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“One, remember to look up at the stars and not down at your feet. Two, never give up
work. Work gives you meaning and purpose and life is empty without it. Three, if you

are lucky enough to find love, remember it is there and don’t throw it away.”

Stephen William Hawking (1942–2018)
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Zusammenfassung
Die vorliegende Arbeit behandelt die Modellierung generalisierter sowie anisotroper
Materialien und lässt sich in drei Abschnitte gliedern. Im ersten Abschnitt wird eine
gradientenerweiterte Elastizitätstheorie zur Modellierung von faserverstärkten Verbund-
werkstoffen, mit Fasern die eine Biegesteifigkeit aufweisen, untersucht. Der verwende-
te Ansatz basiert auf einer Erweiterung der Energiefunktion um Beiträge die höhere
Gradienten der Deformationsabbildung, welche durch den Gradienten des räumlichen
Faser-Richtungsfeldes definiert sind, beinhalten und kann als eine Erweiterung des klas-
sischen Strukturtensoransatzes aufgefasst werden. Der zweite Abschnitt der vorliegen-
den Arbeit befasst sich mit der Entwicklung physikalisch wohl-motivierter gradienten-
erweiterter (Kristall-)Plastizitätstheorien basierend auf einer generalisierten Form der
Clausius-Duhem Ungleichung. Insbesondere werden inkompatible plastische Deforma-
tionen im Rahmen von Versetzungsdichtetensoren interpretiert und energetisch in der
Formulierung berücksichtigt. Der letzte Abschnitt der Arbeit beschäftigt sich mit der
Modellierung sich entwickelnder materieller Symmetriegruppen. Hierbei liegt der Fokus
insbesondere auf der Entwicklung eines konstitutiven Modells, welches eine Anisotro-
pieentwicklung, die durch finite plastische Deformationsprozesse induziert ist, abbilden
kann.

Abstract
This work focuses on the modelling and simulation of non-simple and anisotropic mate-
rials, and consists of three primary parts. In the first part, a gradient elasticity approach
for the modelling of fibre-reinforced composites with fibres possessing fibre-bending stiff-
ness is studied. The particular approach is based on the incorporation of higher-gradient
contributions of the deformation map in terms of the gradient of the spatial fibre di-
rection field in the energy density function and can be regarded as an extension of the
classic structural tensor approach. The second part of the contribution deals with the de-
velopment of physically well-motivated gradient (crystal) plasticity formulations which
rely on an extended form of the Clausius-Duhem inequality. In particular, incompat-
ible plastic deformations are interpreted in terms of dislocation density tensors which
are energetically accounted for in the formulations. The final part of the contribution
addresses the modelling of evolving material symmetry groups. To be specific, a con-
stitutive model for the simulation of deformation-induced anisotropy evolution in finite
plasticity is elaborated.
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Notation

For the reader’s convenience the notation used within this contribution is briefly sum-
marised. In most parts of the thesis the co- or contravariant nature of tensors is not of
primary interest for the derivations or the presented results and will hence not explicitly
be indicated. Likewise, the respective metric tensors will be omitted in (most of) the
contractions. This will, however, be different in Chapter 4 were we resort to a more
stringent notation, the details of which are presented in Section 4.1.1.

Tensors Let ei with i ∈ {1, 2, 3} represent the Cartesian base vectors spanning the
three-dimensional Euclidean space R3. We express tensors of first, second and fourth
order in terms of their coefficients using index notation, specifically

a = ai ei ,

A = Aij ei ⊗ ej ,

A = Aijkl ei ⊗ ej ⊗ ek ⊗ el ,

and apply the Einstein summation convention if not stated differently to shorten the
notation. In general, we denote scalar valued quantities by non-bold letters, first- and
second order tensors by bold-face italic letters and fourth order tensors by bold-face
sans-serif letters.

Inner tensor products Inner tensor products are indicated by dots, with the number of
dots indicating the number of contractions. With A and B denoting tensors of arbitrary
order, the single tensor product is introduced as

A ·B = [Aij...kl ei ⊗ ej . . . ek ⊗ el] · [Bmn...op em ⊗ en . . . eo ⊗ ep]

= Aij...klBln...op ei ⊗ ej . . . ek ⊗ en . . . eo ⊗ ep .
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Notation

Furthermore, if A and B are at least of second order, the double tensor product is
understood in the sense

A : B = [Aij...kl ei ⊗ ej . . . ek ⊗ el] : [Bmn...op em ⊗ en . . . eo ⊗ ep]

= Aij...kl Bkl...op ei ⊗ ej . . . eo ⊗ ep .

For second order tensors the double tensor product gives rise to the norm

‖A‖ =
√
A : A .

Outer tensor products In addition to the classic outer product ⊗, the non-standard
outer products ⊗ and ⊗ will frequently be used to allow for a compact notation. With
A and B denoting again tensors of suitable order, these are defined as

A⊗B = [Aij...kl ei ⊗ ej . . . ek ⊗ el]⊗ [Bmn...op em ⊗ en . . . eo ⊗ ep]

= Aij...kl Bmn...op ei ⊗ ej . . . ek ⊗ el ⊗ em ⊗ en . . . eo ⊗ ep ,

A⊗B = [Aij...kl ei ⊗ ej . . . ek ⊗ el] ⊗ [Bmn...op em ⊗ en . . . eo ⊗ ep]

= Aij...kl Bmn...op ei ⊗ ej . . . ek ⊗ em ⊗ el ⊗ en . . . eo ⊗ ep ,

A⊗B = [Aij...kl ei ⊗ ej . . . ek ⊗ el] ⊗ [Bmn...op em ⊗ en . . . eo ⊗ ep]

= Aij...kl Bmn...op ei ⊗ ej . . . ek ⊗ em ⊗ en ⊗ el . . . eo ⊗ ep .

Identity tensors Based on the definition of the second order identity tensor I in terms
of the Kronecker delta symbol δij,

I = δij ei ⊗ ej , δij =

{
1 , if i = j

0 , if i 6= j
,

fourth order identity tensors or rather projection operators are introduced, namely,

I = I ⊗ I ,

Idev = I ⊗ I − 1

3
I ⊗ I ,

Isym =
1

2
[I ⊗ I + I ⊗ I] ,

Iskw =
1

2
[I ⊗ I − I ⊗ I] .
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Permutation tensors Permutation tensors with regard to the reference configuration
and to the spatial configuration are defined with respect to a Cartesian basis as

ε0 = ε ijk ei ⊗ ej ⊗ ek
εt = ε ijk ei ⊗ ej ⊗ ek

, εijk =


1 , if (ijk) an even permutation of (123)

−1 , if (ijk) an odd permutation of (123)

0 , if at least two indices are identical

.

Vector product Making use of the definition of the permutation symbol, the vector
product of two (spatial) first order tensors in R3 is defined as

a× b = εt : [a⊗ b] .

Operators Gradient and divergence operations are denoted in terms of the Nabla op-
erator ∇• with the subscript referring to the respective configuration. Being understood
in the sense of a right-gradient and a right-divergence they can be represented in index
notation (e.g. with respect to referential coordinates) as

∇XA =
∂

∂Xm

[Aij...kl ei ⊗ ej . . . ek ⊗ el]⊗ em =
∂Aij...kl
∂Xm

ei ⊗ ej . . . ek ⊗ el ⊗ em

and

∇X ·A = ∇XA : I =
∂Aij...kl
∂Xl

ei ⊗ ej . . . ek .

With these definitions at hand, the referential and spatial curl operators are introduced
as

Curlt (A) = − [∇XA] : ε0 , curlt (A) = − [∇xA] : εt .

In addition, (referential and spatial) spin operators, relating an axial vector to the cor-
responding skew-symmetric second order tensor, are introduced as

Spn (a) = −ε0 · a , spn (a) = −εt · a .

Finally, the material time derivative of tensor A will be denoted by Ȧ, respectively dA/dt.
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1 Introduction

1.1 Motivation and state of the art

The present contribution focuses on the modelling and simulation of non-simple and
anisotropic materials. In particular, a gradient elasticity theory for the modelling of
fibre-reinforced composites with fibres possessing fibre-bending stiffness is presented in
Chapter 2, gradient (crystal) plasticity formulations which are based on the incorpora-
tion of dislocation density tensors are elaborated in Chapter 3, and the deformation-
induced evolution of material symmetry groups is studied in Chapter 4. Setting the
stage and against this background, Section 1.1.1, Section 1.1.2 and Section 1.1.3 briefly
introduce the particular materials to be studied as well as their possible areas of appli-
cation, summarise important experimental findings and present approaches which are
currently used to simulate these materials.

1.1.1 Fibre-reinforced composites with fibre-bending stiffness

Fibre-reinforced composites Progress in materials science and manufacturing tech-
nologies drives the development of new, innovative materials with improved mechanical
properties. With regard to the latter, especially the usage of (fibre-reinforced) composite
materials is a promising approach since ”the combination of high-strength, high-stiffness
structural fibres with low-cost, lightweight, environmentally resistant polymers results in
composite materials with mechanical properties and durability better than either of the
constituents alone”, [15]. However, the production of such advanced composites used to
be too expensive except for high-performance applications, [15], like the aerospace in-
dustry where lightweight construction and composites are frequently used. The price of
composites has nevertheless dropped over the last years such that the aerospace market
accounted only for 20% of all productions with regard to carbon fibres in 2005, [128].
Apart from the aerospace industry, other areas of application can thus be found for
example in bio- and environmental engineering applications or in the automotive and
construction industries, [15, 25, 50, 95].
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1 Introduction

(a) Scanning electron microscopy image of a
nanocomposite fibre.
Reprinted from J.K.W. Sandler et al., Polymer
45 (2004), 2001-2015, Copyright (2004), with
permission from Elsevier.

(b) Scanning electron microscopy image of a fibre-
reinforced ceramic-matrix composite.
Reprinted from H. Suemasu et al., Composite Sci-
ence and Technology 61 (2001), 281-288, Copyright
(2001), with permission from Elsevier.

Figure 1.1: Scanning electron microscopy images of a composite fibre consisting of a polyamide-12
matrix that is reinforced with carbon nanofibres, [114], and of a random short fibre-reinforced ceramic
matrix composite, [136].

The importance of fibre-reinforced composites is further underlined by the ongoing re-
search on advanced composite materials. A property which has been receiving increasing
interest over the past years is for example the self-healing functionality of damaged com-
posites. This property is especially interesting for the aerospace industry and discussed
in, e.g., [72] and [143]. With the development of composite materials with enhanced
properties it becomes increasingly important to provide material models which allow
for an accurate simulation of the latter in order to predict the mechanical behaviour of
materials such as those shown in Figure 1.1, [128].

Nanocomposites Because of their exceptional mechanical and physical properties, es-
pecially the usage of carbon nanotube-based high-performance composites is considered
a natural starting point for the development of new materials, e.g. for microactuators,
[67, 112, 119, 139]. Since carbon and glass fibres which are frequently used as reinforce-
ments for composites on the macroscale exhibit diameters ranging from 3 to 20 µm, [7],
they are not suited as reinforcements for nanocomposites. On the other hand, the typ-
ical diameter of one-dimensional nanomaterials ranges from 1 to 100 nm, [7]. A review
of micromechanics models, frequently applied to predict the average elastic properties
especially of (short) fibre-reinforced composites, is given in [140]. These are for exam-
ple models which employ Eshelby’s equivalent inclusion approach, bounding or shear
lag models. Attempts to apply these theories to the modelling of carbon nanotube-
reinforced composites have been reported recently, see e.g. [7] and [138]. Specifically
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speaking, the stiffness of aligned and perfectly random polymer-matrix nanocomposites
is analysed in [7] using the Eshelby-Mori-Tanaka theory, and the longitudinal wave ve-
locity of the composite is approximated by means of an Euler-Bernoulli beam theory.
In doing so, the required force for the deformation as well as the response time of mi-
croactuators is simulated and the suitability of nanocomposites as structural materials
for microelectromechanical systems pointed out. In [138], it is moreover aspired to gain
a basic understanding of the influence of the structure and size of the nanotubes on the
overall properties of the nanocomposite. To this end, a detailed study is carried out
for a nanocomposite consisting of a polystyrene matrix which is reinforced with aligned
multi-walled carbon nanotubes, and a micromechanical modelling approach is proposed.

Experimental findings A size-dependent deformation behaviour for different ma-
terial classes is observed for structural components on the micro- and nanoscale,
[70, 79, 81, 142], and reliable experimental data is required for the development of
sophisticated material models which allow for a simulation of the latter effect. However,
experiments on these small scales are difficult to conduct due to the required precision
of the testing devices and the difficulties arising in the manipulation of micro- or even
nano-sized objects,[3, 26, 111, 144]. For these reasons, a variety of (new) experimen-
tal approaches has been developed over the past years to measure the (mechanical)
material properties on the nanoscale [111, 144], e.g. to determine material parameters
akin to the Young’s modulus. These include, amongst others, methods which are based
on the atomic force microscopy (AFM) and methods which make use of the (high-
resolution) transmission electron microscopy (TEM), like the electric-field-induced res-
onance method or the thermal vibration analysis.

A variety of experimental results for fibre-like materials on the micro- and nanoscale
has recently been published, which motivates the developments to be presented as this
work proceeds. In [70], experimental investigations in terms of bending and tension
tests are carried out for epoxy-polymeric beams with the beam height ranging from
20 µm to 115 µm. The Young’s modulus obtained by means of uni-axial tension tests is
found to be independent of the beam height. However, when investigating the bending
behaviour of the cantilever-like microbeams using a nanoindenter, the ratio between the
experimentally observed bending rigidity and the bending rigidity predicted by a classic
beam theory is found to significantly increase with decreasing beam height.

Regarding wire-like materials on the nanoscale, the mechanical properties of silver
nanowires have been analysed by means of three-point bending tests using the atomic
force microscopy – in [24] for samples with a diameter ranging from 65 nm to 140 nm
and in [59] for a fibre diameter ranging from 20 nm to 140 nm. A scanning electron
microscopy image of the experiments carried out in [59] is depicted in Figure 1.2(a) and
the experimental results in terms of the Young’s modulus, determined by means of the
classic Euler-Bernoulli beam theory, are presented in Figure 1.2(b). These experiments
suggest a significant increase in the elastic stiffness for a decreasing fibre diameter,
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1 Introduction

(a) Scanning electron microscopy image of a
silver nanowire (diameter 79 nm) which is sus-
pended over etched holes in a silicon wafer. In-
set: Schematic diagram of a nanowire which is
deformed by an atomic force microscopy tip.
Reprinted figure with permission from G. Y.
Jing et al., Physical Review B, 73, 235409, 2006.
Copyright 2006 by the American Physical Soci-
ety.

of the linear portion of the curve �i.e., the stiffness kc of the
cantilever� was obtained �Fig. 2�. Thus, the stiffness of the
nanowire ks could be derived from the following formula:

1

ke
=

1

kc
+
1

ks
. �1�

In the general case, the deflection of the nanowires involves
both bending and shear deformations. The superposition
principle implies that the total deflection, �, is the sum of the
deflection due to bending, �B, and to shear �S. Using the
unit-load method for a concentration load F, the deflection at
the middle of the beam becomes43

�B =
FL3

192EI
, �S =

fsFL

4�A
, �2�

where fs is a coefficient related to the shape of the sample’s
cross section �fs=10/9 for a beam with a circular cross sec-
tion�, and E and � are the Young and the shear moduli of the
considered materials, respectively, A is the area of cross sec-
tion and I is the moment of inertia. For the beam with the
circular cross section,

I =
�D4

64
, A =

�

4
D2, �3�

Eqs. �1�–�3� lead to

�S

�B
=
20

3
�1 + ���D

L
�2. �4�

If we take �=0.3, when D /L�1/16, then �S /�B�0.034. In
this case, the effect of the deflection �S due to shear can be
neglected.43 Thus, in order to reduce the shear influence,
D /L should be smaller than 1/16. Therefore, according to
the theory for a three-point bending of a beam with two ends
clamped and the constraint of the geometrical condition
D /L�1/16, the Young modulus E of the silver nanowire can
be calculated using the following formula:43

E = L3ks/�3�D4� , �5�

where the stiffness ks of the nanowire is obtained by Eq. �1�.
Using Eq. �5� and the measurement, the elastic moduli of a
series of silver nanowires with different diameters can be
obtained. The relationship between the Young modulus and
the diameters of the nanowires is shown in Fig. 3. For large
diameters, the measured values are almost independent of the
diameter and are close to a constant value, which is lower
than that reported in the literature for the bulk material �i.e.,
76 GPa for Ag �Ref. 44��. When D decreases down to 20 nm,
the measured Young modulus increases continuously. For the
silver nanowires with the smaller diameters �D=20 nm�, the
measured Young modulus is approximately two or three
times that of the bulk material. Similar behavior was previ-
ously observed for silver and lead nanowires.19 Moreover,
Cuenot et al.19 pointed out that such an increase in stiffness
of the nanowires cannot be explained by structural modifica-
tions of the materials at the nanoscale. It is noted that the
errors of the Young moduli shown in Fig. 4 mainly came
from the diameter D and the length suspended L of the silver
nanowires, and they can be precisely measured by SEM and

AFM with accuracies of the order of 3% and 4%, respec-
tively.

III. THEORETICAL ANALYSIS

In this paper, the theoretical analysis of the elastic prop-
erty of the nanowires is carried out using the classical con-
tinuum model with consideration of the surface effect. As
mentioned before, in this framework, nanostructures are re-
garded as being made up of bulk and a bounding surface in a
continuum theory.3,10,28,29,38,39 As the magnitude of the de-
flection of a nanowire was always small compared to its
diameter, the theory of small deflections of beams is applied
to evaluate the contribution of surface effects on the stiff-
ness. The boundary conditions of the suspended nanowires
were previously determined as clamped ends.

We begin the theoretical analysis with the image of a
silver nanowire. From the images of silver nanowires with
different diameters, it can be seen that an oxidation layer,
thick or thin, always exists on the surface of the silver nano-
wire. Figure 4 shows the image of a typical silver nanowire
with a core diameter D=46.6 nm, and the thickness of the
oxidation layer is t=3.8 nm. This kind of core-layer struc-
ture, consisting of a silver core and oxidation layer, can be

FIG. 3. Variation of the Young modulus as a function of the
diameters of silver nanowires.

FIG. 4. Image of a silver nanowire �with core diameter
46.6 nm�. The surface of the wire is covered with an oxidation layer
�about 3.8 nm�.

SURFACE EFFECTS ON ELASTIC PROPERTIES OF¼ PHYSICAL REVIEW B 73, 235409 �2006�

235409-3

(b) Experimentally determined Young’s modulus
(E) as a function of the diameter (D) of silver
nanowires. A significant increase in the Young’s
modulus is observed for a decreasing diameter.
Reprinted figure with permission from G. Y. Jing
et al., Physical Review B, 73, 235409, 2006. Copy-
right 2006 by the American Physical Society.

Figure 1.2: Experimental setup and measured elastic stiffness of silver nanowires by means of nanoscale
three-point bending tests based on the contact atomic force microscopy.

especially for nanowires with diameters smaller than approximately 70 nm. The classic
Euler-Bernoulli beam theory is also applied in [24] to predict the Young’s modulus
of silver nanowires based on experimental data. However, no pronounced size effect is
reported in [24], which may be explained by the comparatively large diameters (> 65 nm)
of the fibres which are analysed. Note that we will, in accordance with [107], refer to
the Young’s modulus which is calculated based on experimental data with the help of a
beam theory as the bending modulus hereafter.

An experimental approach to determine the bending modulus for ZnO nanowires
using the electric-field-induced resonance method, cf. [107], is presented in [23]. In
these experiments free-standing ZnO nanowires are vertically grown from the substrate
and a frequency tunable ac voltage is applied across the nanowire and a countering
tip. A scanning electron microscope is then used to analyse the natural frequencies of
the nanowires, and the bending modulus is approximated based on natural frequencies
in a second step, [23]. With this method, ZnO nanowires with a diameter of between
17 nm-550 nm are analysed, and a significant increase in the bending modulus is observed
for nanowires with a diameter smaller than approximately 120 nm, reflecting again the
qualitative relation observed in Figure 1.2(b).

Various experiments to characterise the (mechanical) properties of single-walled car-
bon nanotubes (SWNTs), e.g. [67], carbon nanotube ropes, e.g. [112], and multi-walled
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carbon nanotubes (MWNTs), e.g. [107, 113, 139, 144], by means of different experi-
mental approaches have been reported in the literature. In [139], MWNTs with an
outer diameter of between 5.6 nm-24.8 nm and a corresponding inner diameter of be-
tween 1.0 nm-6.6 nm are analysed by measuring the amplitude of their intrinsic thermal
vibrations in the transmission electron microscope, with the highest bending modulus
being on average reported for thinner nanotubes. Using the atomic force microscopy, the
bending modulus of MWNTs with an outer diameter of between 26 nm-76 nm is experi-
mentally analysed in [144], and the one of nanotubes with an outer diameter of between
4.8 nm-10.0 nm and an assumed inner diameter of 2 nm is measured in [113]. In both
experiments no significant dependence of the bending modulus on the tube diameter is
observed. Using the electric-field-induced resonance method, the bending modulus of
MWNTs with an outer diameter of between 4 nm-40 nm is analysed in [107]. In these
experiments the MWNTs are attached to a fine gold wire and assumed to deform like
cantilever beams such that the bending modulus can be deduced using the classic Euler-
Bernoulli beam theory, with a pronounced dependence of the bending modulus on the
tube diameter being revealed which is found to be similar to the qualitative relation
depicted in Figure 1.2(b).

It further is remarked that, with regard to other materials, different relations between
the bending modulus and the fibre diameter than the one indicated in Figure 1.2(b),
can be observed in experiments. To give an example, it is shown in [96] by using the
atomic force microscopy that the bending moduli of chromium cantilevers, with a height
of 50 nm-83 nm, decrease as the cantilevers become thinner. Moreover, the bending
modulus of each of the analysed nano-sized chromium beams is found to be smaller than
that of bulk chromium.

One-dimensional nanomaterials are ideally suited as reinforcements for composites
on the nanoscale, [7], which motivates the development of continuum composite models
that allow us to account for the size-dependent mechanical behaviour of the fibres as
has been observed in experiments. Nevertheless, further experiments on the deformation
behaviour of nano-sized (beam-like) composite structures for different sample dimensions
and fibres of different diameters are required in order to analyse in detail the size-
dependent material response, as experimentally observed for structurally isolated fibres.

Modelling of micro and nanoscale devices Over the past 20 years there has been an
increasing interest in the development of micro- and nanoscale devices such as microac-
tuators and microsensors, micromechanical testing instruments, biochemical analysis
systems as well as micro- and nanoelectromechanical systems, see e.g. [7, 79, 81, 142]
and Figure 1.3. Since experiments at these scales are expensive and difficult to conduct
[3, 111, 144], the need arises for (material) models which allow for predictive simulations.
However, for micro- and nanoscale devices, size effects are observed, cf. [70, 79, 81] which
cannot be captured using models based on the classic continuum theory as these do not
feature an internal length scale. On the other hand, atomic and molecular models which
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Figure 1.3: Scanning electron microscopy image of a polymer-reinforced multi-walled nanotube micro-
gripper and of its gripper front, [44]. Reprinted from W. Fang et al., Advanced Materials 17 (2005),
2987-2992, Copyright (2005), with permission from John Wiley & Sons, Inc..

are conceptually valid for such small length scales are limited by the computational ca-
pacities and require long computation times, [3, 14, 79, 127]. This motivates the use of
extended continuum approaches which introduce a natural length scale into the mod-
els and henceforth allow, in principle, for the simulation of a size-dependent material
behaviour. Driven by the progress in nano-technologies, there has thus been exten-
sive research on the application of extended continuum approaches to the modelling of
nano-sized devices over the past years.

Due to the beam or plate-like structure of many components used in micro- and
nanoscale devices, classic beam and plate theories are often considered as a starting
point for the development of more sophisticated theories and combined with extended
continuum approaches. In this contribution, we will focus on so-called one-dimensional
nanomaterials, [24], like nanowires, nanotubes and nanorods, for which various extended
beams theories have been elaborated in the literature.

One frequently used approach to account for the underlying microstructural effects
is offered by the theory of nonlocal elasticity proposed in [39, 40], which assumes the
stress state at a reference point to be a functional of the strain state at every point
of the continuum, respectively within a chosen neighbourhood. An extended Euler-
Bernoulli beam model which relies on the latter theory is, for example, proposed in [104]
in order to study the influence of the nonlocal effect for different length scales, and a
critical review of nonlocal Euler-Bernoulli and nonlocal Timoshenko beam models with
emphasis on the consistent use of the nonlocal constitutive relations and appropriate
boundary conditions is given in [79]. Accounting for the possible influence of a matrix
material the axial vibrations of carbon nanotubes which are embedded in an elastic
medium are furthermore analysed in [14] using a rod model in combination with the
theory of nonlocal elasticity.
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A different approach to account for the size-dependent material behaviour of beam-like
structures which is based on the theory of micropolar elasticity, cf. [41], is pursued in [108]
to analyse the tip deflection of cantilever beams. The predictions of the extended beam
theory, which reduces to the classic Timoshenko beam theory for a specific choice of the
material parameters, are furthermore compared to those of the classic Euler-Bernoulli-
and the Timoshenko beam theory as well as to the finite element-based simulation results
for micropolar elastic beams provided in [57].

In addition, extended beam models which are based on the couple stress theory are
proposed in, e.g., [5] and [103]. Being more specific, the principle of minimum potential
energy is employed in [103] to derive a size-dependent Euler-Bernoulli beam theory which
is based on the couple stress theory proposed in [149]. On the other hand, the classic
(linear) couple stress theory, cf. [94], is used in [5] to derive an analytical solution for
the bending dominated deformation of a beam with a circular cross section.

It is moreover suggested in [53] to use the Young–Laplace equation to extend the
classic Euler-Bernoulli beam theory such that surface effects are accounted for. With
the extended beam theory at hand, bending tests are analysed especially with regard to
the size effect, and the predicted stiffness as a function of the beam diameter is compared
with the experimental findings presented in [24] and [59].

An approach to account for fibre-bending stiffness and for size effects Besides
taking the gradient of the deformation into account, the classic approach for the mod-
elling of fibre-reinforced composites presented in [129] considers the fibre direction as an
additional argument of the energy function. By doing so, the energy function which was
originally an anisotropic function of the deformation can be rewritten as an isotropic
function in the extended list of arguments, enabling a representation by means of in-
variants. The classic modelling approach therefore has close connections to the repre-
sentation theories of anisotropic tensor functions by means of structural tensors, see e.g.
[20, 89, 92, 153]. Nevertheless, as pointed out in [130], models which are based on the
classic modelling approach by means of structural tensors assume that the fibres are
perfectly flexible – i.e. they do not exhibit any resistance against bending. This theo-
retically allows for deformation patterns in which the fibres exhibit slope-discontinuities
since the preferred material direction is allowed to change arbitrarily from one point
of the continuum to another without considering any related energy contribution, as
discussed in [125]. Moreover, no natural length scale is included in the models so that
the resulting theory is size-independent and can for example not account for such effects
related to different fibre diameters.

Moving away from the assumption of perfectly flexible fibres and relying on the gen-
eralised continuum approach presented in [94], an enhanced theory for the modelling of
fibre-reinforced composites is proposed in [130]. By accounting for higher gradients of
the motion map, a natural length scale is introduced into the model. Assuming a general
dependence on the higher gradients, it is then shown that the energy function may, in

7



1 Introduction

general, depend on 33 independent invariants. Dealing with fibre-reinforced composites,
however, it can be motivated from a physical point of view to restrict the dependence
on higher gradients to their directional derivative into the direction of the fibre, i.e. the
fibre curvature and the gradient of the fibre stretch are taken into account, [130]. Under
this assumption, the most general form of the strain energy function may be expressed
in terms of eleven independent invariants. Assuming a plane strain state, the theory
is further specified for two-dimensional problems and a linearised version is derived in
[130].

Analytical solutions To gain a basic understanding of the modelling of fibre-reinforced
composites with fibre-bending stiffness, simplified versions of the general finite strain
theory proposed in [130] have been analysed over the past years, cf. [30, 31, 124, 125].
These investigations often imposed further assumptions to allow for analytical solutions
of the respective boundary value problems. These comprise assumptions on the fibre-
extensibility, the compressibility of the bulk or the restriction to small deformations.

The first attempt to provide an analytical solution to a boundary value problem
with the fibre-bending stiffness being explicitly accounted for in accordance with the
derivations presented in [130] is documented in [125]. Therein, the analysis focuses on the
bending of a block and on the finite azimuthal shear deformation of a tube-like structure
for a plane strain deformation state, subject to the assumption of inextensible fibres and
of an incompressible matrix material. Motivated by the results presented in [125], the
analysis of the azimuthal shear deformation of the tube-like structure is continued in
[30]. To simplify the derivation of an analytical solution, the investigations are restricted
to linearised kinematics, and different combinations of constraints are imposed, e.g.
incompressibility of the matrix material or inextensibility of the fibres. Finally, a detailed
analysis of the azimuthal shear deformation of the tube is presented for two different sets
of boundary conditions with regard to the support of the fibres. To be specific, the fibres
are assumed to be either clamped or free to rotate such that different restrictions on the
fibre slope are imposed. Another approach to a more general solution of the azimuthal
shear deformation problem of the tube-like structure is presented in [31]. Therein, the
matrix material is assumed to be incompressible and the simulation accounts for finite
deformations. The results which are achieved under these assumptions, for fibres which
are assumed to be clamped at the inner boundary, are then compared to the ones
presented in [30] for the corresponding small strain theory.

