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Recently Sara Crespo Yanguas and col-
leagues from the University of Brussel pub-
lished a study about the role of pannexin1 in 
the pathogenesis of liver fibrosis (Crespo 
Yanguas et al., 2018). Panx channels are 
known as mediators of ATP release (Dahl, 
2015). After injury cells may release ATP and 
uridine-5’-triphosphate into the extracellular 
space. The released ATP attracts immune 
cells to the area of damage (Davalos et al., 
2005; Chekeni et al., 2010). In cardiac fibrosis 
cardiomyocytes have been shown to release 
ATP via pannexin1 which contributes to acti-
vation of fibroblasts (Dolmatova et al., 2012). 
However, in liver the role of pannexin1 in 
liver fibrosis remains unknown. Therefore, 
the authors compared pannexin1 knockout 
and wild-type mice after CCl4 treatment for 8 
weeks and after bile duct ligation (Crespo 
Yanguas et al., 2018). 

Interestingly, pannexin1 knockout mice 
showed reduced collagen content, stellate cell 
activation, and inflammation compared to 
wild-type mice. Therefore, the release of ATP 
seems to contribute to myofibroblast activa-
tion also in the liver. In contrast to the CCl4- 
fibrosis model, bile duct ligation led to more 
hepatocellular injury and a stronger immune 
response in the pannexin1 knockout than in 
wild-type mice. 

It is not surprising that different conse-
quences are observed in the CCl4 and the bile 
duct ligation models. CCl4 is a model of peri-
central liver damage where a fraction of ap-
proximately 40 % of hepatocytes in the centre 
of the lobule are killed (Hoehme et al., 2010; 
Hammad et al., 2017; Bartl et al., 2015). It 
seems plausible that the ATP released from 
these damaged hepatocytes activates stellate 
cells (Leist et al., 2017). In contrast, bile duct 
ligation leads to a ductular response with pro-
liferation of cholangiocytes, branching and 
looping of bile ducts, leading to a denser mesh 
of interlobular bile ducts around portal veins 
(Vartak et al., 2016; Jansen et al., 2017). Sim-
ultaneously, periportal fibrosis occurs 
(Ghallab et al., 2018). It is interesting that this 
phenomenon is enhanced by the pannexin1 
knockout, although the responsible mecha-
nism still has to be elucidated. 

Currently, hepatotoxicity in vivo (Stöber, 
2016; Du et al., 2017; Reif et al., 2017; Ham-
mad et al., 2018; Ghallab et al., 2016) as well 
as mechanistic studies in hepatocyte in vitro 
systems represent very active research areas 
(Ghallab, 2017; Godoy et al., 2013, 2015, 
2016). In this rapidly progressing field Sara 
Crespo Yanguas and colleagues made an im-
portant contribution by revealing the role of 
ATP-release channels in the pathogenesis of 
liver fibrosis. 
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