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Abstract

Statistical modeling of protein-protein interaction networks

Understanding how proteins bind to each other in a cell is the key in molecular biology to

determine how experts can repair anomalies in cells. The major challenge in the prediction of

protein-protein interactions is the cell-to-cell heterogeneity within a sample, due to genetic and

epigenetic variabilities. Most studies about protein-protein interaction carry out their analysis

without awareness of the underlying heterogeneity. This situation can lead to the identification

of invalid interactions. As part of the solution to this problem, we proposed in this thesis two

aspects of analysis, one for snapshot data, where di↵erent samples of ten proteins were taken

by toponome imaging and another for the analysis of time correlated data that guarantees a

better approximation to the prediction of protein-protein interactions. The latter represents an

advance in the analysis of data with high temporal resolution, such as that obtained through

the quantification technique known as multicolor live cell imaging. The thesis here presented

is divided into two parts: The first part called ”Revealing relationships among proteins

involved in assembling focal adhesions” consists of the development of a methodology

based on frequentist methods, such as machine learning and meta-analysis, for the prediction

of protein-protein interaction on six di↵erent toponome imaging datasets. This methodology

presents an advance in the analysis of highly heterogeneous snapshot data. Our aim here

focused on the formulation of a single model capable of identifying the relationship among

di↵erent samples by summing is common results over them concerning their random variation.

This methodology leads to a set of common models over the six datasets hierarchized by their

predictive power, where the researcher can choose the model according to its accuracy in the

prediction or according to its parsimony. The developing of this part is in Chapters 1-7 — this

part published in Harizanova et al. (2016).

The second part is called ”Modelling of temporal networks with a nonparametric
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mixture of dynamic Bayesian networks”. The content of this part contemplates the advance

of a Bayesian methodology regarding temporal networks that successfully enables to identify

subpopulations in heterogeneous cell populations as well as at the same time reconstructing

the protein interaction network associated with each subpopulation. This method extends

the nonparametric Bayesian networks (NPBNs) (Ickstadt et al., 2011) for the analysis of

time-correlated data by using Gaussian dynamic Bayesian Networks (GDBNs). We evaluate

our model based on the variation of specific parameters such as the underlying number of

subpopulations, network density, intra-subpopulation variability among others. On the other

hand, a comparative analysis with existing clustering methods such as NPBNs and hierarchical

agglomerative clustering (Hclust), shows that the inclusion of temporal correlations in the

classification of multivariate time series is relevant for an improvement in the classification.

The classic Hclust method using the dynamic time warping distances (T-Hclust) was found to

be similar in precision to our Bayesian method here proposed. On the other hand, a comparative

analysis with the GDBNs shows the lack of adjustment of the GDBNs to reconstruct temporal

networks in heterogeneous cell populations through a single model, while our method, as well as

the joint use of the T-Hclust classifications with the GDBNs (T-Hclust+), show a high adequacy

in the prediction of temporal networks in a mixture. The developing of this part is in Chapters

8-16.
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Introduction

The proteins are formed by units called amino acids, these are still unknown. Many claims that

the number of essential amino acids is 22, but the verification of such quantity is unknown.

The lack of knowledge about amino acids is an example of how protein synthesis could be

misunderstood, which a↵ects the environment as well as the human race since with this lack of

knowledge many of us have acquired food habits that are not suitable for our molecular structure

and are not apt to be degraded by nature. Many chemicals or drugs do not come from a real

molecular structure, which when discarded by the body goes to the environment, which can

be degraded if and only if the chemical compound that represents the drug is compatible with

those of the environment. Otherwise, the new molecules become part of the environment thus

contaminating nature and forming new additives not suitable for humans. In this work, we will

undertake a search to analyze data related to protein synthesis.
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Part I

Revealing relationships among proteins

involved in assembling focal adhesions
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1. Introduction

The space between the cells is filled in a multi-cellular organism by a nonliving material called

the extracellular matrix. The roles of this matrix vary from tissue to tissue and include providing

structural, biochemical support to the cell, regulating thereby the cell’s dynamic behavior, such

as its morphology, migration, proliferation, survival, and di↵erentiation (Gumbiner, 1996; Hynes

and Lander, 1992). The binding process between a cell and the extracellular matrix is mediated

by large multi-protein structures within the cell known as cell-matrix adhesion sites (Zamir and

Geiger, 2001) or in a short form as focal adhesions, a term employed in this thesis. Figure 1.1

contains a schematic representation of this process, where the focal adhesions consist of receptor

proteins called integrins and a group of interacting proteins that link the receptor proteins to the

actin filaments. This is a familiar picture of the process, but actually, the group of interacting

proteins can contain over 100 di↵erent proteins (Hanein and Horwitz, 2012; Geiger et al., 2009).

Figure 1.1: Exemplification of the cell-matrix adhesion process. Figure adapted from
http://www.mun.ca/biology.
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1. Introduction 4

The understanding of how proteins interact with each other in a cell can be influenced

to repair anomalies in them. The knowledge of the formation of multi-protein structures is

guided by the quantitation of the states of the associated proteins to predict the relationship

between them. Unfortunately, in spite of significant advances in proteomic and methods, a large

number of components and the diversity among these components within a single cell pose a

fundamental challenge for monitoring the full molecular content involved in a specific cellular

process. Therefore, thus far there is no way to observe the whole system at once (i.e., in the

same cell) but only a small part of it. This limitation, by itself, could have been overcome by

looking at di↵erent parts of the system in di↵erent cells and building step by step a model of

the whole system (Harizanova et al., 2016; Wieczorek et al., 2015). However, focal adhesions

are quite complex structures, often varying in size, shape, distribution, dynamics, and molecular

compositions which make the integration of information highly challenging.

In this work, we focused on the analysis of a part of these multi-protein structures formed

by ten proteins known as ↵-actinin, F-actin, FAK, FAK-pY397, Hic-5, paxillin, paxillin-pY118,

VASP, vinculin, and zyxin. We use a measurement technique known as high-throughput cyclic

immunofluorescence to quantify levels of these proteins in thousands of individual focal adhesions

by using a measurement technique known as high-throughput cyclic immunofluorescence. The

measurement procedure was carried out by the research group of systems biology of cell-

matrix adhesion at the Max Planck Institute of Molecular Physiology, and the results were

six independent datasets. Our aims are:

1. To quantify, independently for each dataset, how much a combination of input proteins

informs us about the level of another, target, protein across the focal adhesions.

2. To find common results among the di↵erent datasets.

3. To integrate the common findings over the di↵erent datasets for interpretation and

practical use of the results.

For the first aim, we screened systematically for high-order correlations using artificial neural
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networks (ANNs) and Random Forests (RFs). In particular, ANNs and RFs are two machine

learning techniques which are currently valuable tools for variable interactions modeling and are

especially useful in analyzing large datasets and identifying non-linear relationships (Zeng and

Wang, 2010). ANNs are potent and practical tools to solve complex dependencies which are

di�cult with other traditional statistical methods. Additionally, ANNs have the advantages that

a deep learning neural network takes into consideration the inner links among features links and

by applying multiple hidden layers on the model, we would be able to capture the confounding

relationships among the elements and combine the items into robust features each time we apply

the additional layer. In studies comparing machine learning methods (Liu et al., 2013; Were et al.,

2015; Rodriguez-Galiano et al., 2015) have been found that ANNs yield the highest accuracy

rate in almost all cases, while RFs have shown to perform favorably in cases of heterogeneous

data. It may be because RFs use subsets of training sets with bagging and subsets of features

which can help reduce the e↵ect of heterogeneity in the data. Therefore we consider convenient

the application of both methods to find the most suitable results. Nevertheless, before the

application of these two methods, to reduce the cell-to-cell variability, we propose a Box-Cox

transformation (Box and Cox, 1964) of the measurements with a posterior standardization and

removal of the outliers from the obtained standard scores by using Tukey’s approach (Tukey,

1977). To address the second aim, we propose first to identify the suitable input protein

combinations separately within each dataset by using determination coe�cient and hypothesis

tests about the linear relation between observed and predicted values from the best results

between ANNs and RFs. Afterward, the common results over the six data subsets are identified,

based on the suitable input proteins combinations in each dataset. Finally, for the third aim, we

merge common findings using a model of random e↵ects meta-analysis (Schulze et al., 2002).

Some of the results presented here are already published in Harizanova et al. (2016).

This part is divided into five chapters. Chapter 2 includes details about the six datasets.

Chapter 3 the description of the methods employed. Chapter 4 the data analysis methodology.

Chapter 5 the results and Chapter 6 the conclusions.



2. Description of datasets

In this chapter, we will present in detail the datasets used for the achievement of this proposal.

2.1 Description of datasets

The datasets, here employed, contain the intensity levels of ten proteins, ↵-actinin, F-actin,

FAK, FAK-pY397, Hic-5, paxillin, paxillin-pY118, VASP, vinculin, and zyxin, whose levels were

quantified in thousands of individual focal adhesions from 257 live cells using a method known as

high-throughput cyclic immunofluorescence. This procedure is carried through successive cycles

of immunolabeling, imaging, and bleaching, enabling the labeling of many components to use

the same fluorophore (YFP-paxillin), which is a component of a molecule that makes it fluoresce.

Figure 2.1 contains a description of this procedure, and we give more details in Harizanova et al.

(2016). We computed the levels of a given component in a given focal adhesion as the sum of

the intensity in its corresponding pixels in the corresponding image divided by the number of

these pixels.

6



2.1. Description of datasets 7

Figure 2.1: High-throughput cyclic immunofluorescence imaging of cell-matrix adhesion sites.

Imaging procedure and an example of the images obtained for a cell. Scale bar, 10 µm. Figure

adapted from Harizanova et al. (2016).

As a result of the employment of the procedure described above, we obtained six di↵erent

datasets by using three repeats of four cycles with two permuted labeling (see Table 2.1). We

denote the datasets as R1O1, R1O2, R2O1, R2O2, R3O1, R3O2. Table 2.1 contains the number

of cells and focal adhesions per dataset.
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Table 2.1: Labeling orders of the components in the CycIF imaging cycles. Table adapted from

Harizanova et al. (2016).

Order Cycle 1 Cycle 2 Cycle 3 Cycle 4

1 Vinculin Zyxin Paxillin F-actin

FAK VASP Paxillin-pY118 Hic-5

FAK-pY397 ↵-Actinin

2 F-actin Paxillin Zyxin Vinculin

Hic-5 Paxillin-pY118 VASP FAK

↵-Actinin FAK-pY397

Table 2.2: Number of cells and focal adhesions per dataset.
R1O1 R1O2 R2O1 R2O2 R3O1 R3O2

No. of cells 38 36 49 51 46 37

No. of FAs 353074 352226 497612 483875 435290 299534

2.2 Exploratory data analysis

To explore the behavior of the levels of the ten proteins and to compare these among the

datasets, we employed frequency histograms where the di↵erent datasets were overlapped in the

same graph to facilitate comparison among them (see Figure 2.2). In these histograms, we can

not only see that the distributions of the levels of the proteins are not approximately symmetrical

but also it is evident that the lack of asymmetry can be due to outliers, in this comparison we

observed that lack of asymmetry could be causing discrepancies between samples.

Additionally, we support the above conclusions with Bar plots depicted in Figure 2.3. Here

it can be appreciated that e↵ectively the levels of proteins are asymmetrically distributed and

directly a↵ected by a large number of outliers. Besides, we can see that there are discrepancies

among the central values on the six subsets. Nonetheless, there is no reason to assume that this

is due to a systematic variation. Note that there is not a particular pattern indicating that the

di↵erent cycles and labelings of the measurement technique are causing the discrepancies among

the di↵erent datasets. On the contrary, these discrepancies seem to be due to random variations,
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2. Description of datasets 10

a product of factors not considered. To reduce the number of extreme values and to make the

distributions of protein levels more symmetric, we propose to preprocess the data subsets by

employing a Box-Cox transformation (Box and Cox, 1964) of the measurements, followed by a

normalization of the transformed scores and finally reducing the number of extreme values by

using Tukey’s approach (Tukey, 1977). We give more details about this procedure in Section 4.1.
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Figure 2.3: Bar plots for the levels of the ten proteins over the six datasets.



3. Methods

3.1 Box-Cox transformation

The Box-Cox transformation (Box and Cox, 1964) attempts to transform continuous

measurements into values approximately normally distributed by scaling the values using a

parametric family of transformations indexed by an unknown parameter � which defines a

particular transformation. When the random variable X to be transformed is garantizada to be

posittive and di↵rente from zero, the Box-Cox transformation is given by:

X

(�)
=

8
><

>:

(X

� � 1)/� � 6= 0

log(X) � = 0

(3.1)

In case that X does not have positiveness, this must be achieve by using a constant term, a,

such that X + a > 0 and the corresponding transformation will lead to:

X

(�)
=

8
><

>:

[(X + a)

� � 1]/� � 6= 0

log(X + a) � = 0

(3.2)

The implementation of the Box-Cox transformation attempts for finding the � value that

11
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maximizes the log-likelihood function:

L
max

(�) = �1

2

N log b�2
(X�) + (�� 1)

NX

i=1

log x

i

(3.3)

for the transformations 3.1 and

L
max

(�) = �1

2

N log b�2
[(X+a)�] + (�� 1)

NX

i=1

log(x

i

+ a) (3.4)

for the transformations 3.2. Here N denotes the number of realization of the variable X and

b�2 is the sample variance of the transformed values.

3.2 Artificial neural networks

Artificial neural networks (ANNs) can be seen as two-step regression or classification model.

In general they are represented by network diagrams as the one in Figure 3.1, where each unit

represents a neuron, and the connections (edges) represent synapses. This network applies only

to regression; the respective network for classification has more than one output. Our main

aim in this work is to regress variables instead of classifying them. Therefore, we restrict our

attention to the definition of ANNs for regression. For details and description of ANNs for

classification see e.g. Hastie et al. (2009).
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X1

X2

X3

X4

Y

Hidden

layer

Input

layer

Output

layer

Figure 3.1: Structure of an feedforward ANN with four input variables and one hidden layer.

Let X = (X1, . . . , Xn

)

> be a vector of n random variables and Y a target variable to be

explained (or predicted) by X. In ANNs, the input variables are combined to create a new vector

Z = (Z1, . . . , ZM

)

>, which can be used to explained Y in a linear functional form as follows:

Y = �0 + �T

Z+ ",

(3.5)

where the coe�cients �0, � and the error term " have the same meaning as in linear regression

models.

The vector Z is created by using a scalar-to-scalar function known as activation function on

a linear combination of the input variables in X, that is:

Z

m

= �(↵0m +↵>
m

X), m = 1, . . . ,M. (3.6)

The flexibility of ANNs to fit a wide variety of functions derives from the freedom to choose

di↵erent values for the coe�cients {↵0m,↵m

;m = 1, . . . ,M}, {�0k,�}, the activation function

� and any parameters which they might contain. Note that if � is the identity function, then

the complete Eq. 3.5 collapses to the conventional linear regression model on X. The activation

function in this work is the one known as sigmoid activation function, given by:
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�(w) =

1

1 + exp{�w} . (3.7)

Other alternatives can be found for example in Hastie et al. (2009) and Banyasz (2014).

ANN structures like Figure 3.1 are sometimes depicted with an additional bias unit feeding

into every unit in the output and hidden layers. Contemplating the constant ”1” as an additional

input component, this bias unit captures the intercepts ↵0m and �0 in model 3.5. The units in

the middle of the network structure are called hidden units because they represent the derived

features Z

m

whose values are not directly observed. In general there may be more than one

hidden layer. Hastie et al. (2009) mentions that it is better to have too many hidden units

than too few. With too few hidden units, the model might not have enough flexibility to

capture the nonlinearities in the data; with too many hidden units, the extra coe�cients can be

shrunk toward zero if appropriate regularization is used. Typically the number of hidden units

is somewhere in the range of 5 to 100, with the number increasing with the number of inputs

and number of training cases.

For the estimation of the coe�cients involved in Eq. 3.5. ANNs use the least square method,

which is aimed to minimize the sum-of-squared errors

R(✓) =
NX

i=1

(y

i

� ŷ

i

)

2
, (3.8)

where ✓ represents the set of parameters {↵0m,↵m

;m = 1, . . . ,M} (M ⇤ (n+ 1) coe�cients)

and {�0k,�} (M+1 coe�cients); and ŷ

i

the predicted values of y
i

obtained by using Eq. 3.5.

The most popular approaches to minimizing R(✓) are the algorithms known as gradient

descent backpropagation, Gauss-Newton (GN) and Levenberg-Marquardt (LM). A gradient

descent backpropagation algorithm is a supervised learning technique that attempts to minimize

the error of the network by moving down the gradient of the error curve as stated. The

huge advantage of backpropagation is that unlike other techniques, it works independently of
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theoretical assumption (Tadeusiewicz et al., 2014). In the backpropagation algorithm, each

hidden unit passes and receives information only to and from units that share a connection.

Thus it can be implemented e�ciently on a parallel platform. However, since this algorithm

approaches the minimum in a linear (first order) manner its speed of convergence is normally

low, thus does not always possess adequate convergence properties. On the other hand, the

GN algorithm has quadratic convergence properties that make it very fast. Nonetheless, its

convergence depends, highly, on the choice of the initial weight values. The prediction of an

appropriate set of initial values is not always possible in real-world applications, which makes the

GN method unworkable for many applications. A better alternative is given by the LM algorithm,

which combines the positive characteristic of the GN and gradient descent algorithms. Thus,

the LM algorithm overcomes the limitations of these approaches and is more appropriated in

practice. More details of theses algorithms can be found, e.g. in Sun and Yuan (2006) and

Press et al. (1992, Chapter 15.5).

3.3 Random forests for regression

Random forests (RFs) are an ensemble learning approach proposed by Breiman (2001) for

building a predictor by using a set of regression trees.

RFs are the consequence of an extension of bagging with decision trees introduced by Breiman

(1996) by adding the idea of using random selection of variables introduced independently by Ho

(1998) and Amit and Y (1997) in order to enhance prediction accuracy of bagging. The essential

idea of bagging is to average many noisy but approximately unbiased models, hence reducing the

prediction variance without a↵ecting the prediction bias. Trees are ideal candidates for bagging,

since they can capture complex interaction structures in the data and have low relatively bias

if grown su�ciently deep (Hastie et al., 2009). The trees generated in bagging are identically

distributed (i.d.), hence the expectation of an average of B such trees is the same as the

expectation of any one of them. This means the bias of bagged trees is the same as that of
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the individual trees, and the only hope of improvement is through variance reduction. Since

the trees are simply i.d. (identically distributed, but not necessarily independent) with positive

pairwise correlation ⇢, the variance of the average is given by:

⇢�

2
+

1� ⇢

B

�

2
, (3.9)

where ⇢ is the sampling correlation between any pair of trees used in the averaging and �

2 is

the sampling variance of any single randomly drawn tree.