1.1.2 Dislocation density tensor-based gradient plasticity

A notion of incompatible deformations and dislocations densities While the mo-
tion of dislocations on the one hand allows a metal to deform plastically, the presence
of dislocations, on the other hand, increases the resistance to dislocation motion and
hence results in an increase in the (macroscopically observable) yield limit. There are
two primary types of dislocations to be considered. Statistically stored dislocations are
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the result of a statistical trapping of dislocations inside the body. Geometrically nec-
essary dislocations, on the other hand, are required to preserve lattice compatibility in
inhomogeneous plastic deformation processes. From a modelling point of view geomet-
rically necessary dislocations are thus closely related to the incompatible part of the
plastic deformation and can be measured in terms of dislocation density tensors. The
fundamental concepts of incompatibilities and their interpretation in terms of disloca-
tion density tensors are meanwhile well-established and date, amongst others, back to
the works [19, 49, 66, 68, 69, 99]. Extending purely phenomenological gradient plasticity
approaches where gradients of (scalar valued) internal variables are often used as means
to regularise formulations, the introduction of higher-gradient contributions in terms of
dislocation density tensors is thus well-motivated by physical considerations.

On mesh dependent results and regularised approaches Classic (local) plasticity
formulations lead to mesh dependent results when they are used for the finite element
simulation of localised plastic deformation processes in softening materials. When sim-
ulating the formation of shear bands for example, the calculated width of the bands
decreases with a refinement of the finite element mesh such that the simulation is not
capable of reproducing experimentally observed shear bands of finite width and that no
convergence upon mesh refinement is achieved, [32, 87, 106]. To remedy this problem
various regularisation schemes have been proposed in the literature, e.g. the usage of
nonlocal plasticity theories or gradient plasticity formulations. In nonlocal plasticity
theories the regularisation of the formulation is achieved by the weighted integration of
a quantity that characterises the plastic deformation over a certain influence volume, see
e.g. [35, 37, 38, 135]. Gradient plasticity formulations, on the other hand, provide an al-
ternative regularisation approach and can be regarded as a reduced form of the nonlocal
theory, [84, 106]. These theories rely on the introduction of higher gradients of quan-
tities that characterise the plastic deformation process as additional arguments of the
energy function or of the yield function, as for example discussed in [18, 85, 86, 100, 148].
Motivated, among other things, by the objective to incorporate the underlying physics
of crystallographic slip, especially gradient crystal plasticity formulations have been in
the focus of intense research over the past years, see e.g. [22, 36, 146–148].

Accounting for the crystallographic structure: crystal plasticity Inelastic processes
in the class of materials we are focusing on are the result of the motion of large numbers
of dislocations. Although this motion is not resolved for each individual dislocation
in crystal plasticity, the underlying physical process of crystallografic slip is taken into
account on the macroscale. To this end, typical crystallografic systems, e.g. face-centred
cubic (fcc) or body-centred cubic (bcc), are studied to define the planes on which, and
the directions in which plastic slip is likely to occur. From a physical point of view
atomic bonds need to be broken and re-established in the plastic slip process. Thus,
plastic slip tends to occur between planes of greatest atomic density and closest-packed
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(a) tension tests (b) torsion tests

Figure 1.4: Experimental results for polycrystalline copper wires (99.99% purity) of diameter 2 a. The
tension test results are presented in terms of the Cauchy stress σ and the logarithmic strain ε with
the influence of the wire diameter on the resulting curves being small, i.e. no distinct size effect is
observable. In contrast, the torsion test results which are given in terms of the normalised torque Q/a3

and with κ denoting the twist per unit length show a significant size dependence. Reprinted from N.A.
Fleck et al., Acta Metallurgica et Materialia 42(2) (1994), 475–487, Copyright (1994), with permission
from Elsevier.

directions are identified with the slip directions, [33]. The slip process itself is assumed
to be driven by the Schmid resolved shear stress, i.e. by the stress acting on the slip
plane into the slip direction. Note is taken of the fact that slip mode uniqueness can
generally not be expected in rate-independent crystal plasticity, see e.g. [6, 33, 54, 115]
for a detailed discussion. This results in the problem that neither the set of active slip
systems nor the slip rates on the individual slip systems can in general be determined in
a unique manner and that numerical tools, such as generalised or pseudo-inverses, must
be used to determine a solution, [4, 21, 93]. Alternatively, rate-dependent viscoplasticity
approaches can be applied, where the slip rates are uniquely determined by the stress
state and possibly by some internal variables, [115]. Approaching the rate-independent
limit, however, the governing system of differential equations becomes considerably stiff
and special numerical schemes are required to stabilise the solution process, [134].

Experimental findings and size effects In the experiments presented in [48], polycrys-
talline, cold-drawn copper wires (99.99% purity) with diameters 2 a ranging from 12 µm
to 170 µm were analysed in uni-axial tension and torsion tests. The tension test results,
given in terms of the Cauchy stress σ and the logarithmic strain ε, are reproduced in
Figure 1.4(a). The experimental results of the torsion tests are depicted in Figure 1.4(b)
with Q/a3 denoting the normalised torque and with κ representing the twist per unit
length. As pointed out in [48], the influence of the diameter on the tension test results is
small, while a significant size dependence is found in the torsion tests. This observation
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Figure 1.5: Experimental findings by Kim and Yin reproduced from [65] and discussed in detail in
Section 4.3.1.

is attributed to the inhomogeneous deformation state, i.e. to the occurrence of strain
gradients which are not observable in the (homogeneous) uni-axial tension tests. More-
over, it is argued on the basis of a dimensional analysis that a material model which
does not contain an internal length scale is not capable of reproducing the results shown
in Figure 1.4(b), as the curves would coincide. This observation will be exemplified by
(normalised) moment-rotation curves in Section 3.3.4.3.

1.1.3 Deformation induced anisotropy evolution in finite plasticity

Experimental findings Kim and Yin, [65], analysed the yielding behaviour of cold-
rolled steel sheets by means of tension tests with the focus being on the (evolution of the
directional dependency of the) uni-axial yield limit. In particular, their experimental
observations suggest that the principle structure of the macroscopically observable uni-
axial yield limit distribution and hence the material symmetry group of the deduced yield
function is maintained during a finite plastic deformation process. However, a rotation
of the yield function’s symmetry group was observed. For the sake of motivation the
experimentally determined uni-axial yield limit σu as a function of the angle φM relative
to the loading direction is depicted in Figure 1.5. Specifically speaking, the distribution
of σu is provided for various load states in terms of the Hencky strain in loading direction,
i.e. {0%, 1%, 2%, 5%, 10%}, and for samples which were prepared at various angles φL

relative to the rolling direction of the sheet metal. These experiments will be discussed
in detail in Section 4.3.1 and motivate the specific evolution equation for the material
symmetry group that is elaborated in Chapter 4.

On finite plasticity and the modelling of texture (evolution) Over the past years
intense research has been focusing on the modelling of (anisotropic) finite plasticity, e.g.
[22, 36]. With dislocation motion being a main carrier of plastic deformation in metals,
recent trends in discrete dislocation dynamics focus on resolving the motion and inter-
action of individual dislocations to predict the overall macroscopic response, [151, 152].
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1 Introduction

However, these approaches are still limited by the available computational capacities
such that continuum theories are proposed which do not resolve individual dislocations
but may take into account the associated kinematics of slip and the crystallographic
structure in each grain in an averaged manner on the mesoscale, as is done in crystal
plasticity. Approaching the modelling of finite plasticity on the macroscale, modelling
approaches are used in which the constitutive equations are functions of internal state
variables that characterise e.g. the material symmetry group and the state of plastic
deformation in order to account for the deformation history.

A natural approach to account for experimentally observed anisotropic features is
offered by the incorporation of structural tensors which characterise the respective ma-
terial symmetry group into the constitutive equations, as broadly advocated in [88, 153].
The evolution of the symmetry group may thus be described in terms of appropriate evo-
lution equations for the structural tensors, as was done in [52, 60, 61, 88] for example.
Assuming that the anisotropic features are induced by the crystalline symmetry and
that the plastic deformation leaves the lattice structure and hence the material sym-
metry unaltered, motivates the definition of the structural tensors in the intermediate
configuration. However, as is well-established within the theory of finite plasticity, the
intermediate configuration is only determined except for a rotation. The structural ten-
sors, being introduced as quantities of the intermediate configuration, are thus subject
to the same rotational indeterminacy which is closely related to the notion of the plastic
spin which is discussed in detail in [29] and which merits special attention.

In this regard, Lu and Papadopoulos, [77], proposed a theoretical framework for the
modelling of evolving plastic anisotropies where the rotational consistency condition
is enforced through the more general covariance condition. Aspiring a purely referen-
tial approach and recalling Noll’s rule, [97, 98], it is shown that the symmetry group,
which is a subgroup of the Euclidean orthogonal group in the intermediate configu-
ration, is characterised by generalised orthogonal transformations with respect to the
plastic right Cauchy-Green tensor in the reference configuration. In particular, it is
elaborated that the rate equation for the structural tensor consists of two contributions
termed convected- and residual-type evolution. Whereas the convected-type evolution
varies with the plastic right Cauchy-Green tensor, the residual-type evolution allows
the structural tensor to evolve independently from the latter. When interpreted in the
context of the multiplicative split and especially with regard to [29], the residual-type
evolution may be thought of in the sense that the structural tensors are allowed to spin
at a rate different from the one of the intermediate configuration which resembles the
plastic spin.

1.2 Scope and outline

To familiarise the reader with the structure and with the scope of the present work,
a brief summary of each chapter is given. We like to stress that each chapter is self-
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1.2 Scope and outline

consistent such that the thesis does not need to be read in a chronological order but
that each chapter may be studied independently of the others.

Chapter 2 (Fibre-reinforced composites with fibre-bending stiffness) focuses on the
elaboration and validation of a computational framework for the modelling of fibre-
reinforced composites with fibres possessing fibre-bending stiffness, as well as on its
application to the modelling of nanocomposites.

After a brief summary of the essential kinematics and of the balance equations of the
couple stress continuum, the main findings presented in [130] regarding a generalised
theory for the description of fibre-reinforced materials with fibres possessing bending
stiffness are outlined – i.e. higher gradients of the deformation map in terms of the gra-
dient of the spatial fibre orientation field are incorporated as additional arguments of the
energy function. Based on the presented theory, a mixed-type multi-field finite element
formulation for the numerical solution of the underlying system of coupled partial differ-
ential equations is discussed. Subsequently, a specific prototype model is proposed where
the focus lies especially on the consistency of the energy function and on the deduced
constitutive equations for the symmetric part of the Cauchy stresses and the couple
stresses with their corresponding counterparts from the small strain theory which have
been used in [30]. With the specific choice of the energy function at hand, we focus in
detail on the comparison of the analytical solution for the azimuthal shear deformation
of a fibre-reinforced tube, derived in [30] under the assumption of small deformations,
with the one calculated by means of the proposed finite element approach, which takes
finite deformations into account. In particular, the general deformation pattern as well
as the stress- and the couple stress fields are taken into account. Thereafter, homoge-
neous and inhomogeneous stretch dominated deformation fields are analysed, and the
three-dimensional bending of a plate with a hole is investigated to further study the
model properties with regard to the chosen gradient-enhanced form of the stored energy
function. Motivated by these investigations and by the experimental findings on one-
dimensional nanomaterials, in particular on carbon nanotubes and silver nanowires, the
focus finally lies on the design and physical interpretation of the stored energy function.
To be specific, it will be assumed that the nanofibres exhibit non-negligible resistance
against bending, in contrast to the classic structural tensor-based modelling approach,
which assumes the fibres to be perfectly flexible – the underlying idea is that the fibres
behave like nanobeams, similar to the size-dependent beam theories summarised before.
The bending resistance is then accounted for in an energetic manner via a certain com-
bination of invariants which is associated with the fibre curvature. Likewise it is shown
that fibre stretch gradient contributions can be separately addressed in terms of further
combinations of invariants. This chapter is supplemented by Appendix A.

Chapter 3 (Dislocation density tensor-based gradient plasticity) addresses the theo-
retical foundations and the numerics of a gradient plasticity formulation in which the
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1 Introduction

incorporation of higher-gradient contributions to the free energy density function is mi-
cromechanically motivated and gives rise to the occurrence of microstresses that take
the interpretation of back stress tensors in the respective yield function.

At the outset of our developments we will resort to the fundamental theoretical foun-
dations of a thermodynamic consistent formulation of gradient plasticity presented in
[106]. The proposed theory is based on the extension of the Clausius-Duhem inequality
by an additional term, the so-called nonlocality residual, which is introduced to account
for energy exchanges between particles at the microscale and, as the name already sug-
gests, induces a nonlocal character to the inequality. On the basis of the extended form
of the Clausius-Duhem inequality, we show that taking into account dislocation density
tensors as additional arguments of the free energy density function, in the present frame-
work, gives rise to the field equation of a generalised stress tensor that drives the plastic
evolution. After a detailed analysis of a specific quadratic energy contribution in terms
of the dislocation density tensor and the resulting microstress contribution, we first focus
on the implementation of a specific model within the framework of phenomenological
associated-type plasticity. In particular, the solution of the governing system of partial
differential equations by means of a multi-field finite element scheme that makes use
of a global Fischer-Burmeister approach to fulfil the plastic consistency conditions on
a global level is discussed. We then focus on the simulation of representative bound-
ary value problems, like the plastic evolution at material interfaces or the shear band
formation that is induced by geometric imperfections, to study basic model properties.

Taking into account the physics of plastic deformations in crystalline materials a nat-
ural extension of the proposed formulation to gradient crystal plasticity is addressed in
a next step. Specifically speaking, it is shown that the assumption of a crystal plasticity
framework gives rise to the same set of balance equations. However, in order to maintain
the structure of the stabilisation algorithm that is used in the underlying viscoplastic
crystal plasticity model to approach the rate-independent limit, a different interpretation
(of the balance equation of the generalised stress tensor) is taken, which is closely related
to the choice of the primary field variable in the proposed finite element formulation.
After studying the constitutive response at material point level and the principal model
properties in a two-dimensional setting, the focus is eventually on experimentally moti-
vated torsion tests on micro wires in a three-dimensional setting and on the modelling
of experimentally observed size effects. This chapter is supplemented by Appendix B.

Chapter 4 (Deformation-induced anisotropy evolution in finite plasticity) is motivated
by the experimental findings on the yielding behaviour of cold-rolled sheet metal pre-
sented in [65], and studies as to whether a model which is solely based on a convected-
type evolution is capable of reproducing the experimentally observed evolution of the
material symmetry group or if a residual-type evolution needs additionally to be taken
into account. To this end, we especially focus on the evaluation of the dissipation in-
equality and on the derivation of a well-interpretable form of the plastic spin tensor.

14



1.2 Scope and outline

Regarding real materials and the application to metal plasticity, the anisotropic prop-
erties of the elastic response and those of the yielding behaviour may be different. For
the specific model at hand, we will assume that the elastic response may be treated
as isotropic, while the yielding behaviour exhibits appreciable directional dependence.
With regard to [65], finite element-based simulations of tension tests in two- and three-
dimensional settings are then carried out. In particular, we focus on the general evolution
of the plastic deformation, on the rotation of the material symmetry group and on the
global response in terms of load-displacement curves. Overall, the simulation results and
the experimental findings are found to be in good accordance and suggest that invoking
the residual-type evolution of the yield function’s symmetry group allows us to capture
the experimental findings, while a purely convected evolution-based modelling approach
does not seem to be sufficient. By studying basic model properties for shear dominated
deformation states, we finally focus on the simulation of in-plane torsion tests. This
chapter is supplemented by Appendix C.
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2 Fibre-reinforced composites with
fibre-bending stiffness

This chapter focuses on the elaboration of a higher gradient-based modelling approach
for fibre-reinforced composites with fibres possessing fibre-bending stiffness and is struc-
tured as follows:

Section 2.1 (Theoretical foundations and multi-field finite element approach) gives a
brief summary of the fundamental equations of the underlying extended continuum the-
ory and presents the theoretical foundations of the theory proposed in [130] to account
for the fibre-bending stiffness by taking into account higher-order gradients of the de-
formation map as additional arguments of the stored energy function. Moreover, the
multi-field finite element formulation proposed in [10] to address the solution of the re-
sulting system of coupled partial differential equations is recapitulated.

Section 2.2 (Comparison with analytical solutions and study of basic model proper-
ties) focuses on the comparison of simulation results with analytical solutions based
on the azimuthal shear deformation problem of a tube-like structure to validate the
proposed formulation. Furthermore, basic model properties are studied in two- and
three-dimensional settings.

Section 2.3 (Modelling of curvature effects in fibre-reinforced nanocomposites) addresses
the development of a more elaborated form of the gradient energy contribution that is
well-interpretable from a physical point of view and motivated by the experimental find-
ings on one-dimensional nanomaterials presented in Section 1.1.1.
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2 Fibre-reinforced composites with fibre-bending stiffness
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Figure 2.1: Essential kinematics.

2.1 Theoretical foundations and multi-field finite
element approach

After introducing basic kinematic quantities and the balance equations of the underly-
ing extended continuum theory, the fundamentals of the modelling approach for fibre-
reinforced composites with fibres possessing fibre-bending stiffness as derived in [130] are
briefly summarised in Section 2.1.2. The theoretical framework relies on the introduc-
tion of higher gradients of the deformation map as additional arguments of the energy
function – in particular, energy contributions which are based on the gradient of the
spatial fibre direction field, projected onto the fibre direction are taken into account. In
this thesis, the solution of the resulting system of coupled partial differential equations
is addressed by means of a multi-field finite element formulation. Specifically speaking,
we will make use of the finite element formulation proposed in [10], the fundamentals of
which are briefly recapitulated in Section 2.1.3.

2.1.1 Balance equations and essential kinematics

Let B0 ⊂ R3 denote the region occupied by the body under consideration and let X ∈ B0

denote the position of a material point at some reference time t0 ∈ R. We then introduce
the deformation map ϕ : B0 × R → Bt ⊂ R3 as the function which maps positions
in the reference configuration to their spatial positions x = ϕ (X, t) = X + u at
time t ≥ t0, with u denoting the displacement of a material point. The deformation
gradient is denoted by F = ∇Xϕ, with Jacobian JF = det (F ) > 0 and its cofactor
cof (F ) = JFF

−t. The deformation gradient is understood as the linear mapping which
correlates line elements dX of the reference configuration and their spatial counterparts
dx, i.e.

dx = F · dX . (2.1)
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2.1 Theoretical foundations and multi-field finite element approach

Moreover, the cofactor tensor of the deformation gradient is related to the change of
differential area elements such that, with the definition of the outward surface normal
of the reference configuration N and the corresponding area element dA, the spatial
representations are given according to

n da = cof (F ) ·N dA . (2.2)

In addition, differential volume elements dV of the reference configuration are related
to their spatial counterpart dv by use of the Jacobian JF , to be specific

dv = JF dV . (2.3)

The velocity of a particle is ϕ̇ (X, t) and, accordingly, the spatial velocity gradient l is
introduced as

∇xϕ̇ = l =
1

2

[
l + lt

]
+

1

2

[
l− lt

]
= lsym + lskw = d+$ , (2.4)

with the rate of deformation tensor d = lsym and spin tensor $ = lskw given by the
symmetric and by the skew part of l as indicated by the respective superscripts. With
the introduction of the third-order permutation tensor εt the associated spin vector is
then defined as

ω = −1

2
εt : $ . (2.5)

Aiming at the modelling of fibre-reinforced composites, we further introduce the fibres as
material curves, termed a-curves in accordance with [125]. The direction of the a-curves
at each point of the continuum can be characterised by a unit vector field which will be
denoted by a0 for the reference- and by āt for the deformed configuration. Since the
fibres are assumed to be convected with the material, relation

at = λA āt = F · a0 , ‖a0‖ = ‖āt‖ = 1 (2.6)

holds, so that λA is identified with the fibre stretch. In addition to the latter, the
enhanced modelling approach which is to be discussed in detail in Section 2.1.2 takes
into account higher-order energy contributions including the fibre curvature. To this
end, the referential gradient of the spatial fibre direction vector

G = ∇X at = ∇X [F · a0] = a0 · ∇X
[
F t
]

+ F · ∇Xa0 (2.7)

is considered and its purely referential representation,

Λ = F t ·G , (2.8)
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2 Fibre-reinforced composites with fibre-bending stiffness

is introduced as suggested in [130].
Due to the occurrence of second-order gradients of the deformation map in (2.7) and,

in consequence, as arguments of the energy function, the classic Boltzmann continuum
theory is not suitable. Instead, it is proposed in [130] to base the model on a Mindlin
theory from which the governing equations are derived in, e.g., [94] and which are briefly
summarised as this work proceeds.

2.1.1.1 Balance of mass

The body under consideration represents a closed system such that the total mass is
preserved. Assuming the existence of a mass density ρt thus results in

d

dt

∫
Bt
ρt dv =

∫
B0

d

dt
(ρt JF ) dV =

∫
B0

ρ̇0 dV = 0 , (2.9)

with the mass density per unit volume of the reference configuration ρ0 = ρt JF being
introduced. Performing the localisation of (2.9) and using dJF /dt = JF ∇x · ϕ̇ the local
form of the balance equation of mass can be derived as

ρ̇t + ρt∇x · ϕ̇ = 0 . (2.10)

2.1.1.2 Balance of linear momentum

Regarding the balance equation of linear momentum, the rate of change of linear momen-
tum equals the sum of all forces resulting from volume distributed loads f and tractions
t. The integral form of the balance equation of linear momentum reads

d

dt

∫
Bt
ρt ϕ̇ dv =

∫
Bt
ρt f dv +

∫
∂Bt
t da . (2.11)

Before localising (2.11) the surface integral is rewritten as a volume integral using
Cauchy’s theorem, i.e.

σt · n = t , (2.12)

including the Cauchy-type stress tensor σ and the outward surface normal n along with
the divergence theorem, to be specific∫

∂Bt
t da =

∫
Bt
∇x · σt dv . (2.13)

Additionally making use of (2.10), the local form of the balance equation is given by

ρt ϕ̈ = ρt f +∇x · σt = ρt f +∇x ·
[
σsym + σskw

]t
. (2.14)
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2.1 Theoretical foundations and multi-field finite element approach

2.1.1.3 Balance of angular momentum

Let r = x− xref denote the difference vector of the current position of a particle and a
fixed, but otherwise arbitrary reference point xref . The balance of angular momentum of
the Mindlin theory considered then states that the rate of change of angular momentum
with respect to xref equals the sum of all couples acting on the body. The related integral
form results in

d

dt

∫
Bt
ρt r × ϕ̇ dv =

∫
Bt
ρt [r × f + c] dv +

∫
∂Bt
r × t+ τ da . (2.15)

In contrast to the Boltzmann continuum theory, the Mindlin theory does not only ac-
count for the action of couples resulting from body distributed forces and tractions, but
further takes into account volume distributed couples c in Bt and surface couples τ
acting on ∂Bt.
In analogy to the stress tensor (2.12), the couple stress tensor m is introduced via its
relation with τ , namely

mt · n = τ , (2.16)

and the surface integral in (2.15) is rewritten as a volume integral using the divergence
theorem, to be specific∫

∂Bt
r × t+ τ da =

∫
Bt
r ×

[
∇x · σt

]
+ εt : σ +∇x ·mt dv . (2.17)

Noting that ϕ̇ × ϕ̇ = 0 and making use of (2.10) and (2.14) renders the local form of
the balance of angular momentum as

0 = ∇x ·mt + ρt c+ εt : σ (2.18a)

= ∇x ·mt + ρt c+ εt : σskw . (2.18b)

2.1.1.4 Balance of energy

Neglecting temperature effects, the integral form of the balance of energy reads

d

dt

∫
Bt
ρt

[
1

2
‖ϕ̇‖2 + e

]
dv =

∫
Bt
ρt [f · ϕ̇+ c · ω] dv +

∫
∂Bt
t · ϕ̇+ τ · ω da , (2.19)

with e denoting the specific internal energy of the continuum. Evaluating the integral
on the left-hand side by making use of the balance of mass (2.10), and rewriting the
surface integral on the right-hand side as a volume integral one arrives at
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2 Fibre-reinforced composites with fibre-bending stiffness

∫
Bt
ρt ė =

∫
Bt
ϕ̇ ·
[
−ρt ϕ̈+ ρt f +∇x · σt

]
dv

+

∫
Bt
ω ·
[
∇x ·mt + ρtc

]
dv

+

∫
Bt
σt : ∇xϕ̇+mt : ∇xω dv .

(2.20)

Moreover, taking into account the balance of linear momentum (2.14), the balance of an-
gular momentum (2.18) and noting that by using the ε-δ-identity εt · εt = 2 Iskw together
with (2.5),

ω · εt : σ = $ : σt , (2.21)

holds, one finally obtains

ρt ė = σt : d+mt : ∇xω . (2.22)

2.1.2 Incorporation of fibre-bending stiffness

Assuming the existence of an elastic potential W , the classic modelling approach for
anisotropic materials accounts for anisotropic material properties that are induced by
the fibres by introducing structural tensors A0 as additional arguments of the energy
function. If the anisotropic material behaviour is induced by a single family of fibres,
A0 can be specified based on the local referential fibre orientation according to

A0 = a0 ⊗ a0 (2.23)

and the energy function, accounting for invariance with respect to rigid body motions,
can be written in terms of

W (C,A0) , (2.24)

where C = F t · F denotes the right Cauchy-Green tensor, see e.g. [20, 129, 153]. With
this approach, the fibre stretch can be accounted for – nevertheless, effects due to fibre
twist and fibre bending are not considered. In order to capture the latter effects, it is
proposed in [130] to take into account the gradient of the deformed fibre vector G as an
additional argument of the energy function which, in its most general form, can then be
introduced as

W (F ,G,a0) . (2.25)
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2.1 Theoretical foundations and multi-field finite element approach

By assuming a quasi-static system and by neglecting temperature effects, body forces
and body couples, constitutive functions for the symmetric part of the stress tensor

σsym = J−1
F

[
∂W

∂F
· F t +

∂W

∂G
·Gt

]
(2.26)

and for the deviatoric part of the couple stress tensor

[
mdev

]t
= −2

3
J−1
F εt :

[
∂W

∂G
·
[
F t⊗at + F t ⊗ at

]]
(2.27)

are then derived in [130] based on (2.22). The volumetric part of the couple stress
tensor remains undetermined from energetic considerations, which is a general result of
the couple stress theory; see, e.g., [94, 130]. It is then shown that an energy function
which fulfils the postulate of invariance with respect to rigid body motions a priori is
given in terms of

W (C,Λ,a0) . (2.28)

With (2.28) at hand, the constitutive function for the symmetric part of the stress tensor
(2.26) is recast in the form

σsym = J−1
F

[
2F · ∂W

∂C
· F t +G ·

[
∂W

∂Λ

]t

· F t + F · ∂W
∂Λ
·Gt

]
(2.29)

and the deviatoric part of the couple stress tensor (2.27) is specified as

[
mdev

]t
= −2

3
J−1
F εt :

[
F · ∂W

∂Λ
·
[
F t⊗at + F t ⊗ at

]]
, (2.30)

see [130].

Neglecting fibre twist, the dependence of the energy function on the gradient of the
deformed fibre vector can further be restricted to its normal projection onto the direction
of the fibre, i.e. only the vector

κ = G · a0 (2.31a)

=
[
a0 · ∇XF t + F · ∇Xa0

]
· a0 (2.31b)

=
∂λA

∂X
· a0 āt + λA

∂āt
∂X
· a0 (2.31c)

is additionally accounted for as an argument of the energy function which takes the form

W (F ,κ,a0) . (2.32)
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2 Fibre-reinforced composites with fibre-bending stiffness

With regard to (2.31b) it is first observed that κ includes contributions which are due
to higher gradients of the placement field ϕ, i.e. ∇XF , as well as contributions which
are associated with the fibre curvature in the reference configuration. Secondly, when
analysing (2.31c) it is revealed that κ includes contributions resulting from both the
fibre stretch gradient and the fibre curvature. The latter observations will be of partic-
ular importance for the design and analysis of the energy function to be presented in
Section 2.3.

In view of invariance with respect to rigid body motions one furthermore finds that
the energy function (2.32) can equivalently be expressed in terms of

W (C,κ0,κ · κ,a0) , (2.33)

with

κ0 = F t · κ = Λ · a0 (2.34)

being a referential representation of κ that was introduced in [130] and which merits
special attention as outlined in Remark 2.1. Employing a specific form of the energy
function based on (2.33) generally allows the capturing of fibre bending in an ener-
getic manner while effects like fibre twist are not taken into account, [130]. Moreover,
specifying (2.33) as an isotropic tensor function results in

W (Ii (C,Λ,a0)) , i ∈ {1, . . . , 11} , (2.35)

with the eleven invariants given by

I1 = C : I I2 = cof (C) : I I3 = det (C)
I4 = a0 ·C · a0 I5 = a0 ·C2 · a0

I6 = κ0 · κ0 I7 = κ0 ·C · κ0 I8 = κ0 ·C2 · κ0

I9 = a0 · κ0 I10 = a0 ·C · κ0 I11 = a0 ·C2 · κ0

(2.36)

cf. [130, 153]. If it is furthermore assumed that the sense of the fibre orientation may
not influence the constitutive relations, W must be even in both a0 and Λ such that the
invariants I9, I10 and I11 may enter the energy function only in terms of their powers of
even order and products in pairs, [130].

