T

∞∑
j1,...,j4=0

{
4∏

m=1

T∑
tm=1

∣∣∣∣ψ̃j ( tm − 1

T

)
− ψ̃j

(
tm
T

)∣∣∣∣
}
µ4

≤ 1

d2T

∞∑
j1,...,j4=0

{
4∏

m=1

V (ψ̃jm)

}
=

1

d2T

 ∞∑
j=0

V (ψ̃j)

4

µ4.

The claim follows by the same arguments as above.

Obviously, if the coefficients ψj,t,T are not time-dependent, the statement of Theorem 2.5 co-
incides with the LIL for linear processes which was proven by Phillips and Solo (1992).
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Appendix: Auxiliary Lemmata

Consider the stationary approximating process {ηt(u)}t∈Z for some fixed u ∈ [0, 1]. By the
Beveridge-Nelson decomposition (cf. Phillips and Solo, 1992) it holds that

ηt(u) =

∞∑
j=0

ψj(u)εt−j =

∞∑
j=0

ψj(u)εt −
∞∑
j=0

 ∞∑
k=j+1

ψk(u)

 (εt−j − εt−1−j),

which is well defined due to Assumption 1.3, condition (2). Setting u = t/T we obtain a
time-varying Beveridge-Nelson decomposition for the auxiliary process {η̃t,T }t=1,...,T .

Lemma A.1 (Time-varying Beveridge-Nelson decomposition). The auxiliary process {η̃t,T }t=1,...,T

exhibits a representation of the form

η̃t,T = Ψ

(
t

T

)
εt −

∞∑
j=0

ψ̃j

(
t

T

)
(εt−j − εt−1−j)

with

ψ̃j(u) =
∞∑

k=j+1

ψj(u).

Lemma A.2. Let {ηt,T }t=1,...,T be a locally stationary process defined via its moving average
representation (1) with Assumptions 1.1 and 1.3 in place and let {η̃t,T }t=1,...,T be the corre-
sponding auxiliary process, defined by (5). Then it holds that

T∑
t=1

|ηt,T − η̃t,T | = OP (1).

Proof. It holds that

T∑
t=1

|ηt,T − η̃t,T | ≤
∞∑
j=0

T∑
t=1

∣∣∣∣ψj,t,T − ψj ( t

T

)∣∣∣∣ |εt−j |.
Hence,

T∑
t=1

E |ηt,T − η̃t,T | ≤
∞∑
j=0

T∑
t=1

∣∣∣∣ψj,t,T − ψj ( t

T

)∣∣∣∣E|ε1| ≤ ∞∑
j=0

KE|ε1|
l(j)

<∞,

implying the claim.
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Lemma A.3. Let {ηt,T }t=1,...,T be a locally stationary process with Assumptions 1.1, 1.3 and
2.3 in place. Further, let {η̃t,T }t=1,...,T be the corresponding auxiliary process, defined by (5).
Then, it holds that

ηt,T = η̃t,T + oa.s.(1), t = 1, . . . , T.

Proof. It holds that

(ηt,T − η̃t,T )2 =
∞∑

j1,j2=0

2∏
l=1

{
ψjl,t,T − ψjl

(
t

T

)}
εt−j1εt−j2

Since {εt}t∈Z is a sequence of independent random variables we obtain

E (ηt,T − η̃t,T )2 ≤
∞∑
j=0

{
sup

1≤t≤T

∣∣∣∣ψj,t,T − ψj ( t

T

)∣∣∣∣
}2

≤
∞∑
j=0

K2

T 2l2(j)
.

Hence, for all α > 0,

∞∑
T=1

P (|ηt,T − η̃t,T | > α) ≤
∞∑
T=1

E (ηt,T − η̃t,T )2 ≤
∞∑
T=1

K̃

T 2
<∞

and the claim follows from the Borel-Cantelli Lemma.

Lemma A.4. Under the Assumptions of Lemma A.3 it holds that

1√
dT

T∑
t=1

(ηt,T − η̃t,T )
a.s.→ 0,

where dT = T log log T .

Proof. It holds that

E

(
T∑
t=1

(ηt,T − η̃t,T )

)2

≤
T∑

t1,t2=1

∞∑
j1,j2=0

2∏
l=1

{
ψjl,tl,T − ψjl

(
tl
T

)}
E[εt1−j1εt2−j2 ]

≤
T∑
t=1

 ∞∑
j=0

sup
t,T

∣∣∣∣ψj,t,T − ψj ( t

T

)∣∣∣∣
2

≤
T∑
t=1

1

T 2

 ∞∑
j=0

K

l(j)

2

=
K̃

T
.

Hence, for some arbitrary α > 0,

∞∑
T=1

P

(∣∣∣∣∣ 1√
dT

T∑
t=1

(ηt,T − η̃t,T )

∣∣∣∣∣ > α

)
≤
∞∑
T=1

K̃

α2dTT
<∞,

implying the claim.
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