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oder vollständigen Wiedergabe (Photographie, Mikroskopie), der Speicherung in Daten-
verarbeitungsanlagen und das der Übersetzung.
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Modellierung und Simulation der Mikrostruk-
turentwicklung in funktionalen magnetischen Materialien, insbesondere in magnetischen
Formgedächtnislegierungen (MSMAs). Das Ziel der Arbeit ist die Entwicklung eines Ma-
terialmodells, in dem Informationen über die Mikrostruktur in einem effektiven Sinne
erfasst werden, und dessen Einbettung in die Finite Elemente Methode (FEM). Zunächst
wird ein mikromagnetisch inspirierter variationeller Modellierungsrahmen eingeführt.
Die zugrunde liegende Mikrostruktur wird parametrisiert und sowohl zugehörige Ener-
giedichten als auch Dissipationsfunktionale werden spezifiziert. Dabei wird unter ande-
rem das Konzept der Energierelaxierung angewandt. Mit Hilfe von Demagnetisierungs-
faktoren lassen sich makroskopisch homogene Zustände simulieren und die Eigenschaf-
ten des Materialmodells untersuchen. Anschließend liegt der Fokus auf der Implemen-
tierung solcher Materialmodelle in die FEM. In dem vorgeschlagenen Ansatz werden
unter anderem Zustandsvariablen als globale Feldgrößen aufgelöst und Ungleichheits-
Nebenbedingungen auf globaler Ebene berücksichtigt. Anhand von magnetostatischen
und darauf aufbauenden vollständig gekoppelten Simulationen werden die Vorteile der
FEM demonstriert.

Abstract

This thesis deals with the modelling and simulation of the microstructure evolution in
functional magnetic materials, especially in magnetic shape memory alloys (MSMAs).
The objective of this work is the development of a material model, where information re-
garding the microstructure is taken into account in an effective sense, and its embedding
into the finite element method (FEM). Firstly, a micromagnetics-inspired variational
modelling framework is introduced. The underlying microstructure is parametrised
and the corresponding energy densities as well as dissipation functionals are specified.
Amongst others, the concept of energy relaxation is applied. Using demagnetisation
factors, macroscopically homogeneous states are simulated and the properties of the
material model are analysed. Afterwards, the focus lies on the implementation of such
material models into the FEM. In the proposed approach, state variables are resolved as
global fields and inequality constraints are taken into account on the global level. The
advantages of the FEM is demonstrated for magnetostatic simulations and—based on
them—fully coupled simulations.

iii





Publications

Key parts of this thesis are based on three peer-reviewed journal articles and one book
contribution, which were either published or submitted during the progress of this doc-
toral work. The original articles are partially modified wherever it is considered neces-
sary.

1. B. Kiefer, K. Buckmann, and T. Bartel:

Numerical energy relaxation to model microstructure evolution in functional mag-
netic materials, GAMM-Mitteilungen, 38(1):171–196, 2015 [112].

2. B. Kiefer, T. Bartel, and K. Buckmann:
A variational framework for the modeling of phase transforming solids using energy
relaxation methods — application to conventional and magnetic SMA, submitted
for publication, 2016 [114].

3. T. Bartel, B. Kiefer, K. Buckmann, and A. Menzel:

An energy-relaxation-based framework for the modelling of magnetic shape mem-
ory alloys — simulation of key response features under homogeneous loading con-
ditions, submitted for publication, 2018 [10].

4. K. Buckmann, B. Kiefer, T. Bartel, and A. Menzel:

Simulation of magnetised microstructure evolution based on a micromagnetics-
inspired FE framework: application to magnetic shape memory behaviour, available
online, 2018 [21].

The articles were prepared in collaboration with two or three co-authors. The author
of this thesis contributed essential aspects with regard to the outline of the theory in
[10, 21], carried out the numerical implementation and simulations completely in [10, 21,
112], respectively partially in [114], and contributed essential parts to the preparation
of all contributions listed above.

v





Contents

Notation ix

1 Introduction 1
1.1 Magnetic functional materials . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Modelling approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 An energy relaxation-based MSMA model 17
2.1 Variational framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Global field variables . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.2 Continuous variational principle . . . . . . . . . . . . . . . . . . . 18
2.1.3 Incremental variational principle . . . . . . . . . . . . . . . . . . . 21
2.1.4 Simplifications for homogeneous problems . . . . . . . . . . . . . 22

2.2 Constitutive framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.1 General aspects of quasiconvexity . . . . . . . . . . . . . . . . . . 24
2.2.2 Representation of MSMA microstructure . . . . . . . . . . . . . . 25
2.2.3 Specific constitutive model . . . . . . . . . . . . . . . . . . . . . . 30
2.2.4 Summary of constitutive equations . . . . . . . . . . . . . . . . . 34

2.3 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.1 Variant switching diagrams . . . . . . . . . . . . . . . . . . . . . 35
2.3.2 The connection of effective material responses to microstructure

evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.3 The influence of the shape anisotropy and a closer look at the

demagnetisation effect . . . . . . . . . . . . . . . . . . . . . . . . 47
2.4 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5.1 Dependencies among the domain magnetisations . . . . . . . . . . 50
2.5.2 Analysis of the martensite twin boundary orientation . . . . . . . 52

3 A micromagnetics-inspired FE-framework — spatial resolution of magnetic
degrees of freedom 55
3.1 Variational framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2 Constitutive model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3 Finite element discretisation . . . . . . . . . . . . . . . . . . . . . . . . . 64

vii



Contents

3.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 A micromagnetics-inspired FE-framework — spatial resolution of mechanical
and magnetic degrees of freedom 83
4.1 Variational framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2 Constitutive model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3 Implementation and algorithmic treatment . . . . . . . . . . . . . . . . . 101
4.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4.1 Magnetic field-induced easy- and hard-axis magnetisation response 115
4.4.2 Magnetic field-induced martensite reorientation . . . . . . . . . . 120
4.4.3 Stress level dependency of the magnetic field-induced response be-

haviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.4.4 Stress-induced martensite reorientation under constant magnetic

field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.4.5 Biaxial magnetic field-induced martensite reorientation . . . . . . 135
4.4.6 Investigation of a complex geometry . . . . . . . . . . . . . . . . 141

4.5 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.6.1 Dependencies among the domain magnetisations . . . . . . . . . . 145
4.6.2 Constitutive driver routine . . . . . . . . . . . . . . . . . . . . . . 146
4.6.3 Shape functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
4.6.4 Stiffness matrix contributions . . . . . . . . . . . . . . . . . . . . 153

5 Concluding remarks 157

Bibliography 161

viii



Notation

Most of the notations used in this thesis become obvious from the context. For the sake
of the reader’s convenience, the essential relations are briefly summarised below. Here,
Einstein’s summation convention is used for a compact representation.

Tensors The three-dimensional Euclidean space is represented by a set of basis vectors
{ei}, with i = 1, 2, 3. First- to fourth-order tensors are expressed in terms of their
coefficients by

a =̂ ai ei (first-order tensor) ,

A =̂ Aij ei ⊗ ej (second-order tensor) ,

a =̂ aijk ei ⊗ ej ⊗ ek (third-order tensor) ,

A =̂ Aijkl ei ⊗ ej ⊗ ek ⊗ el (fourth-order tensor) .

Non-bold letters are used for scalars, bold-face lower-case italic letters for vectors and
first-order tensors, bold-face upper-case italic letters for second-order tensors, bold-face
lower-case sans-serif letters for third-order tensors, and bold-face upper-case sans-serif
letters for fourth-order tensors.

Inner tensor products Inner tensor products are represented by dots. The number of
dots is equivalent to the number of contractions, e.g.

a · b =̂ ai bi ,

A · b =̂ Aij bj ei ,

A ·B =̂ Aij Bjk ei ⊗ ek ,
A : B =̂ Aij Bij ,

A : B =̂ AijklBkl ei ⊗ ej .

The colon is used for a contraction of a pair of neighbouring indices. A scalar results for
the special case of n-fold contraction of two n-th-order tensors.
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Notation

Outer tensor products Outer tensor products, respectively dyadic products, are rep-
resented by the symbol ⊗. The non-standard symbols ⊗ and ⊗ are used for special
tensor products for pairs of second-order tensors.

a⊗ b =̂ ai bj ei ⊗ ej ,
A⊗ b =̂ Aij bk ei ⊗ ej ⊗ ek ,
A⊗B =̂ Aij Bkl ei ⊗ ej ⊗ ek ⊗ el ,
A⊗B =̂ Aik Bjl ei ⊗ ej ⊗ ek ⊗ el ,
A⊗B =̂ AilBjk ei ⊗ ej ⊗ ek ⊗ el .

Identity tensors The second-order identity tensor I is

I =̂ δij ei ⊗ ej ,

wherein δij =̂ ei · ej is the Kronecker delta with δij = 1 for i= j and otherwise δij = 0.
The fourth-order symmetric Isym, volumetric Ivol, and deviatoric Idev identity tensors are
specified using the tensor products introduced above as

Isym =
1

2
[ I ⊗ I + I ⊗ I ] ,

Ivol =
1

3
[ I ⊗ I ] ,

Idev = Isym − Ivol .

Operators In the following, a comma is used to represent the partial derivative of a
quantity w.r.t. x•. The symbol ∇x represents the Nabla operator.
The (spatial) gradient of a scalar or tensor is represented by, e.g.,

∇xa =̂ a,i ei , ∇xa =̂ ai,j ei ⊗ ej , ∇xA =̂ Aij,k ei ⊗ ej ⊗ ek .

The (right) divergence of a first- and second-order tensor is represented by

divxa = ∇x · a =̂ ai,i , divxA = ∇x ·A =̂ Aij,j ei .

The (right) curl of a first- and second-order tensor is represented by

curlxa = ∇x × a =̂ − ai,j εijk ek , curlxA = ∇x ×A =̂ − Aij,k εjkl ei ⊗ el ,

wherein εijk is the Levi-Civita symbol with εijk=1 for i, j, k being an even permutation
and εijk=−1 for i, j, k being an odd permutation.
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1 Introduction

The present thesis is based on work that was carried out in the context of the re-
search unit FOR 1509: Ferroic Functional Materials funded by the German Research
Foundation (DFG). The research unit has set itself the goal of achieving a new quality
in the modelling, simulation, and experimental characterisation of multifield couplings
in multiferroic materials across various length scales, see [1]. Project P7 focusses on the
modelling of the effect of microstructure evolution in magnetostrictive materials using
numerical energy relaxation approaches. In this chapter, a brief introduction to mag-
netic functional materials and, in particular, magnetic shape memory alloys (MSMAs)
is presented, followed by a short summary of established modelling approaches. The
structure of the thesis is outlined at the end of this chapter.

1.1 Magnetic functional materials

According to [112], functional materials are by definition materials that provide addi-
tional engineering functionality due to intrinsic properties on top of the usual structural
requirements. Typical applications are their use as sensors, actuators, or energy har-
vesters. One subclass of these materials are magnetic functional materials, in particular
magnetostrictive materials that are used in sensors, actuators, transducers, or to store
information, see [47, 214]. The magnetic field-induced strain in giant magnetostrictive
materials is approximately two orders of magnitude above the strain that is observable
in magnetostrictive elements, such as iron. Typical examples are Terfenol-D [37, 149]
and Galfenol [102]. Due to the commercial availability of these materials, the research
interest has increased during the last years. Exemplary applications are the use as mag-
netostrictive transducers in the cutting head of a milling machine to achieve tolerances
of approximately 1µm at frequencies in the kHz region, see [192]. Other applications
are their use in sonar equipment due to the greater bandwidth, reliability, and reduced
transducer size and weight, see [2], or in high pressure fuel injectors [184], see also
[48]. Another group of materials that recently gained much research interest is the
group of (multi)ferroic materials. Ferroic materials exhibit a spontaneous magnetisation
(ferromagnetics), a spontaneous polarisation (ferroelectrics), or a spontaneous straining
(ferroelastics). They are promising canditates for the development of novel applications
that require functional materials. Multiferroics typically occur in composite form and are
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1 Introduction

designed to have desired, e.g. magnetoelectrical, coupling properties. The individual con-
stituents are usually weakly coupled or even uncoupled, see [48]. Magnetic shape memory
alloys, however, are intrinsically multiferroic materials, since a spontaneous straining
and a spontaneous magnetisation occurs, when below both the phase transformation
and Curie temperatures. The probably best-known MSMA is Ni2MnGa, where mag-
netic field-induced strains of up to 6–10 % [74, 90, 106, 134, 160, 164, 172, 195, 197, 200]
in a large bandwidth of up to 1–2 kHz [25, 79, 106, 139, 209, 210], respectively 5 kHz
in thin films [192], have been reported in the literature. In addition to strong mag-
netomechanical coupling, they possess the conventional shape memory effect. Due to
their nonlinear, hysteretic, and highly stress level-dependent response behaviour under
combined magnetomechanical loading conditions, Ni2MnGa is considered to be a chal-
lenging model problem. For the development of, e.g., actuator and sensor applications,
modelling approaches are required which can accurately predict the real material be-
haviour and which are, moreover, numerically robust. Major parts of this work focus on
the modelling and simulation of magnetomechanically coupled materials, in particular
Ni2MnGa single crystals. The shape dependent demagnetisation effect that heavily in-
fluences the response behaviour is explicitly taken into account in the present modelling
approaches. In the following, the terms magnetic order and disorder in materials are
discussed. A brief overview is presented of the topic of magnetic functional materials
and shape memory alloys (SMAs), including their historical discovery, and MSMAs are
introduced in detail.

The state of the magnetisation of a material is defined as the magnetic moment density
per unit volume. It depends on the individual magnetic moments of the individual ions,
atoms, or molecules of a material and their dipole interactions as well as interactions
with external magnetic fields. “Magnetism is inseparable from quantum mechanics, for a
strictly classical system in thermal equilibrium can display no magnetic moment, even in
a magnetic field”, see [116]. The following classification of magnetic (dis)order in terms
of diamagnetism, paramagnetism, ferromagnetism, antiferromagnetism, and ferrimag-
netism, among others is adopted from [92, 167]. According to [92], “all materials exhibit
a diamagnetic susceptibility, although not all are classified as diamagnets. Some materi-
als have a net magnetic moment per atom, due to an unpaired electron spin in each atom
which leads to paramagnetism or even ordered magnetism.” The magnetisation is very
weak in materials classified as diamagnets and opposes the applied magnetic field. The
typical order of the susceptibility χ in such materials is −10−5 or −10−6, with χ being
defined as χ=m/h, wherein m is the magnetisation and h is the magnetic field strength.
In paramagnetic materials, the magnetic field is slightly amplified and the susceptibility
is positive and typically of the order of 10−5 to 10−3. Ferromagnetism, antiferromag-
netism, and ferrimagnetism are different types of magnetic order that might occur in
solids. In ferromagnetic materials such as iron, nickel, and cobalt, a transition from the
paramagnetic to the ferromagnetic state is observable at temperatures below the Curie
temperature TC . This transition is accompanied with the occurrence of a spontaneous
magnetisation ms. Magnetic domains, viz. regions of equal spontaneous magnetisation,
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1.1 Magnetic functional materials

form, wherein the magnetic moments are aligned parallel even in the absence of an
external magnetic field. The initial susceptibility in such materials is typically of the
order of 10 to 105. The individual domains are separated by domain walls, wherein
the magnetisation vectors rotate to ensure a continuous transition to the adjacent do-
main. Domain wall thicknesses are typically between 10 nm and 1 µm, see [106, 170].
According to [127], domains form to reduce the magnetostatic energy and minimise the
internal energy in the material, see also [36, 85, 106, 116, 170]. Heusler alloys are also
ferromagnetic, although their alloy elements are not. In antiferromagnetic and ferrimag-
netic materials, the nearest-neighbour moments are aligned antiparallel. However, the
magnetic moments in the different sublattices in ferrimagnetic materials have different
magnitudes, see also [168]. Ferrimagnets also possess a spontaneous magnetisation below
the Curie temperature and a domain structure is observable.

Magnetostriction refers to strains that occur during the second-order paramagnetic
to ferromagnetic phase transition at the Curie temperature or as a response of the
ferromagnetic phase to an applied magnetic field, see [192]. The following outlined his-
torical discovery of magnetostrictive materials and further evolution is, in large parts,
adopted from [192]. James P. Joule discovered magnetostrictive materials in 1842 when
he observed that an iron sample changed its length under the application of a magnetic
field. The effect was termed the Joule effect. The inverse effect, where an applied stress
changes the magnetisation, also known as the Villari effect, was discovered shortly there-
after. Two additional effects are the Wiedemann effect where a twisting in a specimen
is observed under a helical magnetic field, and the inverse Wiedemann effect, respec-
tively Matteucci effect. Nickel, cobalt, and their alloys were typical materials used in
transducers during the first half of the 20th century, with saturation magnetostrictions—
i.e. the maxima of the magnetic field-induced strains—of the order of 50 µL/L. Giant
magnetostrictive materials were initially discovered in 1963 in terbium and dysprosium
alloys, where strains of the order of 10.000µL/L were observed at cryogenic tempera-
tures. Giant magnetostriction at room temperature was discovered shortly thereafter,
see [33, 122], by a combination of these rare earth elements and iron as the transition
metal. This resulted in the development of Terfenol-D (Ter: terbium, fe: iron, nol:
Naval Ordnance Laboratory, D: dysprosium) shortly thereafter, where strains of the or-
der of 1.600µL/L were observed that increase up to 3.600µL/L at resonance. Magnetic
field-induced strains of the order of 4–7 % were observed in terbium and dysprosium
single crystals in large magnetic fields of the order of 10–40 T in 1965 and 1975, see
[31, 133, 200]. Therein, mechanical twins form and deform plastically, which is similar
to the effect observed in MSMAs.

The macroscopic response of a magnetostrictive specimen is directly related to the
underlying microscale mechanisms that are briefly discussed in this section. The rep-
resentation is based on [192]. Even though the magnetisation vectors are non-zero at
every point inside a ferromagnetic specimen, the macroscopic magnetisation might be
zero, which is identical to a completely demagnetised specimen. As already pointed out,
multiple domains form on the underlying microscale to lower the overall magnetostatic
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1 Introduction

energy. Domains with opposingly oriented easy-axes, i.e. the preferred directions of
the spontaneous magnetisation vectors that minimise the magnetocrystalline anisotropy
energy [31, 92], are separated by 180◦ domain walls. Additional 90◦ closure domains
might form in, e.g., cubic materials to close the magnetic flux path. This results in an
even lower magnetostatic energy and allows the macroscopic magnetisation to vanish.
The deviations of the spontaneous magnetisation vectors from the magnetic easy-axes,
termed rotation of the magnetisation vectors, is accompanied with additional magne-
tocrystalline anisotropy energy. The overall configuration results from a balance of the
exchange energy that favours an alignment of neighbouring magnetic moments, also
referred to as domain wall energy, and the magnetocrystalline anisotropy energy in ad-
dition to the magnetostatic energy. The domain walls in ferromagnetic materials are
usually thicker than their counterparts in ferroelectrics. In a macroscopically fully mag-
netised specimen, all spontaneous magnetisation vectors point in the same direction and
are completely aligned. The macroscopic magnetisation saturates. The two mechanisms
that allow the magnetic state to change are domain wall motion, where favourable do-
mains grow at the expense of the others, and rotation of the magnetisation vectors,
see also [36, 106, 116, 170] and the discussion of the microscale mechanisms in MSMAs
below. In single crystals, the easy- and hard-axes, i.e. the directions with the largest
magnetocrystalline anisotropy energy, magnetisation response curves are typically di-
verse, whereas a polycrystalline material might respond isotropic due to the variety
of differently oriented grains. Due to the magnetostrictive effect, a deviation of the
magnetisation vectors from the preferred directions results in a deformation of the crys-
talline lattice. Consequently, the magnetocrystalline anisotropy energy and (reversible)
strains are intrinsically magnetomechanically coupled. The initial magnetostriction that
occurs during the paramagnetic to ferromagnetic phase transformation is termed sponta-
neous magnetostriction λ0, whereas the largest additional magnetic field-induced strain
is termed saturation magnetostriction λs. The above introduced linear relation between
the magnetisation and the magnetic field strength is only a coarse approximation that
is not capable of predicting hysteretic response behaviour. Microscale pinning and other
phenomena might result in a strong internal resistance to magnetic domain wall motion
that is exploited to built permanent magnets, where the macroscopic magnetisation re-
mains in the absence of an external magnetic field, see [36, 50, 106, 170]. The universal
relation b = µ0 [h + m ], wherein b is the magnetic induction and µ0 is the vacuum
permeability, can, however, always be used. Figure 1.1 shows experimentally deter-
mined magnetic field-induced strain and magnetisation response curves of Terfenol-D
and Galfenol. In order to model such a complex response, a detailed knowledge of the
underlying mechanisms is indispensable. Another class of materials that was not men-
tioned so far includes piezomagnetic materials as a subgroup of the antiferromagnetic
materials. The material behaviour is similar to the behaviour in ferromagnetic materi-
als. The two main differences in piezomagnetic materials are: the strain depends on the
sign of the magnetic field and a strain can induce a magnetic induction in the absence
of a magnetic field, see also IEEE-Standard 319-1990.
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Figure 1.1: Experimentally measured magnetic field-induced (a), (c) strain and (b), (d) normalised
magnetisation responses under multiple levels of constant compression stress and cyclic magnetic field
loading (0.05 Hz in (c), (d)) of (a), (b) a Terfenol-D (Tb0.3Dy0.7Fe1.92) transducer reported by [37] and
(c), (d) Galfenol (Fe0.81Ga0.19) reported by [102].

Shape memory alloys (SMAs) belong to the group of functional materials. The follow-
ing outline of their historical discovery, their properties, and the underlying mechanisms
is adopted in large parts from [192]. The first observed materials that returned to their
original shape when heated were AuCd alloys. The shape memory effect (SME) was
discovered by Arne Ölander in 1932 [176]. A temperature-dependent nucleation and
disappearance of martensite phases was observed in 1938 in CuZn. In 1951 [24], it was
discovered that the application of the SME allows work as an output. The probably
most widely known SMA is NiTi and its alloys. Its discovery started in 1961 at the
Naval Ordnance Laboratory, see [22], and is known as Nitinol (Nickel Titanium Naval
Ordnance Laboratory). Several other SMAs were discovered later, such as CuAlNi,
CuZnAl, FeMnSi. Up to 10% of temperature and stress induced strain are observ-
able in SMAs, due to an induced phase transformation, respectively variant switching.
The operating frequencies reach up to 100 Hz in thin films and are mainly limited by
heat transfer, see [16, 106]. The martensitic transformation from the high temperature
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austenite parent phase to the lower temperature martensite product phase, according
to [187] typically lower symmetric, is a first-order diffusionless, displacive, shear-like,
and reversible phase transition that occurs during cooling, see [141, 179]. Four critical
temperatures characterise the martensitic transformation, see [62]. During cooling, the
martensite start temperature Ms and martensite finish temperature Mf mark the points
where 1 %, respectively 99 %, of the material have converted to martensite. The re-
verse transformation from martensite to austenite during heating is characterised by the
austenite start temperature As and austenite finish temperature Af , where 1 %, respec-
tively 99 %, of the material have converted to austenite. Generally, the multiple variants
of martensite are energetically equivalently favourable. They may occur in twinned and
de-twinned form. A macroscopic strain is typically not observable when cooling below
the phase transformation temperature, due to the self-accommodating arrangement of
the martensite variants, see also [15]. SMAs are considered to be ferroelastic materi-
als due to the occurrence of domains of austenite and the multiple martensite variants.
The one-way shape memory effect is typically observable at low temperatures when
the self-accommodated martensite is strained. After an initial linear response, a stress
plateau occurs for increasing strain until, again, a linear response is observable in the
now completely de-twinned configuration. After unloading a remanent strain occurs.
This behaviour is termed pseudoplastic or quasiplastic behaviour, since the initial shape
may be recovered during heating. At sufficiently high temperatures, one starts in the ini-
tial austenite phase and switches into the martensite phase during straining. The initial
austenite phase and the shape is recovered during unloading. This behaviour is termed
pseudoelastic or superelastic, since the phase transformation is dissipative in nature
and a visible hysteresis occurs. The two-way shape memory effect allows two different
shapes of a workpiece by training, where plastic deformations produce material or stress
anisotropies that favour certain martensite variants. Although the SME allows unique
actuator and potentially sensor capabilities, single crystal SMAs suffer from functional
degradation during cyclic loading, see [9, 55, 190]. Nevertheless, SMA are for instance
used for vibration attenuation in civil structures or as stents, see [9, 68, 124, 144], also
for further applications.

The martensitic transformation and conventional shape memory effect was also ob-
served in the NiMnGa Heusler alloys, see [25, 29, 98, 106, 140, 185, 226, 232]. The mag-
netic shape memory effect (MSME) was discovered in 1996 in stoichiometric Ni2MnGa
[215], where 0.2% magnetic field-induced strain were measured in magnetic fields of
0.8 T. Unlike in conventional magnetostrictive materials, the magnetic field was able to
induce a switching of the martensite phase into the magnetic field-favoured martensite
variant—hence the name, magnetostriction of martensite, see also [171, 200]. Shortly
thereafter, 4–6% strain under magnetic fields of the order of 1 T were observed in slightly
off-stoichiometric 5M Ni2MnGa single crystals, see [74, 90, 106, 134, 164, 200]. Up to
10% strain is achievable for 7M martensite, see [106, 160, 172, 195, 197, 200]. In addi-
tion to the large magnetic field-induced strains, that are directly related to the lattice
parameters [75, 84, 106, 135, 226, 232], MSMAs allow operation frequencies of 1 kHz
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1.1 Magnetic functional materials

[25, 79, 106, 139, 209, 210] and up to 5 kHz in thin films [192]. They possess nearly per-
fect efficiency of coupling magnetic energy to mechanical load [78, 80, 139, 171, 200, 210].
The previously discussed mechanism of domain wall motion and rotation of the mag-
netisation vectors occur likewise in Ni2MnGa, since it is a ferromagnetic material, see
also [36, 106, 116]. The Curie temperature shows only a slight variation for different
compositions, but the transition temperature from austenite to martensite may differ
significantly, see [3, 4, 72, 106, 217]. Three different martensite morphologies might oc-
cur in Ni2MnGa alloys, see [76, 106, 136, 185]. The most common morphology is five
layered modulated (5M) martensite, which has an approximately tetragonal unit cell
that is modulated by a five layer periodic shuffling, see [181, 196, 200]. A maximum of
6% magnetic field-induced strain occurs due to the rearrangement of the three possible
martensite variants. In contrast, the seven layered modulated (7M) martensite has an
approximately orthorhombic structure which is modulated by a seven layer periodic shuf-
fling. A maximum of 10% magnetic field-induced strain occurs due to the rearrangement
of the six possible martensite twin variants, see [160, 195, 200]. The non modulated (NM)
martensite has a tetragonal unit cell. A magnetic field can slightly influence the me-
chanical behaviour, but has no influence on the shape, see [193, 198, 200]. Several other
alloys can also be assigned to the group of MSMAs, such as NiMnGaFe [228], NiMnGaB
[121], NiMnAl [52], NiCoMnSn [180], NiFeGa [67, 131, 175, 208], FeNiCoTi [163], FePd
[35, 89, 132, 191, 219, 231], FePt [96, 186], CoNiGa [152, 230], CoNiAl [98, 150, 153, 174],
and LaSrCuO4 [128], see also the overviews in [25, 106, 200, 229]. FePd is more ductile
than Ni2MnGa and CoNiAl contains no expensive elements, see [25, 153]. Due to the
antiferromagnetic order in LaSrCuO4, the term magnetic shape memory alloys is more
appropriate than the also common name ferromagnetic shape memory alloys (FSMAs),
see [50, 83, 90, 106, 164, 171, 194, 200]. A magnetic field-induced austenite martensite
phase transformation has been reported in FePt [95], NiMnGa [100], and NiMnFeGa
[28], see also [106]. One drawback of MSMAs that limits possible applications is the
relatively low compression stress that completely suppresses the magnetic field-induced
variant reorientation, also termed blocking stress, that is typically well below 10 MPa,
see [25, 56, 57, 73, 99, 108, 151, 164]. Nevertheless, MSMAs are promising materi-
als for, e.g., sensors, actuators, and to control the structure of the material itself, see
[106, 182, 193, 200, 210]. A list of applications is provided in [25]: Linear actuators
[58, 206, 210], micro and nano actuators [103, 119], and bending actuators [117, 118]
are exemplary applications as actuators. The application as sensors and energy har-
vesters is outlined in [101, 120, 199, 207]. Possible damping applications are reported in
[225, 233]. The magnetic field induced strain in polycrystalline MSMAs is significantly
smaller than the strain in single crystals, see [28, 91, 106, 138, 162, 216, 219]. One idea to
alleviate this restriction is the texturing of polycrystalline materials, see [25, 32, 53, 54].
Two other things have not been mentioned so far. Another mechanism to change the
magnetic state of the material by inducing a phase transformation is discussed in [63].
In the magnetocaloric effect, an external magnetic field induces an isothermal entropy
change, respectively an adiabatic temperature change, see [25] for a detailed discussion.
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The focus of this work lies on the micromagnetics-inspired modelling and simulation
of the ferromagnetic nearly tetragonal (5M modulated) martensite variants of Ni2MnGa
under magnetomechanical loading conditions. This approach necessitates a fundamental
understanding of the underlying microstructure and the mechanisms that occur on the
microscale. Experimentally determined microstructures of ferromagnetic 5M modulated
martensite in Ni2MnGa, that occur below both the Curie and the phase transformation
temepratures, are shown in Figure 1.2 and 1.3, reported by [60] and [136]. Both figures
clearly show the occurrence of order in terms of martensite twins that are subdivided
into magnetic domains with internal domain walls.

Figure 1.2: Experimentally determined microstructure (scanning electron microscopy) of a nearly
tetragonal (5M modulated) Ni2MnGa MSMA specimen. Type II magnetic contrast of the two-variant
specimen in (left) COMPO mode and (right) TOPO mode. Reprinted from [60] with kind permission.

Figure 1.3: Experimentally determined twin and magnetic microstructure (situ optical and magneto-
optical) of nearly tetragonal (5M modulated) Ni2MnGa MSMA specimen. Multiple magnetic domains
are observable in each twin band of the martensite variants. Reprinted from [136] with kind permission.
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1.1 Magnetic functional materials

A schematic representation of the ferromagnetic product phase and its higher symmet-
ric cubic parent austenite phase is shown in Figure 1.4, see also [106, 112, 161, 165]. The
three (tetragonal) martensite variants are distinguishable by their distinct transforma-
tion strains. Each variant has two opposingly oriented magnetic easy-axes, i.e. preferred
directions of the spontaneous magnetisation vectors, along the short c-edge of the unit
cell. In the absence of magnetomechanical loading, the overall six variant and domain
configurations are generally energetically equally favourable. The complex interaction
of these six states, possible deviations from the sketched energy well states, and the
evolution of the microstructure result in the complex response behaviour of Ni2MnGa
under magnetomechanical loading conditions.
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Figure 1.4: Schematic representation of the parent cubic austenite phase and the lower symmetric
ferromagnetic martensite product phase. Adopted from [112] with kind permission.

Typical experimentally determined response curves of nearly tetragonal (5M mod-
ulated) single crystalline Ni2MnGa specimens are shown in Figure 1.5. The (a) strain
and (b) magnetisation responses depend highly on the level of the applied constant com-
pression stress. Prior to the experiments, the sample is compressed to obtain a single
martensite variant configuration. In the actual experiments, multiple levels of constant
compression stresses which favour the initial single martensite variant state are applied.
In addition, one cycle of an external magnetic field is applied perpendicular to the com-
pression stress, favouring the other martensite variant. Initially, the change in strain is
almost negligible, whereas a linear magnetisation response is observable during loading.
The underlying mechanism is the rotation of the magnetisation vectors away from their
preferred magnetic easy-axes in the direction of the external magnetic field. At a certain
point, the onset of the martensite reorientation is visible in the strain response, where an
almost vertical response behaviour is observable and large strains are measured, and the
magnetisation response curves, where the slopes of the curves drastically increase, for
low and medium compression stresses. The magnetic field induces the martensite vari-
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1 Introduction

ant switching into the magnetic field-favoured martensite variant, which is magnetised
in one of its easy-axes directions. After the almost vertical strain response, both curves
flatten and approach asymptotically a certain strain level until the magnetisation satu-
rates and the switching process stops. The higher the compression stress, the lower the
maximum magnetic field-induced strain and the later the onset of the reorientation until
the compression stress completely suppresses the variant switching. Here, the variant
switching is nearly completely suppressed for high compression stresses, where the strain
remains mostly zero and where the magnetisation response is almost linear for the whole
loading cycle. During unloading, the onset of the martensite switching process is delayed
due to dissipation associated with the martensite reorientation. The initial martensite
variant is completely/partially recovered for medium/low compression stresses during
unloading. In the absence of the external magnetic field, the magnetisation reduces to
zero. The mechanism of domain wall motion is activated in the magnetic field-favoured
martensite variant. The second half of the loading cycle is almost identical to the first
half for medium and high compression stresses, but differs significantly for low compres-
sion stresses due to the initial occurrence of both martensite variants and all domains
at zero magnetic field. This effect is known in the literature as the first cycle effect.
For low compression stresses, the magnetisation response is almost linear with a higher
slope during this second half, since domain wall motion requires less energy than the
rotation of the magnetisation vectors. At a certain point, the martensite switching pro-
cess is initiated. From this point on, the response is almost identical to the first half of
the loading cycle. The highly nonlinear strain and magnetisation response of Ni2MnGa
under magnetomechanical loading conditions is due to the (simultaneous) occurrence of
all magnetisation mechanisms on the microscale. In the following, the three mechanisms
are isolated in some thought experiments.
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Figure 1.5: Experimentally measured magnetic field-induced (a) strain and (b) normalised magnetisa-
tion responses under three levels of constant compression stress and perpendicular cyclic magnetic field
loading of a Ni50.7Mn28.4Ga20.9 MSMA specimen reported by [71].
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The magnetic response of MSMAs such as Ni2MnGa under magnetic field loading
is mainly governed by three mechanisms that are schematically sketched in Figure 1.6.
The first mechanism is called (180◦) magnetic domain wall motion, see Figure 1.6 (top).
Here, a single variant of martensite is considered with two opposingly oriented mag-
netic easy-axes. Areas of equal magnetisation are known as domains and are separated
by 180◦ domain walls. In the initial configuration in the absence of externally applied
magnetic fields, the total areas of both domain types are of equal size and the macro-
scopically observable net magnetisation is zero. Under the application of an external
magnetic field, the mechanism of (180◦) magnetic domain wall motion is initiated. The
sizes of all magnetic field-favoured domains, where the spontaneous magnetisations are
oriented in the direction of the external magnetic field, grow at the expense of the
others and a non-zero net magnetisation is observable. During this magnetisation, the
demagnetisation self-field acting against the magnetisation builds up and the magne-
tostatic energy of the self-field increases. At certain magnetic fields, the unfavourable
domains vanish completely and the magnetisation saturates. For the considered ideal
case, the magnetisation response is completely linear. During this whole process, the
magnetisation is always oriented along the easy-axes. In experiments one tries to iso-
late this easy-axis response by applying a magnetic field in one of the easy-axes of a
single crystalline Ni2MnGa specimen, see Figure 1.7 taken from [134] for an experimen-
tally measured magnetisation response curve. The response is almost linear. The single
martensite variant configuration is maintained by the application of a suitable compres-
sion stress. The easy-axis magnetisation response in Ni2MnGa is nearly hysteresis-free.
The second mechanism is called rotation of the magnetisation vectors, see Figure 1.6
(middle). Again, a single variant of martensite with an initially zero net magnetisa-
tion is considered. A suitable compression stress above the blocking stress is applied in
the easy-axes direction to maintain the single martensite variant configuration and to
suppress the third mechanism, see below. An external magnetic field is applied perpen-
dicular to the magnetic easy-axes. The spontaneous magnetisation vectors within all
domains start to rotate towards the direction of the applied magnetic field, resulting in
a macroscopically observable magnetisation. For high magnetic fields, the spontaneous
magnetisation vectors fully align with the external field and the magnetisation satu-
rates. Magnetostatic energy is stored in the demagnetisation field that builds up during
the magnetisation. In addition, magnetocrystalline anisotropy energy is stored due to
the reversible deviation of the spontaneous magnetisation vectors from the magnetic
easy-axes. This additional energy storage usually results in the requirement of higher
externally applied magnetic fields to magnetise a specimen in its hard-axes directions.
An experimentally determined magnetic field-induced hard-axis magnetisation response
curve of a single crystalline Ni2MnGa specimen is shown in Figure 1.7 taken from [134].
Like in the thought experiment, a suitable compression stress is applied to the specimen.
The response curve is almost linear and dissipation is hardly if at all observable. Con-
ventional magnetostriction is neglected in this thought experiment, due to the relatively
low strains in contrast to the strains obtained by the third mechanism named marten-

11



1 Introduction

site variant reorientation, respectively variant switching which is unique to MSMAs, see
Figure 1.6 (bottom). For the sake of clarity, the magnetisation vectors permanently
point in the easy-axes directions for this schematical representation. Initially, a single
martensite variant is considered with zero net magnetisation. An external magnetic
field is applied in the hard-axis direction. At a certain magnetic field, the martensite
reorientation process in initiated, accompanied by large magnetic field-induced strains.
Due to the relatively high magnetocrystalline anisotropy energy in Ni2MnGa and the
relatively low threshold for the martensite reorientation, it is favourable to switch to
the magnetic field-favoured martensite variant to reduce the overall energy. The arising
second martensite variant is magnetised in its easy-axis direction. Higher magnetic fields
are required to complete the switching process. Unlike for the other two mechanisms,
the initial configuration is not regained during unloading. There are two reasons for
this behaviour. Firstly, the mechanism of martensite reorientation is dissipative in na-
ture. Secondly, the two martensite variants are energetically equally favourable in the
absence of external loads. During unloading, domains with the spontaneous magneti-
sation oriented in the other easy-axis direction will form and allow a reduction to zero
net magnetisation at zero applied magnetic field. Figure 1.5, taken from [71], shows
magnetic field-induced (a) strain and (b) magnetisation response curves of a single crys-
tal Ni2MnGa specimen. Large magnetic field-induced strains and dissipative switching
behaviour is observable. Unlike for the other two mechanisms, it is not possible to iso-
late the martensite reorientation process in experiments. It should be mentioned that
it is possible to initiate and complete the variant switching process by applying suitable
mechanical loading conditions, see, e.g., [71].

1.2 Modelling approaches

This section briefly introduces modelling approaches that were used to model and simu-
late the response behaviour of magnetic shape memory alloys under magnetomechanical
loading conditions. Several other authors have provided overviews over established mod-
elling approaches, see, for instance, [25, 48, 104, 106, 110, 220, 222]. These publications
were used as a basis for the following representation.