The latter invariant-based representation of the energy function together with the
constitutive relations for the stresses (2.29) and couple stresses (2.30) shall serve as a
basis for the constitutive framework of the finite element formulation to be presented in
Section 2.1.3.

Remark 2.1 (Tensor spaces) In order to fulfil the requirement of invariance with respect
to rigid body motions the referential vector κ0 = F t · κ is introduced in [130] as an
argument of the energy function. In this remark it is briefly outlined that this format
of κ0 is not the (contravariant) referential representation of the (contravariant) spatial
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2.1 Theoretical foundations and multi-field finite element approach

vector κ, but rather the pullback of the dual vector κ[ which is an element of the spatial
cotangent space.

Using convected coordinates, the contravariant spatial vector κ can be represented as

κ =
∂at
∂X
· a0 =

∂ait
∂Xp

ap0 gi = κi gi = κ] . (2.37)

The related dual vector is given by

κ[ = g[ · κ] = gij κ
j gi = κi g

i (2.38)

where the spatial co- and contravariant base vectors gi, respectively gi and the covari-
ant metric tensor g[ = gij g

i ⊗ gj of the curvilinear coordinate system are introduced.
Since the deformation gradient tensor using convected coordinates is given in terms of
F = gi ⊗Gi, we find

κ0 =
[
Gi ⊗ gi

]
·
[
κj gj

]
=
[
Gi ⊗ gi

]
·
[
gkl g

k ⊗ gl
]
·
[
κj gj

]
=
[
Gi ⊗ gi

]
·
[
κk g

k
]

= κiG
i

= F t · g[ · κ = F t · κ[ = κ[0 .

(2.39)

Hence, κ0 turns out to be the covariant referential representation of the contravariant
spatial vector κ. Note that Gi ⊗ gi formally represents the dual of the transpose of F
which is not indicated due to simplification of the notation. The contravariant referential
representation of κ = κ] results from the pullback via F−1, that is

κ]0 = F−1 · κ =
[
Gi ⊗ gi

]
·
[
κj gj

]
= κiGi , (2.40)

and can be related to the representation in the dual-space according to

κ0 = κ[0 = κiG
i =

[
gijG

i ⊗Gj
]
·
[
κkGk

]
= C · κ]0 , (2.41)

with the right Cauchy-Green tensor being expressed in terms of C = F t · g[ · F .

The interpretation of κ0 as a covariant vector is important for the physical inter-
pretation of the invariants and the definition of length-type measures. As an example,
consider the squared norm of the spatial vector κ which is given according to

‖κ‖2 = ‖κ]‖2 = κ] · g[ · κ] . (2.42)

This measure can be expressed in terms of referential quantities via

‖κ]‖2 = κ]0 ·C · κ
]
0 , (2.43)
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respectively

‖κ]‖2 = κ[0 ·C−1 · κ[0 , (2.44)

such that, with the introduction of κ0 = κ[0 as a covariant quantity, the inverse right
Cauchy-Green deformation tensor C−1 = F−1 · g] · F−t has to be employed for the cal-
culation of the norm of the spatial vector κ in referential representation. In contrast,
the right Cauchy-Green tensor would need to be used if the referential representation of
κ was introduced as a contravariant quantity.

2.1.3 Numerics and finite element formulation

With the general form of the energy function (2.35) and the constitutive relations for the
stresses (2.29) and couple stresses (2.30) at hand, (2.14) and (2.18) yield a system of two
coupled non-linear partial differential equations for the determination of the unknown
field variables ϕ and σskw. First, regarding (2.29) and (2.30) together with (2.35), the
stresses σsym and mdev, in general, are non-linear functions including the argument

Λ = F t ·G
= F t ·

[
a0 · ∇X

[
F t
]

+ F · ∇Xa0

]
= F t ·

[
a0 · ∇X [∇Xϕ]t + F · ∇Xa0

]
.

(2.45)

Thus, inserting the constitutive equations for the stresses and couple stresses into bal-
ance equations (2.14) and (2.18) results in a system of partial differential equations,
each of which includes up to third-order derivatives in x, see Section 2.1.3.1 and Sec-
tion 2.1.3.2. Alternatively, the balance equation of angular momentum can be regarded
as the definition of the skew-symmetric part of the stress tensor and inserted into the
balance equation of linear momentum which would result in one partial differential equa-
tion of fourth-order as elaborated in, e.g., [126] and as briefly discussed in Remark 2.2
and the related Appendix A.4.

After multiplication with test functions and integration by parts, the weak form of
the system of coupled partial differential equations includes second-order gradients of
the deformation map. From a mathematical point of view, this implies that a C0-
continuous approximation of the placement field ϕ is generally not sufficient, but that
a higher degree of continuity is required for the approximation of the field variables,
cf. [47, 120, 154]. Although certain Hermitian finite elements which fulfil the continuity
requirement in a strong sense are available in the literature, see e.g. [105] for a two-
and [102] for a three-dimensional element formulation, there is still a lack of robust and
efficient C1-continuous elements, [120]. Another novel approach to fulfil higher-order
continuity requirements is the framework of isogeometric analysis which is presented in
[58] and applied to gradient elasticity problems in, e.g., [46] and [110].
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2.1 Theoretical foundations and multi-field finite element approach

An alternative to the usage of C1-continuous element formulations offers the fulfilment
of the continuity requirement in weak sense only, using a mixed-type finite element
approach, [8, 132, 141]. To this end, an additional field variable is introduced and
coupled to the deformation gradient, respectively the gradient of the spatial placement
field. Examples of this procedure for the linear elastic strain gradient theory can be found
in [120] for a two-dimensional or [155] for a three-dimensional setting. In these works,
so-called relaxed displacement gradients are introduced as additional field variables and
coupled with the displacement gradients using Lagrange multipliers. Hence, by following
this procedure only first gradients of field variables occur in the weak formulation of the
balance equations to be solved.

In this contribution we will follow a similar procedure to approximate the higher gradi-
ents of the spatial placement field which enter the balance equations via the constitutive
equations for the stress and couple stress tensor. Being more specific, the additional
field variable Θ is introduced and coupled to the deformation gradient in the spirit of
an L2-projection, which results in the additional field equation

p [F −Θ] = 0 , (2.46)

with p 6= 0 being an arbitrary but constant parameter used for the scaling of the con-
straint. In line with [120], Θ will further be referred to as the relaxed deformation
gradient.

Since the relaxed deformation gradient is treated as an independent field variable and
approximated by means of C0-continuous functions, the first derivative of Θ with respect
to the referential coordinates is still C−1-continuous. Accordingly, second gradients of
the spatial placement field which are still C−1-continuous, can be approximated in terms
of

∇X [∇Xϕ] = ∇XF ≈ ∇XΘ = Υ . (2.47)

2.1.3.1 Field equations

For a quasi-static system subject to the assumption that no temperature effects occur
and that body forces as well as body couples are negligible, the coupled system of partial
differential equations takes the form

balance of linear momentum ∇x ·
[
σsym + σskw

]t
= 0 (2.48a)

balance of angular momentum ∇x ·mt + εt : σskw = 0 (2.48b)

constraint p [F −Θ] = 0 (2.48c)

boundary conditions ϕ =ϕ̄ on ∂Bϕt (2.48d)

σt · n =t̄ on ∂Btt (2.48e)

mt · n =τ̄ on ∂Bt (2.48f)
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2 Fibre-reinforced composites with fibre-bending stiffness

with the symmetric part of the stress tensor and the couple stress tensor being defined
by the constitutive relations (2.29) and (2.30). Moreover, the volumetric part of the
couple stress tensor is assumed to remain undetermined, i.e. it is assumed that

tr (m) = 0 ⇔ m = mdev . (2.49)

The system of equations is subject to certain boundary conditions which are applied in
terms of placements

ϕ = ϕ̄ on ∂Bϕt (2.50)

and tractions

σt · n = t = t̄ on ∂Btt , (2.51)

with prescribed quantities being denoted by an overbar. We shall further assume homo-
geneous Neumann boundary conditions of the couple stresses,

mt · n = τ = τ̄ = 0 on ∂Bt . (2.52)

For a more detailed discussion on appropriate representations of boundary conditions for
the couple stress continuum theory the reader is referred to [94, 120, 132] and Remark 2.2,
respectively Appendix A.4.

2.1.3.2 Weak form of field equations

In the context of the finite element method the partial differential equations are multi-
plied with test functions and integrated over the domain Bt. For the balance equation
of linear momentum (2.48a), using the test function ηϕ, this procedure along with the
usage of the divergence theorem results in

0 =

∫
Bt
ηϕ ·

[
∇x · σt

]
dv (2.53a)

= −
∫
B0

∇Xηϕ :
[
σt · cof (F )

]
dV +

∫
∂Bt
ηϕ · t da , (2.53b)

wherein the first part in (2.53b) contributes to the internal force vector fϕint, whereas
the second part is related to the external forces fϕext. By applying the same procedure
to the balance equation of angular momentum (2.48b), using a test function ησ, a weak
form representation is given by

0 =

∫
Bt
ησ ·

[
∇x ·mt + εt : σskw

]
dv (2.54a)
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2.1 Theoretical foundations and multi-field finite element approach

= −
∫
B0

∇Xησ :
[
mt · cof (F )

]
− ησ · εt : σskw JF dV +

∫
∂Bt
ησ · τ da . (2.54b)

In (2.54b), the volume integrals contribute to the vector of internal forces fσint, whereas
the surface integral contributes to the external force vector fσext. Moreover, by using
(2.52) we find that the vector of external forces fσext is assumed to be identically zero.
Finally, by multiplying the constraint (2.48c) with the test function ηΘ one arrives at

0 =

∫
B0

pηΘ : [F −Θ] JF dV , (2.55)

which can be interpreted as the L2-projection of the deformation gradient field onto the
Θ-field.

2.1.3.3 Discretisation of the weak form

The element-wise discretisation of the weak forms of the balance equations and of the
constraint is performed by using Lagrange polynomials

ϕh =

nen,ϕ∑
A=1

Nϕ
A ϕA ηϕ h =

nen,ϕ∑
D=1

Nϕ
D η

ϕ
D (2.56)

σskw h =

nen,σ∑
B=1

Nσ
B σ

skw
B ησ h =

nen,σ∑
E=1

Nσ
E η

σ
E (2.57)

Θh =

nen,Θ∑
C=1

NΘ
C ΘC ηΘ h=

nen,Θ∑
F=1

NΘ
F η

Θ
F (2.58)

and by allowing for a different polynomial order for each field. Shape functions used for
the approximation of the field quantities and of the test functions are denoted by N• with
the superscript referring to the corresponding field, and with nen• denoting the number
of element nodes used for the approximation of the respective field. Furthermore, an
isoparametric approximation in the sense that identical shape functions are used for the
discretisation of the geometry and for the discretisation of the spatial placement field,
is used.

With the assembly operator A and the total number of elements being denoted by
nel, the discrete vector of internal forces of the balance equation of linear momentum is
given by

fϕh
int =

nel

A
e=1

∫
Be0

[
σsym + σskw

]t · cof (F ) · ∇XNϕ
A dVe (2.59)
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while the discrete version of (2.54b) reads

fσh
int =

nel

A
e=1

∫
Be0
mt · cof (F ) · ∇XNσ

B − εt : σskw JF N
σ
B dVe (2.60)

and (2.55) results in

fΘh
int =

nel

A
e=1

∫
Be0
p [F −Θ] JF N

Θ
C dVe . (2.61)

2.1.3.4 Linearisation

The solution of the discrete system of equations is performed in an iterative manner
with the residuum

r• h = f • h
int − f • h

ext (2.62)

and its linearisation at some iteration step q,

r• h
q+1 = r• h

q + ∆r• h . (2.63)

The linear part of the residuum can further be specified as

∆r•h =
dr• h

dϕ̂
·∆ϕ̂+

dr• h

dσ̂ skw
·∆σ̂ skw +

dr• h

dΘ̂
·∆Θ̂ , (2.64)

such that the overall global system to be solved for the increments of the field variables
takes the form Kϕϕ Kϕσ KϕΘ

Kσϕ Kσσ KσΘ

KΘϕ KΘσ KΘΘ


q

·

 ∆ϕ̂

∆σ̂ skw

∆Θ̂


q

= −

 rϕ h

rσ h

rΘ h


q

, (2.65)

with ϕ̂, σ̂ skw and Θ̂ denoting the global lists of degrees of freedom. The various con-
tributions to the overall stiffness matrix are summarised in Appendix A.1. Note, that
the evaluation of (2.124)–(2.132) requires the calculation of the sensitivities of the stress
tensor (2.29) and of the couple stress tensor (2.30) with respect to the field variables,
which are given in Appendix A.2 in their most general form. With these derivatives
at hand, the global stiffness matrix can be set based on the specification of the energy
function (2.35) together with the first and second derivatives of the energy function
with respect to C and Λ. To facilitate the derivation of the latter, the derivatives of the
invariants with respect to C and Λ are provided in Appendix A.3.
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2.1 Theoretical foundations and multi-field finite element approach

Remark 2.2 (Boundary conditions) In [94] it is shown that an alternative represen-
tation of the boundary conditions, (2.48e) and (2.48f), of the couple stress theory is
possible. In this alternative form, it turns out that the normal component of the cou-
ple stress vector τ enters the surface integrals only in combination with the force stress
vector t, cf. [94], reducing the number of effectively applied boundary conditions by one.
This derivation of the alternative form of the boundary conditions relies on the relation
between the velocity and the spin vector.

Different from the weak form representation discussed in Section 2.1.3.2 an alternative
form is derived in Appendix A.4, which makes use of the relation ησ = 1

2
curlt (ηϕ).

This alternative representation of the balance relations and boundary conditions results,
in accordance with [94], in

0 =−
∫
Bt
∇xηϕ : σsym +∇xηϕ :

[
σskw

]t
dv +

∫
∂Bt

[
n · σ − 1

2
n×∇xmnn

]
· ηϕ da

−
∫
Bt
∇xησ : mt − ησ · εt : σskw dv +

∫
∂Bt
n ·m · [I − n⊗ n] · ησ da .

(2.66)

Note, that in contrast to the approach presented in Appendix A.4, the balance equations
will be regarded as separate equations in this contribution with no relation between the
test functions being assumed.

2.1.4 Summary

Based on the fundamental theory for the modelling of fibre-reinforced composites with
fibres possessing non-negligible bending stiffness presented in [130], the solution of the
resulting system of partial differential equations by means of a mixed- and multi-field
finite element approach was presented. To this end, a relaxed deformation gradient field
was introduced as an additional field variable and coupled to the deformation gradient
by means of an L2-projection. Thus, higher gradients of the placement function could
be approximated without using a truly C1-continuous element formulation but rather by
fulfilling the necessary continuity requirement only in a weak sense. Taking into account
the proposed formulation, a weak form of the balance equations and of the constraint
was derived and the corresponding discrete contributions to the global force and tangent
stiffness matrix were provided.
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2 Fibre-reinforced composites with fibre-bending stiffness

2.2 Comparison with analytical solutions and study of
basic model properties

The scope of this section is threefold: firstly, a specific form of the energy function is
proposed in Section 2.2.1 and shown to be consistent with the small strain version of the
theory employed in [30] to derive an analytical solution. Secondly, a comparison of the
numerical solution by means of the multi-field finite element approach with the analytical
solution for the azimuthal shear deformation of a tube-like structure is carried out in
Section 2.2.2 in order to validate the proposed formulation. Thirdly, the fundamental
model properties for the specific form of the stored energy function chosen are studied
further and boundary value problems in a three-dimensional setting are analysed in
Section 2.2.3.

2.2.1 Specification of the constitutive model

In this section a specific form of the energy function is proposed and the specific con-
stitutive equations for the symmetric part of the stress and the couple stress tensor are
presented. It is then shown that this form of the energy function is consistent with the
small strain version of the theory employed in [30] to derive an analytical solution for
the azimuthal shear deformation of a tube-like structure which serves as the basis for
the comparison of the proposed finite element formulation with analytical solutions in
Section 2.2.2.

2.2.1.1 A specific form of the energy function

Before the gradient-enhanced modelling approach for fibre-reinforced composites can
be applied to the simulation of boundary value problems, the energy function (2.35)
needs to be specified. In particular, we propose an additive split of the energy function
according to

W (Ii) = W iso (I1, . . . , I3) +W λA (I1, . . . , I5) +Wκ0 (I1, . . . , I11) , i ∈ {1, . . . , 11} ,
(2.67)

with the different contributions being motivated from a physical point of view. The first
contribution in (2.67) reflects the isotropic part of the material response which is defined
by the properties of the matrix material without considering the influence of the fibres.
Hence, it is assumed to be a function of the deformation only, such that solely the first
three invariants or combinations thereof are taken into account.

On the contrary, both the second and the third part are related to the action of
the fibres. To be more specific, W λA is associated with transversely-isotropic properties
induced by a single family of fibres. This energy contribution is based on the classic
structural tensor approach and is well-discussed in the literature, e.g. [20, 129, 153]. In
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2.2 Comparison with analytical solutions and study of basic model properties

particular, a detailed analysis of the mathematical properties of W λA has recently been
presented in [116, 117, 131], where different combinations of the first five invariants have
been analysed and their physical interpretations given. The last summand in (2.67),
Wκ0 , induces a different kind of anisotropy which is due to the assumption that the
fibres exhibit a certain resistance to bending. This property essentially manifests the
enhanced character of the presented modelling approach. In addition to the deformation
measure and the fibre direction field which characterises the preferred material direction,
Wκ0 (I1, . . . , I11) therefore additionally takes into account invariants which are based
on the gradient of the spatial fibre orientation vector. Since higher gradients of the
deformation map enter the energy function via the invariants I6 − I11, cf. (2.36), it is
further evident that, by employing the energy contribution Wκ0 , a natural length scale
is introduced into the model. Accordingly the modelling of size effects becomes possible.

As the modelling of the fibre-bending stiffness is the main subject of this section, and
since the anisotropic part W λA is still extensively being discussed in the literature,

W λA = const (2.68)

shall be assumed. Thus, the only fibre contributions considered within the subsequent
analysis are included in the energy contribution Wκ0 . In view of model calibration based
on experimental findings, the contribution W λA 6= const can generally not be neglected
and will be accounted for in an enhanced model to be discussed in Section 2.3.

For the isotropic part of the energy function a simple Neo-Hookean-type ansatz is
adopted,

W iso = W neo (I1, I3) = λ
I3 − 1

4
−
[
λ

2
+ µ

]
ln
(√

I3

)
+
µ

2
[I1 − 3] , (2.69)

including the two material parameters λ and µ. What remains is the specification of the
higher-order energy part Wκ0 . Focusing on invariant I6 we notice that

I6 = κ0 · κ0 =
[
F t · κ

]
·
[
F t · κ

]
= κ · b · κ (2.70)

represents a quadratic measure which includes the fibre curvature, with b = F · F t the
left Cauchy-Green tensor. In accordance with [31] and [125], a possible ansatz for Wκ0

which accounts for the fibre-bending contributions is therefore given by

Wκ0 (I6) = c I6, c ∈ R+ . (2.71)

Since the material parameter c introduced in (2.71) directly weights the higher-order
energy contribution associated with the fibres, it can further be interpreted as a kind of
fibre-bending stiffness.
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In the case that the undeformed fibres are not oriented straight one obtains

κ0 = F t ·
[
a0 · ∇X [∇Xϕ]t + F · ∇Xa0

]
· a0 6= 0 for F = I (2.72)

so that neither the related energy

Wκ0
t0 (I6) = c I6 = c [Λ · a0] · [Λ · a0] 6= 0 (2.73)

nor the related stress contributions vanish identically. The underlying physical assump-
tion would be that the fibres are straight in their reference configuration, i.e. after the
fibre production process, and that any deviation from this state within the composite
the fibres are embedded into requires the supply of energy. Further simple forms of
the stored energy function which rely on a different physical interpretation have been
discussed in [10] and are briefly recapitulated in Appendix A.5.

Within the scope of this contribution, we will focus on fibres the reference configura-
tions of which are straight so that ∇Xa0 · a0 = 0. Thus taking into account (2.69) and
(2.71), the energy function is assumed to take the form

W (I1, I3, I6; λ, µ, c) = λ
I3 − 1

4
−
[
λ

2
+ µ

]
ln
(√

I3

)
+
µ

2
[I1 − 3] + c I6 .

(2.74)

It is further noted that the structure of the energy function (2.74) is comparable
to the one proposed in [31] for the modelling of incompressible fibre-reinforced tube-
like structures when accounting for finite deformations. Essentially note that such an
energy function is consistent with the strain energy function met when assuming small
deformations, cf. [31] and Section 2.2.1.3. This is an important observation which allows
us to compare the analytical results presented in [30], subject to the assumption of small
deformations, with the ones calculated by means of the finite element approach analysed
in this contribution, which accounts for finite deformations.

2.2.1.2 Specification of the stress and couple stress tensor

Based on the specific form of the energy function (2.74) the (symmetric part of the)
stress tensor and the (deviatoric part of the) couple stress tensor can be specified.

According to (2.29) and with the use of Table 2.5 the specific form of the (symmetric
part of the) stress tensor reads

σsym = J−1
F F ·

[
λ

2
[I3 − 1]C−1 + µ

[
I −C−1

]]
· F t

+ 2 c J−1
F

[
G · [a0 ⊗Λ · a0] · F t + F · [Λ · a0 ⊗ a0] ·Gt

]
.

(2.75)
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The first part of (2.75) represents the isotropic Neo-Hookean part, whereas the second
part results from the assumption that the fibres exhibit significant resistance against
bending. Further specifying the latter we find[

G · [a0 ⊗Λ · a0] · F t + F · [Λ · a0 ⊗ a0] ·Gt
]

(2.76a)

= [G · a0]⊗ [F ·Λ · a0] + [F ·Λ · a0]⊗ [G · a0] (2.76b)

=κ⊗ b · κ+ κ · b⊗ κ (2.76c)

=F−t · κ0 ⊗ κ0 · F t + F · κ0 ⊗ κ0 · F−1 . (2.76d)

It is apparent that this part is based on κ, respectively κ0, so that gradients in the fibre
deformation field result into a stress response. In particular we find that the symmetric
part of the stress tensor is influenced by the first gradient of the deformation map, e.g.
in terms of F and C, and by the projection of the second gradient of the deformation
map onto the direction of the fibres, e.g. in terms of κ and κ0.

Furthermore, by applying the constitutive relation (2.30) and by using Table 2.5, the
specific form of the couple stress tensor is given by[

mdev
]t

=− 4

3
J−1
F εt :

[
F · c [Λ · a0 ⊗ a0] ·

[
F t⊗at + F t ⊗ at

]]
(2.77a)

=
8

3
c J−1

F εt : [F · a0 ⊗ F · κ0 ⊗ F · a0] (2.77b)

=
8

3
c J−1

F εt : [at ⊗ b · κ⊗ at] . (2.77c)

Regarding (2.77) it is revealed that the couple stress tensor is influenced by the first
gradient of the deformation map via its dependence on F , respectively on b, and the
second gradient of the deformation which enters (2.77) via κ0, respectively κ. Based
on this observation it is concluded that the skew symmetric part of the stress tensor, in
general, is also influenced by both the first and second gradient of the deformation field,
since σskw is directly linked to the divergence of m via (2.48b).

2.2.1.3 Consistency of the linearised and the finite strain theory

The modelling approach for fibre-reinforced composites with fibres possessing fibre-
bending stiffness is presented in [130] for a finite strain setting, and a corresponding
small strain theory is deduced. To derive an analytical solution for the azimuthal shear
deformation of a fibre-reinforced tube-like structure, the small strain version of the the-
ory is employed in [30]. Nevertheless, a comparison with the results calculated by means
of the corresponding finite strain theory by using the finite element-based solution pro-
cedure proposed in Section 2.1 is generally meaningful due to the consistency of the two
modelling approaches, which will be outlined in this section.
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To start with, the model proposed in [30] assumes in accordance with [130] the sym-
metric part of the linearised stress tensor Σsym, expressed in polar coordinates (with r,
ϕ and z indicating the radial, azimuthal and height direction) and represented in Voigt
notation, to take the formΣsym

rr

Σsym
ϕϕ

Σsym
rϕ

 =

Errrr Errϕϕ 0
Eϕϕrr Eϕϕϕϕ 0

0 0 Erϕrϕ

 ·
 εrr
εϕϕ
2 εrϕ

 , (2.78)

with the linearised strain tensor ε = [F − I]sym and material constants E• with
Errϕϕ = Eϕϕrr. Furthermore, the constitutive relation for the only non-vanishing co-
efficient of the (deviatoric part of the) linearised couple stress tensor υ, which features
the additional material parameter df , is given by

υrz = df
∂2uϕ
∂r2

(2.79)

and implicitly defines the skew symmetric part of the couple stress tensor via the balance
equation of angular momentum, cf. [30, 31], to be specific,

Σskw
ϕr = −Σskw

rϕ =
1

2
df
[
∂3uϕ
∂r3

+
1

r

∂2uϕ
∂r2

]
. (2.80)

In view of the energy function (2.74), however, the symmetric part of the (finite
deformation) Cauchy stress tensor takes the form (2.75). The second summand, which
results from the derivative ∂W/∂Λ, induces higher-order terms in the partial derivatives
of ϕ so that these contributions are neglected in the linearised theory, cf. [31] and [130].
With this consideration, the linearisation of (2.75) yields

σsym,lin = 2µ ε+ λ tr (ε) I (2.81)

which can be represented in Voigt notation according toσsym,lin
rr

σsym,lin
ϕϕ

σsym,lin
rϕ

 =

2µ+ λ λ 0
λ 2µ+ λ 0
0 0 µ

 ·
 εrr
εϕϕ
2 εrϕ

 . (2.82)

As mentioned in Section 2.2.1.1, the finite strain model does not account for an energy
contribution W λA such that a material described with the help of (2.82) is isotropic in
contrast to the transverse isotropic material model implied in (2.78). However, since the
material parameters Errrr, Eϕϕϕϕ, Errϕϕ and Eϕϕrr do not enter the differential equation
for the azimuthal displacement, they are not relevant for the comparison to be carried
out in this contribution, see also [30].
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Further analysing the couple stress tensor, respectively the skew-symmetric part of
the stress tensor, the consistency of a bending energy contribution of the form (2.71)
with the definition of the couple stress tensor (2.79) is shown in [31] for a pure azimuthal
shear deformation with the relation

c =
3

8
df (2.83)

between the two material parameters. For the boundary value problem to be studied in
Section 2.2.2, we observe a maximal change of the outer radius of less than −0.65% for
all values of the fibre-bending stiffness parameter and loading states analysed. In conse-
quence, the condition of pure azimuthal shear is approximately met, cf. Section 2.2.2.2,
Figure 2.4(a). It is further pointed out in [31], that the summand df [2r]−1 ∂2uϕ/∂r

2

presented in (2.80) is missing in the derivation of the skew-symmetric part of the stress
tensor in [30]. Nevertheless, the results presented in [30] are considered to be very
accurate and are used for the sake of comparison in [31].

2.2.2 Comparison of finite element simulations with analytical
solutions

An azimuthal shear deformation of a cylindrical tube under plane strain conditions
is analysed in detail in [30], whereby the composites considered are assumed to be
reinforced either with perfectly flexible fibres or with fibres exhibiting bending stiffness.
For the special case of straight fibres which are oriented along the radial direction of the
tube in the reference configuration, it is shown that the coupled system of differential
equations for the displacement in radial and azimuthal direction becomes uncoupled,
[30]. This result is achieved regardless of the constraints with respect to the extensibility
of the fibres and the compressibility of the matrix material. Interestingly, the resulting
differential equation for the azimuthal displacement is identical for each of the latter
cases if the fibres are assumed to be perfectly flexible. This means that, in the case of a
radial fibre orientation, the differential equation which is to be solved for the azimuthal
displacement is not influenced by the fibres which does not meet physical expectations.
In contrast, it is shown that by dropping the assumption of perfectly flexible fibres, i.e. by
accounting for the fibre-bending stiffness, the differential equation for the displacement in
azimuthal direction is influenced by the fibres, cf. [30]. However, the system of differential
equations for the displacement in radial and azimuthal direction remains uncoupled.

Focusing on the azimuthal shear deformation, the resulting differential equation can
be rewritten in a non-dimensional form and subsequently solved analytically by means
of a power series method or numerically by using the successive step approximation
method (SAM), cf. [123], with both schemes leading to the same results, [30]. With
the aforementioned solution procedures for the azimuthal displacement at hand, the
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deformation of the cylindrical tube is analysed in [30], subject to two different sets of
boundary conditions:

1. The displacement in azimuthal direction uϕ is fixed at the inner radius and pre-
scribed at the outer radius. Furthermore, the fibres are assumed to be clamped at
the inner radius and are free to rotate at the outer radius, such that mrz = 0 at
the outer radius holds.

2. The displacement in azimuthal direction uϕ is fixed at the inner radius and pre-
scribed at the outer radius. However, the fibres are assumed to be free to rotate
at the inner and outer radius, such that mrz = 0 at both the inner and the outer
radius holds.

In the following, we will focus on the second set of boundary conditions and compare
results obtained based on the finite element solution scheme proposed in Section 2.1
with analytical results presented in [30]. Note that the applied finite element formu-
lation accounts for finite deformations in contrast to the linearised version which is
employed in [30]. However, due to the consistency of the underlying energy functions,
see Section 2.2.1.3 and [31], the comparison is generally meaningful.