As B increases, the second term in Eq. 3.9 disappears, but the first remains, and hence the size

of the correlation of pairs of bagged trees limits the benefits of averaging. The idea in random

forests is to improve the variance reduction of bagging by reducing the correlation between the

trees, without increasing the variance too much. This is achieved in the tree-growing process

through random selection of the input variables.

In random forests, each tree is grown specifically as follows:

1. A bootstrap training data set, D
b

, is drawn, with replacement, from the original training

data set.

2. Grow the tree on D

b

selecting, at each node of the tree, m  n inputs variables at random

from the inputs subset X = (X1, . . . , Xn

)

> and using the best variable (split-point) from

those m.

3. Each tree is grown to maximum length, with no pruning.

After B such trees, {T (x;✓
b

)}B1 , are grown, the random forest (regression) predictor is

computed by:

ˆ

f

B

rf

(x) =

1

B

BX

b=1

T (x;✓
b

), (3.10)

where ✓
b

is the set of parameters associated to the b-th random forest tree in terms of split

variables, cutpoints at each node, and terminal-node values. Hastie et al. (2009) shows how the
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correlation between pairs of trees decreases as m (number of input variables selected) decreases:

pairs of tree predictions at x for di↵erent training sets are likely to be less similar if they do not

use the same splitting variables. Hence, intuitively from Eq. 3.9, reducing m will reduce the

variance of the average. In addition, Breiman (2001) recomends using as default value for m

n/3 and as the minimum node size five.

An important feature of random forests is its use of out-of-bag (oob) samples, that is, for

an specific bootstrap sample D with observations d

i

= (x

i

, y

i

), construct its random forest

predictor by averaging only those trees corresponding to bootstrap samples in which z

i

did not

appear. Call this the oob predictor. Then the oob error is the error of the oob predictor on D,

which is obtained as the mean squared error (MSE) in a linear model. Random forests also use

the oob samples to construct a variable-importance scoring function to measure the prediction

strength of each input variable. To measure the importance of the i-th input variable, the

values of that variable are permuted in the oob samples and the oob error is again computed

on this perturbed data set. The decrease in accuracy as a result of this permuting is averaged

over all trees, and is used as an importance score for the i-th variable in the random forest.

The randomization e↵ectively voids the e↵ect of a variable, much like setting a coe�cient to

zero in a linear model. This does not measure the e↵ect on prediction were this variable not

available, because if the model was refitted without the variable, other variables could be used

as surrogates.

3.4 Random-e↵ects model of meta-analysis

Meta-analysis is a widely used statistical procedure for merging and contrasting findings from

independent but related studies in order to identify similarities or discrepancies among them, or

other issues that may come to light in the context of multiple studies.

Meta-analysis basically is done by identifying a common statistical measure, called e↵ect size,

that is shared between studies and afterward computing a weighted average of this measure.
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The associated weights are related to the study’s precision: Studies with relatively a good

precision are corresponding with high weights, while studies with relatively poor precision with

low weights.

There are two models common used in a meta-analysis, one knows as fixed-e↵ect model (FE

model) and another as random-e↵ects model (RE model). In the FE model, the inverse of

the estimates’ variance is commonly used as the weights. Thus, by using the inverse of the

variance of the e↵ect size as weights, more accurate estimates contribute more to the final

average than less accurate estimates. The FE model assumes that all the studies in the analysis

share the same true e↵ect size. However, in many systematic reviews this assumption is mostly

implausible.

Studies may di↵er for example, in terms of experimental unit characteristics or methods

employed, among other reasons, which may lead to di↵erent values for the true e↵ect size. We

might not information about covariances actually related to the size of the e↵ect. Nevertheless,

logic dictates that such factors do exist and will lead to significance variations in the e↵ect size

estimation. A way to consider this variation in the analysis is by using a RE model. In contrast

to the FE model, the RE model allows that the study-specific estimators of the e↵ect size

may possess di↵erent expected values. Let us consider k independent studies and let ✓1, . . . , ✓k

be the (one dimensional) parameter of interest, where ✓

k

denotes the e↵ect size in the k-th

study. The parameter ✓
i

, i = 1, . . . , k may represent, for example in analyzes with continuous

variables, the true mean, the standardized di↵erence of means or the normalized correlation

coe�cients. In each study an estimate of the e↵ect size is available, and all study-specific

estimators b
✓

i

, i = 1, . . . , k, are stochastically independent. Thus, assuming that the specific

estimator are at least approximately normally distributed and unbiased or at least consistent, it

holds approximately:

b
✓

i

|✓
i

, �

2
(

b
✓

i

) ⇠ N(✓
i

, �

2
(

b
✓

i

)), i = 1, . . . , k, (3.11)
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where �2
(

b
✓

i

) denotes the variance of the estimator in the i-th study. And for each study-specific

mean ✓

i

we assume that it is drawn from some superpopulation of e↵ects with mean ✓ and

variance ⌧

2, that is,

✓

i

|✓, ⌧ 2 ⇠ N(✓, ⌧ 2). (3.12)

The parameters ✓ and ⌧

2 are referred as hyperparameters, ✓ represents the average e↵ect size

and ⌧

2 the between-study variation. Given the hyperparameters, the marginal distribution of

the estimators b✓
i

is given by (Schulze et al., 2002):

Definition 3.4.1 (Random-e↵ects model)

b
✓

i

⇠ N(✓, ⌧ 2 + �

2
(

b
✓

i

)), i = 1, . . . , k, (3.13)

If the between-study variance ⌧

2 is equal to zero then the RE model 3.13 reduces to the FE

model.

In RE model 3.13, the best linear unbiased estimator of the average e↵ect size ✓ is given by

e
✓

RE

=

P
k

i=1 wi

b
✓

i

w

, w =

kX

i=1

w

i

, (3.14)

where w

i

= [⌧

2
+ �

2
(

b
✓

i

)]

�1 is the inverse of the variance of the estimator b✓
i

. The estimator

e
✓

RE

is also the maximum likelihood estimator (MLE) of ✓ if the variance components are known

and the normal distribution in 3.13 exactly holds.

The estimator e✓
RE

in 3.14 possesses furthermore the following distributional property:

e
✓

RE

⇠ N(✓,
1

w

). (3.15)

This property can be used for confidence interval construction for e
✓

RE

, as well as for the

performance of conventional significance tests associated to the parameter of interest.
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Mostly in practice, the involved variances ⌧ 2 and �

2
(

b
✓

i

), i = 1, . . . , k, are hardly ever known.

So they have to be replaced by appropriate estimators. Normally, an estimator of �2
(

b
✓

i

), say

b�2
(

b
✓

i

), is available in each study. These estimators b�2
(

b
✓

i

), i = 1, . . . , k, are assumed to be

stochastically independent and at least nearly unbiased for �2
(

b
✓

i

). One method for estimating

⌧

2 is the method of moments (or the DerSimonian and Laird) method (Schulze et al., 2002).

The method of moments estimator of ⌧ 2 is defined as follows:

b⌧ 2 = Q� (k � 1)

� �
P

k

i=1 �
2
i

/�

, � =

kX

i=1

�

i

, �

i

= [�

2
(

b
✓

i

)]

�1
, i = 1, . . . , k. (3.16)

Since the estimator depends on the unknown variances �

2
(

b
✓

i

), for a practical application the

estimator of ⌧ 2 used is given by (Schulze et al., 2002):

b⌧ 2 = Q� (k � 1)

b� �
P

k

i=1 b�2
i

/b�
, (3.17)

where Q is computed by

Q =

kX

i=1

b�
i

b
✓

2
i

� (

P
k

i=1 b�ib✓i)2

b� . (3.18)

Thus, a feasible estimator of the average e↵ect size ✓ in the RE model is given by:

e
✓

RE

=

P
k

i=1 bw
i

b
✓

i

bw , bw =

kX

i=1

bw
i

, bw
i

= [b⌧ 2 + b�2
(

b
✓

i

)]

�1
, i = 1, . . . , k. (3.19)



4. Data analysis methodology

In this section, we will describe the methodological procedure used for the data analysis designed

to achieve the aims described at the beginning of this study.

4.1 Data preprocessing

It is well known that both parametric and non-parametric methods benefit from distributions of

approximately Gaussian. Thus, to obtain a more symmetric distribution of the data presented

in Figure 2.2, we performed the Box-Cox transformation defined in Eq. 3.2. We computed

the optimal transformation parameter � as the mean of individually determined transformation

parameters for each connected component within a single dataset using the maximum likelihood

approach (Box and Cox, 1964). Once we transformed the data, we proceeded to normalize the

data by subtracting the mean and dividing it by the standard deviation. Afterward, we removed

the outliers on the obtained standard scores by using Tukey’s approach (Tukey, 1977), which

considers a standardized observation z an outlier if:

z /2 [Q1 � 1.5⇥ IRQ; Q3 + 1.5⇥ IRQ], (4.1)

where Q1 is the lower quartile, Q3 the upper quartile, and IRQ = Q3� Q1 the interquartile range.

We performed this analysis in Matlab version 7.10 (R2010a)(MATLAB, 2010) using the

function ”boxcox”.

21



4. Data analysis methodology 22

4.2 Aim 1: Finding di↵erent combinations of input proteins suitable

to predict another target protein

In order to test if the information about the levels of a given subset of proteins (input proteins)

is su�cient for predicting the levels of another given protein (target protein), we proceeded to

infer high-order statistical relations between the levels of proteins in focal adhesions by using

artificial neural networks (ANNs) and Random Forests (RFs) defined in Chapter 3.

ANNs and RFs are currently powerful and useful tools to analyze large datasets and to

identify high-order interactions (Zeng and Wang, 2010). They have the advantage that they do

not make any assumptions for the functions we try to approximate, and they can approximate

any linear and non-linear function although unlike ANNs, RFs method has the advantage that

it is computationally e�cient and thus can operate quickly over large datasets.

ANNs and RFs were performed on each of the six datasets independently, to allow the

evaluation of reproducibility. This analysis consists of three steps. First, we organized the input

and target data for training and evaluating the models. A given component was considered as

a target protein, while all possible combinations of the remaining nine elements were used to

generate 511 separate inputs. Second, for each input-target combination, independent sessions

of training and testing were performed, each session using the components levels of randomly

sampled 40% and 60% focal adhesions, respectively. In the third step, the performance was

evaluated based on the root mean squared error (Eq. RMSE) between the target (y
i

) and

predicted (by
i

) output after training using the testing data. The RMSE is given by

RMSE =

rP
n

i=1(byi � y

i

)

2

n

. (4.2)

The type of neural network used was a multilayer perceptron, consisting of an input layer,

five hidden layers and an output layer with the number of neurons in each layer equaling the
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number of input components. To train the network, we employed the Levenberg-Marquardt

back-propagation algorithm with the sigmoid activation function available in Neural Networks

Toolbox of Matlab version 7.10 (R2010a)(MATLAB, 2010). On the other hand, RFs analysis

was performed using the randomForest package (Liaw and Wiener, 2002) in R version 3.0.1 (R

Core Team, 2013). For the training, we selected 500 trees to grow and all components in the

respective combination of input components as a candidate at each node.

Lastly, we compared the findings with ANNs and RFs through the RMSE values to continue

the following analysis with the results of the method that shows greater accuracy.

4.3 Aim 2: Identifying common findings among di↵erent datasets

In cases of modeling biological systems, the idea of making an inference from a single (best)

model cannot be reasonable, since it is well-known that most biological data are inherently noisy

due to the underlying nature of the process. Therefore, analysis of di↵erent datasets obtained

even under the same experimental conditions may lead us to mixed results.

In this study, for specific research purposes, it is expected that the six datasets will lead to

similar results. Therefore we aim here to seek common results on the di↵erent datasets rather

than highlighting the discrepancies among them. Nonetheless, the selection of a single model

in each dataset would still be too strict here to assess the reproducibility of the results over

the six datasets. If we rank the resulting models separately for each dataset using, e.g. the

root mean squared error (RMSE) values, we may have that a model associated with a particular

combination of input components for a given dataset has here the highest RMSE, while in

another dataset it has the second highest value. However, both RMSEs may not be significantly

di↵erent and the accuracy of the model with the second highest value may be in a range of

precision that could still be considered appropriate for an explanation of the target component

levels. Thus, instead of proceeding as commonly done, selecting the best model, we continued

to identify a set of input protein combinations suitable to explain a target protein.
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The variety of goodness-of-fit measures available for nonlinear models such as ANNs and RFs

is quite broad, among them we could name the coe�cient of determination between the target

and predicted values, the RMSE, the mean absolute error (MAE), and the Akaike information

criterion (AIC). However, the selection of appropriate models by comparing the precision between

models with measures such as RMSE, MAE or AIC is not possible as the comparison between,

e.g. two RMSE values is not intuitively interpretable. How do we know how higher or how to

lower an RMSE is concerning the highest RMSE?. Unlike these measures, the comparison of

models using the coe�cient of determination is intuitively interpretable because this measure

takes values that range from 0 to 1. However, this measure could lead to the selection of models

with poor prognosis, since it is clear that with these measures, models approaching the target

protein above its value or below this, even significant di↵erences, could be selected. One way

to avoid this is to apply a hypothesis test related to the linear relationship between the target

(y) and predicted (by) values. Note that if we were in the case of a perfect or nearly perfect

prediction, we expressed the degree of agreement between the target and predicted values in

terms of a linear regression with intercept 0 and coe�cient 1. In other words, we would expect

y ⇡ by. Thus, by adding a hypothesis test, we overcome the weaknesses of the correlation

measure. However, it is important to note that this technique is quite flexible, keep in mind

that we are selecting models that fall in the region of non-rejection, which is quite broad, that

can be seen as choosing a parameter value within a 95 % confidence interval, so that a large

number of models are likely to be selected as suitable models. However, along with the use of

the coe�cient of determination as a measure of goodness of fit and considering the number of

input proteins the user of the deriving results could have the possibility to choose between a

group of input proteins that best explain the target protein or a parsimonious number of input

proteins with similar accuracy results.

Once we have found in each dataset the respective set of input protein combination that

explains suitably a target protein, we proceed to the selection of common input combinations

among the six datasets.
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4.4 Aim 3: Merging common findings

Because of variability within and among datasets, the common combinations of potential input

proteins over the di↵erent datasets do not have the same hierarchy of precision in each of

them. That is, a model with a particular combination of input proteins can have the highest

determination coe�cient in dataset R1O1 and dataset R1O2, the third highest value, which

makes di�cult the selection of one common result. A way to address this limitation if by

proceeding a meta-analysis (see section 3.4) by using the random-e↵ects model (RE model).

This model allows di↵erences among e↵ect size estimates over di↵erent studies, and this can

be interpreted as considering the variation among data sets. The definition of the e↵ect size

should be related to the accuracy of the prediction of the target protein. Thus, we employed as

e↵ect size the normalized correlation coe�cient of the observed and predicted values of a target

protein. The normalization of the correlation coe�cient, also known as Fisher’s z-transformation,

is given by:

Z

r

= 0.5⇥ ln

✓
1 + r

1� r

◆
. (4.3)

This transformation is required for the RE model to fulfill the normal distribution assumption on

the e↵ect sizes estimator. The average final result of this analysis is afterward transformed in the

original form of a correlation coe�cient and used in terms of its squared form, a determination

coe�cient, for a reasonable comparison among the potential combinations of input proteins.



5. Results

This section contains the most relevant results of the analyses proposed above. We conducted

these analysis by using Matlab version 7.10 (R2010a)(MATLAB, 2010) and R version 3.0.1 (R

Core Team, 2013).

5.1 Frequency distribution of the transformed levels of proteins

Figure 5.1 shows the frequency distribution of the Box-Cox transformed and normalized protein

levels over the six datasets following the methodology described in section 4.1.

In Figure 5.1, we can appreciate that normal distribution approximate the distribution of the

observations. Thus suggesting that these are better in transformation than in raw.Only in a few

exceptions such as for protein Vasp, where a small deviation of normality can be observed in

datasets R1O1 and R2O2, and for Hic-5 in dataset R2O2. Comparing distributions we do not

find errors in transformed measures.

Comparison of the six datasets using Figure 5.1 does not appear to be straightforward. We

additionally employed Box-Whisker-plots (see Figure 5.2). On them, there does not also seem

to be a significant di↵erence among the distributions of the transformed levels of the proteins.

26
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5.2 Assessment of linearity in the correlation between proteins

In biological terms the evidence of linear relationship between the proteins on focal adhesions is

directly related to a protein stoichiometry uniform among focal adhesions. Figure 5.3 contains

scatterplots and Pearson correlation coe�cients of the pairwise protein combinations.

The scatterplots, in Figure 5.3, show that the pair-wise relations between the levels of proteins

can be approximated to be either linearly correlated or uncorrelated. Through the Pearson

correlation coe�cients, the levels of the analyzed proteins were found to be positively correlated

with each other with di↵erent strengths. This indicates that the instrumental variation is

smaller than the biological variation in protein levels, as correlations would otherwise be masked.

The correlations between the levels of FAK and FAK-pY397, as well as between paxillin and

paxillin-pY118, in focal adhesions are moderate, indicating that the relative extent of FAK and

paxillin phosphorylation is heterogeneous among focal adhesions. The extent of stoichiometry

conservation between each two proteins across focal adhesion does not correlate with the extent

of their physical association in the cytosol (Ho↵mann et al., 2014), see also Figure 5.4. This

indicates that the compositional stoichiometry of focal adhesions is actively and locally shaped

by them, rather than being a passive reflection of the building blocks design in the cytosolic pool

(Harizanova et al., 2016). Strikingly, the strongest correlation is between the densities of zyxin

and paxillin, although these proteins do not interact directly nor physically in the cytosol and

are located in distal vertical layers across focal adhesions (Harizanova et al., 2016). Zyxin and

paxillin appear to form hubs of order within focal adhesions, since proteins that are vertically

adjacent to them (FAK, vinculin and VASP) exhibit relatively more conserved stoichiometric

ratios among them but not with the distally located ↵-actinin and F-actin (Harizanova et al.,

2016).
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Figure 5.4: Superposition of the correlations with the reported vertical positions of the proteins

across focal adhesions (Ho↵mann et al. (2014)) (left) and a comparison with their reported

physical associations in the cytosol (right).

