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Abstract

We investigate a financial network of agents holding portfolios of inde-

pendent light-tailed risky objects whose losses are asymptotically expo-

nentially distributed with distinct tail parameters. We show that the

asymptotic distributions of portfolio losses belong to the class of func-

tional exponential mixtures which we introduce in this paper. We also

provide statements for Value-at-Risk and Expected Shortfall risk mea-

sures as well as for their conditional counterparts. Compared to heavy

tail settings we establish important qualitative differences in the asymp-

totic behavior of portfolio risks under a light tail assumption which have

to be accounted for in practical risk management.
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1 Introduction

Studying a network of agents which share financial risks by holding portfolios with

different objects subject to random losses is of high relevance for both risk man-

agement and financial regulation. By monitoring a financial system, regulators or

risk managers should assess risk exposures of different companies or business lines

in order to determine capital reserves required in case of unexpectedly large losses.

A regulator’s or risk manager’s assessment requires the following information: What

are risk exposures of individual agents? Which are the dominant objects able to

cause serious losses to agents or even to the entire system? How does the network

structure affect the relationship between individual agent risks and the system risk?

We focus on a system where individual agents, e.g. insurance companies or in-

vestment funds, form a financial network by holding portfolios of risky objects. A

possible structure of such a network is illustrated by a bipartite graph of agent-

object relationships in Figure 1.1. As holding risky portfolios may lead to extreme

losses, it is of importance to quantify the tail behavior of the portfolio losses in

this network context. Such results are of particular interest for risk managers and

regulating authorities, who should facilitate financial stability by monitoring both

system and agents’ losses. Moreover, they are required for computing the commonly

applied risk measures, such as Value-at-Risk, Expected Shortfall, as well as Con-

ditional Value-at-Risk and Expected Shortfall, cf. McNeil et al. [31], Adrian and

Brunnermeier [1].

The effects of risk aggregation and risk sharing have been intensively studied in

the current literature primarily for heavy-tailed risks with a power tail decay, see

Embrechts et al. [13, 14], Kley et al. [23, 24], Lin et al. [26], Ly Vath et al. [27],

Mainik and Rüschendorf [28], and Xia [33], among others. In many important set-

tings, however, light-tailed distributions provide a suitable description of risks faced

by insurance companies or financial institutions; such tail behavior of risks is typi-

cally encountered by household insurances or pension funds holding portfolios which

are rebalanced monthly or even quarterly. In particular, the family of generalized hy-

perbolic distributions with exponential tails is frequently used in the mathematical

finance literature (cf. Barndorff-Nielsen et al. [4], McNeil et al. [31]). Further studies

dealing with light-tailed distributions are (among others) Asmussen and Albrecher

[3], Behme et al. [5], Hernández and Junca [18], Kaas et al. [22], Kyprianou [25] in

the insurance context, and Andersen et al. [2], Cont [9], Cont and Tankov [10] in

the financial context.

Up to now, however, there are only few results on risk assessment for portfolios

of objects with losses following light-tailed distributions. Jiang and Tang [21] study
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Figure 1.1: Bipartite graph for a network of 4 risky objects causing losses Vj held by 6 agents with

risk exposures Ui. The portfolio weights are ai,j for agents i ∈ {1, . . . , 6} and objects j ∈ {1, . . . , 4}.

the asymptotic behavior of losses for independently and identically exponentially

distributed claims. Since they consider all claims with the same parameter of an

exponential distribution, the aggregated claim (system loss) follows an Erlang dis-

tribution. Mitra and Resnick [32] analyze the sum of two losses with tail-equivalent

distributions in the Gumbel max-domain of attraction, which contains distributions

with exponential, Gaussian, and log-normal tails as special cases. They assume a

certain bivariate dependence structure which leads to the asymptotic independence.

Farkas and Hashorva [15] consider portfolios of asymptotically Gaussian losses, they

derive limit results for the distribution of portfolio losses and calculate the weak

tail dependence coefficient (cf. Coles et al. [8]) for a pair of such portfolios. Dȩbicki

et al. [12] investigate the distribution of losses in the Gumbel max-domain of at-

traction which are scaled by random factors. However, none of these papers studies

consequences of risk sharing in a network or system context.

In this paper we contribute to the current literature by exploring risk aggrega-

tion and risk sharing issues for portfolios of light-tailed losses in financial networks.

Making assumptions about the full distribution of losses, as e.g. presuming Gaus-

sian or exponential distributions, allows to gain many statements in explicit form.

However, it is of high concern to generalize the analysis for light tail settings by

making assumptions only about the asymptotic behavior of losses. For this pur-

pose we consider independent light-tailed object losses and only assume that they

are asymptotically exponentially distributed. Hence, our framework appears to be

rather general and flexible because we impose no restrictions on the finite behavior

of losses. Moreover, we investigate the network with objects referring to different risk

classes which is formalized by setting distinct tail parameters for all object losses.

This is a more general setting than those with the commonly made assumption on

tail-equivalent risks for either light- or heavy-tailed losses as e.g. in Jiang and Tang
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[21], Kley et al. [23, 24], Mitra and Resnick [32]. Hence, our study covers a broad

family of light-tailed distributions in the context of portfolio risk sharing.

In order to quantify both agents’ portfolio and system risks it is necessary to get

statements concerning convolutions and mixtures of object loss distributions. For

our general setting of asymptotically exponential distributions we obtain them in

the form of functional exponential mixtures, where the mixing proportions are not

constants but positive asymptotically converging functions. Thus, we extend and

generalize the findings for convolutions and mixtures of exponentially distributed

random variables, studied among others by Jewell [20] and McLachlan [30]. As

functional exponential mixtures allow for a novel and favorable representation of

convolutions, we believe that our theoretical contribution would also be of interest

beyond the financial network regulation context.

We start the presentation by deriving survival functions for the system loss de-

fined as the sum of all object losses, and for losses of individual agents holding

portfolios with selected objects in Theorems 3.2 and 3.6. Then we analyze proper-

ties of the introduced functional mixture representations for the survival functions in

Remark 3.3 and compare them with classical exponential mixtures. The important

result for understanding extreme loss situations is presented in Theorem 4.1, where

we show that the dominant impact on individual or system risk is determined by a

single (distinct) object, and that generically the risk-dominant object for the system

does not coincide with those for individual agents. Moreover, we prove for our light

tail setting that asymptotic behavior of individual and system risks is influenced not

only by asymptotic but also by non-asymptotic behavior of object losses via their

moment-generating functions. Next, in Proposition 4.3 we apply our results in order

to quantify the individual portfolio and system risks by computing popular quantile-

based risk measures such as Value-at-Risk and Expected Shortfall. We also evaluate

conditional risk measures for the network by deducing statements on the Conditional

Value-at-Risks and the Conditional Expected Shortfalls in Theorems 5.3 and 5.5.

Finally, we compare our findings for systems with light-tailed object losses to the

results of Kley et al. [23, 24] for systems with heavy-tailed ones. We point out the

substantial qualitative differences in the stochastic behavior for these two settings

and provide explanations for them. These differences underscore the importance of

our analysis for a proper risk assessment in practical risk management and financial

regulation.

Our paper is organized as follows. We first introduce the framework of the study,

notation and assumptions in Section 2. In Section 3 we derive the distributions

of individual agent risks as well as of the system risk for object losses which fol-

low asymptotically exponential distributions. For this purpose we develop a novel
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concept of functional exponential mixtures which appears to be very useful in our

analysis. In Section 4 we exploit our theoretical findings in order to analyze extreme

loss situations and to present expressions on marginal quantile-based risk measures.

In Section 5 we quantify the interdependence of individual and system risks within

the network by deducing results on conditional risk measures. In Section 6 we sum-

marize our findings for portfolios of light-tailed losses and compare them with those

established for heavy-tailed ones. The proofs are summarized in Section 7.

2 Model framework: notation and assumptions

To formalize the framework for our investigation we introduce a system which con-

sists of d objects and n agents for positive integers d and n. Object j ∈ d := {1, . . . , d}
causes a random loss of size Vj > 0 which is shared among the agents holding this

object, such that the risk exposure of agent i is given as

Ui =
∑
j∈d

ai,j Vj , i ∈ n := {1, . . . , n} , (2.1)

where ai,j is the proportion of object j held by agent i. We denote indices referring

to agents by i ∈ n and indices referring to objects by j, k ∈ d. The weights ai,j

for all d objects and n agents are collected into the matrix A = (ai,j)i∈n,j∈d of

dimension n × d, which is the weighted adjacency matrix to the bipartite graph

shown in Figure 1.1. The column-sums of A have to be less or equal to 1:

0 ≤ ai,j ≤ 1 for all i ∈ n, j ∈ d ;
∑
i∈n

ai,j ≤ 1 for all j ∈ d .

The risk for object j is covered in total for the boundary case when
∑

i∈n ai,j = 1.

The system loss is defined as the sum of all object losses:

S =
∑
j∈d

Vj . (2.2)

The notation f(x) ∼ g(x) means that functions f(·) and g(·) are asymptotically

equivalent, i.e., f(x)/g(x)→ 1 for x→∞.