2.2.2.1 Specification of the boundary value problem

The comparison to the analytical solutions provided in [30] will be made on the basis
of the finite element model of the cylindrical tube sketched in Figure 2.2. Note that
the investigations presented in [30] are based on dimensionless quantities. The respec-
tive formulas used in [30] to convert the dimensional into dimensionless quantities are
outlined in Appendix A.6, and may be taken into account to obtain a first idea of the
quantitative agreement of the simulation results with the analytical solution.

To start with, let the inner radius of the tube take a value B0 = 40 and let the outer
radius be B1 = 100 such that the same ratio β = B1/B0 = 2.5 as in [30] is used in the
upcoming analysis. In accordance with the second set of boundary conditions, as intro-
duced above, the fibre slope at the boundary is not prescribed and mrz = 0 is assumed
to hold at the inner and outer radius. Moreover, the displacement in azimuthal direc-
tion at the inner boundary will be fixed, and the load shall be prescribed at the outer
radius in terms of follower forces ttang, see e.g. [118] and [145], which act in tangential
direction. Thus, the finite element-based simulation results presented in this contri-
bution are based on force-controlled simulations in contrast to the findings presented
in [30] where the displacement at the outer boundary is prescribed. Since the load is
prescribed, the (azimuthal-) displacement at the boundary depends on the values of the
fibre(-bending) stiffness parameter. Nevertheless, this effect turns out to be small which
becomes evident when considering the shear stress coefficient of the analytical solution
provided in Figure 2.6(a), which clearly indicates that the difference in the shear stress
distribution at the outer boundary obtained for different values of the fibre(-bending)
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Figure 2.2: Discretised cross section of the cylindrical tube under investigation with the inner radius
subject to homogeneous Dirichlet boundary conditions, while Neumann boundary conditions are applied
at the outer radius. Moreover, mrz is assumed to be zero at the inner and outer radius, which represents
a simple support without restrictions on the fibre slope imposed at the boundaries.

stiffness and for prescribed displacements is negligible. Note that we will focus on the
load state ‖ttang‖/‖tmax

tang‖ = 0.1 as this work proceeds, with ‖tmax
tang‖ = 6000 denoting the

maximal applied traction load to be analysed. However, the qualitative results for the
stress and couple stress tensor turn out to be quasi-independent of the load level which is
shown in Appendix A.7, where the simulation results for the loads ‖ttang‖/‖tmax

tang‖ = 0.5
and ‖ttang‖/‖tmax

tang‖ = 1.0 are additionally provided. Since the general coupled system of
partial differential equations is solved using the finite element solution scheme presented
in Section 2.1.3, boundary conditions for the radial direction also need to be prescribed.
To this end, homogeneous Dirichlet boundary conditions for the radial direction are as-
sumed at the inner radius, while homogeneous Neumann boundary conditions in radial
direction are applied at the outer radius.

The material parameters which characterise the isotropic part of the elastic energy
function are assumed to take the values λ = 1.037× 105 and µ = 4.4444× 104. More-
over, the fibre(-bending) stiffness c will be varied within the interval c ∈ [0.0, 2.5× 108]
in the upcoming analysis, where use was made of (2.163) and (2.165) to approximate
the material parameter c based on its dimensionless counterpart df∗ which is used in
[30], see also Table 2.1 and Table 2.2.

From a numerical point of view, bi-quadratic serendipity-type shape functions are
used for the approximation of the ϕ-field, while both the skew-symmetric stress field
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Figure 2.3: General deformation pattern of a tube-like structure subject to the assumption of a plane
strain deformation state for different values of the fibre(-bending) stiffness.

σskw as well as the relaxed deformation gradient field Θ are approximated by means
of bi-linear Lagrangian shape functions. Being more specific, the tube is discretised by
means of 14 elements in radial- and 28 elements in azimuthal direction, as depicted in
Figure 2.2. Occurring integrals are evaluated in a standard manner using a Gaussian
quadrature scheme which employs nine sampling points.

2.2.2.2 Deformation pattern and fibre slope

In a first step, we will study the general deformation pattern which is predicted by the
analytical solution of the linearised theory presented in [30] and the one simulated with
the finite element scheme proposed in Section 2.1 for a general finite strain setting. We
are especially interested in the qualitative response in dependence of the fibre(-bending)
stiffness which is given in terms of the dimensionless material parameter df∗ for the
analytical, respectively the material parameter c for the finite element-based solution
scheme.

In order to assess the qualitative agreement of the deformation patterns, the spatial
configurations of the tube cross sections are provided in Figure 2.3, with fibres of different
bending stiffness parameters being indicated by dashed and dotted lines. Note that
the deformed fibres generally exhibit a curved shape along the radial direction with a
decrease in the curvature value encountered for increasing values of the fibre(-bending)
stiffness parameter. In fact, the fibres remain nearly straight for high values of the
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2.2 Comparison with analytical solutions and study of basic model properties

Table 2.1: Analytical solution for the non-dimensional fibre slope ∂u∗ϕ/∂r
∗ at the inner boundary

(r∗ = 1) in dependence of the non-dimensional fibre(-bending) stiffness parameter df∗, taken from [30].

df∗ 0.000 0.005 0.030 0.100 π

∂u∗ϕ
∂r∗

∣∣∣∣
r∗=1

0.952 0.887 0.825 0.771 0.674

fibre(-bending) stiffness such that they are rather rotated and stretched than bent for
the highest values of the fibre(-bending) stiffness parameters which have been taken
into account in the analysis. Overall, a similar deformation pattern is observed for the
analytical solution which is based on the small strain theory, Figure 2.3(a), and the finite
element-based solution of the finite strain theory, Figure 2.3(b).

Since the plate is assumed to be simply supported at the inner boundary, i.e. no
restrictions on the fibre slope are imposed, a different fibre slope is noted for each value
of the fibre(-bending) stiffness parameter. To quantify the latter, the dimensionless fi-
bre slope at the inner boundary which is calculated based on the analytical solution
scheme, cf. [30], is provided in dependence of the dimensionless fibre(-bending) stiff-
ness parameter, see Table 2.1. On the other hand, the fibre slope which is predicted
by the finite element-based solution scheme is provided in Table 2.2 for the values of
the fibre(-bending) stiffness parameter c which were approximated based on its non-
dimensional counterpart df∗, cf. Section 2.2.2.1. To allow for a convenient comparison
with the dimensionless fibre slope predicted by the analytical solution scheme, the fibre
slope scaled by conversion factor f4 ≈ 11.29, cf. Appendix A.6, is additionally provided.
Since the fibre orientation field is not a primary field variable, it is only available at the
sampling points if no additional projection scheme is used. For this reason, the fibre
slope at the inner boundary is approximated as the average fibre slope predicted at the
three sampling points nearest to the boundary of the first element near the inner bound-

Table 2.2: Finite element-based solution for the fibre slope at the inner boundary (r ≈ B0) in depen-
dence of the material parameter c, given for the load state ‖ttang‖/‖tmax

tang‖ = 0.1. The conversion factor
f4 = 11.29 is calculated as shown in Appendix A.6 to allow for a comparison with the dimensionless
fibre slope presented in Table 2.1.

c 0.0000 0.4× 106 2.4× 106 8.0× 106 2.5× 108

āt · eϕ
āt · er

∣∣∣∣
r≈B0

0.0838 0.0785 0.0730 0.0680 0.0597

f4
āt · eϕ
āt · er

∣∣∣∣
r≈B0

0.9459 0.8865 0.8238 0.7682 0.6741
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Figure 2.4: Detailed analysis of the deformation pattern predicted by the finite element-based solution
procedure.

ary. Comparing the results presented in Table 2.1 and Table 2.2, both the analytical
and the finite element based-solution scheme predict that the fibre slope at the inner
boundary decreases with increasing values of the fibre(-bending) stiffness parameter.
Furthermore, the predicted values of the fibre slope are found to be in good accordance
with the analytical results.

Concluding the analysis of the deformation pattern we will focus on the influence
of the boundary conditions which are applied at the outer boundary. For the ana-
lytical solution scheme it is shown in [30] that the system of differential equations to
be solved for the radial and azimuthal displacement becomes uncoupled, such that no
boundary conditions in radial direction need to be specified to calculate the azimuthal
displacement response. However, the finite element-based solution scheme requires the
specification of boundary conditions for the radial direction. These are chosen to be of
homogeneous Neumann-type so that the outer tube radius is free to extend or contract.
In Figure 2.4(a), the relative change of the outer tube radius ∆B1/B1 is shown in de-
pendence of the relative load state for various values of the material parameter c. For
the load state ‖ttang‖/‖tmax

tang‖ = 0.1 we observe a contraction of the outer tube radius
of between − 0.0028% for a non-reinforced tube and − 0.0040% for a fibre-reinforced
tube with c = 2.5 × 108. The contraction increases with increasing load such that a
relative reduction of the outer tube radius of − 0.28% for a non-reinforced-, respectively
− 0.65% for a fibre-reinforced tube with c = 2.5×108 is observable for an applied load of
‖ttang‖/‖tmax

tang‖ = 1.0. Hence, the outer tube radius is found to remain nearly constant
which is important for the findings presented in Appendix 2.2.1.3.
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(a) Analytical solution based on the small strain
theory, reproduced from [30] and scaled by
f1 = 5.34× 10−4 as derived in Appendix A.6.
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Figure 2.5: Symmetric contribution to the dimensionless linearised stress tensor Σ∗ and the Cauchy
stress tensor σ of the finite strain theory along the radial direction of the tube.

Considering the observation that the outer tube radius remains nearly constant for
the deformation states considered, i.e. B1 ≈ 100, the azimuthal displacement uϕ of
material points which are positioned at the outer radius may be approximated according
to uϕ ≈ B1 arctan (x2/x1)|X=B1e1

. The azimuthal displacement for various values of the
material parameter c is depicted in Figure 2.4(b) as a function of the relative load state.
We find a slight decrease in the azimuthal displacement for increasing values of the
material parameter c since the boundary conditions in azimuthal direction have been
applied in terms of tractions rather than displacements.

2.2.2.3 Stress distribution

Next, the resulting stress fields in terms of the dimensionless linearised stress tensor Σ∗

and the Cauchy stress tensor σ are investigated, with an emphasis on the assessment
of the influence of the fibre(-bending) stiffness and the consistency of the analytical and
finite element-based solution. Since the azimuthal displacement for the axisymmetric
tube-like structure is mainly determined by the shear stress, and since the fibre-bending
theory generally implies an unsymmetry of the linearised stresses as well as of the finite
deformation Cauchy-type stress tensor, we will focus on the analyses of the in-plane
shear-stress coefficients as this work proceeds.

To this end, the symmetric shear stress contributions which result immediately from
the evaluation of the constitutive models (2.75), (2.76) and (2.78) are provided in Fig-
ure 2.5. Firstly, regarding the inner boundary of the tube at r∗ = 1, respectively r = 40,
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Figure 2.6: In-plane shear stress coefficient of the dimensionless linearised stress tensor Σ∗ and the
Cauchy stress tensor σ of the finite strain theory along the radius of the tube.

we find that, for the analytical as well as the finite element-based solution, the rϕ-
coefficients of the respective stress tensors take their maximal values in the case of a
non-reinforced material, with a decreasing shear stress coefficient being observed for
increasing values of the fibre(-bending) stiffness parameter. In contrast, the latter ob-
servation is reversed at the outer boundary, where the maximal symmetric shear stress
contribution is observed for the fibre-reinforced composite with the highest bending stiff-
ness parameter. Moreover, the intersection point of the curves is found at approximately
15% of the tube’s wall thickness for both the analytical and the numerical solution pro-
cedure, resulting in remarkably similar simulation results.

The modelling of the fibre-bending stiffness which is based on the introduction of
higher-order energy contributions as additional arguments of the energy function, re-
quires an extended continuum approach, [130], which implies the action of a couple
stress tensor such that the linearised stress tensor and the Cauchy stress tensor become
unsymmetric. Thus, in Figure 2.6 the distribution of both the rϕ- as well as the ϕr-
coefficients of the respective stress tensor are provided along the radial direction. At
first glance, a significant difference in the rϕ- and the ϕr-coefficient is observed for com-
posites with an assumed non-negligible fibre(-bending) stiffness. This shows that the
higher-gradient mode is activated in the azimuthal shear deformation of the tube, such
that a pronounced skew-symmetric stress contribution is present due to the action of
the couple stress tensor, which implicitly defines the latter based on (2.48b).
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2.2 Comparison with analytical solutions and study of basic model properties

In view of the stress distribution, we find that the rϕ-coefficients of the stress tensors
take higher values, compared with the ϕr-coefficients, at the inner boundary. For dif-
ferent values of the fibre(-bending) stiffness parameter, the rϕ-coefficients of the stress
tensors are further observed to be nearly identical at the inner boundary for the an-
alytical solution of the displacement-controlled shear deformation, Figure 2.6(a), and
identical for the force-controlled finite element-based solution, Figure 2.6(b), due to the
overall balance of linear momentum. Regarding the stress distribution along the radial
direction, it can be observed that the fibre-reinforced composites with fibres possessing
bending stiffness, in general, take higher shear stress values compared to a composite
with negligible bending stiffness. This effect reduces in the vicinity of the outer bound-
ary where the stress state for different values of the fibre(-bending) stiffness is similar.
The slight difference in the rϕ-coefficient of the linearised stress tensors at the outer
boundary results from the fact that the displacement at the outer boundary, and not
the traction, is prescribed. Note that both solution approaches, i.e. the displacement-
controlled analytical framework and the force-controlled finite element formulation, can
be well compared, since the coefficients Σ∗rϕ at the outer boundary turn out to be quasi-
independent of the fibre-stiffness parameter df∗, see Figure 2.6(a).

Studying the distribution of the ϕr-stress coefficients, we find an interesting charac-
teristic at the inner boundary layer: whereas the ϕr-stress coefficients monotonically
decrease along the radius for the assumption of perfectly flexible fibres, i.e. c = 0 and
df∗ = 0, a parabolic shape is observed for fibres possessing fibre(-bending) stiffness which
becomes more pronounced for increasing values of the fibre stiffness parameter. More-
over, the maximal value of the parabola decreases with an increasing fibre(-bending)
stiffness. The parabolic structure close to the boundary is not perfectly represented for
the finite element-based solutions due to the limited resolution arising from the discrete
character of the method and the number of elements near the boundary, cf. Figure 2.2.
It can also be observed that, in contrast to the inner boundary, the ϕr-stress coeffi-
cient takes higher values than the rϕ-coefficient at the outer boundary for both solution
schemes. The resulting crossing points of the lines resembling the ϕr- and rϕ-stress
coefficient for a specific value of c , respectively df∗, gradually move into the direction
of the outer boundary for increasing values of the fibre(-bending) stiffness.

Overall, the analytical solution by means of the small strain theory and the finite
element-based solution which accounts for finite deformations are observed to be in
accordance.

2.2.2.4 Couple stress distribution

Finally, we will focus on the couple stress tensor in terms of the rz-coefficient defined by
(2.79) for the small strain formulation, respectively (2.30) for the finite strain theory and
depicted in Figure 2.7. First, we notice that υ∗rz takes zero values at the boundaries due
to the assumed simple support at the inner radius which goes along with the assumption
that the fibre slope is not restrained at the boundary. Same holds for the outer radius
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Figure 2.7: Distribution of the rz-coefficient of the dimensionless couple stress tensor of the linearised
theory υ∗ and the couple stress tensor of the finite strain theory m along the radial direction of the
tube.

where the fibre slope is not restrained either. With increasing distance to the inner
boundary, υ∗rz gradually takes smaller values until the minimal value is reached. Note
that the absolute value of the minimum increases with increasing values of the fibre(-
bending) stiffness and that the position of the minimum is shifted towards the outer
radius but generally remains near the inner boundary layer. Moreover, it is observed
that for the case of perfectly flexible fibres, i.e. df∗ = 0, the couple stress tensor is equal
to zero, since the proposed model reduces in the limiting case to the classic structural
tensor approach.

The same tendency observed for the analytical solution of the small strain approach,
Figure 2.7(a), is also captured by the numerical solution of the finite strain problem,
Figure 2.7(b). Regarding Figure 2.7(b) we further find that the homogeneous boundary
condition is not reflected accurately. This inaccuracy can be explained by the fact that
the couple stress tensor is only available at the sampling points and is mapped to the
nodes using an L2-projection, cf. [56, 137]. With the nodal data at hand, the dependent
field variables can then be approximated in each point in the same way as was done
with the primary field variables. Note that the inaccuracy in the representation at the
boundaries can further be reduced by using a finer triangulation (at the boundaries)
than the one shown in Figure 2.2. Overall, the distributions of the couple stress tensor
for the analytical and the numerical solution by means of the finite element method
match very well.
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Figure 2.8: Dimensions and boundary conditions for the simulation of homogeneous and inhomogeneous
uni-axial deformation states.

2.2.3 Representative simulation results

In Section 2.2.2 it was shown that the simulation results of the proposed finite element
scheme compare well with analytical solutions which validates the proposed formulation
to a certain extent. Based on this study, the properties of the gradient-extended mod-
elling approach with regard to the chosen form of the gradient energy contribution will
further be investigated in this section. In particular, homogeneous and inhomogeneous
uni-axial deformation states are analysed, and the influence of the fibre stretch gradient
on the load displacement curves is discussed in Section 2.2.3.1. By extending the anal-
ysis to boundary value problems in a three-dimensional setting, the bending dominated
deformation of a plate with a hole is studied in Section 2.2.3.2 with the emphasis being
on the anisotropic material properties that are induced by the higher-gradient energy
contribution.

2.2.3.1 Homogeneous and inhomogeneous deformation states

In this section the influence of the stretch contribution of the higher-gradient part of
the energy function, cf. (2.67) and (2.71), on the constitutive response for homogeneous
and inhomogeneous uni-axial deformation states is investigated in detail. To this end
we will focus on the block-like structure with edge length 50 depicted in Figure 2.8. As
indicated by the supports, homogeneous Dirichlet boundary conditions are enforced in
both e1- and e2-direction on the left boundary and in e2-direction on the upper and
lower boundary. On the right boundary, the displacement in e2-direction is enforced
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Table 2.3: Material parameters at different sections of the block depicted in Figure 2.8.

λ• µ•

Position 1 5.185× 104 2.222× 104

Position 2 1.037× 105 4.444× 104

Position 3 2.074× 105 8.888× 104

to be zero while the displacement in e1-direction, denoted by upres
1 , will be linearly

increased up to a maximum of upres
1 = 10 which is equal to an average strain of 20%.

As the analysis proceeds, we are further interested in the resulting reaction force (in
horizontal direction) which is required for the elongation of the block and which will be
denoted by f reac. In accordance with Section 2.1.3, τ = 0 will furthermore be assumed
to hold on ∂Bt.

The block is discretised with one two-dimensional mixed-type element. Specifically
speaking, eight-node serendipity-type elements are used for the approximation of the
placement field, while both the skew-symmetric stress field as well as the relaxed de-
formation gradient field are approximated by using bi-linear Lagrangian-type elements.
The integration is performed by means of a Gaussian quadrature scheme which employs
nine sampling points.

For the boundary value problem at hand both homogeneous and inhomogeneous de-
formation states can be obtained for an initial uniform field of fibre orientation a0 = e1

by choosing the material parameters λ and µ either uniform or non-uniform in the do-
main. For a homogeneous deformation to take place we choose the material parameters
at the sampling points, which are indicated in Figure 2.8 by the black-coloured crosses,
according to λ1 = λ2 = λ3 = 1.037× 105 and µ1 = µ2 = µ3 = 4.444× 105. In view of the
reaction force f reac, which is depicted in Figure 2.9(a) in dependence of the prescribed
displacement upres

1 for different values of the fibre(-bending) stiffness parameter c, we
find that f reac takes the same value independent of c which essentially means that the
higher-gradient part of the energy function is not activated.

Choosing spatially non-uniform material parameters according to Table 2.3 results in
an inhomogeneous deformation of the block, since the initial material stiffness increases
from left to right. For the latter simulation the reaction force f reac in dependence of the
prescribed displacement upres

1 for various values of the material parameter c is provided in
Figure 2.9(b). It can be observed that an influence of the additionally introduced part of
the energy function Wκ0 becomes noticeable for c ≈ 106 with a stiffer material response
being observed for increasing values of the material parameter c. Note that the fibres
remain straight, since the displacement in vertical direction is enforced to be zero within
the entire domain, so that no fibre bending is activated and only contributions which
result from referential gradients of the fibre stretch take influence on the constitutive
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Figure 2.9: Reaction force f reac in dependence of the prescribed displacement upres1 and the material
parameter c for calculations based on (a) uniform material parameters λ1 = λ2 = λ3 = 1.037× 105 and
µ1 = µ2 = µ3 = 4.444× 105 and (b) non-uniform material parameters λ and µ according to Table 2.3.

response via I6. It is further noted that this example usually requires a discretisation
with more than one element to approximate the field quantities accurately. However,
a discretisation based on one element is sufficient to demonstrate the influence of the
modelling approach, respectively of the gradient of the fibre stretch, on homogeneous
and inhomogeneous uni-axial dominated deformation states.

Thus, the simulation results exemplify that, in contrast to the classic structural tensor
approach which energetically accounts for the fibre stretch via the invariant I4, the ex-
tended modelling approach allows to account for changes in the fibre stretch, resembling
higher-order energy contributions via the invariant I6. Moreover, taking into account
the process of parameter identification, the knowledge that the additionally introduced
higher-order part of the energy function is not activated in the case of initially straight
fibres in combination with homogeneous stretch deformations is helpful. This would for
example allow to use tension tests, where the deformation field is assumed to be homo-
geneous, to identify material parameters which, e.g., correlate to the tension stiffness
modulus independent of the fibre(-bending) stiffness.

Finally, it is interesting to note that, although the higher-order energy contribution is
activated for the inhomogeneous deformation state, the couple stress tensor turns out to
be zero for the boundary value problem at hand and, accordingly, the Cauchy-type stress
tensor remains symmetric. To further emphasise this, we focus next on the resulting
state of deformation in more detail, in particular on the deformation of the fibres. For
each boundary node of the block depicted in Figure 2.8, the displacement in e2-direction
is enforced to be zero and the displacement in e1-direction at the left and right boundary
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2 Fibre-reinforced composites with fibre-bending stiffness

Table 2.4: Material parameters for the simulation of the plate with a hole subjected to bending load.

λ µ c

1.037× 105 4.4444× 104 5.0× 105

is prescribed. Furthermore, a uni-axial strain state is enforced such that the deformation
gradient takes the form

F = [λA(X1, t)− 1] e1 ⊗ e1 + I , (2.84)

and the left Cauchy-Green tensor is given by

b =
[
[λA(X1, t)]

2 − 1
]
e1 ⊗ e1 + I . (2.85)

Since the fibres are initially aligned with the e1-coordinate axis, i.e. a0 = e1, using (2.6)
and (2.84) the spatial fibre orientation vector can further be specified as

at = λA(X1, t) e1 . (2.86)

Making use of (2.86) and applying the definitions (2.7) and (2.31a), κ can be specified
according to

κ =
∂λA(X1, t)

∂X1

e1 . (2.87)

With the kinematic considerations (2.85)–(2.87) at hand, the evaluation of (2.77c) finally
yields[

mdev
]t

=
8

3
c J−1

F ε : [at ⊗ b · κ⊗ at] = 0 , (2.88)

since [at ⊗ b · κ] turns out to be a symmetric tensor of rank one proportional to e1⊗e1.
Taking the balance equation of angular momentum, (2.48b), into account which serves
as the definition for the skew-symmetric part of the Cauchy-type stress tensor, we find
σskw = 0. Regarding the specific form of the symmetric part of the Cauchy-type stress
tensor, the contribution highlighted in (2.76) turns out to be different from zero such that
higher-order energy contributions in terms of the gradient of the fibre stretch influence
the stress state.

2.2.3.2 Bending of a plate with a hole

A detailed analysis of bending dominated deformations of a plate with a hole in a three-
dimensional setting was presented in [10]. Here, we will briefly recapitulate some of the
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Figure 2.10: Dimensions and boundary conditions for the three-dimensional simulation of a plate with
a hole subject to bending-type load.

findings with regard to the resulting deformation pattern and shall extend the analysis
for the case that the fibres are not aligned with the e1-direction which yields some
interesting insights with regard to the induced anisotropies.

To this end, the focus lies on the plate with a hole depicted in Figure 2.10 and the ma-
terial parameters, summarised in Table 2.4, are chosen in accordance with Section 2.2.3.1.
Moreover, we shall focus on three different combinations of the fibre(-bending) stiffness
and the fibre orientation, namely:

1. the plate material is isotropic, no fibres are present

2. the plate is reinforced with fibres acting along the e1-direction with c = 5× 105

3. the plate is reinforced with fibres acting along the 1√
3

[e1 + e2 + e3] direction with

c = 5× 105

The displacement of the nodes which are located at the left boundary is fixed in
all three spatial dimensions, while tractions in terms of dead-loads acting in positive
e2-direction are applied at the nodes of the right surface, resulting in a total force of
5.11× 106, see Figure 2.10. By analogy with Section 2.2.3.1, it is further assumed that
τ = 0 on ∂Bt holds.

From a numerical point of view, 20-node serendipity-type elements are used for the
discretisation of the spatial placement field, while both the relaxed deformation gradi-
ent field as well as the skew-symmetric stress field are approximated using eight-node
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2 Fibre-reinforced composites with fibre-bending stiffness

Figure 2.11: Deformation pattern of a fibre-reinforced plate with a0 = e1, c = 5 × 105 and of a
non-reinforced plate for the final load state. The spatial configuration of the fibre-reinforced plate is
illustrated by the black-coloured mesh, whereas the spatial configuration of the non-reinforced plate
is represented by the grey-coloured surface. In addition, the reference configuration is shown as a
transparent surface.

Lagrangian-type elements. The occurring integrals are evaluated numerically by means
of a Gaussian quadrature scheme with 27 quadrature points.

For the three different combinations of the fibre orientation and the fibre(-bending)
stiffness parameter as introduced above, the resulting deformation behaviour will be
compared. Focusing on the influence of the fibre(-bending) stiffness on the deformation
for fibres being initially aligned with the e1-axis, the deformed configuration of the rein-
forced plate is illustrated in Figure 2.11 by means of its mesh, along with the deformed
configuration of the non-reinforced plate which is shown by the grey-coloured surface.
It is interesting to notice that, although the principle deformation patterns seem similar
at a first glance, cf. Figure 2.12(a) and Figure 2.12(d), Figure 2.11 reveals that notice-
able differences in the deformation occur in the region around the hole. Especially the
difference between the nearly constant curvature of the upper surface in the case of the
reinforced material and the change of curvature in the case of a non-reinforced material
is revealed. This leads to the conclusion that configurations with high values of the fibre
curvature are suppressed, see also the detailed discussion in [10].

Focusing on the anisotropic properties induced by the higher-gradient energy contri-
bution, the resulting spatial configurations for the final load state and for the different
combinations of the material parameter c with the fibre orientation are provided in Fig-
ure 2.12, together with the reference configuration which is visualised in terms of the
transparent surface. When comparing the deformation behaviour it becomes evident
that both the non-reinforced as well as the reinforced plate with a0 = e1 show the ex-
pected symmetric deformation pattern. In contrast, one finds that the deformation pat-
tern of the reinforced plate with an initial fibre orientation along the [e1 + e2 + e3] /

√
3

direction does not exhibit the formerly observed symmetry pattern. This shows that
accounting for the fibre(-bending) stiffness induces an anisotropic material behaviour in
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addition to the anisotropic properties which are already accounted for within the classic
structural tensor approach.

2.2.4 Summary

This section focused on the comparison of the simulation results which can be achieved
by means of the finite element-based solution procedure presented in Section 2.1 with
the analytical solution presented in [30]. To this end, the azimuthal shear deformation
of a tube-like structure, analysed in [30] under the assumption of linearised kinematics,
was simulated with the finite element-based solution procedure presented in Section 2.1,
within a finite deformation setting. To allow for the comparability of the results, the
constitutive relations chosen for the symmetric part of the Cauchy stress tensor and
the couple stress tensor were shown to be consistent with their corresponding linearised
counterparts, provided specific ratios of the material parameters were accounted for.

In order to assess the conformity of the results, the general deformation patterns
for varying values of the fibre(-bending) stiffness were then analysed for the analytical
and the numerical solution procedure. In both cases, a stiffer constitutive response was
observed for increasing values of the fibre(-bending) stiffness which was accompanied
by a decreasing maximal fibre curvature. In particular, it was shown that the fibres
remained nearly straight for high values of the fibre(-bending) stiffness parameter.

With the general deformation patterns being in good accordance, the comparison
focused on the dependent field variables in a next step. First, regarding the symmet-
ric contributions to the shear coefficients of stress tensors, which result directly from
the evaluation of the constitutive models, a gradually decreasing shear stress contri-
bution from the inner to the outer radius with a characteristic crossing point of the
curves corresponding to different values of the fibre(-bending) stiffness was noticed. This
characteristic was found to be comparable for both the analytical as well as the finite
element-based solution. Furthermore, taking into account the skew-symmetric stress
contributions, which are implicitly defined based on the balance equation of angular
momentum, it was subsequently observed that the distribution of the shear stress along
the radius once more exhibited a characteristic shape with a crossing point of the curves
representing the rϕ- and the ϕr-stress coefficients. Specifically speaking, it was noted
that the radial distribution of the ϕr-stress coefficient showed a parabolic shape near the
inner boundary layer with the peak value and its distance from the inner radius highly
depending on the assumed fibre(-bending) stiffness.