Although in the previous section a significant di↵erence between the distributions of

transformed levels of proteins did not become evident, here a comparison of Pearson correlation

coe�cients of the pairwise protein combinations over the six datasets seems to indicate otherwise

(see Figure 5.3). However, there is no reason to assume that the discrepancies between the

samples are due to the di↵erent cycles and labelings used in the employed measuring technique,

but rather to an underlying variation of the phenomenon under study, either due to a variation

between cells, focal adhesion or to factors not considered here.

5.3 Aim 1: Finding di↵erent combinations of input proteins suitable

to predict another target protein

Artificial neural network (ANNs) and random forests (RFs) were applied as described in

Section 4.2 for testing and quantifying how well the levels of a subset of proteins (called here

input proteins) enable the prediction of the level of another protein (termed the target protein)
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in focal adhesions. To evaluate the agreement between the results of both methods we employed

scatterplots of the resulting RMSE’s from ANNs and RFs labeled by dataset (Figure 5.5) and

plots of the mean of ANN’s RMSE and RF’s RMSE versus the di↵erences between both RMSE’s

labeled by number of input proteins (Figure 5.6). Both figures indicate that the RMSE’s obtained

from the two methods are strongly correlated, with marginally better predictions by artificial

neural networks. Additionally in Figure 5.6 we appreciate that both analysis methods indicate

that a joint consideration of multiple proteins improves the predictability of each target protein.

Note also in this figure that the accuracy of RF-adjusted models increases with the number of

input proteins considered, whereas ANNs tend to be a more parsimonious method. Because of

the results observed here, we continue the analyses using the outputs from ANNs. The analysis

of neuronal network was made by Dr. Jana Harizanova for the anaysneurnal networks results

from in Matlab version 7.10 (R2010a).

5.4 Aim 2: Identifying common findings among di↵erent datasets

The common results over the six datasets were found by selecting input protein combinations

suitables to explain a target protein. To this end we employed hypothesis tests where the

null hypothesis corresponds to a linear regression with intercept equal 1 and constant 0, this

methodology is described in Section 4.4. The hypothesis tests were conducted by setting the

significance level at 5%.

The number of combinations of input proteins suitables to explain a target protein found

in each dataset are shown in Figure 5.7. Note that in almost all the cases these numbers

of input combinations are over 200 which is a big quantity. This is because two things: (1)

most of the input proteins are correlated to each other, which leads to di↵erent combinations

among them to predict the target protein in similar degree of accuracy, and (2) the hypothesis

tests conducted in this form are very flexible because they tend to select many input protein
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combinations. However, that can be seen here as an advantage instead of a disadvantage, since

without this property it would not be possible to find common results over the di↵erent datasets.

Moreover, we use together with this technique the coe�cient of determination, which makes

the comparison among the candidate input protein combinations intuitively interpretable. This

allows the researcher to choose a combination of input proteins that best explains the target

protein or a more parsimonious input combination.

Through a systematic search over the candidate input protein combinations in the six

datasets, we selected the common ones among datasets. The number of common input protein

combinations found on the six datasets can be observed in Figure 5.8. Note that the number

of common combinations among datasets is relatively small compared to the number of input

protein combinations found in each dataset. Again, this is indicative of how datasets di↵er from

each other and that without a flexible method as the one used above we could not be able to

find common results among the di↵erent datasets.

5.5 Aim 3: Merging common findings

Because of variability within and among datasets, the common combinations of input proteins

over the six datasets do not have the same hierarchy of accuracy in each dataset. That is,

a model with a particular combination of input proteins can have the highest determination

coe�cient in dataset R1O1 and the third highest one in dataset R1O2. Therefore in order to

establish a general hierarchy among candidate models over the six datasets, we merged the

common findings by performing meta-analysis on the six datasets using a random-e↵ects model

(RE model) on the Pearson correlation coe�cients as defined in section 3.4. The final results of

this analysis are transformed in terms of determination coe�cient by squaring the RE correlation

coe�cients and Figure 5.9 illustrates the confidence intervals resulting of this analysis.

Systematic screen of all combinations of input and target proteins revealed paxillin and zyxin

levels to be significantly better predicted upon integration of multiple input proteins (Figure 5.9).
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Figure 5.8: Bar plot illustrating the number of common input protein combinations among the
six datasets.

Of note, this is not a side e↵ect of the strong pairwise correlation between paxillin and zyxin

(Figure 5.3) but rather indicates a statistically significant incremental contribution of each of the

input proteins to the prediction of paxillin or zyxin levels. This suggests that paxillin and zyxin

levels in focal adhesions are fine-tuned by integrating the levels of other multiple proteins, thus

averaging-out stochastic fluctuations. It is also interesting to observe that proteins as paxillin

and zyxin do not require of more than six components to be predicted with a high degree of

precision, even note that in case of zyxing the best accuracy is achieved with only three input

proteins.

In appendix Section A we provide to the readers a list of input protein combinations for each

target protein. This list helps to select the set of input proteins that best predicts the target

protein or the most parsimonious set of input proteins.
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6. Conclusions

Although it is already accepted or assumed by the scientific community of this field that all

proteins involved in the formation of focal adhesions interact with each other, we intend here to

see how the levels of one group of these proteins a↵ect the levels of another target protein, in

an explanatory sense. It can provide information on how the existence of a protein or a group of

proteins is essential for the presence of another target protein. This study based on the analysis

of six datasets, where each one led to di↵erent results. Discrepancies that according to the

results are assumed to be from variation between cells, di↵erences between focal adhesions or

due to influential factors no observables, rather than from a systemic variation. The discrepancy

between the individual analysis of these datasets leads to a problem in the integration of results.

Here we proposed a random e↵ects model of meta-analysis for a combination of the results from

these datasets.

It is assumed that in the presence of non-variation the results between di↵erent datasets

should be the same. To find common results among datasets we carried out di↵erent types of

procedures such as the use of the determination coe�cient along with a hypothesis test, and the

use of random-e↵ects models (RE models) to merge the common results among the di↵erent

datasets. The method of RE models gave us the possibility to introduce in the merging of the

outputs the variation among datasets and within each dataset. Our procedure showed to be very

flexible in the sense that conducted us to select more than one combination of input proteins

for a target protein. However, it was also commented here the importance of this property to

find common results among the six datasets. As a final result, we provide the readers with a
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list of input protein combinations for each target protein so they can decide which aspect of the

results is of greater importance. That is if they consider more appropriate for their research to

select the input protein combined with the highest accuracy in predicting or to select a more

parsimonious input combination.

On the other hand, we found that paxillin and zyxin are proteins that are well explained by

groups of proteins also considered here. These, in turn, belong in the majority of the cases to

the group of input proteins that best describe the rest of the proteins. Now, it is essential to

keep in mind that we can observe only a part of a complex system of interacting proteins that

could contain over 100 proteins. Thus, those proteins that do not seem to be well explained by

the rest of the proteins considered can be well defined by other proteins in the system that are

not found. For example, note the fact that one protein that interacts with another, it does not

require anything additional, but other related components present. Suppose paxillin and zyxin

were not present in the analysis, then many of the other elements would not be there. I believe

that such type of system should be considered as a whole, in the sense that only the system

could be understood if we can observe all the components involved at once instead of observing

independently di↵erent groups of them. When we watch a part of the system, we notice that

the stoichiometries of proteins brooks in the FAs, which could lead to di↵erences among FAs. It

must be of concern to biologist because incorrect understandings of this kind of process could

lead to the development of drugs or treatments for a particular disease that may lead to the

development of new diseases or body reactions still unknown. It is clear that technical resources

are not enough at this time to observe and understand this system as a whole. However, I am

confident that the scientific community in this field could do more in the development of new

measurement techniques or in counteracting the shortcomings of current technologies.

Regarding the statistical methods here employed, it is clear that both approaches, random

forests and artificial neural networks, are comparable in accuracy. Then, it depends on what

the user is looking for: A good prediction or interpretable results. In this work, the aim was

fixed to have a prediction as good as we can, that is why we used the outputs of ANNs. The
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techniques we used here to merge di↵erent datasets has worked well in the sense that most of

the combination of input proteins that are common and significant among the di↵erent data

sets were here detected. However, more that one protein input combination is here selected,

because of the high correlation between all the associated proteins.
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8. Introduction

Many of the cellular processes are carried out by macromolecular assemblies, known as cell-

matrix adhesion sites, or also known as focal adhesions. Focal adhesions are formed through

the interactions of proteins. Proteins are interacting continuously with the environment of

the cells and in between. Many of this interaction are randomly produced, and therefore the

protein interaction network is still unknown. In the reconstruction of cellular protein interaction

networks, methods such as machine learning methods (Qi et al., 2009; Harizanova et al., 2016;

Ganapathiraju et al., 2016), di↵erential equations (Kau↵man, 2009; Chen et al., 1999) and

Bayesian networks (BNs) (Liang et al., 1998; Imoto et al., 2002; Friedman et al., 1999) have been

applied. Among the machine learning methods, artificial neural networks (ANNs) is the most

e↵ective for discovering protein interactions (Harizanova et al., 2016). However, unlike artificial

neural networks, di↵erential equations and BNs allow capturing in more detail the regulatory

relationships in the network, as for example the direction of regulation. A disadvantage of

di↵erential equations is the requirement of prior knowledge of kinetics parameters associated

to the interactions between proteins, while BNs employ a probabilistic mechanism for the

identification of protein-protein interaction, which as ANNs require only the quantification of

protein levels in a molecular sample. BNs are graphical probabilistic models in which directed

acyclic graphs are used to represent the relationships between proteins (Pearl, 1988) graphically.

This compact, easy-to-interpret solution makes BNs a preferred model in practice.

The major challenge in the reconstruction of protein-protein interaction networks is the cell-to-

cell heterogeneity within a sample, due to genetic and epigenetic variabilities. This heterogeneity
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hampers the usage of parametric models like those mentioned in the previous paragraph. Such

models will lead to a degradation of the actual network due to lack of adjustment. To

address this, recent studies (Hasenauer et al., 2014; Wieczorek et al., 2015) have suggested

the identification of cellular subpopulations through the use of mixture models for a next

prediction of the protein-protein interaction network. Hasenauer et al. (2014) use mixtures

of ordinary di↵erential equations, while in Wieczorek et al. (2015) a nonparametric Bayesian

mixture of Gaussian BNs called nonparametric Bayesian networks (NPBNs) was employed.

Both works showed the success of using mixtures models in conjunction with the recognition

of the protein-protein interaction for the classification of observations in heterogeneous cell

populations. The limitation of both methods is that they were developed on snapshot data

of a dynamic process, what makes them fail to capture temporal information and modeling

of cyclic networks. Thus, these methods can be applied only on the type of single-cell

multiparametric measurements currently available such as multicolor flow-cytometry, multiplexed

mass cytometry, and toponome imaging. In recent years, there has been an essential transition

from imaging the static distributions of molecules as a snapshot in time in fixed material to

live-cell imaging of the dynamics of molecules in cells. There have been significant advances in

so-called ”super-resolution” imaging methods that have overcome the resolution limits imposed

by the di↵raction of light in optical systems (Ball et al., 2012). By using high spatiotemporal

resolution, imaging provides an opportunity for a better understanding of biological function

through the study of cellular dynamics (Monya, 2010). The analysis of these data requires the

modeling of temporal relationships. Thus, we address this piece of work to the extension of

the NPBNs by using Gaussian dynamic Bayesian networks (GDBNs), which are better suited

for characterizing time series expression data than the static version GBNs. The use of GDBNs

has been quite extensive in the reconstruction of gene regulatory networks structures (see,

e.g. Murphy and Mian (1999); Dojer et al. (2006); Kim et al. (2003); Grzegorczyk et al.

(2008)). However, any of them can deal with cell-to-cell variability. This could lead in

cases of heterogeneity to poorly specified interaction models. Here, through a nonparametric

Bayesian mixture of dynamic Bayesian networks, we build a method that allows the successful
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reconstruction of protein interaction networks in heterogeneous cell populations. This approach

is here called ”nonparametric mixture of dynamic Bayesian networks” (NPMDBNs).

This work is described in 7 Chapters. Chapter 9 contains the methods involved in the

development of NPMDBNs. In Chapter 10 we defined the NPMDBNs. In Chapters 11 and

12 the algorithms and procedures involved in the implementation of NPMDBNs are described.

Chapter 13 contains the evaluation methodology. In Chapters 14 and 15 the results of the

evaluation and the conclusions are respectively presented.



9. Methods

9.1 Basic concepts about graphs

This section briefly introduces the main concepts and notations of graph theory used in the next

sections. For more definitions see e.g. Gould (1988) and Cowell et al. (1999).

When a collection of objects V = {V1, . . . , Vn

} that are related to each other by edges is

graphically represented, being E
ij

the edge joining the elements V
i

and V

j

of V, we are implicitly

defining a graph, where V = {V1, . . . , Vn

} are the nodes and E the set of edges that form it.

More formally speaking by:

Definition 9.1.1 (Graph)

A graph is represented as a pair G = (V,E) where V = {V1, . . . , Vn

} is the finite set of nodes

or vertices and E ✓ V⇥V is the set of edges, that form it, the set of ordered pairs of distinct

elements of V that are related.

Depending on the relation and order between the nodes of G, one can speak of two types

of edges: directed edges and undirected edges. Thus, directed edges are used when E

ij

2 E

but E
ji

62 E, and it is denoted as V
i

! V

j

, so that V
i

is connected with V

j

and not vice-versa.

While undirected edges, which notation is V

i

� V

j

, occur when E

ij

2 E and E

ji

2 E, being

both nodes V
i

and V

j

connected. The type of edge can determine the graph, so if all edges of

G are directed (undirected) then G is said to be directed (undirected) and when G has directed

and undirected edges, G is said mixed graph. Associated with a directed G there is always

an undirected version of G that is obtained by replacing the directed edges of the graph by
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undirected edges and the new G is called skeleton. Figure 9.1 shows a graph with two types of

edges.

V1

V2

V3

V4

V5

V6

Figure 9.1: Mixed graph with six nodes.

Another important term to be here defined is parents and children:

Definition 9.1.2 (Parents and children)

If G = (V,E) is a directed graph, then a node V
i

is a parent of node V
j

if E
ij

2 E. Moreover,

if V
i

is parent of V
j

, then V

j

is said to be child of V
i

. Thus, for any node V

j

2 V of a given

graph G the set Pa
j

= {V
i

2 V|V
i

! V

j

} defines the set of parents of V
j

.

From the next section, Bayesian networks, the term directed acyclic graph will be often used,

here the meaning:

Definition 9.1.3 (Directed acyclic graph)

A graph G = (V,E) is called a directed acyclic graph (DAG) if it is a directed graph where

for any node V 2 V there are no cycles. That is, there is no way that an edge starts and ends

at the same node.

9.2 Bayesian networks (BNs)

In this section, we introduce a brief definition of Bayesian networks (BNs). For additional

material see e.g. Pearl (1988), Heckerman and Geiger (1995) and Koski and Noble (2009).

BNs are the most widely used technique of graphs related to probability theory. They are
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fairly flexible models and easy to interpret. A BN consists of a qualitative and a quantitative

part. The qualitative part is specified by a directed acyclic graph DAG G = (X,E), where the

nodes in G represent a set of random variables, X = {X1, . . . , Xn

}, and the directed edges

E between nodes represent conditional dependencies. The directed edges in G, imply several

(in-)dependence constraints, which are described by the local directed Markov condition:

Definition 9.2.1 (Local directed Markov condition)

Let X = {X1, . . . , Xn

} be a set of random variables and G a BN graph structure overX. Then

G satisfies the local directed Markov condition if for every X
i

2 X, variable X
i

is stochastically

independent of its non-descendants given its parents in G.

Pearl (1988) provides a graphical condition called d-separation that can be used to identify

the entire set of (in-)dependence constraints that are implied by BN structures. Figure 9.2

shows a simple example of a BN graph with four variables, X = {X1, X2, X3, X4} . The

intuitive meaning of the BN structure in Figure 9.2 is that X1 and X3 are marginally

dependent, p{X1,X3}|G(x1, x3|g⇤) 6= p

X1(x1)pX3(x3), but once we know node X2, node X3

becomes independent of node X1, p

X3|{X1,X2},G(x3|x1, x2, g
⇤
) = p

X3|X2(x3|x2). Another

statement implied by this DAG is that, the nodes X2 and X4 are marginally independent,

p{X2,X4}|G(x2, x4|g⇤) = p

X2(x2)pX4(x4), but because of the nodes X2 and X4 have the common

descendant X3 they become dependent when conditional on X3, p{X2,X4}|X3,G(x2, x4|x3, g
⇤
) 6=

p

X2|X3(x2|x3)pX4|X3(x4|x3).

X2

X1 X3

X4

BN Structure (g⇤)

Figure 9.2: Directed acyclic graph (DAG) with four variables.

The quantitative part in a BN represents the joint probability distribution over the variables,
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indexed by a parameter set ✓ associated to the BN graph. Thus, the joint probability distribution

can be obtained as the product of the conditional distributions defined by the conditional

dependencies represented in G. The graph in Figure 9.2 lead, for example, to the following

joint probability distribution:

pX|⇥,G

(x|✓, g⇤) = p

X1|⇥1(x1|✓1)pX2|X1,⇥2(x2|x1,✓2)pX3|{X2,X4},⇥3(x3|x2, x4,✓3)pX4|⇥4(x4|✓4).

A general definition is given as follows:

pX|⇥,G

(x|✓, g) =
nY

i=1

p

Xi|Ui,⇥i(xi

|u
i

,✓
i

). (9.1)

where the ⇥
i

’s are the node-specific subvectors, which specify the local conditional distributions

and U
i

= {X
j

2 X|X
j

�! X

i

} is the parent set of X
i

.

In practice, often the conditional probability distributions are assumed to be a member of

some specific parametric family of distributions, where the choice depends on the variable

and the parent set. In the BNs literature we can find two dominant examples: (1) When all

variables are discrete, the joint distribution is become an unrestricted discrete distribution and

the conditional probability distributions are independent multinomials for each variable and each

parent configuration. (2) When all variables are continuous, the joint distribution is defined as

a multivariate Gaussian and the conditional probability distributions are independent Gaussians

with mean structured as a linear regressions of each variable on its respective parent set, see

Definition 9.2.2.
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Definition 9.2.2 (Gaussian Bayesian networks)

A Gaussian Bayesian network is a Bayesian network where the conditional distributions,

p

Xi|Ui,⇥i(xi

|u
i

,✓
i

), are given by normal distributions of the form:

p

Xi|Ui,⇥i(xi

|u
i

,✓
i

) ⇠ N(x

i

|µ
i

+

X

Ji

�

i,j

(x

j

� µ

j

), �

2
i

), (9.2)

where J
i

= {j 2 {1, . . . , n}|X
j

2 U
i

}, ✓
i

= (µ

i

, �

2
i

, �

i

), the µ

i

are the unconditional means

of X
i

, �
i

= (�

i,j

)

j2JUi
is a set of real coe�cients determining the influence of each X

j

2 U
i

on X

i

and �

2
i

is the conditional variance of X
i

given its parents, U
i

.