One of the earliest models provided in [89] is based on the constrained theory of mag-
netoelasticity which was developed for materials with high anisotropy, see also [41, 213].
One central assumption is the large body limit where not all details of the underly-
ing laminate type microstructure, such as domain arrangements and domain walls, are
resolved. The martensite variants and magnetic domains are both mechanically and
magnetically compatible, since deviations from the energy well states, i.e. elastic defor-
mations and rotated magnetisation vectors, are not considered. The overall response
results from the solution of a constrained optimisation problem.

The model proposed in [169] assumes two variants that are separated by a single twin
boundary to study the magnetic field-induced martensite reorientation. The driving
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Figure 1.6: Schematic representation of the magnetic field-induced microscale mechanism. The mech-
anism of 180◦ domain wall motion (top) and the rotation of the magnetisation vectors (middle) occur
in all ferromagnetic materials. For the latter, a stress is applied to suppress the mechanism of marten-
sitic variant reorientation (bottom), respectively variant switching, which is unique to MSMAs and
accompanied with large magnetic field-induced strains. For the sake of clarity, the latter mechanism is
sketched isolated without rotations of the magnetisation vectors.
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Figure 1.7: Experimentally measured magnetic field-induced normalised magnetisation response in easy-
and hard-axis direction of a single variant Ni48Mn30Ga22 MSMA specimen reported by [134].

force for the twin boundary motion is the difference between the magnetic energies
of the two variants across the boundary. The model was extended by considering an
additional mechanical potential in [166] and further in [157] by considering magnetisation
vectors that may deviate from the magnetic easy-axes. Hysteretic effects and generalised
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magnetomechanical loading conditions are considered in [69, 70]. The models predict an
abrupt switching whenever the energy changes its sign or the difference of the energies
reach a certain threshold, but qualitatively capture the magnetic fields and stresses where
switching occurs. In addition, the energy analysis outlined in [69, 70] suggests that
magnetic field-induced variant switching might occur in MSMAs at high stress levels,
even above the blocking stress, under multiaxial stresses. The experiments outlined in
[26] suggest that the intrinsic hysteresis of the material and strain change due to variant
switching are constant under various biaxial compression stresses.

Another early model was proposed in [134]. It requires only a few parameters, respec-
tively energies, that can be determined by experiments, e.g. by integration of experimen-
tal magnetisation response curves in easy- and hard-axis direction of a single martensite
variant. The driving force for the twin boundary motion is introduced so as to depend
on the ratio between the magnetic anisotropy energy difference of the two variants in
addition to the strain change that occurs during the martensite reorientation. The onset
of the twin boundary motion is independent of the physical nature of the driving force
and starts at equivalent load levels. Several other models are based on this work, such
as [104, 105, 201].

The modelling of the macroscopic behaviour using statistical approaches is outlined
in, e.g., [30, 61, 158]. Therein, the evolution of the variant volume fractions is determined
as a function of the effective stress acting on the specimen. Thermally activated variant
switching is considered in [20, 123, 173]. The switching rates of the variants are related
to an energy barrier.

The path dependency of the response behaviour and dissipative effects are taken into
account in thermodynamics-based models. In these approaches, internal state variables
are introduced that characterise the state of the underlying microstructure. A Helmholtz
or Gibbs free energy is typically proposed. The constitutive equations that correspond
to the different independent variables are derived and used to determine the magne-
tomechanical response as well as the evolution equations for the internal state variables.
A one-dimensional constitutive model with two internal state variables was proposed
in [82] to capture the martensite reorientation of two variants. The models outlined in
[34, 59] additionally allow the magnetisation to rotate away from the preferred magnetic
easy-axes. This is also true for the models proposed in [107, 108, 110], but they pro-
vide a more systematic thermodynamic treatment. Therein, internal variables describe
the crystallographic and magnetic microstructure. Hysteretic effects that occur under
magnetic field-induced variant reorientation are captured. A special emphasis is placed
to capture the nonlinearity and stress level-dependency of the strain and magnetisation
response. Experimental data is provided in [111] and compared to simulated response
curves. The model is used for the simulation of magnetic boundary value problem in
[64, 109, 125]. The spatial influence of the demagnetisation effect is analysed in detail
in [65]. Three dimensional models are proposed in [5, 14, 27]. In [220], a variational
approach is proposed and applied to derive the governing system of equations. The
shape dependency of the response behaviour is taken into account. The embedding of
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this model into a finite element framework requires a special numerical treatment in
terms of an iterative scheme, see [221]. Overall, the outlined models generally predict
the magnetic field-induced strain and magnetisation response curves as well as the stress
induced strain response curves quite well. The evolution of the state variables can be
utilised to investigate the underlying mechanisms that are responsible for the response
behaviour observable in experiments.

Phase field models allow the spatial resolution of the microstructure. Different order
parameters may be used to capture the evolution of the martensite variants that are
subdivided in magnetic domains with internal domain walls. Examples are the models
outlined in [93, 129, 130, 142, 143, 183, 234]. The non-local nature of the response is
directly taken into account in micromagnetics-based phase field models.

A series of papers [222–224] deals with the establishment of a material model for
MSMAs and its finite element implementation to investigate the twin interface movement
in single crystalline MSMAs under magnetomechanical loading conditions. Therein,
the properties of the configurational force on the twin interfaces are analysed in three-
dimensional cuboid bodies. In their finite element simulations, a finite size free space
box is used and the demagnetisation effect is directly taken into account.

1.3 Structure of the thesis

The objective of this thesis is described in two different parts. The first part focusses
on the development of a suitable material model to capture and simulate the nonlinear,
hysteretic, and stress level-dependent response of Ni2MnGa MSMAs under magnetome-
chanical loading conditions for macroscopically homogeneous states. The second part,
however, focusses on the implementation of such models into a finite element framework
to simulate macroscopically inhomogeneous material and structural responses. The fol-
lowing chapters are independent of each other and are briefly summarised below.

Chapter 2 deals with the development of a suitable material model for the simulation
of Ni2MnGa MSMAs single crystals. Three global primary fields, viz. the displacement
field, the magnetic potential of the demagnetisation field, and a general set of state
variables, are introduced, followed by the micromagnetics-inspired variational frame-
work. The assumption of macroscopically homogeneous states allows the reduction to
a constrained minimisation problem to determine the evolution of the state variables
for the coupled magnetomechanical problem. After a short discussion regarding nu-
merical relaxation techniques, the underlying microstructure is parametrised by a set
of state variables and the stored energy density as well as a dissipation functional are
specified. Several numerical examples demonstrate the capabilities of the specific con-
stitutive model. The chapter ends with a short summary and an appendix, wherein the
stored energy density is further analysed.

Chapter 3 can be regarded as the first step in the implementation of these kinds of
material models into a finite element framework. The focus of this chapter lies on the
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simultaneous solution of the magnetostatic boundary value problem and the evolution
equations for the state variables, since the non-local demagnetisation field heavily influ-
ences the evolution of the state variables. The assumption of homogeneous stress and
strain distributions allows a reduction of the number of primary field variables of the
micromagnetics-inspired variational framework to two. The first variation of the con-
tinuous variational framework serves as a basis for the finite element implementation,
where arising Karush-Kuhn-Tucker (KKT) conditions are directly taken into account.
The state variables and the constitutive model are briefly summarised. The finite ele-
ment implementation and the algorithmic treatment are discussed with an emphasis on a
newly introduced mixed element formulation and the treatment of the constraints. The
magnetostatic boundary value problem as well as the evolution equations are solved
monolithically using a global Newton-Raphson scheme. Several numerical examples
demonstrate the capabilities of the finite element implementation. The chapter closes
with a short summary and an analysis of the stored energy density.

Chapter 4 can be regarded as an extension of the finite element implementation. To
be precise, the focus lies on the simultaneous solution of the fully coupled magnetome-
chanical boundary value problem and the evolution equations for the state variables.
Again, the first variation of the continuous variational framework, including the aris-
ing KKT conditions, serves as a basis for the finite element implementation. Multiple
parametrisations of the underlying microstructure are discussed and the constitutive
model is introduced, including the application of numerical relaxation techniques for
the elastic strain energy density of the phase mixture and the rate-dependent evolution
equations for all state variables. The finite element implementation and the algorithmic
treatment are discussed in detail. Many numerical examples demonstrate the capabil-
ities of the fully coupled finite element implementation in comparison to experimental
findings and calculated macroscopically homogeneous response curves. The chapter is
briefly summarised, followed by an appendix, wherein the different parametrisations are
connected, the constitutive driver is detailed, and the shape functions as well as the
stiffness matrix contributions are listed.

Chapter 5 concludes the thesis and the main achievements of this work are briefly
summarised. The chapter closes with an outlook on future research perspectives.

16



2 An energy relaxation-based MSMA
model

The material presented in this chapter is, in large parts, based on the ideas outlined in
the recent work [10]. A constitutive modelling framework is presented for magnetic shape
memory alloys, Ni2MnGa in particular, that builds on global variational principles. The
approach relies on concepts of energy relaxation and generalised notions of convexity
to compute effective energy hulls of the non-convex energy landscape associated with
the underlying multi-phase solid, from which the prediction of microstructure evolution
results. In this sense, it fundamentally distinguishes itself from MSMA models that
essentially follow phenomenological concepts of classic plasticity, see, e.g., [108, 110]. The
microstructure is not spatially resolved, but microscale quantities are taken into account
in an effective sense by internal state variables and appropriate mixture rules. The
model allows all mechanisms central to MSMA behaviour to occur simultaneously. The
modelling approach can quantitatively capture key characteristics of single-crystalline
MSMA response under magnetomechanical loading conditions, such as variant switching
diagrams, magnetic field-biased pseudo-elasticity and the influence of specimen shape
anisotropy, see also [112]. Moreover, the global variational framework is formulated in a
manner that lends itself to the finite element implementation. In this chapter, however,
numerical examples are considered in which the non-local nature of the demagnetisation
field is taken into account in an approximate sense through appropriate shape factors.

The chapter is structured as follows: Section 2.1 introduces the three global primary
fields and presents the general micromagnetics-inspired variational modelling framework.
Section 2.2 begins by introducing the general concept of energy relaxation and thereby
ties the modelling of microstructure evolution to the notion of the loss of material sta-
bility (quasiconvexity). Afterwards, the global energy storage and dissipation potentials
are specified for the proposed MSMA model. A number of insightful numerical examples
are presented in Section 2.3. The chapter closes with a short summary of the key findings
and conclusions drawn from this work and an outlook on future work in Section 2.4. A
further analysis of the stored energy density is given in the appendix in Section 2.5.
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2 An energy relaxation-based MSMA model

2.1 Variational framework

In this section, the general variational framework for the modelling of magnetisable solids
with evolving microstructure under the consideration of dissipative effects is introduced.
Although the focus of this chapter is set on spatially homogeneous problems—since it
already allows comparisons to experiments—the governing variational principle shall be
introduced in a general manner.

2.1.1 Global field variables

First, the spatial positions are denoted as x ∈ R3, which partly refer to a magnetisable
body B ⊂ R3 and the surrounding free space R3 \B. In general, the underlying state
variables are introduced as

u :

{
B × I → R3

(x, t) 7→ u(x, t)
, h :

{
R3 × I → R3

(x, t) 7→ h(x, t)
, m :

{
B × I → R3

(x, t) 7→m(x, t)
, (2.1)

where u denotes the displacement field, h the magnetic field strength, m the magneti-
sation, and I ⊂ R≥0 the considered time interval. In the absence of free currents, the
magnetic field may be related to a scalar magnetic potential φ via h :=−∇xφ, which a
priori fulfils Ampère’s law, with ∇x• defined as the gradient with respect to the underly-
ing Cartesian frame. Furthermore, the magnetic field can be subdivided into prescribed
spatially homogeneous contributions h and demagnetisation field h̃, so that h=h + h̃
holds. As a consequence, an analogous decomposition can be applied to the scalar mag-
netic potential as well, hence one obtains φ=φ + φ̃, h=−∇xφ, and h̃=−∇xφ̃. In the
present micromagnetics-inspired framework, magnetisation m is not treated as a field
variable itself, but is rather parametrised by a set of additional state variables p, so
that m(p). As elaborated in Section 2.2, these state-dependent variables—whose total
number of scalar-valued coefficients is np—describe the material’s microstructure. With
these modifications at hand, the alternative set of global field variables is given by

u :

{
B × I → R3

(x, t) 7→ u(x, t)
, φ̃ :

{
R3 × I → R
(x, t) 7→ φ̃(x, t)

, p :

{
B × I → Rnp

(x, t) 7→ p(x, t)
, (2.2)

which serves as a basis for the subsequent model development.

2.1.2 Continuous variational principle

Conceptionally in line with [49], the micromagnetics inspired functional

Π(u, φ̃,p) := Π int(u,p) +Π free(φ̃) +Πext(u,p) (2.3)
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2.1 Variational framework

is defined, wherein Π int accounts for the energy stored in the magnetisable and de-
formable solid, Π free accounts for the magnetostatic energy stored in the body and the
surrounding free space, and Πext accounts for the external magnetomechanical loading.
To be precise, the individual contributions are defined as

Π int(u,p) :=

∫

B

ψmat(ε,p) dv , (2.4)

Π free(φ̃) :=
µ0

2

∫

R3

‖h̃‖2 dv , (2.5)

Πext(u,p) := −µ0

∫

B

h ·m(p) dv −
∫

∂Bt

t · u da , (2.6)

with the small strain ε :=∇sym
x u = 1

2
[∇xu+∇xu t ] and t denoting prescribed tractions

on the boundary ∂Bt. Hence, the functional Π(u, φ̃,p) is specified as follows

Π :=

∫

B

ψmat(ε,p) dv +
µ0

2

∫

R3

‖h̃‖2 dv − µ0

∫

B

h ·m(p) dv −
∫

∂Bt

t · u da . (2.7)

Assuming, that the demagnetisation potential vanishes at infinity, the following identity
holds, see [41, 88],

−µ0

2

∫

R3

‖∇xφ̃‖2 dv = −µ0

2

∫

R3

‖h̃‖2 dv ≡ µ0

2

∫

B

h̃ ·m dv . (2.8)

This allows the formulation of an alternative energy-enthalpy functional Π̃(u, φ̃,p) de-
rived from (2.7), which is in line with [146] and defined as follows

Π̃ :=

∫

B

ψmat(ε,p) dv− µ0

2

∫

R3

‖h̃‖2 dv−µ0

∫

B

[
h+ h̃

]
·m(p) dv−

∫

∂Bt

t ·uda . (2.9)

Exchange energy terms are not considered in the present approach in (2.7) as well as
(2.9), due to the assumption of the large body limit, cf. [41].

The functional (2.9) is used for the definition of a power-type potential, cf. [23, 145,
178],

L :=
˙̃
Π +

∫

B

ζ(ṗ,p) dv , (2.10)
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2 An energy relaxation-based MSMA model

where •̇ denotes the material time derivative and where ζ is a dissipation potential ac-
cording to, e.g., [17, 46, 235], which is used to account for the dissipation associated with
the evolution of the state variables. In addition, equality and inequality constraints—
depending on the chosen set of p—may need to be considered in order to limit the
evolution of the state variables. The application of the—at this point unconstrained—
mixed minimisation/maximisation principle

{u̇, ˙̃
φ, ṗ} = arg

[
inf
u̇

sup
˙̃
φ

inf
ṗ
{L}

]
(2.11)

yields the set of stationarity conditions, respectively Euler-Lagrange equations, of the
variational principle

divxσ = 0 in B , (2.12)

σ · n = t on ∂Bt , (2.13)

divxb̃ = 0 in B , (2.14)

divx[−∇xφ̃ ] = 0 in R3 \ B , (2.15)

[[b̃]] · n = 0 on ∂B , (2.16)

0 ∈ −F + ∂ṗζ + ∂pζ in B , (2.17)

with

σ := ∂εψ
mat , (2.18)

b̃ := µ0

[
h̃+m(p)

]
, (2.19)

F := − ∂pψmat + µ0

[
h+ h̃

]
· ∂pm , (2.20)

introduced as stresses σ, magnetic induction of the demagnetisation field b̃, and the
generalised thermodynamical driving forces F and [[b̃]] = b̃+ − b̃− denoting the jump in

b̃ between the sides ∂B+ and ∂B− of the interface ∂B. The definition of b̃ introduced
above—with the magnetisation as a part of the magnetic induction of the demagnetisa-
tion field—is used here for a compact notation of the underlying equations. As mentioned
above, the exact relation between the magnetisation and the internal state variables p
will be provided subsequently—resulting in the exact expression for ∂pm. The stationar-
ity conditions reflect the balance of linear momentum (2.12), Gauss’s law for magnetism
(2.14)–(2.16), and the Biot-type evolution equations for the internal state variables p
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2.1 Variational framework

(2.17), whereas (2.13) denotes Neumann boundary conditions. In addition, one has to
consider the Dirichlet boundary conditions

u = u on ∂Bu , (2.21)

with ∂B=∂Bt ∪ ∂Bu, and the magnetic potential vanishes at infinity, i.e. φ̃=0, cf. (2.8),
in order to solve the complete boundary value problem.

2.1.3 Incremental variational principle

As an alternative to the aforementioned approach, one may also consider an incremental
variational principle, cf. [9, 12, 23, 145, 178]. The functional

Ψ :=

tn+1∫

tn

L dt =

tn+1∫

tn


 ˙̃
Π +

∫

B

ζ(ṗ,p) dv


 dt (2.22)

is based on the potential L introduced in (2.10) and is defined for the time interval
t ∈ {tn, tn+1}, cf. [9]. This functional can be transformed into the equivalent form

Ψ = Π̃n+1 − Π̃n +

tn+1∫

tn

∫

B

ζ(ṗ,p) dv dt , (2.23)

where

Π̃• := Π̃(u•, φ̃•,p•) = Π̃(u(t•), φ̃(t•),p(t•)) . (2.24)

The actual values of the underlying variables, i.e. the values of u, φ̃, and p at time tn+1,
are determined by the following—at this point likewise unconstrained—mixed minimi-
sation/maximisation problem, cf. (2.11),

{un+1, φ̃n+1,pn+1} = arg

[
inf
un+1

sup
φn+1

inf
pn+1

{Ψ}
]
≡ arg

[
inf
un+1

sup
φn+1

inf
pn+1

{
Ψ̂
}]

, (2.25)

where the alternative functional

Ψ̂ := Π̃n+1 +

tn+1∫

tn

∫

B

ζ(ṗ,p) dv dt (2.26)

can be used, since the values of u, φ̃, and p at time tn and Π̃n are known. In general,
the solution of (2.25) requires a time-discretisation of the rates present in the dissipation
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2 An energy relaxation-based MSMA model

potential ζ(ṗ,p). They are approximated by ṗ≈ [pn+1 − pn ]/∆t with ∆t= tn+1 − tn,
which is covered by

D([pn+1 − pn ]/∆t,pn+1) ≈
tn+1∫

tn

ζ(ṗ,p) dt . (2.27)

With this quantity at hand and, in addition, by defining

D(pn+1,pn) :=

∫

B

D([pn+1 − pn ]/∆t,pn+1) dv , (2.28)

the functional to be minimised/maximised is expressed by

Ψ̂ = Π̃n+1 + D(pn+1,pn) , (2.29)

so that

{un+1, φ̃n+1,pn+1} = arg

[
inf
un+1

sup
φn+1

inf
pn+1

{
Π̃n+1 + D(pn+1,pn)

}]
. (2.30)

It should be mentioned that the application of variational calculus in order to optimise Ψ
as introduced in (2.22) yields identical stationarity conditions as given in Section 2.1.2.

2.1.4 Simplifications for homogeneous problems

The main aim of the present study is to establish a material model that is capable
of reproducing essential phenomena of MSMA, which were observed in experiments
conducted by using single crystals, see, e.g., [71, 202, 211, 212]. In order to investigate
the material behaviour itself, the underlying problem—in experimental investigations
and concerning the simulations—should be as simple as possible, preferably providing
homogeneous states of the essential fields. In this section, the model introduced so far
will be specified for such cases.

In particular, deformations are assumed to yield homogeneous total strains ε(p) and
consequently homogeneous stresses σ without the necessity of considering compatibility
or boundary conditions. Furthermore, the demagnetisation field is directly expressed
as a function of the magnetisation. Inside specifically shaped bodies, e.g. ellipsoids, an
on the considered length scale spatially homogeneously distributed magnetisation m
minimises the magnetostatic energy, see [41]. In analogy to the Eshelby solution for the
purely mechanical case, the homogeneous magnetisation and the likewise homogeneous
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2.1 Variational framework

demagnetisation field inside the magnetisable body B are then related by the analytical
solution, cf. [115, 155],

h̃ = −∇xφ̃ = −D ·m , (2.31)

with D as the second-order demagnetisation tensor depending on the shape of the body,
which is symmetric and positive definite. For bodies with a homogeneous distribution
of the magnetisation and an inhomogeneous demagnetisation field, (2.31) holds for the
averaged quantities. From now on, we will only consider bodies with a spatially homo-
geneous distribution of the magnetisation. The inhomogeneous demagnetisation field
outside the magnetisable body is of no interest and consequently not calculated. For
the shape dependent demagnetisation tensors, either analytical solutions may be used,
cf. [36, 155, 170, 188], or they may be calculated in advance in magnetostatic finite
element simulations, see also the discussion in [65].

By the combination of (2.31) and (2.8), the specific functional Π̃hom, based on (2.9),
can, for the considered homogeneous case, be expressed as

Π̃hom(p) =
[
ψmat(p) +

µ0

2
m(p) ·D ·m(p)− µ0 h ·m(p)

]
VB−

∫

∂Bt

t ·uda , (2.32)

with VB as the volume of the magnetisable body B. Finally, the surface integral can be
transformed into a volume integral via

∫

∂Bt

t · u da =

∫

∂Bt

[σ · n] · u da ≡
∫

B

σ : ∇xu dv =

∫

B

σ : ε dv = σ : εVB , (2.33)

so that one obtains

Π̃hom(p) =
[
ψmat(p) +

µ0

2
m(p) ·D ·m(p)− µ0 h ·m(p)− σ : ε(p)

]
VB (2.34)

as the final representation of the energy-enthalpy function for homogeneous states inside
the body. It should be emphasised here that h and σ are prescribed quantities, whereas
m as well as ε are outcomes of the material model and thus generally depend on the
internal state variables p. These can now be determined by applying (2.30) for the
dissipative case, which results in

pn+1 = arg inf
pn+1

{
Π̃hom
n+1 (pn+1) + D(pn+1,pn)

}
s.t. pn+1 being admissible . (2.35)

The precise representation of the functions ψmat(p),m(p), and ε(p) and the arising
equality/inequality constraints are, however, part of the specific constitutive model and
will thus comprehensively be discussed in the following section.
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2 An energy relaxation-based MSMA model

Remark 1 The constrained minimisation problem (2.35) for the non-dissipative case,
i.e. D= 0, without considering energy stored in the magnetisable and deformable body,
i.e. ψmat = 0, and the magnetisation m, respectively the strain ε, as convex combina-
tions of the energy well states, i.e. easy-axes magnetisations mea

j and transformation
strains εtr

i , represents the minimisation problem in the context of the constrained theory
of magnetoelasticity introduced by [41].

2.2 Constitutive framework

After having introduced the overall thermodynamical framework, the precise material
model for the considered MSMA shall now be discussed in detail.

2.2.1 General aspects of quasiconvexity

In this section, the concept of energy relaxation shall be outlined and its relation to
constitutive modelling shall be discussed. Energy relaxation methods—as used for the
development of material models by, e.g., [7, 12, 177]—stem from quasiconvex analysis
and the direct methods in the calculus of variations. If one considers a minimisation
problem of the form

min
u





∫

B

ψmat(∇sym
x u) dv − `(u)



 , (2.36)

where `(u) is a linear function w.r.t. u, this problem is mathematically well-posed if the
energy density ψmat is (i) bounded, (ii) coercive, and most essentially (iii) quasiconvex.
The first two aspects may be interpreted as certain (i) smoothness and (ii) growing
assumptions which can be taken into account rather easily in the context of the present
modelling approach. The notion of quasiconvexity has been introduced by [154] who
showed that quasiconvex potentials are indeed weakly lower semicontinuous and thus
the existence of minimisers and solutions can be proved. The condition for ψmat(ε) to
be quasiconvex, viz.

ψmat(∇sym
x u) ≤ 1

VB

∫

B

ψmat(∇sym
x u+∇sym

x w) dv (2.37)

with
∫

B

∇xw dv = 0 and w = 0 on ∂B , (2.38)
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also exhibits an intuitive physical interpretation in terms of a material (in)stability
condition: As long as the energy associated with homogeneous strain states is lower
than or equal to energy densities obtained by any admissible displacement perturbation
field w, this energy density is said to be quasiconvex. In contrast, if (2.37) does not hold,
it means that perturbation fields w—which may be related to specific microstructure
models as discussed in the subsequent section—further minimise the underlying energy
and a phase mixture will occur accordingly.

As a consequence, the energy density ψmat present in (2.36) should be substituted by
its quasiconvex envelope

Qψmat(∇sym
x u) := min

w





∫

B

ψmat(∇sym
x u+∇sym

x w) dv



 subject to (2.38) (2.39)

in order to guarantee well-posedness of the overall problem, which is now given by

min
u





∫

B

Qψmat(∇sym
x u) dv − `(u)



 . (2.40)

It is well known that the quasiconvex envelope of a formerly non-quasiconvex energy
landscape is hardly, if at all achieveable, see, e.g., [40] for a rare case in which this optimal
energy bound has been determined. In general, approximations of the quasiconvex hull
have to be applied. Such approximations can be conducted by calculating the convex
hull Cψmat (see, e.g., [94, 112]), the polyconvex hull Pψmat (see, e.g., [7]), or the rank-
one convex hull Rnψ

mat w.r.t. laminates of n-th-order (see, e.g., [9] for laminates of first
order), where it can be proved that

Cψmat ≤ Pψmat ≤ Qψmat ≤ R∞ψ
mat ≤ . . . ≤ Rnψ

mat ≤ . . . ≤ R1ψ
mat . (2.41)

In this work, first-order laminates will be used in order to determine an upper bound of
the quasiconvex hull, as will be explained in the following section.

2.2.2 Representation of MSMA microstructure

We generally consider a multi-phase solid which, for the considered model material
system—a magnetic shape memory alloy (MSMA), such as Ni2MnGa—typically con-
sists of ferromagnetic martensite at the relevant operating temperature, see Figure 2.1.
As a basis for our micromechanically-motivated constitutive model, we assume the ide-
alised representation of the microstructure illustrated in Figure 2.2. The assumption
of such (first-order) laminate-type arrangements does not necessarily always need to di-
rectly correspond to an actual microstructure. In the case of the rank-one relaxation,
they may represent rather generic realisations of perturbation states used to approx-
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2 An energy relaxation-based MSMA model

imate the quasiconvex hull. However, such twinned martensite patterns with internal
domains have actually been experimentally observed in MSMAs [60, 205]. Moreover, the
assumption of neglecting the third crystallographic variant, see Figure 2.1, is in line with
typical experiments [202], provided that the single crystal specimens are carefully cut
along selected crystallographic directions, that the (virtual) coordinate system is placed
accordingly and that the magnetomechanical loading is applied only in the e1-e2-plane.

e1

e2
e3

α1 α2 α3 α4 α5 α6

mea
1 mea

2

mea
3 mea

4
mea

5 mea
6

a0a0

a0

a
a

a
a

aa

c

c
c

εtr1 εtr2 εtr3

cooling

Figure 2.1: Crystallographic variants. Below both the Curie and the phase transformation temperatures,
typical MSMAs consist of ferromagnetic martensites, here of tetragonal structure. The variants of this
lower symmetry phase—compared to the cubic austenite parent phase—are distinguishable by their
respective transformation strains. While the easy-axis of each variant is always along the short edge of
the unit cell, the sense of direction (positive/negative) of the spontaneous magnetisation can be used to
further distinguish different domain types. Consequently, a total of six domain/variant combinations
can be identified as individual “phases”. Adopted from Kiefer et al. [112] with kind permission .

In this two-dimensional arrangement, the martensite variants may form perfectly co-
herent interfaces, with a twin boundary whose orientation is described by the unit normal
vector n̂tw

12 , with ‖n̂tw
12‖=1. The orientation of n̂tw

12 is one of the micromechanical degrees
of freedom, cf. [9]. The two martensite variants, which may coexist, are associated with
the transformation strains (cf. Figure 2.1)

εtr
1 = b2 e1⊗e1 +b1[ e2⊗e2 +e3⊗e3 ] , εtr

2 = b2 e2⊗e2 +b1[ e1⊗e1 +e3⊗e3 ] , (2.42)

with b1, b2 as Bain strain coefficients, that are related to the lattice parameters, cf. Fig-
ure 2.1, by b1 = [ a − a0 ]/a0 and b2 = [ c − a0 ]/a0. As also indicated by Figures 2.1 and
2.2, each of the two crystallographic variants of martensite decomposes into two distinct
domains exhibiting converse spontaneous magnetisation directions basically aligned with
the crystallographic easy-axes—depicted asmea

j —, which correspond to the short axes of
the tetragonal crystals. The orientation of those may vary and deviate from the respec-
tive easy-axis under applied magnetic loading. Therefore, the angles θj with j=1, . . . , 4
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Figure 2.2: (a) Two-dimensional idealisation of the MSMA microstructure. Twinned arrangement of
the martensite variants introduced in Figure 2.1, with each twin band further separated into magnetic
domains. (b) The microstructure is parametrised in terms of the volume fractions αi, the fixed 180◦

domain wall orientations n̂dom
i , and the orientation of the twin boundary n̂tw

12 (ϕ), which also represents
a 90◦ domain wall. The planar rotation of the local magnetic moments away from their respective
easy-axes is measured in terms of the angles θi. See also Kiefer and Lagoudas [108].

are introduced as well as the relations for the the domain magnetisations mdom
j (θj),

cf. Figure 2.2 and [108],

mdom
1 (θ1) := ms[ cos(θ1) e1 + sin(θ1) e2 ] , (2.43)

mdom
2 (θ2) := −ms[ cos(θ2) e1 + sin(θ2) e2 ] , (2.44)

mdom
3 (θ3) := −ms[ sin(θ3) e1 − cos(θ3) e2 ] , (2.45)

mdom
4 (θ4) := ms[ sin(θ4) e1 − cos(θ4) e2 ] , (2.46)

where the magnitudes of the domain magnetisations are treated as a constant material
parameter, viz. ‖mdom

j ‖=ms, with ms as the saturation magnetisation.

It is worth noting that the angles θj are generally not restricted to a certain value
range. In order to be able to distinguish the different domains throughout the calcula-
tions it is, however, necessary to define the limits

− π/2 ≤ θj ≤ π/2 . (2.47)

We assume conservation of mass in terms of negligible density changes and identi-
cal densities for all martensite variants and for the underlying domains. The volume
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2 An energy relaxation-based MSMA model

fractions of the individual domains are introduced as αj with j = 1, . . . , 4. The variant
volume fractions ξ1 and ξ2 are related to the domain volume fractions via

ξ1 = α1 + α2 , ξ2 = α3 + α4 . (2.48)

In addition, the net magnetisations of each domain η1 and η2 are introduced, which are
related to the domain volume fractions via

η1 = α1 − α2 , η2 = α3 − α4 . (2.49)

The inverse relations are then given by

α2 i−1 =
1

2
[ ξi + ηi ] , α2 i =

1

2
[ ξi − ηi ] , with i = 1, 2 . (2.50)

The introduction of the domain volume fractions, respectively alternative representation
in terms of variant volume fractions and net magnetisations, are inevitably accompanied
by the consideration of equality and inequality constraints, i.e.

αj ≥ 0 ,
4∑

j=1

αj = 1 , ξi ≥ 0 , ξ1 + ξ2 = 1 , |ηi| ≤ ξi . (2.51)

With these quantities at hand, the total magnetisation is obtained by averaging over all
domains, which results in

m(αj(ξi, ηi), θj) :=
4∑

j=1

αj(ξi, ηi)m
dom
j (θj) (2.52)

and which yields the precise relation between the magnetisation and the internal state
variables that were formerly introduced as p.

The interfaces of the respective domains referring to one martensite variant are per-
pendicular to the interface normal directions n̂dom

1 and n̂dom
2 . These orientations are

initiated and kept fixed as shown in Figure 2.2, namely

n̂dom
1 = e2 , n̂dom

2 = e1 . (2.53)

The last aspect of the microstructure model deals with compatibility conditions,
cf. [15]. In order to fulfil mechanical compatibility at the intermartensitic twin bound-
aries with respect to the local displacement field within the assumed underlying mi-
crostructure in an idealised representative volume element (RVE) consisting of two
martensite variants, cf. Figure 2.2, the Hadamard condition implies a rank one connec-
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tion in terms of the jump [[F ]] between the deformation gradients of the two martensite
variants F i, cf., e.g., [9],

[[F ]] := F 1 − F 2 = a⊗ n̂tw
12 , (2.54)

where a ∈ R3 reflects another internal state variable, which can be interpreted as the
jump in the deformation gradient or the strain jump—in the small strain setting—
projected onto the interface normal n̂tw

12 . It is also possible to relate jump a to the
amplitude of a perturbation field that yields homogeneous deformation gradients, see
[9]. The mechanical compatibility between the respective domains present in one variant
do not need to be taken into account, since these are fulfilled a priori due to identical
crystal orientations. In addition to the compatibility conditions at the twin boundary,
the averaged deformation gradients present in the RVE need to be identical to the
macroscopic counterpart, i.e.

F
·

=
2∑

i=1

ξi F i . (2.55)

The combination of (2.54) and (2.55) yields the deformation gradients F i of both marten-
site variants

F 1 = F + ξ2 a⊗ n̂tw
12 , F 2 = F − ξ1 a⊗ n̂tw

12 . (2.56)

Equation (2.54) represents the invariant plane condition. A vector v, which lies on the
interface with the interface normal n̂tw

12 satisfying v · n̂tw
12 =0, is equally deformed by F 1

and F 2, cf. [15],

F 1 · v − F 2 · v = [a⊗ n̂tw
12 ] · v = a [v · n̂tw

12 ] = 0 . (2.57)

In the present small strain setting, relations (2.54) to (2.56) are symmetrised using the
relation ε= 1

2
[F +F t ]− I, with I being the second-order unit tensor. The Hadamard

condition in terms of total strains of the individual martensite variants εi is introduced
as the symmetrised version of (2.54), viz.

[[ε]] := ε1 − ε2 = [a⊗ n̂tw
12 ]sym =

1

2
[a⊗ n̂tw

12 + n̂tw
12 ⊗ a ] . (2.58)

In analogy to (2.55), the averaged strains present in the RVE need to be identical to the
macroscopic counterpart, i.e.

ε
·

=
2∑

i=1

ξi εi . (2.59)
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2 An energy relaxation-based MSMA model

Combining (2.58) and (2.59), i.e. the small strain version of (2.56), yields the strains εi
of both martensite variants

ε1 = ε+ ξ2[a⊗ n̂tw
12 ]sym , ε2 = ε− ξ1[a⊗ n̂tw

12 ]sym . (2.60)

The magnetic compatibility at the domain interfaces, viz.

[mdom
2 i−1 −mdom

2 i ] · n̂dom
i = 0 , with i = 1, 2 (2.61)

as well as similar conditions across the twin boundary are, however, not taken into
consideration in the present framework. This is justified by the fact that the overall
model could be too restrictive in the sense that the complete set of restrictions may not
allow a continuous evolution of the variables which parametrise the microstructure. In
other words, the compliance of these constraints could directly result in the values of
the related variables. Furthermore, it is generally still a topic in scientific discussions
as to whether magnetisation compatibility between domains need to be enforced or if
violations may be allowed and then accounted for by additional contributions to the
excess energy, see, e.g., [41], without creating unphysical magnetic monopoles.

In order to summarise this section, the complete set of internal state variables used
in the subsequent calculations is given by

p := {ξ1, ξ2, η1, η2, θ1, θ2, θ3, θ4,a, ϕ} , (2.62)

where the twin interface normal

n̂tw
12 := cos(ϕ) e1 + sin(ϕ) e2 (2.63)

has been parametrised by the angle ϕ, cf. Figure 2.2.

2.2.3 Specific constitutive model

On the basis of the microstructure model introduced above, the constitutive model in
terms of suitable energy densities shall now be discussed. More precisely speaking, the
energy density ψmat introduced in Section 2.1.2 shall be specified. To this end, this
energy density is generally defined by

ψmat :=
2∑

i=1

ξi ψi , (2.64)
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2.2 Constitutive framework

where the phase energy densities ψi further decompose into an elastic part ψel
i and

contributions due to the magnetocrystalline anisotropy ψan
j , viz.

ψi := ψel
i +

1

ξi

2 i∑

j=2 i−1

αj ψ
an
j , with i = 1, 2 . (2.65)

The elastic energy densities are chosen as quadratic forms

ψel
i :=

1

2
εel
i : Ei : εel

i , with i = 1, 2 , (2.66)

wherein Ei denotes the fourth-order elasticity tensor of the i-th martensite variant. The
additive decomposition of the strain tensors introduced in (2.60) into elastic εel

i and
transformation εtr

i parts, viz. εi = εel
i + εtr

i , yields the elastic strains present in each
martensite variant as

εel
1 = ε+ ξ2[a⊗ n̂tw

12 ]sym − εtr
1 , εel

2 = ε− ξ1[a⊗ n̂tw
12 ]sym − εtr

2 . (2.67)

In line with, e.g., [116, 170], the magnetocrystalline anisotropy energy density is chosen
as

ψan
j := k1


 1−

[
mdom

j

ms

· nea
j

]2

 ≡ k1 sin2(θj) , (2.68)

with k1 as a material parameter and nea
j =mea

j /ms as the orientation of the easy-axis
for the j-th domain, cf. Figure 2.1.

Having specified the individual contributions and having assumed identical elasticity
tensors for both martensite variants, i.e. E1 = E2 = E, the energy density ψmat in (2.64)
is specified as follows

ψmat =
1

2
ε : E : ε+

1

2
ξ1 ξ2 [a⊗ n̂tw

12 ]sym : E :
[

[a⊗ n̂tw
12 ]sym + 2 [ εtr

2 − εtr
1 ]
]

+
1

2

2∑

i=1

ξi ε
tr
i : E :

[
εtr
i − 2 ε

]
+ k1

4∑

j=1

αj(ξi, ηi) sin2(θj) . (2.69)

For the sake of simplicity, and since the anisotropy of the inelastic response dominates
the overall behaviour, the elastic properties of all martensite variants are assumed to be
identical and isotropic, so that the elasticity tensor can be expressed as

E =̂ [λ δij δkl + µ [ δik δjl + δil δjk ] ] ei ⊗ ej ⊗ ek ⊗ el , (2.70)
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2 An energy relaxation-based MSMA model

with the Lamé constants λ = ν E/[ [ 1 + ν ] [ 1 − 2 ν ] ], µ = E/[ 2 [ 1 + ν ] ] and E, ν
denoting Young’s modulus and Poisson’s ratio, respectively.