The comparison of the non-zero coefficient of the couple stress tensor once more
revealed similar results for both solution procedures, with an at first monotonically
decreasing rϕ-couple stress coefficient along the radius, which showed a minimum at
the end of the inner boundary layer and then gradually increased again such that the
homogeneous Neumann boundary condition was met at the outer radius. The peak
value and the shift of the peak value’s position in the direction of the outer radius was
observed to depend on the fibre(-bending) stiffness.
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(a) c = 0 (b) c = 0 (c) c = 0

(d) c = 5× 105,
a0 = e1

(e) c = 5× 105,
a0 = e1

(f) c = 5× 105,
a0 = e1

(g) c = 5× 105,
a0 = 1√

3
[e1 + e2 + e3]

(h) c = 5× 105,
a0 = 1√

3
[e1 + e2 + e3]

(i) c = 5× 105,
a0 = 1√

3
[e1 + e2 + e3]

Figure 2.12: Deformation pattern of the three-dimensional plate subject to bending load for different
parameters of the fibre(-bending) stiffness c and different initial fields of fibre orientation. The spatial
configurations of the plate are given by the respective meshes, whereas the reference configuration is
represented by the transparent surface.
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Overall, the analytical solution which could be derived for the linearised theory and
the finite element simulation results which were based on the corresponding finite strain
theory were found to be in good accordance for the azimuthal shear deformation of the
tube-like structure, which verifies the applicability and accuracy of the established finite
element formulation.

In a next step, homogeneous and inhomogeneous uni-axial deformation states of a
block-like structure were analysed for different values of the fibre(-bending) stiffness pa-
rameter, and the resulting forces related to the elongations of the blocks were compared.
It was observed that the higher-order part of the energy function was not activated in
the case of the homogeneous deformation field in combination with the initially straight
fibre orientation considered. For the inhomogeneous deformation field, however, the in-
fluence of the additionally introduced higher-order energy part was pronounced. Thus,
the chosen form of the strain energy function, although being well-suited for the compar-
ison with the analytical solution, is also activated by deformation modes which do not
include fibre bending. In particular it was shown that the gradient of the fibre stretch
contributes to the chosen form of the energy function. This important observation mo-
tivates the development of a more elaborated higher-gradient energy contribution solely
relying on the fibre curvature and to be discussed in detail in Section 2.3.

Finally, the investigation was extended to a more complex three-dimensional bound-
ary value problem – a plate with a hole subject to bending load – for three different
combinations of the fibre orientation and the fibre(-bending) stiffness parameter. Anal-
ogously to the previous example a stiffer response was observed for fibres exhibiting
fibre(-bending) stiffness, resulting especially in a different deformation behaviour in the
area around the hole. Furthermore, a non-symmetric deformation behaviour was ob-
served for a specific fibre orientation – here the space diagonal with respect to the chosen
Cartesian frame – so that the presented modelling approach introduces an anisotropic
material behaviour in addition to the anisotropic properties which are already accounted
for when employing the classic structural tensor approach.
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2.3 Modelling of curvature effects in fibre-reinforced
nanocomposites

This section focuses on the elaboration of a specific form of the higher-gradient contri-
bution to the stored energy function which is solely based on the fibre curvature and
motivated by the experimental findings on one-dimensional nanomaterials presented in
Section 1.1.1. In particular it is shown that the higher-gradient contribution proposed
in Section 2.2, though well-suited for the comparison with analytical solutions, is less
straightforward to interpret, and a scalar valued measure of the fibre curvature is ex-
tracted from the list of invariants that allows for a direct physical interpretation. A
particular form of the stored energy function which relies on a quadratic measure in the
fibre curvature is then proposed and found to result into well-interpretable contribu-
tions to the stress tensor and to the couple stress tensor. Motivated by the experimental
findings, bending dominated boundary value problems are eventually analysed with the
focus being on the resulting size effect and on the influence of the fibre curvature energy
contribution on the deformation pattern.

2.3.1 Specification of the constitutive model

In accordance with Section 2.2 an additive split of the energy function into three con-
tributions according to

W (I1, . . . , I11) = [1− ηvol]W
iso (I1, . . . , I3)

+ηvol W
λA (I1, . . . , I5)

+ηvol W
κtru (I1, . . . , I11)

(2.89)

will be assumed. The first contribution W iso is again related to the deformation of
the matrix material and accordingly weighted by the matrix volume fraction [1 − ηvol].
The matrix contribution is assumed to be of isotropic type and to solely depend on the
invariants which are related to the deformation, i.e. I1, 2, 3. A suitable form of the energy
function which employs the two material parameters λ and µ corresponding to the Lamé
parameters of the small strain theory is given by the St.Venant-Kirchhoff-type model

W iso = W svk =
1

2
λ tr2 (E) + µ tr

(
E2
)

, (2.90)

with the Green-Lagrangian strain tensor E = [C − I] /2. Considering the influence of
the fibres, the two contributions W λA and Wκtru will be distinguished which are both
weighted by the fibre volume fraction ηvol. The energy contribution W λA is related to
the fibre stretch and is based on the classic structural tensor approach which is discussed
in detail in, for example, [16, 116, 117, 131]. Thus, invariants I4 and I5 which include
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information on the fibre direction field are additionally accounted for with I4 taking the
physical interpretation of the squared fibre stretch, i.e.

I4 = a0 ·C · a0 = [F · a0] · [F · a0] = λA āt · āt λA = λ2
A . (2.91)

To be more specific, we will assume an energy contribution W λA of the form

W λA (I4) =
1

2
Efib ln2

(√
I4

)
(2.92)

in this contribution which employs material parameter Efib that can be associated with
the fibres’ Young’s modulus, as becomes apparent when performing the linearisation
of the corresponding contribution to the stress tensor given in Section 2.3.1.2. It is
observed that the energy contribution (2.92) tends towards infinity when the fibre stretch
approaches zero. However, we also note that an energy contribution of the form (2.92) is
not polyconvex. In addition to the fibre stretch which corresponds to the first derivative
of the fibre deformation field, the extended modelling approach allows us to take into
account energy contributions which are based on higher-order gradients of the fibre
deformation field. These include for example the fibre curvature and will be discussed
in detail in Section 2.3.1.1

Remark 2.3 (Volume and mass fractions) The contributions W iso, W λA and Wκtru to
the elastic energy function (2.89) are weighted by the corresponding volume fraction of
the bulk, respectively the volume fraction of the fibres. However, from an experimental
point of view it may turn out to be more convenient to work with the respective mass
fractions instead. The overall density of the composite can be expressed in terms of the
density of the fibres ρfib and the density of the matrix material ρmat according to, [138],

ρ = [1− ηvol] ρmat + ηvol ρfib . (2.93)

Further observing that the relation

ηvol =
ρ

ρfib

ηmas (2.94)

between the fibre volume fraction ηvol and the fibre mass fraction ηmas holds, allows us to
calculate the fibre volume fraction based on the densities of the two constituents and the
fibre mass fraction, cf. [138], specifically

ηvol =
ηmas

ρfib

ρmat

+

[
1− ρfib

ρmat

]
ηmas

. (2.95)

For carbon nanotube-reinforced composites, the fibres are of tube-like structure which
complicates the specification of the density, as it is a function of the tube inner diameter
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di and outer diameter do. To approximate the density of a multi-walled carbon nanotube
it is assumed in [138] that each graphitic layer of a multi-walled carbon nanotube has
the density of dense graphite ρgra = 2.25 g cm−3 such that a first approximation of the
density of a multi-walled carbon nanotube is given by

ρMWNT ≈ ρgra
d2

o − d2
i

d2
o

. (2.96)

2.3.1.1 Fibre curvature-based higher-order energy contribution

A specific form of the higher-order energy contribution Wκtru which is solely based
on invariant I6 has been used in Section 2.2 to validate the proposed finite element
framework and to study basic model properties. For reasons to be discussed hereafter,
however, this section focuses on the elaboration of a more sophisticated form of the
energy function which is solely based on the fibre curvature. To this end, rewriting
invariant I6, we find that

I6 = κ0 · κ0 = κ · b · κ =

[
λA

∂āt
∂X
· a0︸ ︷︷ ︸

1○

+
∂λA

∂X
· a0 āt︸ ︷︷ ︸
2○

]
· b ·

[
λA

∂āt
∂X
· a0︸ ︷︷ ︸

1○

+
∂λA

∂X
· a0 āt︸ ︷︷ ︸
2○

]
,

(2.97)

where use was made of (2.31c) and (2.34). Noting that the fibre curvature vector κtru

can be expressed as

κtru =
∂āt
∂x
· āt =

1

λA

∂āt
∂X
· a0 , (2.98)

see e.g. [122] for the general definition of the curvature of three-dimensional curves, it
is observed from (2.97) that I6 is influenced by the fibre curvature vector scaled with
λ2

A via 1○ and by the gradient of the fibre stretch along the fibre direction via 2○. The
form of the higher-order energy contribution, (2.71), though suitable for a comparison
with analytical solutions, is less straightforward to interpret as it combines both the
fibre curvature and the gradient of the fibre stretch in a coupled form. From a modelling
point of view it seems thus reasonable to separate these two contributions, motivating
the derivation of a higher-order energy contribution which is solely based on the fibre
curvature.

In doing so, we first observe that the squared norm of the directional derivative of the
spatial fibre orientation vector into the direction of the fibres, i.e. κ ·κ, can be expressed
as a combination of the invariants I1, I2, I3, I4, I6, I7, I8, I9 by means of the Cayley-
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Hamilton theorem and is hence found to be an invariant. To be specific, Î = κ · κ can
be rewritten as

Î = κ · κ = κ0 ·C−1 · κ0 = κ0 ·
[
α I + βC + γC2

]
· κ0 = α I6 + β I7 + γ I8 (2.99)

with α = I2/I3, β = −I1/I3, γ = 1/I3. Expanding Î by making use of (2.31c) and the
orthogonality relation

āt · κtru = 0 (2.100)

we find that

Î =

[
∂λA

∂X
· a0 āt + λA

∂āt
∂X
· a0

]
·
[
∂λA

∂X
· a0 āt + λA

∂āt
∂X
· a0

]
(2.101a)

=

[
∂λA

∂X
· a0

]2

āt · āt + 2λA

[
∂λA

∂X
· a0

] [
āt ·

∂āt
∂X
· a0

]
+ λ2

A

[
∂āt
∂X
· a0

]
·
[
∂āt
∂X
· a0

]
(2.101b)

=

[
∂λA

∂X
· a0

]2

+ λ4
A κtru · κtru . (2.101c)

Accordingly, Î includes the fibre stretch and both the directional derivative of the fibre
stretch into the fibre direction as well as the fibre curvature. Considering invariant I9

which can be rewritten according to

I9 = a0 · κ0 = at · κ =
∂λA

∂X
· a0 ⊗ at · āt + λA at ·

∂āt
∂X
· a0 = λA

∂λA

∂X
· a0 (2.102)

where use was again made of (2.6), (2.31c), (2.34) and (2.100), we find that, by using
(2.91) and (2.98), the squared norm of the fibre curvature vector can be expressed in
terms of the invariants I4, I9 and Î according to

κtru · κtru =
1

λ2
A

[
∂āt
∂X
· a0

]2

=
1

I2
4

[
Î − I2

9

I4

]
(2.103)

or, alternatively, making use of (2.99) in terms of the invariants presented in (2.36) as

κtru · κtru =
1

I2
4

[
I2

I3

I6 −
I1

I3

I7 +
1

I3

I8 −
I2

9

I4

]
. (2.104)

Introducing the material parameter cκtru we thus propose the fibre curvature-based
higher-order energy contribution

59



2 Fibre-reinforced composites with fibre-bending stiffness

Wκtru (I1, I2, I3, I4, I6, I7, I8, I9) =
cκtru

I2
4

[
I2

I3

I6 −
I1

I3

I7 +
1

I3

I8 −
I2

9

I4

]
=
cκtru

I2
4

[
Î − I2

9

I4

]
= Wκtru

(
I4, I9, Î

) (2.105)

for the modelling of fibre-reinforced composites with non-negligible bending stiffness
as this work proceeds. Moreover, the derivatives of the non-standard invariant Î with
respect to C and Λ, which are required for the derivation of the respective stress and
couple stress contributions, are summarised in Appendix A.8.

2.3.1.2 Specification of the stress and couple stress tensor

Based on the additive split of the energy function into three parts, we may distinguish
between three different contributions to the symmetric part of the stress tensor σsym and
the deviatoric part of the couple stress tensor mdev which result from the evaluation of
the constitutive equations (2.29) and (2.30).

Since W iso and W λA do not feature higher-gradient contributions, the corresponding
derivatives with respect to Λ are found to vanish identically as do the respective contri-
butions to the couple stress tensor. Thus, those energy contributions only influence the
symmetric part of the stresses. The specific contribution of (2.90) to the stress tensor
is given by

σsym
iso =

[1− ηvol]

JF

[
λ tr (E) b+ µ

[
b2 − b

]]
(2.106)

and the contribution of (2.92) reads

σsym
λA

=
ηvol Efib

JF
ln
(√

I4

)
āt ⊗ āt . (2.107)

We take note of the fact that the energy contribution W λA yields, in the spirit of the
classic structural tensor approach, a rank-one stress contribution which increases in the
natural logarithm of the fibre stretch.

In contrast to W iso and W λA , the energy contribution Wκtru accounts for higher-
gradient contributions and thus manifests the extended character of the presented ap-
proach. For the sake of brevity, the details of the ensuing derivations of the specific
contributions to the stress and to the couple stress tensor are not given in this section
but presented in Appendix A.9. Evaluating (2.29) by using the derivatives of the in-
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variants I4, I9 and Î provided in Table 2.5, respectively in Appendix A.8, σsym
κtru

can be
specified according to

σsym
κtru

=
ηvol cκtru

JF

[[
6
I2

9

I4
4

− 4
Î

I3
4

]
at ⊗ at +

2

I2
4

κ⊗ κ− 2
I9

I3
4

[κ⊗ at + at ⊗ κ]

]
.

(2.108)

Noting that κ⊗ κ can be rewritten as

κ⊗ κ =

[
∂λA

∂X
· a0

]2

āt ⊗ āt +

[
∂λA

∂X
· a0

]
λ2

A [κtru ⊗ āt + āt ⊗ κtru] + λ4
A κtru ⊗ κtru ,

(2.109)

and that a representation of κ⊗ at + at ⊗ κ is given by

κ⊗ at + at ⊗ κ = 2

[
λA

∂λA

∂X
· a0

]
āt ⊗ āt + λ3

A [κtru ⊗ āt + āt ⊗ κtru] , (2.110)

see Appendix A.9, (2.108) may further be simplified. To this end, after inserting (2.109)
and (2.110) into (2.108), after reordering terms and using relations (2.91), (2.101c) and
(2.102) we finally arrive at

σsym
κtru

=
ηvol cκtru

JF
[− 4κtru · κtru āt ⊗ āt + 2κtru ⊗ κtru] . (2.111)

Regarding the contribution of Wκtru to the couple stress tensor, the evaluation of (2.30)
yields[

mdev
κtru

]t
=

8

3

ηvol cκtru

JF

1

I2
4

εt : [at ⊗ κ⊗ at] , (2.112)

where (2.31a), (2.169) and Table 2.5 were used along with the skew-symmetry of the
Levi-Civita tensor with respect to the last two indices. By using (2.31c) and (2.98),
(2.112) may further be simplified as

mdev
κtru

=
8

3

ηvol cκtru

JF
āt ⊗ [āt × κtru] . (2.113)

With regard to (2.111) we observe that, for a non-vanishing fibre curvature, the stress
contribution σsym

κtru
is a rank-two tensor with its principal axes being aligned with the fibre

direction vector āt and the normalised fibre curvature vector κ̄tru = κtru/‖κtru‖ which is
perpendicular to āt. For cκtru > 0, the corresponding eigenvalue in āt-direction turns out
to be negative, whereas the one in κ̄tru-direction is found to be positive. This indicates
a compressive load state in the direction of the fibre while tensile stresses are observed
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−āt · σ
sym
κtru

−κ̄tru · σ
sym
κtru

−āt ·m
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āt ·m
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κtru

āt

āt

κ̄tru

κ̄tru
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e2

Figure 2.13: Contributions σsym
κtru

and mdev
κtru

to the symmetric part of the stresses, respectively the
deviatoric part of the couple stresses, depicted with respect to the local coordinate system spanned by
the normalised fibre direction vector āt and the normalised fibre curvature vector κ̄tru = κtru/‖κtru‖.

in the direction of κ̄tru. However, both the tensile as well as the compressive stresses
are determined by the quadratic fibre curvature measure ‖κtru‖2 and by the inverse
determinant of the deformation gradient. When analysing (2.113), the couple stress
tensor mdev

κtru
is found to be a rank-one tensor based on the dyadic product of the fibre

direction āt and of the vector perpendicular to the plane spanned by the fibre direction
āt and by the curvature vector κ̄tru. Thus, a couple around the axis āt× κ̄tru acts on the
material surface transverse to āt which is, in addition to the material parameter, scaled
by the fibre curvature and by the determinant of the deformation gradient. Furthermore,
the couple stress vector vanishes identically on the surfaces with outward normal κ̄tru,
respectively āt × κ̄tru. Thus, an energy contribution of the form (2.105) results into
well-interpretable contributions to the stress and couple stress tensor which are further
illustrated in Figure 2.13 for an infinitesimal volume element.

Remark 2.4 (Energy contribution based on the fibre stretch gradient) The presented
framework for the modelling of fibre-reinforced composites with fibres possessing fibre-
bending stiffness is based on the additional energy contribution (2.105) which can be
associated with the fibre curvature. However, it is also possible to express the spatial and
the referential gradient of the fibre stretch in terms of invariants. To this end, making
use of (2.91) and (2.102) we observe that

I2
9

I2
4

=

[
λA

∂λA

∂X
· a0

]2

λ4
A

=

[
∂λA

∂x
· āt
]2

(2.114)
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is a quadratic measure in the spatial gradient of the fibre stretch. Similarly, a quadratic
measure in the referential gradient of the fibre stretch is given by

I2
9

I4

=

[
λA

∂λA

∂X
· a0

]2

λ2
A

=

[
∂λA

∂X
· a0

]2

. (2.115)

The relations (2.114) and (2.115) motivate contributions to the stored energy function
of the form

W ∂xλA = c∂xλA

I2
9

I2
4

, (2.116) W ∂XλA = c∂XλA

I2
9

I4

, (2.117)

with material parameters c∂xλA
and c∂XλA

. Evaluating the constitutive equations (2.29)
and (2.30) by using (2.31a), (2.91), (2.102), (2.110) and Table 2.5 yields the contribu-
tions to the symmetric part of the stresses

σsym
∂xλA

=
ηvol c∂xλA

JF

[
2λA

[
∂λA

∂x
· āt
]

[κtru ⊗ āt + āt ⊗ κtru]

]
(2.118a)

=
ηvol c∂xλA

JF

[
2

[
∂λA

∂X
· a0

]
[κtru ⊗ āt + āt ⊗ κtru]

]
(2.118b)

σsym
∂XλA

=
ηvol c∂XλA

JF

[
2λ2

A

[
∂λA

∂X
· a0

]
[κtru ⊗ āt + āt ⊗ κtru] + 2

[
∂λA

∂X
· a0

]2

āt ⊗ āt

]
(2.119)

and the ones to the deviatoric part of the couple stresses[
mdev

∂xλA

]t
= 0 , (2.120)[

mdev
∂XλA

]t
= 0 , (2.121)

see Appendix A.9 for details of the derivations. Furthermore note that, in accordance
with (2.89), the energy contributions (2.116) and (2.117) are weighted by the fibre volume
fraction ηvol.

With regard to (2.118a) it is observed that an energy contribution of the form (2.116)
results into a symmetrised rank-one stress contribution which is influenced by the fibre
stretch, the spatial gradient of the fibre stretch as well as the fibre curvature. In addition,
taking into account (2.100), it is noted that the resulting stress state, expressed in a
local coordinate system defined by the spatial fibre direction vector āt and normalised
fibre curvature vector κ̄tru, is of pure shear type. Furthermore, we find that the energy

63



2 Fibre-reinforced composites with fibre-bending stiffness

1 2
h
b

1 2
h
b

1

2
lb

1

2
lb

tnorm

e1

e2

P Q R

Figure 2.14: Bending of a fibre-reinforced beam of length lb and height hb. The fibres, indicated by
the dashed lines, are assumed to be aligned with the beam’s axis in the reference configuration. The
load is applied in terms of follower forces at the right boundary which act normal to the beam’s surface
and result into a moment.

contribution (2.117) on the one hand results into the same symmetrised rank-one stress
contribution as already observed for the energy contribution (2.116), except for a factor
of λ2

A. On the other hand, an additional rank-one stress contribution is observed which
scales in the squared referential fibre stretch gradient.

2.3.2 Representative simulation results

Although real composites have misoriented fibres of varying shape and size, the modelling
of composites with aligned fibres is usually taken into account as a starting point for
the modelling of more realistic situations, [140]. This further motivates models which
assume uniform fibre properties [140], an assumption which will also be applied in this
contribution, though the extension to spatially non-uniform material parameters and a
spatially varying fibre orientation is possible in the proposed framework without any
major adjustments.

To start with, we will focus on the bending problem of a beam with length
lb, height hb and unit width wb = 1 µm as schematically depicted in Figure 2.14.
The composite beam is assumed to consist of an isotropic nickel matrix which
is reinforced with ηvol = 10% of multi-walled carbon nanotubes that are aligned
with the beam’s axis in the reference configuration as indicated by the dashed
lines. With the Young’s modulus and the Poisson’s ratio of the matrix, re-
spectively the Young’s modulus of the fibres taking values of Emat ≈ 180 mN/µm2,
νmat ≈ 0.3 and Efib ≈ 800 mN/µm2, [7], the Lamé-type parameters used in (2.90) are
approximated according to λmat = νmat Emat/ [[1 + νmat] [1− 2 νmat]] ≈ 103.85 mN/µm2

and µmat = Emat/ [2 [1 + νmat]] ≈ 69.23 mN/µm2, such that the Young’s modulus and
the Poisson’s ratio may be reproduced for infinitesimal deformations. It is stated here
that we do not intend to precisely reproduce either the load-displacement behaviour of
nickel or of multi-walled carbon nanotubes with the simple form of the energy function
given in (2.89). Rather, the objective of the upcoming analysis is a basic understand-
ing of the properties of the fibre curvature-based energy contribution Wκtru . The aim
is also to show that the presented higher-gradient modelling approach allows us to in-
corporate the experimentally observed size-dependent bending behaviour presented in

64



2.3 Modelling of curvature effects in fibre-reinforced nanocomposites

Section 1.1.1. It is moreover pointed out that the simulation results to be presented are
calculated subject to the assumption of a plane strain deformation state.

Regarding the boundary conditions, the horizontal displacement of all nodes on the
left boundary will be fixed while the vertical displacement is only prescribed to be
zero for the central node of the left boundary. Furthermore, the load will be ap-
plied at the right boundary in terms of follower forces tnorm,0 which act normal to the
beam’s surface and are defined per unit area of the reference configuration, see also
Appendix A.10. The load is chosen to linearly increase from the bottom to the top
of the beam with ‖tnorm,0 (X1 = lb, X2 = − 0.5hb) ‖ = ‖tnorm,0 (X1 = lb, X2 = 0.5hb) ‖,
resembling the stress distribution which is predicted by the classic Euler-Bernoulli beam
theory for pure bending of an idealised beam, see Figure 2.14. From a numerical point
of view, eight-node serendipity-type elements are used for the discretisation of the dis-
placement field, while linear Lagrangian-type elements are used for both the relaxed
deformation gradient field as well as the skew-symmetric stress field.

2.3.2.1 Influence of the material parameter cκtru

To analyse the influence of the material parameter cκtru , we will focus on a beam with
length lb = 40 µm and height hb = 1 µm which is discretised by means of 60 elements in
length and 10 elements in height direction. The load is linearly increased over 13 time
steps with a maximal value of ‖tnorm,0

max ‖ = 13 mN/µm2 prescribed on the top and bottom
element of the right boundary, a load value of 0.8 ‖tnorm,0

max ‖ on the second element from
the top respectively the second element from the bottom and so forth, see Figure 2.14.

To assess the influence of the bending energy contribution Wκtru on the deformation,
we will make use of an equivalent process and approximate the overall bending modulus.
In [121] the exact solution for the pure (finite) bending of a cantilever beam is given by
a circular curve of radius rben = EI/Mben, with EI being the bending stiffness and Mben

denoting a concentrated end moment. Making use of the latter equation, an equivalent
bending modulus may be defined as

Eeq =
rben Mben

I
. (2.122)

To approximate the bending radius rben, a circle is fitted through three nodes which are
positioned at the middle of the left boundary, the middle of the right boundary and at
the centre of the beam. These nodes are highlighted in Figure 2.14 by black-coloured
dots, and the corresponding formulas for the centre and the radius of the circle are pro-
vided in Appendix A.11. Moreover, the deformed configurations of the beams which are
reinforced with fibres of varying bending stiffness are provided in Figure 2.21 alongside
the circles which are used for the approximation of the bending radius. It is observed
that the circular deformation pattern is matched well at the load levels investigated,
however, we take note of the fact that no perfect circular deformation pattern is ob-
servable for significantly higher loadings. One reason for the latter observation is given

65



2 Fibre-reinforced composites with fibre-bending stiffness

cκtru
= 0mN

cκtru
= 1mN

cκtru
= 10mN

cκtru
= 100mN

cκtru
= 1000mN

(a) Deformation of fibre-reinforced beams in de-
pendence of the fibre-bending stiffness parameter
cκtru

.

cκtru
in mN

b
en

d
in
g
m
o
d
u
lu
s
in

m
N
/
µ
m

2

0
0 200 400 600 800

1000

1000

500

1500

2000

2500

3000

3500

4000

(b) Effective bending modulus in dependence
of the fibre-bending stiffness parameter cκtru .

applied moment in mNµm

u
1
in

µ
m

0

0 0.5 1.0 1.5 2.0

−5

−10

−15

−20

−25

−30

−35

−40

−45

−50

cκtru
= 0mN

cκtru
= 1mN

cκtru
= 10mN

cκtru
= 100mN

cκtru
= 1000mN

(c) Horizontal displacement u1 as a function of
the applied moment.

applied moment in mNµm

u
2
in

µ
m

0
0 0.5 1.0 1.5 2.0

5

10

15

20

25

30

35

40

45

50
cκtru

= 0mN

cκtru
= 1mN

cκtru
= 10mN

cκtru
= 100mN

cκtru
= 1000mN

(d) Vertical displacement u2 as a function of the
applied moment.

Figure 2.15: Analysis of the deformation of fibre-reinforced beams of length lb = 40 µm and height
hb = 1 µm in dependence of the fibre-bending stiffness parameter cκtru

. In addition, the load-
displacement-diagrams for the node which is centred on the right surface (cf. Figure 2.14) are provided
as a function of the applied moment.
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by the tension-compression asymmetry of the energy contributions (2.90) and (2.92).
The concentrated end moment Mben is approximated based on the discrete nodal forces
and the distance of the respective nodes, positioned at the right boundary, to the node
positioned at the middle of the right boundary. We note that the distance is measured
in the deformed configuration of the beam. Furthermore, the area moment of inertia is
approximated by the area moment of inertia in the reference configuration according to

I ≈ wb h
3
b

12
=

1

12
µm4 , (2.123)

neglecting a change of the beam height with the deformation and thus assuming the
area moment of inertia to be constant along the beam axis.

In Figure 2.15(a), the deformed configurations of fibre-reinforced beams are provided
for various values of material parameter cκtru in terms of their meshed spatial configu-
rations. In addition, the spatial configuration of a fibre-reinforced beam with negligible
bending stiffness is provided in terms of the grey-coloured surface, serving as a reference.
It is revealed that the bending radius increases with increasing values of material pa-
rameter cκtru – in other words, the curvature of the fibres which is inversely proportional
to the bending radius is reduced. However, the circular shape of the deformed configu-
ration is well maintained, cf. Figure 2.21. The equivalent bending modulus calculated
by using (2.122) is provided in Figure 2.15(b) as a function of cκtru with a, in good
approximation, linear relation being revealed. In addition, the corresponding moment-
displacement curves for the node which is positioned at the centre of the right boundary
are provided in Figures 2.15(c) and 2.15(d).

Adjusting material parameter cκtru may thus allow us to account for fibres of different
bending stiffness which, however, may show the same properties with regard to ten-
sion and compression tests, cf. Remark 2.5. With regard to the experimental findings
discussed in Section 1.1.1 it seems furthermore reasonable to assume that cκtru should,
apart from the fibre material, also depend on the fibre geometry, e.g. in terms of the
fibre diameter, cf. Figure 1.2.

2.3.2.2 Size effects

This section addresses the size-dependent constitutive response which is induced into the
model by taking into account higher gradients of the placement function as additional
arguments of the energy function. To this end, we will concentrate on the boundary
value problem previously discussed in Section 2.3.2.1. However, material parameter
cκtru = 1000 mN will be kept constant in the upcoming analysis and the geometrical di-
mensions in terms of the beam height will be varied. To be specific, beams of length
40 µm, width 1 µm and height 1 µm, 2 µm and 4 µm are taken into account which are
discretised by 60 × 10 elements in length and height direction respectively. The dis-
placement of the beams is constrained at the left boundary and the load is applied on
the right boundary in terms of follower forces acting normal to the beam’s surface. The
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(a) Deformation of fibre-reinforced beams for
cκtru = 0 mN.

(b) Deformation of fibre-reinforced beams for
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(e) Beam of height hb = 2 µm.
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(f) Beam of height hb = 4 µm.