Assumption A: let the object losses Vj , j ∈ d, be stochastically independent pos-

itive random variables which follow asymptotic exponential (AE) distributions, i.e.

the random variables Vj have positive, continuous cumulative distribution functions

FVj (x), x ≥ 0. Their survival functions P{Vj > x} = 1 − FVj (x) satisfy asymptoti-

cally for x→∞:

P{Vj > x} ∼ KVj exp(−λjx) , (2.3)
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with pairwise distinct tail parameters λj > 0, i.e. λj 6= λk for j 6= k, and positive

factors KVj ∈ (0,∞), j ∈ d. Without loss of generality, we assume

λ1 < λ2 < · · · < λd, (2.4)

where λ1 is tail parameter of the most risky object. ♦

Representation (2.3) implies that the light-tailed distribution of each object loss Vj

with support (0,∞) is well-defined by the following two quantities: the positive tail

parameter λj and the positive, continuous factor function KVj (·) with:

KVj (x) := P{Vj > x} exp(λjx) , x ≥ 0 . (2.5)

Hence, the function KVj (·) expresses the deviation from the exponential distribution,

and Eqs. (2.3), (2.5) imply that KVj (0) = 1 and limx→∞KVj (x) = KVj ∈ (0,∞).

Further we write Vj ∈ AE(λj ,KVj (·)).
The class of AE distributions enables to model the stochastic behavior of light-

tailed losses in a flexible way. However, to the best of our knowledge, the class of AE
distributions has not been investigated yet in the risk sharing context. In this paper

we close this gap by deducing the results for the system and individual portfolio

risks.

Our assumption concerning pairwise distinct tail parameters λj 6= λk for j 6= k

is more challenging than those of tail-equivalent losses which is commonly used

for analyzing both light-tailed (cf. Jiang and Tang [21], Mitra and Resnick [32])

and heavy-tailed risks (cf. Kley et al. [23, 24]). Considering losses with distinct

tail parameters is of substantial importance, as such losses can be seen as caused

by objects referring to different risk classes. Up to now, distinct tail parameters

have been assumed for the analysis of mixtures of exponential distributions by e.g.

Bergel and Eǵıdio dos Reis [6], McLachlan [30]. In this paper we impose distinct

tail parameters for studying mixtures of AE distributions. Moreover, in Remark 4.2

below we explain how to handle those cases where some (or all) tail parameters λj

coincide.

3 Risk of individual agents and of the system

We investigate the distributions of individual risk exposures Ui of agents i ∈ n

from (2.1) and of the system loss S from (2.2) in terms of their survival functions

P{Ui > x} and P{S > x} for x ∈ (0,∞). We show that they follow functional

exponential mixture distributions and analyze their mixing proportion functions.
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We start by studying the distribution of the system loss S =
∑

j∈d Vj which is a

convolution of AE distributions. In the following remark we present the established

results on convolutions of exponential distributions.

Remark 3.1. Let the object losses Vj , j ∈ d, d ≥ 2, be exponentially distributed

with densities fVj (x) = λj exp(−λjx), x > 0, and tail parameters λj < λk for j < k.

Then the factor functions from (2.5) are constant KVj (·) ≡ 1, so that this is a special

case AE(λj , 1) in our further analysis. Consequently, the system loss S follows a so-

called generalized exponential mixture distribution, whose survival function satisfies

P{S > x} =
∑
j∈d

π∗j,d exp(−λjx) , x > 0 , (3.1)

with the mixing proportions

π∗j,d :=
∏

k∈d\{j}

λk
λk − λj

. (3.2)

The class of generalized exponential mixtures has been investigated – although not

in a system risk context – by e.g. Jewell [20] and McLachlan [30]. This distribution

class is also known as generalized Erlang, see e.g. Bergel and Eǵıdio dos Reis [6].

The mixing proportions π∗j,d, j ∈ d, from (3.2) satisfy
∑

j∈d π
∗
j,d = 1 and alternate

in sign with π∗j,d positive for odd j and negative for even j. ♦

Now we consider convolutions of AE distributions and show in the following

theorem that the system loss S for AE object losses follows a functional mixture of

exponential distributions where the mixing proportions are no longer constants πj,d

but functions πj,d(·). Moreover, it holds that the sum
∑

j∈d πj,d(x) depends on x > 0

and is a positive value generically different from unity.

Theorem 3.2. Let Assumption A hold for a system of risky objects Vj, j ∈ d. Then

there exist continuous, positive functions πj,d(·) : (0,∞) → (0,∞), such that the

survival function of the system loss S =
∑

j∈d Vj can be represented as:

P{S > x} =
∑
j∈d

πj,d(x) exp(−λjx) , x > 0 . (3.3)

The mixing proportion functions could be chosen recursively for j ∈ k , k ≤ d:

πj,k(x) :=


∫ x
0 πj,k−1(x− y) exp(λjy) dFVk(y) for j ∈ k−1 ,

KVk(x) for j = k ,
(3.4)

where KVk(·) is defined as in Eq. (2.5). The mixing proportion functions πj,d(·) are

positive and bounded from above.
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Note that the ordering (2.4) of the tail parameters is important for building the

recursion (3.4). Next, we interpret the result of Theorem 3.2 in the following remark

and illustrate it in Figure 3.1.

Remark 3.3. (i) The mixing proportion functions πj,d(·), j ∈ d, in representa-

tion (3.3) for the convolution of Vj are not uniquely defined, not even up to asymp-

totic equivalence. Thus, the choice in (3.4) leads – even in the special case of ex-

ponentially distributed losses – to non-constant functions πj,d(·) in contrast to the

constant mixing proportions π∗j,d presented in (3.2); in general they differ in their

sums because
∑

j∈d π
∗
j,d = 1 6=

∑
j∈d πj,d(x), and even asymptotically for x → ∞

as πj,d(x) 6→ π∗j,d for j > 1, cf. Theorem 4.1 below. Moreover, our choice in (3.4)

guarantees that all mixing proportion functions are strictly positive. Hence, Theo-

rem 3.2 shows that a generalized exponential mixture with sign alternating mixing

proportions can be written as a functional exponential mixture with positive mixing

proportions.

The functional mixture P{S > x} =
∑

j∈d π
∗
j,d(x) exp(−λjx), x > 0, which coin-

cides for exponentially distributed losses with the generalized exponential mixture

representation (3.1) with constant sign-alternating mixing proportions, is given for

k ∈ d \ {1} by the recursion:

π∗j,k(x) :=



x∫
0

π∗j,k−1(u)
exp(−λju)

exp((λk − λj)x)− 1
FVk(x− du) for j ∈ k−1 ,

KVk(x)−
∑
l∈k−1

π∗l,k(x) for j = k ,

(3.5)

with the initial value π∗1,1(x) = KV1(x). In contrast to πj,d(·) from (3.4), the recursion

in (3.5) provides the product representation in (3.2) with constants π∗j,d(·) ≡ π∗j,d in

the special case of exponentially distributed losses.

(ii) In order to illustrate functional mixtures, we contrast representations:

(A) P{S > x} =
∑

j∈d π
∗
j,d exp(−λjx) , x > 0,

(B) P{S > x} =
∑

j∈d πj,d(x) exp(−λjx) , x > 0,

with the constant, real-valued π∗j,d from (3.2) in (A) and positive functions πj,d(·)
from (3.4) in (B). E.g., consider a system of three objects with exponentially dis-

tributed losses Vj with tail parameters λ1 = 1, λ2 = 2, λ3 = 3. The survival function

P{S > x} is given by the aggregation of three mixing components π∗j,d exp(−λjx)

for (A) or πj,d(x) exp(−λjx) for (B), with j = 1, 2, 3.

We plot the mixing components and the survival functions in Figure 3.1 all pre-

multiplied with the term exp(λ1x) for a better visual presentation. For represen-

tation (A), left, and (B), right, we display the function x 7→ P{S > x} exp(λ1x)
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(B)      Functional mixture representation
         with positive proportions
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Figure 3.1: Exponential mixture representation in (A), left, versus functional mixture represen-

tation from Theorem 3.2 in (B), right, for the system risk P{S > x}; for more details see Re-

mark 3.3(ii).

in bold solid line which illustrates the behavior of the system risk, as well as the

functions x 7→ π∗j,d exp(−(λj − λ1)x) and x 7→ πj,d(x) exp(−(λj − λ1)x) in thin

solid lines which illustrate the behavior of three mixing components.