In order to fully specify the total potential Ψ̂hom in (2.35), the dissipation potential
needs to be defined and a suitable time discretisation needs to be chosen, see Sec-
tion 2.1.3. In advance, it is necessary to distinguish variables whose evolution cause a
noticeable amount of dissipation and those where this is not the case. A reliable indi-
cator for this is exemplified by the question as to whether or not the evolution of one
specific internal state variable is associated with local heating of the material and if
hysteresis loops occur in diagrams revealing the effective material behaviour.

In the present framework, the martensite variant volume fractions are chosen to be
dissipative in nature so that the dissipation function becomes

ζ := ζ̂(ξ̇1, ξ1, ξ̇2, ξ2) . (2.71)

This is motivated by experimental observations, see [211, 212], where the mechanism of
domain wall motion (evolution of ηi at constant ξi) and magnetisation rotation (evolution
of θj) causes negligible dissipation, while the mechanism of martensite reorientation is
clearly dissipative in nature, see [71, 202]. The evolution of the strain jump a and the
interface orientation n̂tw

12(ϕ) are also assumed to cause no dissipation. More precisely
speaking, the dissipation function is chosen to be positively homogeneous of degree one,
so that Euler’s Lemma ∂ṗζ · ṗ ≡ ζ holds, cf. [9, 147], viz.

ζ :=
2∑

i=1

Yξ(ξ1) |ξ̇i| , (2.72)

where

Yξ(ξ1) :=




Y0
ξ + ξ1 ∆Yξ , if ξ̇1 > 0 ⇔ ξ̇2 < 0

Y0
ξ + [ 1− ξ1 ] ∆Yξ , if ξ̇1 < 0 ⇔ ξ̇2 > 0

(2.73)

is introduced as a hardening-type function. This specific choice for the dissipation func-
tion ζ renders the evolution of the related state variables rate-independent. Furthermore,
a time discretisation scheme needs to be applied prior to solving (2.35) which is achieved
via forward differences, cf. Section 2.1.3, of the form

•̇ ≈ [ •n+1 − •n ]/∆t . (2.74)

With this at hand, quantity D (as introduced in Section 2.1.3) reads

D =
1

∆t

[
2∑

i=1

Yξ(ξ1,n+1) |ξi,n+1 − ξi,n|
]
VB , (2.75)
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2.2 Constitutive framework

where the hardening-type yield limit is now given as

Yξ(ξ1,n+1) :=




Y0
ξ + ξ1,n+1 ∆Yξ , if ξ1,n+1 > ξ1,n ⇔ ξ2,n+1 < ξ2,n

Y0
ξ + [ 1− ξ1,n+1 ] ∆Yξ , if ξ1,n+1 < ξ1,n ⇔ ξ2,n+1 > ξ2,n

(2.76)

in its time-discretised form.

Using the incremental variational approach discussed in Section 2.1.3, the solution of
the minimisation problem (2.35) does not only explicitly yield the current values for the
internal state variables. It moreover, in a kind of implicit manner, yields the (partially)
relaxed energy density with respect to first-order laminates via the sub-problem

R1ψ
mat := inf

a

{
ψmat

}
, (2.77)

with ψmat specified in (2.69). Here, this sub-problem can be carried out analytically
which yields the optimal strain jump (projected onto n̂tw

12)

a∗(p\a) := arg inf
a

{
ψmat

}
= −

[
n̂tw

12 · E · n̂tw
12

]−1 ·
[
n̂tw

12 · E : [ εtr
2 − εtr

1 ]
]
. (2.78)

The effective material behaviour in terms of stresses is given by

σ := ∂εψ
mat = E : [ ε− εtr ] (2.79)

with the averaged transformation strains

εtr :=
2∑

i=1

ξi ε
tr
i . (2.80)

In order to reproduce the material response obtained via experiments on single crystal
Ni2MnGa specimens, see, for instance, [71, 76, 111], the effect of prescribed constant
stresses has to be taken into account, cf. σ in (2.34). The strains which exactly yield the
stress state to be prescribed are therfore still to be determined. Here, the linear relation
(2.79) can be used to find

ε(p) = E−1 : σ + εtr , (2.81)

which enters the energy function Π̃hom in (2.34), including the stored energy density ψmat

(2.69). The inverse of the elasticity tensor is often also referred to as the compliance
tensor S :=E−1, cf. [112].

In addition to the analytical solution for the optimal strain jump a as outlined in
(2.78), the equality constraint ξ1 + ξ2 =1 in (2.51) might be used to reduce the number
of variables and constraints by, e.g., replacing ξ2 = 1 − ξ1. As shown in the appendix,
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2 An energy relaxation-based MSMA model

see Section 2.5.1, the following relations between the magnetisation orientations among
the domains of one martensite variant hold

θ2 ≡ − θ1 , θ4 ≡ − θ3 . (2.82)

This allows a further reduction of the number of variables and inequality constraints to
be considered.

2.2.4 Summary of constitutive equations

This section summarises the essential problem to be solved. The values for the variables
at time tn+1, i.e.

pn+1 := {ξ1,n+1, ξ2,n+1, η1,n+1, η2,n+1, θ1,n+1, θ2,n+1, θ3,n+1, θ4,n+1,an+1, ϕn+1} (2.83)

are determined via

pn+1 = arg min
{
Π̃hom
n+1 (pn+1) + D(pn+1,pn)

}
(2.84)

subject to

ξi,n+1 ≥ 0 , ξ1,n+1 + ξ2,n+1 = 1 , |ηi,n+1| ≤ ξi,n+1 , with i = 1, 2 ,

|θj,n+1| ≤ π/2 , with j = 1, . . . , 4 , (2.85)

where D(pn+1,pn) is given by (2.75). With the analytical solution for an+1, cf. (2.78),

instead of Π̃hom
n+1 , the partially relaxed energy-enthalpy function at time tn+1 for the

underlying case of homogeneous states might be used

Π̃hom,rel
n+1 :=

[
R1ψ

mat(pn+1\an+1) +
µ0

2
m(pn+1\an+1) ·D ·m(pn+1\an+1) (2.86)

−µ0 hn+1 ·m(pn+1\an+1)− σn+1 : ε(pn+1\an+1)
]
VB

with R1ψ
mat(pn+1\an+1) determined by (2.77), ε(pn+1\an+1) is specified in (2.81), and

m(pn+1\an+1) is defined in (2.52). The quantities hn+1 and σn+1 denote the prescribed
values of the magnetic field and stresses at time tn+1.

Standard solvers of nonlinear constrained minimisation can be utilised to find the
solution of (2.84) subject to (2.85), cf. [13, 137]. For the numerical examples presented
in the following section, the GlobalSearch and MultiStart functions of the Matlab
optimisation toolbox were employed. Further details regarding the numerical implemen-
tation are outlined in [112].

34



2.3 Numerical examples

Table 2.1: Material parameters for Ni2MnGa (slightly off-stoichiometric composition with five-layered
modulated tetragonal structure).

Model parameter Symbol Value Unit Reference

Young’s modulus E 5000.0 MPa —
Poisson’s ratio ν 0.3 — —

Saturation magnetisation ms 514.0 kA/m [76]
Anisotropy constant k1 0.167 MJ/m3 [76]

Dissipation coefficient Y0
ξ 0.03 MJ/m3 —

Dissipation coefficient ∆Yξ 0.003 MJ/m3 —
Bain strain coefficient b1 0.0188 [204]
Bain strain coefficient b2 - 0.0394 — [204]

Demagnetisation coefficient D11 0.2154 — —

2.3 Numerical examples

In this section, the response of prismatic single-crystalline Ni2MnGa MSMA specimens
to magneto-mechanical loading—which is the typical experimental scenario [111, 204]—
is modelled with a focus on the martensitic variant reorientation or, in other words, the
variant switching behaviour. The material constants and model parameters used for all
simulations are listed in Table 2.1. For the considered prismatic specimen (length: 9 mm,
width: 5 mm, height: 5 mm, cf. Heczko [71], Straka et al. [204]), the demagnetisation
tensor has the form

D = D11 e1 ⊗ e1 +
1−D11

2
[ e2 ⊗ e2 + e3 ⊗ e3 ] , (2.87)

where the demagnetisation coefficient D11 in Table 2.1 was calculated in advance using
a magnetostatic finite element simulation.

2.3.1 Variant switching diagrams

The term phase diagram for MSMAs was introduced in [107, 108], see also DeSimone [39]
and others, in analogy to the concept of phase diagrams in SMA modelling [124]. Unlike
the critical stress-temperature surfaces for the austenite-martensite phase transformation
in conventional SMAs, phase diagrams in MSMA visualise the initiation and termination
of the variant reorientation, i.e. the stress and magnetic field-driven switching between
different variants of the martensite phase. We consequently refer to them as variant
switching diagrams in this publication.

The calculations underlying the results shown in this section are designed to determine
critical states of the martensite reorientation processes, namely the initiation and the
completion of variant switching in Ni2MnGa as functions of applied stresses and magnetic
fields. To this end, a first set of numerical studies were performed under the loading
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2 An energy relaxation-based MSMA model

conditions illustrated in Figure 2.3. Here, a single crystal specimen, initially entirely
in the stress-favoured variant state, potentially switches to the magnetic field-favoured
variant under the action of the applied magnetic field h = h2(t) e2 and the constant
compressive bias stress σ=σ11 e1⊗e1. See, e.g., [71, 202] for experimentally determined
response curves under similar loading conditions.

e1

e2

h2(t) σ11

σ11

Figure 2.3: Illustration of the applied loading for the magnetic field-driven numerical studies under
constant stress. Initial conditions: single variant 1 state (ξ1 =1) with zero net magnetisation (η1 =0).

Figure 2.4 shows the corresponding variant switching diagram. The indicated switch-
ing surfaces—here lines representing their traces in the two-dimensional plot—were ob-
tained in the following manner: The load was increased in small loading steps and the
critical state was detected when ξ2—initially being zero—exceeded a specific tolerance
value (tol = 10−4). The various points determined in this manner were then used to
define a regression curve (solid red line). The dashed red line analogously denotes the
states where the reorientation into variant 2 is completed, i.e. a value of ξ2 > 1 − tol
is reached for the first time. During unloading, the reverse reorientation process into
variant 1 is indicated by the dashed blue line (initiation) and the solid blue line (com-
pletion). A total of five response regions can be distinguished in the switching diagram
for different applied stress levels: (I) For low stress levels, a full reorientation process
(1→ 2) occurs, but the initially present martensite variant 1 will not form again dur-
ing unloading. (II) While the behaviour during loading is essentially the same, reverse
switching does occur when unloading at higher stress levels, however not completely.
(III) The reorientation into the stress-favoured variant 1 is always completed during un-
loading at these now sufficiently large bias stress levels. (IV) The reorientation process
is no longer completed during loading, since the mechanism of magnetisation rotation
becomes energetically relatively less costly. However, the partially-switched material is
always completely reoriented into variant 1 after unloading. (V) For compressive stress
levels above the blocking stress, see Kiefer et al. [111], the variant switching process is
never initiated.

Remark 2 Regression curves are used to smooth the nonlinear segments in the curves
that represent the initiation and completion of the variant switching in Figure 2.4 and
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of all following martensite variant switching diagrams. The horizontal, respectively ver-
tical, segments are not taken into account for the determination of the regression curves.
Hence, the plotted curves may consist out of multiple segments.
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Figure 2.4: Martensite variant switching diagram. Compressive stresses σ11 are kept constant during
several calculations with different prescribed values, while one loading/unloading half cycle is performed
with respect to the magnetic field µ0 h2∈ [ 0 T, 1 T ]. The red lines indicate the critical states of variant
reorientation during loading, whereas the blue lines indicate the same during unloading. The black solid
horizontal lines separate five different regions characterised by complete, partial, or even fully-suppressed
forward/reverse variant switching.

For each of the response regions (I)–(V) discussed above, characteristic strain and
magnetisation curves are depicted in Figure 2.5. The corresponding stress levels have
also been indicated in the switching diagram of Figure 2.4 by dashed horizontal lines of
matching colour. The nonlinearity of both the predicted strains—which are shifted in the
plot by a respective elastic and variant 1 Bain strain offset for better comparability—as
well as the magnetisation responses clearly reflect the occurrence of the variant reorienta-
tion process. Moreover, their observed hysteretic nature solely stems from dissipative ef-
fects associated with the corresponding twin boundary motion. Similar variant switching
diagrams were previously proposed in Kiefer and Lagoudas [110]. In this approach, how-
ever, variant switching, magnetisation rotation, and magnetic domain evolution could
not occur simultaneously. The energy relaxation-based MSMA model presented here,
on the other hand, is not limited by such restrictions.

The next set of results stems from similar calculations as mentioned before, except
that the applied magnetic field h=h2 e2 is now kept constant—at different levels for each
calculation—and the applied stress σ = σ11(t) e1 ⊗ e1 is varied in a loading-unloading
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Figure 2.5: Magnetic field-induced (a) strain and (b) magnetisation response curves exemplarily selected
for each of the five response regions defined in Figure 2.4. The different behaviour patterns are due to
complete or partial variant reorientation (during loading and/or unloading) as well as fully-suppressed
variant switching for compressive stresses above the blocking stress.

half cycle between 0.0 and 10.0 MPa, see Figure 2.6 and, e.g., [71] for experimentally
determined response curves under similar loading conditions. In this case, the initial
state is that of the magnetic field-favoured variant. The variant switching diagram for
this loading case is shown in Figure 2.7. The dashed blue line connects critical states
at which the switching into the first variant starts (ξ̇1>0). The solid blue line indicates
the states where this process is completed (ξ1 = 1). During unloading, critical values
for the potential reverse reorientation into variant 2 are illustrated by the solid red
line (initiation) and the dashed red line (completion), respectively. Due to the lack
of an alternative mechanism to reduce the strain energy, there is always a complete
switching into the stress-favoured variant under compressive stress loading at constant
magnetic bias fields. During unloading, however, three different response regions can be
distinguished: (I) For low magnetic fields, no reverse reorientation occurs. (II) For higher
levels of the applied magnetic field, martensite variant 2 begins to form, but is not fully
regained. (III) The behaviour is similar to (II), except that the variant switching to the
magnetic field-favoured variant 2 is always completed at these sufficiently large magnetic
bias field levels. It is important to point out that the variant switching diagrams under
magnetic field-driven (Figure 2.4) and stress-driven (Figure 2.7) loading in fact coincide.
In other words, the critical surfaces perfectly match—albeit that not all such points can
actually be reached under magnetic loading at constant stress.

For each of the response regions (I)–(III) mentioned above, i.e. corresponding stress-
driven simulations at three distinct levels of the bias magnetic field, the representative
strain—which are shifted in the plot by a respective elastic and variant 2 Bain strain
offset for better comparability—and magnetisation responses are depicted in Figure 2.8.
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e1

e2

h2

σ11(t)

σ11(t)

Figure 2.6: Illustration of the applied loading for the stress-driven numerical studies under constant
magnetic field. Initial conditions: single variant 2 state (ξ2 = 1) with zero net magnetisation (η2 = 0).
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Figure 2.7: Martensite variant switching diagram. The magnetic field µ0 h2∈ [ 0 T, 1 T ] is kept constant
during several calculations with different prescribed values, while one loading/unloading half cycle is
performed with respect to the compressive stress σ11. The black solid vertical lines separate three
different regions characterised by complete, partial, or even fully-suppressed reverse variant switching
during unloading.

The selected loading paths have again been indicated in the associated variant switching
diagram (Figure 2.7). It should be pointed out that, although the initial condition is set
to η2 = 0, the initial net magnetisation of the specimen observed in the magnetisation
curves of Figure 2.8 (b) is not zero. The calculations in the first step—at zero stress—
correctly predict a reduction of the unfavourably-oriented domain type at low fields
(µ0 h2 =0.13 T) and even their complete elimination at higher fields (µ0 h2 =0.30 T and
0.55 T), yielding not only a single variant, but also a single domain state to which the
stress loading is subsequently applied.
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Figure 2.8: Stress-induced (a) strain and (b) magnetisation response curves exemplarily selected for
each of the three response regions defined in Figure 2.7. The different behaviour patterns indeed reflect
complete, partial, or no variant reorientation during unloading.

The response with full recovery of the magnetic field-favoured variant (yellow curve)
has been referred to as the magnetic field-biased super-, magneto-, or pseudoelastic effect
[99, 110, 159, 201, 203] in the literature. Responses with partially or fully-suppressed
reverse switching (orange and blue curves) have been termed magnetic field-biased super-
plasticity [201], or simply magneto-plasticity [99, 159]—although both labels are some-
what misleading, since, unlike plastic deformation, variant switching is a crystallograph-
ically reversible effect. This phenomenon is more comparable to the one-way shape
memory effect [124], with the magnetic field playing the role of temperature as a means
to recover the initial state that is not reached when unloading.

The loading conditions for the last example related to variant switching diagrams
are illustrated in Figure 2.9. Here, one component of the applied magnetic field h =
h1(t) e1 + h2 e2 is varied over time, namely µ0 h1(t)∈ [ 0 T, 1.75 T ], while the other com-
ponent is held fixed at different levels. Such loading effectively corresponds to a rotating
applied magnetic field vector with varying magnitude—which might seem difficult to
apply and interpret from a physical view. In practice, however, this can be realised
with a variable magnetic field applied through an electromagnet or enveloping solenoid
promoting one variant and a counteracting perpendicularly-arranged permanent magnet
favouring the other. The assumed zero-stress conditions, on the other hand, are always
an approximation—albeit usually quite reasonable—, since, in the experiment, one must
(mechanically) prevent free rotation of the specimen under magnetic field application.

The predicted variant switching diagram for these load cases is shown in Figure 2.10.
Again, blue lines indicate critical switching points, in terms of initiation (dashed line) and
completion (solid line), from variant 2, preferred by the constant magnetic field h2, into
variant 1, in this case favoured by the magnetic field h1. This switching under magnetic
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e1

e2
h1(t)

h2

Figure 2.9: Illustration of the applied loading for the magnetic field-driven numerical studies under
perpendicular magnetic bias field at zero stress. Initial conditions: single variant 2 state (ξ2 = 1) with
zero net magnetisation (η2 = 0).

field loading is always completed for all bias field levels. The critical switching points
during unloading are indicated by red lines for the initiation (solid line) and completion
(dashed line) of the variant switching. Again, three different response regions may occur:
(I) For low h2 levels, the energetic incentive to switch back is insufficient and no reverse
reorientation occurs. (II) For higher bias field values, martensite variant 2 forms again,
but will not be fully regained. (III) The behaviour is similar to (II), except that the
reverse switching into the h2-favoured variant is completed.
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Figure 2.10: Martensite variant switching diagram. The magnetic field µ0h2 ∈ [ 0 T, 0.8 T ] is kept
constant during several calculations with different prescribed values, while one loading/unloading half
cycle is performed with respect to h1. The black solid horizontal lines distinguish three different regions,
which are characterised by complete, partial, or no variant reorientation during unloading.

Predicted strains—which are shifted in the plot by a respective elastic and variant 2
Bain strain offset for better comparability—and magnetisation curves for three distinct
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2 An energy relaxation-based MSMA model

bias field levels, each representing one of the characteristic response regions (I)–(III), are
shown in Figure 2.11. Some interesting observations can be made by comparing these
results to the corresponding curves of Figure 2.8. While the induced strain responses are
qualitatively very comparable under stress and magnetic field loading—except for the
slight slopes in the strain curves caused by elastic deformations in the former case—the
magnetisation responses are actually quite different. They begin and end up at identical
vertical axis intercepts, i.e. at the same magnetisation values at zero cyclic loading.
Under h1 magnetic field loading—at constant h2—, however, the magnetisation curves
show significant nonlinearity in the pre- and post-switching response stages. This effect
is caused by the rotation of local magnetic moments away from the easy-axis in variant
2—and later analogously towards the easy-axis in variant 1—as the h1 field is increased at
constant h2. The reverse is true for unloading. In the loading region, where the response
is dominated by variant switching, the magnetisation curves are essentially linear. The
magnetisation responses at the lowest bias field level (µ0 h2 = 0.13 T) further suggests
the activation of domain wall motion—see, for instance, the constant m2 response in
the direction of the h2 at low loading/unloading fields—, where the initial and final
configuration are multi-domain settings. These allow the magnetisation to rotate in the
h1 direction, while being constant in the h2 direction. To better understand the interplay
of these mechanisms and their influence on the effective MSMA behaviour as predicted
by the proposed model, the next section will take a closer look at the evolution of
microstructures—in terms of their internal state variable representation—along selected
loading paths.
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Figure 2.11: Selected magnetic field induced (a) strain and (b) magnetisation response curves under
constant magnetic field h2 and perpendicular magnetic field h1(t) for each of the three different response
regions defined in Figure 2.10. The different behaviour patterns are due to complete, partial, or fully-
suppressed variant reorientation during unloading.
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2.3.2 The connection of effective material responses to
microstructure evolution

In this section, we return to selected results previously presented in Section 2.3.1, in
order to more carefully interpret the effective responses in terms of the underlying mi-
crostructure evolution, as predicted by the energy relaxation-based model. All strain
response curves are shifted in the plots by a respective elastic and Bain strain offset for
better comparability.

As the first example, we again consider the response simulations for the load case of
magnetic field-driven variant reorientation under constant bias stress (see Figure 2.5),
particularly at the compressive stress levels of σ11 = −1.1 MPa and −1.75 MPa. Fig-
ure 2.12 shows these responses, this time for a full loading cycle, and is further enriched
by microstructural sketches at selected loading stages, labelled 1© to 6©. As a natural
consequence of our approach to not spatially resolve the microstructure, but to effec-
tively represent it in terms of a set of microstructural variables, these sketches reflect
the idealised microstructure only in the sense of variant, respectively domain, volume
fractions and magnetisation vector orientations. For the sake of simplicity, the calcu-
lated twin boundary orientation—which, in fact, turned out to be constant at ϕ= 45◦

regardless of the loading conditions—is not indicated in these sketches.

The microstructure evolves as follows: Starting in 1© from a macroscopically unmag-
netised single variant 1 state, the application of the magnetic field h2 firstly causes a
rotation of the local magnetisation vectors. At a certain stage in 2©, it becomes energet-
ically less costly to switch into the second martensite variant, while the rotation of the
magnetisation vectors in variant 1 still slightly increases, cf. 3©. The second variant then
grows at the expense of the first—this is interpretable as twin boundary motion—until
it is either entirely eliminated and the largest possible magnetic field-induced strain
is obtained under constant σ11 = −1.1 MPa or the magnetisation in the direction of
the applied magnetic field saturates and the switching process stops under constant
σ11 =−1.75 MPa. The final configuration during loading is shown in 4©. Upon unload-
ing, the reverse switching is initiated at a much lower field than was needed to complete
the forward process, which effectively results in hysteretic behaviour. The initial first
σ11-favoured martensite variant grows during unloading, wherein the volume fractions of
both domains are equal, as shown in 5©. At zero magnetic field loading under constant
σ11 =−1.1 MPa, see 6©, one observes a state in which all variant/domain combinations
are present. For this stress, however, while the overall magnetisation correctly averages
to zero—thus minimising the demagnetisation field energy—the volume fractions are
such that a remanent strain results. For the higher compression stress σ11 =−1.75 MPa,
the initial martensite variant is completely recovered in 6© and the configuration at zero
magnetic field is identical to the initial configuration in 1©.

Similarly, we again consider the case of stress-driven loading at constant magnetic bias
field (see Figure 2.8), particularly µ0 h2 =0.3 T. Figure 2.13 shows the computed strain
and magnetisation response curves and visualises associated microstructures for four dif-
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Figure 2.12: Predicted butterfly hysteresis curves, in terms of magnetic field-induced strain (left
column) and magnetisation responses (right column) for two selected loading cases (cf. Figure 2.5).
Graphs (a) and (b) show the response for the bias stress level of σ11 = −1.1 MPa, (c) and (d) those
for σ11 =−1.75 MPa. The attached sketches reflect the state of the microstructure in terms of vari-
ant/domain volume fractions and local magnetisation orientations, for six characteristic loading stages.
The twin boundary orientation of ϕ=45◦ is not visualised for the sake of simplicity. Sketched mecha-
nism: magnetisation vector rotation, martensite variant switching, and domain wall motion.

ferent stages during the loading/unloading sequence. The microstructure evolves as fol-
lows: Starting from a single variant and in this case also single domain, i.e. magnetically-
saturated state, the compressive stress loading causes slight elastic deformation but
initially no changes in the magnetisation, as we have neglected conventional magne-
tostriction. After variant switching is initiated in 1©, variant 1 shows domains in which
the magnetisation vectors are slightly rotated towards the bias field direction, see 2©.
This interplay of mechanisms clearly has a nonlinear effect on the strain response. Once
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the variant reorientation process is completed in 3©, the magnetisation again stays con-
stant during further load increase. The domain volume fractions and the magnetisation
rotations are such that they compensate each other in the e1-direction, in which no
magnetic field is applied, and the magnetisation m1 is equal to zero. During unloading,
variant 1 partially switches back, see 4©. But, at zero stress, neither a single variant
nor a single domain state is reached for the given bias field level, so that both remanent
straining as well as magnetisation are observed.
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Figure 2.13: Predicted hysteresis curves, in terms of compression stress-induced (a) strain and (b) mag-
netisation responses for the bias field level of µ0 h2 =0.3 T (cf. Figure 2.8). The attached sketches reflect
the state of the microstructure in terms of variant/domain volume fractions and local magnetisation
orientations for four characteristic loading stages. Again, the twin boundary orientation of ϕ = 45◦

is not visualised for the sake of simplicity. Sketched mechanism: magnetisation vector rotation and
martensite variant switching.

Finally, we return to the load case of magnetic field-driven variant switching un-
der the influence of a perpendicularly applied bias field of µ0 h2 = 0.3 T and stress-free
conditions (see Figure 2.11). Figure 2.14 again shows the predicted hysteretic magnetic
field-induced strain and magnetisation responses for a complete loading cycle, with seven
selected loading stages highlighted in terms of their microstructural state. To better un-
derstand the full impact that the microstructure evolution has on the effective response,
the strain and magnetisation components in the respective other field directions have
now also been included.

The microstructure evolves as follows: Starting from a single 2nd martensite variant
and magnetically-saturated single domain state in 1©, the field application in the e1-
direction causes a rotation away from the variant 2 easy-axis, see 2©. While this effect has
a linear influence on m1, it clearly introduces nonlinearity in m2. When variant switching
is initiated in 2©, variant 1 forms in a single domain state, since—unlike under stress
loading—domains can now be favourably or unfavourably oriented (magnetised) with
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Figure 2.14: Predicted butterfly hysteresis curves, in terms of magnetic field-induced strain (left column)
and magnetisation responses (right column) under a perpendicular bias field of µ0 h2 =0.3 T. Graphs (a)
and (b) show the plots previously presented in Figure 2.11—here for a full loading cycle—which are now
supplemented by the graphs (c) and (d) showing the corresponding responses in the respective other
field directions. The attached sketches reflect the state of the microstructure in terms of variant/domain
volume fractions and local magnetisation orientations, for seven characteristic loading stages. The twin
boundary orientation of ϕ = 45◦ is not visualised for the sake of simplicity. Sketched mechanism:
magnetisation vector rotation, martensite variant switching, and domain wall motion.

respect to the applied field, see 3©. Further load increase eventually again results in a
single variant, single domain state in 4© with a slight rotation of the magnetisation vector
towards the direction of the bias field. This rotation increases as the h1-loading becomes
less influential during unloading, see 5©. It then becomes energetically preferential to
initiate the reverse switching process in 5©, which stops in 6©. However, at zero h1 load
in 7©, remanent strains—reflecting a remaining variant mixture—and non-vanishing m2
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magnetisation are observed. In contrast, the value of m1 at h1 = 0 is zero, due to the
emergence of the second domain type in variant 1 at low applied h1 field levels.

2.3.3 The influence of the shape anisotropy and a closer look at
the demagnetisation effect

The first example presented in this section dealing with numerical results is devoted to
the investigation of the influence of specimen shape orientation, which corresponds to the
well-known effect of shape anisotropy in magnetostatics. To study this phenomenon, the
prismatic specimen under consideration—but not the single-crystalline material itself—
is rotated through the angle β in the e1-e2-plane. Consequently, the crystal orientation,
including the magnetic easy-axes, and the loading directions are still assumed to be
aligned with the respective coordinate axes. The demagnetisation tensor, however, is
updated according to

D := R ·Dref ·Rt , (2.88)

where

R := cos(β) [ e1 ⊗ e1 + e2 ⊗ e2 ] + sin(β) [−e1 ⊗ e2 + e2 ⊗ e1 ] + e3 ⊗ e3 (2.89)

is a proper-orthogonal rotation operator—with the usual properties of Rt =R−1 and
detR=1—and whereDref denotes the reference demagnetisation tensor that was defined
in (2.87).

The computed influence of selected specimen orientations (β=±30◦) on the magnetic
field-induced strain—which are shifted in the plot by a respective elastic and variant 1
Bain strain offset for better comparability—and on the magnetisation hysteresis curves
is presented in Figure 2.15. The rotation of the specimen with respect to the magnetic
loading directions affects the coefficients of the demagnetisation tensor, according to
(2.88), and consequently clearly influences the effective specimen response. This effect
of the shape anisotropy is most easily observed in the m1-response which, under the
original specimen orientation (β=0) is essentially negligible, but shows significant values
in rotated settings. The sign of the prescribed rotation angle is only registered in the
m1 magnetisation behaviour, but not in the other response curves.

In the second and final example of this section, the influence of the demagnetisa-
tion field is analysed. In all previous examples, the response curves were presented as
a function of the externally applied magnetic field, as often reported in experiments
in the literature, cf. [71, 202, 211, 212]. Due to the demagnetisation effect, the total
internal magnetic field is significantly lower than the externally applied magnetic field.
Consequently, system responses were calculated instead of purely constitutive responses.
For this final investigation, the prismatic specimen consists solely of the first or second
martensite variant. A suitable compression stress is applied to maintain the single vari-
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Figure 2.15: Predicted response in terms of (a) magnetic field-induced strains and (b) m2, (c) m1

magnetisation curves under a compressive bias stress of σ11 =−1.1 MPa (cf. Figures 2.5 and 2.12), here
for a full loading cycle. The angle β defines the rotation of the prismatic specimen (with 9:5:5 aspect
ratios) in the e1-e2 plane.

ant configuration. The magnetic field-induced easy- and hard-axis response curves of
both martensite variants are depicted in Figure 2.16. Obviously, specimens are mag-
netised easier along the longer edge. In a postprocessing routine, the total magnetic
fields hi were calculated as the sum of the externally applied magnetic fields and the
demagnetisation fields. The (constitutive) responses in easy- and hard-axis direction of
both martensite variants as a function of the total magnetic field perfectly coincide, see
Figure 2.16 and also the discussion in [147].
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Figure 2.16: Magnetic field-induced magnetisation response curves in the (a) easy- and (b) hard-
axes directions of the prismatic specimen alternating consisting solely of the first (ξ1 = 1) or second
martensite variant (ξ2 =1). The system responses as functions of the externally applied magnetic fields
hi are compared to the constitutive responses as functions of the total magnetic fields hi. The latter
responses perfectly coincide for both configurations.
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2.4 Summary and outlook

In this chapter, we have presented a general variational modelling framework for magneti-
sable multiphase solids, whose effective behaviour is governed by stress and magnetic
field-driven microstructure evolution. This approach accounts for the non-local influ-
ence of the demagnetisation field on magnetic domain formation in a micromagnetics-
inspired framework. The key ingredients to the total potential on which the global
variational principle is based are the energy storage function and the dissipation poten-
tial. Under the homogeneous loading conditions—with prescribed stress and magnetic
field—considered here, the simulation of constitutive and system responses reduces to
a constrained minimisation problem with respect to the variables that parametrise the
microstructure. In this context, the free energy density is incorporated in a partially-
relaxed sense, i.e. an energy hull that effectively describes the energy of a phase mixture,
when the unstable (non-quasiconvex) homogeneous material has decomposed into mi-
crostructure. In other words, only the individual potentials of the constituent phases
must be specified, the effective (homogenised) potential naturally follows through ap-
propriate mixture rules and energy relaxation concepts.

This very general approach was successfully applied to the simulation of magnetic
shape memory alloy behaviour as a challenging model problem. Motivated by the char-
acteristic microstructures of MSMAs—twinned martensite single crystals with laminate-
like internal ferromagnetic domain structures—a rank-one relaxation scheme with re-
spect to first-order laminates was specifically considered. In this model, the strongly in-
teracting microscale mechanisms of variant switching, magnetisation rotation away from
easy-axes, and magnetic domain evolution are all incorporated and allowed to evolve in-
dependently, but also to be active at the same time. Since the driving forces for the
evolution of the internal state variables are energetic in nature, both magnetic field and
stress-driven variant switching can be modelled. Several numerical examples were run to
demonstrate that the model captures all of the key characteristics of MSMA behaviour,
particularly its nonlinear, anisotropic, inelastic, and magnetomechanically-coupled na-
ture. Typical response types, such as the field-induced magnetic shape memory effect
or magnetic field-biased pseudo-elasticity and pseudo-plasticity, were successfully pre-
dicted. Switching diagrams were computed as particularly insightful tools to visually
link variant switching processes to the effective strain and magnetisation response curves
for essentially arbitrary loading paths. Finally, emphasis was placed on carefully explain-
ing the connection between the predicted evolution of microstructure and the effective
behaviour, as predicted by the model for selected loading cases. It is also important to
emphasise that the model is able to make quantitatively-accurate predictions of MSMA
response, with relatively few standard input parameters—e.g. elastic constants, satura-
tion magnetisation, magnetocrystalline anisotropy constant, Bain strains, respectively
unit cell dimensions.

The following chapters deal with the numerical implementation of the general varia-
tional framework, briefly described in Section 2.1, by means of the finite element method.

49
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This allows the modelling of local and effective MSMA specimen responses for arbitrary
geometries. In terms of future work, one natural extension of the presented MSMA
model would be to include the third tetragonal variant—or a generalization to an n-
variant setting for other crystal symmetry classes. This mainly applies to an adequate
parametrisation of the magnetisation vectors in three-dimensional space, an adequate
parametrisation of the interface normals between all occurring martensite variants, as
well as suitable numerical homogenisation schemes for the energy densities, where, e.g.,
laminates of higher order may be considered. Likewise, a more subtle point deserves
attention, namely the fact that the rank-one relaxation scheme applied here fulfils strain
compatibility and the force balance at material interfaces (twin boundaries), but that no
attention is paid to an analogous satisfaction of the magnetic jump conditions across do-
main walls. On-going work is concerned with establishing equivalent relaxation concepts
for the magnetic, and eventually for the fully-coupled, cases.

2.5 Appendix

2.5.1 Dependencies among the domain magnetisations

As elaborated in Section 2.2, the set of variables describing the material’s microstructure
is given by

p := {ξ1, ξ2, η1, η2, θ1, θ2, θ3, θ4,a, ϕ} . (2.90)

In this section, analytical relations between the angles θ1 and θ2 as well as θ3 and θ4

are derived. This allows us to reduce the number of internal state variables and related
inequality constraints.

To this end, additional variables γ1, γ2 with 0≤γi≤1 are introduced, which relate to
the variant and domain volume fractions according to

α1 = ξ1 γ1, α2 = ξ1 [ 1− γ1 ], α3 = ξ2 γ2, and α4 = ξ2 [ 1− γ2 ] (2.91)

and which can be interpreted as relative magnetic domain volume fractions. The “com-
patibility” conditions with respect to the magnetisations in each domain mdom

j and
effective magnetisations m∗i in each variant i = 1, 2 then read

m∗1 = m1k ek = γ1m
dom
1 (θ1) + [ 1− γ1 ]mdom

2 (θ2) with ‖m∗1‖ ≤ ms , (2.92)

m∗2 = m2k ek = γ2m
dom
3 (θ3) + [ 1− γ2 ]mdom

4 (θ4) with ‖m∗2‖ ≤ ms . (2.93)

Such a representation could also be used as an effective parametrisation of the under-
lying microstructure, where γi or even the coordinates mik themselves would act as
internal state variables. Here, this formulation is, however, just used for further deriva-
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tions. These relations are now inserted into the magnetocrystalline anisotropy energy
(cf. (2.65), (2.68))

ψan =
4∑

j=1

αj k1 sin2(θj) , (2.94)

which for instance yields

ψan =α1 k1

[
1

γ1 ms

[ m12 + [ 1− γ1 ]ms sin(θ2) ]

]2

+ α2 k1 sin2(θ2)

+α3 k1

[
1

γ2 ms

[−m21 + [ 1− γ2 ]ms sin(θ4) ]

]2

+ α4 k1 sin2(θ4) . (2.95)

The effective magnetisation in each variant i essentially depends—for the underlying
two-dimensional setting—on two coordinates mi1 and mi2. However, it is parametrised
by three variables, namely γ1, θ1, and θ2, respectively γ2, θ3, and θ4. Hence, there need
to be relations between the latter variables. In this line, θ2 and θ4 shall be eliminated
and determined via minimisation of the magnetocrystalline anisotropy energy. The other
energy contributions depending on the magnetisation can be disregarded due to the fact
that the magnetisation state is considered prescribed here. In fact, one obtains

θ2 = arg min {ψan} ⇒ cos(θ2) = 0⇔ θ2 = ±π
2
∨ sin(θ2) = −m12

ms

, (2.96)

θ4 = arg min {ψan} ⇒ cos(θ4) = 0⇔ θ4 = ±π
2
∨ sin(θ4) =

m21

ms

, (2.97)

In this context, the Hessian matrix reads

H :=
2 k1

ms

[
ξ1 [ γ1 − 1 ]

γ1

[m12 sin(θ2)−ms cos(2 θ2) ] e1 ⊗ e1

−ξ2 [ γ2 − 1 ]

γ2

[m21 sin(θ4) +ms cos(2 θ4) ] e2 ⊗ e2

]
, (2.98)

51



2 An energy relaxation-based MSMA model

where the respective non zero Eigenvalues λHi for the different solutions are given by

λH1
∣∣
θ2=π/2

= − 2 k1

ms γ1

ξ1 [ 1− γ1 ] [m12 +ms ] ≤ 0 , (2.99)

λH2
∣∣
θ4=π/2

=
2 k1

ms γ2

ξ2 [ 1− γ2 ] [m21 −ms ] ≤ 0 , (2.100)

λH1
∣∣
θ2=−π/2 =

2 k1

ms γ1

ξ1 [ 1− γ1 ] [m12 −ms ] ≤ 0 , (2.101)

λH2
∣∣
θ4=−π/2 = − 2 k1

ms γ2

ξ2 [ 1− γ2 ] [m21 +ms ] ≤ 0 , (2.102)

and

λH1
∣∣
sin(θ2)=−m12/ms

=
2 k1

γ1

ξ1 [ 1− γ1 ] cos2(θ2) ≥ 0 , (2.103)

λH2
∣∣
sin(θ4)=m21/ms

=
2 k1

γ2

ξ2 [ 1− γ2 ] cos2(θ4) ≥ 0 . (2.104)

It is noted that

mik +ms ≥ 0 , mik −ms ≤ 0 , (2.105)

due to the fact that ‖m∗i ‖≤ms. Thus, the feasible solution is always given by

sin(θ2) = −m12

ms

, sin(θ4) =
m21

ms

. (2.106)

Reinserting these results into (2.92), (2.93) yields

sin(θ1) =
m12

ms

= − sin(θ2) ≡ sin(− θ2) ⇒ θ1 = − θ2 , (2.107)

sin(θ3) = −m21

ms

= − sin(θ4) ≡ sin(− θ4) ⇒ θ3 = − θ4 . (2.108)

2.5.2 Analysis of the martensite twin boundary orientation

The results presented in Section 2.3.2 have shown that the intermartensitic twin bound-
ary orientation ϕ=45◦ remains constant for all considered loading cases. The following
derivation will show that ϕ= 45◦ in fact minimises the elastic strain energy density as
part of (2.69).