Figure 2.16: Analysis of the deformation and the bending modulus of composite beams which are re-
inforced with perfectly flexible fibres and fibres resisting bending, in dependence of the beam heights.
In addition, the load-displacement-diagrams for the node which is centred on the right surface (cf. Fig-
ure 2.14) are provided in terms of the horizontal displacement u1 and vertical displacement u2 as a
function of the applied moment.
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maximal load to be prescribed at the top and the bottom element of the beam of height
1 µm is chosen to take a value of ‖tnorm,0

max ‖ = 3 mN/µm2. Using (2.122) and (2.123) it
is observed that, for the resulting bending radius to be approximately the same for the
beams of different heights, ‖tnorm,0

max ‖ is to be chosen proportional to hb. For this reason,
the maximal loadings of ‖tnorm,0

max ‖ = 6 mN/µm2 and ‖tnorm,0
max ‖ = 12 mN/µm2 are applied

to the beams of heights 2 µm, respectively 4 µm.
The spatial configurations of fibre-reinforced beams of different heights assuming neg-

ligible fibre-bending stiffness are provided in Figure 2.16(a), those of fibre-reinforced
beams with fibres resistant in bending are depicted in Figure 2.16(b). First, it is
observed that the bending radius is nearly the same for the beams which are rein-
forced with perfectly flexible fibres, as the load is chosen as described before. On the
contrary, a considerable difference in the bending radius is observable for the beams
reinforced with fibres which are assumed to resist bending. Comparing the bending
radius of two beams of the same height, it is revealed that the influence of the fibre-
bending stiffness on the deformation is pronounced for the thinnest beam but notice-
ably decreases with increasing beam height. Since the observed deformation pattern
is nearly circular, as shown in Figure 2.21, (2.122) may be used again to approxi-
mate the equivalent bending modulus. For the beams which are reinforced with per-
fectly flexible fibres, the bending modulus thus calculated is almost independent of the
beam height (Eeq ≈ 261 mN/µm2), Figure 2.16(c), and only slightly higher than the ex-
pected Young’s modulus in the direction of the fibres predicted by the linearised theory,
i.e. Ecom ≈ [1− ηvol] Emat + ηvol Efib ≈ 242 mN/µm2. It is further noted that the results
provided in Figure 2.16(c) only slightly change for the different loadings analysed. Thus,
the influence of the non-linear material model is limited for the loadings analysed and
found to be significantly smaller than the influence of the bending energy contribution.
As becomes evident, the equivalent bending modulus significantly increases when ac-
counting for the fibre-bending stiffness. This effect, however, turns out to depend on
the size of the beam and becomes more pronounced with decreasing beam height. The
latter observation is further underlined by the (differences in the) moment-displacement
curves for the node which is positioned at the centre of the right boundary provided in
Figures 2.16(d-f).

The results presented in this section indicate that the observable influence of the
fibre-bending stiffness may depend on the problem dimensions. When keeping the fibre
properties, i.e. the material and the geometry of the fibres as well as the fibre volume
fraction constant, a more considerable influence is to be expected for smaller problem
dimensions. If, and to which extent this effect can be observed in real materials requires
further experimental analysis.

2.3.2.3 Convergence behaviour on mesh refinement

With regard to bending dominated boundary value problems, the analysis of the influ-
ence of the finite element discretisation is of particular importance. In this section we will
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Figure 2.17: Analysis of the deformation and bending modulus for fibre-reinforced composite beams
for varying values of the material parameter cκtru

with regard to the finite element mesh size. For
the beam with length 40 µm and height 1 µm, finite element meshes with 30/60/90 elements in the
length direction and 5/10/15 elements over the beam height are considered. The respective curve for
cκtru

= 1000 mN is not depicted in Figure 2.17(b) for the sake of clarity, however the same tendency is
observed.

exemplarily focus again on the boundary value problem presented in Section 2.3.2.1 and
study the equivalent bending modulus for three different mesh densities. In particular,
the beam of length lb = 40 µm and height hb = 1 µm is discretised by 30× 5, 60× 10 and
90× 15 elements in length, respectively height direction, resulting in a total number of
nel = 150, nel = 600 and nel = 1350 elements. The load is applied at the right boundary
in terms of follower forces acting normal to the beam’s surface, cf. Figure 2.14. Regard-
ing the coarse mesh (nel = 150), a maximal load value of ‖tnorm,0

max ‖ = 12.35 mN/µm2 is
prescribed at the top and bottom element of the right boundary, while a maximal load
value of 0.5 ‖tnorm,0

max ‖ is applied to the second element from the top and bottom. For the
applied load to be comparable for the different discretisations, the same traction load is
applied to the same area of the beam, resulting in a load value of ‖tnorm,0

max ‖ to be applied
to the first two, respectively the first three elements, from the top and bottom for the
standard (nel = 600), and for the fine discretisation (nel = 1350) respectively.

In Figure 2.17(a), the spatial configurations for the final load step are exemplarily
depicted for a fibre-reinforced beam with cκtru = 0 mN and a fibre-reinforced beam with
cκtru = 100 mN for the three different mesh densities. For both the reference material
model which assumes perfectly flexible fibres and the enhanced approach which accounts
for the fibre-bending stiffness, the same tendency is observable: the overall stiffness of
the cantilever beam increases with an increase in the number of elements in a saturation-
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type manner such that convergence is indicated. Whereas the observed difference in the
stiffness is noticeable when comparing the coarse and the standard discretisation, it is
found to be comparably small for the standard and the fine discretisation. Making use
of (2.122), subject to the assumptions stated in Section 2.3.2.1, the equivalent bending
stiffness Eeq is provided in Figure 2.17(b) as a function of the mesh density for different
values of the material parameter cκtru . In accordance with the observations described
before, it turns out that the difference in the predicted bending modulus is small when
comparing the standard and the fine discretisation. Finally, we take note of the fact
that the influence of the mesh density on the deformation, respectively on the bending
modulus, is small compared with the influence of the material parameter cκtru . The
results presented in Section 2.3.2.1 and Section 2.3.2.2 are based on a finite element mesh
with nel = 600, since the deviation of the results compared with a finer discretisation
with nel = 1350 seems sufficiently small.

Remark 2.5 (Inhomogeneous tension tests) In Section 2.3.1.2, the constitutive equa-
tions for the stress and couple stress tensor have been specified. We are especially inter-
ested in the contributions which correspond to the higher-order energy part, i.e. (2.111)
and (2.113), in the following analysis. These are found to vanish for homogeneous ten-
sion tests and for inhomogeneous tension tests with the fibres being aligned with the
elongation direction, since the fibre curvature vector κtru is zero for both deformation
states. This is of special interest from a modelling point of view since it allows us to
identify the material parameters of the presented model which are related to the tension
and the compression stiffness of the composite in a first step, neglecting a possible influ-
ence of the fibre-bending stiffness. The fibre-bending stiffness may then be adjusted in a
second step by carrying out bending tests for example.

In the experiments reviewed in Section 1.1.1, the Young’s modulus or rather the bend-
ing modulus is measured implicitly making use of beam theories, with a size effect being
reported in some of the experiments. On the other hand, experimental data from both
tension and bending tests is used in [70], and it is found that the Young’s modulus which
is calculated based on the tension tests is independent of the beam dimensions. However,
a size effect which is attributed to the action of strain gradient effects is observed for the
Young’s modulus calculated based on the bending tests. These observations raise the ques-
tion as to whether effects which may be related to some higher-gradient effects, e.g. the
curvature of the fibre-like structures, become important in the experiments mentioned in
Section 1.1.1 and certainly require further investigation.

2.3.3 Summary

Motivated by the various extended beam theories which have been presented in the
literature for the simulation of beam-like structural components on the nanoscale and
the experimental observations on one-dimensional nanomaterials, Section 2.3 focused on
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the elaboration of a fibre curvature-based, higher-gradient energy contribution for the
modelling of fibre-reinforced (nano-)composites.

The non-standard invariants in the form presented in [130] partly include combina-
tions of the fibre orientation, the fibre stretch, the fibre stretch gradient, the fibre cur-
vature and the deformation in terms of the left, respectively right Cauchy-Green tensor.
Aspiring to separate pure bending and stretch gradient contributions, the derivation of
suitable (combinations of) invariants which allow for a direct physical interpretation was
pursued. It was shown that one combination of the original invariants may be interpreted
as the fibre curvature. The evaluation of the constitutive equations for an energy func-
tion based on this combination of invariants and one additional material parameter, was
furthermore found to be particularly useful since it results, after some algebraic manip-
ulations, into well-interpretable contributions to the stress- and the couple stress tensor
respectively. It was furthermore revealed that these contributions vanish for homoge-
neous tension tests and for inhomogeneous tension tests with the fibres being aligned
with the elongation direction. This observation is of special interest with regard to the
process of parameter identification and raised some questions on the interpretation of
the experiments discussed in Section 1.1.1.

Assuming an additive split of the energy function into three contributions which corre-
spond to the deformation of the bulk, the elongation of the fibres and the fibre curvature,
representative boundary value problems were analysed in a next step, with a focus on the
influence of the fibre curvature energy contribution. To be specific, the bending of a can-
tilever beam was analysed and an equivalent bending modulus was calculated based on
the solution for the pure (finite) bending of cantilever beams provided in [121]. For this
boundary value problem, the material parameter cκtru which may take the interpreta-
tion of the fibre-bending stiffness was varied in a first step, with a stiffer overall response
being observed for increasing values of the material parameter. Although the activation
of the fibre curvature energy part resulted in a pronounced stiffening of the beam, the
resulting deformation pattern was still found to be circular. Bearing the experiments
on fibre-like structures on the nanoscale in mind, the material parameter cκtru may thus
be used to account for a possible influence of different fibre diameters – especially if the
material parameters which govern the elastic response under extension and compression
are assumed to be invariant of the problem dimensions. In a second step, the fibre-
bending stiffness was assumed to be constant and the dimensions of the composite beam
were varied. Evaluating the deformation and the overall equivalent bending modulus,
it was shown that the influence of the fibre-bending energy contribution increases with
decreasing problem dimensions.

On the whole, the findings suggest that the (size-dependent) properties of one-
dimensional nanomaterials when used as reinforcements in nanocomposites may be
modelled by taking into account the fibre curvature. With regard to future research,
experiments on nanocomposites are now required in order to analyse whether the size-
dependent material behaviour which can be observed for individual nanotubes and
nanorods can also be observed for micro- and nanoscale devices made up of nanocompos-
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ites. Regarding the latter, it would especially be of interest to compare the mechanical
response of composites reinforced with nanotubes, respectively nanorods, of different
diameters. If it is assumed that the additionally introduced fibre-bending energy con-
tribution is related to the fibre diameter, these experiments could serve as a first step
towards the identification of the material parameters and finally allow for a more accu-
rate simulation of composites on the nanoscale.
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A Appendix

A.1 Derivation of the algorithmic tangent stiffness

In this appendix, the contributions to the tangent stiffness matrix (2.65), which result
from the linearisation of the discretised system of the coupled partial differential equa-
tions, (2.59)–(2.61), and which are required for the iterative (gradient-based) solution
procedure presented in Section 2.1.3.4, as derived in [10], are given. Note that the
derivatives of the (symmetric part of the) stress tensor and those of the (deviatoric part
of the) couple stress tensor which are required for the evaluation of the tangent stiffness
contributions are not inserted in the ensuing equations for the sake of brevity but are
provided in Appendix A.2.

Balance of linear momentum

Kϕϕ =

nel

A
e=1

∫
Be0
∇XNϕ

A · F
−1 · ∂σ

sym

∂F
· ∇XNϕ

D JF

−∇XNϕ
D · F

−1 · σ ⊗ F−t· ∇XNϕ
A JF

+∇XNϕ
A · F

−1 · σ ⊗ F−t· ∇XNϕ
D JF dVe

(2.124)

Kϕσ =

nel

A
e=1

∫
Be0
∇XNϕ

A · F
−1 · I JF Nσ

E dVe (2.125)

KϕΘ =

nel

A
e=1

∫
Be0
∇XNϕ

A · F
−1 · ∂σ

sym

∂Υ
· ∇XNΘ

F JF dVe (2.126)

Balance of angular momentum

Kσϕ =

nel

A
e=1

∫
Be0
−∇XNϕ

D · F
−1 ·m⊗ F−t· ∇XNσ

BJF

+∇XNσ
B · F−1 · ∂m

∂F
· ∇XNϕ

D JF

+∇XNσ
B · F−1 ·m⊗ F−t· ∇XNϕ

D JF

− Nσ
B εt : σ ⊗ F−t· ∇XNϕ

D JF dVe

(2.127)

Kσσ =

nel

A
e=1

∫
Be0
− Nσ

B εt : INσ
E JF dVe (2.128)

KσΘ =

nel

A
e=1

∫
Be0
∇XNσ

B · F−1 · ∂m
∂Υ
· ∇XNΘ

F JF dVe (2.129)
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Constraint

KΘϕ =

nel

A
e=1

∫
Be0

NΘ
C I ⊗ I· ∇XNϕ

D JF

+NΘ
C [F −Θ]⊗ F−t· ∇XNϕ

D JF dVe

(2.130)

KΘσ =

nel

A
e=1

0 (2.131)

KΘΘ =

nel

A
e=1

∫
Be0
−NΘ

C I ⊗ I NΘ
F JF dVe (2.132)

A.2 Sensitivities of the stress and couple stress tensor

In this appendix the general form of the derivatives of the (symmetric part of the) stress
tensor (2.29) and of the (deviatoric part of the) couple stress tensor (2.30) with respect
to the strain measure C and the higher-gradient deformation measure Λ, as derived in
[10], are provided. These can be related to the derivatives with respect to the (gradients
of the) primary field variables used in the finite element formulation by invoking the
chain rule and making use of

∂C

∂F
= F t⊗ I + [I ⊗F ] : [I ⊗ I] (2.133)

∂C

∂Υ
= 0 (2.134)

∂Λ

∂F
= [I ⊗ [a0 · [I ⊗ I] : Υ ]] : [I ⊗ I]

+ [I ⊗F · ∇Xa0] : [I ⊗ I]

+ F t⊗∇Xa0

(2.135)

∂Λ

∂Υ
= F t⊗ [a0 ⊗ I] (2.136)

Furthermore, the derivatives of the invariants with respect to C and Λ that occur
when evaluating contributions related to the specific form of the stored energy function
are provided in Appendix A.3.
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Sensitivity of the (symmetric part of the) Cauchy stress tensor

∂σsym

∂F
=− σsym ⊗ F−t

+ J−1
F I ⊗

[
2F · ∂W

∂C
+G ·

[
∂W

∂Λ

]t

+ F · ∂W
∂Λ
· [∇Xa0]t

]

+ J−1
F

[[
2F · ∂W

∂C
+G ·

[
∂W

∂Λ

]t

+ F · ∂W
∂Λ
· [∇Xa0]t

]
⊗ I

]
: [I ⊗ I]

+ J−1
F [2F ⊗F ] :

[
∂2W

∂C ∂C
:
∂C

∂F
+

∂2W

∂C ∂Λ
:
∂Λ

∂F

]
+ J−1

F [[G⊗F ] : [I ⊗ I] + F ⊗G] :

[
∂2W

∂Λ ∂C
:
∂C

∂F
+

∂2W

∂Λ ∂Λ
:
∂Λ

∂F

]
(2.137)

∂σsym

∂Υ
= J−1

F

[[
I ⊗

[
F · ∂W

∂Λ

]
+

[[
F · ∂W

∂Λ

]
⊗ I
]

: [I ⊗ I]

]
⊗ a0

]
: [I ⊗ I]

+ J−1
F [F ⊗G+ [G⊗F ] : [I ⊗ I]] :

∂2W

∂Λ ∂Λ
:
∂Λ

∂Υ

+ J−1
F [2F ⊗F ] :

∂2W

∂C ∂Λ
:
∂Λ

∂Υ

(2.138)

Sensitivity of the (deviatoric part of the) couple stress tensor

3

2
JF

∂
[
mdev

]t
∂F

=− 3

2
JF
[
mdev

]t ⊗ F−t

+ εt :

[
at ⊗

[
I ⊗

[
F ·
[
∂W

∂Λ

]t
]

+ F ·
[
∂W

∂Λ
⊗ I
]

: [I ⊗ I]

]]

+ [I ⊗ I] :[at ⊗ εt] :

[
I ⊗

[
F · ∂W

∂Λ

]
+ F ·

[[
∂W

∂Λ

]t

⊗ I

]
: [I ⊗ I]

]

+

[
εt :

[
F · ∂W

∂Λ

t

· F t

]
⊗ I +

[
εt · F ·

∂W

∂Λ
· F t

]
: [I ⊗ I]

]
⊗ a0

+ [I ⊗ I] : [at ⊗ εt] : [F ⊗F ] : [I ⊗ I] :

[
∂2W

∂Λ ∂C
:
∂C

∂F
+

∂2W

∂Λ ∂Λ
:
∂Λ

∂F

]
+ εt : [at ⊗ [F ⊗F ]] :

[
∂2W

∂Λ ∂C
:
∂C

∂F
+

∂2W

∂Λ ∂Λ
:
∂Λ

∂F

]
(2.139)
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3

2
JF

∂
[
mdev

]t
∂Υ

=εt : [at ⊗ F ⊗F ] :
∂2W

∂Λ ∂Λ
:
∂Λ

∂Υ

+ [I ⊗ I] : [at ⊗ εt : [[F ⊗F ] : [I ⊗ I]]] :
∂2W

∂Λ ∂Λ
:
∂Λ

∂Υ

(2.140)

A.3 Derivatives of invariants

The first and second derivatives of the invariants given in (2.36) with respect to C and
Λ which are required for the specification of the stress and couple stress tensor as well
as for the specification of the respective tangent stiffness contributions, as derived in
[10, 130], are provided in Table 2.5 and Table 2.6.

Table 2.5: First derivatives of invariants with respect to C and Λ.

∂I•
∂C

∂I•
∂Λ

I1 I 0

I2 I1 I +C 0

I3 I2 I − I1C +C2 0

I4 a0 ⊗ a0 0

I5 a0 ⊗ [C · a0] + [a0 ·C]⊗ a0 0

I6 0 2Λ · a0 ⊗ a0

I7 [Λ · a0]⊗ [Λ · a0] 2C ·Λ · a0 ⊗ a0

I8

[
a0 ·Λt

]
⊗ [C ·Λ · a0] +

[
a0 ·Λt ·C

]
⊗ [Λ · a0] 2C2 ·Λ · a0 ⊗ a0

I9 0 a0 ⊗ a0

I10
1
2 [a0 ⊗Λ · a0 +Λ · a0 ⊗ a0] C · a0 ⊗ a0

I11

1

2

[
a0 ⊗C ·Λ · a0 +C ·Λ · a0 ⊗ a0

+a0 ·C ⊗Λ · a0 +Λ · a0 ⊗ a0 ·C
] C2 · a0 ⊗ a0
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A.4 Interpretation of the boundary conditions

The application and interpretation of suitable boundary conditions for the couple stress
theory shall be briefly discussed. To this end, a different derivation of the weak form
of the balance equations as the one presented in Section 2.1.3.2 is pursued, which is
similar to the derivation presented in [109] and motivates a direct relation between the
test functions ηϕ and ησ.

Multiplying the balance equation of linear momentum, (2.48a), with a testfunction
ηϕ, which may be interpreted as a virtual velocity field with regard to the principle of
virtual work, integrating over the volume Bt and applying the divergence theorem yields

0 = −
∫
Bt
∇xηϕ : σsym dv +

∫
∂Bt
n · σ · ηϕ da−

∫
Bt
∇xηϕ :

[
σskw

]t
dv . (2.141)

Next, the balance equation of angular momentum, (2.48b), is weighted by the third-order
Levi-Civita tensor such that

0 = εt ·
[
∇x ·mt

]
+ εt · εt : σskw = εt ·

[
∇x ·mt

]
+ 2σskw , (2.142)

which, for the problem at hand, defines the skew-symmetric part of the Cauchy-type
stress tensor. Using (2.142) renders the third term in (2.141) to take the representation

−
∫
Bt
∇xηϕ :

[
σskw

]t
dv = −

∫
Bt
∇xηϕ :

1

2
εt ·
[
∇x ·mt

]
dv (2.143a)

=

∫
Bt

1

2
curlt (ηϕ) ·

[
∇x ·mt

]
dv (2.143b)

=

∫
Bt

ησ ·
[
∇x ·mt

]
dv , (2.143c)

with ησ introduced as

ησ =
1

2
curlt (ηϕ) . (2.144)

In the case that ηϕ is interpreted as a virtual velocity, ησ corresponds to the virtual
spin vector. Making use of (2.143), (2.141) can be rewritten as

0 = −
∫
Bt
∇xηϕ : σsym dv +

∫
∂Bt
n · σ · ηϕ da+

∫
Bt
ησ ·

[
∇x ·mt

]
dv . (2.145)
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Furthermore, applying the identity

ησ · εt : σskw =

[
1

2
curlt (ηϕ)

]
· εt : σskw (2.146a)

= −1

2
∇xηϕ : εt · εt : σskw (2.146b)

= ∇xηϕ :
[
σskw

]t
, (2.146c)

and adding the vanishing volume integrated term

0 =

∫
Bt
ησ · εt : σskw dv −

∫
Bt
∇xηϕ :

[
σskw

]t
dv (2.147)

to (2.145) results in

0 =−
∫
Bt
∇xηϕ : σsym dv −

∫
Bt
∇xηϕ :

[
σskw

]t
dv +

∫
∂Bt
n · σ · ηϕ da

+

∫
Bt
ησ ·

[
∇x ·mt

]
dv +

∫
Bt
ησ · εt : σskw dv .

(2.148)

By using the divergence theorem, the term containing the divergence of mt in (2.148)
can be rewritten, to be specific

0 =−
∫
Bt
∇xηϕ : σsym dv −

∫
Bt
∇xηϕ :

[
σskw

]t
dv +

∫
∂Bt
n · σ · ηϕ da

−
∫
Bt
∇xησ : mt dv +

∫
Bt
ησ · εt : σskw dv +

∫
∂Bt
n ·m · ησ da .

(2.149)

It is observed that the first and second line in (2.149) are comparable to the spatial rep-
resentations of the weak forms of the balance equations (2.53b) and (2.54b), which were
derived in Section 2.1.3.2. However, ηϕ and ησ were treated as independent test func-
tions in Section 2.1.3.2, whereas the relation (2.144) directly results from the derivations
presented in this appendix.

With (2.144) at hand, the surface integral in (2.149) may take a different represen-
tation based on a split into a normal and tangential part, cf. [94]. The normal part is
then further rewritten making use of (2.144) and the chain rule, to be specific∫
∂Bt
n ·m · ησ da =

∫
∂Bt
n ·m · [n⊗ n] · ησ da +

∫
∂Bt
n ·m · [I − n⊗ n] · ησ da
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=

∫
∂Bt

1

2
mnnn · curlt (ηϕ) da +

∫
∂Bt
n ·m · [I − n⊗ n] · ησ da

=

∫
∂Bt

1

2
n · curlt (mnn η

ϕ) da +

∫
∂Bt
n ·m · [I − n⊗ n] · ησ da

−
∫
∂Bt

1

2
n×∇xmnn · ηϕ da (2.150)

with mnn = n ·m ·n. Applying Stokes’ theorem and assuming the surface to be smooth
renders∫

∂Bt

1

2
n · curlt (mnn η

ϕ) da = 0 . (2.151)

By making use of (2.150) and (2.151), an alternative representation of (2.149) is finally
given by

0 =

∫
Bt
∇xηϕ : σsym dv+

∫
Bt
∇xηϕ :

[
σskw

]t
dv −

∫
∂Bt

[
n · σ − 1

2
n×∇xmnn

]
· ηϕ da

(2.152a)

+

∫
Bt
∇xησ : mt dv −

∫
Bt
ησ · εt : σskw dv −

∫
∂Bt
n ·m · [I − n⊗ n] · ησ da

(2.152b)

respectively,

0 =

∫
Bt
∇xηϕ : σsym dv+

∫
Bt
∇xηϕ :

[
σskw

]t
dv −

∫
∂Bt

[
n · σ − 1

2
n×∇s

xmnn

]
· ηϕ da

(2.153a)

+

∫
Bt
∇xησ : mt dv −

∫
Bt
ησ · εt : σskw dv −

∫
∂Bt
n ·m · [I − n⊗ n] · ησ da

(2.153b)

using the surface gradient operator ∇s
x (•) = ∇x (•) · [I − n⊗ n].

Comparing (2.152a) and (2.152b) with their counterparts (2.53b) and (2.54b), derived
in Section 2.1.3.1, we observe that the vectors of external forces take different forms,
respectively interpretations, if the test functions are assumed to be related in accordance
with (2.144). To be specific, we find that the part of the vector of external forces which
corresponds to the balance equation of linear momentum is influenced by the distribution
of mnn, cf. (2.152a). In addition, the boundary conditions for the balance equation of
angular momentum may be specified in terms of the tangential component of the couple
stress vector, cf. (2.152b).
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A.5 Different types of the energy function

In Section 2.2.1.1 it was stated that, by using the energy function (2.74), a reference
configuration with curved fibres is neither energy nor stress free. Concerning the specific
ansatz for Wκ0 , two further options which have been elaborated in [10] and which would
both ensure that a reference configuration with curved fibres is a natural state shall be
briefly recapitulated for the sake of completeness.

The first option results from including the initial value of the invariant I6 in the
energy function. Thus, with

I0
6 = [Λ · a0] · [Λ · a0] , t = t0 (2.154)

we propose that energy needs to be provided to the system for any deviation from this
initial state. Hence, a different ansatz for the higher-order energy part is given by

Wκ0
2 = c2

[
I6 − I0

6

]2
, c2 ∈ R+ . (2.155)

Since I6 = I0
6 for t = t0, the energy contribution Wκ0

2 vanishes identically for an un-
deformed state. Moreover, Wκ0

2 enters the constitutive equations only in terms of its
derivative with respect to Λ, i.e.

∂Wκ0
2

∂Λ
= c2

[
I6 − I0

6

] ∂I6

∂Λ
(2.156)

which turns out to be identically zero for an undeformed state so that the contributions
to the stress and couple stress tensor vanish identically at t = t0. Nevertheless, due to the
quadratic form in (2.155), Λ and therefore also the second gradient of the deformation
function enter Wκ0

2 to the fourth power. Accordingly, the stress and the couple stress
tensor have cubic contributions in the first and second gradient of the deformation
function.

The second alternative approach to be discussed additionally takes into account the
invariant I7 = κ0 · C · κ0 which couples the referential representation of the projected
gradient of the deformed fibre vector to the deformation in terms of the right Cauchy-
Green tensor. Specifically speaking,

Wκ0
3 = c3 [I7 − I6]2 , c3 ∈ R+ (2.157)

can be assumed. Using the definitions of the invariants (2.36), (2.157) can be rewritten
in the form

Wκ0
3 = c3 [κ0 · [C − I] · κ0]2 . (2.158)
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For an undeformed state C = I holds so that Wκ0
3 vanishes in that case independent

of κ0. Same holds for the contributions to the stress and couple stress tensor, for the
derivatives with respect to C and Λ are given by

∂Wκ0
3

∂C
= c3 [κ0 · [C − I] · κ0] [Λ · a0]⊗ [Λ · a0] (2.159)

and

∂Wκ0
3

∂Λ
= c3 [κ0 · [C − I] · κ0] [2C ·Λ · a0 ⊗ a0 − 2Λ · a0 ⊗ a0] . (2.160)

Apart from the higher powers in F and Λ, which were already observed for the energy
function Wκ0

2 , the use of Wκ0
3 results in a strong coupling between the strain measure

C − I and the higher-gradient measure κ0.

A.6 Dimensionless quantities

The analytical simulation results presented in [30] are given in terms of dimensionless
quantities. To study the quantitative match of the analytical solutions with simulation
results, one can approximate the corresponding conversion factors for the coefficients of
the stress and the couple stress tensor as well as the ones of the fibre(-bending) stiffness
parameter and the fibre slope.

In [30], the dimensionless stress tensor Σ∗ and couple stress tensor υ∗ are introduced
according to

Σ∗ = f1Σ , f1 =
B0

Ψ Erϕrϕ

β2 − 1

β
, (2.161)

respectively

υ∗ = f2 υ , f2 =
1

Ψ Erϕrϕ

β2 − 1

β
. (2.162)

Furthermore, the dimensionless fibre(-bending) stiffness parameter df∗ is given by

df∗ = f3 d
f , f3 =

1

2 ErϕrϕB0 [B1 − B0]
. (2.163)

Based on the dimensionless azimuthal displacement u∗ϕ = uϕ/Ψ and the dimensionless
radius r∗ =r/B0, the dimensionless fibre slope can be specified according to

∂u∗ϕ
∂r∗

= f4
∂uϕ
∂r

, f4 =
B0

Ψ
. (2.164)
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In (2.163), quantity df represents the fibre(-bending) stiffness parameter of the proposed
small strain model which can be approximated as, cf. Section 2.2.1.3 and [31],

df =
8

3
c . (2.165)

The same holds for material parameter Erϕrϕ in (2.161), (2.162) and (2.163) which is the
shear modulus of the small strain theory and comparable to parameter µ used in the
corresponding finite strain theory such that we approximate the parameter according to

Erϕrϕ = µ . (2.166)

The maximal azimuthal displacement Ψ is approximated based on the results presented
in Figure 2.4 in terms of the averaged azimuthal displacement at the outer boundary for
the different values of material parameter c. For the load step ‖ttang‖/‖tmax

tang‖ = 0.1, Ψ
thus takes a value of

Ψ ≈ arctan (x2/x1)
∣∣
X=B1e1

B1 ≈ 3.5431 . (2.167)

With β = B1/B0 = 100/40 = 2.5, µ = 4.444× 104 and Ψ ≈ 3.5431 at hand, the conver-
sion factors (2.161)-(2.164) can be estimated for the load step ‖ttang‖/‖tmax

tang‖ = 0.1 as

f1 ≈ 5.34× 10−4 (2.168a) f2 ≈ 1.33× 10−5 (2.168b)

f3 ≈ 4.69× 10−9 (2.168c) f4 ≈ 11.29 (2.168d)

Note that f1, f2 and f4 depend on the deformation state via the inverse maximal
azimuthal displacement 1/Ψ , whereas f3 is completely determined by the problem
dimensions and the material parameter µ. With regard to the simulation results for
load states other than ‖ttang‖/‖tmax

tang‖ = 0.1, see Appendix A.7, the conversion factors
are additionally depicted as a function of the relative load state in Figure 2.18.
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Figure 2.18: Conversion factors as a function of the relative applied load ‖ttang‖/‖tmax
tang‖.