We observe a quite different behavior of the mixing components for representations

(A) and (B); in particular, in (B) all curves of the mixing components are located

between the zero line and the survival function line, which allows us to evaluate the

contribution of each component to the system risk. For extreme loss situations we

find limx→∞ P{S > x} exp(λ1x) = 3 = π∗1,3 = limx→∞ π1,3(x) as it follows from

Theorem 4.1 below. ♦

Next we consider the survival function of the individual loss Ui for an arbitrary

agent i ∈ n holding a portfolio of objects Vj with weights ai,j , cf. (2.1), under validity

of Assumption A. Let Di be the set of indices for the objects selected by agent i and

di the number of those selected objects, i.e.,

Di := {j ∈ d | ai,j > 0} , di := |Di| . (3.6)

Then the risk exposure Ui =
∑

j∈Di
ai,jVj is the sum of the independent random

variables ai,jVj which all follow AE(λj/ai,j ,KVj (·/ai,j)) distributions with tail pa-

rameter of λj/ai,j and factors KVj (·/ai,j)) for j ∈ Di. We assume that all di tail

parameters λj/ai,j are pairwise distinct and their ordering is denoted as follows:

Di =: {i(m) | m ∈ di} with
λi(1)

ai,i(1)
<

λi(2)

ai,i(2)
< · · · <

λi(di)

ai,i(di)
, (3.7)
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such that i(1) denotes the object with the smallest value of λj/ai,j from all objects

j ∈ Di selected by agent i. Now we deduce P{Ui > x} for the individual losses

analogously to the result on the system loss S in Theorem 3.2:

Corollary 3.4. The survival function of the individual loss Ui =
∑

j∈d ai,jVj for

agent i ∈ n can be represented as:

P{Ui > x} =
∑
j∈Di

πi,j,di(x) exp(−λjx/ai,j) , x > 0 , (3.8)

where the continuous, positive mixing proportion functions πi,j,di(·) : (0,∞)→(0,∞),

j ∈ Di, can be chosen recursively for m ∈ k , k ≤ di as:

πi,i(m),k(x) (3.9)

:=


x∫

0

πi,i(m),k−1(x− ai,i(k)y) exp
(ai,i(k)λi(m)

ai,i(m)
y
)

dFVi(k)(y) for m ∈ k−1 ,

KVi(k)(x/ai,i(k)) for m = k .

For the asymptotic analysis of the mixing proportion functions for the system

and individual risks we provide the following lemma concerning the object loss dis-

tributions.

Lemma 3.5. Let the object loss Vk follow AE(λk,KVk(·)) distribution according to

Assumption A. Then the moment-generating function φVk(t) := E[exp(tVk)] of Vk

exists, is finite for all t < λk with singularity at λk.

The mixing proportion functions for the distributions of individual and system

loss converge to positive finite limits, as we prove it in the following theorem.

Theorem 3.6. Let Assumption A hold for a system of risky objects Vj, j ∈ d,

and let agent i ∈ n hold a portfolio with weights according to (3.7). Then the mixing

proportion functions πj,d(·) from (3.4) and πi,j,di(·) from (3.9) have finite and strictly

positive limits for x→∞. These limits are given explicitly as:

πj,d := lim
x→∞

πj,d(x) = KVj

d∏
k=j+1

φVk(λj) , (3.10)

πi,i(m),di := lim
x→∞

πi,i(m),di(x) = KVi(m)

di∏
k=m+1

φVi(k)

(ai,i(k)λi(m)

ai,i(m)

)
, (3.11)

with j ∈ Di, m ∈ di, and the moment-generating function φVk(·) of object loss Vk:

φVk(λj) := E[exp(λjVk)] =

∞∫
0

exp(λjy) dFVk(y) ∈ (1,∞) , j ∈ k−1 .
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For j = d or m = di the empty product in (3.10) or in (3.11) is set equal to 1

according to the common convention.

Theorem 3.6 states that the survival functions of system and individual losses

are asymptotically equivalent to non-functional exponential mixtures with positive

mixing proportions: it holds that P{S > x} ∼
∑

j∈d πj,d exp(−λjx) as well as

P{Ui > x} ∼
∑

j∈Di
πi,j,di exp(−λjx/ai,j) for x → ∞. We show that the limit

values πj,d and πi,j,di depend essentially on the moment-generating functions φVk(·)
of the object losses. The result in Lemma 3.5 guarantees that the values φVk(λj) for

j < k and φVi(k)(ai,i(k)λi(m)/ai,i(m)) for m < k from the result in Theorem 3.6 are

all finite and larger than one, see also (3.7).

For the special case of exponentially distributed losses, the result in Theorem 3.6

shows that mixing proportion functions πj,d(·) for P{S > x} differ even asymptoti-

cally from generalized exponential mixing proportions π∗j,d given in (3.2) for j > 1.

4 Extreme losses in financial network and marginal risk

measures

As particularly extreme losses have the most adverse effects on the stability of fi-

nancial systems, in this section we derive the asymptotic distributions of portfolio

losses and provide statements for the popular quantile-based risk measures such as

Value-at-Risk and Expected Shortfall. As we have shown in Theorems 3.2 and 3.6,

the distributions for the system loss S and the individual agents’ exposures Ui can

be written as functional exponential mixtures with positive mixing proportion func-

tions πj,d(·) and πi,j,di(·) from (3.4) and (3.9), where the limits πj,d = limx→∞ πj,d(x)

and πi,j,di = limx→∞ πi,j,di(x) exist, are finite and strictly positive, and, hence, do

not influence the asymptotic tail decay.

In the next theorem we state the important result characterizing our financial

network with AE object losses, namely that both system and individual agent’s risk

follow – as convolutions of AE distributions – AE distributions too. Their asymptotic

tail decays are determined by the object with the minimal tail parameter of all object

losses Vj in the system or of all weighted losses ai,jVj in agent’s portfolio:

λ1 = min
j∈d

λj and µi := min
j∈Di

(λj/ai,j) . (4.1)

Theorem 4.1. Let Assumption A hold for a system of risky objects Vj, j ∈ d, and

let agent i ∈ n hold a portfolio with weights according to (3.7). Then:

(i) the system loss S =
∑

j∈d Vj follows AE(λ1,KS(·)) distribution with the factor

11



function KS(x) := π1,d(x), x > 0. Asymptotically for x→∞ it holds that:

P{S > x} ∼ KS exp(−λ1 x) ,

with KS :=KV1

d∏
k=2

φVk(λ1) and the moment-generating function φVk(·) of Vk;

(ii) the individual loss Ui =
∑

j∈d ai,jVj of agent i ∈ n follows AE(µi,KUi(·)) dis-

tribution with the factor function KUi(x) := πi,i(1),di(x), x > 0. Asymptotically

for x→∞ it holds that:

P{Ui > x} ∼ KUi exp(−µi x) ,

where KUi := KVi(1)

di∏
k=2

φVi(k)

(ai,i(k)λi(1)
ai,i(1)

)
with notation i(k) from (3.7).

For d = 1 or di = 1 the empty product is set equal to 1 according to the common

convention.

Theorem 4.1 proves that the class of AE distributions is closed under scaling

and convolution, in contrast to the class of exponential distributions which does not

satisfy this closure property under convolution.

Both system loss S and individual loss Ui of agent i ∈ n have asymptotically

exponential tails, but with possibly different tail decays. The survival function of

the system loss is asymptotically proportional to that of the object loss V1 with

minimum tail parameter λ1. The asymptotic dominance of this object for the system

risk is illustrated in Figure 3.1 where it is to see that – independently from the chosen

mixture representation – the function P{S > x} exp(λ1x) converges to the positive

limit π1,d = limx→∞ π1,d(x). Analogously, the survival function of the individual

loss Ui is asymptotically proportional to that of the weighted loss ai,i(1)Vi(1) with

the agent’s minimum tail parameter µi. If agent i does not select the most risky

object V1 alone in total; i.e., if ai,1 < 1 and, hence, λ1 < µi, the individual risk is

asymptotically of lower order than the system risk:

P{Ui > x} = o(P{S > x}) for x→∞ . (4.2)

In contrast to the tail parameter λ1 of the system loss or to the tail parameter µi of

the individual loss, both determined by a single (dominant) object, the factors KS

or KUi are influenced by all objects in the system or in the agent’s portfolio, respec-

tively. We show that the ‘closer’ the tail parameters of the other objects are to that

of the dominant object the larger is the value of the factor KS or KUi .

Furthermore, in situations where the agent modifies his portfolio by adding or re-

moving objects, the tail parameter of the agent’s AE distribution remains unchanged
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as long as his dominant tail parameter µi remains the same. However, the asymp-

totic individual risk changes in terms of the factor KUi , when adding or removing

objects.

In Theorem 4.1 we prove that asymptotic risks of individual agent portfolios and

the system depend on their entire factor functions KVj (·) entering the survival func-

tions P{Vj > x} = KVj (x) exp(−λjx) of the object losses, and not only on their limit

values limx→∞KVj (x). This influence is determined by the moment-generating func-

tions φVk(·) of object losses Vk. Our result implies that in a system of independent

AE distributed object losses the asymptotic behavior of the system and individual

agent risks is essentially influenced by the non-asymptotic behavior of the object loss

distributions. This finding points on a qualitative difference to the established re-

sults for systems of heavy-tailed risks, where non-asymptotic behavior of object loss

distributions does not affect the asymptotic risks in the system, cf. Kley et al. [23].

In the following remark we comment on consequences of relaxing the restriction

on pairwise distinct tail parameters which we made in Assumption A.

Remark 4.2. If the tail parameters λj coincide for different objects j, then the

distribution of the system loss S is a functional mixture of Erlang distributions such

that:

P{S > x} =
∑
k∈H

πk,h(x)xhk−1 exp(−λkx) , x > 0 ,

where H ⊆ d is a set of object indices satisfying {λj | j ∈ d} = {λk | k ∈ H} such

that λk < λl for k < l, k, l ∈ H. Moreover, h := |H| denotes the number of pairwise

distinct tail parameters in the system and hk := |{j ∈ d | λj = λk}| denotes the

number of tail parameters equal to λk.