In Section 2.2.2, the compatibility condition was derived w.r.t. the total strains of
both martensite variants. The martensite variants may form kinematically compatible
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interfaces, even in the absence of elastic strains. The Hadamard condition implies a rank
one connection in terms of the the strain jump [[εtr]], cf. (2.58), viz.

[[εtr]] := εtr
1 − εtr

2 = [ b⊗ n̂tr
12 ]sym =

1

2
[ b⊗ n̂tr

12 + n̂tr
12 ⊗ b ] , (2.109)

wherein b is the strain jump and n̂tr
12 is the interface normal. The two solutions fulfilling

the compatibility condition are

b =
√

2 [ b1 − b2 ] [∓ e1 + e2 ] , n̂tr
12 =

1√
2

[± e1 + e2 ] , (2.110)

cf. [15], for the transformation strains introduced in (2.42). In previous work [112], the
convex hull Cψmat of the elastic strain energy density was derived. With the transforma-
tion strain jump (2.109) at hand, the application of the convexification approach results
in the elastic strains of both martensite variants εel,C

i , viz.

εel,C
1 = ε+ ξ2[ b⊗ n̂tr

12 ]sym − εtr
1 , εel,C

2 = ε− ξ1[ b⊗ n̂tr
12 ]sym − εtr

2 . (2.111)

For the interface orientations in (2.110), the optimal strain jump in the context of
the rank one convexification approach (2.78) are calculated as follows. The interface
orientations in (2.110) are equivalent to ϕ = ± 45◦, cf. (2.63). Having the elasticity
tensor for the isotropic case (2.70) at hand, the first part in (2.78) is

n̂tw
12 · E · n̂tw

12 = [λ+ µ ] n̂tw
12 ⊗ n̂tw

12 + µ I (2.112)

and the analytical solution for its inverse (ϕ=± 45◦) is

[
n̂tw

12 · E · n̂tw
12

]−1
=




λ+3µ
4µ2+2µλ

∓ [λ+µ ]
4µ2+2µλ

0
∓ [λ+µ ]

4µ2+2µλ
λ+3µ

4µ2+2µλ
0

0 0 1
µ


 . (2.113)

The second part in (2.78) is

n̂tw
12 · E : [ εtr

2 − εtr
1 ] = λ n̂tw

12 [ tr(εtr
2 )− tr(εtr

1 ) ] + 2µ n̂tw
12 · [ εtr

2 − εtr
1 ] . (2.114)

Insertion of ϕ=± 45◦ and tr(εtr
1 )=tr(εtr

2 ) results in

n̂tw
12 · E : [ εtr

2 − εtr
1 ] =

√
2µ [ b2 − b1 ][∓ e1 + e2 ] . (2.115)

Insertion of (2.113) and (2.115) into (2.78) results in

a =
√

2 [ b1 − b2 ] [∓ e1 + e2 ] , (2.116)
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which is identical to strain jump b in (2.110). As a consequence, the elastic strains and
the corresponding strain energy densities in the context of the rank one convexification
approach and the convexification approach are identical for ϕ=± 45◦. Since the convex
hull is the lowest possible energy bound, see (2.41), the interface orientations ϕ=± 45◦

in fact minimise the elastic strain energy density.
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3 A micromagnetics-inspired
FE-framework — spatial resolution
of magnetic degrees of freedom

The material presented in this chapter is, in large parts, based on the ideas out-
lined in the recent work [21]. The chapter can be regarded as the first step in the
finite element implementation of micromagnetics-inspired constitutive models, such as
the model introduced in Chapter 2. The focus of this chapter lies on the simultaneous
solution of the magnetostatic boundary value problem and the evolution equations for
the microstructure-describing state variables.

Microstructure evolution in magnetic materials is typically a non-local effect, in the
sense that the behaviour at a material point depends on the magnetostatic energy stored
within the demagnetisation field in the entire domain. To account for this, we propose
a finite element framework in which the internal state variables parametrising the mag-
netic and crystallographic microstructure are treated as global fields that optimise a
global potential. Contrary to conventional micromagnetics, however, the microscale is
not spatially resolved and exchange energy terms are neglected in this approach. The
influence of microstructure evolution is incorporated in an effective manner which allows
the computation of meso- and macroscale problems. This approach necessitates the de-
velopment and implementation of novel mixed finite element formulations. It further re-
quires the enforcement of inequality constraints at the global level. To handle the latter,
we employ Fischer-Burmeister complementarity functions and introduce the associated
Lagrange multipliers as additional nodal degrees of freedom. As a particular application
of this general methodology, a recently established energy relaxation-based model for
magnetic shape memory behaviour is implemented and tested. Special cases—including
ellipsoidal specimen geometries—are used to verify magnetic field-induced magnetisation
and strain responses obtained from finite element simulations compared to calculations
based on the demagnetisation factor concept.

The chapter is structured as follows: Section 3.1 introduces the general variational
setting of the non-local approach for the modelling of magnetic materials with evolv-
ing microstructures. In Section 3.2, the central governing equations of our constitutive
model for magnetic shape memory alloys are briefly presented. It should be emphasised
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3 Spatial resolution of magnetic degrees of freedom

here that, strictly speaking, the classic distinction between local material model and
global boundary value problems can no longer be made in the non-local setting. This
notwithstanding, we will occasionally still refer to the constitutive model when specify-
ing energy storage or dissipation terms associated with a particular material behaviour.
Section 3.3 subsequently discusses the main aspects regarding the finite element im-
plementation of the theoretical framework as well as particular algorithmic treatments,
for instance the approach selected to enforce physical constraints. The aforementioned
verification of the model is presented in Section 3.4 in terms of finite element analyses of
the behaviour of circular, quadratic, ellipsoidal, and rectangular specimens. Finally, the
central contributions of this work are summarised in Section 3.5, followed by an outlook
on our ongoing and future research activities in this area. Further important details
regarding the stored energy density are given in the appendix in Section 3.6.

3.1 Variational framework

Prior to the elaborate discussion on the variational framework, the general magnetic vari-
ables and some relations among them shall be introduced. The magnetic field strength
h = h + h̃ can be decomposed into a prescribed part h and demagnetisation field h̃.
The latter occurs due to the magnetisation m of a magnetisable body B placed within
the magnetic field and also affects the medium surrounding the body, which is often
referred to as free space. The magnetic field and the magnetisation both contribute to
magnetic induction b which is decomposed in the same manner in this contribution as h,
viz. b=b+ b̃. As general relations, one has b=µ0 [h+m ], with µ0 as the vacuum per-
meability of the free space. Accordingly, such relations can also be introduced separately
for the applied part and the demagnetisation part, viz. b= µ0 h and b̃= µ0 [ h̃ + m ].

This definition of b̃ is rather of conceptual nature—from a physical standpoint it may
be more reasonable to relate b̃ only to h̃.

The micromagnetics-inspired total potential of a magnetostrictive material with con-
figuration B embedded in R3 is introduced as a function of the global primary field
variables, i.e. the displacement field u, the scalar magnetic potential of the demagneti-
sation field φ̃, and a set of state variables p that describe the underlying microstructure,
e.g. the magnetisation m(p), as

Π(u, φ̃,p) = Π int(u,p) +Π free(φ̃) +Πext(u,p) . (3.1)

The internal potential Π int contains the stored energy density ψmat, the free energy
potential Π free accounts for the stored energy density in the demagnetisation field, and
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3.1 Variational framework

the external potential Πext covers mechanical loading via tractions t and magnetic field
loading h. Therefore, Π can be specified according to

Π(u, φ̃,p) :=

∫

B

ψmat(ε,p)dv+
µ0

2

∫

R3

‖h̃‖2 dv−
∫

∂Bt

t ·uda−µ0

∫

B

h ·m(p)dv , (3.2)

with ε :=∇sym
x u = 1

2
[∇xu + ∇xu t ] as strains and the demagnetisation field strength

h̃ :=−∇xφ̃ . The latter relation automatically satisfies Ampere’s law, i.e. curlx(h̃) = 0.
The substitution, see [41, 88],

∫

R3

‖∇xφ̃‖2 dv =

∫

R3

‖h̃‖2 dv = −
∫

B

h̃ ·m(p) dv , (3.3)

with ‖ • ‖ :=
√• · •, is used to gain an alternative representations of (3.2), namely

Π̃(u, φ̃,p) :=

∫

B

ψmat(ε,p)dv− µ0

2

∫

R3

‖h̃‖2 dv−
∫

∂Bt

t ·uda−µ0

∫

B

h ·m(p)dv . (3.4)

The energy potential defined in (3.4) serves as a basis for the following derivations and
for the specific finite element implementation.

The tractions t applied at the Neumann boundary ∂Bt can be related to the stress
distribution σ within the bulk of the body B, i.e.

∫

∂Bt

t · u da =

∫

∂Bt

[σ · n ] · u da =

∫

B

divx(σ t · u) dv

=

∫

B

∇sym
x u : σ dv +

∫

B

u · divxσ dv =

∫

B

ε : σ dv , (3.5)

wherein additional body forces are assumed to vanish identically, such that divxσ=0.
Here and in what follows, we consider elastic strains to be negligible, cf. [39, 41]. As
a consequence, the displacement field u can be omitted and the total strains ε(p) are
given by explicit relations depending on the state variables p, see Section 3.2 for a
detailed discussion. In this context, the stress states considered as this work proceeds
are homogeneously distributed within B and are denoted σ.

With these assumptions at hand, the total potential (3.4) reads

Π̃(φ̃,p) =

∫

B

π̃ dv − µ0

2

∫

R3

‖h̃‖2 dv , (3.6)
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3 Spatial resolution of magnetic degrees of freedom

wherein the energy density π̃ is defined as

π̃ := ψmat(p)− ε(p) : σ − µ0 h ·m(p) . (3.7)

Based on this global potential, the power-type potential

L :=

∫

t


 ˙̃
Π +

∫

B

ζ(ṗ) dv


 dt (3.8)

can be defined based on the approach suggested in, e.g., [23, 145, 178] and in line with,
e.g., [8], which takes dissipative effects into account via the dissipation functional ζ(ṗ),
cf. [17, 46, 235]. The magnetomechanical response is generally modelled to be governed
by the global rate-type variational principle

{u̇, ˙̃
φ, ṗ} = arg

[
inf
u̇

sup
˙̃
φ

inf
ṗ
L(u̇,

˙̃
φ, ṗ)

]
subject to rc(p) ≤ 0 , (3.9)

where the constraints rc(p) ≤ 0 are introduced and will be specified later. Since the
displacement field u was omitted, the global rate-type variational principle reduces to

{ ˙̃
φ, ṗ} = arg

[
sup

˙̃
φ

inf
ṗ
L(

˙̃
φ, ṗ)

]
subject to rc(p) ≤ 0 . (3.10)

Due to the assumption that the rates of the underlying state variables minimise this
potential, it follows—in line with the Karush-Kuhn-Tucker (KKT) theorem—that the
first variation of L needs to fulfil

δL ·
= −δ



∫

t

λ · ṙc dt


 = −δ



∫

t

λ · ∂rc

∂p
· ṗ dt


 . (3.11)

With

˙̃
Π =

∫

B

[
∂π̃

∂∇xφ̃
· ∇x ˙̃

φ+
∂π̃

∂p
· ṗ
]

dv + µ0

∫

R3

h̃ · ∇x ˙̃
φ dv (3.12)
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3.1 Variational framework

one obtains the stationarity condition of the power-type potential

δL =

∫

t



∫

B

[
∂π̃

∂∇xφ̃
· ∇xδ ˙̃

φ+
∂π̃

∂p
· δṗ+

∂ζ

∂ṗ
· δṗ

]
dv + µ0

∫

R3

h̃ · ∇xδ ˙̃
φ dv


 dt

·
= −

∫

t

[ [
λ · ∂rc

∂p

]
· δṗ

]
dt . (3.13)

One may then consider three individual stationarity conditions via

∫

t



∫

B

[
− ∂π̃

∂h̃
+ µ0 h̃

]
· ∇xδ ˙̃

φ dv


 dt

·
= 0 , (3.14)

∫

t


µ0

∫

R3\B

h̃ · ∇xδ ˙̃
φ dv


 dt

·
= 0 , (3.15)

∫

t



∫

B

[
∂π̃

∂p
+
∂ζ

∂ṗ

]
· δṗ dv + λ · ∂rc

∂p
· δṗ


 dt

·
= 0 , (3.16)

which can be recast into
∫

B

[
− ∂π̃

∂h̃
+ µ0 h̃

]
· ∇xδ ˙̃

φ dv
·

= 0 , (3.17)

µ0

∫

R3\B

h̃ · ∇xδ ˙̃
φ dv

·
= 0 , (3.18)

∫

B

[
∂π̃

∂p
+
∂ζ

∂ṗ

]
· δṗ dv + λ · ∂rc

∂p
· δṗ ·

= 0 , (3.19)

if (3.14) to (3.16) shall hold for any time t. The interpretation of δ
˙̃
φ and δṗ as test

functions reveals the similarities between the first variation displayed via (3.17) to (3.19)
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3 Spatial resolution of magnetic degrees of freedom

and the weak form of the stationarity conditions. The corresponding strong forms (Euler-
Lagrange equations) can be shown to follow as

divxb̃ = 0 in B , (3.20)

divxh̃ = −∆xφ̃ = 0 in R3 \ B , (3.21)

[[ b̃ ]] · n = 0 on ∂B , (3.22)

0 ∈
∫

B

[
∂π̃

∂p
+
∂ζ

∂ṗ

]
dv + λ · ∂rc

∂p
in B , (3.23)

where (3.20) to (3.22) reflect Gauss’s law of magnetism and where (3.23) is the Biot
equation governing the evolution of the internal state variables. However, these relations
are simply displayed here for the sake of completeness and physical insight. Equations
(3.17) to (3.19) will further serve as the basis for the finite element implementation
elaborated in Section 3.3. The occurring derivatives of the energy density π̃ can be
regarded as (negative) thermodynamically conjugate driving forces and specifically read

− ∂π̃

∂h̃
= µ0m(p) , (3.24)

∂π̃

∂p
=
∂ψmat(p)

∂p
− σ :

∂ε(p)

∂p
− µ0 h ·

∂m(p)

∂p
. (3.25)

With (3.24) at hand, (3.17) is recast into

µ0

∫

B

[
h̃+m

]
· ∇xδ ˙̃

φ dv
·

= 0 . (3.26)

The combination of (3.26) and (3.18) yields

µ0

∫

B

[
h̃+m

]
· ∇xδ ˙̃

φ dv + µ0

∫

R3\B

h̃ · ∇xδ ˙̃
φ dv =

∫

R3

b̃ · ∇xδ ˙̃
φ dv

·
= 0 , (3.27)

with the—above introduced—magnetic induction b̃=µ0

[
h̃+m

]
and m=0 in R3\B.

3.2 Constitutive model

In this section, the constitutive model based on microstructural quantities related to the
different crystallographic phases of the material is elaborated. For the considered two
dimensional case, two (nearly) tetragonal (5M modulated) variants of martensite exist,
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3.2 Constitutive model

see Figure 3.1, with the corresponding variant volume fractions ξi, where ξ2 =1− ξ1 due
to the conservation of mass, provided that the mass densities of the respective phases
are identical. The transformation or Bain strains of the two martensite variants (2D)
are introduced as

εtr
1 = b2 e1 ⊗ e1 + b1 e2 ⊗ e2 and εtr

2 = b1 e1 ⊗ e1 + b2 e2 ⊗ e2 , (3.28)

where b1 and b2 are the Bain strain coefficients, which have to be determined experi-
mentally, and {e1,2,3} is an orthonormal frame aligned with the crystallographic axes.
The two martensite variants may form kinematically compatible interfaces, see, e.g.,
[60]. Since elastic strains are not considered in the present approach, the total (aver-
aged) strain depends only on the transformation strains εtr

i and the martensite volume
fractions ξi, viz. a convex combination of the energy well states, cf. [41],

ε := ξ1 ε
tr
1 + ξ2 ε

tr
2 . (3.29)

In addition to the volume fraction of the first martensite variant ξ1, further state vari-
ables are introduced to describe the magnetic state of the underlying microstructure.
Here, the normalised effective magnetisations of the first and second martensite variant
m∗i =mi1 e1 + mi2 e2 are used. The total magnetisation is calculated by averaging the
contributions of the two martensite variants

m := ms [ ξ1m
∗
1 + ξ2m

∗
2 ] , (3.30)

where ms is the saturation magnetisation which has to be determined experimentally.
Usually, the value of ms is temperature-dependent, but due to the assumption of isother-
mal conditions, it is kept fixed during the simulations discussed as this work proceeds.
The set of variables describing the microstructural state is consequently denoted as
p=[ ξ1,m11,m12,m21,m22 ] t. These variables are accompanied by the constraints

r1 := − ξ1 ≤ 0 , r2 := ξ1 − 1 ≤ 0 , r3 := ‖m∗1‖ − 1 , r4 := ‖m∗2‖ − 1 , (3.31)

so that rc = [ r1, r2, r3, r4 ] t and λ = [λ1, λ2, λ3, λ4 ] t as the corresponding Lagrange
multipliers, see Section 3.1.

Due to the fact that elastic strains and conventional magnetostriction are omitted,
the stored energy density ψmat generally introduced in Section 3.1 reduces to

ψmat = ψ an = k1 [ ξ1 m
2
12 + ξ2 m

2
21 ] , (3.32)

where ψ an denotes the magnetocrystalline anisotropy energy density that depends on
the material parameter k1 according to [116, 170]. This energy contribution accounts
for the stored energy due to deviations of the magnetisation vectors from the respective
magnetic easy-axes in both martensite variants.
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3 Spatial resolution of magnetic degrees of freedom

εtr1 εtr2

0≤ξ1≤1 ξ2=1− ξ1

m∗
1

m11

m12

m∗
2

m21

m22

‖m∗
i ‖≤1

Figure 3.1: Parametrisation of the microstructure and constraints for the corresponding state variables.
Martensite variants (transformation strains εtri , variant volume fractions ξi) and effective magnetisations
of the martensite variants (m∗i =mi1 e1 +mi2 e2).

To complete the constitutive framework, the dissipation function ζ is chosen as

ζ(ξ̇1) := Yξ |ξ̇1|+
ηξ
2

[ξ̇1]2 , (3.33)

where Yξ can be interpreted as a threshold and ηξ as a viscosity-type parameter. As
for example discussed in [7], such dissipation functions result in evolution equations of
viscoplastic type. As a consequence, the volume fraction ξ1 is assumed to be the only
state variable associated with dissipation. The reason for this lies in the fact that the
dissipation related to the mechanism of domain wall motion (easy-axis magnetisation)
and the deviation of the local magnetisation direction from the respective easy-axis
(hard-axis magnetisation) is considered negligible according to experimental findings, see
Figure 3.2, where the single variant response curves show almost no hysteretic behaviour.

µ0 hi [T]

m
i/
m

∗ s
[-
]

easy-axis

hard-axis

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 3.2: Measured easy- and hard-axis magnetic field-induced magnetisation response of a thin
nearly square wafer consisting of a single martensite variant under the constant compression stress of
1.9 MPa in the easy-axis direction, cf. [211, 212].

The threshold parameter Yξ is the absolute value of the corresponding driving force—
also termed critical driving force—that must be overcome in order to initialise the
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3.2 Constitutive model

martensite reorientation. The corresponding driving force Fξ1 is generally defined as
the negative gradient of (3.25) w.r.t. ξ1 in B and for the specific constitutive model

Fξ1 = k1 [m2
21 −m2

12 ] + σ : [ εtr
1 − εtr

2 ] + µ0 ms h · [m∗1 −m∗2 ] . (3.34)

With the definition of the Macaulay brackets 〈•〉 :=0.5 [ •+ |•| ], the explicit form of the
evolution equation for ξ1 is written in a compact form

ξ̇1 =
1

ηξ
sign (Fξ1) 〈|Fξ1 | − Yξ〉 . (3.35)

For the numerical implementation, rate ξ̇1 is discretised in time in time interval ∆ t=
tn+1 − tn by the forward difference

ξ̇1 ≈
ξn+1

1 − ξn1
tn+1 − tn

. (3.36)

Since the evolutions of the effective magnetisations are not dissipative, their evolution
equations are derived from the stationarity of (3.25) as part of (3.19) w.r.t. mij in B

∂ψmat(p)

∂mij

− σ :
∂ε(p)

∂mij

− µ0 h ·
∂m(p)

∂mij

= 0 , for i, j = 1, 2 . (3.37)

The residual vector revo containing the time discrete evolution equation for ξ1 (3.35) and
for all other state variables (3.37) is defined as

revo :=




ξ1 − ξn1 −
∆ t

ηξ
sign (Fξ1) 〈|Fξ1 | − Yξ〉
−µ0 ms ξ1 h1

2 k1 ξ1 m12 − µ0 ms ξ1 h2

2 k1 [1− ξ1]m21 − µ0 ms [1− ξ1]h1

−µ0 ms [1− ξ1]h2




, (3.38)

where all quantities are evaluated at time t= tn+1 (backward Euler method), except for
ξn1 , which is considered to be a known quantity.

Remark 3 The field variables m11,m12,m21, and m22 describe the effective magnetisa-
tion inside the first, respectively second, martensite variant. They are directly related
to other variables describing the microstructure, also used in previous works [39, 112],
viz. the angles measuring the deviations from the magnetic easy-axes θj, the net magneti-
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3 Spatial resolution of magnetic degrees of freedom

sations ηi, the relative domain volume fractions of the corresponding martensite variants
γi, and the absolute domain volume fractions αj by

θ1 = − θ2 = arcsin(m12) , θ3 = − θ4 = − arcsin(m21) , (3.39)

η1 = ξ1
m11

cos(θ1)
, η2 = ξ2

m22

cos(θ3)
,

γ1 = 0.5

[
m11

cos(θ1)
+ 1

]
, γ2 = 0.5

[
m22

cos(θ3)
+ 1

]
, for cos(θj) 6= 0 ,

α2i−1 = 0.5 [ ξi + ηi ] = ξi γi , α2i = 0.5 [ ξi − ηi ] = ξi [ 1− γi ] , with i = 1, 2 .

The magnetic compatibility within one martensite variant is fulfilled across the 180◦

domain interface with its normal perpendicular to the magnetic easy-axes inside each
martensite variant for the angles θ1 = − θ2, respectively θ3 = − θ4 . In addition, the
magnetocrystalline anisotropy energy is minimised for this combination of angles, see
Section 3.6 for details. For cos(θj) = 0, the magnetisation inside the corresponding
martensite variant is fully aligned with one of the magnetic hard-axes. Consequently,
the magnetisation vectors in both domains point in the same direction. In such a case,
the relative domain volume fractions γi and the net magnetisations ηi may take arbitrary
values satisfying the constraints stated above, without having an influence on the effec-
tive material response. The previously used microstructure and the corresponding state
variables are schematically sketched in Figure 3.3.

η1=−ξ1

η1=ξ1

η1

η2=−ξ2 η2=ξ2η2

α1

α2

α3 α4

m1

m2

m3 m4
θ1

θ2

θ3

θ4

εtr1 , ξ1 εtr2 , ξ2 Constraints:

0≤ξ1≤1

ξ2=1− ξ1

|ηi|≤ξi

|θj|≤π/2

Figure 3.3: Previously used parametrisation of the microstructure and constraints for the corresponding
state variables. Martensite variants (transformation strains εtri , variant volume fractions ξi), magnetic
domains (net magnetisations ηi), and magnetisation vectors (mj(θj) with θj as the deviations from the
easy-axes). Absolute domain volume fractions αj as dependent variables.

3.3 Finite element discretisation

In this section, the general finite element-based implementation and different aspects
concerning the algorithmic treatment are discussed, where the two-dimensional case is
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3.3 Finite element discretisation

considered. In general, two different regions are considered separately, viz. the magnetis-
able body B and the surrounding free space R2\B. Concerning the latter, it is convenient

to define a sufficiently large free space box Ω ⊂ R2, with φ̃= 0 on ∂Ω. The different
regions are spatially discretised via

B ≈
nBel⋃

e=1

Be , Ω\B ≈
nBel+n

Ω\B
el⋃

e=nBel+1

Be , (3.40)

where n•el denotes the total number of finite elements Be used to geometrically approx-
imate the respective region • ∈ {B, Ω \B}. As shown in Figure 3.4 in terms of the
underlying master element, the different field variables are discretised by using interpo-
lation polynomials of different order: For the spatial discretisation of φ̃, an eight-node
quadratic serendipity element is used, see [43]. Therefore, the number of nodes used to

discretise φ̃ within the respective finite element is nφ̃en = 8. In contrast, a bilinear four-
node element is used for the variables p and λ resulting in npen = nλen = 4. This choice

is due to the fact that only the gradient of φ̃ appears in the underlying equations in
contrast to p, which solely appears as a global field itself. Accordingly, φ̃ is interpolated
by using polynomials of higher order compared to the discretisation of p. The field p
and the corresponding λ are solely resolved in the nBel elements of the body, while field

φ̃ is resolved in all elements, cf. Section 3.1.

+1

1 2

34

5

6

7

8
ξ

η

+1

−1

−1

Nodes 1–4

dof: p,λ in B

Nodes 1–8

dof: φ̃ in Ω

Figure 3.4: Mixed bilinear (nodes 1–4) and incomplete quadratic serendipity element (nodes 1–8) in

the ξ, η-space. While discrete values of φ̃ exist at all nodes, discrete values of the variables p and λ
exist only at the nodes 1–4 marked with a box. The variables p and λ are only resolved in B and on
∂B. The corresponding shape functions are listed in, e.g., [43].

In the following, the finite element-based derivation of the governing equations is
presented, where φ̃, p, and the Karush-Kuhn-Tucker parameters λ denote the global
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3 Spatial resolution of magnetic degrees of freedom

variables. First, the individual variations δ
˙̃
φ and δṗ are spatially discretised using the

above introduced mixed element formulation w.r.t. the element e according to

δ
˙̃
φe ≈

nφ̃en∑

A=1

δ
˙̃
φeANA

φ̃
, δṗe ≈

np
en∑

C=1

δṗeC NC
p , (3.41)

where δ
˙̃
φeA, δṗeC denote the discrete values of the respective variations and where NA

φ̃
,

NC
p reflect the respective shape functions. The gradient of δ

˙̃
φ is thus given by

∇xδ ˙̃
φe =

nφ̃en∑

A=1

δ
˙̃
φeA∇xNA

φ̃
. (3.42)

With these approximations at hand, (3.27) and (3.19) can be recast into

nBel+n
Ω\B
el∑

e=1

nφ̃en∑

A=1

δ
˙̃
φeA

∫

Be
∇xNA

φ̃
· b̃ dv = 0 , (3.43)

nBel∑

e=1

np
en∑

C=1

δṗeC ·
∫

Be
NC
p r

evo dv −
nBpnp∑

E=1

δṗE ·
[
λE · ∂rc

∂p

]
= 0 , (3.44)

with nBpnp as the number of node points used for the discretisation of p in B and the
residual concerning the evolution of the state variables revo as defined in (3.38). It is

noteworthy that the Karush-Kuhn-Tucker parameters λ are treated differently from φ̃
and p. Due to the choice of bilinear shape functions for the state variables p, the compli-
ance of the constraints at all nodes is identical to satisfying the constraints everywhere
else, cf. [11]. As a consequence, no interpolation of λ is required and thus the set λE

can be introduced as discrete values at node E without defining a global field. Referring
to (3.44), the term in brackets can be specified according to

λE · ∂rc

∂p
=




−λE1 + λE2

λE3 m11/‖m∗1‖
λE3 m12/‖m∗1‖
λE4 m21/‖m∗2‖
λE4 m22/‖m∗2‖



. (3.45)
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The actual field variables are spatially discretised using the same sets of shape functions

φ̃e ≈
nφ̃en∑

A=1

φ̃eANA
φ̃
⇒ h̃

e
= −∇xφ̃e = −

nφ̃en∑

A=1

φ̃eA∇xNA
φ̃
, (3.46)

pe ≈
np
en∑

C=1

peC NC
p . (3.47)

Furthermore, the additional Karush-Kuhn-Tucker conditions, i.e.

ri ≤ 0 , λi ≥ 0 , ri λi = 0 with i = 1, . . . , 4 , (3.48)

need to be taken into account. In line with, e.g., [7, 51, 189], the Fischer-Burmeister
nonlinear complementarity problem functions

gi :=
√

[ri]2 + [λi]2 + ri − λi = 0 with i = 1, . . . , 4 (3.49)

are used to substitute (3.48). According to the discretisation of λ, these equations are
solved at every node referring to B and the underlying four-node elements, where

g(p,λ) := [ g1, g2, g3, g4 ]t (3.50)

is introduced, cf. [11]. With all the above relations at hand, the final system of equations
is assembled using assembly operators A by

r :=

nBel

A
e=1



rA
φ̃

rCp

0


+

nBel+n
Ω\B
el

A
e=nBel+1



rA
φ̃

0

0


+

nBpnp

A
E=1




0

rEp

rEλ


 =

nBel+n
Ω\B
el

A
e=1




rA
φ̃{
rCp
}

0


+

nBpnp

A
E=1




0

rEp

rEλ


 , (3.51)
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3 Spatial resolution of magnetic degrees of freedom

wherein {•} marks entries that contribute only to the e= 1, . . . , nBel elements, to allow
a compact notation of (3.51) and the following equations. The individual residuals
occurring in (3.51) are defined as follows

rA
φ̃

:=

∫

Be
∇xNA

φ̃
· b̃ dv , (3.52)

rCp :=

∫

Be
NC
p r

evo dv , (3.53)

rEp :=

[
λE · ∂rc(p

E)

∂pE

]
, (3.54)

rEλ := g(pE,λE) . (3.55)

In this contribution, the corresponding nonlinear system of equations is solved by using
a Newton-Raphson scheme. Therefore, the linearisations (first-order Taylor expansions)
of the individual contributions of (3.51) are required. Having introduced the elementwise

approximations for φ̃, p, and ∇xφ̃, which depend on the nodal values at the nodes A
and C, and the Lagrange multipliers λ at nodes E, the node-specific increments of
the linearisations are defined as follows. Firstly, the non-zero increments of rA

φ̃
and rCp

w.r.t. the variables at node B, respectively D, are considered via

∆ rA
φ̃

=

nφ̃en∑

B=1

drA
φ̃

dφ̃B
∆ φ̃B +





np
en∑

D=1

drA
φ̃

dpD
·∆pD



 ,

∆ rCp =

nφ̃en∑

B=1

drCp

dφ̃B
∆ φ̃B +

np
en∑

D=1

drCp
dpD

·∆pD , (3.56)

where ∆ φ̃B and ∆pD are the increments of the nodal degrees of freedom at node B and
D. Secondly, the non-zero increments of rEp and rEλ at node E w.r.t. the variables at
the same node are considered

∆ rEp =
drEp
dpE

·∆pE +
drEp

dλE
·∆λE ,

∆ rEλ =
drEλ
dpE

·∆pE +
drEλ
dλE

·∆λE , (3.57)

where ∆pE and ∆λE are the increments of the nodal degrees of freedom at node E.
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3.3 Finite element discretisation

The terms in front of the nodal increments in (3.56) and (3.57) are defined as the
stiffness matrices. In this contribution, the total derivatives are replaced by partial
derivatives, since no implicit dependencies exist. The individual stiffness matrices are
defined as follows

KAB
φ̃φ̃

:=
drA

φ̃

dφ̃B
= µ0

∫

Be
−∇xNA

φ̃
· ∇xNB

φ̃
dv , (3.58)

KAD
φ̃p

:=
drA

φ̃

dpD
= µ0

∫

Be
∇xNA

φ̃
· ∂m
∂p

ND
p dv , (3.59)

KCB
pφ̃

:=
drCp

dφ̃B
=

∫

Be
−NC

p

∂revo

∂h̃
· ∇xNB

φ̃
dv , (3.60)

KCD
pp :=

drCp
dpD

=

∫

Be
NC
p

∂revo

∂p
ND
p dv , (3.61)

KEE
pp :=

drEp
dpE

= λE · ∂
2rc(p

E)

∂pE2 , (3.62)

KEE
pλ :=

drEp

dλE
=

[
∂rc(p

E)

∂pE

] t

, (3.63)

KEE
λp :=

drEλ
dpE

=
∂g(pE,λE)

∂pE
, (3.64)

KEE
λλ :=

drEλ
dλE

=
∂g(pE,λE)

∂λE
, (3.65)

with

∂gi(p
E, λEi )

∂pE
=
∂ri(p

E)

∂pE
·


 ri(p

E)√
[ ri(pE) ]2 + [λEi ]

2
+ 1


 , (3.66)

∂gi(p
E, λEi )

∂λEi
=

λEi√
[ ri(pE) ]2 + [λEi ]

2
− 1 , (3.67)
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3 Spatial resolution of magnetic degrees of freedom

and i = 1, . . . , 4. The total global stiffness matrix of the system is obtained by the
following assembly operations

K :=

nBel+n
Ω\B
el

A
e=1




KAB
φ̃φ̃

{
KAD

φ̃p

}
0

{
KCB
pφ̃

} {
KCD
pp

}
0

0 0 0


+

nBpnp

A
E=1




0 0 0

0 KEE
pp KEE

pλ

0 KEE
λp KEE

λλ


 . (3.68)

The nodal increments occurring in (3.56) and (3.57) are formally assembled in a global
vector of the nodal increments in analogy to (3.51) and (3.68), i.e.

∆d :=

nBel+n
Ω\B
el

A
e=1




∆ φ̃B
{

∆pD
}

0


+

nBpnp

A
E=1




0

∆pE

∆λE


 . (3.69)

The newly introduced quantity ∆d is used in the compact representation of the update of
the nodal degrees of freedom during the global iteration. The global system of equations

rl +K l ·∆d = 0 , with ∆d = d l+1 − d l , (3.70)

where l is the iteration counter, is solved for ∆d during each iteration step until ||r||≤tol,
where a convenient choice for the tolerance is tol=10−8.

3.4 Numerical examples

In this section, several numerical examples show the capability of the finite element
model and the advantages over calculations performed using a demagnetisation tensor
to capture the demagnetisation effect. All finite element simulations are two dimen-
sional. Total strains in the form of (3.29) are two-dimensional and, moreover, any strain
contributions to the stored energy density are neglected, see (3.32). This renders both
the strain state as well as the stress state to be two-dimensional for the subsequently
discussed numerical examples. The magnetic quantities are resolved in the plane, which
corresponds to specimens with infinite size in the e3-direction. The response behaviour
patterns under magnetomechanical loading of four different specimens embedded in a
free space box are investigated. A circular, a quadratic, an ellipsoidal, and a rectangular
specimen are used, where the axes, respectively edges, are aligned with the coordinate
system. The aspect ratios of the ellipsoidal and the rectangular specimen are 5/3. Area-
averaged responses of finite element simulations are compared to response behaviour
patterns of calculations performed in a driver routine, where the demagnetisation effect
is captured by using a demagnetisation tensor. The demagnetisation coefficients were

70



3.4 Numerical examples

calculated in advance in magnetostatic finite element simulations, where a homogeneous
magnetisation state was prescribed and the demagnetisation field was computed. The
body-averaged demagnetisation factors D11 and D22 were calculated as a function of
the area-averaged demagnetisation field h̃ave

1 , or respectively h̃ave
2 , and the prescribed

magnetisation mi, i.e.

D11 = − h̃
ave
1

m1

and D22 = − h̃
ave
2

m2

. (3.71)

The averaged demagnetisation field perpendicular to the h̃ave
i is zero, since the coordinate

system and the principal axes of the specimens coincide in this two-dimensional example.
The material and model parameters as well as the calculated demagnetisation factors
used for the simulations presented below are listed in Table 3.1. Concerning the magnetic
field, homogeneous Dirichlet boundary conditions φ̃=0 are applied at the boundary ∂Ω
of the free space box Ω.

Table 3.1: Material constants and model parameters for Ni49.7Mn29.1Ga21.2.

Model parameter Symbol Value Unit Reference

Bain strain coefficients b1 0.0188 [-] [204]
b2 − 0.0394 [-] [204]

Anisotropy constant k1 0.167 MJ/m3 [71, 76]
Saturation magnetisation ms 514.0 kA/m [76, 106]
Reorientation threshold Yξ 0.03 MJ/m3 -
Viscosity ηξ 0.005 1/[ kPa s ] -
Demagn. coeff. circle (D11 = D22) D11 0.4824 [-] -
Demagn. coeff. square (D11 = D22) D11 0.4746 [-] -
Demagn. coeff. ellipse short edge D11 0.6085 [-] -
Demagn. coeff. ellipse long edge D22 0.3586 [-] -
Demagn. coeff. rectangle short edge D11 0.5854 [-] -
Demagn. coeff. rectangle long edge D22 0.3660 [-] -

The first example considers the magnetisation response in easy- and hard-axis direc-
tion of a circular and a quadratic specimen essentially consisting of a single martensite
variant (ξ2 =0.99). A constant compression stress of σ22 =−3.0 MPa is applied in order
to maintain the initial configuration during a half cycle of hi magnetic field loading.
Figure 3.5 shows the area-averaged magnetisation response of a circular and a quadratic
specimen, where the edges of the latter are oriented in horizontal and vertical direction.
The responses calculated with a driver routine utilising demagnetisation factors of the
ideal circle, so that D11 = D22 = 0.5, as well as calculated values, see Table 3.1, are
plotted for comparison. The latter ones coincide with the area-averaged responses of the

71



3 Spatial resolution of magnetic degrees of freedom

circular specimen and serve as a first verification of the finite element implementation.
Although theoretically unconditionally valid for ellipsoidal geometries, the spatial distri-
bution of the underlying state variables may not turn out to be perfectly homogeneous
in the simulations. Therefore, averaged quantities are used for comparison in particular.
While the quadratic specimen shows a nonlinear response for both loading cases—which
is also observable in experiments, see Figure 3.2 for comparison—all other response
curves are linear. The hard-axis magnetisation does not saturate for the maximum ap-
plied magnetic field of 1T. Since the mechanisms of domain wall motion (easy-axis) and
magnetisation rotation (hard-axis) were introduced to be non-dissipative, the response
curves for the unloading case are identical to the loading case, i.e. no hysteresis occurs.
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Figure 3.5: Magnetic field-induced magnetisation response in (a) easy- and (b) hard-axis direction under
the constant compression stress σ22 =−3.0 MPa. Both figures show the area-averaged magnetisation
response of a circular (cir.) and a quadratic (qu.) specimen embedded in a free space box compared
to the response calculated using a driver routine, with a theoretical (D11 =D22 =0.5) and a calculated
(D11 =D22 =0.4824) demagnetisation tensor of the circular specimen.