A.7 Additional simulation results for different load states

In this appendix additional simulation results are presented for higher load states than
those discussed in Section 2.2.2. To be specific, the radial distributions of σsym

rϕ , σrϕ, σϕr
as well as of mrz for ‖ttang‖/‖tmax

tang‖ = 0.5, respectively ‖ttang‖/‖tmax
tang‖ = 1.0, are depicted

in Figure 2.19. It can be observed that the absolute values of the studied coefficients of
the stress and couple stress tensor increase with increasing load. However, the qualitative
distribution along the radial direction remains identical within the analysed loading
range.
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Figure 2.19: Analysis of the radial distribution of the stresses, the symmetric part of the stresses as
well as the couple stresses for the loading states ‖ttang‖/‖tmax

tang‖ = 0.5 and ‖ttang‖/‖tmax
tang‖ = 1.0.
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A.8 Derivatives of Î

This appendix presents the first and second derivatives of the invariant Î with respect
to the right Cauchy-Green tensor C and with respect to the gradient of the deformed
fibre vector Λ. These are required for the specification of the stress and couple stress
tensor and of the corresponding tangent stiffness contributions.

∂Î

∂C
= −1

2
[κ0 ⊗ κ0] :

[
C−1⊗C−1 +C−1⊗C−1

]
(2.169a)

∂Î

∂Λ
= 2C−1 · κ0 ⊗ a0 (2.169b)

∂2Î

∂C ∂C
= [κ0 ⊗ κ0] :

∂2C−1

∂C ∂C
(2.170a)

∂2Î

∂C ∂Λ
= −

[
C−1 · κ0

]
⊗C−1 ⊗ a0 −C−1⊗

[
κ0 ·C−1 ⊗ a0

]
(2.170b)

∂2Î

∂Λ ∂C
= −C−1⊗

[
a0 ⊗ κ0 ·C−1

]
−C−1⊗

[
a0 ⊗ κ0 ·C−1

]
(2.170c)

∂2Î

∂Λ ∂Λ
= 2C−1⊗ [a0 ⊗ a0] (2.170d)

A.9 Specification of the stress and couple stress tensor

The symmetric part of the stress tensor and the deviatoric part of the couple stress ten-
sor have been specified in Section 2.3.1.2, respectively Remark 2.4 for different higher-
gradient-based contributions to the stored energy function. In this appendix, the deriva-
tion of these tensors is presented in more detail. To this end, the particular useful
relations (2.109) and (2.110) which result from

κ⊗ κ =

[
āt
∂λA

∂X
· a0 + λA

∂āt
∂X
· a0

]
⊗
[
āt
∂λA

∂X
· a0 + λA

∂āt
∂X
· a0

]
(2.171a)

=

[
∂λA

∂X
· a0

]2

āt ⊗ āt + λA

[
∂λA

∂X
· a0

] [
∂āt
∂X
· a0 ⊗ āt + āt ⊗

∂āt
∂X
· a0

]
+ λ2

A

[
∂āt
∂X
· a0

]
⊗
[
∂āt
∂X
· a0

]
(2.171b)

=

[
∂λA

∂X
· a0

]2

āt ⊗ āt + λ2
A

[
∂λA

∂X
· a0

]
[κtru ⊗ āt + āt ⊗ κtru]

+ λ4
A κtru ⊗ κtru ,

(2.171c)
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and

at ⊗ κ+ κ⊗ at = at ⊗
[
āt
∂λA

∂X
· a0 + λA

∂āt
∂X
· a0

]
+

[
āt
∂λA

∂X
· a0 + λA

∂āt
∂X
· a0

]
⊗ at

(2.172a)

= 2

[
λA

∂λA

∂X
· a0

]
āt ⊗ āt

+ λ2
A

[[
∂āt
∂X
· a0

]
⊗ āt + āt ⊗

[
∂āt
∂X
· a0

]] (2.172b)

= 2

[
λA

∂λA

∂X
· a0

]
āt ⊗ āt + λ3

A [κtru ⊗ āt + āt ⊗ κtru] , (2.172c)

by making use of (2.6), (2.31c) and (2.98) will be taken into account in the ensuing
derivations.

Regarding the contribution to the symmetric part of the stress tensor which results
from the curvature-based energy contribution (2.105), one arrives at

σsym
κtru

= ηvol J
−1
F

[
2F · ∂W

κtru

∂C
· F t +G ·

[
∂Wκtru

∂Λ

]t

· F t + F · ∂W
κtru

∂Λ
·Gt

]
(2.173a)

=
ηvol cκtru

JF

[
2F ·

[[
3
I2

9

I4
4

− 2
Î

I3
4

]
∂I4

∂C
+

1

I2
4

∂Î

∂C

]
· F t

+G ·

[
1

I2
4

∂Î

∂Λ
− 2

I9

I3
4

∂I9

∂Λ

]t

· F t

+F ·

[
1

I2
4

∂Î

∂Λ
− 2

I9

I3
4

∂I9

∂Λ

]
·Gt

] (2.173b)

=
ηvol cκtru

JF

[
2F ·

[[
3
I2

9

I4
4

− 2
Î

I3
4

]
a0 ⊗ a0

]
· F t

2F ·

[
− 1

2 I2
4

[κ0 ⊗ κ0] :
[
C−1⊗C−1 +C−1⊗C−1

] ]
· F t

+G ·
[

2

I2
4

C−1 · κ0 ⊗ a0 − 2
I9

I3
4

a0 ⊗ a0

]t

· F t

+F ·
[

2

I2
4

C−1 · κ0 ⊗ a0 − 2
I9

I3
4

a0 ⊗ a0

]
·Gt

]
(2.173c)
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=
ηvol cκtru

JF

[[
6
I2

9

I4
4

− 4
Î

I3
4

]
at ⊗ at −

2

I2
4

κ⊗ κ

+

[
2

I2
4

κ⊗ κ− 2
I9

I3
4

κ⊗ at
]

+

[
2

I2
4

κ⊗ κ− 2
I9

I3
4

at ⊗ κ
] ] (2.173d)

=
ηvol cκtru

JF

[[
6
I2

9

I4
4

− 4
Î

I3
4

]
at ⊗ at +

2

I2
4

κ⊗ κ− 2
I9

I3
4

[κ⊗ at + at ⊗ κ]

]
(2.173e)

by making use of Table 2.5 and Appendix A.8. This representation of σsym
κtru

can further
be simplified using (2.91), (2.101c) and (2.102) together with (2.171) and (2.172) such
that

σsym
κtru

=
ηvol cκtru

JF

[ [[
6
I2

9

I4
4

− 4
Î

I3
4

]
λ2

A +
2

I2
4

[
∂λA

∂X
· a0

]2

− 4
I9

I3
4

[
λA

∂λA

∂X
· a0

]]
āt ⊗ āt

+

[
2

I2
4

[
∂λA

∂X
· a0

]
λ2

A − 2
I9

I3
4

λ3
A

]
[κtru ⊗ āt + āt ⊗ κtru]

+
2

I2
4

λ4
A κtru ⊗ κtru

]
(2.174a)

=
ηvol cκtru

JF
[−4κtru · κtru āt ⊗ āt + 2κtru ⊗ κtru] . (2.174b)

The corresponding contribution of Wκtru to the deviatoric part of the couple stress tensor
results from the evaluation of (2.30) by making use of (2.6), (2.169), Table 2.5 and by
taking into account the skew-symmetry of the Levi-Civita tensor, specifically speaking

[
mdev
κtru

]t
= −2

3
ηvol J

−1
F εt :

[
F · ∂W

κtru

∂Λ
·
[
F t⊗at + F t ⊗ at

]]
(2.175a)

= −2

3

ηvol cκtru

JF
εt :

[
F ·
[

2

I2
4

C−1 · κ0 ⊗ a0 − 2
I9

I3
4

a0 ⊗ a0

]
·
[
F t⊗at + F t ⊗ at

]]
(2.175b)

=
4

3

ηvol cκtru

JF
εt :

[
2

I2
4

at ⊗ κ⊗ at − 2
I9

I3
4

at ⊗ at ⊗ at
]

(2.175c)

=
4

3

ηvol cκtru

JF
εt :

[
2

I2
4

at ⊗ κ⊗ at
]

. (2.175d)

With the help of (2.31c) and (2.98), the latter representation of the couple stress con-
tribution mdev

κtru
may further be rewritten in the well-interpretable form

mdev
κtru

=
8

3

ηvol cκtru

JF

1

I4

āt ⊗
[
āt ×

[
∂λA

∂X
· a0 āt + λA

∂āt
∂X
· a0

]]
(2.176a)
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=
8

3

ηvol cκtru

JF
āt ⊗ [āt × κtru] . (2.176b)

Regarding the fibre stretch gradient-based contributions (2.116) and (2.117), the eval-
uation of the constitutive relation (2.29) results in

σsym
∂xλA

= ηvol J
−1
F

[
2F · ∂W

∂xλA

∂C
· F t +G ·

[
∂W ∂xλA

∂Λ

]t

· F t + F · ∂W
∂xλA

∂Λ
·Gt

]

=
ηvol c∂xλA

JF

[
2F ·

[
−2

I2
9

I3
4

a0 ⊗ a0

]
· F t

+G ·
[
2
I9

I2
4

a0 ⊗ a0

]
· F t

+F ·
[
2
I9

I2
4

a0 ⊗ a0

]
·Gt

] (2.177a)

=
ηvol c∂xλA

JF

[
−4

I2
9

I3
4

at ⊗ at + 2
I9

I2
4

[κ⊗ at + at ⊗ κ]

]
(2.177b)

=
ηvol c∂xλA

JF

[
2
I9

I2
4

λ3
A [κtru ⊗ āt + āt ⊗ κtru]

]
(2.177c)

=
ηvol c∂xλA

JF

[
2λA

[
∂λA

∂x
· āt
]

[κtru ⊗ āt + āt ⊗ κtru]

]
, (2.177d)

respectively

σsym
∂XλA

= ηvol J
−1
F

[
2F · ∂W

∂XλA

∂C
· F t +G ·

[
∂W ∂XλA

∂Λ

]t

· F t + F · ∂W
∂XλA

∂Λ
·Gt

]

=
ηvol c∂XλA

JF

[
2F ·

[
−I

2
9

I2
4

a0 ⊗ a0

]
· F t

+G ·
[
2
I9

I4

a0 ⊗ a0

]t

· F t

+F ·
[
2
I9

I4

a0 ⊗ a0

]
·Gt

] (2.178a)

=
ηvol c∂XλA

JF

[
−2

I2
9

I2
4

at ⊗ at + 2
I9

I4

[κ⊗ at + at ⊗ κ]

]
(2.178b)

=
ηvol c∂XλA

JF

[
2
I2

9

I4

āt ⊗ āt + 2
I9

I4

λ3
A [κtru ⊗ āt + āt ⊗ κtru]

]
(2.178c)
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=
ηvol c∂XλA

JF

[
2

[
∂λA

∂X
· a0

]2

āt ⊗ āt + 2λ2
A

[
∂λA

∂X
· a0

]
[κtru ⊗ āt + āt ⊗ κtru]

]
(2.178d)

where use was made of (2.31a), (2.91), (2.102), (2.110), and Table 2.5. Evaluating (2.30)
finally results in the contributions

[
mdev

∂xλA

]t
= −2

3

ηvol

JF
εt :

[
F · ∂W

∂xλA

∂Λ
·
[
F t⊗at + F t ⊗ at

]]
(2.179a)

= −2

3

ηvol c∂xλA

JF
εt :

[
F ·
[
2
I9

I2
4

a0 ⊗ a0

]
·
[
F t⊗at + F t ⊗ at

]]
(2.179b)

= −8

3

ηvol c∂xλA

JF

I9

I2
4

εt : [at ⊗ at ⊗ at] (2.179c)

= 0 (2.179d)

and[
mdev

∂XλA

]t
= −2

3

ηvol

JF
εt :

[
F · ∂W

∂XλA

∂Λ
·
[
F t⊗at + F t ⊗ at

]]
(2.180a)

= −2

3

ηvol c∂XλA

JF
εt :

[
F ·
[
2
I9

I4

a0 ⊗ a0

]
·
[
F t⊗at + F t ⊗ at

]]
(2.180b)

= −8

3

ηvol c∂XλA

JF

I9

I4

εt : [at ⊗ at ⊗ at] (2.180c)

= 0 (2.180d)

to the deviatoric part of the couple stress tensor.

A.10 Follower forces

In Section 2.3.2.1, Section 2.3.2.2 and Section 2.3.2.3 the load has been applied in terms of
follower forces which act normal to the beam’s surface and which are defined per unit area
of the reference configuration. The amplitude of the follower forces may alternatively
be defined per unit area related to the current configuration. This, however, leads to
an unwanted deformation of the beam as shown in Figure 2.20(a) – the deformed shape
of the beam is not circular. When evaluating the resulting force fpre which acts at
the right boundary, it turns out that the component in vertical direction [fpre · e2] e2

monotonically decreases over the first 25 load steps, Figure 2.20(b). Although the overall
resulting force is small compared with the nodal forces, its influence on the deformation
is striking. However, for the boundary value problem at hand, this non-zero resulting
force takes a noticeably smaller absolute value if the traction load is defined per unit
area of the reference configuration, resulting in a different deformation.
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Figure 2.20: Analysis of the deformation and the resulting force which is applied at the right boundary
of a fibre-reinforced beam with negligible bending stiffness. The traction load is prescribed in terms of
follower forces acting normal to the surface with the load magnitude being defined per unit area of the
current configuration.

In the following, the governing equations are given for the follower forces as they have
been used in this contribution. The implementation of follower loads defined per unit
area of the current configuration is presented in, e.g. [145]. The corresponding integral
expression which contributes to the vector of external forces is given by∫

∂Bt
ηϕ · n ‖tnorm‖ da , (2.181)

with the test function of the balance equation of linear momentum denoted by ηϕ and
the integration to be performed on the body’s surface. For the two-dimensional case
we introduce the area measures J0

� = ‖e3 × ∂X/∂ξ‖ and J t� = ‖e3 × ∂x/∂ξ‖, with the
derivative to be performed with respect to the convective coordinate ξ. With these
definitions at hand, the integral expression analogous to (2.181) with the amplitude of
the follower load defined per unit area of the reference configuration reads∫

∂Bt
ηϕ · n ‖tnorm,0‖ J

0
�

J t�
da . (2.182)
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(a) Analysis of circular deformation patterns in depen-
dence of the fibre-bending stiffness parameter cκtru

.
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fibre-reinforced beams with cκtru
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Figure 2.21: Analysis of the circular deformation pattern for fibre-reinforced beams for varying values
of material parameter cκtru and for varying problem dimensions. The deformed configurations of the
beams are provided by means of the respective finite element mesh. The circle which is used for the
approximation of the overall equivalent bending stiffness, see (2.122), and which is fitted through three
nodes of the beam is given as a red-coloured line.

A.11 Approximation of the bending radius

For the approximation of the bending radius rben, a circle is fitted through three nodes
which are positioned at the middle of the left surface, the middle of the right surface
and at the centre of the beam. These nodes are highlighted in Figure 2.14 by black-
coloured dots, and the coefficients of their position vectors with respect to a Cartesian
base system are denoted by P1, P2, Q1, Q2 and R1, R2. With these definitions at hand,
the closed form solutions for the coefficients of the position vector of the centre of the
circle are given by

C1 =
[P 2

1 + P 2
2 ] [Q2 −R2] + [Q2

1 +Q2
2] [R2 − P2] + [R2

1 +R2
2] [P2 −Q2]

2 [P1 [Q2 −R2]− P2 [Q1 −R1] +Q1 R2 −R1 Q2]
,

(2.183a)

C2 =
[P 2

1 + P 2
2 ] [R1 −Q1] + [Q2

1 +Q2
2] [P1 −R1] + [R2

1 +R2
2] [Q1 − P1]

2 [P1 [Q2 −R2]− P2 [Q1 −R1] +Q1 R2 −R1 Q2]
,

(2.183b)

and the bending radius can be specified according to

rben =

√
[C1 − P1]2 + [C2 − P2]2 . (2.184)
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3 Dislocation density tensor-based
gradient plasticity

In this chapter, a physically well-motived gradient plasticity theory is developed which
is based on an extended nonlocal form of the Clausius-Duhem inequality and which relies
on the interpretation of incompatibilities in terms of dislocation densities. In particular:

Section 3.1 (Constitutive framework) briefly recapitulates the geometrical foundations
of incompatibilities and their interpretation in terms of dislocation densities. Setting
the stage, the fundamentals of the gradient plasticity theory proposed in [106] are sum-
marised. It is then shown that accounting for the dislocation density tensor in an
energetic manner gives rise to the field equation of a generalised stress tensor that is
energetically conjugated to the plastic deformation.

Section 3.2 (An associated-type gradient plasticity formulation) focuses on the elabora-
tion of a specific associated-type plasticity model within the framework of the proposed
gradient plasticity theory. In particular, a specific form of the gradient energy contribu-
tion which results into well-interpretable contributions to the generalised stress tensor is
proposed, and the numerical solution of the underlying coupled system of partial differ-
ential equations, with the plastic consistency condition being accounted for by means of
Fischer-Burmeister complementary functions on a global level, is discussed. Moreover,
representative boundary value problems are studied in two- and three-dimensional set-
tings.

Section 3.3 (A gradient crystal plasticity formulation) extends the formulation to gradi-
ent crystal plasticity. After proposing a specific crystal (visco-)plasticity model and after
a detailed discussion of the related stabilisation algorithms which are used to approach
the rate-independent limit, a different interpretation of the field equations is taken to
derive a suitable finite element formulation. With the latter at hand and motivated
by the experimental findings presented in Section 1.1.2, the focus lies especially on the
analysis of micro torsion tests and on the observed size effects.
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3 Dislocation density tensor-based gradient plasticity

3.1 Constitutive framework

For the convenience of the reader some kinematic basics of dislocation density tensors
and their interpretation in the context of multiplicative finite plasticity are briefly sum-
marised in Section 3.1.1. Furthermore, the fundamentals of the gradient plasticity theory
used are introduced in Section 3.1.2.

3.1.1 Kinematics and dislocation density tensors

In this chapter we set forth to develop a constitutive theory for the modelling of finite
strain plasticity which is based on additional kinematic quantities that measure the
incompatibility of the related mappings and that can be interpreted as dislocation density
tensors from a physics point of view. Setting the stage, let the reference configuration of
the body under consideration at reference time t0 ∈ R be denoted by B0 ⊂ R3 and the
(current) configuration at time t ≥ t0 be given by Bt ⊂ R3. We identify the position of a
material point in the reference configuration by X ∈ B0 and relate the current position
x ∈ Bt via the point mapping ϕ (X, t) : B0 × R → Bt ⊂ R3. The deformation gradient
tensor F = ∂ϕ (X, t) /∂X with JF = det (F ) > 0 is defined as the associated tangent
map and can be shown to be curl-free

Curlt (F ) = − ∂F
∂X

: ε0 = 0 , (3.1)

see e.g. [133] for a more general representation in terms of curvilinear coordinates. Es-
sentially, (3.1) implies that the (spatial) closure failure of a (referential) line integral
of dx over an arbitrary closed path ∂A0 bounding the area A0 with unit normal N
vanishes, which becomes apparent when applying Stokes’ theorem∫

∂A0

dx =

∫
∂A0

F · dX =

∫
A0

CurltF ·N dA = 0 , (3.2)

i.e. the deformation map ϕ is compatible. In the spirit of multiplicative finite plasticity
the (incompatible) intermediate configuration B is introduced which is generally only
defined locally in terms of the tangent maps that result from the multiplicative decom-
position of the deformation gradient into a plastic part F p and into an elastic part F e

according to, [71],

F = F e · F p . (3.3)

The incompatibility of the deformations F e and F p can be associated with the presence
of defects, in particular with the presence of geometrically necessary dislocations (GND),
in crystalline materials, see e.g. [2, 19, 49, 66, 69, 99, 133] for materials science and
differential geometric approaches. In this regard, a measure of incompatibility is given
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3.1 Constitutive framework

by Burgers vector β (in the intermediate configuration) that can either be defined in
terms of the Burgers circuit relative to the current configuration

β =

∫
∂At

F−1
e · dx =

∫
At

curlt
(
F−1

e

)
· n da =

∫
At

d · n da (3.4)

or, alternatively and equivalently, in terms of the Burgers circuit relative to the reference
configuration

β =

∫
∂A0

F p · dX =

∫
A0

Curlt (F p) ·N dA =

∫
A0

D ·N dA . (3.5)

Moreover, (3.4) and (3.5) give rise to the definition of the (unsymmetrical, two-point)
dislocation density tensors

d = curlt
(
F−1

e

)
(3.6)

and

D = Curlt (F p) (3.7)

that are related via Nanson’s formula JF d · F−t = D, see [75, 87, 90, 133] for more
details. Adhering to a continuum point of view, we neither resolve individual dislocation
lines nor their corresponding Burgers vectors. Rather, a continuous distribution of dis-
locations is assumed such that β is to be interpreted as the cumulative Burgers vector
of all dislocation lines piercing the area element At, respectively A0. Following the same
argument, the dislocation density tensors D and d represent measures of the dislocation
line density per unit area reference, respectively per unit area current configuration.
Based on these kinematic observations, the main idea of the theory to be presented in
Section 3.1.2 is to take into account the information on the GND-density in the stored
energy function which naturally gives rise to a kinematic-type hardening relation, as will
be shown as this work proceeds.

3.1.2 Fundamentals of the gradient plasticity approach

The theory to be presented in this section is based on the fundamental developments
by Polizzotto and Borino [106], as well as on the works [73–75] in which the theory of
Polizzotto and Borino is applied to the modelling of damage and plasticity.

At the outset, it is assumed that the material response may be characterised by the
free energy density function

W = W̃ (F e,D, κ) = W̃ (F ,F p,D, κ) (3.8)
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∂B
dis,ext

0
∂B

rev,ext

0

Brev
0

Bdis
0

∂Bint
0

Figure 3.1: Elastic-plastic domain decomposition in the reference configuration. The reference config-
uration B0 is decomposed into an elastically deforming region Brev0 and a region Bdis0 where irreversible
(elasto-plastic) deformation processes take place. Note, that the decomposition is subjected to the
constraints B0 = Brev0

⋃
Bdis0 and Brev0

⋂
Bdis0 = ∅.

which, in addition to the deformation gradient and the plastic part of the deformation
gradient, takes into account information on the geometrically necessary dislocation den-
sity viaD and features an internal scalar valued variable κ which may be used to account
for isotropic hardening effects that are related to statistically stored dislocations. In the
spirit of [106], an extended nonlocal form of the classic dissipation inequality, namely

D̃ = P : Ḟ − ˙̃
W + P0 (3.9a)

= P : Ḟ −

[
∂W̃

∂F
: Ḟ +

∂W̃

∂F p

: Ḟ p +
∂W̃

∂D
: Ḋ +

∂W̃

∂κ
κ̇

]
+ P0 ≥ 0 (3.9b)

is proposed. This approach features the nonlocality residual P0 that allows for an energy
exchange between particles at the microstructural level in some diffusion domain which
is assumed to coincide with the region where the irreversible deformation processes take
place, Bdis

0 ⊆ B0, see also Figure 3.1. We take note of the fact that∫
B∗0

P0 dV = 0 ∀B∗0 : Bdis
0 ⊆ B∗0 ⊆ B0 (3.10)

holds for any part of the body B∗0 that contains the region where the dissipative process
occurs. This, in turn, yields the so-called insulation condition∫

Bdis
0

P0 dV = 0 , (3.11)

for P0, see [75, 106]. Note, that the insulation condition implies that no energy exchange
between particles in Bdis

0 and those outside of Bdis
0 occurs. Furthermore, the nonlocality

residual has to vanish identically in the elastic region, i.e.

P0 = 0 in Brev
0 (3.12)
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holds, such that (3.9) is still valid in its classic form for the elastic region. With regard
to (3.9), the use of standard arguments results in the definition of the Piola stress tensor

P =
∂W̃

∂F
(3.13)

and yields the reduced (nonlocal) dissipation inequality

D̃red =− ∂W̃

∂F p

: Ḟ p −
∂W̃

∂D
: Ḋ − ∂W̃

∂κ
κ̇+ P0 (3.14)

= M : Lp + Ξ : Ḋ + q κ̇ + P0 ≥ 0 (3.15)

with the Mandel stress tensor of the intermediate configuration and the (classic) plastic
velocity gradient

M = F t
e · P · F t

p , (3.16) Lp = Ḟ p · F−1
p . (3.17)

Moreover, the work conjugated thermodynamic forces to the dislocation density tensor
D and to the hardening variable κ, i.e.

Ξ = −∂W̃
∂D

, (3.18) q = −∂W̃
∂κ

, (3.19)

have been introduced to allow for a compact notation. In accordance with [75, 106], the
dissipation power is assumed to be of the form

D̃red = M̃ : Lp + q κ̇ , (3.20)

with M̃ denoting the (unknown) generalised Mandel-type stress tensor settled in the
intermediate configuration which is energetically conjugated to the plastic velocity gra-
dient and can hence be interpreted as the driving force for the plastic evolution. In order

to determine (the field equation for) M̃ , we will make use of the nonlocality residual.
To this end, comparing (3.15) with (3.20) renders

P0 = M̃ : Lp −M : Lp −Ξ : Ḋ . (3.21)

Inserting (3.21) into the insulation condition (3.11), making use of the identity

Ξ : Curlt
(
Ḟ p

)
= Curlt

(
Ξt · Ḟ p

)
: I +

[
Curlt (Ξ) · F t

p

]
: Lp (3.22)
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and applying Gauss’s theorem finally results in

0 =

∫
Bdis

0

P0 dV (3.23a)

=

∫
Bdis

0

[
M̃ −M − Curlt (Ξ) · F t

p

]
: Lp dV −

∫
Bdis

0

Curlt
(
Ξt · Ḟ p

)
: I dV (3.23b)

=

∫
Bdis

0

[
M̃ −M − Curlt (Ξ) · F t

p

]
: Lp dV −

∫
∂Bdis

0

[Ξ · Spn (N )] : Ḟ p dA (3.23c)

=

∫
Bdis

0

[
M̃ −M − Curlt (Ξ) · F t

p

]
: Lp dV −

∫
∂Bdis

0

[
Ξ · Spn (N ) · F t

p

]
: Lp dA (3.23d)

see also [75]. Since (3.23) needs to be fulfilled for any deformation process, we require

M̃ = M + Curlt (Ξ) · F t
p in Bdis

0 . (3.24)

As this work proceeds, (3.24) will be regarded as the definition or rather as the local form

of the field equation for the generalised stress field M̃ . This field equation is subjected
to so-called constitutive boundary conditions which will be chosen differently on the
internal boundary ∂Bint

0 and on the external boundary ∂Bdis,ext
0 of the plastic domain,

see Figure 3.1. Following the same argument as before, the value of Lp is not restricted
on the external boundary of the plastic domain if (3.23) is to hold for any deformation
process such that we require

Ξ · Spn (N ) · F t
p = 0 on ∂Bdis,ext

0 . (3.25)

Internal plastic boundaries are found between elastically and plastically deforming re-
gions of the body under consideration. Noting that, by definition, Lp = 0 holds for
material points in Brev

0 leads to the so-called continuity boundary condition on internal
boundaries,

Lp = 0 on ∂Bint
0 , (3.26)

see [106] for a detailed elaboration. From a physics point of view, (3.26) implies that no
energy exchange between the elastic and the plastic region of the body is induced by the
nonlocality residual. Likewise, no energy is exchanged at the external plastic boundary
due to (3.25).

Remark 3.1 (Expansion to the domain B0) The field equation (3.24) and the corre-
sponding boundary conditions for the generalised stress field were derived in Section 3.1.2
based on the dissipation inequality for the domain Bdis

0 , where the irreversible deforma-
tion process takes place. For the finite element implementation which will be proposed
in Section 3.2.2 and Section 3.2.3, however, it is advantageous to formulate the field

100



3.1 Constitutive framework

equation for the complete domain B0. To this end, taking into account (3.12) and (3.21)
we find that

P0 = M̃ : Lp −M : Lp −Ξ : Ḋ = 0 in Brev
0 (3.27)

holds locally in Brev
0 as no plastic evolution occurs. Furthermore, this implies∫

Brev
0

P0 dV = 0 . (3.28)

Following the same lines as in Section 3.1.2, we find∫
Brev

0

P0 dV =

∫
Brev

0

[
M̃ −M − Curlt (Ξ) · F t

p

]
: Lp dV

−
∫
∂Brev

0

[
Ξ · Spn (N ) · F t

p

]
: Lp dA = 0 .