One of the most relevant issues to deal with BNs is that for a set of variables X, more

than one DAG may be selected to represent exactly the same set of conditional independence

relationships. For example, for a given set X = {X1, X2, X3}, the three network structures,

G1: X1 ! X2 ! X3, G2: X1  X2 ! X3 and G3: X1  X2  X3 imply the same

statements: X1 and X3 are conditional independent given X2. These graphs are in practice

called Markov equivalent and the set of them Markov equivalence class. Verma and Pearl (1991)

define a way to characterize similar classes more precisely: Two DAGs are equivalent if and only

if they have the same skeleton and the same v-structures. A v-structure in a DAG G is an

ordered triplet of nodes, (X1, X2, X3) , such that G contains the directed edges X1 ! X2 and

X2  X3, and the nodes X1 and X3 are not adjacent in G. Thus, the Markov equivalence

classes can be uniquely represented by a completed partially directed acyclic graphs (CPDAGs)

(Grzegorczyk et al., 2008). A CPDAG is defined as a graph with the same skeleton as each DAG

in its equivalence class and its edges consisting of a directed edge for every compelled edge and

undirected edge for every reversible edge. An edge is compelled if its reversal changes the set of

v-structures. Chickering (2002), cited in Grzegorczyk et al. (2008), provides an algorithm that

converts a DAG to its corresponding (unique) CPDAG.
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9.2.1 Gaussian score for learning BNs

The learning of a BN is usually performed in two separate steps. First, the graph structure G

is learned from the data, and second, the parameter distribution set ⇥ is estimated conditional

on G. In practice, it is more common to have an interest only in the graph structure than in

the parameter set. Thus, this section will be concerned only to the learning graph procedure.

One of the most popular methods for learning BN structures from data is the score-based

approach. Let D be a data set with m independent realizations of the random vector

X = (X1, . . . , Xn

)

>. The aim of this approach is to identify one or more BN structures

that best describe the set of observed data D according to some scoring criterion. Assuming a

BN structure g, the score is defined as follows:

S(g;D) = p

G|X (g|D) . (9.3)

The score quantifies how much g is supported by the observed data D. An score-based method

attempts to optimize Eq. 9.3, that is, to find the BN graph with the highest posterior probability.

By using Bayes’ theorem the posterior distribution of g given the observed data D can be

obtained as follows:

p

G|X (g|D) =

p

G

(g)LX|G (g|D)P
g

(⌧)2G p

G

(g

(⌧)
)pX|G(D|g(⌧)) , (9.4)

where G denotes the set of all valid DAG’s. The denominator can be seen as a normalization

constant to ensure that
P

g

(⌧)2G p

G|X
�
g

(⌧)|D
�
= 1. Thus, instead of employing Eq. 9.4 we can

use:

p

G|X (g|D) _ p

G

(g)LX|G (g|D) , (9.5)

where p
G

(g) is known as prior distribution and can be used to incorporate prior knowledge about

the relation of the variables involved. This kind of information may be available from previous
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studies or other external sources. Castelo and Siebes (2000) cited in Grzegorczyk et al. (2008)

provide several possible ways to define p
G

(g) from prior information. In the absence of genuine

prior knowledge a uniform distribution may be assumed in order to give the same chance to all

candidate graphs. On the other hand, the likelihood LX|G (g|D) is known as the marginal (or

integrated) likelihood of G , where the parameters ⇥ are integrated out, that is,

LX|G (g|D) =

Z
LX|⇥,G

(✓, g|D) p⇥|�,G

(✓|�, g) d✓

= pX|�,G

(D|�, g) ,
(9.6)

where p⇥|�,G

is the distribution of the unknown parameter vector which is specified conditional

on G and from Eq. 9.1, LX|⇥,G

(✓, g|D) is given by:

LX|⇥,G

(✓, g|D) =

nY

i=1

mY

`=1

p

Xi/Ui,⇥i(Xi

= d

i`

|U
i

= dJUi
`

,✓
i

)

=

nY

i=1

mY

`=1

p

Xi/Ui,⇥i(d{i,JUi
}`|✓i

),

(9.7)

where JUi = {j 2 {1, . . . , n}|X
j

2 U
i

}, the ⇥

i

’s are the node-specific subvectors, which

specify the local conditional distributions in the factorization, d
i`

denotes the `-th realization of

the node X

i

and dJUi
`

is a vector containing the `-th realization of the nodes U
i

.

An important score, to be mentioned here, is the one defined by Heckerman and Geiger (1995)

for GBNs. Here, the marginal likelihood in Eq. 9.3 is defined first in term of the quotient of two

more simple functions:

LX|G(g|D) =

nY

i=1

p{Xi,Ui}|�{Xi,Ui},G{Xi,Ui}
(d{i,JUi

}·|�{Xi,Ui}, g{Xi,Ui})

pUi|�Ui,GUi
(dJUi

·|�Ui
, gUi)

, (9.8)

where the numerator and denominator are likelihoods from Gaussian distributions of the set of

variables {X
i

,U
i

} and U
i

respectively, where the associated parameters are integrated out. The
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corresponding integrations were made by Heckerman and Geiger (1995) and the results is as

follows:

pS|�S ,GS (dJS ·|�S , gS) = ⇡

�ns·m
2 ·

✓
⌫

⌫ +m

◆�ns
2
c(n

s

,↵ +m)

c(n

s

,↵)

|T0|
↵
2 |Tm(dJS ·)|�

↵+m
2

.

(9.9)

This result corresponds to a function known as the kernel of a multivariate t-distribution with

↵ degrees of freedom. S is a subset of X, which corresponds to the variables involved in

the numerator or denominator. n

s

is the cardinality of this subset. gS is a DAG representing

the conditional correlations between the variables in S . dJS is a matrix containing all the m

realizations of the variables in S. ⌫, T0 and Tm are the hyperparameters associated to the

joint probability distribution parameters, where ⌫ represents the degrees of freedom of a Wishart

distribution, while T0 and Tm are precision matrices of size n
s

-by-n
s

. The procedure of learning

BNs required of initial values for ⌫ and T0, while Tm can be obtained as follows:

Tm(dJS ·) = T0 + S

m

+

⌫ ·m
⌫ +m

�
µ0 � dJS ·

� �
µ0 � dJS ·

�0
,

S

m

=

mX

`=1

�
dJS` � dJS ·

� �
dJS` � dJS ·

�0
(9.10)

dJS · =
1

m

mX

`=1

dJS`. (9.11)

On the other hand the constants c(n
s

,↵), c(n
s

,↵+m) of the distribution 9.9 can be computed

by:

c(n

s

,↵) =

nsY

i=1

�(

↵ + 1� i

2

). (9.12)

For more details about the distribution 9.9 and parameters see Heckerman and Geiger (1995).
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9.3 Nonparametric Bayesian networks (NPBNs)

For the use of Gaussian Bayesian networks (GBNs), two essential assumptions must be fulfilled

for the variables in a study: (1) The distribution of the variables can be approximated by a

Gaussian distribution; (2) variables are linear correlated. In practice both assumptions are often

violated. A way to overcome this limitation of the GBNs is by using the non-parametric version

of them developed by Ickstadt et al. (2011) . This method has been called nonparametric

Bayesian networks (NPBNs) and consists of a combination of a nonparametric Bayesian mixture

model and of GBNs. The use of such a strategy leads to a classification of the data according

to similarities concerning the conditionals dependencies between the variables, thereby a better

estimation of the graph structure can be produced. The NPBNs can also be seen as a way

to approximate joint probability distributions in cases that the underlying distributions of the

variables are no Gaussian.

The DAG in NPBNs is defined as in GBNs, while the joint probability distribution over a

vector of random variables, X = (X1, . . . , Xn

)

>, is given by:

pX|�,K,⇥,G

(x|�, k,✓, g) =
kX

h=1

�

h

pX|⇥h,G
(x|✓

h

, g). (9.13)

The NPBNs depends on new parameters, such asK and � = {�1, . . . ,�K

}, which are associated

to the nonparametric Bayesian mixture model here employed. This parameter are defined as

follows: K is an unfinite number and represent the number of mixture or the number of Gaussians

to be considered for the approximation of the joint probability distribution. � is a parameter that

gives a weight to each group of data thus providing a likelihood of the same, as it is a measure

of probability they must be positive and
P

k

h=1 �h

= 1. Both K and � are considered to be

random variables. On the other hand, ✓
h

= (µ

h

, �

2
h

,B

h

) is the set of parameters associated to

the GBN defined in the h-th mixture component and g is a DAG that represents the conditional

statments in a NPBN. As in GBNs, pX|⇥h,G
(x|✓

h

, g) can be obtained by a factorization as the
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product of the conditional Gaussian distributions of form showed in Eq. 9.2 imply by g.

The number of components K, the set of parameters ⇥ = (⇥1, . . . ,⇥K

) and the mixture

weights � are all regarded as unknowns. NPBNs assume the same DAG structure overall mixture

components, but let the component to be di↵erent in parameters. The NPBN DAG structure

can be seen as an average DAG over all components.

Let D be a data set with m independent realization of the set of random variables X and g

the NPBN structure over that set. For learning NPBNs Eq. 9.13 has been rewritten in Ickstadt

et al. (2011) as follows:

pX|K,⇥,C,G

(D|k,✓, c, g) =
mY

`=1

pX|⇥C`
,G

(d·`|✓c`
, g) (9.14)

where C = (C1, . . . , Cm

), represent an allocation vector, that is, which allows the identification

of which cluster each observation in D belong. For example, C
`

= h would mean that the

`-th observation in D belongs to the h-th mixture component. Although this expression does

not depend on the weights � as Eq. 9.13, here it is assumed that p(C

`

= h) = �

h

. The

integration of Eq. 9.14 over C would lead again to Eq. 9.13 (see Nobile (1994) cited in Ickstadt

et al. (2011)). On the other hand, pX|⇥C`
,G

(d·`|✓c`
, g) is the joint probability distribution of a

GBN with parameters ⇥
C`

= (µ
C`
,�

C`
,B

C`
) and d·` is a submatrix of D containing the `-th

realization of X.

NPBNs employ as defined in section 9.2.1 and score approach given by the posterior probability

distribution of K, C and G:

S(g, c, k;D) = p

K,C,G|X(k, c, g|D) / p

G

(g)p

K

(k)pC|K(c|k)LX|K,C,G

(k, c, g|D) ,

(9.15)

where p
G

(g) is the prior distribution of G, p
K

(k) the prior of the number of mixture components,

pC|K(c|k) is a conditional probability of C given K after the integration of � parameter, on

whichC is also dependent. LX|K,C,G

(k, c, g|D) is the integrated likelihood, where the parameter
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vector⇥ = (⇥1, . . . ,⇥K

) are integrated out (see Equations 9.8 and 9.9). In a practical example,

Ickstadt et al. (2011) proposes the use of an uniform distribution over the cardinalities of parent

sets for G. For K a Poisson distribution with parameter equal to 1. For � a symetric Dirichlet

distribution with a k-dimensional parameter vector (�1, . . . , �k) with �

h

= 1 8h, leading to

p(c|k) = �(k)

�(r + k)

kY

h=1

�(m

h

+ 1) =

k!

(r + k)!

kY

h=1

m

h

!, (9.16)

where m

h

is the number of observations allocated by c to component h.

For learning NPBNs, Ickstadt et al. (2011) provides an MCMC algorithm. Upon request, the

coding of this algorithm is provided by the authors in the language of Matlab.

9.4 Dynamic Bayesian networks (DBNs)

Here a definition of dynamic Bayesian networks (DBNs) is given. For details or additional

material see e.g. Ghahramani (1997) and Grzegorczyk and Husmeier (2009).

Dynamic Bayesian Networks (DBNs) are a generalization of BNs to model temporal

correlations between interacting random variables. Di↵erent from BNs, in a DBN structure

the edges between nodes flow forward in time, that is, an edge pointing from X

i

to X

j

indicates

that the realization of X
j

at time point t is conditionally dependent on the realization of X
i

at

time point t�1. Here it is also allowed dependencies on the same variable, e.g., an edge pointing

from X

i

to X

i

, which is known as a feedback loop. In the study of biochemical networks, a

feedback loop can be intuitively interpreted as self-regulation or self-inhibition.

Figure 9.3 shows an example of a DBN of order 1 with three variables, X = {X1, X2, X3}.

The DBN structure is represented by the state-space directed graph g

⇤, shown in the left

panel. In this example, node X2 has a recurrent feedback loop and nodes X1 and X2 act as a

regulator of node X3. On the other hand, the right panel of Figure 9.3 shows the same graph
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unfolded in time, where it can be seen that the acyclicity constraint is guaranteed to be satisfied.

That means that a DBN structure also satisfies the local directed Markov condition defined in

Definition 9.2.1. Thereby, the joint probability distribution over X(t) can also be here factorized

as the product of conditional probability distribution as in BNs (see Eq. 9.1).

X3

X1 X2

DBN structure (g⇤) Interpretation of g⇤

X1(t�1) X2(t�1)

X2(t)X3(t)

Figure 9.3: A DBN of order 1 with three variables. The left panel shows the state space graph
of the DBN and the right panel shows the same graph unfolded in time.

Let X = (X1, . . . , Xn

)

> be a random vector with n variables time correlated, the joint

probability distribution given by a DBN structure is given by:

pX(t)|⇥,G

(x(t)|✓, g) =
nY

i=1

p

Xi(t)|Ui(t�1)⇥i(xi(t)|ui(t�1),✓i

) (9.17)

where ⇥ is the total parameter vector, composed of node-specific subvectors ⇥
i

, which specify

the local conditional distributions in the factorization and U
i(t�1) = {X

j(t�1) 2 X(t�1)|Xj(t�1) !

X

i(t�1)}. Note that, although the variables are assumed to be time correlated, the parameters

associated to the conditional distributions, ⇥
i

are assumed to be time-invariant.

The DBNs are common assumed to be of order 1, but there is no fundamental reason to

restrict them to represent temporal correlation of order 1. The concept can be generalized to



th-order DBNs allowing edges from {X
i(t�), . . . , Xi(t�1)} to X

j(t).

As in Bayesian networks (BNs), when all the variables are continuous is commonly assumed

Gaussian distributions for the conditional probabilities associated to the joint probability

distribution, with the di↵erence that here the vector of means represent a first order

autoregressive multivariate model. That is,
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Definition 9.4.1 (Gaussian dynamic Bayesian networks)

A Gaussian dynamic Bayesian network is a dynamic Bayesian network where the conditional

distributions, p
Xi|Ui,⇥i(xi

|u
i

,✓
i

), are given by normal distributions of the form:

p

Xi(t)|Ui(t�1),⇥i(xi(t)|ui(t�1),✓i

) ⇠ N(x

i(t)|µi

+

X

Ji

�

i,j

(x

j(t�1) � µ

j

), �

2
i

), (9.18)

where J
i

= {j 2 {1, . . . , n}|X
j(t�1) 2 U

i(t�1)}, ✓i

= (µ

i

, �

2
i

, �

i

), the µ

i

are the unconditional

means of X
i(t), �

i

= (�

i,j

)

j2JUi(t�1)
is a set of real coe�cients determining the influence of

each X

j(t�1) 2 U
i(t�1) on X

i(t) and �

2
i

is the conditional variance of X
i(t) given its parents,

U
i(t�1).

The learning of DBNs can be performed in the same way as explained in Section 9.2.1.

However, here some di↵erent computation must be done to introduce the temporal correlation.

In (Grzegorczyk and Husmeier, 2009) a way to adapt the Gaussian score of Heckerman and

Geiger (1995) for GDBNs is showed, another form is here presented in the next section.

Note that the term ”dynamic” means we are modeling a dynamic system, not that the network

changes over time. See Dondelinger et al. (2013) for a discussion of DBNs which change their

structure over time.



10. Nonparametric mixture of dynamic

Bayesian networks (NPMDBNs)

In this section we define a new novel Bayesian method to identify distinct cell subpopulations

in a macromolecular sample based on di↵erent temporal protein interaction networks. Our

approach is an extension of the NPBNs (Ickstadt et al., 2011) in which an Ongaro-Cattaneo

mixture model of Gaussian Bayesian networks (GBNs) is proposed to approximate the joint

probability distribution of a group of non-Gaussian random variables. Unlike Ickstadt et al.

(2011) we employ Gaussian dynamic Bayesian networks (DBNs) as mixing components for

modeling temporal relationships between proteins.

The dynamic of the cellular protein interaction networks can be described by a multivariate

temporal process of 1st-order Markovian dependence structure. That is, a process in which the

expression levels of the involved proteins are temporal correlated, for example, two proteins,

X

i(t) and X

j(t�1), are 1st-order temporal correlated if the levels of X
i(t) at a time point t are

correlated to the levels of X
j

at a time point t � 1. Let {X(t) = (X1(t), . . . , Xn(t))
>
, t 2 Z}

denote this process. Thus, a GDBN is defined as a dynamic Bayesian network with conditional

probability distributions given by normal distributions of the form:

p(X

i(t)|Pai(t�1),�
i

, �

2
i

) ⇠ N(X

i(t)|
X

Ji

�

i,j

X

j(t�1), �
2
i

), (10.1)

where Pa

i(t�1) is the set of protein parents of X

i(t), i.e., those proteins X

j(t�1) 2 X(t)

that directly regulate a target protein X

i(t); J
i

= {j 2 {1, . . . , n}|X
j(t�1) 2 Pa

i(t�1)};

62
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�
i

= (�

i,j

)

j2Ji denotes the set of real coe�cients determining the influence of each X

j(t�1) on

X

i(t); �2
i

is the conditional variance of X
i(t) given its parents, Pa

i(t�1).

Di↵erent from BNs, a DBN graph is a directed graph that allows dependencies on a same

variable, e.g., an edge pointing from X

i(t�1) to X

i(t), which is known as feedback loop. This

in the study of biochemical networks can be intuitively interpreted as self-regulation or self-

inhibition.