The asymptotic results extending Theorem 4.1 lead to Erlang tails, in particular, we

obtain for the system loss S the tail π1,h x
h1−1 exp(−λ1x). Hence, h1 is the number

of asymptotically dominant objects with the minimum tail parameter λ1. For the

individual loss Ui this holds, respectively, with a set Hi ⊆ Di defined analogously to

the set H above. ♦

Based on our results for the distributions of individual agent and system risks, we

next provide statements for the marginal risk measures Value-at-Risk and Expected

Shortfall which are of high importance in practice. Such results for light-tailed AE
risks amend the corresponding analysis concerning risk measures for heavy-tailed loss

distributions, provided among others by Das and Fasen-Hartmann [11], Ibragimov

[19], Kley et al. [24], Mainik and Rüschendorf [28].

For level α ∈ (0, 1) we provide results on the Value-at-Risk for the loss from
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object j ∈ d:

Obj VaRj(α) := inf{v ≥ 0 | P{Vj > v} ≤ 1− α} ,

the individual Value-at-Risk for agent i ∈ n:

Ind VaRi(α) := inf{u ≥ 0 | P{Ui > u} ≤ 1− α} ,

and the system Value-at-Risk:

Sys VaR(α) := inf{s ≥ 0 | P{S > s} ≤ 1− α}.

Moreover, we prove statements for the corresponding Expected Shortfalls which can

be interpreted as the expected losses in extreme situations where the given Value-

at-Risk is exceeded. Accordingly, for level α ∈ (0, 1) we investigate the Expected

Shortfall for the loss of object j ∈ d:

Obj ESj(α) := E
[
Vj | Vj > Obj VaRj(α)

]
,

the individual Expected Shortfall for agent i ∈ n:

Ind ESi(α) := E
[
Ui | Ui > Ind VaRi(α)

]
,

and the system Expected Shortfall:

Sys ES(α) := E
[
S | S > Sys VaR(α)

]
.

As we show in the following results, the asymptotic behavior of quantile-based risk

measures in a system of AE losses is determined by the minimal tail parameter

among those in the agent’s portfolio µi or among all objects in the system λ1 as

defined in (4.1).

Proposition 4.3. Let Assumptions A hold for a system of risky objects Vj, j ∈ d,

and let agent i ∈ n hold a portfolio with weights according to (3.7). Then:

(i) for the Value-at-Risks it holds asymptotically as α ↑ 1 that:

Obj VaRj(α) ∼ − ln(1− α)

λj
, j ∈ d ,

Ind VaRi(α) ∼ − ln(1− α)

µi
, i ∈ n ,

Sys VaR(α) ∼ − ln(1− α)

λ1
;

(ii) for the Expected Shortfalls it holds asymptotically that:

lim
α↑1

(Obj ESj(α)−Obj VaRj(α)) = 1/λj , j ∈ d ,

lim
α↑1

(Ind ESi(α)− Ind VaRi(α)) = 1/µi , i ∈ n ,

lim
α↑1

(Sys ES(α)− Sys VaR(α)) = 1/λ1 .

14



In the following remark we interpret our results on the asymptotic behavior of

the Value-at-Risks in a system of AE object losses.

Remark 4.4. (i) Proposition 4.3 states that all Value-at-Risks tend to infinity if

the level α tends to 1 with the same logarithmic rate, so that they are asymptotically

proportional to each other and differ only in their proportionality factors. The latter

is in each case the reciprocal of the tail parameter for the respective dominant object,

i.e. 1/µi for the i-th agent’s portfolio and 1/λ1 for the system.

(ii) The asymptotic Value-at-Risks are not influenced by the number of objects in

the whole system or in the portfolio of agent i. Hence, the individual agent’s Value-

at-Risk remains asymptotically unchanged if he modifies the portfolio by adding or

removing objects as long as the dominant tail parameter µi remains unchanged.

(iii) Another remarkable property proven in Proposition 4.3 is that the asymptotic

Value-at-Risks depend on marginal distributions P{Vj > x} = KVj (x) exp(−λjx)

of object losses only by the dominant tail parameters; i.e. the asymptotic Value-at-

Risks are independent of the factor functions KVj (·) and their limits KVj for x→∞.

This is qualitatively different compared to the Value-at-Risk results for heavy-tailed

loss distributions, more details are given in Section 6, part (III). ♦

The results in Proposition 4.3 imply that the Expected Shortfalls for objects,

agents, as well as for the system are asymptotically equivalent to the respective

Value-at-Risks. Moreover, we specify the asymptotic equivalence by establishing

that the distance between Expected Shortfall and Value-at-Risk converges to a finite,

non-zero limit which depends on the respective dominant tail parameter.

Corollary 4.5. For the Expected Shortfalls it holds for α ↑ 1 that:

Obj ESj(α) ∼ Obj VaRj(α) ∼ − ln(1− α)

λj
,

Ind ESi(α) ∼ Ind VaRi(α) ∼ − ln(1− α)

µi
,

Sys ES(α) ∼ Sys VaR(α) ∼ − ln(1− α)

λ1
.

Due to Corollary 4.5, all properties described in Remark 4.4 for Value-at-Risks

are also valid for the Expected Shortfalls.

5 Conditional risk measures

To assess the riskiness of a system we quantify not only the marginal risks of indi-

vidual agents or of the system, but also their interdependence within the network by

considering conditional risk measures. Such statements are of particular relevance

for regulators of a financial system which should monitor its stability.
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For a network of agents sharing AE objects we provide results on the Conditional

Value-at-Risks (CoVaR) in Theorem 5.3 as well as on the Conditional Expected

Shortfalls (CES) in Theorem 5.5. Note that our asymptotic statements are obtained

by conditioning on the event that a loss exceeds a given threshold.

For gaining these statements, we focus on equally weighted portfolios usually used

in the relevant literature, see e.g. Brechmann et al. [7], Geluk et al. [16], Ibragimov

[19]. Then the agent i selects some objects j ∈ Di and holds the same proportion of

each selected object in his portfolio, i.e.,

ai,j = ai for all j ∈ Di and some 0 < ai ≤ 1 . (5.1)

As a consequence, we can simplify the notation from (4.1) using (3.7) as follows:

λ1 = min
j∈d

λj and λi(1) = min
j∈Di

λj . (5.2)

Next we compute the joint probability of individual loss and system loss.

Proposition 5.1. Let Assumption A hold for a system of risky objects Vj, j ∈ d,

and let agent i ∈ n hold a portfolio with weights according to (5.1). Then it follows:

(i) The joint probability of agent’s i exposure Ui and the system loss S could be

written as functional exponential mixture representations:

P (Ui > u, S > s) =


∑

k∈d bk,u/ai(s) exp(−λks) for u ≤ ais ,∑
j∈Di

bj(u/ai) exp(−λju/ai) for u > ais ,

with bounded functions bk,r(·) : [0,∞)→ (−∞,∞), k ∈ d, r ∈ [0,∞), which is

given in (7.13), and bj(·) : [0,∞)→ (−∞,∞), j ∈ Di, as in (7.17).

(ii) Asymptotically for s→∞ and u > 0 fixed it holds that:

P (Ui > u, S > s) ∼ Ci(u/ai) exp(−λ1s) , (5.3)

with the coefficient

Ci(u/ai) :=


π1,d for λ1 = λi(1) ,

π1,d − Hi(u/ai)KV1

∏
k∈d\Di,k 6=1

φVk(λ1) for λ1 < λi(1) ,

where φVk(·) is the moment-generating function of Vk, π1,d from (3.10), and
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Hi(u/ai) :=

u/ai∫
0

exp(λ1z)dF∑
j∈Di

Vj (z)

=1−
∑
j∈Di

πj,di(u/ai) exp
(
−(λj − λ1)u/ai

)

+ λ1
∑
j∈Di

u/ai∫
0

πj,di(z) exp(−(λj − λ1)z)dz ,

where πj,di(·) is defined analogously to πj,d(·) in (3.4) but on the subset Di ⊆ d.

(iii) Asymptotically for u→∞ and s > 0 fixed it holds that:

P (Ui > u, S > s) ∼ πi(1),di exp(−λi(1)u/ai) , (5.4)

with λi(1) from (5.2) and πi(1),di = KVi(1)

∏
k∈Di,k 6=i(1) φVk(λi(1)).

In part (iii) it holds that πi(1),di = πi,i(1),di as defined in (3.11), where the index i

becomes redundant due (5.1). The asymptotic form of the joint probability P (Ui >

u, S > s) for u → ∞ in (5.4) is independent of the fixed threshold value s, and

the asymptotic form for s→∞ in (5.3) depends on the threshold value u/ai only if

agent i does not hold the risk-dominant object with tail parameter λ1 in his portfolio.