As a further verification of the finite element implementation, the magnetisation re-
sponse curves in easy- and hard-axis directions of different specimens of single variant
martensite are analysed. While the response of ellipsoidal specimens is identical to the
response calculated with a driver routine using the demagnetisation factors given in Ta-
ble 3.1, see Figure 3.6 (a) and (b) for the body-averaged response curves of ellipsoidal
bodies, the response of rectangular specimens is nonlinear and differs from the driver rou-
tines, even though the demagnetisation factors were calculated using the same meshes.
The reason for this effect is that the demagnetisation factor concept assumes spatially
homogeneous magnetisations, whereas their actual distributions are inhomogeneous in
non-ellipsoidal specimens—with derivations particularly large in the corner regions—as
correctly predicted by the full-field finite element solutions. Figure 3.6 shows (c) the
easy- and (d) the hard-axis magnetisation response curves of the rectangular and the
square specimen. The short, or respectively the long, edges of the rectangular speci-
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men coincide with the applied magnetic field loading direction. The shape anisotropy is
clearly observable, where specimens are more easily magnetised along longer edges.
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Figure 3.6: Magnetic field-induced magnetisation response in (a), (c) easy- and (b), (d) hard-axis
direction under the constant compression stress σ = −3.0 MPa applied to maintain the initial single
martensite variant. All figures show the area-averaged magnetisation response of (a), (b) a circle and
an ellipse and (c), (d) a square and a rectangle, all embedded into a free space box (loading applied along
the short and long edge of the ellipse and the rectangle). In (c) and (d), the responses are compared to
the response calculated using a driver routine. The demagnetisation factors are given in Table 3.1.

The previous examples had in common that only the mechanisms of domain wall mo-
tion and rotation of the magnetisation vectors, associated with magnetisations along the
easy- and the hard-axis directions in each martensite variant, were active. The mecha-
nism of martensite variant reorientation which is essential for the response behaviour of
MSMAs was suppressed by a sufficient high compression stress. In the following exam-
ple, a square specimen is subjected to a constant compression stress of σ22 =−1.0 MPa,
which is below the blocking stress and favours the initial configuration (ξ2 =0.99), while
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3 Spatial resolution of magnetic degrees of freedom

a perpendicular cyclic h1 magnetic field loading is applied, favouring the first martensite
variant. Responses of MSMA specimens experimentally measured under similar load-
ing conditions are used for comparison, see Figure 3.7. In Figure 3.8, the simulated
body-averaged (a) strain, where the initial value is shifted to zero, and (b) normalised
magnetisation response of the square specimen are plotted and compared to simulations
of a driver routine utilising a demagnetisation tensor, given in Table 3.1. In addition,
the body-averaged underlying microstructure in terms of martensite volume fractions,
magnetic domain volume fractions and the orientations of the magnetisation vectors is
schematically sketched for selected loads. Here, “area-averaged microstructure” means
the area-averaged values of the underlying microstructural state variables and its asso-
ciated graphical representation. Starting with zero magnetisation in the single variant
state 1©, a nearly linear magnetisation response is observable, while the strain remains
mostly zero as the main mechanism is magnetisation rotation towards the hard-axis. At
a certain point 2©, the onset of martensite variant reorientation is visible in the strain
response, and the increasing slope of the magnetisation response is associated with easy-
axis magnetisation (domain wall motion) in the forming first martensite variant. At state
3©, large areas of the body have completely switched into the first martensite variant and
the slope in both response curves decreases clearly for increasing external field loading,
until a nearly homogeneous state is achieved in 4©. For decreasing magnetic field, the
onset of the martensite variant reorientation into the initial second martensite variant
is delayed due to the threshold for the variant reorientation in the dissipative response,
which yields the clearly visible hysteresis loop. From 5© onwards, both response curves
are again nearly linear. For zero magnetic field, the initial configuration is recovered.
Interestingly, the response calculated using a demagnetisation tensor approximates the
body-averaged response quite well, except for states of high magnetisation from 3©– 5©.
The second half of the cycle is very similar to the first and therefore not discussed in
detail. Figures 3.9, 3.10 and 3.11 show the corresponding spatial distributions of ξ1, m1,
and m2, in addition to iso-lines of the magnetic potential φ̃—not to be confused with
the field lines of h̃—for the selected loading points marked in Figure 3.8. In addition to
these spatial distributions, Figure 3.12 shows the homogeneous distribution of ξ1, m1,
and m2 in the circular specimen and iso-lines of the magnetic potential φ̃ during the
martensite reorientation process under identical boundary conditions.
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Figure 3.7: Experimentally measured magnetic field-induced (a) strain and (b) magnetisation response
under the constant compression stress σ=−1.0 MPa and perpendicular h cyclic magnetic field loading
as reported by Straka and Heczko [202].
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Figure 3.8: Simulated body-averaged magnetic field-induced (a) strain and (b) magnetisation response
under the constant compression stress σ22 = −1.0 MPa and perpendicular cyclic h1 magnetic field
loading of a square specimen embedded in a free space box. The response calculations utilising a
demagnetisation tensor, given in Table 3.1, are plotted for comparison. The evolution of the body-
averaged microstructure is sketched for selected loading states.
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Figure 3.9: Spatial distribution of the variant volume fraction ξ1 for selected load steps marked in
Figure 3.8. In addition, iso-lines of the magnetic potential φ̃ are plotted in black.
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Figure 3.10: Spatial distribution of the magnetisation m1 in the direction of the applied h1 magnetic
field for selected load steps marked in Figure 3.8. In addition, iso-lines of the magnetic potential φ̃ are
plotted in black.
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Figure 3.11: Spatial distribution of the magnetisation m2 perpendicular to the applied h1 magnetic
field for selected load steps marked in Figure 3.8. In addition, iso-lines of the magnetic potential φ̃ are
plotted in black.
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Figure 3.12: Spatially homogeneous distribution of the variant volume fraction ξ1 and the magnetisa-
tions m1 and m2 for a circular body during the martensite reorientation under the constant compression
stress σ22 =−1.0 MPa and cyclic h1 magnetic field loading. In addition, iso-lines of the magnetic po-
tential φ̃ are plotted in black.
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Remark 4 Initially, the same elements were used for the discretisation of body B and
surrounding free space Ω \ B. Magnetic potential φ̃ and state variables p were spatially
discretised using the same set of shape functions. In a first approach, the magnetic
potential of the demagnetisation field φ̃, the magnetisation of the first martensite variant
m∗1 (constraint r := ms ‖m∗1‖−ms), and one KKT-parameter λ were used as the global
degrees of freedom. Neglecting dissipative contributions and considering stress free states,
the evolution of state variables m∗1 under h magnetic field loading was analysed for a
purely phenomenological stored energy density, cf.[49],

ψphen =
µ0

2χ
m ·m , (3.72)

wherein χ is the magnetic susceptibility and m=msm
∗
1. Two distinct susceptibilities

were used for the body (χB = 100) and the free space (χΩ\B = 0.01). For unsaturated
states, the magnetisation is highly inhomogeneous inside the body, see Figure 3.13 (a).
For saturated states, however, the magnetisation is mainly homogeneous inside the body,
except for the outer element row, see Figure 3.13 (b). The outer edge does not saturate
due to the neighbouring slightly paramagnetic free space. By using two distinct element
routines for the body and the surrounding free space, where the magnetisation is only
resolved in B, the free space behaves like a perfect vacuum (χΩ\B=0) and the magnetisa-
tion response is homogeneous inside the circular body during all loading conditions, see
Figure 3.13 (c). Figure 3.14 shows a comparison of the body-averaged magnetisation re-
sponse using identical and different elements, wherein the non-saturating outer element
row is clearly visible in the effective body-averaged response curve.

−0.3794 m1/ms=m11 1

(a)

0 m1/ms=m11 1

(b)

m1/ms=m11=0.2619

(c)

Figure 3.13: Phenomenological model: magnetisation distribution inside a circular body. Inhomoge-
neous response due to the use of the same elements for the body and the surrounding free space for
(a) an intermediate and (b) a saturated state. (c) Homogeneous response due to the use of different
elements for the body and the surrounding free space during all loading conditions. Interpolated nodal
values in (a) and (b). Element-averaged values in (c).
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Figure 3.14: Phenomenological model: Effective body-averaged magnetisation response in the direction
of the applied magnetic field using identical (blue) and different (red) elements for the body and the
surrounding free space. See Figure 3.13 for selected spatial distributions.

Secondly, the magnetocrystalline anisotropy energy density ψan, as introduced in Sec-
tion 3.2, was used as the total stored energy density for a single variant of martensite
(ξ1 = 1). Figure 3.15 shows one selected magnetisation distribution inside the circular
body under h2 magnetic field loading in the hard-axis direction. A high oscillation of
the magnetisation in the easy-axis direction is observable, see Figure 3.15 (a). This
behaviour is prevented by using shape functions of a higher polynomial degree for the
magnetic potential of demagnetisation field φ̃ in comparison to the polynomial degree of
the shape functions used for the state variables, see the discussion in Section 3.3.

−1 m1/ms=m11 1
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m2/ms=m12=0.063

(b)

Figure 3.15: Single variant of martensite: magnetisation distribution inside a circular body in (a) easy-
and (b) hard-axis direction under h2 magnetic field (hard-axis) loading. Interpolated nodal values in

(a). Element-averaged values in (b). In addition, iso-lines of the magnetic potential φ̃ are plotted in
black. All spatially resolved field variables are discretised using the same set of shape functions.
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3 Spatial resolution of magnetic degrees of freedom

3.5 Summary and outlook

This chapter presented a micromagnetics-inspired finite element framework for the mod-
elling and simulation of the material and structural behaviour of MSMA specimens. This
framework is micromechanically-motivated since crystallographic information is taken
into account, which is reflected in the consideration of different martensite variants
associated with the respective Bain strains and directions of spontaneous magnetisa-
tion. Due to the non-local nature of the magnetostatic problem, the state variables p
which carry this crystallographic information, have to be introduced as global degrees
of freedom, just as the scalar magnetic potential φ̃. Furthermore, the consideration
of unavoidable constraints with respect to p necessitates the introduction of Karush-
Kuhn-Tucker parameters at the global level or, in other words, as additional degrees
of freedom. The fulfilment of the KKT-type inequality constraints is accomplished by
nonlinear Fischer-Burmeister complementarity functions, which are introduced as addi-
tional algebraic equations at each node. Dissipative effects arising from the martensite
reorientation processes are captured via a dissipation functional, where the resulting
evolution equations of elasto-viscoplastic-type are obtained in a variationally-consistent
manner as Biot equations. The presented results show the capabilities of the finite
element framework regarding the prediction of the effective behaviour of arbitrarily-
shaped two-dimensional specimens, where, for instance, the demagnetisation field and
the magnetisation are inhomogeneously distributed in space. The results achieved for
square-shaped specimens turn out be in good agreement with experimental findings. The
framework has been verified in terms of calculations for circular specimens, where the
results obtained via the novel finite element framework coincide with analytical solutions
obtained by using the concept of demagnetisation tensors.

In the following chapter, the presented framework shall be enhanced in terms of the
additional consideration of mechanical degrees of freedom, i.e. the displacement field.
Thus, the variational framework will be equivalent to solving the mechanical equilibrium
equations simultaneously to Maxwell’s equations. Furthermore, elastic strain contribu-
tions will be taken into account within the material model, where energy relaxation
principles w.r.t. the energy of the phase mixture will be discussed and employed. In
future work, another important milestone will be the extension to three-dimensional
problems as well as the application of the framework to other magnetostrictive material
classes, for instance Terfenol-D, Galfenol, and cobalt ferrite.

3.6 Appendix

In previous works, see, e.g., [112], the magnetic state of the underlying two-dimensional
microstructure was parametrised by using the net magnetisations ηi of both marten-
site variants, the deviations of the magnetisation vectors from the magnetic easy-axes
characterised by the angles θj in each of the four magnetic domains, and the martensite
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variant volume fractions ξi. Results of numerical simulations suggested that the devia-
tions of the magnetisation vectors within one martensite variant are not independent,
since the optimal deviations were θ2 =− θ1 and θ4 =− θ3. This relation can be shown
analytically, allowing a reparametrisation of the underlying microstruture by simultane-
ously decreasing the number of constraints. In the following derivation, only the first
variant of martensite is considered, i.e. ξ1 = 1. The second martensite variant may be
treated analogously.

In the first step, the effective magnetisation of the first martensite variant m∗1 is
defined as

m∗1 = γ1 [ cos(θ1) e1 + sin(θ1) e2 ] + [ 1− γ1 ] [− cos(θ2) e1 − sin(θ2) e2 ] , (3.73)

wherein γi = 0.5 [ ηi/ξi + 1 ] denotes the relative magnetic domain volume fraction of
the i-th martensite variant. The constraints for the variables are 0 ≤ γi ≤ 1 and
−π/2 ≤ θj ≤ π/2. The magnetisation vectors are introduced for each domain of one
martensite variant, whereas in the modelling framework described in Section 3.2 an ef-
fective magnetisation vector for the whole variant is used. This approach is interpretable
as the introduction of a plane spanned by the magnetisations of the two domains mj,
where several combinations of those and the domain volume fraction γ1 yield the same
effective magnetisation m∗1. It is assumed that angle θ2 minimises the anisotropy energy
density. In the following, γ1 6= 0 and γ1 6= 1 shall hold, i.e. both domains exist, and
θj 6= ± π/2. The anisotropy energy density of the first martensite variant (ξ1 = 1, η1

replaced by γ1) ψ an
1 =γ1 sin2(θ1) + [ 1− γ1 ] sin2(θ2) is reformulated using (3.73) via

ψ an
1

k1

=
m2

12 + 2m12 [ 1− γ1 ] sin(θ2) + [ 1− γ1 ] sin2(θ2)

γ1

. (3.74)

The partial derivative of (3.74) w.r.t. θ2 results in

1

k1

∂ψ an
1

∂θ2

=
2 [ 1− γ1 ]

γ1

cos(θ2) [m12 + sin(θ2) ] . (3.75)

The necessary condition for a minimum w.r.t. θ2 states ∂θ2ψ
an
1 = 0, which, under the

assumptions mentioned above, is always satisfied for m12 =− sin(θ2) or cos(θ2)=0. The
second partial derivative of (3.74) w.r.t. θ2, i.e.

1

k1

∂2ψ an
1

∂θ2
2

=
2 [ 1− γ1 ]

γ1

[
cos2(θ2)− sin(θ2) [m12 + sin(θ2) ]

]
(3.76)

is used to check the sufficient condition for a minimum, respectively maximum. Insertion
of m12 =− sin(θ2) into (3.76) yields

k1
2 [ 1− γ1 ]

γ1

cos2(θ2) > 0 , for cos(θ2) 6= 0 , (3.77)
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viz. the sufficient condition for a minimum. The insertion of cos(θ2)=0 into (3.76) yields

k1
2 [ 1− γ1 ]

γ1

[
− sin2(θ2)− sin(θ2)m12

]
< 0 , for − 1 < m12 < 1 , (3.78)

viz. the sufficient condition for a maximum. Since (3.73) must be fulfilled, the cases
cos(θ2) = 0,m12 = −1, and m12 = 1 yield either θ2 = − θ1 or γ1 = 0, respectively γ1 =
1, which were excluded in the assumptions mentioned above. As a consequence, the
anisotropy related energy density is minimised for a given effective magnetisation m∗1
with θ2 =− θ1. The derivation for the second martensite variant follows by analogy and
yields θ4 =− θ3. The number of state variables can therefore be reduced by two: Instead
of [ η1, η2, θ1, θ2, θ3, θ4 ] t, the new set of variables [m11,m12,m21,m22 ] t is used to describe
the magnetic state in the finite element implementation, where, in addition, the number
of inequality constraints is reduced from fourteen to four.

82



4 A micromagnetics-inspired
FE-framework — spatial resolution
of mechanical and magnetic degrees
of freedom

The chapter can be regarded as the second step in the finite element implementation of
micromagnetics-inspired constitutive models, such as the model introduced in Chapter 2.
It is generally based on the ideas presented in Chapter 3, but extends the formulation by
incorporating the displacement field as a further field variable that is spatially resolved.
The focus of this chapter lies on the simultaneous solution of the fully coupled mechanical
and magnetic boundary value problems as well as on the evolution equations for the
microstructure-describing state variables.

As demonstrated in Chapter 3, the non-local demagnetisation field effects the evo-
lution of the microstructure at any point of the magnetic material. The finite element
framework proposed in this and in the previous chapters account for this by treating the
internal state variables that parametrise the magnetic and crystallographic microstruc-
ture as global field variables in addition to the other primary field variables. The present
framework is considered to be inspired by the micromagnetics theory, but exchange en-
ergy terms are neglected and the microscale is spatially not resolved. The underlying
microstructure and its evolution is incorporated in an effective manner. The present
approach necessitates the development of a novel mixed element formulation. Addi-
tional inequality constraints arise due to physical bounds of the state variables that
must be enforced at the global level. Fischer-Burmeister complementarity functions are
employed and the associated Lagrange multipliers are incorporated as additional nodal
degrees of freedom. An energy relaxation-based model for Ni2MnGa MSMAs based on
previous works is presented and implemented in the general framework. Many numerical
examples demonstrate the capabilities of the finite element implementation.

The chapter is structured as follows: the general variational framework for the consid-
ered three-field problem is summarised in Section 4.1. In addition to the introduction of
multiple parametrisations of the microstructure and the constitutive model for Ni2MnGa,
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4 Spatial resolution of mechanical and magnetic degrees of freedom

the rate-dependent evolution equations for the state variables are derived in Section 4.2.
The finite element implementation and the algorithmic treatment are discussed in detail
in Section 4.3. Section 4.4 is dedicated to numerical examples. The implementation is
verified by comparison to results obtained by the application of the concept of demag-
netisation factors. The response behaviour of several specimen geometries is analysed
and, to some extent, compared to experimental findings. The chapter is briefly sum-
marised, followed by an outlook on possible future work in Section 4.5. The different
parametrisations are connected in the appendix at the end of the chapter in Section 4.6.
In addition, the constitutive driver is detailed, and the shape functions as well as the
stiffness matrix contributions are listed.

4.1 Variational framework

In this contribution, we consider a magnetostrictive material with configuration B, which
is embedded in R3. The spatial positions are denoted x. The state of the material and
the surrounding free space is characterised in the time interval I⊂R≥0 using the global
primary field variables

u :

{
B × I → R3

(x, t) 7→ u(x, t)
, φ̃ :

{
R3 × I → R
(x, t) 7→ φ̃(x, t)

, p :

{
B × I → Rnp

(x, t) 7→ p(x, t)
, (4.1)

wherein u(x) is the displacement field, φ̃(x) is the scalar magnetic potential of the
demagnetisation field, and where p(x) is the vector containing the np state variables,
which characterise the underlying microstructure, e.g. the magnetisation m(p), cf. [10,
21, 146]. Figure 4.1 shows a schematic representation of a magnetostrictive material
B embedded in a finite size free space box Ω, the mechanical, respectively magnetic,
boundary value problems, and the spatial resolution of the state variables. See below
for details regarding the free space box. Due to the gradient type relations

f := ∇xu , ε := ∇sym
x u =

1

2
[∇xu+ [∇xu ] t ] , h̃ := −∇xφ̃ , (4.2)

wherein ε is the infinitesimal strain tensor and h̃ is the magnetic field strength of the
demagnetisation field, respectively the demagnetisation (self-)field, the deformation com-

patibility curlx f=0 and Ampere’s law in the absence of free currents curlx h̃=0 can be
satisfied a priori. The demagnetisation field h̃ builds up as the magnetostrictive body
magnetises due to the application of a prescribed superimposed spatially homogeneous
magnetic field strength h. The total magnetic field strength is consequently denoted as
h=h + h̃. The magnetic induction is calculated by using the relation b=µ0 [h +m ],
wherein µ0 is the vacuum permeability. In analogy to the magnetic field h, the magnetic
induction is decomposed into b=b+ b̃, wherein the spatially homogeneous part b=µ0 h
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is due to the applied magnetic field and wherein b̃=µ0 [ h̃+ m̃ ] is the demagnetisation
part. The latter definition is more of a conceptual nature, cf. [21], and allows a com-
pact notation of the following derivations. Since the state variables are only resolved in
x∈B, the magnetisation m(p) and magnetic induction b̃, as dependent quantities, are

consequently m=0 and b̃=µ0 h̃ in R3\B. Since the demagnetisation field is known to
decrease rather rapidly with distance from the magnetisable body, cf. [114], it is com-
mon practice to consider a finite size free space box Ω ⊂R3 in numerical simulations,
as depicted in Figure 4.1 (middle). If purely homogeneous Dirichlet conditions for the

magnetic potential φ̃ = 0 are applied on the boundary of the free space box ∂Ω, it is
possible to show that

∫

Ω

h̃ dv = −
∫

Ω

∇xφ̃ dv = −
∫

∂Ω

φ̃nΩ da = 0 , (4.3)

see [146]. In consequence, calculating the volume-averaged magnetic field

〈h〉 :=
1

VΩ

∫

Ω

h dv =
1

VΩ

∫

Ω

[
h+ h̃

]
dv = h , (4.4)

shows that the applied magnetic field h can be interpreted as the volume-averaged
magnetic field.

u(x)

t

n

x∈BB

∂Bu

∂Bt

Ω ∂Ω
φ̃=0

∂B

B
x∈Ω

φ̃(x)

n

∂B

B
x∈B

p(x)

Figure 4.1: Schematic representation of a magnetostrictive material B embedded into a sufficiently
large finite size free space box Ω, which serves as an approximation of R3 in the simulations, and
the corresponding (left) mechanical boundary value problem, (middle) magnetostatic boundary value
problem, and (right) spatial distribution of the state variables. In addition, a superimposed spatial
homogeneous magnetic field h acts on the magnetisation m(p), cf. [48, 146].

Conceptionally in line with [146], see also [18, 19, 42], the micromagnetics-inspired
total potential of the system is introduced as

Π(u, φ̃,p) = Π int(u,p) +Π free(φ̃) +Πext(u,p) , (4.5)
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4 Spatial resolution of mechanical and magnetic degrees of freedom

wherein Π int accounts for the stored energy density ψmat in the magnetisable body,
Π free accounts for the energy stored in the demagnetisation self-field in the body and
the surrounding free space, and where Πext accounts for the externally applied tractions
t and the applied spatially homogeneous magnetic field h. To be precise, the total
potential is assumed to be

Π(u, φ̃,p) :=

∫

B

ψmat(ε,p) dv+
µ0

2

∫

R3

‖h̃‖2dv−
∫

∂Bt

t ·uda−µ0

∫

B

h ·m(p) dv , (4.6)

wherein the latter term is also known as the Zeeman energy, which favours an alignment
of the magnetisation with the externally applied magnetic field, cf. [48, 97, 146]. In
contrast to classic micromagnetics approaches, see, e.g., [18, 42, 146], the magnetisation
depends on a set of state variables p and is not directly introduced as an order parameter
field. In addition, the exchange energy contributions that penalise gradients of the
magnetisation are neglected. This is in line with, e.g., [38, 41], and known as the
assumption of a large body limit. The evolution of the microstructure will be taken into
account in an effective sense and not all details are resolved, e.g. the number of domains
and the size of the domain walls. With the magnetic potential φ̃ vanishing at infinity,
the substitution, see [41, 87, 88],

∫

R3

‖∇xφ̃‖2 dv =

∫

R3

‖h̃‖2 dv = −
∫

B

h̃ ·m(p) dv , (4.7)

wherein ‖ • ‖ :=
√• · •, is used to gain two alternative representations of (4.6), namely

Π̃(u, φ̃,p) :=

∫

B

ψmat(ε,p)dv−µ0

2

∫

R3

‖h̃‖2dv−
∫

∂Bt

t·uda−µ0

∫

B

[
h+ h̃

]
·m(p)dv , (4.8)

which is in line with [146], and

Π̂(u, φ̃,p) :=

∫

B

ψmat(ε,p)dv− µ0

2

∫

B

h̃·m(p)dv−
∫

∂Bt

t·uda−µ0

∫

B

h·m(p)dv , (4.9)

which is in line with [19].

The potential Π̃ defined in (4.8) serves as a basis for our finite element implementa-
tion. The alternative form of (4.8)

Π̃(u, φ̃,p) =

∫

B

π̃(u,p) dv − µ0

2

∫

R3

‖h̃‖2 dv −
∫

∂Bt

t · u da , (4.10)
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wherein the energy density π̃ is defined as

π̃(u,p) := ψmat(ε,p)− µ0

[
h+ h̃

]
·m(p) , (4.11)

is introduced for a compact representation of the following derivations, cf. [21]. Con-
ceptionally in line with [49], the magnetomechanical response is then modelled to be
governed by the global variational principle

{u, φ̃,p} = arg
[

inf
u

sup
φ̃

inf
p
Π̃(u, φ̃,p)

]
subject to rc(p) ≤ 0 , (4.12)

wherein vector rc(p) is a collection of all physical inequality constraints ri ≤ 0 for the
state variables p and will be specified later. Based on the energy potential (4.10), the
power-type potential, cf. [8, 10, 21, 23, 145, 178],

L :=

∫

t


 ˙̃
Π +

∫

B

ζ(ṗ) dv


 dt , (4.13)

is defined, where dissipative effects are taken into account by the newly introduced
dissipation functional ζ(ṗ), see [17, 46, 66, 177, 235], using the concept of standard
dissipative materials. In this time dependent setting, the magnetomechanical response
is then modelled to be governed by the global rate-type variational principle

{u̇, ˙̃
φ, ṗ} = arg

[
inf
u̇

sup
˙̃
φ

inf
ṗ
L(u̇,

˙̃
φ, ṗ)

]
subject to rc(p) ≤ 0 , (4.14)

wherein, in analogy to (4.12), vector rc(p) is a collection of all physical inequality con-
straints ri≤0 for the state variables p and will be specified later. Due to the assumption
that the rates of the state variables minimise the potential L, see (4.14), the stationarity
condition, according to the Karush-Kuhn-Tucker theorem, cf. [21], reads,

δL ·
= − δ



∫

t

λ · ṙc dt


 = − δ



∫

t

λ · ∂rc

∂p
· ṗ dt


 , (4.15)

wherein the Karush-Kuhn-Tucker parameters, often also denoted as Lagrange-multipliers,
are collected in vector λ. The numerical treatment of the arising Karush-Kuhn-Tucker
conditions is outlined in Section 4.3. The following derivation is in analogy to the au-
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thor’s previous work, see [21]. The non-zero contributions of the energy functional (4.10)
in (4.13) are

˙̃
Π =

∫

B

[
∂π̃

∂ε
: ∇xu̇+

∂π̃

∂∇xφ̃
· ∇x ˙̃

φ+
∂π̃

∂p
· ṗ
]

dv+µ0

∫

R3

h̃ ·∇x ˙̃
φdv−

∫

∂Bt

t ·u̇da . (4.16)

With (4.16) at hand, the variation of (4.13) combined with (4.15) yields the stationarity
condition

δL =

∫

t

[ ∫

B

[
∂π̃

∂ε
: ∇xδu̇+

∂π̃

∂∇xφ̃
· ∇xδ ˙̃

φ+
∂π̃

∂p
· δṗ+

∂ζ

∂ṗ
· δṗ

]
dv

+ µ0

∫

R3

h̃ · ∇xδ ˙̃
φ dv −

∫

∂Bt

t · δu̇ da

]
dt

·
= −

∫

t

[ [
λ · ∂rc

∂p

]
· δṗ

]
dt .

(4.17)

The four individual stationarity conditions of (4.17) for the primary fields are

∫

t



∫

B

∂π̃

∂ε
: ∇xδu̇ dv −

∫

∂Bt

t · δu̇ da


 dt

·
= 0 , (4.18)

∫

t



∫

B

[
− ∂π̃

∂h̃
+ µ0 h̃

]
· ∇xδ ˙̃

φ dv


 dt

·
= 0 , (4.19)

∫

t


µ0

∫

R3\B

h̃ · ∇xδ ˙̃
φ dv


 dt

·
= 0 , (4.20)

∫

t



∫

B

[
∂π̃

∂p
+
∂ζ

∂ṗ

]
· δṗ dv + λ · ∂rc

∂p
· δṗ


 dt

·
= 0 . (4.21)
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Since (4.18) to (4.21) shall hold for any time t, they are recast into

∫

B

∂π̃

∂ε
: ∇xδu̇ dv −

∫

∂Bt

t · δu̇ da
·

= 0 , (4.22)

∫

B

[
− ∂π̃

∂h̃
+ µ0 h̃

]
· ∇xδ ˙̃

φ dv
·

= 0 , (4.23)

µ0

∫

R3\B

h̃ · ∇xδ ˙̃
φ dv

·
= 0 , (4.24)

∫

B

[
∂π̃

∂p
+
∂ζ

∂ṗ

]
· δṗ dv + λ · ∂rc

∂p
· δṗ ·

= 0 . (4.25)

The Euler-Lagrange equations of the rate type variational principle may be derived
by applying integration by parts and generalised divergence theorems to (4.22), (4.23),
(4.24), and (4.25), see also [10, 21]. They are displayed here for the sake of completeness.
For arbitrary but admissible variations, they are

δuL : divxσ = 0 in B , σ · n = t on ∂Bt , (4.26)

δφ̃L : divxb̃ = 0 in B , divxh̃ = −∆xφ̃ = 0 in R3\B ,

[[ b̃ ]] · n = 0 on ∂B , (4.27)

δpL : 0 ∈
∫

B

[
∂π̃

∂p
+
∂ζ

∂ṗ

]
dv + λ · ∂rc

∂p
in B , (4.28)

wherein the constitutive relation σ := ∂εψ
mat(ε,p) for the stress has been introduced.

The Euler-Lagrange equations are interpretable as follows. The terms in equation (4.26)
are the balance of linear momentum and the Neumann-type boundary conditions. From
the variation w.r.t. the magnetic potential in (4.27), Gauss’s law of magnetism is derived,

wherein the Laplace operator ∆x and the jump condition [[b̃]]= b̃+− b̃−, i.e. the jump in

b̃ between the sides ∂B+ and ∂B− of the interface ∂B, were used. Equation (4.28) is the
Biot equation governing the evolution of the state variables. In the following, equations
(4.22)–(4.25) will serve as a basis for the finite element implementation. The derivatives
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of the energy potential may be interpreted as the negative thermodynamically conjugate
driving forces

∂π̃

∂ε
=
∂ψmat

∂ε
= σ , (4.29)

− ∂π̃

∂h̃
= µ0m(p) , (4.30)

∂π̃

∂p
=
∂ψmat(p)

∂p
− µ0

[
h+ h̃

]
· ∂m(p)

∂p
=
∂ψmat(p)

∂p
− µ0 h ·

∂m(p)

∂p
. (4.31)

Insertion of (4.30) into (4.23) yields

µ0

∫

B

[
h̃+m(p)

]
· ∇xδ ˙̃

φ dv
·

= 0 . (4.32)

Combining (4.32) and (4.24) results in

µ0

∫

B

[
h̃+m(p)

]
· ∇xδ ˙̃

φ dv + µ0

∫

R3\B

h̃ · ∇xδ ˙̃
φ dv =

∫

R3

b̃ · ∇xδ ˙̃
φ dv , (4.33)

where the above introduced magnetic induction b̃=µ0 [ h̃+m ] and m=0 for x∈R3\B
was used. The individual contributions depend on the chosen constitutive model and
will be specified in the subsequent sections.

4.2 Constitutive model

After having introduced the global variational framework, the set of state variables p
describing the underlying microstructure, the free energy density ψmat(ε,p), as well as
the dissipation potential ζ(ṗ) associated with the evolution of the state variables need
to be specified.

In this contribution, for the two dimensional case, two variants of nearly tetragonal
(5M modulated) martensite are considered. The corresponding variant volume fractions
are introduced as ξ1, with 0≤ ξ1 ≤ 1, and ξ2 = 1 − ξ1, where the constraint of volume
preservation, assuming mass conservation in terms of negligible density changes and
identical densities of both variants, is directly incorporated, i.e. ξ1+ξ2 =1. The associated
transformation or Bain strains of the two martensite variants are

εtr
1 = b2 e1⊗e1+b1 e2⊗e2+b1 e3⊗e3 , εtr

2 = b1 e1⊗e1+b2 e2⊗e2+b1 e3⊗e3 , (4.34)
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with the Bain strain coefficients b1 and b2 and {e1,2,3} as an orthonormal frame aligned
with the crystallographic axes. The coefficients are directly related to the lattice con-
stants of the cubic austenite parent phase a0 = 0.584 nm and the martensite product
phase a=0.595 nm and c=0.561 nm, see [204], by b1 =[ a− a0 ]/a0 and b2 =[ c− a0 ]/a0.
The transformation strains are related to the transformation matrix U i by εtr

i =U i− I.
It is worth noting that the shape memory effect only occurrs in materials where tr(εtr

i )≈0
and that the considered martensite variants may form compatible twins that fulfil the
strain compatibility condition in the small strain setting, see [15, 112, 218], viz.

εtr
1 − εtr

2 =
[
a12 ⊗ ntw

12

]sym
=

1

2

[
a12 ⊗ ntw

12 + ntw
12 ⊗ a12

]
, (4.35)

with the strain jump a12 and the interface normal ntw
12 . The two solutions fulfilling (4.35)

for the transformation strains introduced in (4.34) are

a12 =
√

2 [ b1 − b2 ] [∓ e1 + e2 ] , ntw
12 =

1√
2

[± e1 + e2 ] . (4.36)

Figure 4.2 illustrates one possible arrangement of the two martensite variants, coloured
in blue and yellow, for the first of the two possible twin interfaces.

In the present modelling approach, the spatial distribution of the two martensite
variants and the occurring interfaces are not resolved in full detail. Instead, the material
behaviour and the assumed underlying microstructure are taken into account in an
effective or homogenised sense. The underlying microstructure is assumed to consist of
a single martensite variant or a mixture of both variants with different transformation
strains, introduced in (4.34). The effective or homogenised strain of the phase mixture
ε on the macroscale is assumed to be the weighted average of the total strains of the
two martensite variants εi, cf. [112], viz.

ε := ξ1 ε1 + ξ2 ε2 , (4.37)

where the εi need not be identical. The difference of the strains of both martensite
variants is defined as the strain jump [[ε]] := ε1 − ε2. The strains εi are assumed to be
additively decomposable into elastic εel

i and transformation parts εtr
i , viz. εi=ε

el
i + εtr

i .
With this decomposition at hand, the insertion of the strain jump in (4.37) yields the
elastic strains of the two martensite variants

εel
1 = ε+ ξ2 [[ε]]− εtr

1 , εel
2 = ε− ξ1 [[ε]]− εtr

2 . (4.38)
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4 Spatial resolution of mechanical and magnetic degrees of freedom

They account for the energy storage due to reversible deviations from the energy well
states. In this contribution, the elastic strain energy density ψ el

i of the i-th martensite
variant is defined as

ψ el
i (εel

i ) :=
1

2
εel
i : Ei : εel

i , with i = 1, 2 , (4.39)

wherein Ei is a fourth-order elasticity tensor. For the sake of simplicity, the elasticity
tensors of the two martensite variants are assumed to be identical, i.e. E=E1 =E2, and
isotropic, viz.

E =̂
[
λlam δij δkl + µlam [δik δjl + δil δjk]

]
ei ⊗ ej ⊗ ek ⊗ el , (4.40)

with the Lamé constants λlam and µlam, which are related to the Young’s modulus E and
the Poisson’s ratio ν through λlam =[E ν ]/[ [ 1 + ν ] [ 1− 2 ν ] ] and µlam =E/[ 2 [ 1 + ν ] ].
The total elastic strain energy density—applying a standard mixture rule—is defined as
the average of the strain energy densities of the martensite variants, cf. [112],

ψ el :=
2∑

i=1

ξi ψ
el
i . (4.41)

The strain jump [[ε]] occurring in the elastic strains (4.38) is assumed to be determinable
by the constrained minimisation of (4.41)

ψ rel(ε, ξi) := inf
[[ε]]

ψ el(ε, [[ε]], ξi) subject to [[ε]] being admissible , (4.42)

where ψ rel is the so called relaxed energy density. In the context of numerical homogeni-
sation, the admissible space of the strain jump is restricted, see [114, 156] for comparison,
viz.

[[ε]] ∈





0 Taylor/Voigt

{[a⊗ ntw]sym | a ∈ R3} partial rank-one

R3×3
sym Reuss/Sachs

. (4.43)

The Taylor/Voigt assumption, viz. identical strains, yields the upper bound of the total
strain energy density. In this contribution, the strain jump [[ε]] shall not be restricted
which is identical to the Reuss/Sachs assumption and yields the lower bound of the
strain energy density of the mixture, where the stresses in both martensite variants are
identical, see below. However, kinematic compatibility of the total strains at the twin
interface between the two variants is not enforced and hence not guaranteed, which would
be the case for the jump being a rank-one tensor, with the strain jump a projected onto
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4.2 Constitutive model

the interface normal ntw, see the compatibility of the transformation strains in (4.35) for
comparison. Using the constitutive relation σ :=∂εψ

el, the necessary condition states

∂ψ el

∂[[ε]]
= ξ1 ξ2 E : [ εel

1 − εel
2 ] = ξ1 ξ2 [σ1 − σ2 ] = 0 , for [[ε]] ∈ R3×3

sym , (4.44)

which is satisfied for equal stresses and—for the assumptions stated above—equal elastic
strains in both martensite variants. Insertion into (4.38) yields the optimal strain jump
[[ε]]=εtr

1 − εtr
2 and equal elastic strains

εel
1 = εel

2 = ε−
2∑

i=1

ξi ε
tr
i . (4.45)

With (4.45) at hand, insertion into (4.41) yields the convex energy hull, cf. [94, 112],

Cψ el =
1

2

[
ε−

2∑

i=1

ξi ε
tr
i

]
: E :

[
ε−

2∑

i=1

ξi ε
tr
i

]
, (4.46)

which depends only on the macroscopic strain ε and the variant volume fraction ξ1

(ξ2 =1− ξ1). The macroscopic stress is calculated by

σ =
∂Cψ el

∂ε
= E :

[
ε−

2∑

i=1

ξi ε
tr
i

]
, (4.47)

see (4.44) for comparison.