In an interaction structure, the participating members have a multivariate distribution that

can be obtained by the product of conditional probabilities of each target protein on the set

of protein parents. Assuming a heterogeneous cell population, in which underlies K cellular

subpopulations, we define a mixture of multivariate distribution for the set of proteins associated

with a molecular structure of varied cellular origin given by:

p(X(t) = x(t)(t 2 Z)|K,�,G,B,�2
) =

KX

h=1

�

h

p(X(t) = x(t)(t 2 Z)|G
h

,B(h),�
2
(h)).

(10.2)

K and � are the parameters associated with the mixture model. These are here assumed

as random variables, where their distributions can be defined as geometric or Poisson for K

and as Dirichlet distribution for � . As in Wieczorek et al. (2015), we assume a unique

and di↵erent correlation structure for each mixture component. G denotes the set of network

structures associated with each component, B the set of regression coe�cients associated with

the Gaussian joint probability distribution and �2 the respective variances. For each component

h, B(h) = {�
i(h)}n

i=1 and �2
(h) = {�2

i(h)}ni=1.

By Markovian conditional independence condition Pearl (1988) the joint probability

distribution associated with a mixture component can be factorized conditional on G
h

as follows:

p(X(t) = x(t)(t 2 Z)|G
h

,B(h),�
2
(h)) =

nY

i=1

p(X

i(t)|Pa(h)
i(t�1),�i(h), �

2
i(h)), (10.3)
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where the conditional probability distributions are given by Eq. 10.1.

The classification of observations in di↵erent components is achieved by using an indicator

variable, commonly called allocation vector. This vector allows the assignment of the

observations to their respective component. In a sample of a temporal multivariate process

{X(t)}, D = {D(1), . . . , D(r)} with r independent observations, let c = (c1, . . . , cr) be the

allocation vector, where c

s

= h implies that the s-th sample, D(s), is coming from the h-

th mixture component. In Eq. 10.2, the independence of the component implies that the

observation in them are among component also independent, that is, c

s

, s = 1, . . . , r are

independent over the K components, with p(c

s

= h) = �

h

so that p(c) =

Q
K

h=1 �
rh
h

, where

r

h

is the number of samples allocated by c to component h. Conditioning Eq. 10.2 on c it

becomes:

p(D|K, c,G,B,�2
) =

rY

s=1

p(D

(s)|G
cs ,B(cs),�

2
(cs))

=

rY

s=1

nY

i=1

p(D

(s)
i(t)|D

(s)
Pai(t�1),�i(cs), �

2
i(cs)).

(10.4)

where D(s) is an n-by-m
s

matrix consisting of m
s

time-dependent realizations of {X(t)}. D

(s)
i(t)

and D

(s)
Pai(t�1) denote the m

s

� 1 realizations of the target variable X

i(t) and of its parent set

Pa

i(t�1) respectively.

As all the observations within the same component belong to the same cell subpopulation,

the protein interaction network and their associated parameters are also the same. Therefore,

we rewrite Eq. 10.4 as follows,

p(D|K, c,G,B,�2
) =

KY

h=1

p(D

(h)|G
h

,B(h),�
2
(h))

=

KY

h=1

nY

i=1

p(D

(h)
i(t)|D

(h)
Pai(t�1),�i(h), �

2
i(h)),

(10.5)
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where D

(h)
= {D(s) 2 {D(1)

, . . . , D

(r)} : c

s

= h}.

In this methodology we emphasize the estimation of the number of distinct subpopulations, the

allocation vector and the temporal protein interaction networks associated with each component.

Thus, to ease computations, we do not consider directly the Gaussian probabilities defined in

Eq. 10.1 but its derivative of the integration of parameters that is given by a multivariate t. This

integration is well known in Bayesian statistics since models such as linear regression models are

obtained in the same way. Following thus the parametrization used in Gelman et al. (2004) we

obtain that:

p(D(h)
i(t)|D

(h)
Pai(t�1)) =

Y

Sh

Z
p(D(s)

i(t)|D
(s)
Pai(t�1),�i(cs),�

2
i(cs))p(�i(cs),�

2
i(cs))d�i(cs)

d
�

2
i(cs)

=

"
ba�(a+ (ms�1)

2 )
p

|V (⇤)|

(2⇡)
(ms�1)

2 �(a)
p

|V
�

|

#
rh 

b+
1

2

⇣
µ>
�

V �1
�

µ
�

+D(s)>
i(t) D(s)

i(t) � µ(⇤)>V (⇤)�1µ(⇤)
⌘��rh(a+

(ms�1)
2 )

,

(10.6)

is a multivariate t with 2a degrees of freedom, where S
h

= {s 2 {1, . . . , r} : c

s

= h}; r
h

is the

number of samples allocated by c to component h; µ⇤ and V

⇤ are given by:

µ

⇤
=

⇣
V

�1
�

+D

(s)>

Pai(t�1)D
(s)
Pai(t�1)

⌘�1 ⇣
V

�1
�

µ

�

+D

(s)>

Pai(t�1)D
(s)
i(t)

⌘
(10.7)

and

V

⇤
=

⇣
V

�1
+D

(s)>

Pai(t�1)D
(s)
Pai(t�1)

⌘�1

; (10.8)

a, b, µ
�

, V
�

, V ⇤, µ⇤ are hyperparameters associated with the prior distribution p(�
i(cs), �

2
i(cs)

).

Thus, the integrated form of Eq. 10.5 is given by:

p(D|K, c,G) =
KY

h=1

p(D

(h)|G
h

) =

KY

h=1

nY

i=1

p(D

(h)
i(t)|D

(h)
Pai(t�1)). (10.9)

The approximation of K, c and G is given by maximizing their posterior probability

distribution:
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p(K, c,G|D) / p(K)p(c|K)

KY

h=1

p(G
h

)p(D

(h)|G
h

). (10.10)

For each G
h

we use as prior distribution an uniform distribution over the cardinalities of parent

sets. For K a Poisson distribution with parameter equal to 1. p(c|K) is obtained by integrating

p(c|k,�) with respect to the �0
s, by using a symetric Dirichlet distribution with a k-dimensional

parameter vector (�1, . . . , �k) with �

h

= 1 8h as prior distribution. Thus, p(c|K) is a function

depending only on K and is given by k!
(r+k)!

Q
k

h=1 rh!.



11. Algorithm for the learning of

NPMDBNs

Estimating the number of subpopulations K, the allocation vector c and the temporal networks

G
h

, we employ algorithms of Ickstadt et al. (2011) to generate an algorithm that samples

observations from the posterior distribution Eq. 10.10. Unlike the algorithm defined in Ickstadt

et al. (2011), our algorithm consists of four movements: M1 move, M2 move, ejection move,

and absorption move. The M1 and M2 moves are two di↵erent Metropolis-Hastings structures

to re-allocate some observations from one component h1 to another one h2. On the other hand,

the ejection and absortion moves are also Metropolis-Hastings structures, where the ejection

move proposes to increase the number of mixture components by 1, while the absortion move

decreases the number of mixture components by 1. For each update of the allocation vector,

the network structures associated with each component are generated at the same time.

The four moves are selected randomly to generate a better approximation to the true posterior

distribution observations. The main algorithm is given by Algorithm 1.

The M1 and M2 moves are two di↵erent Metropolis-Hastings structures to re-allocate some

observations from one component h1 to another one h2 (see Algorithms 2 and 3). The di↵erence

between the two moves is that in M1 a random number % is generated and each observation

in h1 is left in h1 with probability % or changed to h2 with probability 1 � %. While in M2 the

number of observations to be changed (m) is randomly selected and then m observations in

component h1 are randomly selected and changed to h2.

67
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Algorithm 1: Learning NPMDBNs

Input : Data set: D; initial allocation vector: c(0); initial values of hyperparameters: a, b, µ
�

and V

�

; iteration number: T ; thinning: N
Thinning

; Burn-In: N
Burn�In

; iteration

number for learning the network: T
g

; initial parent sets: {Pa(0)
i(t�1)}i = 1

n; iteration
number for the generator of network structures algorithm: T

g

; Burn-In for the
generator of network structures algorithm: N

g�Burn�In

1 . Output: K, c and G
2 Set K(0)

= max(c

(0)
)

3 By using {Pa(0)
i(t�1)}i = 1

n the initial network set G(0)
, . . . ,G(0)

4 Compute µ

⇤ and V

⇤.
5 Set the probabilities p1, p2, p3, p4 for choosing a move.
6 for ⌧ = 1, . . . , T do
7 if K(⌧�1)

= 1 then
8 Select Ejection Move
9 else

10 Generate a random number u from the uniform distribution in the interval [0, 1]
11 if u <= p1 then
12 Select M1 move
13 else if u <= p1 + p2 then
14 Select M2 move
15 else if u <= p1 + p2 + p3 then
16 Select Ejection Move
17 else
18 Select Absorption move
19 end
20 end
21 end
22 Estimate K as the average of K(NBurn�In+1)

, . . . , K

(T ) and assign it to ¯

K

23 Postprocess the MCMC sample of the allocation vector c(NBurn�In+1)
, . . . , c

(T ) using the
mcclust R package. Name this vector ¯c

24 Use the generator of network structures to update the network structure set associated
with ¯

c. Name this set ¯G
25 Return K =

¯

K, c =

¯

c and G =

¯G
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Algorithm 2: M1 move

Input : Data set: D; allocation vector: c(⌧�1); hyperparameters values: a, b, µ
�

and V

�

; set
of networks: G(⌧�1); iteration number for the generator of network structures
algorithm: T

g

; Burn-In for the generator of network structures algorithm:
N

g�Burn�In

.
Output: K(⌧), c(⌧) and G(⌧).

1 Randomly select two mixture components h1 and h2 among the K available
2 Draw a random number % from a Beta(�

h1 ,�h2) where �

h1 and �

h2 are the corresponding
hyperparameters of the Dirichlet prior on the mixture weights

3 Re-allocating each observation currently belonging to the h1-th or h2-th component to
component h1 with probability % or to component h2 with probability 1� % gives the
proposed allocation vector c⇤

4 Estimate the set of networks associated with each component defined by c

⇤ by using the
generator of network structures. Name this set G(⇤)

5 Compute the ratio R =

p(|D
h1|c(⇤)

|G(⇤))·p(D
h2|c(⇤)

|G(⇤))

p(D
h1|c(⌧�1) |G(⌧�1))·p(D

h2|c(⌧�1) |G(⌧�1)|) // see details of the

formulation in Nobile and Fearnside (2007)

6

7 Compute the acceptance probability A(c

(⇤)|c(⌧�1)
) = min{R, 1}.

8 Sample c

(⌧) such that c(⌧) = c

(⇤) with probability A(c

(⇤)|c(⌧�1)
) and set G(⌧)

= G(⇤) ;
otherwise c

(⌧)
= c

(⌧�1) and G(⌧)
= G(⌧�1)

9 Set K(⌧)
= max(c

⌧

)

Algorithm 3: M2 move

Input : Data set: D; allocation vector: c(⌧�1); hyperparameters values: a, b, µ
�

and V

�

; set
of networks: G(⌧�1); iteration number for the generator of network structures
algorithm: T

g

; Burn-In for the generator of network structures algorithm:
N

g�Burn�In

.
Output: K(⌧), c(⌧) and G(⌧).

1 Select randomly two mixture components h1 and h2 among the K available
2 Draw a random number m from a discrete uniform distribution on 1, . . . , n

h1 where n

h1 is the
number of time series realizations allocated to the h1-th component

3 Select randomly m realizations among the n

h1 in component h1 and move them to component
h2, obtaining thus the proposed allocation vector c⇤

4 Estimate the set of networks associated with each component defined by c

⇤ by using the
generator of network structures. Name this set G(⇤)

5 Compute the ratio R =

p(c(⇤)|K)·
Q

h2h1,h2
p(D

h|c(⇤) |G
(⇤))

p(c(⌧�1)|K)·
Q

h2h1,h2
p(D

h|c(⌧�1) |G(⌧�1))
· nh1
nh2

+m

· nh1
!·nh2

!

(nh1
�m)!·(nh2

+m)! Compute

the acceptance probability A(c

(⇤)|c(⌧�1)
) = min{R, 1}

6 Sample c

(⌧) such that c(⌧) = c

(⇤) with probability A(c

(⇤)|c(⌧�1)
) and set G(⌧)

= G(⇤) ;
otherwise c

(⌧)
= c

(⌧�1) and G(⌧)
= G(⌧�1)

7 Set K(⌧)
= max(c

⌧

)
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The proposal distributions used in M1 and M2 move are given respectively by

q

M1(c|c(⇤))
q

M1(c
(⇤)|c) =

p(c|K)

p(c

(⇤)|K)

and

q

M2(c|c(⇤))
q

M2(c
(⇤)|c) =

n

h1

n

h2 +m

· n

h1 ! · nh2 !

(n

h1 �m)! · (n
h2 +m)!

where p(c|K) p(c

(⇤)|K) are given by Eq.10.10; n

h1 and n

h2 are the number of time series

realizations allocated in h1 and h2 respectively.

In the ejection move (Algorithm 4) some observations of a component h1 are taken to fill a

new component with label k + 1 with a proposal distribution given by

q

E

({K, c}|{K(⇤)
, c

(⇤)})
q

E

({K(⇤)
, c

(⇤)}|{K, c}) =

1� p

E

K

p

E

K

· [�(a)]
2

�(2a)

· �(2a+ n

h1)

�(a+ n

(⇤)
h1
) · �(a+ n

(⇤)
(k+1))

where n

h1 is the number of observations in h1 bevor the ejection move; n(⇤)
h1

and n

(⇤)
(k+1) are

respectively the number of observations in h1 and the new componente k+1 after the ejection

move; pE
K

is the probability to attempt an ejection move when the number total of components

is K; a is the parameter corresponding to a Beta(a, a) distribution, which can be selected by

numerically solving the following equation:

�(2a)

�(a)

· �(a+ n

h1)

�(2a+ n

h1)

= 0.1.



71

Algorithm 4: Ejection move

Input : Data set: D; allocation vector: c(⌧�1); hyperparameters values: a, b, µ
�

and V

�

; set
of networks: G(⌧�1); iteration number for the generator of network structures
algorithm: T

g

; Burn-In for the generator of network structures algorithm:
N

g�Burn�In

.
Output: K(⌧), c(⌧) and G(⌧).

1 Set K(⌧�1)
= max(c

(⌧�1)
)

2 Randomly select one of the K mixture components, say h1, as the ejecting component
3 Select a parameter a of the Beta(a, a) distribution by numerically solving the following

equation

4
�(2a)
�(a) · �(a+nh1

)

�(2a+nh1
) = 0.1 // Recommendation: Use lookup table

5

6 Draw % from a Beta(a, a) distribution
7 Re-allocate each observation currently allocated to component h1 in the vector c with

probability % to a new component (ejected component) with label h2 = K + 1, obtaining
thus the proposed allocation vector c⇤

8 Estimate the set of networks associated with each component defined by c

⇤ by using the
generator of network structures. Name this set G(⇤)

9 Compute the ratio

R =

p(K

(⇤)
) · p(c(⇤)|K(⇤)

)

p(K

(⌧�1)
)) · p(c(⌧�1)

)|K(⌧�1)
))

·
p(D

h1|c(⇤) |G(⇤)
) · p(D

h2|c(⇤) |G(⇤)
)

p(D
h1|c(⌧�1) |G(⌧�1)

)

· q({K
(⌧�1)

, c

(⌧�1)}|{K(⇤)
, c

(⇤)})
q({K(⇤)

, c

(⇤)}|{K(⌧�1)
, c

(⌧�1)})
10 Compute the acceptance probability A(c

(⇤)|c(⌧�1)
) = min{R, 1}

11 Sample c

(⌧) such that c(⌧) = c

(⇤) with probability A(c

(⇤)|c(⌧�1)
) and set G(⌧)

= G(⇤) ;
otherwise c

(⌧)
= c

(⌧�1) and G(⌧)
= G(⌧�1)

12 Set K(⌧)
= max(c

⌧

)

In the absotion move (Algorithm 5) all observations from a component h1 are relocated into

another component h2 with a proposal distribution given by:

q

A

({K, c}|{K(⇤)
, c

(⇤)})
q

A

({K(⇤)
, c

(⇤)}|{K, c}) =

1� p

A

K

p

A

K

· �(2a)

[�(a)]

2
· �(a+ n

h1) · �(a+ n

h2)

�(2a+ n

(⇤)
h1
)

where n
h1 and n

h1 are respectively the number of observations in h1 and h2 bevor the absorption

move; n(⇤)
h1

= n

h1+n

h2 is the number of observations in h1 after h1 has absorbed all observations

of h2; pA
K

is the probability to attempt an absorption move when the number total of components

is K (pE
K

and p

A

K

must be predefined so that p

E

K

+ p

A

K

= 1); a is also here the parameter
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corresponding to a Beta(a, a) distribution.

Algorithm 5: Absorption move

Input : Data set: D; allocation vector: c(⌧�1); hyperparameters values: a, b, µ
�

and V

�

; set
of networks: G(⌧�1); iteration number for the generator of network structures
algorithm: T

g

; Burn-In for the generator of network structures algorithm:
N

g�Burn�In

.
Output: K(⌧), c(⌧) and G(⌧).

1 Set K(⌧�1)
= max(c

(⌧�1)
)

2 Randomly select one of the K mixture components, say h1, as the absorbing component and
another component, say h2 with h2 6= h1, as the disappearing component

3 Re-allocate all observations currently allocated to the disappearing component h2 by c to
component h1 to obtain the new allocation vector c(⇤)

4 Delete the empty component h2 to obtain the new number of components K(⇤)
= K � 1

5 Estimate the set of networks associated with each component defined by c

⇤ by using the
generator of network structures. Name this set G(⇤)

6 Compute the ratio

R =

p(K

(⇤)
) · p(c(⇤)|K(⇤)

)

p(K

(⌧�1)
)) · p(c(⌧�1)

)|K(⌧�1)
))

·
p(D

h1|c(⇤) |G(⇤)
)

p(D
h1|c(⌧�1) |G(⌧�1)

) · p(D
h2|c(⌧�1) |G(⌧�1)

)

· q({K
(⌧�1)

, c

(⌧�1)}|{K(⇤)
, c

(⇤)})
q({K(⇤)

, c

(⇤)}|{K(⌧�1)
, c

(⌧�1)})
7 Compute the acceptance probability A(c

(⇤)|c(⌧�1)
) = min{R, 1}

8 Sample c

(⌧) such that c(⌧) = c

(⇤) with probability A(c

(⇤)|c(⌧�1)
) and set G(⌧)

= G(⇤) ;
otherwise c

(⌧)
= c

(⌧�1) and G(⌧)
= G(⌧�1)

9 Set K(⌧)
= max(c

⌧

)

For the generation of network structures for each component, we generated an algorithm

for calculating possible edges generated by each protein target through a progression of edges

given by subsets of parents generated by the same coe�cient of temporal correlation between

each protein pair (see Algorithm 6). This guarantees a secure convergence to the real subset of

protein parents.
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Algorithm 6: Generator of network structures
Input : Allocation vector: c; hyperparameters values: a, b, µ

�

and V

�

; iteration number for

learning the network: T
g

, initial parent sets: {Pa(0)
i(t�1)}i = 1

n; Burn-In for the
generator of network structures algorithm: N

g�Burn�In

Output: G(⇤)
= {G(⇤)

1 , . . . ,G(⇤)
K

}
1 Set K = max(c)

2 for ⌧
g

= 1, . . . , T

g

do
3 for h = 1, . . . , K

(0) (For each h-th component) do
// Recommendation: Use parallel computing

4 for i = 1, . . . , n (For each i-th protein) do
5 Compute the pairwise temporal correlations of that protein with the rest.
6 Define a set of candidate parents based on correlations di↵erent from 0.2 in

absolute value.
7 Select a random set of proteins from the candidate parent set to define Pa

⌧g

i(t�1).