Remark 5.2. By proving Proposition 5.1 the integrals with respect to the func-

tional mixture distributions in our network of AE losses are more challenging com-

pared to the case with constant mixing proportions, because in general the functions

Hj(x) := πj(x)FVj (x) do not define a measure due to the violation of monotonic-

ity. Consequently,
∫
g(z)dF∑

j Vj
(z) =

∑
j

∫
g(z)dHj(z) does not hold for functional

mixtures 1−F∑
j Vj

(z) =
∑

j πj,d(z) exp(λjz) with non-constant πj,d(·). However, for

some measure defining function G it holds with integration by parts that:

b∫
a

G(z) dF∑
jVj

(z) =

b∫
a

P
{∑

j

Vj > z
}

dG(z)− P
{∑

j

Vj > z
}
G(z)

∣∣∣b
a
,

which is very convenient for the functional mixtures under consideration. ♦

Next, for level α ∈ (0, 1) and bounds u, s ∈ (0,∞) we evaluate the Conditional

Value-at-Risk for an individual agent i ∈ n in a systemic stress situation:

Ind CoVaRUi|S>s(α) := inf{u ≥ 0 | P (Ui > u | S > s) ≤ 1− α} ,
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and the system CoVaR for a situation where agent i ∈ n is in financial distress:

Sys CoVaRS|Ui>u(α) := inf{s ≥ 0 | P (S > s | Ui > u) ≤ 1− α} .

Usually the bounds are chosen as u = Ind VaR(β), s = Sys VaR(β) for β ∈ (0, 1).

Additionally, as we are interested in the asymptotic analysis of risks, we modify

the CoVaR notion by introducing proportionally increasing thresholds for both stress

events {S > s} and {Ui > θs} with the scaling factor θ ∈ (0, ai):

Ind CoVaRUi|S(α, θ) := inf{s ≥ 0 | P (Ui > θs | S > s) ≤ 1− α} ,

Sys CoVaRS|Ui
(α, θ) := inf{s ≥ 0 | P (S > s | Ui > θs) ≤ 1− α} .

Theorem 5.3. Let Assumption A hold for a system of risky objects Vj, j ∈ d,

and let agent i ∈ n hold a portfolio with weights according to (5.1). Then for the

Conditional Value-at-Risks with fixed thresholds u, s ∈ (0,∞) or with scaling factor

θ ∈ (0, ai) it holds asymptotically as level α ↑ 1:

(i) for fixed thresholds u, s ∈ (0,∞):

Ind CoVaRUi|S>s(α) ∼ −ai ln(1− α)

λi(1)
∼ Ind VaR(α) ,

Sys CoVaRS|Ui>u(α) ∼ − ln(1− α)

λ1
∼ Sys VaR(α);

(ii) for proportionally increasing thresholds with scaling factor θ ∈ (0, ai):

Ind CoVaRUi|S(α, θ) ∼ −ai ln(1− α)

θ(λi(1) − λ1)
for λ1 < λi(1) ,

Sys CoVaRS|Ui
(α, θ) ∼ −ai ln(1− α)

(ai − θ)λ1
.

We show in Theorem 5.3(i) that for fixed thresholds in the conditional events {S >
s} or {Ui > u} the asymptotic CoVaRs are independent of those thresholds s, u and

behave equivalent to the respective unconditional VaRs. To measure the asymptotic

dependence between individual and system risk we provide in Theorem 5.3(ii) the

modification of CoVaR based on conditional events with proportional increasing

thresholds with scaling factor θ. Here the system’s influence on the individual agent’s

risk is determined by his portfolio weight ai and by the difference between the

risk-dominant tail parameters λi(1) of the agent’s portfolio and λ1 of the entire

system. Note that if agent i holds the dominant object with parameter λ1, then the

conditional distribution P (Ui > θs | S > s) is degenerated as P (Ui > θs, S > s) ∼
P (S > s) for θ ∈ (0, ai), s → ∞ and, hence, a result for Ind CoVaRUi|S(α, θ) for

λ1 = λi(1) does not exist. In contrast, the system’s CoVaR given an agent in trouble

is asymptotically proportional to the system’s VaR, whereby it depends on both

portfolio weight ai and difference ai − θ.
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Remark 5.4. Note that our definition of CoVaR is different from those of Adrian

and Brunnermeier [1] where the loss under condition is supposed to hit exactly

some (high) value; i.e., the conditional events are of the form {S = s} or {Ui = u}.
Following the papers of Girardi and Ergün [17] and Mainik and Schaanning [29]

we analyze CoVaR by conditioning on stress scenarios {S > s} or {Ui > u}, which

is more useful for our purposes as we discuss next.

In our system of independent AE losses the probability of the system loss S > s,

given the exact loss value u > 0 of an agent’s portfolio is given by:

P (S>s |Ui=u) = P
( ∑
k∈d\Di

Vk > s− u

ai

)
∼ Ci

( u
ai

)
exp(−λi(1)s) , s→∞ ,

with Ci(u/ai) := KVi(1)

∏
k∈d\Di,k 6=i(1) φVk(λi(1)) exp(λi(1)u/ai), where i(1) is the

index of the minimum tail parameter for objects in d \ Di. This shows that only

the objects not held by agent i influence the asymptotic conditional probability of

the system loss. Hence, asymptotic results when conditioning on {Ui = u} neglect

potential severe object losses within the agent’s portfolio. Moreover, this leads to

P (S > s | Ui = u) = o(P (S > s)), s → ∞, when λ1 = λi(1), i.e. λ1 < λi(1). These

problems can be avoided by using CoVaRs based on stress scenarios {Ui > u} which

lead due to result (5.3) for s→∞ to:

P (S>s | Ui>u) ∼ Ci
( u
ai

)
exp(−λ1s)

/ ∑
j∈Di

πj,di

( u
ai

)
exp

(
− λj

( u
ai

))
.

♦

Now we provide our results on the Conditional Expected Shortfalls in the network

context, namely the individual Conditional Expected Shortfall of agent i ∈ n:

Ind CESUi|S(α) := E
[
Ui | S > Sys VaR(α)

]
,

and the system Conditional Expected Shortfall:

Sys CESS|Ui
(α) := E

[
S | Ui > Ind VaRi(α)

]
.

These are the two most practically important CES measures: Ind CESUi|S is the

expected loss of agent i given that the financial system is in distress, and, hence, it

can be used for comparing individual risks in a systemic crisis situation. Accordingly,

Sys CESS|Ui
is the expected loss of the financial system given that the agent i faces

a high loss, and, hence, it is of a regulator’s system stability interest. Note that

CES statements on E[Uk | Ui > Ind VaRi(α) ] for two distinct agents k and i are of

less practical relevance, as the (possibly competing) agents usually do not know the

portfolio compositions of each other. Hence, we concentrate here on the CES results

for S and Ui.
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Theorem 5.5. Let Assumption A hold for a system of risky objects Vj, j ∈ d, and

let agent i ∈ n hold a portfolio with weights according to (5.1). Then it follows for

the Conditional Expected Shortfalls as level α ↑ 1:

(i) in case λ1 = λi(1), where the risk dominant object is in the agent’s portfolio:

Ind CESUi|S(α) ∼ −ai ln(1− α)/λ1 ∼ ai Sys ES(α) ,

otherwise, for λ1 < λi(1), it holds that:

lim
α↑1

Ind CESUi|S(α) = ai
πi(1),(d−di)

π1,d

∑
j∈Di

πj,di
λj

(λj − λ1)2
,

with πi(1),(d−di) = KVi(1)

∏
k∈d\Di,k 6=i(1) φVk(λi(1)), λi(1) = mink∈d\Di

λk, and

πj,di = KVj

∏
k∈Di,k>j

φVk(λj);

(ii) for the system CES, it holds that:

Sys CESS|Ui
(α) ∼ − ln(1− α)

λi(1)
∼ 1

ai
Ind ESi(α) .

In Theorem 5.5(i) we point out an interesting phenomenon: the individual CES of

agent i depends qualitatively on whether he holds a proportion of the risk-dominant

object in his portfolio or not. In the first case his CES is asymptotically proportional

to the system’s ES, in the second case it converges to a positive, finite limit. This

implies that in a systemic crisis the individual expected loss of an agent holding the

risk-dominant object increases proportionally to the Expected Shortfall of the sys-

tem, i.e. the individual risk is unbounded; whereas agents avoiding the risk-dominant

(i.e., the most “toxic”) object has a finite (bounded) risk during a systemic crisis.

Conversely, in Theorem 5.5(ii) we give a measure for the influence of the individual

agent’s risk on the system risk, reflecting the impact of this agent on the entire system

stability. The Conditional Expected Shortfall of the system, given an agent is in

distress, is asymptotically proportional to the individual agent’s Expected Shortfall.

It depends only on the dominant tail parameter of the agent and, remarkably, is not

affected by the chosen portfolio weight ai.