In order to fully characterise the underlying microstructure, the magnetic state needs
to be specified. Each of the above introduced martensite variants has two opposingly
oriented magnetic easy-axes directions aligned with the short c edge of the tetragonal
unit cell. The volumes, respectively areas, of equal magnetisation are defined as the
magnetic domains with the absolute domain volume fractions αj, where 0 ≤ αj ≤ 1.
They are related to the variant volume fractions ξi and the so-called net magnetisations
within each martensite variant ηi, with − ξi≤ηi≤ξi, cf. [213], by

α2i−1 =
1

2
[ ξi + ηi ] and α2i =

1

2
[ ξi − ηi ] , with i = 1, 2 . (4.48)

The inverse relation yields

ξi = α2i−1 + α2i and ηi = α2i−1 − α2i , with i = 1, 2 . (4.49)
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4 Spatial resolution of mechanical and magnetic degrees of freedom

The domains within each martensite variant are separated by 180◦ interfaces with the
interface normals ndom

i

ndom
1 = e2 and ndom

2 = e1 , (4.50)

which are assumed to remain constant during all loading conditions. The magnetisation
vectors in each domain are not fixed to point in the easy-axes directions and may rotate
away, which is associated with some finite magnetocrystalline anisotropy energy and
captured by the rotation angles θj, which are, in order to allow a distinction of the
individual domains, restricted to −π/2≤ θj ≤π/2. The magnetisations within the four
domains mj are defined as, cf. [108, 112],

m1 := ms [ cos(θ1) e1 + sin(θ1) e2 ] ,

m2 := −ms [ cos(θ2) e1 + sin(θ2) e2 ] ,

m3 := −ms [ sin(θ3) e1 − cos(θ3) e2 ] ,

m4 := ms [ sin(θ4) e1 − cos(θ4) e2 ] , (4.51)

with the saturation magnetisation ms describing the lengths of the magnetisation
vectors. It is usually a temperature dependent material parameter, but kept constant due
to the assumption of isothermal conditions. The effective or homogenised magnetisation
m is calculated as the weighted average of the magnetisations inside the individual
domains by

m :=
4∑

j=1

αj(ξi, ηi)mj(θj) . (4.52)

One possible arrangement of the domains αj, each with a corresponding domain mag-
netisation mj, and the domain interface normals ndom

i is illustrated in Figure 4.2. In
addition to the twin compatibility of the tetragonal martensite variants, the magnetic
compatibility, cf. [39, 41],—here specified for the domain interfaces within each marten-
site variant—is given as

[m2i−1 −m2i ] · ndom
i = 0 , with i = 1, 2 . (4.53)

It is fulfilled for the energy well states, i.e. if no deviation from the easy-axes occurs,
within each martensite variant and across the twin interface for domain one and three,
respectively two and four.

The magnetic compatibility condition may be violated at the expense of some excess
magnetostatic energy, see [41]. In this contribution, we neither enforce the magnetic
compatibility at the domain interfaces nor across the twin interface for arbitrary ro-
tation angles θj. However, it is possible to show that satisfying (4.53) minimises the
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e1

e2

α1

α2

α3

α4

θ1

θ2

θ3

θ4

m1

m2

m3

m4 εtr1 , ξ1, η1

εtr2 , ξ2, η2

ndom
1

ndom
2

ntw
12

Constraints:

0≤ξ1≤1

ξ2=1− ξ1

|ηi|≤ξi
|θj|≤π/2

α2i−1=0.5 [ ξi + ηi ]

α2i =0.5 [ ξi − ηi ]

Figure 4.2: Initial parametrisation of the microstructure and constraints for the state variables. Marten-
site variants (transformation strains εtri , variant volume fractions ξi), magnetic domains (net magneti-
sations ηi), and magnetisation vectors (mj(θj) with θj as the deviation from the respective easy-axis).
Absolute domain volume fractions αj as dependent variables. In addition, one possible twin inter-
face normal ntw

12 (compatibility of the transformation strains) and the domain interface normals ndom
i

(compatibility of the easy-axes magnetisations) are sketched. Adopted from [112]. See [60, 205] for
experimentally observed twinned martensite patterns with internal domains.

magnetocrystalline anisotropy energy density within each martensite variant, see the
derivation below and the appendix in Section 4.6.1. The magnetocrystalline anisotropy
energy density within each domain for the considered case of uniaxial symmetry of the
tetragonal martensite variants is, cf. [115, 170],

ψ an
j (θj) =

N∑

n=1

kn sin2n(θj) , with j = 1, . . . , 4 , (4.54)

with the anisotropy constants kn and the θj introduced in (4.51). Since the magnetisation
curves of 5M modulated martensite are nearly perfectly linear, cf. [73, 169, 200, 211],
only the term of lowest order is important and consequently N = 1, see also [116, 170].
The effective magnetocrystalline anisotropy energy density is calculated by applying a
standard mixture rule

ψ an :=
4∑

j=1

αj(ξi, ηi)ψ
an
j (θj) = k1

4∑

i=1

αj(ξi, ηi) sin2(θj) . (4.55)
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4 Spatial resolution of mechanical and magnetic degrees of freedom

In summary, the state of the underlying microstructure is determined by seven state
variables p?=[ ξ1, η1, η2, θ1, θ2, θ3, θ4 ] t, each constrained to lie in a specific interval with
lower and upper bounds, written in terms of inequality constraints r?c≤0

r?1 := −ξ1 , r?2 := ξ1 − 1 , r?3,5 := −ηi − ξi , r?4,6 := ηi − ξi ,

r?7,9,11,13 := −θj −
π

2
, r?8,10,12,14 := θj −

π

2
. (4.56)

As mentioned above, it is possible to show that fulfilling (4.53) minimises the magne-
tocrystalline anisotropy (4.55) within each of the two martensite variants. In addition,
the number of variables that describe the state of the underlying microstructure may
be reduced by two and the number of corresponding inequality constraints may be re-
duced by ten. Firstly, the net magnetisations ηi are replaced by the relative domain
volume fractions γi, using the relation γi=0.5 [ ηi/ξi + 1 ], with 0≤γi≤1, cf. [108, 110].
Secondly, effective normalised magnetisations m∗i =mi1 e1 + mi2 e2 of each martensite
variant, with ‖m∗i ‖ ≤ 1 are introduced, cf. [21]. The former are used to replace the ab-
solute domain volume fractions in (4.52) and the latter characterise the magnetic state
of the two martensite variants, parametrised with γi and the domain magnetisations mi,
as introduced in (4.51), by

m = ξ1 [ γ1m1 + [ 1− γ1 ]m2 ] + ξ2 [ γ2m3 + [ 1− γ2 ]m4 ]

≡ ms [ ξ1m
∗
1 + ξ2m

∗
2 ] = msm

∗ . (4.57)

This relation is not unique, since three variables, namely the relative domain volume
fraction γi and the two angles θ2i−1 and θ2i, characterise the effective magnetisation
within the i-th martensite variant parametrised with the two variables mi1 and mi2. It
turned out that the magnetocrystalline anisotropy energy (4.55), with the alternative
representation

ψ an

k1

= ξ1 [ γ1 sin2(θ1)+[ 1−γ1 ] sin2(θ2) ]+ξ2 [ γ2 sin2(θ3)+[ 1−γ2 ] sin2(θ4) ] , (4.58)

is minimised for θ2i=− θ2i−1 within the i-th martensite variant at constant magnetisa-
tion, see the appendix in Section 4.6.1 for details. In addition, the magnetic compat-
ibility condition across the 180◦ domain interfaces (4.53) is satisfied for θ2i = − θ2i−1.
As already mentioned above, the number of variables may be reduced by two for opti-
mal angles θ2 and θ4. From now on, the effective magnetisations are used to describe
the magnetic state of the underlying microstructure. The new set of state variables is
p=[ ξ1,m11,m12,m21,m22 ] t, with four corresponding inequality constraints ri≤0

r1 := −ξ1 , r2 := ξ1 − 1 , r3,4 := ‖m∗i ‖ − 1 =
√
m∗i ·m∗i − 1 . (4.59)
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4.2 Constitutive model

The constraints are collected in vector rc, defined as

rc := [ r1, r2, r3, r4 ] t . (4.60)

Figure 4.3 illustrates the parametrisation with the newly introduced effective normalised
magnetisations m∗i of both martensite variants.

εtr1 εtr2

e1e1

e2e2

m∗
1

m11

m12

m∗
2

m21

m22

0≤ξ1≤1 ξ2=1− ξ1

|m∗
1|≤1 |m∗

2|≤1

Figure 4.3: Parametrisation of the microstructure and constraints for the state variables. Martensite
variants (transformation strains εtri , variant volume fractions ξi) and effective magnetisations of the
martensite variants (m∗i =mi1 e1 +mi2 e2), see also [21].

Remark 5 Due to numerical reasons, slightly modified versions r∗c of the constraints rc
are used for the numerical implementation. The admissible range of the volume fraction
ξ1 and the m∗i is slightly reduced and a small value ε is added in the latter constraints
to avoid a division by zero in the derivatives of r3/4 w.r.t. m∗i , viz.

r∗1 := −ξ1 + ξtol , r∗2 := ξ1 − 1 + ξtol , r∗3/4 :=
√
m∗i ·m∗i + ε− [ 1−m∗tol ] . (4.61)

Convenient choices for the tolerance values are ε = 10−12 and ξtol = m∗tol = 10−3. The
modified constraints are collected in the vector r∗c, defined as

r∗c := [ r∗1, r
∗
2, r
∗
3, r
∗
4 ] t . (4.62)

Remark 6 The variables of the new set p are directly related to the initial variables p?,
as also used in previous works [10, 112, 114], see also [21], viz.

θ1 = − θ2 = arcsin(m12) , θ3 = − θ4 = − arcsin(m21) , (4.63)

η1 = ξ1
m11

cos(θ1)
, η2 = ξ2

m22

cos(θ3)
,

γ1 = 0.5

[
m11

cos(θ1)
+ 1

]
, γ2 = 0.5

[
m22

cos(θ3)
+ 1

]
, for cos(θj) 6= 0 ,

α2i−1 = 0.5 [ ξi + ηi ] = ξi γi , α2i = 0.5 [ ξi − ηi ] = ξi [ 1− γi ] , with i = 1, 2 .
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4 Spatial resolution of mechanical and magnetic degrees of freedom

The excluded values cos(θj) = 0 are equivalent to a full alignment of the corresponding
magnetisation with the hard-axis direction. In such a case, both magnetisation and
anisotropy energy density are independent of the the associated relative domain volume
fraction γi or net magnetisation ηi. Consequently, they may take arbitrary values that
satisfy the constraints stated above.

Insertion of (4.63) in (4.55) or (4.58) results in the compact form of the magnetocrys-
talline anisotropy energy density

ψ an = k1 [ ξ1 m
2
12 + ξ2 m

2
21 ] = k1 [ ξ1 m

2
12 + [ 1− ξ1 ]m2

21 ] . (4.64)

The averaged magnetisation m, see (4.57), is characterised by four variables for optimal
angles θ2 =− θ1 and θ4 =− θ3, viz.

m = msm
∗ = ms [ ξ1m

∗
1 + ξ2m

∗
2 ]

= ms [[ ξ1 m11 + ξ2 m21 ] e1 + [ ξ1 m12 + ξ2 m22 ] e2] . (4.65)

The total stored energy density is the sum of the strain energy density (4.46), which
depends only on the state variable ξ1 that occurs in p? as well as p, and on the magne-
tocrystalline anisotropy energy density (4.64)

ψmat(ε,p) = Cψ el(ε,p) + ψ an(p) . (4.66)

So far, the parametrisation of the underlying microstructure p, the stored energy
density, and the constraints were introduced. Experiments suggest that the mecha-
nism of martensite variant reorientation (evolution of ξ1) is associated with a significant
amount of dissipation, since the stress and magnetic field induced strain and magneti-
sation response curves show a clearly visible hysteretic behaviour, see [71, 202] and the
response curves taken from [200] in Figures 4.17 and 4.20. In other experiments, the
mechanisms of domain wall motion (evolution of γi or m11/m22 at constant m12/m21)
and rotation of the magnetisation vectors (evolution of m12/m21), hence the easy- and
the hard-axis magnetisation curves, were in fact isolated and only relatively low dissipa-
tion occurred, see the response curves taken from [211, 212] in Figure 4.8. In previous
works by [10, 21, 112, 114], only the evolution of the martensite volume fractions were
considered to be dissipative. In this contribution, however, the evolutions of all other
state variables are also considered to be dissipative. In addition to the possibility of
an even better approximation of experimental curves, the convergence of the global
Newton-Raphson method improves, since the evolution of the state variables, especially
m11/m22, is smoothed and erratic changes no longer occur. In the following, the time
discrete evolution equations for all state variables of the set p are derived in analogy to
[21].
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In a first step, the vector containing all driving forces F , which are conjugate to the
rates of the state variables ṗ, are derived as the negative gradient − ∂pπ̃ in B, cf. (4.31),

F := − ∂ψ
mat

∂p
+ µ0

[
h+ h̃

]
· ∂m
∂p

= − ∂Cψ
el

∂p
− ∂ψ an

∂p
+ µ0 ms h ·

∂m∗

∂p
. (4.67)

With the individual contributions

∂Cψ el

∂p
=




σ : [ εtr
2 − εtr

1 ]

0

0

0

0




t

,
∂ψ an

∂p
= k1




m2
12 −m2

21

0

2 ξ1 m12

2 ξ2 m21

0




t

,

∂m∗

∂p
=

[
[m11 −m21 ] ξ1 0 ξ2 0

[m12 −m22 ] 0 ξ1 0 ξ2

]
, (4.68)

the driving force vector (4.67) reads

F =




σ : [ εtr
1 − εtr

2 ] + k1 [m2
21 −m2

12 ] + µ0 ms h · [m∗1 −m∗2 ]

µ0 ms h1 ξ1

−2 k1 ξ1 m12 + µ0 ms h2 ξ1

−2 k1 ξ2 m21 + µ0 ms h1 ξ2

µ0 ms h2 ξ2




t

. (4.69)

In the non-dissipative case where state variable pi is determined by minimising the total
potential—neglecting contributions due to the constraints—, the necessary condition
states −Fi=0. The evolution of the martensite volume fraction is triggered by mechan-
ical as well as magnetic field loading, and all other variables evolve only due to magnetic
field loading, see (4.69). The contributions due to the constraints (4.60), respectively
(4.62), as outlined in (4.25), are often part of the so-called enhanced driving forces,
cf. [44, 45]. In our finite element implementation, however, the contributions are only
taken into account at discrete nodes of the finite element mesh and are not part of the
volume integrals, as also suggested in (4.25), see Section 4.3 for details.

The second step is the choice of suitable dissipation functionals to derive thermo-
dynamically consistent evolution equations, see, e.g., [81]. Here, we restrict ourselves
to viscous rate-dependent evolution without and with a threshold, where no additional
consistency conditions occur. It is expected that a rate dependent evolution is a suitable
approximation of the real material behaviour, since otherwise instantaneous changes of
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4 Spatial resolution of mechanical and magnetic degrees of freedom

the microstructure could evolve with infinite speed. In addition, an increase in the
numerical robustness is expected.

The non-smooth dissipation potential of Perzyna type for viscous rate-dependent
evolution with a threshold, respectively yield limit, that must be overcome by the driving
force, cf. modelling of plasticity and [7], is defined as

ζi(ṗi) := Yi |ṗi|+
ηi
2
ṗ2
i , (4.70)

where Yi>0 can be interpreted as a threshold and ηi>0 as a viscosity parameter. For
ηi→ 0, the rate-independent case is approximated. The threshold may be set to zero
and consequently any driving force, except for Fi = 0, will trigger an evolution of the
corresponding state variable. The total dissipation functional is defined as follows

ζ(ṗ) :=
5∑

i=1

ζi(ṗi) =
5∑

i=1

[
Yi |ṗi|+

ηi
2
ṗ2
i

]
. (4.71)

With (4.69) defined in (4.67) and (4.70) at hand, the explicit evolution equations—
neglecting the contributions due to the constraints—are derived from (4.25) in B, see
[81], as

ṗi =
1

ηi
sign (Fi) 〈|Fi| − Yi〉 , (4.72)

where Macaulay brackets, defined as 〈•〉 :=0.5[ •+ |•| ], are used for a compact notation.
For the numerical implementation, the rate of the i-th variable of p is approximated
assuming constant rates in the time interval ∆ t= tn+1 − tn by

ṗi ≈
pn+1
i − pni

∆ t
=
pn+1
i − pni
tn+1 − tn

, (4.73)

with a known initial state pni . Using the approximation of the rates (4.73), the evolution
equation (4.72) shall be solved using the backward Euler method, viz.

pn+1
i − pni −

∆ t

ηi
sign

(
Fn+1
i

) 〈∣∣Fn+1
i

∣∣− Yi
〉

= 0 . (4.74)

After having introduced the dissipation potential and after deriving the corresponding
evolution equation in general, the specific forms of the evolution equations for the state
variables p are specified. The individual driving forces are collected in the driving
force vector, as specified in (4.69). The threshold for the evolution of the martensite
variant volume fraction is introduced as Yξ and for the effective magnetisations as Ym=0.
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Analogously, the viscosities ηξ and ηm are introduced. The vector containing all residuals
of the time discrete evolution equations is defined as

revo :=




ξn+1
1 − ξn1 − ∆ t

ηξ
sign

(
Fn+1

1

) 〈∣∣Fn+1
1

∣∣− Yξ
〉

mn+1
11 −mn

11 − ∆ t
ηm
Fn+1

2 /ξ1

mn+1
12 −mn

12 − ∆ t
ηm
Fn+1

3 /ξ1

mn+1
21 −mn

21 − ∆ t
ηm
Fn+1

4 /ξ2

mn+1
22 −mn

22 − ∆ t
ηm
Fn+1

5 /ξ2



, (4.75)

where the driving forces for the evolution of the effective magnetisations were normalised
by the corresponding martensite variant volume fraction of the corresponding martensite
variant, since the evolution of the effective magnetisation within one martensite variant
is assumed to be independent of the corresponding martensite variant volume fraction.
For the sake of completeness, it should be mentioned that it is also possible to introduce
a dual dissipation functional ζ∗ and to interpret the evolution equation as the solution of
a penalty type approach with a reversible domain in the context of the classic principle
of maximum dissipation, see [148].

4.3 Implementation and algorithmic treatment

This section deals with the finite element implementation of the equations stemming
from the micromagnetics inspired power-type potential (4.13) introduced in Section 4.1
and the constitutive model introduced in Section 4.2. Details regarding the algorithmic
implementation and the numerical treatment of the inequality constraints are discussed.
The derivation follows mostly standard finite element procedures, see, e.g., [86, 227] and
[113]. It is based on previous work of the authors, see [21].

In this contribution, we focus on the two dimensional plane case, where the surround-
ing free space R2 is approximated by a sufficiently large finite size free space box Ω⊂R2.
As introduced in the energy potential (4.10) and the dissipation functionals as part of
the power-type potential (4.13), two different regions, namely the areas of the magne-
tostrictive body B and the surrounding free space box Ω\B, are considered. The areas

are geometrically approximated using nBel elements Be for the body and n
Ω\B
el elements

Be for the surrounding free space box

B ≈
nBel⋃

e=1

Be , Ω\B ≈
nBel+n

Ω\B
el⋃

e=nBel+1

Be . (4.76)

The displacement field u and the magnetic potential of the demagnetisation field φ̃ are
spatially discretised using eight-node quadratic serendipity elements, see, e.g., [43], with
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4 Spatial resolution of mechanical and magnetic degrees of freedom

nuen = nφ̃en = 8. The state variables, however, are spatially discretised using four-node
bilinear elements, with npen = 4. This choice results from the fact that the displacement

field u and the magnetic potential φ̃ shall be spatially discretised using shape functions
of a higher polynomial degree than the polynomial degree of the shape functions used
for the spatial discretisation of the state variables p, since the gradients of the first two
occur in the underlying equations, viz. the strain ε and demagnetisation field h̃, and
since the state variables p appear solely as a global field itself. In contrast to all of
these spatial discretisations, the KKT-parameters λ are only resolved at nBpnp discrete
nodes of the finite element mesh—in particular the nodes where discrete values of the
state variables p exist—and are not spatially discretised. This is motivated by the fact
that by fulfilling the inequality constraints rc(p)≤0 at all of these nodes, the inequality
constraints are fulfilled everywhere inside the elements of the body, due to the choice of
bilinear shape functions for the state variables p, cf. [11]. The master elements in their
local ξ, η-coordinate systems used for the discretisation of the body and the surrounding
free space are shown in Figure 4.4. The shape functions and their gradients of the eight-
node serendipity element and the four-node bilinear element are listed in Table 4.6 in
the appendix, see Section 4.6.3.
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Figure 4.4: (a) Mixed bilinear (nodes 1–4) and incomplete quadratic serendipity element (nodes 1–8)

in the ξ, η-space used for the discretisation of the body B. While discrete values of u and φ̃ exist at
all nodes, discrete values of the variables p and λ exist only at nodes 1–4 marked with a box. (b)
Incomplete quadratic serendipity element in the ξ, η-space used for the discretisation of the free space
Ω \ B. Only the magnetic potential of the demagnetisation field φ̃ is resolved. See also [21] and [43].

Remark 7 Due to the use of mixed elements for the discretisation of the body, the
areas in the considered two dimensional setting of the eight- and the four-node elements
need not be identical, e.g. for elements used for the approximation of round parts of the
geometry. To avoid overloading the notation, we do not distinguish between the areas of
the eight- and the four-node elements. For a less coarse discretisation, their areas are
approximately equal which is especially the case for the total area of the body.
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4.3 Implementation and algorithmic treatment

In the following, the governing equations of the finite element implementation are

derived. Firstly, the three individual variations δu̇, δ
˙̃
φ, and δṗ are spatially discretised

using the above introduced mixed element formulation with nuen = nφ̃en = 8 and npen = 4
nodes, w.r.t. element e

δu̇e =

nu
en∑

A=1

δu̇eANA
u , δ

˙̃
φe =

nφ̃en∑

C=1

δ
˙̃
φeC NC

φ̃
, δṗe =

np
en∑

E=1

δṗeE NE
p , (4.77)

wherein δu̇eA, δ
˙̃
φeC , and δṗeE are discrete values of the variations and where NA

u , N
C
φ̃

,

and NE
p are the shape functions used for the spatial discretisation of the variations within

element e. Only the gradients of the first two variations δu̇e and δ
˙̃
φe are calculated, since

the gradient of the variation δṗ does not occur in the governing equations, viz.

∇xδu̇e =

nu
en∑

A=1

δu̇eA ⊗∇xNA
u , ∇xδ ˙̃

φe =

nφ̃en∑

C=1

δ
˙̃
φeC ∇xNC

φ̃
, (4.78)

wherein ∇xNA
u and ∇xNC

φ̃
are the gradients of the shape functions.

With the spatial discretisation of the regions (4.76) and the spatial discretisation
of the variations (4.77), respectively their gradients (4.78), at hand, (4.22), (4.33), and
(4.25) are recast, by additionally using (4.29) and the vector containing the time discrete
evolution equations (4.75), into

nBel∑

e=1

nu
en∑

A=1

δu̇eA ·



∫

Be
σ · ∇xNA

u dv −
∫

Bet

NA
u t da


 = 0 , (4.79)

nBel+n
Ω\B
el∑

e=1

nφ̃en∑

C=1

δ
˙̃
φeC

∫

Be
∇xNC

φ̃
· b̃ dv = 0 , (4.80)

nBel∑

e=1

np
en∑

E=1

δṗeE ·
∫

Be
NE
p r

evo dv +

nBpnp∑

G=1

δṗG ·
[
λG · ∂rc(p

G)

∂pG

]
= 0 , (4.81)
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4 Spatial resolution of mechanical and magnetic degrees of freedom

wherein

λG · ∂rc(p
G)

∂pG
=




−λG1 + λG2

λG3 m11/‖m∗1‖
λG3 m12/‖m∗1‖
λG4 m21/‖m∗2‖
λG4 m22/‖m∗2‖



. (4.82)

Remark 8 The latter term in (4.81) accounts for the discrete contributions due to the
constraints rc≤ 0 at all nBpnp discrete nodes of the body B. It is worth mentioning that
the variations and the primary fields themselves are spatially approximated by using the
same sets of shape functions. Consequently, discrete values of the variation δṗG exist at
exactly the same nodes as discrete values of the state variables pG and the corresponding
KKT-parameters λG.

The next step is the spatial discretisation of the primary fields and their gradients. Using

the above introduced mixed element formulation with nuen =nφ̃en =8, respectively npen =4,
nodes and the same sets of shape functions, the spatial discretisations w.r.t. element e
are

ue ≈
nu
en∑

A=1

ueANA
u , φ̃e ≈

nφ̃en∑

C=1

φ̃eC NC
φ̃
, pe ≈

np
en∑

E=1

peE NE
p ,

∇xue =

nu
en∑

A=1

ueA ⊗∇xNA
u , ∇xφ̃e =

nφ̃en∑

C=1

φ̃eC ∇xNC
φ̃
, (4.83)

wherein ueA, φ̃eC , and peE are discrete values of the primary fields. As introduced in
(4.2), the spatial discretisation of the strain and the magnetic field are calculated by

f e =

nu
en∑

A=1

ueA ⊗∇xNA
u , εe =

1

2

[
f e + [f e ] t

]
, h̃

e
= −

nφ̃en∑

C=1

φ̃eC ∇xNC
φ̃
. (4.84)

As already stated above, the KKT-parameters λG that account for the compliance of
the inequality constraints ri(p

G)≤ 0, are introduced at all discrete nodes nBpnp and are
not spatially discretised. The Karush-Kuhn-Tucker conditions

ri ≤ 0 , λGi ≥ 0 , and λGi ri = 0 , with i = 1, . . . , 4 (4.85)
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4.3 Implementation and algorithmic treatment

need to additionally be taken into account at all of the nBpnp discrete nodes. In line with
[7, 51, 189], the Fischer-Burmeister nonlinear complementarity problem (NCP) functions

gi :=

√
[ ri ]

2 + [λGi ]
2

+ ri − λGi , (4.86)

are used, where gi = 0 is equivalent to satisfying the three KKT-conditions stated in
(4.85). The function gi is plotted in Figure 4.5.

gi

−2

0

2

4

6

8

gi=0

ri
0

−2

2

λi
0

−2

2

Figure 4.5: Representation of the Fischer-Burmeister function gi (4.86), adopted from [6].

Remark 9 The derivation of the Fischer-Burmeister functions gi is, e.g., detailed in
[6] and summarised here. Starting with

λi ri = 0 , (4.87)

a multiplication with “−2” and addition of “λ2
i +r

2
i ” yields

λ2
i − 2λi ri + r2

i = λ2
i + r2

i . (4.88)

With (4.85) and the binomial theorem at hand, (4.88) is recast into

λi − ri =
√
λ2
i + r2

i , (4.89)

respectively

√
r2
i + λ2

i + ri − λi = 0 , (4.90)

which is equal to gi=0 in (4.86).

105



4 Spatial resolution of mechanical and magnetic degrees of freedom

The Fischer-Burmeister NCP functions gi = 0 are solved at every one of the nBpnp nodes
of the body. The vector containing all Fischer-Burmeister NCP functions for node G is
defined as, cf. [11],

g(pG,λG) := [ g1, g2, g3, g4 ] t . (4.91)

Remark 10 Due to numerical reasons, as already stated in Remark 5 in Section 4.2,
slightly modified versions (4.61) of the constraints (4.59) are used. In addition, due to
the possibility of a division by zero in the derivatives of the Fischer-Burmeister function
(4.86), a small value ε is added to the square root and consequently the modified versions

g∗i =

√
[ r∗i ]2 + [λGi ]

2
+ ε+ r∗i − λGi , (4.92)

where a convenient choice is ε=10−12, are used for the numerical implementation.

All of these quantities are assumed to exist at time t= tn+1. In order to not overload
the notation, the quantities at this time are not separately marked with an n + 1. The
state variables at time t = tn, occurring in the time discrete evolution equations—see
Section 4.2 for details—are known and thus constants.

The necessary condition for the stationarity of the system, fulfilling the constraints
ri ≤ 0, states that (4.79), (4.80), and (4.81) must be zero for all admissible variations,
satisfying the Dirichlet boundary conditions which are at the least used to prevent rigid
body motions and to prescribe the magnetic potential φ̃= 0 on the surface ∂Ω of the
free space box. This allows the definition of element-wise as well as discrete residuals.
At first, the contributions due to the volume and surface integrals of element e at node
A,C, and E are defined as

rAu :=

∫

Be
σ · ∇xNA

u dv −
∫

∂Bet

NA
u t da ,

rC
φ̃

:=

∫

Be
∇xNC

φ̃
· b̃ dv , rEp :=

∫

Be
NE
p r

evo dv , (4.93)

wherein

fBAu,int =

∫

Be
σ · ∇xNA

u dv and fBC
φ̃,int

=

∫

Be
∇xNC

φ̃
· b̃ dv (4.94)
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might be interpreted as internal force (vectors) corresponding to node A and C of element
e. In addition, the second term in (4.93)

fBAu,sur =

∫

∂Bet

NA
u t da (4.95)

might be interpreted as the surface force vector corresponding to node A of element e.
Secondly, the contributions due to the constraints at node G of the nBpnp discrete nodes
are defined as

rGp := λG · ∂rc(p
G)

∂pG
and rGλ := g(pG,λG) , (4.96)

wherein the first term was specified in (4.82) and wherein the second term is the vector
containing the Fischer-Burmeister equations introduced in (4.91). The total residual
vector of the system r is defined as the assembly of the contributions over all elements
e (4.93) and over all discrete nodes G (4.96), viz.

r :=

nBel

A
e=1




rAu

rC
φ̃

rEp

0




+

nBel+n
Ω\B
el

A
e=nBel+1




0

rC
φ̃

0

0




+

nBpnp

A
G=1




0

0

rGp

rGλ




=

nBel+n
Ω\B
el

A
e=1




{
rAu
}

rC
φ̃{
rEp
}

0




+

nBpnp

A
G=1




0

0

rGp

rGλ



, (4.97)

wherein the curly brackets {•} mark entries that contribute only to the e = 1, . . . , nBel

elements of the magnetisable body, to allow a compact notation of (4.97) and of the
following equations. The necessary conditions for the stationarity of the system state
that the global residual vector (4.97) is identical to zero (r= 0), i.e. its norm ‖r‖= 0.
In this contribution, the corresponding nonlinear system of equations is solved using a
Newton-Raphson scheme. Therefore, the linearisations (first-order Taylor expansions) of
the individual contributions of (4.97) are required. Having introduced the element-wise

approximations for u, φ̃, and p and their gradients (4.83)—depending on the discrete

values at the nuen, n
φ̃
en, and npen element nodes—in addition to the KKT-multipliers at

the nBpnp discrete nodes, the node-specific increments of the linearisations are defined as
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4 Spatial resolution of mechanical and magnetic degrees of freedom

follows. Firstly, the non-zero increments of rAu , r
C
φ̃

, and rEp at node A,C, and E w.r.t. the

variables at node B,D, and F are considered

∆ rAu=

nu
en∑

B=1

drAu
duB

·∆uB +

np
en∑

F=1

drAu
dpF

·∆pF ,

∆ rC
φ̃

=

nφ̃en∑

D=1

drC
φ̃

dφ̃D
·∆ φ̃D

{
+

np
en∑

F=1

drC
φ̃

dpF
·∆pF

}
,

∆ rEp=

nu
en∑

B=1

drEp
duB

·∆uB+

nφ̃en∑

D=1

drEp

dφ̃D
·∆ φ̃D +

np
en∑

F=1

drEp
dpF

·∆pF , (4.98)

where ∆uB,∆ φ̃D and ∆pF are the increments of the nodal degrees of freedom at nodes
B,D, and F . For other constitutive models, a direct coupling between the displacement
field u and the magnetic potential φ̃ might occur, resulting in additional non-zero contri-
butions in (4.98). Secondly, the non-zero increments of rGp and rGλ at node G w.r.t. the
variables at the same node G are considered

∆ rGp =
drGp
dpG

·∆pG +
drGp

dλG
·∆λG , ∆ rGλ =

drGλ
dpG

·∆pG +
drGλ
dλG

·∆λG , (4.99)

where ∆pG and ∆λG are the increments of the nodal degrees of freedom at node G. The
terms in (4.98) and (4.99) in front of the nodal increments are defined as the stiffness
matrices. In this contribution, the total derivatives are replaced by partial derivatives,
since no implicit dependencies exist. The individual stiffness matrices are defined as
follows
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KAB
uu :=

drAu
duB

=

∫

Be
∇xNA

u ·
∂σ

∂ε
· ∇xNB

u dv , (4.100)

KAF
up :=

drAu
dpF

=

∫

Be
∇xNA

u ·
∂σ

∂p
NF
p dv , (4.101)

KCD
φ̃φ̃

:=
drC

φ̃

dφ̃D
=

∫

Be
−µ0∇xNC

φ̃
· ∇xND

φ̃
dv , (4.102)

KCF
φ̃p

:=
drC

φ̃

dpF
=

∫

Be
µ0∇xNC

φ̃
· ∂m
∂p

NF
p dv , (4.103)

KEB
pu :=

drEp
duB

=

∫

Be
NE
p

∂revo

∂ε
· ∇xNB

u dv , (4.104)

KED
pφ̃

:=
drEp

dφ̃D
=

∫

Be
−NE

p

∂revo

∂h̃
· ∇xND

φ̃
dv , (4.105)

KEF
pp :=

drEp
dpF

=

∫

Be
NE
p

∂revo

∂p
NF
p dv , (4.106)

KGG
pp :=

drGp
dpG

= λG · ∂
2rc(p

G)

∂pG2 , (4.107)

KGG
pλ :=

drGp

dλG
=

[
∂rc(p

G)

∂pG

] t

, (4.108)

KGG
λp :=

drGλ
dpG

=
∂g(pG,λG)

∂pG
, (4.109)

KGG
λλ :=

drGλ
dλG

=
∂g(pG,λG)

∂λG
, (4.110)
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with the i=1, . . . , 4 entries in KGG
λp and KGG

λλ

∂gi(p
G, λGi )

∂pG
=
∂ri(p

G)

∂pG


 ri(p

G)√
[ ri(pG) ]2 + [λGi ]

2
+ 1


 , (4.111)

∂gi(p
G, λGi )

∂λGi
=

λGi√
[ ri(pG) ]2 + [λGi ]

2
− 1 . (4.112)

The individual stiffness matrices are specified in the appendix in Section 4.6.4. The total
global stiffness matrix of the system is obtained by the following assembly operations

K :=

nBel+n
Ω\B
el

A
e=1




{
KAB
uu

}
0

{
KAF
up

}
0

0 KCD
φ̃φ̃

{
KCF

φ̃p

}
0

{
KEB
pu

} {
KED
pφ̃

} {
KEF
pp

}
0

0 0 0 0




+

nBpnp

A
G=1




0 0 0 0

0 0 0 0

0 0 KGG
pp KGG

pλ

0 0 KGG
λp KGG

λλ



, (4.113)

wherein the first assembly operator accounts for the contributions of the volume integrals
defined in (4.98), i.e. a summation over all elements e, and wherein the second assembly
operator accounts for the contributions due the inequality constraints at the nBpnp nodes
G defined in (4.99).

Remark 11 As indicated in the definition of the global residual vector (4.97) and the
stiffness matrix (4.113), two different assembly routines are used in the finite element
implementation. The first assembly operator accounts for the contributions evaluated in
the distinct element routines for the nBel elements of the body and the n

Ω\B
el elements of

the surrounding free space box. Therein, the contributions due to the volume integrals are
evaluated by using a numerical integration scheme. The surface integrals, accounting for
the prescribed tractions t on the surface of the body ∂Bt, see (4.93) and (4.95), are usually
calculated in a preprocessing routine and later added to the global residual vector. After
having assembled the contributions due to the volume integrals of all elements, the global
residual vector r and the stiffness matrix K are modified and the contributions rGp and

KGG
pp are added to the already existing entries of the nBpnp nodes. All other contributions

arising from the constraints are directly stored in the residual vector and stiffness matrix.
It is convenient to reserve memory for these contributions by adding temporary entries
in the element routine of all body elements.
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4.3 Implementation and algorithmic treatment

The nodal increments occurring in (4.98) and (4.99) are formally assembled in a global
vector of the nodal increments in analogy to (4.97) and (4.113), hence

∆d :=

nBel+n
Ω\B
el

A
e=1




{
∆uB

}

∆ φ̃D
{

∆pF
}

0




+

nBpnp

A
G=1




0

0

∆pG

∆λG



. (4.114)

The newly introduced quantity ∆d is used in the compact notation for the update of
all nodal degrees of freedom during the global iteration. The global system of equations

kr + kK ·∆d = 0 , with ∆d = k+1d− kd , (4.115)

where k is the iteration counter, is solved for ∆d during each iteration step until ‖r‖≤
tol, where a convenient choice for the tolerance is tol=10−8. The finite element scheme
is depicted in Table 4.1. The mixed element routine used for elements of the body is
shown in Table 4.2.

Remark 12 A discretised system consist usually of nnp number of node points with ndf

degrees of freedom per node. The total number of degrees of freedom is consequently
nnp ·ndf . The “natural” order of all degrees of freedom of the discretised system in the
vector containing all global degrees of freedom would be

d=[u t
1, φ̃1,p

t
1,λ

t
1,u

t
2, φ̃2,p

t
2,λ

t
2, · · · ,u t

nnp , φ̃nnp p
t
nnp λ

t
nnp ] t .

Since u, p, and λ are not resolved in elements of the free space region, and since p and
the associated Lagrange multipliers λ are only resolved at nBpnp nodes of the discretised
body B, this order is no longer directly applicable. A straightforward way to keep this
order of the nodes is the assumption of ndf degrees of freedom per node. At the beginning
of a finite element simulation, all nodes that belong only to the free space elements
are identified. In addition, the nodes 5–8 of all body elements are identified as well.
The degrees of freedom 1, 2 (displacement field) and 4–ndf (state variables and KKT-
parameters) of all nodes that belong solely to the free space, as well as the degrees of
freedom 4–ndf of the nodes 5–8 of the body elements are not involved in the calculation
of the nodal increments during the global Newton-Raphson iteration, since their residual
and stiffness matrix contributions are identical to zero.
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4 Spatial resolution of mechanical and magnetic degrees of freedom

Table 4.1: Finite element scheme.