8 Compute the conditional probability associated with the i-th protein,

CDP

⇤
i

= p(D

(h)
i(t)|D

(h)
Pa⇤

i(t�1)
).

9 Compute the ratio

R =

p(D

(h)
i(t)|D

(h)
Pa⇤

i(t�1)
)

p(D

(h)
i(t)|D

(h)

Pa
⌧g�1

i(t�1)

)

·
|Pa(⌧g�1)

i(t�1) |

|Pa(⇤)
i(t�1)|

,

where |Pa
i(t�1)| denotes the cardinality of Pa

i(t�1).

10 Compute the acceptance rate A(Pa

⇤
i(t�1)|Pa

⌧g�1
i(t�1)) = min{R, 1}.

11 Sample Pa

(⌧g)
i(t�1) such that Pa(⌧g)

i(t�1) = Pa

(⇤)
i(t�1) with acceptance rate

A(Pa

⇤
i(t�1)|Pa

⌧g�1
i(t�1)); otherwise Pa

(⌧g)
i(t�1) = Pa

(⌧g�1)
i(t�1) .

12 end

13 With the Pa

(⌧g)
i(t�1) for each protein, define the network G(⌧g)

h

.

14 end
15 Postprocess the MCMC sample of network structures G(Ng�Burn�In+1)

, . . . ,G(Tg). Name
this G(⇤)

16 end

For the use of our initial approach values for the parameters associated with the posterior

sample distribution must be defined. As initial allocation we can use a vector of 1’s, allocating

all the samples to one component. The hyperparameters associated to the posterior probability

Eq. 10.10 can be initialized as a = b = 1, µ
�

= 0, V
�

= I where I denotes the identity matrix.

The initial parent sets as empty sets.

Moves M1, M2, ejection and absortion can be found in Nobile and Fearnside (2007) cited by
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? .



12. Methodology of postprocessing for

MCMC samples in NPMDBNs

12.1 Postprocessing of allocation vectors

The learning algorithm provides a sample of allocation vectors, c(1), c(2), . . . , c(T ) with c

(⌧)
=

(c

(⌧)
1 , . . . , c

(⌧)
r

). Because in MCMC the sampling procedure the labels associated with the

components and the number of mixture components can change randomly, here the task of

summarizing this sample of allocation vectors with a single vector is complicated. This problem

is known as the label switching problem. If two allocation vectors are compared, it is not clear

if a particular observation has been assigned to a di↵erent component or if the label of the

component has been renamed. A way to combine the allocation vectors of each iteration into

a single vector is by using the clustering estimation method developed by Fritsch and Ickstadt

(2009). This method is based on maximizing posterior probabilities that the observations i and

j are in the same cluster. This is achieved by maximizing an index called adjusted Rand index

that bypasses the label switching problem.

Let c(1), c(2), . . . , c(T ) with c

(⌧)
= (c

(⌧)
1 , . . . , c

(⌧)
r

) be a MCMC sample of allocation vectors.

The adjusted Rand index (AR) of estimated and true clustering is given by:

AR(c

⇤
, c) =

P
i<j

I{c⇤i=c

⇤
j}I{ci=cj} �

P
i<j

I{c⇤i=c

⇤
j}
P

i<j

I{ci=cj}/
�
r

2

�

1
2

hP
i<j

I{c⇤i=c

⇤
j} +

P
i<j

I{ci=cj}

i
�
P

i<j

I{c⇤i=c

⇤
j}
P

i<j

I{ci=cj}/
�
r

2

�

(12.1)
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where c

⇤ denotes the proposed clustering estimate and c the unknown true clustering. The

matrix containing I{c⇤i=c

⇤
j} is a known 0� 1 matrix, which is referred to as estimated similarity

matrix. The unknown true clustering c has a similarity matrix containing I{ci=cj}.

This method proposes then maximize E(AR(c

⇤
, c)|D) over c⇤, leading to a clustering that

has maximum posterior expected adjusted Rand index with the true clustering. This can be

approximated from the MCMC sample by (Fritsch and Ickstadt, 2009):

bE(AR(c

⇤
, c)|D) =

1

T

TX

⌧=1

AR(c

⇤
, c

(⌧)
) (12.2)

whith AR(c

⇤
, c

(⌧)
) being computed by Eq 12.1.

An implementation of this clustering estimation method can be found in the mcclust R package

(Fritsch, 2012).

12.2 Postprocessing of graph structures

In the study of biochemical networks, the available data sets are often sparse and associated with

large noise, which makes the posterior probability of structures to be di↵use (Grzegorczyk et al.,

2008). That is, we can find more than one graph structure with high posterior probabilities which

possibly possess substantially di↵erent sets of edges. Thus a single graph is not representative of

the dependence structure among the variables. The need to capture this inference uncertainty

leads to the use of a model averaging approach on the group of most likely structures instead

of a single one. The NPDBN learning algorithm provides for each identified subpopulation a

sample of state-space directed graph G(1)
, . . . ,G(T ) stored in the form of connectivity matrices,

such as A = {a
ij

}
n⇥n

where a

ij

= 1 for the presence of connection between node X

i

and

X

j

(an edge pointing from X

i

to X

j

) indicating that the realization of {X
jt

} is conditionally

dependent on the realization of {X
it�1}, and a

ij

= 0 for the absence of connection between

node X
i

and X

j

. Hence an intuitive model averaging approach of a group of network structures
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is based on the edge posterior probability estimates:

\p
Eij |X(t)

(1|D) =

1

T

TX

⌧=1

I
Eij(G(⌧)

), i, j = 1, . . . , n. (12.3)

where ⌧ is the index of the T iteration steps in the MCMC simulation.

The resulting \p
Eij |X(t)

(1|D) ranges from 0 (i.e., strong evidence for the absence of a

connection) to 1 (i.e., strong evidence for a connection between the corresponding nodes).



13. Assessment of the NPMDBNs

13.1 Simulation study

In order to evaluate the performance of the NPMDBNs, we generated synthetic time-series

protein expression data from realistic protein-protein interaction networks by using the first-

order multivariate vector autoregressive model (MVAR)

xt = Wxt�1 + "
t

(13.1)

where

• xt = (x1t, x2t, . . . , xnt

)

> denotes expressions of n number of proteins at time t;

• W is a n-by-n time-invariant matrix of coe�cients (weights), where the coe�cients

represent the strength of interaction between all pair of proteins;

• "
t

= ("1t, "2t, . . . , "nt)
> is additive Gaussian noise to the protein expression at time t with

vector mean µ = (µ1, µ2, . . . , µn

) and standard deviation � = (�1, �2, . . . , �n

).

Although there are other models to generate synthetic time-series data even from a realistic

biological system as for instance the mitogen-activated protein kinase (MAPK) pathway

(Sasagawa et al., 2005) in such model the parameters associated to the network structure

can not be easily changed, while by using a MVAR model the interest parameters can be easily

varied and controlled. To generate a realistic situation of mixtures of cellular subpopulations, we

generate mixtures of observations from two and up to four subpopulations. For this purpose, we

78
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randomly generate in each simulation a structure network that represents the interaction of the

proteins for each subpopulation, varying it by at least one edge, either reversing the direction of

one of these, eliminating or adding. For the generation of realistic protein interaction networks,

we set in the simulation the number of nodes and the proportion of possible connections in the

network (network density) based on real protein-protein network structures discussed in Zamir

and Bastiaens (2008). Under this information, the function ”random.graph.game” in the R

package igraph can give us network structures close to these values.

There are some parameters that could have an impact on a decrease in the e↵ectiveness of the

model in identifying an adequate stratification of the data and, consequently, in reconstructing

the temporal network associated with each component. We vary the levels of parameters such as

number of subpopulations, sample proportion per subpopulation, number of proteins, network

density and intra-subpopulation variability to identify the e↵ect of these on our algorithm.

Table 13.1 contains in the columns the list of the interest parameters and in the rows their

respective values used in the simulations. Note that the intra-subpopulation variability is defined

through the combination of the variation in protein levels within each subpopulation and the

length of the time series. The values 0.1, 0.5 and 0.8 in the intra subpopulation variability

represent the fractional deviation fd from the expresion level mean (� = µ · fd), while 20 and

100 represent the length of the time series, 20 for short time series and 100 for long time series.

A more detailed definition of these parameters are found in Appendice B.
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Table 13.1: List of parameters involved in the simulation study and the employed values. Rows

contain the parameter values set as a fixed value or varied (grey) in the simulations. Each

combination of parameter values per column corresponds to a di↵erent data set. Definition of

these parameters can be found in Appendix B.

The algorithm that generates these simulations is given in Algorithm 7. In this algorithm a

realization of a subpopulation corresponds to a multivariate time series (MTS). In order to eval-

uate the stability of our approach, we generated 100 di↵erent data sets. Each dataset containing

a total of 400 samples from Eq. 13.1 distributed in two or four subpopulations according to the

proportion sample defined in the Table 13.1 . Each repetition of the simulation was done in

parallel computing to streamline the procedure. The convergence of this algorithm is guaranteed

under the run of 100.000 time data where only the last ones were used as observations of the

true multivariate model.
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Algorithm 7: Simulation of protein expression levels

Input : No. of subpopulations, sample size per subpopulation, number of proteins (np),
network density (ND), degree of stochastic variance (fd), time series length (nts)

Output: D // Mixture data of multivariate time series realizations

1 for each supopulation do
2 Simulate a directed graph G with np nodes and ND network density // The function

‘‘random.graph.game’’ in the R package igraph was here employed

3 Transform G in an adjacency (connectivity) matrix A

4 Build the coe�cient matrix W of the MVAR model generating weights randomly from
uniform distribution on the intervals [0.5,1.5] and [-1.5,-0.5] to be assigned to all the
connection (a

ij

= 1) in the connectivity matrix A

5 Generate initial values for n proteins (x0 = (x1,0, . . . , xn,0)
>) from a uniform distribution

on the interval [0.1,1]
6 for each realisation of the subpopulation do
7 for each time point t do

// to the total a fraction of points is considered to be used as Burn-In

8 Generate the additive Gaussian noise to the protein expression at time t ("
t

) from a
normal distribution with mean vector x0 and standard deviation
sd = (x1,0 ⇤ fd, . . . , xn,0 ⇤ fd)

9 Sample x

t

from the MVAR model x
t

= Wx

t�1 + "
t

10 end
11 Remove the first time point realizations (Burn-in) in order to delete influence from

initial values
12 end
13 Make D a set with the mixture of all realizations
14 Return D

15 end

The methodology described here was implemented in Matlab 8.1 (R2013a) along with R

functions necessary.

13.2 Comparison analyses with existing methods

Our NPMDBNs method is here compared with two classification alternatives, the classical

frequentist method hierarchical agglomerative clustering (Hclust) and the nonparametric

Bayesian method NPBNs defined in Section 9.3. The Hclust treat each object as a singleton

cluster and then successively agglomerate the closest pair of clusters until all clusters (the whole

data set) are into a single cluster. The Hclust is performed in R software using the function



13. Assessment of the NPMDBNs 82

”hclust” in ”cluster” package. The Hclust is applied here with two measures of similarity,

one for time-uncorrelated data, using the most classic of all, the Euclidean distance between

the same point of time and another that includes the temporal correlations, the dynamic

time warping (DTW), where the local distance matrix was set to a matrix containing the

Euclidean distance between each pair of MTS. The DTW algorithm is performed using the

function ”dtw” in dtw package. These analyses are denoted in the following chapters as E-

Hclust and T-Hclust respectively. On the other hand, the NPBNs were implemented as in

Wieczorek et al. (2015) using a specific time point for the implementation of the algorithm.

The implementation in Matlab was provided by Wieczorek et al. (2015). For the specification of

the NPBNs, hyperparameters associated with the sample distribution must be defined, we set

these parameters as recommended by Ickstadt et al. (2011) and Wieczorek et al. (2015). In the

analyzes with E-Hclust and NPBNs, three-time points from the time-series protein expression

datasets were selected. The methods were applied to each point separately, and we used for the

comparison the best result of the three analyzes.

13.3 Estimation of the number of subpopulations in a mixture

Unlike the classical methods of clustering, in an analysis with our NPMDBNs, the estimation

of the number of components is made directly by our algorithm (see Section 11). A reasonable

estimate of this parameter depends to a large extent on how well the model manages to

assimilate the variance of the data in recognition of it. Thus, we evaluated the adequacy

of the NPMDBNs for the estimation of this number by analyzing data sets with mixtures of two

and four subpopulations for di↵erent degrees of variation.

In a comparative analysis with the existing clustering methods NPBNs and Hclust we use a

nonparametric measure called average silhouette width (ASW) (Rousseeuw, 1987). The ASW

provides a measure of how appropriately the data has been clustered. This measure is given

as follows: Let D = {D(1)
, . . . ,D

(r)} be a collection of multivariate time series (MTS), where
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D

(`) represents the `-th MTS, containing m

`

observations of the multivariate temporal process

X(t) = {X1(t), . . . , Xn(t)}. Given a particular clustering result {⇧1, . . . ,⇧k

}, the silhouette

width score is calculated as follows:

sil(D

(`)
) =

b

`

� a

`

max{a
`

, b

`

} ,

where a

`

is the average dissimilarity between D

(`) and all other MTS within the same cluster,

a

`

=

1

|⇧(D(`)
)|

X

D(j)2⇧(D(`))

d(D

(j)
,D

(`)
),

and b

`

is the lowest average dissimilarity between D

(`) and the MTS in the remaining clusters,

b

`

= min

⇧ 6=⇧(D(`))

1

|⇧|
X

D(j)2⇧

d(D

(j)
,D

(`)
).

As dissimilarity measure we employed the Euclidean distance. The sil(D(`)
) lies between -1 and

1. a

`

is a measure of how well D(`) is assigned to its cluster, the smaller the value, the better

the assignment. The cluster with the lowest b
`

is the next best fit cluster for point D(`). Hence

an sil(D

(`)
) close to 1 means that D(`) is appropriately clustered. If sil(D(`)

) is close to �1

means that it would be more appropriate to cluster D(`) in its neighboring cluster. An sil(D

(`)
)

near zero means that D(`) is on the border of two natural clusters. The ASW is finally computed

by averaging all sil(D(`)
) values, ASW =

P
r

`=1 sil(D
(`)
). The use of this measure requires the

fixation of the number of clusters in NPBNs and NPMDBNs. Thus, the steps corresponding to

the update of the number of components in the corresponding algorithms were eliminated. The

cluster number was here set from 2 to 10 clusters.



13. Assessment of the NPMDBNs 84

13.4 Classification of observations to the mixture subclasses

This analysis begins with the evaluation of the e↵ect of parameters associated with the

clustering of observations on the precision of our algorithm. Parameters such as the number of

subpopulations and sample proportion per subpopulations were here considered. To evaluate the

adequacy of our NPMDBNs in classifying observations we use a measure of the percentage of

correctly allocated observations (pco) defined based on a comparison of the estimated allocation

vector with the right vector. The (pco) is here given by: pco =

P
K

h=1
1
rh

P
rh
i=1 I(c

(h)
i

)·100 where

r

h

is the number of samples allocated by c to component h. By comparison with the simulation

setting, observations originating from the same true component are considered as allocated

correctly. Thus, the indicator function I(c

(h)
i

) is set to 1, while the remaining observations in

that component are considered as wrongly allocated, I(c(h)
i

) = 0.

A comparative analysis with existing clustering methods such as NPBNs and Hclust is here

also carried out as a function of the intra-subpopulation variability.

13.5 Reconstruction of temporal networks in a mixture

Our algorithm is evaluated regarding to the parameters networks precision such as the number

of nodes, network density, intra-subpopulation variability. We employed the well-known receiver

operating characteristic curves (ROC curves) to assess the adequacy of the network in each

identified subpopulation. This curve synthesizes how well a directed edge (standing for a causal

e↵ect of one protein on another one) is determined by our approach by plotting the correct

positive rate against the false positive rate at various threshold settings. The right positive rate

and the false positive rate are defined by comparing estimated networks with the exact network

structures. A measure of precision can be given by the area under the ROC curve, where an area

of 1 represents a perfect estimation, while an area of .5 represents an entirely random, hence

worthless estimation.
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For the comparative analysis with other methods, the classifications obtained by E-Hclust

and T-Hclust were also here used. We carry out independent analyzes in each identified

subpopulation applying GDBNs to determine the temporal correlation network structure

associated with each subpopulation. We denote here these analyzes as E-Hclust+ and T-Hclust+

respectively. The individual application of the GDBNs was done through the implementation of

the algorithm generator of network structures described in Section 11. The hyperparameters

associated with a GDBN are defined as in our model (see Section 13.6).

A drawback is presented in the evaluation of the adequacy of the networks provided by the

NPBNs, since these are undirected acyclic graphs. Here, we compare the estimated networks

with the undirected graph associated with the right networks of each subpopulation.

13.6 Implementation of NPMDBN

The learning of a NPMDBN is carried out by the implementation of the algorithm described

in Section 11 using Matlab 8.1 (R2013a). For the use of our approach initial values for the

parameters associated to the sample posterior distribution must be defined. As initial allocation

we can use a vector of 1’s (allocating all the samples to one component). The hyperparameters

associated to the posterior probability Eq. 10.10 can be initialized as a = b = 1, µ
�

= 0,

V

�

= I where I denotes the identity matrix. The initial parent sets as empty sets and the

iteration number as 10 · 106 with a thinning of 100 and a burn in of 5 · 103. For the main

algorithm and the learning of the network structures the same iteration number was employed.