Remark 5.6. In Figure 5.1 we visualize quantile-based risk measures for a system

of AE object losses to illustrate the impact of an agent’s portfolio structure on

the system risk. For a four object system with tail parameters λ1 = 1, λ2 = 4/3,

λ3 = 5/3, λ4 = 2 the asymptotic Obj ESj(α), j = 1, 2, 3, 4 are displayed in thin,

dotted lines, and the asymptotic Sys ES(α) – which coincides with the asymptotic

Obj ES1(α) – in a thick, red line. Moreover, in plot (A) we consider agent 1 holding
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(A)    Influence of agent 1 holding 30% of object 1        
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(B)    Influence of agent 2 holding 30% of object 2        
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Figure 5.1: Asymptotic Expected Shortfalls for object, individual agent and system losses as well

as system’s Conditional Expected Shortfall given a large agent’s loss for a portfolio with the riskiest

object in (A) or the second-riskiest object in (B); for more details see Remark 5.6.

his dominant object 1 with a1,1 = 0.3 and, hence, µ1 = minj∈D1(λ1/a1,1) = 0.3λ1 =

0.3, cf. (4.1); whereas in plot (B), we presume agent 2 to hold his dominant object 2

with a2,2 = 0.3 and µ2 = 0.3λ2 = 0.4. Their asymptotic Expected Shortfalls are

plotted in (A) and (B) in thin, blue lines. Note that, although agent 1 holds the

riskiest object of the system and agent 2 only the second-riskiest one, their individual

Expected Shortfall functions in (A) and (B) are rather similar. However, by plotting

Sys CESS|Ui
(·) in thick, green lines we observe a large difference in the expected

system loss depending on whether losses of agent 1 in (A) or of agent 2 in (B) are

critical for the system. ♦

6 Comparison of results for light and heavy tails

Finally, we contrast our results for a system of light-tailed AE risks with established

results under the assumption of heavy-tailed risks. The settings in Kley et al. [23, 24]

are suitable for such a comparison as they investigate risky systems of a similar

structure. The essential difference from our setting is that the object losses are

assumed there to be heavy-tailed asymptotically Pareto (AP) distributed, with the

same tail parameter γ > 0 for all objects. Hence, we compare the results for systems
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with independent object losses Vj , j ∈ d, for two settings satisfying for x→∞:

Light tail AE(λj) -assumption: P{Vj > x} ∼ KVj exp(−λjx) ,

Heavy tail AP(γ) -assumption: P{Vj > x} ∼ KVj x
−γ .

Our comparison is focussed on the three main issues: (I) tail parameters, (II) indi-

vidual agent and system loss distributions, (III) risk measures.

(I) We underscore the different role of the tail parameters λj and γ. They both

describe the tail decay of the survival functions for object losses, however, act dif-

ferently as scale and shape parameters, respectively. Scaling a loss with some weight

a > 0 changes the tail decay for AE losses but not for AP losses:

V ∈ AE(λ) ⇒ a V ∈ AE(λ/a) ,

V ∈ AP(γ) ⇒ a V ∈ AP(γ) .

This difference is an essential one: in an AP-setting Kley et al. [23, 24] consider the

same tail parameter γ for all objects because losses with larger tail parameter are

asymptotically negligible. This is not the case for an AE-setting: our Theorem 4.1

proves that object losses which are asymptotically negligible for the system can be

dominant for agents’ risk exposures, as scaling – holding only proportions of the

risky objects in the portfolio – changes the tail decay.

(II) Next, we compare individual and system risks for both AE- and AP-settings.

For AE object losses we prove that the individual agent’s risk is determined asymp-

totically by the dominant object in his portfolio. The survival functions of the agents’

risk exposures Ui have generically distinct tail decays, which can differ from those of

the system loss. This means that some individual risks are asymptotically of lower

order compared to others and, in particular, to the system risk:

P{Ui > x}
P{S > x}

→ 0 for x→∞ ,

as we have shown in Theorem 4.1, see also (4.2), save for the special case that agent i

selects the most risky object V1 alone with ai,1 = 1.

In contrast, for an AP-setting individual and system risks are asymptotically

proportional, see Theorem 3.2 in Kley et al. [23]:

P{Ui > x}
P{S > x}

→ const > 0 for x→∞ .

Moreover, our analysis reveals another fundamental difference between the risk

distribution in light tail AE- or heavy tail AP-settings. In Theorem 3.6 we prove that

in an AE-setting, for both system and individual agent’s losses, their asymptotic risk
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distributions depend not only on the asymptotic but also on the non-asymptotic be-

havior of the object loss distributions in terms of their moment-generating functions.

Whereas in an AP-setting the evaluation of asymptotic risk distributions requires

only the asymptotic distributions of object losses.

(III) Finally, we compare the results on marginal and conditional risk measures.

For convenience, we focus on portfolios with equal proportions for all selected risky

objects as defined in (5.1). In both AE- and AP- settings, Value-at-Risk and Ex-

pected Shortfall for losses of objects, individual agents and of the entire system

are asymptotically proportional to each other for each setting, respectively. They

tend to infinity for level α ↑ 1 with logarithmic rates for AE-settings as we show in

Proposition 4.3, and with power rates for AP-settings (cf. Cor. 3.7 in Kley et al.

[23]) as:

Obj VaRj(α) ∼ K
1/γ
Vj

(1− α)−1/γ ,

Ind VaRi(α) ∼ ai

( ∑
j∈Di

KVj

)1/γ
(1− α)−1/γ ,

Sys VaR(α) ∼
(∑
j∈d

KVj

)1/γ
(1− α)−1/γ .

Moreover, in an AP-setting the Value-at-Risk for objects, agents or the system is

asymptotically proportional to the respective Expected Shortfall with the propor-

tionality factor γ/(γ− 1) for γ > 1, see Cor. 3.8 in Kley et al. [23]. In an AE-setting

Value-at-Risk and Expected Shortfall are asymptotically equivalent, more precisely,

Proposition 4.3(ii) proves that their difference converges to a finite, non-zero limit.

Furthermore, in an AE-setting Value-at-Risks and Expected Shortfalls are indepen-

dent of the factors KVj in contrast to those in an AP-setting.

Finally, we compare light tail AE- and heavy tail AP-settings by analyzing the

Conditional Expected Shortfalls within a financial network. For an AP-setting, Kley

et al. [24] show for heavy-tailed risks with finite mean, characterized by γ > 1, that

Sys CESS|Ui
(α) = E[S |Ui > Ind VaRi(α)] is for α ↑ 1 asymptotically proportional

to the unconditional individual Expected Shortfall Ind ESi(α). This is also valid for

an AE-setting as we derive in Theorem 5.5(ii). The situation is very different if we

consider the impact of a systemic crisis on the individual agent’s risk: In heavy-tail

AP-settings the agent’s Ind CESUi|S(α) = E[Ui |S > Sys VaR(α)] always tends for

α ↑ 1 to infinity as:

Ind CESUi|S(α) ∼ ai
γ

γ − 1

( ∑
j∈Di

KVj

)(∑
j∈d

KVj

)1/γ−1
(1− α)−1/γ .

This contrasts with our result in Theorem 5.5(i) which states for an AE-setting
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that Ind CESUi|S(α) depends on the agent’s portfolio composition. In particular, it

increases proportionally to the Expected Shortfall of the system if the agent holds the

risk-dominant object in his portfolio, but for all portfolios without the risk-dominant

object it converges to a finite limit.

Hence, we have established substantial differences in heavy tail and light tail sce-

narios, which have to be accounted for in risk management and regulatory decisions.

7 Proofs

Proof of Lemma 3.5. Since the object loss Vk, k ∈ d are positive random

variables, its moment-generating function φVk(·) exists at least for all t ≤ 0. For

t ∈ (0, λk) we calculate

φVk(t) = E[exp(tVk)] = 1 +

∞∫
0

P{exp(tVk)−1 > x}dx

= 1 +

∞∫
1

KVk(ln y/t)y−λk/t dy = 1 +KVk(ξ)
t

λk − t

for some ξ ∈ (0,∞) by the mean value theorem. Since the KVk(·), k ∈ d are con-

tinuous and strictly positive with KVk(0) = 1 and limx→∞KVk(x) = KVk ∈ (0,∞),

it follows that the moment-generating function φVk(·) is finite for all t < λk with a

singularity at λk.

Proof of Theorems 3.2, 3.6, and Corollary 3.4. The results are proven by

induction. We use that the convolution of k ≥ 2 object losses can be calculated from

the convolution of (k − 1) object losses recursively for x > 0 as follows:

P
{ ∑

j∈k
Vj > x

}
= P{Vk > x}+

x∫
0

P
{ ∑
j∈k−1

Vj > x− y
}

dFVk(y) . (7.1)

For d = 1 object we obtain P{S > x} = P{V1 > x} = π1,1(x) exp(−λ1x), where

π1,1(x) := KV1(x), x > 0, is bounded away from zero and infinity, cf. definition of

KV1(·) in Eq. (2.5) and proof of Lemma 3.5. It holds limx→∞ π1,1(x) = KV1 ∈ (0,∞)

due to Assumption A.