0. Preprocessing:

Specify Dirichlet boundary conditions, viz. prevention of rigid body motions (optional:

additional supports) and φ̃ = 0 on ∂Ω, and calculate the nodal contributions of the
surface traction integrals (4.95) for the desired mechanical loading curve.

1. Initialisation:

Set load counter n= 0, choose admissible initial configuration p0 satisfying the con-
straints, initialise the Lagrange multipliers λi = 5 · 10−13, and identify global degrees
of freedom that are not taken into account in the simulation, see Remark 12.

2. Load stepping:

Read Dirichlet and Neumann boundary conditions, the latter in terms of nodal contri-
butions of the applied surface tractions tn+1, and specify the superimposed magnetic
field hn+1. Set iteration counter k = 0 and set initial values for the primary field
variables and Lagrange multipliers, viz. kdn+1 =dn, cf. (4.114).

3. Assembly of the global residual vector r and the global stiffness matrix K:

– Loop over the nBel body elements, numerical integration of (4.93)

and the integrals (4.100) – (4.106) as detailed in Table 4.2

– Loop over the n
Ω\B
el free space elements, numerical integration of rC

φ̃
in (4.93)

and the integral (4.102)

– Assembly of the e element-wise contributions as outlined in (4.97) and (4.113),

(take the nodal contributions due to the Neumann boundary conditions into account)

– Loop over all nBpnp nodes, calculation of (4.96) and (4.107) to (4.110)

and assembly of the G discrete contributions as outlined in (4.97) and (4.113)

4. Newton update:

Check for convergence by calculating ‖kr‖:
– if ‖kr‖≤tol, with e.g. tol=10−8, go to 5.

– otherwise, update the discrete nodal values as outlined in (4.115)

k+1dn+1 = kdn+1 − kK−1 · kr ,

with the global vector of all nodal values d, cf. (4.114).

Set the iteration counter k⇐k + 1 and return to 3.

5. Postprocessing:

Calculate all relevant body area-averaged quantities of the current step, save history
data pn+1 =kpn+1 (occurring in the evolution equations), write output file for external
postprocessing, set step counter n⇐n+ 1 and return to 2.
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Table 4.2: Schematic representation of the mixed element routine used for elements of the body B.

• Summation over all nqp quadrature points
nqp∑
q=1

– Read the shape functions N , calculate their gradients ∇xN and the volume dv

– Calculate ε, h̃ and p

– Material routine: calculate σ, b̃, revo and the corresponding gradients

– Store quantities for postprocessing

– Serendipity element
nu
en=n

φ̃
en=8∑

A=C=1

∗ Calculate and store fBAu,int and fBC
φ̃,int

as detailed in (4.93) and (4.94)

∗ Serendipity element
nu
en=n

φ̃
en=8∑

B=D=1

· Calculate and store KAB
uu and KCD

φ̃φ̃
as detailed in (4.100) and (4.102)

∗ Bilinear element
np
en=4∑
F=1

· Calculate and store KAF
up and KCF

φ̃p
as detailed in (4.101) and (4.103)

– Bilinear element
np
en=4∑
E=1

∗ Calculate and store rEp as detailed in (4.93)

∗ Serendipity element
nu
en=n

φ̃
en=8∑

B=D=1

· Calculate and store KEB
pu and KED

pφ̃
as detailed in (4.104) and (4.105)

∗ Bilinear element
np
en=4∑
F=1

· Calculate and store KEF
pp as detailed in (4.106)

• Reserve memory for the constraints
np
en=4∑
G=1

– Store dummies for rGλ ,K
GG
pλ ,K

GG
λp and KGG

λλ
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4 Spatial resolution of mechanical and magnetic degrees of freedom

4.4 Numerical examples

In this section, several numerical examples demonstrate the capabilities of the finite
element simulations where inhomogeneous distributions of all quantities might occur,
and show the advantages over calculations performed by using a demagnetisation tensor
to capture the shape dependent demagnetisation effect, where solely macroscopically
homogeneous states inside the bodies are considered. As introduced in Section 4.3,
the finite element simulations are two dimensional and plane strain conditions are pre-
scribed. As a consequence, the total strain ε33 is equal to the transformation strain,
viz. ε33 = b1, since εel

33 = 0, see (4.34) and (4.45). The resolution of the magnetic quan-
tities in the plane corresponds to specimens with infinite size in the e3-direction. The
response behaviour of five differently shaped specimens is investigated, each embedded
in a free space box, under magnetomechanical loading. To be precise, a circular, an
ellipsoidal, a quadratic, a rectangular, and an I-shaped specimen are analysed, where
the respective symmetry axes are aligned with the coordinate system. The aspect ratios
of the major- to the minor-axis of the ellipsoidal specimen, respectively the long to the
short edge of the rectangular specimen, are 5/3. The body area-averaged responses of
finite element simulations are partially compared to calculations performed using a de-
magnetisation tensor in a constitutive driver routine, see the appendix in Section 4.6.2
for details regarding the constitutive driver. Even though the finite element simula-
tions of ellipsoidal specimens show a spatially homogeneous response inside the area of
the body, we consider body area-averaged response curves to minimise the influence of
numerical errors. Some of the response curves are enhanced by sketches representing
the body area-averaged microstructure in terms of martensite volume fractions, domain
volume fractions, and the orientations of the magnetisation vectors inside the domains
at selected load steps. The associated state variables are area-averaged quantities. The
spatial distributions of multiple quantities are enhanced by iso-lines of the magnetic po-
tential of the demagnetisation field φ̃, not to be confused with the demagnetisation field
h̃=−∇xφ̃ itself. The demagnetisation factors of the specimen geometries used in the
finite element simulations were calculated in magnetostatic finite element simulations
using exactly the same meshes. For a prescribed homogeneous magnetisation mi, the
body area-averaged demagnetisation fields 〈h̃i〉 were computed and the body-averaged
demagnetisation factors 〈Dii〉 are calculated by

〈Dii〉 = − 〈h̃i〉
mi

, (4.116)

see [65] and the discussion therein and also [36, 155, 170, 188] for analytically deter-
mined demagnetisation tensors. Due to the symmetries of the considered specimens,
the body area-averaged demagnetisation field perpendicular to the 〈h̃i〉 is zero. In the
following, the body area-averaged quantities are not marked with 〈•〉 for aesthetic rea-
sons. The material constants and model parameters for Ni49.7Mn29.1Ga21.2 are listed
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in Table 4.3. The calculated demagnetisation factors for the meshes used in the finite
element simulations are listed in Table 4.4.

Table 4.3: Material constants and model parameters for Ni49.7Mn29.1Ga21.2.

Material constant/model parameter Symbol Value Unit Reference

Young’s modulus E 5.0 GPa -
Poisson’s ratio ν 0.3 [-] -
Bain strain coefficients b1 0.0188 [-] [204]

b2 − 0.0394 [-] [204]
Vacuum permeability µ0 4π 10−7 N/A2 -
Anisotropy constant k1 0.167 MJ/m3 [71, 76]
Saturation magnetisation ms 514.0 kA/m [76, 106]
Martensite reorientation threshold Yξ 0.03 MJ/m3 -
Martensite reorientation viscosity ηξ 0.00125 1/[ kPa s ] -
Magnetic evolution viscosity ηm 0.0001 1/[ kPa s ] -

Table 4.4: Calculated demagnetisation factors for the considered specimen geometries.

Specimen geometry Demagnetisation factor Value

Circle D11 = D22 0.4824
Ellipse: minor-axis D11 0.6085
Ellipse: major-axis D22 0.3586
Square D11 = D22 0.4746
Rectangle: short edge D11 0.5854
Rectangle: long edge D22 0.3660
I-profile D11 0.4664
I-profile D22 0.4953

4.4.1 Magnetic field-induced easy- and hard-axis magnetisation
response

In the first example, the easy- and hard-axis magnetisation response curves of the circular
and the quadratic specimen consisting of a single variant of martensite (ξ2 = 0.999) are
considered. Prescribed tractions t2 are applied resulting in a constant compression stress
σ22 =− 5.0 MPa, which suppresses the martensite reorientation process and maintains
the initial single variant of martensite. Half a cycle of magnetic field loading hi is applied
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in the easy- and the hard-axis direction of both specimens, where the field is linearly
increased from µ0 hi(t0 =0 ms)=0 T to a maximum of µ0 hi(t1 =1 ms)=1 T and linearly
decreased back to the initial value at time t2 = 2 ms. The boundary value problems
(BVPs) are schematically sketched in Figure 4.6 for (a), (b) the circle and (c), (d) the
square under a magnetic field in their respective (a), (c) easy- and (b), (d) hard-axis
directions. The corresponding body area-averaged easy- and hard-axis magnetisation
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Figure 4.6: Schematic representation of the magnetomechanical BVP of (a), (b) an ellipsoidal and (c),
(d) a rectangular body B embedded into a finite size free space box Ω. Prescribed loading in terms
of tractions t2 = const. favouring the initial second martensite variant (ξ2 = 0.999) and superimposed
spatially homogeneous magnetic fields hi(t) in the (a), (c) vertical and (b), (d) horizontal direction.

curves are shown in Figure 4.7. The responses calculated by using a constitutive driver
routine are plotted for comparison. For the circular specimen, they coincide perfectly
with the response curves using the correct demagnetisation factor DFEM, see Table 4.4,
and serve as a first verification of the finite element implementation. The response curves
calculated using the theoretical demagnetisation factors D11 =D22 =0.5 generally predict
the same response behaviour. The slight deviation is possibly due to discretisation errors

116



4.4 Numerical examples

µ0 h2 [T]

m
2
/m

s
[-
]

cir. specimen
qu. specimen

Dtheo

DFEM

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a)

µ0 h1 [T]

m
1
/m

s
[-
]

cir. specimen
qu. specimen

Dtheo

DFEM

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b)

Figure 4.7: Magnetic field-induced magnetisation response in (a) easy- and (b) hard-axis direction
under constant compression stress σ22 = − 5.0 MPa to maintain the initial single martensite variant.
The body area-averaged magnetisation responses of a circular (cir.) and a quadratic (qu.) specimen,
both embedded into a free space box, are shown in comparison to calculations using a constitutive
driver routine with the theoretical demagnetisation tensor Dtheo and the calculated one DFEM of the
circular specimen.

or the size of the free space box. In contrast to these linear responses, the quadratic
specimen clearly shows nonlinear responses which were also observed in experiments, see
Figure 4.8 for comparison. In the finite element simulation of the quadratic specimen,
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Figure 4.8: Measured easy- and hard-axis magnetic field-induced magnetisation response of a thin nearly
square wafer consisting of a single martensite variant under compression stress of 1.9 MPa applied in
the easy-axis direction taken from [211, 212].

the mechanisms of domain wall motion and rotation of the magnetisation vectors are not
isolated. During the easy-axis magnetisation, the mechanism of magnetisation rotation
occurs particularly in the corners of the quadratic specimen. During the hard-axis
magnetisation, the mechanism of domain wall motion occurs likewise particularly in the
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corners of the specimen. For a maximum magnetic field of µ0 hi=1 T, the magnetisation
in the hard-axis response curve of the quadratic specimen is still not saturated. Spatial
distributions of the magnetisation in the direction of the magnetic field are shown in
Figure 4.9 for (a), (b) the easy-axis and (c), (d) the hard-axis response. The occurring

m2=0.642ms

(a)

0 m2/ms 1

(b)

m1=0.208ms

(c)

0 m1/ms 0.222

(d)

Figure 4.9: Easy-axis: selected spatial distributions of m2 under µ0 h2 =0.2 T of (a) a circle and (b) a
square, see Figure 4.7 (a). Hard-axis: selected spatial distributions of m1 under µ0 h1 = 0.2 T of (c) a

circle and (d) a square, see Figure 4.7 (b). In addition, iso-lines of the magnetic potential φ̃ are shown
in black.

mechanisms of domain wall motion (easy-axis) and magnetisation rotation (hard-axis)
were both introduced to be viscoelastic. Due to the low viscosity parameter, the response
curves for the unloading case are in fact indistinguishable from the loading case.

In addition to the first example, the body area-averaged magnetisation responses
of the ellipsoidal and the rectangular specimen are calculated analogously in terms of
similar mechanical boundary conditions and magnetic field loading. They are compared
to the response of the circular and the quadratic specimen in order to further verify the
finite element implementation. In this case, the ellipsoidal and the rectangular specimen
consists of the alternating first and second variants of martensite to investigate the
shape dependency of the magnetisation response. Prescribed tractions ti are applied
resulting in a constant compression stress σii=− 5.0 MPa that suppresses the martensite
reorientation process by keeping the variant volume fraction ξi=0.999. Figure 4.10 shows
the response curves of (a), (b) the ellipsoidal specimen and (c), (d) the rectangular
specimen under a magnetic field applied in (a), (c) the easy- and (b), (d) the hard-
axis directions. In addition, the response curves of the circular and quadratic specimen
are plotted for comparison. The linear response behaviour of the ellipsoidal specimen
coincides with the results of the calculations made by using a demagnetisation tensor.
In contrast, the response behaviour of the rectangular specimen is clearly nonlinear,
as previously observed in the response of the quadratic specimen. The linear response
obtained by calculations utilising a demagnetisation tensor may be considered as a useful
approximation until a certain saturation level is reached. Both figures clearly show the
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Figure 4.10: Body area-averaged magnetic field-induced magnetisation responses of (a), (b) an ellipsoid
and a circle and (c), (d) a rectangle and a square, all embedded into free space boxes. The ellipsoid
and the rectangle consist of the first, respectively second, alternating variants of martensite to study
the shape dependency of the response. Magnetic fields are applied in (a), (c) the easy- and (b), (d) the
hard-axes directions. Constant compression stresses σ=− 5.0 MPa are applied to maintain the initial
single martensite variant states. The area-averaged responses are shown in comparison to calculations
using a constitutive driver routine (D), see Table 4.4 for the calculated demagnetisation tensors.

shape anisotropy, where a lower magnetic field is required to magnetise a specimen along
the axis with the largest aspect ratio.
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4.4.2 Magnetic field-induced martensite reorientation

In the first examples, the easy- and hard-axis magnetisation responses of differently
shaped specimens were considered where the mechanisms of domain wall motion and
rotation of the magnetisation vectors occurred. The third mechanism, the martensite
variant reorientation, was suppressed by sufficiently large compression stresses applied
in terms of tractions on the boundary of the specimens. It turns out that the latter
mechanism is essential for the response behaviour of MSMAs under magnetomechanical
loading, see [71, 202] and Figure 4.17, taken from [200], for experimentally determined
response curves. In this example, a circular and a quadratic specimen are subjected to
constant prescribed tractions t2 that favour the initial second martensite variant and
result in a body area-averaged constant compression stress σ22 = −1.0 MPa, which is
below the blocking stress, see [111]. One period of a triangle wave shaped magnetic field
loading h1 with a frequency of 250 Hz favouring the first martensite variant is applied
perpendicular to the compression stress. The viscosity parameter for the martensite
reorientation is set to η∗ξ = 4 ηξ. The boundary value problems for both specimens
are schematically sketched in Figures 4.6 (b) and (d). Figure 4.11 shows the body
area-averaged magnetic field-induced (a) strain and (b) magnetisation response of the
circular and the quadratic specimen in comparison to simulations of the constitutive
driver routine. The initial strain is shifted to zero. The response of the circular specimen
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Figure 4.11: Magnetic field-induced (a) strain and (b) magnetisation response under constant com-
pression stress σ22 =−1.0 MPa favouring the initial single martensite variant. The body area-averaged
responses of a circular and a quadratic specimen embedded into a free space box (FE) are shown in
comparison to calculations using a constitutive driver routine (D).

and the corresponding response of the constitutive driver routine coincide. Since the
demagnetisation factors of the square specimen are similar to the circular specimen,
see Table 4.4, the response curves are close to each other. In contrast, the response of
the quadratic specimen clearly deviates for nearly saturated magnetisation states during
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loading and, in particular, during unloading. All four responses have in common that the
initial response is identical to the hard-axis response, which was discussed in more detail
in the previous example. At a certain externally applied magnetic field, the mechanism
of martensite variant reorientation into the magnetic field-favoured variant is activated,
which is noticeable in the strain response curves and the slopes of the magnetisation
response curves where the arising first martensite variant magnetises in its easy-axis
direction. For larger magnetic fields, the martensite reorientation process is completed,
observable in the strain response curves and in the saturation of the magnetisation.
During unloading, the onset of the martensite reorientation into the stress-favoured
initial martensite variant is delayed due to the threshold in the dissipation associated
with the evolution of the martensite variant volume fraction. After a full reorientation
into the initial variant, the strains are again zero and the magnetisation response curves
coincide with the hard-axes response curves. The response behaviour during the second
half of the loading cycle is similar to the first half and not discussed in detail.

The magnetic field-induced martensite reorientation process is analysed for the el-
lipsoidal and the rectangular specimen and compared to the response behaviour of the
circular and the quadratic specimen. In this case, the ellipsoidal and the rectangu-
lar specimen consists initially of the first, respectively second, alternating variant of
martensite to investigate—in analogy to the first example—the shape dependency of the
magnetic field-induced strain and magnetisation response. Prescribed tractions ti are
applied and result in a body area-averaged constant compression stress σii=−1.0 MPa,
that favours the initial martensite variant. The boundary conditions are set in analogy
to the previous example. The corresponding boundary value problems are schemati-
cally sketched in Figure 4.6 (b) and (d) for the initially second martensite variant. The
boundary conditions for the initially first martensite variant are set analogously. The
triangle wave shaped magnetic field loading is applied with a frequency of 250 Hz and
the viscosity of the martensite volume fraction is set to η∗ξ = 4 ηξ. Figure 4.12 shows
the body area-averaged response curves of (a), (b) the ellipsoidal specimen and (c), (d)
the rectangular specimen in terms of (a), (c) the strain and (b), (d) the magnetisation
responses. In addition, the response curves of the circular and quadratic specimen are
plotted for comparison. The initial values of the strains are shifted to zero. All figures
clearly show the shape anisotropy where lower magnetic fields are required to initialise
and complete the magnetic field-induced martensite reorientation process and to reach a
saturated state of the magnetisation in the direction of the axis with the largest aspect
ratio. Selected spatial distributions of ξ1 and the magnetisation mi/ms in the direc-
tion of the applied magnetic field hi are shown in Figure 4.13 for the ellipsoidal and
rectangular specimen under vertical and horizontal magnetic field loading.

In addition to the investigation of the shape dependency of the magnetic field-induced
martensite reorientation, the influence of the number of elements used for the discreti-
sation of the body and the surrounding free space box, in terms of a mesh dependency
study, is analysed. Since the distribution of the strain and the magnetisation are in fact
homogeneous inside ellipsoidal bodies, the quadratic specimen, where inhomogeneous
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Figure 4.12: Body area-averaged magnetic field-induced (a), (c) strain and (b), (d) magnetisation
response under constant compression stress σ = −1.0 MPa and perpendicular cyclic magnetic field h
loading of (a), (b) an ellipsoid and a circle and (c), (d) a rectangle and a square, all embedded into free
space boxes. The magnetic field is applied along the minor and major axis of the ellipsoid, respectively
the short and long edge of the rectangle, to show the shape dependency of the response behaviour.

distributions occur, is used for this study. The number of elements is successively in-
creased up to a factor of five in both spatial directions. Prescribed tractions t2 are applied
resulting in a body area-averaged constant compression stress σ22 =−1.0 MPa favouring
the initial second martensite variant. The boundary conditions are set in analogy to the
previous examples. The boundary value problem is schematically sketched in Figure 4.6
(d). The triangle wave shaped magnetic field loading h1 is applied with a frequency of
250 Hz and the viscosity parameter of the martensite volume fraction evolution is set to
η∗ξ = 4 ηξ. Figure 4.14 shows the body area-averaged (a) strain and (b) magnetisation
response curves where the initial values of the strain are shifted to zero. Both figures
show that the body area-averaged responses of the quadratic specimen are qualitatively
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Figure 4.13: Selected spatial distributions of ξ1(hi) and mi(hi) under µ0 hi(t=0.5 ms)=0.499 T of (a),
(b) the ellipsoid under h2 loading, (c), (d) the ellipsoid under h1 loading, (e), (f) the rectangle under
h2 loading, and (g), (h) the rectangle under h1 loading, see Figure 4.12 for the body area-averaged

response curves. In addition, iso-lines of the magnetic potential φ̃ are shown in black.

in very good agreement. A small visible deviation is observable in the strain response
during the reorientation into the first martensite variant above ε22≈5.6 %. The response
curves calculated using very coarse meshes deviate noticeably from these response curves
(not pictured). Selected spatial distributions of ξ1 and the magnetisation mi/ms in the
direction of the applied magnetic field hi loading are shown in Figure 4.15 for the three
meshes considered in this study. In the following, the element sizes used for the dis-
cretisation of all other bodies are approximately the same as those used for the coarsest
discretisation shown in this study, since the simulation results obtained are considered
to be reasonable.

After having demonstrated that the finite element simulations are generally able to
predict the mechanism of magnetic field-induced martensite reorientation and the shape
dependency of this effect, the influence of the viscosity of the martensite reorientation
ηξ as a material parameter, respectively a model parameter, is studied. The body area-
averaged strain and magnetisation responses of the circular and the quadratic specimen
are considered. Prescribed tractions t2 are applied resulting in a body area-averaged
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Figure 4.14: Body area-averaged magnetic field-induced (a) strain and (b) magnetisation response
under constant compression stress σ22 =−1.0 MPa and perpendicular cyclic magnetic field h1 loading
of a quadratic body embedded in a free space box. The number of elements in each spatial direction is
increased up to a factor of five to study the mesh dependency.

constant compression stress σ22 = −1.0 MPa favouring the initial second martensite
variant. The boundary conditions are set in analogy to the previous examples. The
boundary value problems are schematically sketched in Figures 4.6 (b) and (d). The
triangle wave shaped magnetic field loading h1 is applied with a frequency of 250 Hz. The
viscosity of the martensite reorientation is initially set to η∗ξ =4 ηξ, afterwards decreased
to η∗ξ =2 ηξ, and finally set to η∗ξ =ηξ, which is the value listed in Table 4.3. Figure 4.16
shows the body area-averaged response curves of (a), (b) the circular specimen and (c),
(d) the quadratic specimen in terms of (a), (c) the strain and (b), (d) the magnetisation
responses for different viscosity parameters. The initial values of the strains are shifted
to zero. The response curves of the circle clearly show that the onset of the martensite
reorientation is independent of the chosen viscosity parameter, while the completion of
the reorientation is delayed for larger viscosities. In addition, the slopes of the curves
increase for decreasing η∗ξ . These observations are generally applicable to the quadratic
specimen, while the slopes increase even more for lower viscosities, in particular in
the beginning of the initial reorientation for the lowest viscosity parameter. This, at
least initially, almost vertical response behaviour is also observable in experiments, see
Figure 4.17 for comparison. Even though experiments show that the magnetic field-
induced martensite reorientation occurs at very high frequencies, as also prescribed in
the simulations, the response is by no means rate-independent, cf. [77, 126]. In the
following, the viscosity parameter η∗ξ = ηξ, as listed in Table 4.3, is used, due to the
generally good approximation of the the response behaviour observed in experiments.
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Figure 4.15: Selected spatial distributions of (a)–(c) ξ1 and (d)–(f) m1/ms under µ0 h1(t= 0.5 ms) =
0.499 T loading of (a), (d) the square specimen, (b), (e) the square specimen with three times elements
in each spatial direction, and (c), (f) the square specimen with five times elements in each spatial
direction, see Figure 4.14 for the body area-averaged response curves. In addition, iso-lines of the
magnetic potential φ̃ are shown in black.
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Figure 4.16: Body area-averaged magnetic field-induced (a), (c) strain and (b), (d) magnetisation
response under constant compression stress σ22 =−1.0 MPa and perpendicular cyclic magnetic field h1
loading of (a), (b) a circular and (c), (d) a quadratic specimen embedded in a free space box. The
response behaviour is compared for multiple viscosities of the martensite variant reorientation.

126



4.4 Numerical examples

4.4.3 Stress level dependency of the magnetic field-induced
response behaviour

In this example, the stress level dependency of the magnetic field-induced martensite
reorientation in terms of body area-averaged strain and magnetisation responses are
analysed. Previously, two levels of body area-averaged compression stress have been
considered, namely σ=−1.0 MPa and σ=− 5.0 MPa. The perpendicularly applied mag-
netic field loading h induced a complete reorientation into the magnetic field-favoured
martensite variant at the lower compression stress. The initial variant was completely
recovered during the removal of the magnetic field. For high compression stresses, the
perpendicularly applied magnetic field could not induce a martensite variant reorienta-
tion due to the blocking stress effect. Experimental observations suggest that the strain
and magnetisation response of specimens subject to a constant compression stress and a
perpendicular cyclic magnetic field loading highly depends on the applied compression
stress level, see [71, 202] and Figure 4.17, taken from [200]. Although the experimentally
determined curves are not directly comparable to the simulations where plane boundary
value problems are considered, many aspects of the experimental findings are captured
by the finite element simulations as discussed below.

Figures 4.18 (a)–(d) show body area-averaged (a), (c) strain, where the initial val-
ues are shifted to zero, and (b), (d) magnetisation response curves of the rectangular
specimen under multiple levels of constant compression stress σ11—applied in terms of
tractions t1—favouring the initial martensite variant. In addition, one cycle of triangle
wave shaped magnetic field loading h2 with a frequency of 250 Hz is applied perpendicu-
lar to the tractions along the long edge of the body. The boundary conditions are set in
analogy to the boundary value problem sketched in Figure 4.6 (d). In the following, the
response behaviour is compared to the response of the constitutive driver routine as well
as experimental observations. All simulated response curves have in common that the
magnetic field is able to initialise and complete the martensite reorientation process into
the magnetic field-favoured second martensite variant. The onset of the reorientation
process is delayed for higher compression stresses, observable in the experiments and the
simulations. The body area-averaged response curves show a steeper response compared
to the constitutive driver in all curves during the initial martensite reorientation, until
a certain magnetic field is applied and until the slope of the area-averaged curves flat-
tens noticeably, both is also observable in experiments. During unloading, the smoother
response behaviour of the finite element simulations captures the response behaviour of
experiments better than the simulated constitutive driver response. For low—or even
zero—compression stress, a partial reorientation into the stress-favoured initial marten-
site variant is observable in the finite element simulations and the experiments, while
the constitutive driver predicts zero reorientation for low compression stresses. Due to
only partially or even completely suppressed reorientation during unloading, the cor-
responding response behaviour of the second half of the cycle differs from the initial
first half of the loading cycle. All response curves have in common that the width of
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Figure 4.17: Experimentally measured magnetic field-induced variant reorientation under constant
compression stress σ and perpendicular cyclic magnetic field h loading, taken from [200]. (a)–(f) show
the strain ε⊥ perpendicular to the magnetic field (at the top) and the normalised magnetisation response
m‖/m

∗
s in the direction of the magnetic field (at the bottom) at different levels of compression stress.

the magnetisation and, in particular, the strain response curve increases for increasing
levels of compression stress. Although the simulations of the constitutive driver routine
capture the response behaviour observed in experiments quite well, the finite element
simulations approximate the real response behaviour even better. In addition to the pre-
sented response curves, the response under a fifth level of constant compression stress
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σ11 = − 0.5 MPa is considered. Figures 4.18 (e) and (f) show the body area-averaged
response curves and some sketches of the body area-averaged underlying microstructure
in terms of the martensite volume fractions, the domain volume fractions, and the orien-
tations of the magnetisation vectors inside the domains at selected loading states. The
corresponding spatial distribution of ξ1 and m2/ms is shown in Figure 4.19. Starting
in 1©, the magnetisation starts to rotate in the hard-axis direction. The onset of the
martensite reorientation is initialised in 2©. During further loading, the second marten-
site variant grows in the expense of the first, see 3© and 4© and during unloading, the
initial martensite is partly recovered, see 5©. In addition, the mechanism of domain
wall motion in the second martensite variant is activated allowing a reduction of the
magnetisation in the direction of the applied magnetic field. At the end of the first half
of the loading cycle, all domains occur and a remanent strain is observable in 6©. See
also our previous work [10] and the discussion therein for comparison.
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Figure 4.18: Body area-averaged magnetic field-induced (a), (c), (e) strain and (b), (d), (f) magnetisa-
tion response under multiple levels of constant compression stress σ11 (σ11 =− 0.5 MPa for (e) and (f))
and perpendicular cyclic magnetic field h2 loading of the rectangular specimen (magnetic field applied
along the long edge) embedded in a free space box. The responses of the finite element simulations
(F) are compared to the response of a constitutive driver routine (D) in (a)–(d). The evolution of the
body-averaged microstructure is sketched for selected loading states in (e) and (f). Sketched mechanism:
magnetisation vector rotation, martensite variant switching, and domain wall motion.
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Figure 4.19: Spatial distributions of (a) ξ1 and (b) m2/ms for selected load steps marked in Figures 4.18

(e) and (f). In addition, iso-lines of the magnetic potential φ̃ are shown in black.
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4.4.4 Stress-induced martensite reorientation under constant
magnetic field

In contrast to all previous examples where constant tractions were applied on the bound-
aries of the specimens in addition to a parallel or to a perpendicular cyclic magnetic
field, the response behaviour under multiple constant magnetic fields and cyclic per-
pendicularly applied tractions, resulting in a cyclic compression stress, is analysed in
this example. Experimental observations suggest that an externally applied compres-
sion stress is always able to completely switch the configuration into the stress-favoured
martensite variant, see [71] and Figure 4.20, taken from [200], for experimentally de-
termined response curves. Depending on the amplitude of the perpendicularly applied
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Figure 4.20: Experimentally measured compressive stress-induced variant reorientation under constant
magnetic field h and perpendicular cyclic compression stress σ loading, taken from [200]. (a)–(d) show
the strain in the direction of the applied stress at multiple levels of constant magnetic fields.

constant magnetic field, the initial martensite variant is not at all, partially, or com-
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pletely recovered during unloading. Although the experimentally determined curves
are not directly comparable to the simulations where plane boundary value problems
are considered, many aspects of the experimental findings are captured by the finite
element simulations and the constitutive driver routine as discussed below.

A square specimen embedded into a free space box is used for the finite element
simulations. The boundary value problem is schematically sketched in Figure 4.21.
Multiple levels of constant magnetic field loading h1 favouring the initial first martensite

e1

e2

φ̃=0 on ∂Ω

Ω

B

t2(t)

superimposed

h1=constant in Ω

(a)

Figure 4.21: Schematic representation of the magnetomechanical BVP of a sqare body B embedded
into a finite size free space box Ω. Prescribed loading in terms of tractions t2(t) favouring the second
martensite variant and superimposed spatially homogeneous magnetic field h1 = const. favouring the
initial first martensite variant (ξ1 =0.999).

variant are applied. The magnetic field is held constant without applying tractions until
time t1 =0.5 ms, allowing the state variables to evolve into a stationary state. Afterwards,
the compression stress—applied as tractions t2 on the boundary—is linearly increased
until reaching σ22 = −10.0 MPa at time t2 = 1.5 ms, followed by a linear decrease to
σ22 =0.0 MPa at time t3 =2.5 ms. Figure 4.22 shows (a), (c) the strain where the initial
values at time t1 = 0.5 ms are shifted to zero, and (b), (d) the magnetisation responses
under multiple levels of constant magnetic field loading. In the following, the body area-
averaged responses are compared to the response of the constitutive driver routine as well
as experimental observations. All simulated response curves have in common that the
compression stress is able to initialise and complete the martensite reorientation process
into the stress-favoured second martensite variant. The onset of the reorientation process
is delayed for higher magnetic fields, observable in the experiments and the simulations.
For zero magnetic field, the response behaviour of the finite element simulation and
the constitutive driver routine coincide due to the absence of the demagnetisation field.
For the smallest considered magnetic field µ0 h1 =0.2 T, a partial reorientation into the
second martensite variant occurs during the initial 0.5 s, visible in maximum value of the
stress-induced strain response. Experiments and simulations have in common that the
reorientation into the magnetic field-favoured variant occurs partially after exceeding
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Figure 4.22: Body area-averaged stress-induced (a), (c) strain and (b), (d) magnetisation response
under multiple levels of constant magnetic field h1 and perpendicular cyclic compression stress σ22

loading of the quadratic specimen embedded in a free space box. The response behaviour of the finite
element simulations (FE) is compared to the response of a constitutive driver routine (D).

a critical magnetic field, or fully occurs for even larger critical magnetic fields during
unloading. Generally, the constitutive driver routine captures the response behaviour
quite well. The smooth onset of the martensite reorientation during the first half of
the loading cycle is captured even better in the finite element simulation. Since no
experimental data regarding the magnetisation response is available for the considered
strain response curves, the body area-averaged magnetisation response curves are only
compared to the response of the constitutive driver routine. Generally, the response
curves are quite similar. For low magnetic fields, the magnetisation does not saturate
in the direction of the applied field. For large magnetic fields, an initial saturated
state is imposed that remains constant during the whole loading cycle for the largest
magnetic fields only in the constitutive driver routine. In all other response curves the
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magnetisation drops off during the martensite variant reorientation, since the arising
martensite variant magnetises in its hard-axis direction. In addition to the presented
response curves, the response under a fifth level of constant magnetic field µ0 h1 =0.3 T is
considered. Figure 4.23 shows the body area-averaged response curves and some sketches
of the body area-averaged underlying microstructure in terms of the martensite volume
fractions, the domain volume fractions, and the orientations of the magnetisation vectors
inside the domains at selected loading states. The corresponding spatial distribution of
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Figure 4.23: Body area-averaged stress-induced (a) strain and (b) magnetisation response under con-
stant magnetic field µ0 h1 = 0.3 T and perpendicular cyclic compression stress σ22 loading of the
quadratic specimen embedded in a free space box. The evolution of the body-averaged microstruc-
ture is sketched for selected loading states. Sketched mechanism: magnetisation vector rotation and
martensite variant switching.

ξ1 and m1/ms is shown in Figure 4.24. During loading, a complete switching into
the stress-favoured martensite variant is observable, see 1© and 2© for intermediate
states. Elastic deformations are observable afterwards for increasing stress, whereas the
magnetisation remains constant. In 3©, the onset is initialised of the reverse switching
into the first martensite variant which is only partly recovered at zero compression stress
in 4© and a remanent strain occurs. From 3© to 4©, the magnetisation increases, since
the forming martensite variant is magnetised in its easy-axis direction. Simultaneously,
the rotation of the magnetisation in the hard-axis direction of the second martensite
variant decreases. See also our previous work [10] for comparison and for a detailed
discussion concerning the similarities between magnetic field-induced MSMA response
behaviour and temperature-induced shape memory alloy response behaviour.

4.4.5 Biaxial magnetic field-induced martensite reorientation

In the next example, a biaxial magnetic field is applied to the quadratic specimen.
Multiple levels of constant magnetic field h1 are applied, thereby favouring the initial

135



4 Spatial resolution of mechanical and magnetic degrees of freedom

0 ξ1 1

1 2 3 4

(a)

0 m1/ms 1

1 2 3 4

(b)

Figure 4.24: Spatial distributions of (a) ξ1 and (b) m1/ms for selected load steps marked in Figure 4.23.

In addition, iso-lines of the magnetic potential φ̃ are shown in black.

first variant. During the initial 0.5 ms, the magnetic field in the perpendicular direction
is set to zero, allowing the state variables to evolve into a stationary state. Afterwards,
one period of a triangle wave shaped magnetic field loading h2 favouring the second
martensite variant is applied perpendicularly to the other magnetic field with a frequency
of 250 Hz. The response behaviour in terms of strain and magnetisation responses are
investigated for multiple levels of constant h1 magnetic field loading. In principle, it
would also be possible to superimpose a compression stress, applied in terms of tractions
on the surface of the specimen. But, since the effect of a biaxial magnetic field on
the response behaviour should be analysed on its own, only rigid body motions are
suppressed and no tractions are applied on the surface of the body. The boundary value
problem is schematically sketched in Figure 4.25.

Figure 4.26 shows (a), (c) the strain where the initial values at time t1 = 0.5 ms are
shifted to zero, and (b), (d) the magnetisation responses under multiple levels of con-
stant magnetic field loading. In the following, body area-averaged response behaviour
is compared to the responses of the constitutive driver routine. All simulated response
curves have in common that the cyclic magnetic field is able to initialise and com-
plete the martensite reorientation process into the cyclic magnetic field-favoured second
martensite variant. The onset of the reorientation process is delayed for higher constant

136



4.4 Numerical examples

e1

e2

φ̃=0 on ∂Ω

Ω

B

sup
eri
mp

ose
d

h(
t)
in

Ω

h1=constant

h2(t)

(a)

Figure 4.25: Schematic representation of the magnetomechanical BVP of a rectangular body B em-
bedded into a finite size free space box Ω. Prescribed loading in terms of a spatially homogeneous
biaxial magnetic field h(t) loading where the horizontal component h1 = const. favours the initial first
martensite variant, and where the vertical component h2(t) favours the second martensite variant.

magnetic fields. For the smaller constant magnetic fields considered, only a partial reori-
entation into the initial martensite variant occurs during unloading. For larger constant
magnetic fields, a complete reorientation into the initial first martensite variant is ob-
servable. The higher the constant applied magnetic field, the lower the magnetisation
in the direction of the cyclic magnetic field. All response curves have in common that
the width of the hysteresis in the magnetisation response curve and, in particular, the
strain response curve increases for increasing levels of constant magnetic field. Gener-
ally, the response behaviour of the constitutive driver routine approximates the response
behaviour of the finite element simulations quite well. The larger the constant magnetic
field, the better the correlation of the corresponding response curves. Only for low con-
stant magnetic fields, the strain response of both simulations obviously does not match.
The response behaviour under biaxial magnetic field loading has, to some extent, certain
similarities with the response behaviour under constant compression stress and cyclic
perpendicular magnetic field loading, see Figures 4.18 for comparison. In addition to
the presented response curves, the response under a fifth level of constant magnetic field
µ0 h1 = 0.3 T is considered. Figure 4.27 shows the body area-averaged response curves
and some sketches of the body area-averaged underlying microstructure in terms of the
martensite volume fractions, the domain volume fractions, and the orientations of the
magnetisation vectors inside the domains at selected loading states. The corresponding
spatial distribution of ξ1 is shown in Figure 4.28 and that of mi/ms in Figure 4.29.