14. Results

The adequacy of NPMDBNs is here evaluated. The evaluation was carried out following the

methodology described in Chapter 13, which has been implemented using the programmes R and

Matlab 8.1 (R2013a). To give a more accurate evaluation process, we simulated 100 di↵erent

cases of mixtures of two and four subpopulations as described in Section 13.1. Boxplots were

here employed to summarize the results for the 100 simulated data sets.

14.1 Estimation of the number of subpopulations in a mixture

Figure 14.1 contains a summary of the estimated average number of subpopulations for

simulations with mixtures of two (Figure 14.1 (a)) and four (Figure 14.1 (b)) subpopulations

for di↵erent levels of inter-cellular variability. As this variability increases, an elevation in the

estimation error is observed. However, for most of the simulations, the average subpopulation

number lied close to two and four. Thus, we show that our approach enables properly to identify

the exact number of subpopulations.

86
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Figure 14.1: Boxplots of the average number of components. The numbers of subpopulations

were obtained through an estimated average through the corresponding MCMC sample. The

simulations used here correspond to simulations with 2 (a) and 4 (b) subpopulations for di↵erent

levels of variation in long time series. The level of network density here employed was of 0.3,

the number of proteins of 5 and the sample ratio of 1: 1. The boxplot indicates the median

(line within the box), the 0.25 and 0.75 quartiles (box), margined by the largest and smallest

data points which are still within the interval of 1.5 times the interquartile range from the box

(whiskers). The outliers (dots) obtained from pooled values were left out.

A comparative analysis of NPMDBNs with hierarchical agglomerative clustering (Hclust) and

nonparametric Bayesian method NPBNs is illustrated in Figure 14.2. The Hclust was applied

using two measures of similarity, the Euclidean (E-Hclust) and the dynamic time warping (DTW)

(T-Hclust). In the analyzes with E-Hclust and NPBNs, three-time points from the time-series

protein expression datasets were selected for this end. They were applied to each point separately,

and the best result of the three analyzes was here employed. For this analysis, we use the

nonparametric measure average silhouette width (ASW). All methods compared here are similar

in e�ciency concerning the identification of the exact number of subpopulations in the sample.
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Figure 14.2: Determination of the number of underlying subpopulations. Comparison of

NPMDBN with di↵erent existing clustering methods. The plots show the results of the

average silhouette width (ASW) for the four clustering methods using the di↵erent number of

components. Plots (a-d) contain the analysis of simulations with a mixture of 2 subpopulations

and (e-h) the analysis with 4 subpopulations. In the several simulations, we set the intra-

subpopulation variability to 0.5 & 100, network density to 0.3, No. of proteins to 5, and sample

proportion to 1:1. ASW values are incomparable between di↵erent clustering approaches, but

comparable between di↵erent parameters of the same method. The largest ASW value indicates

the number of distinct subpopulations identified by the respective method. The boxplot indicates

the median (line within the box), the 0.25 and 0.75 quartiles (box), margined by the largest and

smallest data points which are still within the interval of 1.5 times the interquartile range from

the box (whiskers). The outliers (dots) obtained from pooled values were left out.

14.2 Classification of observations to the mixture subclasses

Some parameters such as the number of subpopulations, sample proportion per subpopulations

and intra-subpopulation variability can a↵ect the accuracy of our approach to classify
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observations. We evaluate our method for di↵erent values of them. These parameters depend on

how well these are defined in the simulation since an increase in the number of subpopulations is

directly related to a low probability of occurrence. Trying to simulate a higher number of di↵erent

subpopulations, the di↵erences among them decreases proportionally. Thus, the precision in the

classification of the samples decreases as the number of subpopulations increases (Figure 14.3

(a)). On the other hand, a slight change in precision due to a variation in sample proportion

is observed. However, there does not seem to be a direct relationship of the influence of this

parameter on the adequacy of the model (Figure 14.3 (b)).

Figure 14.3: Boxplots of the percentages of correctly allocated observations (pco) in function of

the number of subpopulations (a) and sample proportion per subpopulation (b). The simulations

here employed are defined in the columns of Table 13.1 for the respective parameters. The

boxplot indicates the median (line within the box), the 0.25 and 0.75 quartiles (box), margined

by the largest and smallest data points which are still within the interval of 1.5 times the

interquartile range from the box (whiskers). The outliers (dots) obtained from pooled values

were left out.

Our method is here evaluated regarding how it manages the classification in the presence

of high levels of intra-subpopulation variability (see Figure 14.4). To this end, we make a

comparison with the static version NPBNs, and the classical frequentist method Hclust . We

use for the Hclust, two similarity measures, the Euclidean (E-Hclust) and the dynamic time
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warping (DTW) (T-Hclust). As NPBNs and E-Hclust are not allowed for time correlated data,

we implement this method using a specific time point for the implementation of the algorithm.

Three-time points from the time-series protein expression datasets were selected for this end. All

three results showed very similar results, we use the most accurate of the three. For all methods,

the pco is directly a↵ected by the term variation and slightly by the length of the size of the

time series. A gradual increase is observed for the variation in its di↵erent levels. Here, methods

like NPBNs and E-Hclust present the most significant error in the classification, this due to

the lack of inclusion of temporal correlations. While both methods T-Hclust and NPMDNs

are similar in precision. This result shows how the addition of temporal correlations can bring

significant improvements in the classification of time series data. However, it is important to

note that although NPBNs do not allow the consideration of temporal correlations, this classifies

the samples relatively well.
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Figure 14.4: Classification of observations. Comparison of analysis between NPMDBN and

di↵erent clustering methods. This diagram contains the analysis of simulations with a mixture

of 2 subpopulations, setting the sample proportion per subpopulation to 1:1, No. of proteins

to 5, network density to 0.3. The boxplot indicates the median (line within the box), the 0.25

and 0.75 quartiles (box), margined by the largest and smallest data points which are still within

the interval of 1.5 times the interquartile range from the box (whiskers). The outliers (dots)

obtained from pooled values were left out.

14.3 Reconstruction of temporal networks in a mixture

This section contemplates the evaluation of the adequacy of the network structures estimated

with NPMDBN in terms of temporal conditional dependencies. To address this, we use receiver

operating characteristic curves (ROC curves). A ROC curve synthesizes how well a directed

edge (standing for a causal e↵ect of one protein on another one) is determined by our approach

by plotting the correct positive rate against the false positive rate at various threshold settings.

The correct positive rate and the false positive rate are defined by comparing estimated networks

with right network structures (networks used in the simulations). A measure of precision can
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be given by the area under the ROC curve, where an area of 1 represents a perfect estimation,

while an area of .5 represents an entirely random, hence worthless estimation.

Some parameters such as the number of nodes, network density, and intra-subpopulation

variability can a↵ect the accuracy of our approach to reconstruct the right temporal networks.

We evaluate our method for di↵erent values of them. The levels of these terms were varied

based on what is found in the literature about protein networks (Zamir and Bastiaens, 2008)

(see more details in Table 13.1). Figure 14.5 presents the results of these analyses. While the

number of nodes is not a direct problem (Figure 14.5 (b)), the number of associated edges

(Figure 14.5 (a)) can result in an increase in the mismatch of the model. Typically, an increase

in the level of density leads to a requirement for more programming to contemplate the number

of networks necessary for this approach. We use a methodology that considers a large number

of networks for the procedure. Despite our e↵orts to maintain a constant precision, the network

density a↵ects the adequacy of the algorithm (Figure 14.5 (a)) slightly. On the other hand,

in the intra-subpopulation variability evaluation (Figure 14.5 (c)) we found that the variability

degrades the algorithm in terms of the amount of error increase.
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Figure 14.5: Boxplots of the area under the ROC curve (AUROC) in function of network

density (a), number of proteins (b) and intra-subpopulation variability (c). The simulations

here employed are defined in the columns of Table 13.1 for the respective parameters. Boxplot

is the description of the variability in the procedure for network reconstruction in terms of the

area under the ROC curve (AUROC). The AUROC is used to compare how good the method

can reconstruct the network structure of di↵erent species. An area of 1 represents a perfect

estimation, while an area of .5 represents a worthless estimation. The boxplot indicates the

median (line within the box), the 0.25 and 0.75 quartiles (box), margined by the largest and

smallest data points which are still within the interval of 1.5 times the interquartile range from

the box (whiskers). The outliers (dots) obtained from pooled values were left out.

In Figure 14.4 it was observed that the T-Hclust analysis showed similar results to our

approximation. Therefore, this classification result was used in conjunction with the individual

application of GDBNs for the reconstruction of the temporal networks in each subclass. We call

here this methodology T-Hclust+. We compare this method with our approach, as well as with

the NPBNs that do not include temporal correlations and with the GDBNs as a single model

for the mixed data set (i.e., without a previous stratification of the data). Figure 14.6 contains

the results of this comparative analysis for the 100 di↵erent simulated data sets. These results

show that the NPMDBNs and the T-Hclust+ are quite similar in precision. However, significant

di↵erences are observed when comparing these results with those obtained by the GDBNs without

a previous classification of the observations and the NPBNs without the inclusion of temporal

correlations. In general, all methods that include identification of subpopulations lead to nearer

networks to the right networks. The use of GDBNs without a previous stratification of the data
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point to misspecified interaction models that do not resemble any of the true networks. On the

other hand, the lack of adjustment presented in NPBNs is mainly due to the non-incorporation

of associated edges to the same node known as a feedback loop. In this case, NPBNs tend to

seek to compensate for this variation in another edge, thus moving away from the estimated

structure of the correct structure. This is what leads to a decrease in accuracy.

Figure 14.6: Reconstruction of temporal correlation networks by using NPMDBNs. Comparative

analysis of NPMDBNs with T-Hclust+, NPBNs, E-Hclust+ and GDBNs. Simulations with

a mixture of 2 subpopulations were used in this analysis, setting the sample proportion per

subpopulation to 1:1, No. of proteins to 5, network density to 0.3, noise level to 0.5 and long

time series (size of 100). Boxplots are represented in terms of the area under the ROC curve

(AUROC). Diagram (a) contains the AUROC corresponding to the comparison of the estimated

network with the true network corresponding to the subpopulation 1. Diagram (b) the same but

for the subpopulation 2. The AUROC is used to compare how good the method can reconstruct

the network structure of di↵erent species. An area of 1 represents a perfect estimation, while

an area of .5 represents a worthless estimation. The boxplot indicates the median (line within

the box), the 0.25 and 0.75 quartiles (box), margined by the largest and smallest data points

which are still within the interval of 1.5 times the interquartile range from the box (whiskers).

The outliers (dots) obtained from pooled values were left out.
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In this thesis, a novel Bayesian method called the nonparametric mixture of dynamic Bayesian

networks (NPMDBNs) was developed. This method enables the reconstruction of temporal

protein interaction networks in heterogeneous cell populations with a high degree of precision

by identifying cell subpopulations in the sample. Thus, this method allows adapting the high

resolution of the information coming from new protein quantification tools as well as the cell to

cell variability.

The adequacy of this method is reflected in its comparison with methods that do not

include temporal correlations, such as NPBNs and E-Hclust, and methods without unraveling

of observations such as GDBNs. We found the NPBNs to be similar in precision as long as they

are associated with non-temporal e↵ect networks in their optimization. The lack of adjustment

presented in NPBNs is mainly due to the non-incorporation of associated edges to the same

node known as a feedback loop. In this case, NPBNs tend to seek to compensate for this

variation in another side, thus moving away from the estimated structure of the right structure.

However, in general, NPBNs are suitable for both static data and dynamic data. On the other

hand, in comparison with the T-Hclust+ analysis, our approach did not show a significant

improvement in precision. Thus, both methods can be equally employed for similar purposes.

The advantage of our algorithm is that in a single step the observations can be classified into

cellular subpopulations, and the temporal interaction networks associated with the subclasses

can be reconstructed. While the T-Hclust+ is reached in three steps: (1) the optimal number of

subpopulations must be identified by for example using the ASW measure for di↵erent number of

95
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clusters, (2) the Hclust method is applied for classification of observations, and (3) GDBNs are

employed for the reconstruction of temporal networks in each identified cluster. Furthermore,

our approach, as a Bayesian method, enables the incorporation of relevant prior information and

assumptions that can give an improvement to the results. A disadvantage concerning T-Hclust+

is the complexity of the computation as well as the time required to achieve convergence. The

application of our algorithm to a dataset similar to the one here simulated may take an average

of 20 hours, while with the T-Hclust+ no more than 3 hours. Another important result to

highlight is the one related to the comparison of GDBNs with NPMDBNs, NPBNs and the

T-Hclust+. In general, all methods that used a previous identification of subpopulations lead to

nearer networks to the right networks, while the use of GDBNs without a previous stratification

of the data point to a misspecified interaction model.

The convergence of our algorithm is guaranteed by the convergence of the methods involved

in their development. Furthermore, the success of this method in classifying observations in their

respective subpopulations can also be considered here as proof of the respective convergence.

The most relevant part of this work led to the conclusion that the inclusion of temporal

information is significant for a realistic reconstruction of protein-protein interaction networks.

The methodology here proposed gives an advance in the classification of multivariate time

series as well as in the reconstruction of temporal interaction networks in heterogeneous data. For

computational reasons, a parameterization of the conditional distributions reflecting the causal

relationship between proteins may not be suitable here. Therefore, the associated parameters

are here destined not to be considered. Typically, in practice, these parameters are unknown but

can be approximated through Bayesian linear regressions once the network structure is known.

The method here presented can reveal how proteins in quantitative terms are related to

each other by using a Gaussian probability model. However, it could be of interest to extend

our methodology to understand the protein-protein interactions in terms of activation and

inhibition of each protein of the molecular structure by using a binomial probability model.
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Mathematically we could also redefine our model in quantum terms to facilitate the learning of

protein interaction.
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A. Details of potential predictor proteins

Table A.1: Input protein combinations to explain ↵-actinin
No. of Inputs Input Proteins Determination Coe↵.

6 Hic-5, F-actin, FAK, Zyxin, FAK pY397, Pax pY118 0.434

6 Vinculin, Hic-5, F-actin, VASP, FAK, FAK pY397 0.434

4 Vinculin, Hic-5, F-actin, Pax pY118 0.404

4 Hic-5, F-actin, FAK, FAK pY397 0.399

3 F-actin, VASP, Zyxin 0.384

4 Vinculin, F-actin, Zyxin, Pax pY118 0.375

3 Vinculin, F-actin, FAK 0.341

2 F-actin, FAK 0.310

6 Vinculin, Paxillin, VASP, FAK, Zyxin, FAK pY397 0.237

4 Vinculin, Paxillin, Hic-5, VASP 0.236

5 Hic-5, VASP, Zyxin, FAK pY397, Pax pY118 0.233

3 Paxillin, VASP, Pax pY118 0.200

3 Vinculin, VASP, FAK 0.193

3 Vinculin, Hic-5, Pax pY118 0.187

3 Paxillin, VASP, FAK pY397 0.184

3 Vinculin, Hic-5, FAK 0.177

2 Paxillin, VASP 0.175

3 Vinculin, Zyxin, FAK pY397 0.126

2 Paxillin, FAK 0.113
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Table A.2: Input protein combinations to explain F-actin
No. of Inputs Input Proteins Determination Coe↵.

4 Paxillin, alpha-actinin, Zyxin, Pax pY118 0.331

3 Vinculin, Hic-5, alpha-actinin 0.295

4 Hic-5, alpha-actinin, FAK, FAK pY397 0.293

3 alpha-actinin, FAK, FAK pY397 0.287

2 alpha-actinin, Zyxin 0.285

3 alpha-actinin, FAK pY397, Pax pY118 0.274

2 alpha-actinin, FAK 0.270

5 Vinculin, Paxillin, Hic-5, VASP, FAK pY397 0.150

3 Paxillin, Zyxin, FAK pY397 0.113

3 Paxillin, FAK, FAK pY397 0.111

3 Paxillin, VASP, Pax pY118 0.104

4 Hic-5, FAK, Zyxin, FAK pY397 0.099

2 Hic-5, VASP 0.060

2 Zyxin, FAK pY397 0.057
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Table A.3: Input protein combinations to explain FAK
No. of Inputs Input Proteins Determination Coe↵.

6 Vinculin, Hic-5, F-actin, Zyxin, FAK pY397, Pax pY118 0.666

6 Vinculin, Paxillin, F-actin, alpha-actinin, Zyxin, Pax pY118 0.659

5 Vinculin, alpha-actinin, Zyxin, FAK pY397, Pax pY118 0.656

6 Vinculin, Hic-5, F-actin, alpha-actinin, VASP, Zyxin 0.641

5 Vinculin, alpha-actinin, VASP, Zyxin, Pax pY118 0.636

5 Paxillin, alpha-actinin, VASP, Zyxin, Pax pY118 0.629

4 F-actin, Zyxin, FAK pY397, Pax pY118 0.612

3 Vinculin, Paxillin, Pax pY118 0.610

3 Vinculin, Paxillin, alpha-actinin 0.604

3 alpha-actinin, Zyxin, Pax pY118 0.580

4 Paxillin, F-actin, VASP, Pax pY118 0.577

3 Paxillin, Hic-5, alpha-actinin 0.573

3 F-actin, alpha-actinin, Zyxin 0.564

3 Vinculin, VASP, FAK pY397 0.550

4 Vinculin, F-actin, FAK pY397, Pax pY118 0.550

3 Vinculin, Hic-5, Pax pY118 0.542

2 Vinculin, alpha-actinin 0.463

3 F-actin, FAK pY397, Pax pY118 0.428

3 F-actin, alpha-actinin, FAK pY397 0.394

2 alpha-actinin, FAK pY397 0.377

1 FAK pY397 0.355

3 F-actin, alpha-actinin, VASP 0.338

2 F-actin, alpha-actinin 0.087
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Table A.4: Input protein combinations to explain FAK pY397
No. of Inputs Input Proteins Determination Coe↵.