Now assume that the results of Theorems 3.2, 3.6 on S are valid for d=k−1 objects

for some k ≥ 2: it holds that P{
∑

j∈k−1 Vj > x} =
∑

j∈k−1 πj,k−1(x) exp(−λjx) with

positive functions πj,k−1(x), x > 0 of form (3.4), which are bounded from above

and have limits πj,k−1 := limx→∞ πj,k−1(x) = KVj

∏k−1
l=j+1 φVl(λj) ∈ (0,∞) for all
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j ∈ k−1, where φVl(·) denotes the moment-generating function of Vl. Then Eq. (7.1)

implies for the convolution of k object losses:

P
{∑
j∈k

Vj > x
}

= KVk(x) exp(−λkx) +
∑
j∈k−1

x∫
0

πj,k−1(x− y) exp(−λj(x− y)) dFVk(y)

=
∑
j∈k

πj,k(x) exp(−λjx) ,

with functions

πj,k(x) :=

x∫
0

πj,k−1(x− y) exp(λjy) dFVk(y) , j ∈ k−1 , (7.2)

πk,k(x) := KVk(x) . (7.3)

The mean value theorem implies that there exist values ξj(x) ∈ (0, x), j ∈ k−1,

such that:

πj,k(x) = πj,k−1(x− ξj(x))

x∫
0

exp(λjy) dFVk(y) =: πj,k−1(x− ξj(x)) Ij,k(x) . (7.4)

Let x0 be an arbitrary fixed value with 0<x0<x, then it holds for all j ∈ k−1 that:

lim
x→∞

x∫
x−x0

πj,k−1(x− y) exp(λjy) dFVk(y) = 0 , (7.5)

which follows from 1 − FVk(x) ∼ KVk exp(−λkx), x → ∞, where λk > λj for all

j ∈ k−1 (cf. Assumption A) and from the boundedness of πj,k−1(·) as above.

The functions Ij,k(x), j ∈ k−1, from (7.4) are strictly positive for x > 0 because

of the positive integrands, and converge for x → ∞ to the finite values φVk(λj) of

the moment-generating function of Vk, where the finiteness is proven in Lemma 3.5.

Hence, the Ij,k(·) and (consequently by Eq. (7.4)) the πj,k(·), j ∈ k−1, are bounded

from above. With (7.5) it follows for j ∈ k−1 and x→∞:

πj,k(x) ∼
x−x0∫
0

πj,k−1(x− y) exp(λjy) dFVk(y)

= πj,k−1(x− ξj(x− x0))
x−x0∫
0

exp(λjy) dFVk(y) , (7.6)

for arbitrary 0 < x0 < x and mean values ξj(x−x0) ∈ (0, x−x0). In the asymptotic

analysis for x→∞ we can choose the value of x0 and, hence, the value x− ξj(x−
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x0) ∈ (x0, x) arbitrarily large. Together with limx→∞ πj,k−1(x) = πj,k−1 ∈ (0,∞),

we obtain for j ∈ k−1 and x→∞:

πj,k(x) ∼ πj,k−1

x∫
0

exp(λjy) dFVk(y) ∼ πj,k−1 φVk(λj) .

Consequently, the mixing proportion functions πj,k(·), j ∈ k, from Eqs. (7.2) – (7.3)

converge:

lim
x→∞

πj,k(x) = πj,k−1 φVk(λj) = KVj

k∏
l=j+1

φVl(λj) =: πj,k ∈ (0,∞) , (7.7)

where we apply πj,k−1 = KVj

∏k−1
l=j+1 φVl(λj), j ∈ k−1, as given above. For j = k

the empty product in (7.7) is set equal to 1 according to the common convention.

Hence, the statements for convolution of d = k object losses are deduced from those

for d = k − 1 objects.

Altogether, the results in Theorems 3.2 and 3.6 on S are proven, and the results in

Corollary 3.4 and Theorem 3.6 on Ui follow analogously.

Theorem 4.1 follows from Theorem 3.6.

Proof of Proposition 4.3. Theorem 4.1 gives for i ∈ n and x→∞:

P{Ui > x} ∼ KUi exp(−µix) =: Pi(x) ,

with constant KUi > 0 given in statement (ii) of Theorem 4.1 and µi from (4.1).

Hence, for the inverse it follows that:

P−1i (y) =
ln(KUi)− ln(y)

µi
∼ − ln(y)

µi
, y ↓ 0 .

Inserting y = 1−α gives the asymptotic result for Ind VaRi(α). The Value-at-Risks

for object and system losses can be obtained analogously. Hence, the results in

statement (i) of Proposition 4.3 are proven.

To deduce the results in statement (ii), we use the functional mixture representation

provided in Theorem 3.6, cf. also Eq. (3.8), and obtain for i ∈ n and u→∞:

∞∫
u

P{Ui > x} dx =
∑
j∈Di

∞∫
u

πi,j,di(x) exp(−λjx/ai,j) dx

∼
∑
j∈Di

πi,j,di

∞∫
u

exp(−λjx/ai,j) dx =
∑
j∈Di

ai,jπi,j,di
λj

exp(−λju/ai,j)

∼ KUi

µi
exp(−µiu) , (7.8)
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with πi,j,di = limx→∞ πi,j,di(x). The last step in (7.8) follows from Theorem 4.1(ii)

with constant KUi > 0 given there and µi from (4.1). Hence, we obtain for u→∞:

E[Ui |Ui > u]− u =
E[(Ui − u)1{Ui−u>0}]

P{Ui > u}
=

∞∫
u

P{Ui > x}
P{Ui > u}

dx

∼ KUi/µi exp(−µiu)

KUi exp(−µiu)
=

1

µi
,

with indicator function 1{·}. The result in statement (ii) of Proposition 4.3 on Ind ESi

follows by inserting u = Ind VaRi(α); the other results in (ii) can be obtained as the

following special cases: on Obj ESj with Di = {j}, ai,j = 1, µi = λj ; on Sys ES with

Di = d, ai,j = 1 for all j ∈ d, µi = λ1.

Proof of Proposition 5.1. Consider some agent i ∈ n and partition the objects

{Vj , j ∈ d} into the two subsets Mi := {Vj , j ∈ Di} of the objects selected by agent i

and M i := {Vk, k ∈ d \Di} of the not-selected objects. Accordingly, we define two

random variables Wi := Ui/ai =
∑

j∈Di
Vj and W i := S −Wi =

∑
k∈d\Di

Vk which

are stochastically independent and follow AE distributions given for x > 0 by (cf.

(3.3)):

P{Wi > x} =
∑
j∈Di

πj,di(x) exp(−λjx) , (7.9)

P{W i > x} =
∑

k∈(d\Di)

πk,(d−di)(x) exp(−λkx). (7.10)

Here πj,di(x), j ∈ Di, are the mixing proportion functions corresponding to the sub-

system formed by object setMi, while πk,(d−di)(x), k ∈ d\Di, are those corresponding

to the sub-system formed by object set M i.

For 0 ≤ u ≤ ais we obtain with (7.9) and (7.10) for some mean value ξu/ai(s) ∈
(u/ai, s) that:

P (Ui > u, S > s) = P (Wi > u/ai,Wi +W i > s)

= P (Wi > s) +

s∫
u/ai

P (W i > s− z)dFWi(z) =
∑
j∈Di

πj,di(s) exp(−λjs)

+
∑

k∈d\Di

πk,(d−di)(s− ξu/ai(s))
s∫

u/ai

exp(−λk(s− z))dFWi(z). (7.11)
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For the integral in (7.11), by partial integration, (7.9), and again the mean value

theorem we obtain for some ξu/ai(s) ∈ (u/ai, s):

s∫
u/ai

exp(−λk(s−z))dFWi(z) =
∑
j∈Di

πj,di(z) exp(−λjz) exp(−λk(s−z))
∣∣∣s
u/ai

−
∑
j∈Di

s∫
u/ai

πj,di(z) exp(−λjz)λk exp(−λk(s− z))dz

=
∑
j∈Di

exp(−λjs)
(
πj,di(s)−

λk
λk−λj

πj,di(ξu/ai(s))
)

+ exp(−λks)
∑
j∈Di

[
exp

(
(λk−λj)

u

ai

)( λk
λk−λj

πj,di(ξu/ai(s))− πj,di
( u
ai

))]
.

Consequently, we obtain with (7.11) that the joint distribution of Ui and S has a

functional exponential mixture representation:

P (Ui > u, S > s) =:
∑
j∈d

bj,u/ai(s) exp(−λjs), (7.12)

where

bj,u/ai(s) =



πj,di(s) +
∑

k∈d\Di

πk,(d−di)(s− ξu/ai(s))

×
(
πj,di(s)−

λk
λk − λj

πj,di(ξu/ai(s))
)

for j ∈ Di ,∑
k∈Di

exp
(
(λj−λk)

u

ai

)
πj,(d−di)(s− ξu/ai(s))

×
( λj
λj−λk

πk,di(ξu/ai(s))− πk,di
( u
ai

))
for j ∈ d \Di ,

(7.13)

where bj,u/ai : [0,∞)→ (−∞,∞), j ∈ d, are bounded functions.

Recall from Eq. (2.4) that the tail parameters are ordered such that λj < λk for

j < k. Hence, representation (7.12) implies that for the asymptotic analysis of

P (Ui > u, S > s) only the asymptotic behavior of the function b1,u/ai(·) in the

dominant term exp(−λ1s) matters and depends on whether the most risky object

is in the agent i portfolio or not. Denote by λi(1) = minj∈Di λj , then we distinguish

two cases:

Case I. λ1 = λi(1) : 1 ∈ Di, Case II. λ1 < λi(1): 1 ∈ d \Di,

We start with Case II, where λ1 < λj for all j ∈ Di and obtain the finite limit:

lim
s→∞

s∫
u/ai

exp(λ1z)dFWi(z) =
∏
j∈Di

φVj (λ1)−
u/ai∫
0

exp(λ1z)dFWi(z) ∈ (0,∞) , (7.14)
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with moment-generating function φWi(·) =
∏
j∈Di

φVj (·). Now we go back to (7.11),

noticing that the dominant term is the summand for k = 1 in the second term. The

same argument as in (7.6) applies giving

lim
s→∞

π1,(d−di)(s− ξu/ai(s)) = π1,(d−di) ∈ (0,∞).