Starting from a single variant and single domain state in 1©, the second martensite
variant—consisting likewise of only one domain—grows at the expense of the other, see
2©. In 3©, switching is completed and a single domain configuration is observable where
the magnetisation is slightly oriented in the direction of the constant magnetic bias field.
During unloading, the initial configuration is only partially, but nearly completely re-
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Figure 4.26: Body area-averaged magnetic field-induced (a), (c) strain and (b), (d) magnetisation
response under multiple levels of constant magnetic field h1 and perpendicular cyclic magnetic field h2
loading of the quadratic specimen embedded in a free space box. The response behaviour of the finite
element simulations (FE) is compared to the response of a constitutive driver routine (D).

covered, see 4© to 6©, and a remanent strain is observable. See also our previous work
[10] and the discussion therein for comparison.
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Figure 4.27: Body area-averaged magnetic field-induced (a) strain and (b) magnetisation response under
constant magnetic field µ0 h1 =0.3 T and perpendicular cyclic magnetic field h2 loading of the quadratic
specimen embedded in a free space box. The evolution of the body-averaged microstructure is sketched
for selected loading states. Sketched mechanism: magnetisation vector rotation and martensite variant
switching.
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Figure 4.28: Spatial distributions of ξ1 for selected load steps marked in Figure 4.27. In addition,
iso-lines of the magnetic potential φ̃ are shown in black.
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Figure 4.29: Spatial distributions of (a) m1/ms and (b) m2/ms for selected load steps marked in

Figure 4.27. In addition, iso-lines of the magnetic potential φ̃ are shown in black.
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4.4.6 Investigation of a complex geometry

In the final example, the response behaviour of an I-profile is investigated under con-
stant prescribed tractions t2—favouring the initial second martensite variant—and cyclic
magnetic field loading. One period of a triangle wave shaped magnetic field loading hi,
favouring the i-th martensite variant, with a frequency of 250 Hz is applied. The bound-
ary value problems are schematically sketched in Figure 4.30 for the magnetic field
applied in (a) horizontal and (b) vertical direction.

e1

e2

φ̃=0 on ∂Ω

Ω

B

t2=const.

superimp. h1(t) in Ω

(a)

e1

e2

φ̃=0 on ∂Ω

Ω

B

t2=const.

superimp. h2(t) in Ω

(b)

Figure 4.30: Schematic representation of the magnetomechanical BVP of an I-profile B embedded into
a finite size free space box Ω. Prescribed loading in terms of tractions t2 = const. favouring the initial
second martensite variant (ξ2 = 0.999) and superimposed spatially homogeneous magnetic fields hi(t)
in (a) horizontal and (b) vertical direction.

Figure 4.31 shows (a) the strain where the lowest values are shifted to zero, and (b)
the magnetisation response curves for the I-Profile under multiple constant prescribed
tractions t2 and cyclic magnetic field hi loading. Due to the shape of the body, the stress
distribution inside the body is highly inhomogeneous under prescribed tractions. Firstly,
the easy-axis response (e) is considered where the magnetic field h2 is applied parallel
to the tractions. The tractions t2 applied on the surface are equivalent to applying
a compression stress of σ22 = −10.0 MPa. The magnetisation response curve seems
to consist of three nearly linear regions, with the highest slope around low magnetic
fields. Even though the compression stress is larger than the blocking stress in all
previous examples, the magnetic field is able to initialise a partial reorientation of the
martensite variant, observable in the strain response curve. The width of the hysteresis
curve is relatively small. Secondly, the hard-axis response (h) is considered where the
magnetic field h1 is applied perpendicular to the tractions. The tractions t2 applied on
the surface are, again, equivalent to applying a compression stress of σ22 =−10.0 MPa.
The magnetisation response seems to be quite linear, but the slope decreases successively
for larger magnetic fields. A partial variant reorientation into the magnetic field-favoured
martensite variant is observable in the strain response curve. The width of the hysteresis
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Figure 4.31: Body area-averaged magnetic field-induced (a) strain and (b) magnetisation response under
multiple levels of constant compression stress σ22 that favours the initial second martensite variant and
parallel (e) or perpendicular (h, F, D) cyclic magnetic field hi loading of the I-profile embedded in a
free space box. For σ22 = −1.0 MPa, the response behaviour of the finite element simulations (F) is
compared to the response of a constitutive driver routine (D).

curve is also relatively small. Finally, the response behaviour under tractions t2 applied
on the surface, that are equivalent to applying a compression stress of σ22 =−1.0 MPa,
and cyclic perpendicular h1 magnetic field loading of a finite element simulation (F)
is compared to the response behaviour of the constitutive driver routine (D). Due to
the spatially highly inhomogeneous response of the I-profile, the predicted response
behaviour of the constitutive driver routine is completely different to the body area-
averaged response. The magnetisation response of the finite element simulations lies
somewhere between the easy- and hard-axis magnetisation response. The strain response
is shaped like “U”. Only an incomplete reorientation into the initial martensite variant
occurs during unloading. A clearly but relatively small hysteretic behaviour is observable
in both response curves. The spatial distribution of ξ1, m1/ms, and m2/ms is shown in
Figure 4.32 for selected load steps marked in Figure 4.31.
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Figure 4.32: Spatial distributions of (a) ξ1, (b) m1/ms, and (c) m2/ms for selected load steps marked

in Figure 4.31. In addition, iso-lines of the magnetic potential φ̃ are shown in black.
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4.5 Summary and outlook

This chapter presented a micromagnetics-inspired finite element framework used for the
modelling and simulation of the material behaviour and structural response of Ni2MnGa
MSMA specimens embedded into finite size free space boxes. At first, a micromagnetics-
inspired power type potential consisting of an energy potential and a dissipation func-
tional was introduced, where the displacement field u, the magnetic potential of the
demagnetisation field φ̃, and a set of microstructure-describing state variables p are the
global primary field variables. The stationarity conditions of the power type potential
are equivalent to solving the mechanical equilibrium equations, the Maxwell equations
for the magnetostatic case, and the Biot equations in terms of evolution equations for
the state variables. Secondly, the set of state variables that describe the state of the
assumed underlying microstructure, in terms of a martensite variant volume fraction and
some variables describing the magnetic state, was defined. A numerical homogenisation
scheme was applied to derive the effective elastic strain energy density of the phase
mixture that consists of two tetragonal martensite variants with different Bain strains.
The magnetocrystalline anisotropy energy density that accounts for deviations of the
(spontaneous) magnetisation vectors from their respective easy-axes was introduced for
different parametrisations. The derivatives of the stored energy density of the body, the
derivatives of the magnetisation, and the total magnetic field are part of the driving
forces in the evolution equations of viscoplastic, respectively viscoelastic, type for the
state variables. Due to the non-local nature of the demagnetisation self-field, the mag-
netostatic problem as well as the evolution equations for the state variables have to be
solved simultaneously. The introduction of the state variables as global primary fields
were therefore necessary. The underlying equations of the finite element implementation
were derived from the stationarity conditions of the power type potential, subject to
inequality constraints of the state variables. Two different regions, the magnetostrictive
body and the surrounding free space, were considered. The displacement field and the
state variables were solely resolved in elements of the body which was discretised using
a mixed element formulation. The treatment of the inequality constraints necessitated
the introduction of Karush-Kuhn-Tucker parameters at the global level in terms of addi-
tional nodal degrees of freedom. Fischer-Burmeister NCP functions were used to express
the KKT-conditions in a residual format. Multiple numerical examples demonstrated
the capabilities of the finite element framework. Body area-averaged strain and magneti-
sation response curves were compared to experimental data taken from the literature.
This comparison demonstrated the advantages of the finite element simulations where
inhomogeneous distributions of, e.g., the strain, the magnetisation, and the magnetic
field occurred, over simulations performed using a demagnetisation tensor, where all
quantities are by definition assumed to be homogeneously distributed inside the body.
Finite element simulations of ellipsoidal bodies yielded the same homogeneous responses
as were predicted by simulations utilising a demagnetisation tensor and therefore verified
the finite element implementation.
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In future work, the most important step is the extension to three-dimensional prob-
lems. This will allow the simulation of arbitrarily shaped bodies and make the compari-
son to all experimentally obtained response curves possible. In addition, more advanced
material models will be employed, e.g. other numerical energy relaxation schemes may
be applied to the elastic strain energy density of the phase mixture in terms of rank-
one convexification w.r.t. laminates of first or second order. The general framework
shall be applied to other material classes, for instance (giant) magnetostrictives such as
Terfenol-D, Galfenol, and cobalt ferrite.

4.6 Appendix

4.6.1 Dependencies among the domain magnetisations

In Section 4.2, it was claimed, that θ2i = − θ2i−1 minimises the magnetocrystalline
anisotropy energy density within the i-th variant of martensite at constant magneti-
sation, cf. (4.57). In the following proof—based on the derivation in [21]—, only the
first variant of martensite is considered, i.e. ξ1 =1. The proof for the second martensite
variant is analogously possible.

The magnetic state of the first martensite variant is characterised by the domain
volume fraction γ1 and the two angles θ1 and θ2. Assuming a coexistence of both do-
mains, the lower and upper bound of the relative domain volume fraction are excluded,
i.e. γ1 6=0 and γ1 6=1, since otherwise, the angle of the non-existing domain would be arbi-
trary. Additionally, the states θ1 =− θ2 =± π/2, which maximise the magnetocrystalline
anisotropy energy density, are not considered.

Insertion of γ1 sin(θ1) = [ 1 − γ1 ] sin(θ2) + m12, from (4.57), into (4.58) results in
an alternative representation of the magnetocrystalline anisotropy energy density of the
first martensite variant

ψ an
M1

k1

=
m2

12 + 2m12 [ 1− γ1 ] sin(θ2) + [ 1− γ1 ] sin2(θ2)

γ1

. (4.117)

The first and second partial derivative of (4.117)

1

k1

∂ψ an
M1

∂θ2

=
2 [ 1− γ1 ]

γ1

cos(θ2) [m12 + sin(θ2) ] , (4.118)

1

k1

∂2ψ an
M1

∂θ2
2

=
2 [ 1− γ1 ]

γ1

[
cos2(θ2)− sin(θ2) [m12 + sin(θ2) ]

]
. (4.119)

are used to check the necessary and sufficient condition for a minimum, respectively
maximum. The two solutions fulfilling ∂θ2ψ

an
M1 = 0 are m12 =− sin(θ2) and cos(θ2) = 0.
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Inserting m12 =− sin(θ2) into (4.119) results in the sufficient condition for a minimum,
viz.

k1
2 [ 1− γ1 ]

γ1

cos2(θ2) > 0 , for cos(θ2) 6= 0 . (4.120)

Since the magnetisation (4.57) is assumed to remain constant, see (4.57), m12 =− sin(θ2)
results in sin(θ1) =− sin(θ2) and consequently θ2 =− θ1, even for cos(θ2) = 0. Inserting
cos(θ2)=0 into (4.119) results in the sufficient condition for a maximum, viz.

k1
2 [ 1− γ1 ]

γ1

[
− sin2(θ2)− sin(θ2)m12

]
< 0 , for − 1 < m12 < 1 , (4.121)

Since the magnetisation (4.57) is assumed to remain constant, see (4.57), m12 = ∓ 1
results in sin(θ1) = ∓ 1 and consequently sin(θ1) = − sin(θ2), respectively θ2 = − θ1 =
± π/2, and also m12 =− sin(θ2).

For cos(θ2) = 0, the results of both possible solution state θ2 =−θ1, which is inter-
pretable as a full alignment of the magnetisation in both domains with the magnetic
hard-axis (maximum of the magnetocrystalline anisotropy energy density). In such a
case, the domain volume fraction may take arbitrary values, even the excluded values
γ1 = 0, respectively γ1 = 1, without having an influence on the magnetisation or the
anisotropy energy density.

Insertion of θ2 = − θ1 together with m12 = − sin(θ2) (ξ1 = 1) in (4.58), respectively
(4.117), results in the magnetocrystalline anisotropy energy density of the first marten-
site variant

ψ an
M1

k1

= sin2(θ1) = sin2(θ2) = m2
12 , (4.122)

even for the excluded values γ1 = 0, respectively γ1 = 1, at constant magnetisation,
cf. (4.57).

In summary, the magnetocrystalline anisotropy energy density of the first martensite
variant is minimised for θ2 =− θ1. The analogous derivation results in θ4 =− θ3 minimis-
ing the magnetocrystalline anisotropy energy density of the second martensite variant.
As already mentioned in Section 4.2, the number on state variables is reduced by two
and the number of inequality constraints reduces from fourteen (4.56) to four (4.59).

4.6.2 Constitutive driver routine

This sections deals with the derivation of a constitutive driver routine to calculate the
response of macroscopically homogeneous states inside bodies under prescribed homo-
geneous stress σ and prescribed homogeneous magnetic field h loading. The strain ε(p)
and magnetisation m(p) responses, which are also assumed to be homogeneous inside
the body, are completely determined by the evolution of the state variables p, intro-
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duced in Section 4.2. The constitutive driver routine is used for comparison to body
area-averaged strain ε and magnetisation m response curves of finite element simula-
tions.

Beginning with the energy potential (4.8), the displacement field u and the magnetic

potential φ̃, respectively their gradients, viz. the strain ε (symmetric gradient) and the

demagnetisation field h̃ (negative gradient), are directly expressed as functions of the
state variables p. Due to the linear relation of stress and strain in (4.47), the inverse
relation is used to calculate the strain ε(σ, ξi), viz.

ε = E−1 : σ +
2∑

i=1

ξi ε
tr
i . (4.123)

The inverse of the elasticity tensor is defined as the compliance tensor S and may be
represented in terms of the compression-modulus κ = E/[ 3 [ 1 − 2 ν ] ] and the shear-
modulus µlam

S := E−1 =̂
1

9κ
δij δkl+

1

2µlam

[
1

2
[ δik δjl + δil δjk ]− 1

3
δij δkl

]
ei⊗ej⊗ek⊗el . (4.124)

For a prescribed homogeneous stress state, i.e. σ=σ, (4.123) is completely determined
by the variant volume fraction ξ1 (ξ2 = 1 − ξ1), cf. [112]. Insertion of (4.123) into the
elastic strain energy density (4.46) yields

Cψ el =
1

2
σ : E−1 : σ =

1

2
σ : S : σ , (4.125)

which is independent of p and completely determined for σ=σ. The contribution due to
prescribed tractions t on the Neumann surface are assumed to result in a homogeneous
stress and strain state. In the absence of additional body forces, the reformulation of
the surface integral yields

∫

∂Bt

t · u da =

∫

∂Bt

[σ · n ] · u da =

∫

B

divx(σ t · u) dv

=

∫

B

∇sym
x u : σ dv +

∫

B

u · divxσ dv =

∫

B

ε : σ dv , (4.126)

where the strain ε, introduced in (4.123), is completely determined by the volume frac-
tion ξ1. With (4.125) and (4.126) at hand, the incremental potential depends no longer
on the displacement field u for homogeneous states.
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Remark 13 For general cases, where the relation between the stress and the strain is
nonlinear, the strain ε is iteratively determined until the norm of the difference of the
stress σ=∂εψ

mat and the prescribed stress σ falls below a certain tolerance value.

A homogeneous magnetisation state yields the lowest possible magnetostatic energy of
the demagnetisation field for ellipsoidal specimens, see [41], and the concept of the de-

magnetisation tensor is applicable, where the demagnetisation field h̃ depends directly
on the magnetisation m and geometry dependent shape factors collected in the demag-
netisation tensor D, see, e.g., [115, 155], through

h̃ = −D ·m . (4.127)

This concept is also applicable for arbitrarily shaped bodies, which are homogeneously
magnetised. In such a case, the average demagnetisation field 〈h̃〉 is related to the mag-
netisation by an average demagnetisation tensor 〈D〉, cf. [65, 155]. The demagnetisation
tensor D is either known for a given geometry or has to be calculated in advance in a
magnetostatic finite element simulation.

Remark 14 The magnetisation m, as introduced in (4.65) and occurring in (4.127),
is assumed to be spatially homogeneously distributed inside the body on the considered
macroscale and consequently identical to the body area-averaged magnetisation. Since it
is an averaged, respectively homogenised, quantity, the distribution of the magnetisation
might be inhomogeneous on the underlying microscale.

Using (4.7) and (4.127), the integrals regarding the demagnetisation field h̃ in the energy
potential (4.8) are replaced, cf. [41], by

− µ0

2

∫

Ω

‖h̃‖2 dv − µ0

∫

B

h̃ ·m dv =
µ0

2

∫

B

m ·D ·m dv , (4.128)

which depends, for a given demagnetisation tensor D, only on the state variables p,
with m specified in (4.65), and no longer on the magnetostatic potential φ̃, respectively

the demagnetisation field h̃. For homogeneous states, the energy potential (4.8) is
reformulated using (4.123), (4.125), (4.126) and (4.128)

Π hom =

∫

B

[
ψmat(σ,p) +

µ0

2
m(p) ·D ·m(p)− µ0 h ·m(p)− ε(σ,p) : σ

]
dv ,

(4.129)

with ψmat(σ,p)=Cψ el(σ)+ψ an(p) defined in (4.64) and (4.125). Due to the assumption
of homogeneous states inside B, the volume integral (4.129) yields the volume of the body
VB.
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The magnetomechanical response is then modelled to be governed by the global rate-
type variational principle, cf. (4.13) and (4.14),

{ṗ} = arg inf
ṗ


 Π̇hom +

∫

B

ζ(ṗ) dv


 subject to rc(p) ≤ 0 . (4.130)

In analogy to the derivation of the time discrete evolution equations of the state variables
p for the finite element implementation, see Section 4.2, the driving forces are derived
as the negative gradient −∂pΠ hom in B, viz.

F hom := −
∂
[
ψmat(σ,p) +

µ0

2
m(p) ·D ·m(p)− µ0 h ·m(p)− ε(σ,p) : σ

]

∂p
(4.131)

and thus

F hom =




σ : [ εtr
1 − εtr

2 ] + k1 [m2
21 −m2

12 ] + µ0 ms h · [m∗1 −m∗2 ]

µ0 ms h1 ξ1

−2 k1 ξ1 m12 + µ0 ms h2 ξ1

−2 k1 ξ2 m21 + µ0 ms h1 ξ2

µ0 ms h2 ξ2




t

. (4.132)

The driving forces in the homogeneous case (4.132) are in fact identical to the driving
forces stated in (4.69), with σ = σ. In analogy to the derivation in Section 4.2, the
vector r hom containing the residuals of the time discrete evolution equations for the
homogeneous case may be derived and is defined as

rhom :=




ξn+1
1 − ξn1 − ∆ t

ηξ
sign

(
Fhom

1
n+1
) 〈∣∣∣Fhom

1
n+1
∣∣∣− Yξ

〉

mn+1
11 −mn

11 − ∆ t
ηm
Fhom

2
n+1

/ξ1

mn+1
12 −mn

12 − ∆ t
ηm
Fhom

3
n+1

/ξ1

mn+1
21 −mn

21 − ∆ t
ηm
Fhom

4
n+1

/ξ2

mn+1
22 −mn

22 − ∆ t
ηm
Fhom

5
n+1

/ξ2




. (4.133)
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The total residual of the homogeneous case contains the time discrete evolution equations
(4.133), contributions due to the inequality constraints rc ≤ 0 introduced in (4.60),
cf. (4.82), and the Fischer-Burmeister functions, cf. (4.91), viz.

rdriver =

[
renh

g

]
=


rhom + λ · ∂rc

∂p
g


 . (4.134)

In this case, an enhanced driving force renh is formally introduced. Unlike in the finite
element setting, where the nodal contributions account for the evolution due to contri-
butions from all neighbouring elements, they are directly related to the time discrete
evolution equations here. In combination with the Fischer-Burmeister functions g, the
additional terms prevent an inadmissible evolution of the state variables.

Unlike in previous works, where an optimiser was used to determine the evolution of
the state variables, see [9, 10, 112, 114], the solution of the time discrete evolution equa-
tions satisfying the constraints of the state variables, viz. rdriver =0, is determined using
the Newton-Raphson method. The constitutive driver routine including the Newton-
Raphson uptate is outlined in Table 4.5. Some of the terms occurring in the Jacobian
are different compared to the finite element setting, since all quantities depend on the
state variables p, see the appendix in Section 4.6.4.

Remark 15 Due to numerical reasons, again, slightly modified version of the con-
straints r∗c introduced in (4.62) and the Fischer-Burmeister functions g∗ introduced in
(4.92) are used.
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Table 4.5: Constitutive driver routine.

0. Initialisation:

Set load counter n=0, specify demagnetisation tensor D, choose admissible initial con-
figuration p0 satisfying the constraints and initialise the Lagrange multipliers λ0 =0.

1. Load stepping:

Specify externally applied stress σn+1 and magnetic field hn+1 loading, set iteration
counter k = 0, and set initial values for the state variables kpn+1 = pn and Lagrange
multipliers kλn+1 =λn.

2. Residual vector:

Calculate the demagnetisation self field kh̃ = −D ·m(kpn+1), the total magnetic field
kh=hn+1 + kh̃ and the residual vector

krdriver =

[
krenh(kpn+1,

kλn+1)

kg(kpn+1,
kλn+1)

]
=


krhom(kpn+1) + kλn+1 ·

∂rc(
kpn+1)

∂kpn+1
kg(kpn+1,

kλn+1)




3. Newton update:

Check for convergence by calculating ‖krdriver‖:
– if ‖krdriver‖≤tol, with e.g. tol=10−10, go to 4.

– otherwise, calculate the Jacobian

kJ =




∂krenh(kpn+1,
kλn+1)

∂kpn+1

∂krenh(kpn+1,
kλn+1)

∂kλn+1

∂kg(kpn+1,
kλn+1)

∂kpn+1

∂kg(kpn+1,
kλn+1)

∂kλn+1


 ,

update the variables

[
k+1pn+1

k+1λn+1

]
=

[
kpn+1

kλn+1

]
− kJ−1 · krdriver ,

set the iteration counter k⇐k + 1 and return to 2.

4. Postprocessing:

Calculate the strain εn+1 (and magnetisation mn+1) of the current step as functions of
kpn+1. Save history data pn+1 =kpn+1, set step counter n⇐n+ 1 and return to 1.
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4.6.4 Stiffness matrix contributions

In the following representation, the brackets 〈〈•〉〉 marks entries that are only taken into
account for |F1| exceeding the corresponding threshold Yξ. The individual contributions
of the stiffness matrices (4.100) – (4.106) introduced in Section 4.3 for the constitutive
model introduced in Section 4.2 are specified as follows:

– of KAB
uu in (4.100)

∂σ

∂ε
= E , (4.135)

– the non-zero contributions of KAF
up in (4.101)

∂σ

∂ξ1

= E : [ εtr
2 − εtr

1 ] , (4.136)

– of KCF
φ̃p

in (4.103)

∂m

∂p
= ms

[
[m11 −m21 ] ξ1 0 ξ2 0

[m12 −m22 ] 0 ξ1 0 ξ2

]
, (4.137)

– the non-zero contributions of KEB
pu in (4.104)

∂revo
1

∂ε
=

〈〈
∆ t

ηξ
[ εtr

2 − εtr
1 ] : E

〉〉
, (4.138)

– of KED
pφ̃

in (4.105)

∂revo

∂h̃
= µ0 ms




〈〈
∆ t
ηξ

[m11 −m21 ]
〉〉 〈〈

∆ t
ηξ

[m12 −m22 ]
〉〉

∆ t
ηm

0

0 ∆ t
ηm

∆ t
ηm

0

0 ∆ t
ηm



, (4.139)
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– of KEF
pp in (4.106)

∂revo

∂p
=




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



−




〈〈
∆ t
ηξ

∂F1

∂p

〉〉

0

∆ t
ηm

∂F3/ξ1
∂p

∆ t
ηm

∂F4/ξ2
∂p

0




, (4.140)

with

− ∂F1

∂p
=




[ εtr
2 − εtr

1 ] : E : [ εtr
2 − εtr

1 ]

− µ0 ms h1

2 k1 m12 − µ0 ms h2

−2 k1 m21 + µ0 ms h1

µ0 ms h2




t

,

− ∂F3/ξ1

∂p
=
[
0 0 2 k1 0 0

]
, − ∂F4/ξ2

∂p
=
[
0 0 0 2 k1 0

]
. (4.141)

The dimensions of the stiffness matrices due to the contributions of the constraints
at node G, see (4.107) – (4.110), are

KGG
pp ∈ R5×5 , KGG

pλ ∈ R5×4 , KGG
λp ∈ R4×5 , KGG

λλ ∈ R4×4 . (4.142)

The non-zero terms of (4.142) for the parametrisation and the corresponding constraints
introduced in Section 4.2 are

KGG
pp (2 : 3, 2 : 3) = λG3

[
I2×2

‖m∗1‖
− m∗1 ⊗m∗1

[m∗1 ·m∗1 ]
3
2

]
,

KGG
pp (4 : 5, 4 : 5) = λG4

[
I2×2

‖m∗2‖
− m∗2 ⊗m∗2

[m∗2 ·m∗2 ]
3
2

]
,

KGG
pλ (1, 1) = −1 , KGG

pλ (1, 2) = 1 ,

KGG
pλ (2 : 3, 3) =

m∗1
‖m∗1‖

, KGG
pλ (4 : 5, 4) =

m∗2
‖m∗2‖

,

154



4.6 Appendix

KGG
λp (1, 1) =

− r1√
r1

2 + λG1
2
− 1 , KGG

λp (2, 1) =
r2√

r2
2 + λG2

2
+ 1 ,

KGG
λp (3, 2 : 3) =

m∗1
t

‖m∗1‖


 r3√

r3
2 + λG3

2
+ 1


 ,

KGG
λp (4, 4 : 5) =

m∗2
t

‖m∗2‖


 r4√

r4
2 + λG4

2
+ 1


 ,

KGG
λλ (i, i) =

λEi√
ri2 + λGi

2
− 1 with i = 1, . . . , 4 . (4.143)

With (4.68) and (4.141) at hand, the contribution of the evolution equations to the
Jacobian matrix in the constitutive driver routine, as outlined in the appendix in Sec-
tion 4.6.2, is

∂rhom

∂p
=




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



−




〈〈
∆ t
ηξ

∂Fhom
1

∂p

〉〉

−∆ t
ηm
µ0 m

2
s e1 ·D · ∂m

∗

∂p

∆ t
ηm

[
∂F3/ξ1
∂p
− µ0 m

2
s e2 ·D · ∂m

∗

∂p

]

∆ t
ηm

[
∂F4/ξ2
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5 Concluding remarks

The thesis dealt with the modelling and simulation of the microstructure evolution
in functional magnetic materials under magnetomechanical loading conditions, in par-
ticular in single crystalline Ni2MnGa magnetic shape memory alloys. The objective
was the development of suitable material models to capture and simulate the nonlinear,
hysteretic, and stress-level dependent response of such materials and the embedding of
these kinds of material models into a finite element framework. For the latter, one of the
main challenges was the incorporation of the influence of the demagnetisation field that
builds up as magnetisable specimens are subjected to externally applied magnetic fields.
The demagnetisation field typically lowers the total magnetic field that is “visible” in-
side magnetisable specimens. Furthermore, since it is a non-local quantity, it heavily
influences the evolution of the microstructure at every material point. Moreover, the
demagnetisation effect depends on the shape of a specimen, such that simulated and
experimentally determined response curves, when visualised as functions of the exter-
nally applied magnetic fields, e.g. strain and magnetisation responses, always show a
structural response. In the following, the individual chapters are briefly summarised.
An outlook on possible future research activities is given at the end of the chapter.

In Chapter 2, a material model for the simulation of Ni2MnGa MSMAs under magne-
tomechanical loading conditions was suggested. The chapter began by introducing the
global primary fields and the micromagnetics-inspired variational framework, both being
the basis for this and the two forthcoming chapters. The assumption of macroscopically
homogeneous states allowed the reduction to a constrained minimisation problem to de-
termine the evolution of the microstructure-describing state variables. The underlying
microstructure, assumed to consist of two variants of twinned martensite with internal
domains, was parametrised by a set of state variables. In addition, the stored energy
densities of the individual martensite variants and the magnetocrystalline anisotropy
energy densities were introduced. The effective or homogenised energy densities fol-
lowed through appropriate mixture rules and energy relaxation concepts. Furthermore,
a suitable dissipation potential was introduced. The shape dependency of the system
response was captured by utilising the concept of demagnetisation factors. Several nu-
merical examples demonstrated the prediction capabilities of the proposed model. To
be precise, variant switching diagrams were introduced to visualise critical points during
the martensite reorientation under magnetomechanial loading conditions. A closer look
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at strain and magnetisation response curves revealed that the model generally captures
all key characteristics of the complex response behaviour of Ni2MnGa. The effective re-
sponse behaviour was connected to the predicted evolution of the microstructure. This
analysis revealed that the model allows the individual and simultaneous occurrence of
all mechanisms central to MSMA behaviour.

Chapter 3 was the first step taken in the implementation of energy relaxation-based
material models into a finite element framework to simulate the material and structural
behaviour of MSMA specimens. Inequality constraints that bound the state variables
were directly taken into account in the variational framework. The dependency on
the displacement field dropped out by assuming homogeneous stress and strain distri-
butions. The first variation of a power-type potential served as a basis for the finite
element implementation. By neglecting elastic strains, the microstructure consisting of
two martensite variants with internal magnetic domains was parametrised, the magne-
tocrystalline anisotropy energy density as well as a dissipation function were specified,
and the evolution equations were derived. A newly introduced mixed element formula-
tion allows the monolithic solution of the magnetostatic boundary value problem and the
evolution equations for the state variables, that are discretised as global degrees of free-
dom in this approach. The fulfilment of the Karush-Kuhn-Tucker conditions that arise
due to the constraints was accomplished by nonlinear Fischer-Burmeister complemen-
tarity functions together with the introduction of the associated Lagrange-multipliers as
additional nodal degrees of freedom. The finite element implementation was validated
in comparison to simulations that utilised demagnetisation factors. Other simulations
demonstrated the advantages of finite element simulations, in particular by comparing
effective body-averaged response curves to experimental findings.

In Chapter 4, the ideas presented in Chapter 3 were extended by additionally in-
corporating the displacement field as a global degree of freedom. The focus lay on the
monolithic solution of the fully coupled magnetomechanical boundary value problem
and the evolution equations for the microstructure-describing state variables. Again,
the first variation of a power-type potential served as the basis for the finite element im-
plementation. The constitutive model was discussed in more detail. In particular, elastic
strains were considered and multiple parametrisations of the underlying microstructure
were introduced and connected. Energy relaxation concepts were applied to determine
an effective energy density of the mixture of the martensite variants. In this chapter,
the evolutions of all state variables—including those describing the magnetic state—
were considered to be rate-dependent and dissipative. The previously introduced mixed
element formulation was extended by additionally taking the displacement field into
account. The constraints were treated in analogy to the previous chapter. Several
numerical examples demonstrated the capabilities of the fully coupled finite element
simulations in comparison to experimental findings and simulations that utilised demag-
netisation factors. To be precise, body-averaged response curves, spatial distributions
of various quantities, and the evolution of the underlying body-averaged microstructure
were analysed and discussed for multiple load cases.
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For the proposed energy relaxation-based material models, one possible next step
would be the extension to three-dimensional problems to allow a comparison of exper-
imental data with simulated response curves of the correct specimen geometry. This
would necessitate a new parametrisation of the underlying microstructure in terms of
martensite interface normals—only in the case of a Rank-one convexification approach—
and the magnetic state. One may also consider taking the third tetragonal martensite
variant into account. Instead of isotropic elastic properties, one could use elasticity ten-
sors for tetragonal symmetry. This would require an experimental determination of the
corresponding six material parameters. Other numerical energy relaxation schemes may
be applied, e.g. higher order laminates or the consideration of magnetic compatibility.
Another possibility would be the application of the general framework to the modelling
of seven-layered 7M modulated nearly orthorombic martensite in Ni2MnGa or to other
MSMAs. Furthermore, the framework might be applied to the modelling of (giant) mag-
netostrictive materials, for instance Terfenol-D, Galfenol, and cobalt ferrite, where the
effect of magnetostriction would have to be taken directly into account. One possibility
to reduce the numerical effort on the finite element level would be the introduction of
effective magnetisation vectors, whose lengths are limited by a specific value, e.g. the sat-
uration magnetisation, as global degree of freedom, cf. the micromagnetic theory, where
the spontaneous magnetisation with constant length is one global degree of freedom. In
such a case, the number of inequality constraints reduces to one. The magnetisation
on the finite element level would then be connected to the local magnetisation at the
material point level by, e.g., a penalty type approach, such as suggested by [113], where
a global damage variable was connected to a local damage variable. In addition to the
advantage of a reduced numerical effort on the finite element level, this approach would
allow the use of basically arbitrary material models at the material point level.

159





Bibliography

[1] URL https://www.uni-due.de/ferroics/home.

[2] URL http://www.etrema.com/.

[3] F. Albertini, L. Pareti, A. Paoluzi, L. Morellon, P. A. Algarabel, M. R. Ibarra,
and L. Righi. Composition and temperature dependence of the magnetocrystalline
anisotropy in Ni2+xMn1+yGa1+z (x + y + z = 0) Heusler alloys. Applied Physics
Letters, 81(21):4032–4034, 2002. doi:10.1063/1.1525071.

[4] F. Albertini, F. Canepa, S. Cirafici, E. A. Franceschi, M. Napoletano, A. Paoluzi,
L. Pareti, and M. Solzi. Composition dependence of magnetic and magnetothermal
properties of Ni–Mn–Ga shape memory alloys. Journal of Magnetism and Magnetic
Materials, 272–276(3):2111–2112, 2004. doi:10.1016/j.jmmm.2003.12.883.

[5] F. Auricchio, A.-L. Bessoud, A. Reali, and U. Stefanelli. A three-dimensional
phenomenological model for magnetic shape memory alloys. GAMM-Mitteilungen,
34:90–96, 2011. doi:10.1002/gamm.201110014.

[6] T. Bartel. Multiskalenmodellierung martensitischer Phasentransformationen in
Formgedachtnislegierungen unter Verwendung relaxierter Energiepotenziale. PhD
thesis, Ruhr-University Bochum, 2009.

[7] T. Bartel and K. Hackl. A micromechanical model for martensitic
phase-transformations in shape-memory alloys based on energy-relaxation.
Zeitschrift für Angewandte Mathematik und Mechanik, 89:792–809, 2009.
doi:10.1002/zamm.200900244.

[8] T. Bartel and A. Menzel. Modelling and simulation of cyclic thermomechanical
behaviour of NiTi wires using a weak discontinuity approach. International Journal
of Fracture, 202:281–293, 2016. doi:10.1007/s10704-016-0169-8.

[9] T. Bartel, B. Kiefer, K. Buckmann, and A. Menzel. A kinematically-
enhanced relaxation scheme for the modeling of displacive phase transforma-
tions. Journal of Intelligent Material Systems and Structures, 26(6):701–717, 2015.
doi:10.1177/1045389X14557507.

[10] T. Bartel, B. Kiefer, K. Buckmann, and A. Menzel. An energy-relaxation-based
framework for the modelling of magnetic shape memory alloys — simulation of key
response features under homogeneous loading conditions. submitted for publication,
2018.

161

https://www.uni-due.de/ferroics/home
http://www.etrema.com/
http://dx.doi.org/10.1063/1.1525071
http://dx.doi.org/10.1016/j.jmmm.2003.12.883
http://dx.doi.org/10.1002/gamm.201110014
http://dx.doi.org/10.1002/zamm.200900244
http://dx.doi.org/10.1007/s10704-016-0169-8
http://dx.doi.org/10.1177/1045389X14557507


Bibliography

[11] A. Bartels and J. Mosler. Efficient variational constitutive updates for Allen-Cahn-
type phase field theory coupled to continuum mechanics. Computer Methods in Ap-
plied Mechanics and Engineering, 317:55–83, 2017. doi:10.1016/j.cma.2016.11.024.

[12] S. Bartels, C. Carstensen, K. Hackl, and U. Hoppe. Effective relaxation for mi-
crostructure simulations: Algorithms and applications. Computational Mathemat-
ics and Engineering, 193:5143–5175, 2004. doi:10.1016/j.cma.2003.12.065.

[13] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 2nd
edition, 1999.

[14] A.-L. Bessoud and U. Stefanelli. Magnetic shape memory alloys: three-dimensional
modeling and analysis. Mathematical Models and Methods in Applied Sciences, 21:
1043–1069, 2011. doi:10.1142/S0218202511005246.

[15] K. Bhattacharya. Microstructure of Martensite — Why it Forms and How it Gives
Rise to the Shape-memory Effect. Oxford University Press, New York, 2003.

[16] A. Bhattacharyya, Y. Lagoudas, D. C. Wang, and V. K. Kinra. On the role
of thermoelectric heat transfer in the design of sma actuators: theoretical mod-
eling and experiment. Smart Materials and Structures, 4(4):252–263, 1995.
doi:10.1088/0964-1726/4/4/005.

[17] M. A. Biot. Mechanics of Incremental Deformations. John Wiley & Sons, New
York, 1965.

[18] W. F. Brown, Jr. Micromagnetics, volume 18 of Interscience Tracts on Physics
and Astronomy. John Wiley & Sons, New York, 1963.

[19] W. F. Brown, Jr. Magnetoelastic Interactions, volume 9 of Tracts in Natural
Philosophy. Springer-Verlag, New York, 1966.

[20] V. D. Buchelnikov and S. I. Bosko. The kinetics of phase transformations in ferro-
magnetic shape memory alloys Ni–Mn–Ga. Journal of Magnetism and Magnetic
Materials, 258–259:497–499, 2003. doi:10.1016/S0304-8853(02)01070-3.

[21] K. Buckmann, B. Kiefer, T. Bartel, and A. Menzel. Simulation of magnetised
microstructure evolution based on a micromagnetics-inspired FE framework: ap-
plication to magnetic shape memory behaviour. Archive of Applied Mechanics,
2018. doi:10.1007/s00419-018-1482-7.

[22] W. J. Buehler, J. V. Gilfrich, and R. C. Wiley. Effect of low-temperature phase
changes on the mechanical properties of alloys near composition tini. Journal of
Applied Physics, 34(5):1475–1477, 1963. doi:10.1063/1.1729603.

[23] M. Canadija and J. Mosler. On the thermomechanical coupling in finite strain
plasticity theory with non-linear kinematic hardening by means of incremental
energy minimization. International Journal of Solids and Structures, 48:1120–
1129, 2011. doi:10.1016/j.ijsolstr.2010.12.018.

162

http://dx.doi.org/10.1016/j.cma.2016.11.024
http://dx.doi.org/10.1016/j.cma.2003.12.065
http://dx.doi.org/10.1142/S0218202511005246
http://dx.doi.org/10.1088/0964-1726/4/4/005
http://dx.doi.org/10.1016/S0304-8853(02)01070-3
http://dx.doi.org/10.1007/s00419-018-1482-7
http://dx.doi.org/10.1063/1.1729603
http://dx.doi.org/10.1016/j.ijsolstr.2010.12.018


Bibliography

[24] L. C. Chang and T. A. Read. Plastic deformation and diffusionless phase changes
in metals — the gold-cadmium beta phase. The Journal of The Minerals, Metals
& Materials Society (TMS), 3(1):47–52, 1951. doi:10.1007/BF03398954.

[25] X. Chen. Magneto-mechanical behaviors of ferromagnetic shape memory alloys.
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