7 Paxillin, Hic-5, F-actin, VASP, FAK, Zyxin, Pax pY118 0.497

6 Paxillin, Hic-5, alpha-actinin, FAK, Zyxin, Pax pY118 0.487

5 Vinculin, Paxillin, Hic-5, FAK, Pax pY118 0.483

5 Vinculin, F-actin, alpha-actinin, FAK, Pax pY118 0.479

3 Hic-5, FAK, Pax pY118 0.464

6 Paxillin, Hic-5, F-actin, VASP, Zyxin, Pax pY118 0.464

4 F-actin, VASP, Zyxin, Pax pY118 0.454

6 Paxillin, Hic-5, F-actin, alpha-actinin, VASP, FAK 0.451

3 VASP, Zyxin, Pax pY118 0.445

4 Paxillin, F-actin, VASP, Pax pY118 0.439

4 Paxillin, Hic-5, VASP, Pax pY118 0.436

3 Vinculin, VASP, Zyxin 0.435

2 Zyxin, Pax pY118 0.434

4 F-actin, alpha-actinin, VASP, FAK 0.423

5 Paxillin, Hic-5, F-actin, alpha-actinin, Zyxin 0.418

3 Paxillin, F-actin, Pax pY118 0.406

2 VASP, Zyxin 0.404

2 VASP, Pax pY118 0.398

4 Paxillin, F-actin, alpha-actinin, VASP 0.398

2 Paxillin, Zyxin 0.397

2 Vinculin, VASP 0.393

3 Vinculin, Hic-5, alpha-actinin 0.392

3 F-actin, alpha-actinin, FAK 0.372

4 Hic-5, F-actin, alpha-actinin, VASP 0.366

3 Hic-5, alpha-actinin, VASP 0.361

2 Paxillin, Hic-5 0.355

3 F-actin, alpha-actinin, Pax pY118 0.326
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Table A.5: Input protein combinations to explain Hic-5
No. of Inputs Input Proteins Determination Coe↵.

5 Vinculin, Paxillin, VASP, Zyxin, Pax pY118 0.600

4 Paxillin, VASP, FAK, Pax pY118 0.582

3 Vinculin, Paxillin, alpha-actinin 0.574

3 Vinculin, Paxillin, FAK 0.572

4 Vinculin, alpha-actinin, Zyxin, Pax pY118 0.571

4 alpha-actinin, FAK, Zyxin, FAK pY397 0.567

4 alpha-actinin, VASP, FAK, Zyxin 0.567

4 Paxillin, F-actin, VASP, FAK pY397 0.566

5 Vinculin, F-actin, FAK, Zyxin, FAK pY397 0.562

3 Paxillin, VASP, FAK pY397 0.560

4 alpha-actinin, Zyxin, FAK pY397, Pax pY118 0.559

4 F-actin, VASP, FAK, Zyxin 0.555

3 Paxillin, FAK, FAK pY397 0.552

4 Paxillin, F-actin, FAK pY397, Pax pY118 0.551

2 Vinculin, Paxillin 0.538

3 F-actin, FAK, Zyxin 0.531

4 Vinculin, alpha-actinin, FAK pY397, Pax pY118 0.497

4 alpha-actinin, VASP, FAK pY397, Pax pY118 0.483

4 alpha-actinin, VASP, FAK, FAK pY397 0.481

4 Vinculin, F-actin, alpha-actinin, FAK pY397 0.470

2 Vinculin, VASP 0.451

3 Vinculin, FAK, FAK pY397 0.442

3 Vinculin, F-actin, FAK 0.435

3 alpha-actinin, FAK, FAK pY397 0.418

3 F-actin, FAK pY397, Pax pY118 0.381
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Table A.6: Input protein combinations to explain paxillin
No. of Inputs Input Proteins Determination Coe↵.

6 Vinculin, F-actin, alpha-actinin, VASP, FAK, Zyxin 0.832

4 VASP, FAK, Zyxin, Pax pY118 0.824

4 Hic-5, alpha-actinin, VASP, Zyxin 0.823

4 Vinculin, F-actin, Zyxin, Pax pY118 0.820

4 Hic-5, VASP, Zyxin, FAK pY397 0.819

3 FAK, Zyxin, FAK pY397 0.812

4 Vinculin, VASP, Zyxin, FAK pY397 0.810

6 Hic-5, F-actin, alpha-actinin, VASP, FAK, Pax pY118 0.759

3 Hic-5, VASP, FAK 0.718

3 Hic-5, FAK, FAK pY397 0.704

4 Vinculin, Hic-5, F-actin, alpha-actinin 0.665

3 Vinculin, VASP, FAK 0.664

4 Hic-5, F-actin, VASP, Pax pY118 0.661

4 Hic-5, VASP, FAK pY397, Pax pY118 0.655

4 Vinculin, F-actin, alpha-actinin, FAK 0.653

4 F-actin, alpha-actinin, VASP, FAK 0.643

3 Vinculin, FAK, FAK pY397 0.633

5 F-actin, alpha-actinin, VASP, FAK pY397, Pax pY118 0.605

3 Hic-5, alpha-actinin, FAK pY397 0.598

4 F-actin, alpha-actinin, VASP, Pax pY118 0.574

4 F-actin, alpha-actinin, FAK pY397, Pax pY118 0.522

1 VASP 0.397
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Table A.7: Input protein combinations to explain paxillin pY118
No. of Inputs Input Proteins Determination Coe↵.

6 Vinculin, Paxillin, Hic-5, alpha-actinin, FAK, Zyxin 0.490

5 Vinculin, Paxillin, VASP, Zyxin, FAK pY397 0.483

5 Paxillin, Hic-5, VASP, FAK, FAK pY397 0.471

6 Vinculin, Paxillin, Hic-5, F-actin, VASP, Zyxin 0.469

5 Vinculin, Paxillin, Hic-5, F-actin, alpha-actinin 0.466

5 Vinculin, Hic-5, alpha-actinin, VASP, Zyxin 0.464

4 Vinculin, Hic-5, alpha-actinin, Zyxin 0.460

4 Vinculin, Paxillin, Hic-5, VASP 0.456

4 Vinculin, VASP, FAK, Zyxin 0.454

3 alpha-actinin, Zyxin, FAK pY397 0.447

3 Vinculin, alpha-actinin, Zyxin 0.437

4 Hic-5, F-actin, FAK, Zyxin 0.435

3 Hic-5, FAK, Zyxin 0.434

4 Paxillin, Hic-5, alpha-actinin, VASP 0.434

3 Paxillin, Hic-5, Zyxin 0.430

3 Paxillin, VASP, Zyxin 0.428

3 VASP, FAK, Zyxin 0.422

3 Paxillin, alpha-actinin, VASP 0.420

2 Hic-5, Zyxin 0.415

3 Paxillin, Hic-5, F-actin 0.415

2 Paxillin, VASP 0.405

2 Hic-5, FAK pY397 0.402

2 alpha-actinin, Zyxin 0.401

3 Vinculin, Hic-5, F-actin 0.389

2 VASP, FAK pY397 0.374

3 alpha-actinin, VASP, FAK 0.368

2 Hic-5, VASP 0.358

1 FAK pY397 0.302

2 Hic-5, F-actin 0.301
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Table A.8: Input protein combinations to explain VASP
No. of Inputs Input Proteins Determination Coe↵.

6 Vinculin, Paxillin, Hic-5, F-actin, alpha-actinin, Zyxin 0.569

5 Vinculin, F-actin, alpha-actinin, Zyxin, FAK pY397 0.559

4 Paxillin, Hic-5, alpha-actinin, Zyxin 0.553

6 Paxillin, F-actin, FAK, Zyxin, FAK pY397, Pax pY118 0.552

5 Paxillin, Hic-5, F-actin, Zyxin, Pax pY118 0.548

5 Vinculin, F-actin, Zyxin, FAK pY397, Pax pY118 0.539

4 Vinculin, Hic-5, FAK, Zyxin 0.539

4 Vinculin, Hic-5, F-actin, Zyxin 0.537

3 Hic-5, FAK, Zyxin 0.532

3 Paxillin, FAK, Zyxin 0.524

2 Paxillin, Zyxin 0.514

5 Hic-5, F-actin, FAK, FAK pY397, Pax pY118 0.490

3 Vinculin, Paxillin, alpha-actinin 0.481

4 Hic-5, alpha-actinin, FAK pY397, Pax pY118 0.480

3 Hic-5, alpha-actinin, FAK 0.464

4 Vinculin, F-actin, alpha-actinin, FAK pY397 0.456

3 Vinculin, alpha-actinin, FAK 0.447

3 alpha-actinin, FAK, FAK pY397 0.431

2 Vinculin, Hic-5 0.431

2 Paxillin, Pax pY118 0.429

3 Vinculin, FAK pY397, Pax pY118 0.429

2 Hic-5, FAK 0.428

2 Paxillin, F-actin 0.404

2 Vinculin, Pax pY118 0.399

2 FAK, FAK pY397 0.366

2 alpha-actinin, FAK pY397 0.354

1 Vinculin 0.320
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Table A.9: Input protein combinations to explain vinculin
No. of Inputs Input Proteins Determination Coe↵.

6 Paxillin, alpha-actinin, VASP, FAK, Zyxin, FAK pY397 0.613

6 F-actin, alpha-actinin, VASP, FAK, Zyxin, FAK pY397 0.602

4 Paxillin, alpha-actinin, FAK, Zyxin 0.596

3 VASP, FAK, Zyxin 0.585

4 Hic-5, VASP, Zyxin, Pax pY118 0.560

4 Paxillin, alpha-actinin, VASP, FAK 0.549

3 Paxillin, VASP, FAK 0.543

4 Hic-5, alpha-actinin, VASP, FAK 0.533

3 Paxillin, alpha-actinin, FAK 0.519

4 Paxillin, alpha-actinin, VASP, Pax pY118 0.517

4 Paxillin, Hic-5, VASP, Pax pY118 0.517

3 Paxillin, VASP, Pax pY118 0.505

2 Hic-5, FAK 0.503

2 Paxillin, VASP 0.483

3 Hic-5, FAK pY397, Pax pY118 0.464

1 FAK 0.427

3 Hic-5, F-actin, VASP 0.414

3 alpha-actinin, VASP, Pax pY118 0.410

2 alpha-actinin, Pax pY118 0.273
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Table A.10: Input protein combinations to explain zyxin
No. of Inputs Input Proteins Determination Coe↵.

3 Vinculin, Paxillin, Pax pY118 0.839

4 Paxillin, F-actin, VASP, Pax pY118 0.835

2 Vinculin, Paxillin 0.829

4 Paxillin, FAK, FAK pY397, Pax pY118 0.828

2 Paxillin, FAK 0.811

4 Vinculin, Hic-5, FAK, FAK pY397 0.763

6 Vinculin, Hic-5, alpha-actinin, VASP, FAK pY397, Pax pY118 0.761

4 Hic-5, alpha-actinin, FAK, Pax pY118 0.734

5 F-actin, alpha-actinin, VASP, FAK, Pax pY118 0.732

3 Vinculin, alpha-actinin, VASP 0.685

2 Vinculin, VASP 0.670

3 Vinculin, alpha-actinin, FAK pY397 0.632

3 alpha-actinin, FAK, FAK pY397 0.628

2 Vinculin, Pax pY118 0.626

4 F-actin, alpha-actinin, FAK pY397, Pax pY118 0.538

3 Hic-5, F-actin, alpha-actinin 0.534

1 VASP 0.498

2 alpha-actinin, Pax pY118 0.410

2 F-actin, FAK pY397 0.408



B. Simulation parameters–definition

• Number of subpopulations : we varied this parameter in order to evaluate the algorithm

for situations on data sets with mixtures of more than two populations. When we work

with a number of 10 nodes or less the possibility to identify more than two subpopulations,

statistically di↵erent, decrease. Thus for this parameter we could expect a decrease in

accuracy when the number of subpopulations is increased in the data. For the evaluation

of this parameter we conduct simulations for generating datasets with mixtures of 2 and

4 subpopulations

• Sample proportion per subpopulation: varying this parameter we generated realistic

situations in which the relative abundance of the di↵erent subpopulations is unbalanced.

Here we aimed to assess whether the algorithm perform equally well when the relative

abundance of the subpopulations is highly unbalanced. The evaluation of this parameter

in our analysis was carried out under the generation of data sets with a mixture of 2

subpopulations, onsidering the following sample proportion 1:1, 1:3 and 1:7.

• Network density: The network density represents the proportion of possible connections

(relationships) in the network that are actually present. The value ranges from 0 to 1,

with the lower limit corresponding to networks with no connections and the upper limit

representing networks with all possible connections. The closer the value is to 1, the

more dense is the network and the more cohesive are the nodes in the network. Based on

density networks of small network that are commonly studying in biological systems we

aimed to evaluate the model for relatively low density networks (0.3) and relatively high
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(0.6) in order to identify whether an increase or decrease in this parameter would lead to

a better or worse results.

• Number of nodes (proteins): increasing the number of nodes we provide more complex

network scenarios, since with the increased number of nodes, the number of parent

configuration for each node grows exponentially. Thus computationally the search for

a graph to represent the relationship between the nodes involved becomes more di�cult,

thus consequently leading to less accurate results in identifying subpopulations. What we

aimed here is to know how much less accurate are the results with the increase of the

number of nodes. In our analysis we generated networks with 3, 5 and 10 nodes considering

the fact that current measurement techniques in biological systems can measure up to 10

proteins simultaneously.

• Intra-subpopulation variability: The intra-subpopulation variability is defined through

the variation in protein expression levels within each subpopulation and the length of

the series, since in classification of time series plays an important roll how long the

time series is when it comes to recognizing temporal patterns in the presence of noise.

The intra-subpopulation variability en general a↵ects the network system itself, thus its

propagation through the system generates asymmetric high-order patterns shaped by the

topology of the network. Because our algorithm identify distinct subpopulations based

on the di↵erences between their temporal network structures, we evaluated the e↵ect

of intra-subpopulation variability on the accuracy of our algorithm. To introduce intra-

subpopulation cell-to-cell variability, for each run of the simulation we sampled the protein

expression levels around the respective initial values for a given set of fractional deviation

from the mean (� = µ · fd, where fd 2 {0.1, 0.5, 0.8}), where fd represents the

degree of stochastic variance in the protein expression levels. Two time series length were

considered, n = 20 to represent short time series and n = 100 for long time series.



C. Similarity measures between two

graphs

En esta seccion nosotros desarrollamos medidas de similaridad entre dos estructuras graphicas.

The similarity measures here presented are based on the edge betweenness centrality (EBC)

and the weights matrix W of the first-order multivariate vector autoregressive model (MVAR)

described in section 13.1. The EBC is traditionally used to determine which edges in a network

are most important, while the weights matrix W contains the coe�cients which represent the

strength of interaction between all the pair of proteins.

Definition C.0.1 (Edge betweenness centrality (EBC))

The EBC is defined as the number of the shortest paths that go through an edge in a graph.

For a graph G = (V,E) where V = {V1, . . . , Vn

} is the finite set of nodes and E ✓ V ⇥V

the set of edges, the EBC of edge e is computed by

EBC(e) =

X

Vi,Vj2V
i 6=j

N

ij

(e)

N

ij

, (C.1)

where N

ij

(e) denotes the total number of shortest path between V

i

and V

j

that pass through

edge e andN
ij

denotes the total number of shortest paths between V
i

and V
j

. An edge with high

EBC score plays an important role in the network and its removal may a↵ect the communication

between many pairs of nodes. For more details about EBC and other topological centrality

measures see Dehmer and Emmert-Streib (2014).
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Each edge in a network can be associated with an EBC value. An edge with a high EBC

score represents a bridge-like connector between two parts of the network, and its removal may

a↵ect the communication between many pairs of genes (nodes) through the shortest paths

between them.

Definition C.0.2 (Weights matrix A)

The weights Matrix W = (w

ij

)

n⇥n

is the n-by-n time-invariant matrix of coe�cients of the

first-order multivariate vector autoregressive model (MVAR) to be employed in the simulation

study, where the coe�cients represent the strength of interaction between all the pair of proteins.

After depicting a network topology G = (V,E) , a connectivity matrix A = (a

ij

)

n⇥n

is

generated from G where a

ij

= 1 for the presence of connection between protein i and j, and

a

ij

= 0 for the absence. Then, the weight matrix W is obtained by assigning weights randomly

to all the connection (where a
ij

= 1) in the connectivity matrix A. These weights are assigned

by getting the values from uniform distribution on the intervals [�1.5,�0.5] [ [0.5, 1.5]. Two

intervals are chosen to maintain the amount of negative and positive weights nearly equal.

Definition C.0.3 (Sign matrix SW related to W)

A sign matrix SW = (s

ij

)

n⇥n

is a matrix of 0s, 1s, and -1s, where s

ij

= 0 if w
ij

= 0, s
ij

= 1

if w
ij

> 0 and s

ij

= �1 if w
ij

< 0.
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Figure C.1: Example of the EBC scores matrix, weights matrix and the sign matrix for a

particular graph.

Since the EBC measures describe structural property of the edges in a network, then we

could calculate the di↵erence between two topologies using common measures of distance as a

function of EBC scores, the W and SW matrices. We employed here the Manhattan distance

and thereby we define three di↵erent similarity measures:

Let Qp = (q

pij

)

n⇥n

, Wp = (w

pij

)

n⇥n

, SWp = (s

pij

)

n⇥n

, the EBC scores matrix, the

weights matrix and the sign matrix beloging to the network p = 1, 2, respectively.

D

BC

=

X

Vi,Vj2V
i 6=j

|q1ij � q2ij|, (C.2)

D

BCSW

=

X

Vi,Vj2V
i 6=j

|q1ij ⇥ s1ij � q2ij ⇥ s2ij| (C.3)

D

BCW

=

X

Vi,Vj2V
i 6=j

|q1ij ⇥ w1ij � q2ij ⇥ w2ij| (C.4)
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C.1 Examples using the three similarity measures

C.1.1 Example 1. Low weights

Di↵ D

BC

D

BCSW

D

BCW

G0 vs. G1 (EEA=0.01) 0.000 8.000 2.120

G0 vs. G1 (EEA=0.80) 0.000 8.000 5.280

G0 vs. G2 (ECD=0.01) 0.000 3.000 0.825

G0 vs. G2 (ECD=0.80) 0.000 3.000 2.010

C.1.2 Example 2. High weights

Di↵ D

BC

D

BCSW

D

BCW

G0 vs. G1 (EEA=1) 0.000 8.000 10.960

G0 vs. G1 (EEA=5) 0.000 8.000 26.960

G0 vs. G2 (ECD=1) 0.000 3.000 7.620

G0 vs. G2 (ECD=5) 0.000 3.000 13.620
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C.1.3 Example 3. Changing the direction of an edge

Di↵ D

BC

D

BCSW

D

BCW

G0 vs. G1 16.000 22.000 14.065

G0 vs. G2 5.000 5.000 3.110

C.1.4 Example 4. Deleting an edge

Di↵ D

BC

D

BCSW

D

BCW

G0 vs. G1 8.000 8.000 4.940

G0 vs. G2 3.000 3.000 1.830