Consequently, with (7.14) for s→∞:

P (Ui > u, S > s) ∼ π1,(d−di) exp(−λ1s)
s∫

u/ai

exp(λ1z)dFWi(z) (7.15)

∼ π1,(d−di) exp(−λ1s)
( ∏
j∈Di

φVj (λ1)−
u/ai∫
0

exp(λ1z)dFWi(z)
)

∼ exp(−λ1s)
(
π1,d −KV1

∏
k∈d\Di,k 6=1

φVk(λ1)

u/ai∫
0

exp(λ1z)dFWi(z)
)
,

where in the last step we have adapted (3.10) to the situation, which gives π1,(d−di) =

KV1

∏
k∈d\Di,k 6=1 φVk(λ1).

For Case I we start with the following partition:

P (Ui > u, S > s) = P (Wi > u/ai,Wi +W i > s)

=

∞∫
0

P (Wi > max(u/ai, s− z))dFW i
(z)

=

s−u/ai∫
0

P (Wi > s− z)dFW i
(z) + P (Wi > u/ai)P (W i > s− u/ai)

=
∑
j∈Di

exp(−λjs)
s−u/ai∫
0

πj,di(s− z) exp(λjz)dFW i
(z)

+
∑

k∈d\Di

exp(−λks)
∑
j∈Di

πj,di(u/ai)πk,(d−di)(s− u/ai) exp((λk − λj)u/ai).

Since 1 ∈ Di and λ1 < λk for all k ∈ d \ Di, the moment-generating function

φW i
(·) =

∏
k∈d\Di

φVk(·) is finite at λ1, such that for s→∞:

P (Ui > u, S > s) ∼ exp(−λ1s)
s−u/ai∫
0

π1,di(s− z) exp(λ1z)dFW i
(z)

∼ exp(−λ1s) π1,di
∏

k∈d\Di

φVk(λ1) = π1,d exp(−λ1s) , (7.16)
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where the limit value π1,di follows as in (7.15).

Hereby, statement (i) for u ≤ ais and statement (ii) in Proposition 5.1 are proven.

Statement (i) for u > ai s and statement (iii) follows, since for u > ais:

P (Ui > u, S > s) = P (Wi > u/ai) =
∑
j∈Di

πj,di(u/ai)exp(−λju/ai) (7.17)

∼ πi(1),di exp(−λi(1)u/ai) , for u→∞ .

Proof of Theorem 5.3. From the results on the joint distribution of Ui and S as

given in Proposition 5.1 it follows for the conditional probabilities that:

P (Ui > u | S > s) ∼ πi(1),di
/(∑

j∈d
πj,d(s) exp(−λjs)

)
exp(−λi(1)u/ai) , u→∞ ,

P (S > s | Ui > u) ∼ Ci
( u
ai

)/( ∑
j∈Di

πj,d
( u
ai

)
exp

(
− λju

ai

))
exp(−λ1s) , s→∞ .

Then the CoVaR results of statement (i) in Theorem 5.3 follow analogously to the

VaR results in Proposition 4.3.

To prove the results of statement (ii) we analyze the functional exponential mixture

representation (which follows from Eq. (7.12) in the proof of Proposition 5.1) such

that for s > 0 and θ ∈ (0, ai):

P (Ui > θs, S > s) =
∑
j∈Di

bj,θs/ai(s) exp(−λjs)

+
∑
j∈Di

∑
k∈d\Di

Bj,k(s, θs/ai) exp(−(λjθ/ai + λk(1− θ/ai))s) , (7.18)

with Bj,k(s, u/ai) := bk,u/ai(s) exp(−(λk − λj)u/ai) which is a bounded function

in both arguments s and u/ai. Comparison of the exponents in (7.18) yields that

λj < λjθ/ai + λk(1− θ/ai) is equivalent to λj < λk, which implies:

P (Ui>θs, S>s) ∼

π1,d exp(−λ1s) for λ1 = λi(1) ,

Bi(1),1 exp(−(λjθ/ai + λ1(1−θ/ai))s) for λ1 < λi(1) .
(7.19)

Here we apply lims→∞b1,θs/ai(s)=π1,d and lims→∞Bi(1),1(s, θs/ai)=Bi(1),1 ∈ (0,∞).

The quantile functions of P (Ui > θs | S > s) and P (S > s | Ui > θs) – which could

be obtained from (7.19) – yield the CoVaR results in Theorem 5.3(ii).
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Proof of Theorem 5.5. We apply representation (7.18), see proof of Theorem 5.3

above, for θs = u > 0, and obtain that:

P (Ui > u)E[S | Ui > u] = (u/ai)P (Wi > u/ai) +

∞∫
u/ai

P (Ui > u, S > s)ds

= u/ai
∑
j∈Di

πj,di(u/ai) exp(−λju/ai) +
∑
j∈Di

∞∫
u/ai

(
bj,u/ai(s) exp(−λjs)

+
∑

k∈d\Di

Bj,k(s, u/ai) exp((λk − λj)u/ai) exp(−λks)
)

ds

∼ u/ai πi(1),di exp(−λi(1) u/ai) , for u→∞ .

By inserting u = Ind VaRi(α) ∼ Ind ESi(α), α ↑ 1 (see Corollary 4.5) this proves

statement (ii) of Theorem 5.5.

The results in statement (i) can be deduced as follows: For λ1 = λi(1) we obtain with

the mean values ξ(s) ∈ (0, s), ξ(s) ∈ (s,∞) that:

P (S > s)E[Ui | S > s] =

ai s∫
0

P (Ui > u, S > s)du+

∞∫
ai s

P (Ui > u)du (7.20)

=
∑
j∈Di

exp(−λjs)bj,ξ(s)(s)ais+
∑
j∈Di

ai exp(−λjs)
(πj,di(ξ(s))

λj

+
∑

k∈d\Di

Bj,k(s, ξ(s))

λk − λj

)
−

∑
k∈d\Di

exp(−λks)
∑
j∈Di

aiBj,k(s, ξ(s))

λk − λj

∼ ai π1,d s exp(−λ1s) , for s→∞ ,

where we apply lims→∞ bj,ξ(s)(s) = π1,d which has be shown in the proof of Propo-

sition 5.1, see (7.16). This gives statement (i) for case λ1 = λi(1).

To prove the corresponding result for case λ1 < λi(1), we further exploit the property

that P (Ui > u, S > s) ∼ π1,(d−di) exp(−λ1s)
∫ s
u/ai

exp(λ1z)dFWi(z) holds in this case

(see (7.15)), and obtain by changing the order of integrals that:

ai s∫
0

π1,(d−di) exp(−λ1s)
s∫

u/ai

exp(λ1z)dFWi(z) du

= π1,(d−di) exp(−λ1s)
s∫

0

ai z exp(λ1z)dFWi(z) . (7.21)
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Repeatedly applying integration by parts, we obtain for s→∞:

s∫
0

z exp(λ1z)dFWi(z)

= −
∑
j∈Di

[
πj,di(s) s exp(−(λj−λ1)s) +

s∫
0

πj,di(z)(1+λ1z) exp(−(λj−λ1)z)dz
]

∼
∑
j∈Di

πj,di
[

exp(−(λj−λ1)s)
(
− s− 1+λ1s

λj−λ1
− λ1

(λj−λ1)2
)

+
1

λj−λ1
+

λ1
(λj−λ1)2

]
→

∑
j∈Di

πj,di
λj

(λj − λ1)2
.

Together with (7.20) and (7.21) we obtain for s→∞ that:

P (S > s)E[Ui | S > s] ∼
(
ai π1,(d−di)

∑
j∈Di

πj,di
λj

(λj − λ1)2
)

exp(−λ1s) ,

which gives the result for Ind CESUi|S(α) in case λ1 < λi(1). Therefore the results of

Theorem 5.5 are proven.

Acknowledgments. This research has been in part financially supported by the

Collaborative Research Center “Statistical modeling of nonlinear dynamic processes”

(SFB 823, Teilprojekt A1) of the German Research Foundation (DFG).

References

[1] Adrian, T., Brunnermeier, M.K.: CoVaR. Am. Econ. Rev. 106(7), 1705-1741 (2016)

[2] Andersen, T.G., Davis, R.A., Kreiss, J.-P., Mikosch, T. (Eds.): Handbook of Financial

Time Series. Springer, Berlin (2009)

[3] Asmussen, S., Albrecher, H.: Ruin Probabilities. World Scientific, New Jersey (2010)

[4] Barndorff-Nielsen, O.E., Mikosch, T., Resnick, S.I. (Eds.): Lévy Processes: Theory and
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