(3.29)

As expected, (3.29) is trivially fulfilled for Lp = 0 in the elastic domain and on the
respective boundaries. In contrast to the plastic domain there is thus no need to require

M̃ = M + Curlt (Ξ) · F t
p in Brev

0 (3.30)

and

Ξ · Spn (N ) · F t
p = 0 on ∂Brev,ext

0 (3.31)

to hold for the elastic domain; however, we also do not induce inconsistencies in the
formulation by doing so. For this reason (3.30) needs to be rather interpreted as a

restrictive assumption for the M̃ -field than a constitutive necessity. In fact, it will be

shown in Section 3.2.2 and Section 3.2.3 that M̃ only enters the constitutive model in
the case of plastic loading as the effective stress tensor, with Curlt (Ξ) · F t

p in (3.24)

taking the interpretation of a back stress-type tensor. For elastic deformation states, M̃
merely turns out to represent the L2-projection of the local stress state M+Curlt (Ξ)·F t

p

at the quadrature points onto the global field M̃ .

3.1.3 Summary

The geometrical foundations of incompatibilities and their interpretation in terms of
dislocation density tensors presented in Section 3.1.1 give rise to the physically well-
motivated gradient plasticity theory presented in Section 3.1.2. These fundamentals
serve as the basis for the development of specific gradient (crystal) plasticity formulations
in Section 3.2 and Section 3.3.
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3 Dislocation density tensor-based gradient plasticity

3.2 An associated-type gradient plasticity formulation

As a first step towards the application of the general gradient plasticity framework pre-
sented in Section 3.1, a specific implementation within the framework of (phenomeno-
logical) associated-type finite plasticity will be studied in this section. To this end, we
focus on the evaluation of the nonlocal form of the dissipation inequality in Section 3.2.1
and propose a specific prototype model in Section 3.2.2. We then analyse the solution
of the underlying coupled system of partial differential equations in Section 3.2.3 and
study basic model properties in Section 3.2.4.

3.2.1 Consequences for the dissipation inequality

The constitutive equations for the plastic evolution need to be chosen in accordance with
the restrictions that are posed by the second law of thermodynamics in its generalised,
i.e. nonlocal form

D̃red = M̃ : Lp + q κ̇ ≥ 0 , (3.32)

which immediately follows from the definition of the dissipation power (3.20). To fulfil
the dissipation inequality a priori for every possible load path, a (convex) plastic poten-
tial Φ is introduced in the spirit of generalised standard materials from which both the
plastic velocity gradient and the rate of internal variable κ are derived, i.e.

Lp = λp
∂Φ

∂M̃
, (3.33) κ̇ = λp

∂Φ

∂q
. (3.34)

Note, that the plastic multiplier λp is zero in the case of elastic loading and that λp > 0
holds for plastic loading – essentially, the plastic multiplier is related to the yield function
f in a classic sense via the Karush-Kuhn-Tucker conditions, namely

λp ≥ 0 , f ≤ 0 , λp f = 0 . (3.35)

In this section, the plastic potential Φ is chosen to coincide with a yield function of the
form

f = f̃
(
M̃ , q

)
= M̃ eq − [q0 − q] , (3.36)

in terms of the scalar valued equivalent stress measure M̃ eq and the initial yield limit q0,
resulting in an associated-type flow rule. In the case of plastic loading, evaluating (3.33)
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3.2 An associated-type gradient plasticity formulation

and (3.34) for (3.36), inserting the ensuing equations into (3.32) and assuming that f̃ is

a convex function in M̃ with f̃ (0, 0) ≤ 0, results in

D̃red = M̃ : λp
∂f̃

∂M̃
+ q λp

∂f̃

∂q
= λp

[
∂M̃ eq

∂M̃
: M̃ + q

]
≥ λp [q0 − q + q] = λp q0 > 0 .

(3.37)

3.2.2 Specification of the constitutive model

In the scope of this section we will take into account two material models which show
the same elastic material response but exhibit a different (elasto-)plastic response. To
be specific, we will analyse a gradient plasticity model that is based on the theoreti-
cal foundations presented in Section 3.1.2 and will use a classic (local) von Mises-type
plasticity model as a reference. Since the gradient plasticity model represents an ex-
tension of the reference model, the fundamental constitutive relations for the reference
model will briefly be recapitulated, first, in Section 3.2.2.1. Extending the specific form
of the energy function used in Section 3.2.2.1 by an energy contribution that may be
attributed to the presence of geometrically necessary dislocations, the focus lies on the
gradient plasticity formulation in Section 3.2.2.2, with the specific form of the gradient
energy contribution being studied in detail in Section 3.2.2.3.

3.2.2.1 Reference model

The reference model is characterised by a (volume specific) Helmholtz free energy density

function that is assumed to be additively composed of an elastic part W̃ e and a hardening
part W̃ p, representing energy storage due to cold plastic work, according to

W̃ ref (F ,F p, κ) = W̃ e (F ,F p) + W̃ p (κ) . (3.38)

The elastic part of the Helmholtz free energy function is chosen to be of Neo-Hookean-
type

W̃ e = λ
J2

e − 1

4
−
[
λ

2
+ µ

]
ln (Je) +

1

2
µ [tr (Ce)− 3] (3.39)

with the elastic and the plastic right Cauchy-Green tensor

Ce = F t
e · F e , (3.40) Cp = F t

p · F p , (3.41)

the volumetric deformation measure

Je =
√

det (Ce) , (3.42)
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and the Lamé-type material parameters λ and µ. The hardening part employs material
parameter Hκ and is assumed to take the specific form

W̃ p =
1

2
Hκ κ

2 (3.43)

which results in conjunction with the form of the yield function (3.36) and the definition
of q in a linear isotropic hardening relation. Evaluating the constitutive relations (3.13),
(3.16) and (3.19) for the specific energy contributions (3.39) and (3.43) yields the Piola
stress tensor

P =
λ

2

[
J2

e − 1
]
F−t + µ

[
F ·C−1

p − F−t
]

, (3.44)

the (local) Mandel stress tensor settled in the intermediate configuration

M =
λ

2

[
J2

e − 1
]
I + µ [Ce − I] (3.45)

and the energetic dual to κ

q = −Hκ κ . (3.46)

The elastic and the plastic domains of the reference model are characterised by a von
Mises-type yield function in terms of the deviatoric part of the Mandel stress tensor

Mdev = Idev : M = M − 1

3
tr
(
M
)
I . (3.47)

Specifically the form

f ref
(
M , q

)
=
∥∥Mdev

∥∥− [q0 − q] (3.48)

is assumed which, according to (3.33) and (3.34), yields the associated-type rate equa-
tions

L
ref

p = λp
Mdev∥∥Mdev

∥∥ , (3.49) κ̇ = λp . (3.50)

Applying an implicit Euler scheme to discretise (3.49) and (3.50) in time, with ∆t de-
noting the time increment and superscripts n and n+ 1 referring to the respective time
step, finally results in

F n+1
p ≈ F n

p + ∆t λp
M

n+1

dev∥∥M n+1

dev

∥∥ · F n+1
p , (3.51)
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and

κn+1 ≈ κn + ∆t λp . (3.52)

3.2.2.2 Gradient plasticity model

The Helmholtz free energy density function of the gradient plasticity model is assumed
to be a direct extension of (3.38) in terms of a gradient energy contribution W̃ g (D)
which is based on the dislocation density tensor D, i.e.

W̃ (F ,F p,D, κ) = W̃ ref (F ,F p, κ) + W̃ g (D) . (3.53)

Due to the assumed additive nature of the energy contributions in (3.53), the elastic-
and the hardening part remain unmodified by the extension such that evaluating (3.13),
(3.16) and (3.19) yields the same constitutive relations for the Piola stress tensor P , the
Mandel stress tensor M and the energetic dual to κ as for the reference model presented
in (3.44)-(3.46). Likewise, the yield function of the gradient plasticity model is chosen to
be of von Mises-type. However, since the generalised Mandel stress tensor was identified
as the driving force of the plastic evolution, the yield function is assumed to take the
form

f̃
(
M̃ , q

)
=
∥∥∥M̃dev

∥∥∥− [q0 − q] =
∥∥ Idev :

[
M + Curlt (Ξ) · F t

p

]∥∥− [q0 − q] , (3.54)

which indicates that the higher-gradient part takes the interpretation of a back stress
tensor and with the deviatoric part of the generalised Mandel stress given by

M̃dev = Idev : M̃ = M̃ − 1

3
tr
(
M̃
)
I . (3.55)

Evaluating (3.33) and (3.34), the corresponding rate equation for the plastic flow is given
by

Lp = λp
M̃dev∥∥M̃dev

∥∥ (3.56)

and we find the same evolution equation for internal variable κ as for the reference model,
cf. (3.50). Discretising (3.56) in time by means of an implicit Euler scheme according to

F n+1
p ≈ F n

p + ∆t λp
M̃

n+1

dev∥∥M̃ n+1

dev

∥∥ · F n+1
p (3.57)
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and making use of (3.52) yields the update relation for the plastic part of the velocity
gradient

F n+1
p =

I − [κn+1 − κn
] M̃

n+1

dev∥∥M̃ n+1

dev

∥∥
−1

· F n
p . (3.58)

We like to stress that (3.58) resembles an explicit update of the plastic part of the

deformation gradient because M̃ and κ will be introduced as global field variables in
Section 3.2.3. Thus, for the present implementation no (local) iteration at the quadrature
point level is required.

3.2.2.3 Energy related to geometrically necessary dislocations

Gradient effects are introduced in the formulation via the energy contribution W̃ g which
is a function of dislocation density tensor D. As outlined in Section 3.1.1, D can be
interpreted as a measure of dislocation lines per unit area reference configuration based
on geometrical considerations.

Assuming a quadratic form in D, a possible choice of the energy function is given by

W̃ g (D) = HDD : D = HD tr
(
D ·Dt

)
(3.59)

which by evaluating (3.18) results in

Ξ = −2HD Curlt (F p) . (3.60)

Inserting (3.60) into (3.24) yields

M̃ = M − 2HD Curlt
(
Curlt (F p)

)
· F t

p (3.61)

and by rewriting the coefficients of the Curl-Curl summand in matrix notation with
respect to a Cartesian base system we find the representation

[
Curlt

(
Curlt (F p)

)]
ij

=

Fp12,12 + Fp13,13 Fp11,21 + Fp13,23 Fp11,31 + Fp12,32

Fp22,12 + Fp23,13 Fp21,21 + Fp23,23 Fp21,31 + Fp22,32

Fp32,12 + Fp33,13 Fp31,21 + Fp33,23 Fp31,31 + Fp32,32


−

Fp11,22 + Fp11,33 Fp12,11 + Fp12,33 Fp13,11 + Fp13,22

Fp21,22 + Fp21,33 Fp22,11 + Fp22,33 Fp23,11 + Fp23,22

Fp31,22 + Fp31,33 Fp32,11 + Fp32,33 Fp33,11 + Fp33,22


(3.62)
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e1e2
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(a) Geometry of the sample consisting of two dif-
ferent materials.

e1

Fp
••

Fp11,11
< 0Fp11,11

< 0

Fp11,11
> 0Fp11,11

> 0

Fp22,11
< 0Fp22,11

< 0

Fp22,11
> 0 Fp22,11

> 0

(b) Profile of Fp11(−−), Fp22 ≈ Fp33(··) along the
e1-axis.

Figure 3.2: Sketch of a sample consisting of two different materials and distribution of F p along the
e1-axis which is normal to the material interfaces.

with the notation •,OM denoting the respective partial derivatives with respect to the
coefficients of X. The second summand in (3.62) represents an (incomplete) coefficient-
wise application of the Laplacian to the plastic part of the deformation gradient. Thus, it
measures the deviation of the respective component, e.g. of Fp11, from the mean value in
a plane, containing the respective point, e.g. the 22-33-plane for the Fp11 component. If
the respective component is larger/smaller than the surrounding values in the respective
plane, the corresponding coefficient, e.g. Fp11,22 +Fp11,33, takes a negative/positive value.
This is similar to the one-dimensional case where the application of the Laplacian reduces
to the second derivative, see [75].

To emphasise the physical significance of the interpretation of (3.62), assume that the
plate in Figure 3.2(a), which consists of two plastically incompressible materials with
different initial yield limits, i.e. q1

0 > q2
0, is uni-axially loaded in e1-direction. Due to

plastic incompressibility, the Fp11, Fp22 and Fp33 profiles along the e1-axis take the form
sketched in Figure 3.2(b) for moderate loadings and if the jump at the interfaces is ap-
proximated by a C2-continuous function such that the second derivatives are well-defined.
Assume for now that F p is close to the identity but that the first and second gradients
of F p take significant values due to the material inhomogeneity, and choose a material
parameter HD > 0 GPa mm2. In this case, the multiplication of the second term on the
right-hand side of (3.61) with F t

p is negligible and we find a decrease/increase in the 22-
and 33- nonlocal stress component in the outer/inner region of the sample such that the
norm of the deviatoric part of the generalised Mandel stress tensor increases/decreases.

The first summand in (3.62) is difficult to interpret due to the mixed second-order
derivatives that occur. However, it seems that this contribution may take significant
values at points where, e.g., material inhomogeneities in two spatial directions are present
at the same time.
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3 Dislocation density tensor-based gradient plasticity

3.2.3 Numerics and finite element formulation

In this section, the finite element-based implementation of the theory proposed in Sec-
tion 3.1.2 will be discussed subject to the assumption of quasi-statics and neglecting
temperature effects as well as body forces.

3.2.3.1 Field equations

The system of coupled partial differential equations to be solved consists of the balance
equation of linear momentum that is complemented by suitable boundary conditions in
terms of tractions t̄ and placements ϕ̄ on mutually disjoint parts of the boundary

∇X · P = 0 in B0, P ·N = t̄ on ∂Bt0, ϕ = ϕ̄ on ∂Bϕ0 ,
∂Bt0 ∪ ∂B

ϕ
0 = ∂B0, ∂Bt0 ∩ ∂B

ϕ
0 = ∅,

(3.63)

and of the balance equation for the generalised Mandel stress tensor that is subjected
to homogeneous constitutive boundary conditions

M̃ −M − Curlt (Ξ) · F t
p = 0 in B0, Ξ · Spn (N ) · F t

p = 0 on ∂B0 , (3.64)

see also Remark 3.2. Similar to [75], the Karush-Kuhn-Tucker conditions will be solved
globally. However, we will not make use of a global active set search as proposed therein,
but shall reformulate (3.35) as an equality constraint by means of the Fischer-Burmeister
complementary function√

f̃ 2 + λ2
p + f̃ − λp = 0 , (3.65)

see [17, 45, 115].

3.2.3.2 Weak form of field equations

In the spirit of the finite element method, field equations (3.63) and (3.64) are multiplied

with test functions ηϕ and ηM̃ and integrated over the domain B0 resulting, after the
application of Gauss’s theorem, in the weak form of the balance equation of linear
momentum

0 =

∫
B0

∇Xηϕ : P dV −
∫
∂B0

ηϕ · P ·N dA (3.66)

and the weak form of the balance equation for the generalised Mandel stress tensor

0 =

∫
B0

ηM̃ :
[
M̃ −M − Curlt (Ξ) · F t

p

]
dV (3.67a)
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=

∫
B0

ηM̃ :
[
M̃ −M

]
−Ξ : Curlt

(
ηM̃ · F p

)
+ Curlt

(
Ξt · ηM̃ · F p

)
: I dV (3.67b)

=

∫
B0

ηM̃ :
[
M̃ −M

]
−Ξ : Curlt

(
ηM̃ · F p

)
dV +

∫
∂B0

[
Ξ · Spn (N ) · F t

p

]
: ηM̃ dA .

(3.67c)

In general, second-order derivatives of F p enter (3.64) via Curlt (Ξ) and first-order
derivatives are present in the associated weak form (3.67c). In order to approximate
the gradient and hence the curl of F p, we introduce the global field variable Θp that is
coupled to F p in terms of an L2-projection using the test function ηΘp

0 =

∫
B0

ηΘp : [F p −Θp] dV , (3.68)

see also [13, 132]. To derive a weak form of the Fischer-Burmeister equation (3.65), the
yield function and the plastic multiplier are multiplied with test functions and integrated
over B0 resulting in∫

B0

ηf̃ f̃ dV , ηf̃ > 0 in B0 (3.69)

and ∫
B0

ηλp λp dV , ηλp > 0 in B0 . (3.70)

The corresponding nodal residual values that result from the discretisation and assembly
procedure will then be used to determine the node-wise Fischer-Burmeister residual, see
Section 3.2.3.3. Note, that this approach is in accordance with [73, 75, 91], where a
global active set search instead of the Fischer-Burmeister equation was used to fulfil the
Karush-Kuhn-Tucker conditions on a global level.

3.2.3.3 Discretisation and Fischer-Burmeister functions

The fields and the geometry are discretised by means of Lagrange polynomials

ϕh =

nen,ϕ∑
A=1

Nϕ
A ϕA (3.71a) ηϕ h =

nen,ϕ∑
E=1

Nϕ
E η

ϕ
E (3.71b)

M̃
h

=

n
en,M̃∑
B=1

NM̃
B M̃B (3.71c) ηM̃ h =

n
en,M̃∑
F=1

NM̃
F ηM̃F (3.71d)
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Θh
p =

nen,Θp∑
C=1

N
Θp

C ΘpC (3.71e) ηΘp h =

nen,Θp∑
G=1

N
Θp

G η
Θp

G (3.71f)

κh =

nen,κ∑
D=1

Nκ
D κD (3.71g) ηf̃ h =

nen,κ∑
H=1

Nκ
H η

f̃
H (3.71h) ηλp h =

nen,κ∑
I=1

Nκ
I η

λp

I (3.71i)

with nen• being the number of element nodes that are used for the approximation of
the respective field, N• designating the corresponding shape function and •A, . . . , •I
representing the nodal field values. Denoting the assembly operator by A and noting
that the integration is performed with respect to the element domains Be0, the global
vector of internal forces of the balance equation of linear momentum (3.66) takes the
classic form

fϕh
int =

nel

A
e=1

∫
Be0
P · ∇XNϕ

E dVe , (3.72)

the vector of internal forces for the balance equation of the generalised Mandel stress
tensor results in

fM̃h
int =

nel

A
e=1

∫
Be0
NM̃
F

[
M̃ −M

]
+Ξ ·

[
NM̃
F ∇XΘp : ε0 − F p · ε0 · ∇XNM̃

F

]t

dVe

(3.73)

and the one corresponding to the constraint (3.68) is given by

f
Θph
int =

nel

A
e=1

∫
Be0
N
Θp

G [F p −Θp] dVe . (3.74)

To calculate the discrete version of the Fischer-Burmeister function (3.65) the generalised
internal force vector for yield function (3.69)

f f̃ h
int =

nel

A
e=1

∫
Be0
Nκ
H f̃ dVe (3.75)

and the generalised internal force vector for plastic multiplier (3.70)

f
λph
int =

nel

A
e=1

∫
Be0
Nκ
I

[
κn+1 − κn

]
dVe (3.76)
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are assembled in a first step. To this end, (3.70) is discretised in time using the approx-
imation

∆t λp ≈ κn+1 − κn , (3.77)

cf. (3.34) and (3.52). Based on (3.75) and (3.76), the generalised internal force vector
that corresponds to the Fischer Burmeister function is then evaluated in a second step

[
fκh

int

]
i

=

√[
f f̃ h

int

]2

i
+
[
f
λph
int

]2

i
+
[
f f̃ h

int

]
i
−
[
f
λph
int

]
i

, (3.78)

with [•]i denoting the i-th coefficient of the vector •. The resulting system of non-linear
equations takes the form

fϕh
int

fM̃h
int

f
Θph
int

fκh
int


(
ϕ̂,
̂̃
M , Θ̂p, κ̂

)
=


fϕh

ext

0

0

0

 (3.79)

and needs to be solved for the global lists of degrees of freedom that are indicated by
•̂ with the external force vector of the balance equation of linear momentum fϕh

ext that
results from the boundary conditions in the usual manner subject to the assumption of

dead loads. Note, that due to the introduction of M̃ and κ as global fields, the material
model needs to be evaluated only – in other words, no local iteration at the integration
point level is required. Furthermore, the contributions to the consistent algorithmic
tangent stiffness matrix, which are required for the global iteration scheme, are provided
in a general form in Appendix B.1. The derivatives of F p, P , M , Ξ and f̃ with respect
to the primary field variables are moreover summarised in Appendix B.1 for the specific
material model proposed in Section 3.2.2.

Remark 3.2 (Interface condition) The interface condition at internal boundaries (3.26)
is implicitly included in the formulation. To illustrate this, consider two neighbouring
quadrature points, one deforming plastically while the state at the other one remains
elastic for the particular load step. Accordingly, an elastic-plastic interface is located
somewhere between these two material points, the position of which is unknown. How-
ever, by definition Lp = 0 holds in the elastic region. Assuming a certain continuity in
the plastic flow, it is concluded that (3.26) is intrinsically fulfilled.

Remark 3.3 (Discrete weak form of the Karush-Kuhn-Tucker conditions) The ansatz
to fulfil the Karush-Kuhn-Tucker conditions in a weak sense according to [73–75] yields
decent results if (bi-)linear shape functions are chosen for the approximation of the test

functions ηf̃ and ηλp. However, inconsistencies may occur if the test functions are
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approximated by using, e.g., (bi-)quadratic serendipity-type shape functions which, for
the two-dimensional case, read

Nκ
1 = −1

4
[1− ξ1] [1− ξ2] [1 + ξ1 + ξ2] (3.80a)

Nκ
2 = −1

4
[1 + ξ1] [1− ξ2] [1− ξ1 + ξ2] (3.80b)

Nκ
3 = −1

4
[1 + ξ1] [1 + ξ2] [1− ξ1 − ξ2] (3.80c)

Nκ
4 = −1

4
[1− ξ1] [1 + ξ2] [1 + ξ1 − ξ2] (3.80d)

Nκ
5 =

1

2
[1− ξ1] [1 + ξ1] [1− ξ2] (3.80e)

Nκ
6 =

1

2
[1 + ξ1] [1 + ξ2] [1− ξ2] (3.80f)

Nκ
7 =

1

2
[1− ξ1] [1 + ξ1] [1 + ξ2] (3.80g)

Nκ
8 =

1

2
[1− ξ1] [1 + ξ2] [1− ξ2] (3.80h)

with ξ1 and ξ2 denoting the natural element coordinates. To illustrate these incon-
sistencies, assume a stress free, undeformed state, i.e. f̃ = −q0, and the domain
B0 = [−1, 1] × [−1, 1] to be discretised with a single element. Furthermore, choose

ηf̃H = 1, H ∈ {1, ..., 8} such that ηf̃ = 1 in B0 and such that particularly condition

ηf̃ > 0 stated in [73, 74] is fulfilled. For this case, the analytical solution for the integral
(3.75) is given by∫

Be0
Nκ
H f̃ dVe =

{
1
3q0 , H ∈ {1, ..., 4}
−4

3q0 , H ∈ {5, ..., 8} ,
8∑

H=1

∫
Be0
Nκ
H f̃ dVe = − 4 q0 (3.81)

which indicates that the mid-side nodes, H ∈ {5, ..., 8}, should stay elastic, while plastic
evolution should occur at the edge nodes, H ∈ {1, ..., 4}, which is inconsistent with the
assumed stress free, undeformed state.

3.2.4 Representative simulation results

Making use of the model presented in Section 3.2.2, the properties of the proposed gra-
dient plasticity approach, in particular for the specific form of the gradient energy con-
tribution (3.59), will be analysed in detail. Focusing in a first step on a two-dimensional
setting, we analyse the plastic evolution at a material interface with the two materials
exhibiting different initial yield limits in Section 3.2.4.1, study the shear band formation
in a geometrically imperfect sample in Section 3.2.4.2 and discuss the (experimentally
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e1

e2
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4040 20

1○1○ 2○

Figure 3.3: Sketch of a sample (in mm) consisting of two materials with different initial yield limits but
the same elastic material parameters and hardening coefficients.

motivated) finite deformation of a plate with two round notches in Section 3.2.4.3. Ex-
tending the formulation to a three-dimensional setting, the shear band formation in a
geometrically imperfect sample is again studied in Section 3.2.4.4.

The two-dimensional simulation results to be presented in the following sections are
subjected to the assumption of a plane strain deformation state. For the calculation of
the reference solutions, standard eight-node serendipity elements are used to discretise
both the placement field as well as the geometry. As discussed in detail in Section 3.2.3.2,
the gradient plasticity formulation results in a coupled system of partial differential
equations, the solution of which is addressed in terms of a multi-field finite element
formulation. To be precise, placement field ϕ and plastic deformation gradient-type
field Θp will be discretised by means of eight-node serendipity elements, while linear

Lagrangian elements are used for the discretisation of the generalised stress field M̃ and
of the κ-field. Integrals are evaluated numerically using a Gaussian quadrature scheme
with nine sampling points for both the reference as well as for the gradient plasticity
formulation.

3.2.4.1 Plastic evolution at material interfaces

In this section we focus on the simulation of a specimen that consists of two different
materials, as depicted in Figure 3.3, and that is subjected to tensile loads. Both materials
are assumed to exhibit the same elastic properties and to show the same hardening
behaviour, see Table 3.1. However, the initial yield limit of material 2○ is chosen to
be 10% smaller than that of material 1○. We thus expect the reference formulation to
exhibit jumps in the plastic variables at the respective material interfaces. In contrast,
the curl of the plastic deformation field enters the gradient plasticity formulation due
to the energy contribution (3.59) such that, as will be shown, the jumps in the plastic
variables are smoothed.
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Figure 3.4: Analysis of the accumulated plastic strain κ for an elongation of 0.068 mm with respect to
the 50 mm sample. The deformation state is chosen such that the domain with the smaller initial yield
limit shows plastic deformation, while the deformation in the remaining part of the sample is purely
elastic for the reference, i.e. the classic (local) plasticity formulation.
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Table 3.1: Material parameters for the simulation of the boundary value problem depicted in Figure 3.3.

λ µ q 1○
0 q 2○

0 Hκ HD

100 GPa 69 GPa 200 MPa 180 MPa 2000 MPa 0-5000 GPa mm2

From a simulation point of view we will make use of symmetries and simulate only a
quarter of the plate by taking into account the respective symmetry boundary conditions.
Moreover, the load will be applied in terms of displacements at the right boundary, see
Figure 3.3. For the reference formulation, the application of a displacement of approx.
0.068 mm to the 50 mm sample, which equals an overall strain of 1.36 ‰, results in the
evolution of plasticity in material region 2○ while material region 1○ remains elastic, as is
revealed by analysing the distribution of the accumulated plastic strain-like variable κ in
Figures 3.4(a-c). The resulting jump in the plastic variables is furthermore exemplified
in Figure 3.5 where the distribution of the accumulated plastic strain along the e1-
axis is provided. In contrast, regarding the gradient plasticity formulation, the jump
at the material interface is smoothed with increasing values of the material parameter
HD as shown in Figure 3.4. This finding is furthermore underpinned by the results
presented in Figure 3.5(b) which clearly indicate an expansion of the plastic zone into
the material region 1○ as well as an overall decrease of the accumulated plastic strain with
increasing values of HD. Expressed differently, the plastic zone is smeared. Furthermore,
note that in the limit HD → 0 the gradient plasticity formulation closely reproduces
the results that are achieved by means of the standard plasticity formulation except
for the jump at the material interface which is not perfectly reproduced owing to the
continuity requirement that is enforced on the κ- and on the Θp-field by the choice
of shape functions, see Figure 3.5(b) and also Remark 3.4. Analysing the influence of

the difference in the initial yield limits q
1○

0 and q
2○

0 one observes that the plastically

deforming zone of material 1○ significantly decreases with increasing values of q
1○

0 and
that the value of κ at the interface (X1 = 10 mm) approaches zero. Moreover, one finds
that the shape of the κ profile is in principle maintained, Figure 3.5(c). In addition to
the presented results, the convergence behaviour upon mesh refinement of the gradient
plasticity formulation is shown in Figure 3.5(a).

Remark 3.4 (Oscillations for HD → 0) Comparing Figures 3.4(a-c) and Fig-
ures 3.4(d-f) we note that the gradient plasticity formulation closely approximates the
reference solution that was achieved with the standard formulation. However, as shown
in Figure 3.5(b), oscillations in the κ-field are induced at the interface, where the so-
lution exhibits a jump due to material discontinuity. The mixed-type formulation is, of
course, not capable of reproducing the jump in the solution since C0-continuous functions
are chosen for the approximation of the plastic field variables. Note, that the same ef-
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(b) Solution based on the refer-
ence formulation and influence of
the material parameter HD (in
GPa mm2) on the evolution of the
plastic domain within the multi-
field gradient plasticity formula-
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main within the multi-field gra-
dient plasticity formulation with
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Figure 3.5: Analysis of the accumulated plastic strain κ along the e1-axis for an elongation of 0.068 mm
with respect to the 50 mm sample. The deformation state is chosen such that the domain with the
lower initial yield limit shows plastic deformation while the deformation in the remaining part of the
sample is purely elastic for the reference, i.e. the classic (local) plasticity formulation.

fects were observed in [73, 75] where the gradient effect was restricted to a scalar valued
internal variable.

3.2.4.2 Shear band formation induced by geometric imperfection

The computation of localised plastic deformations, e.g. the formation of shear bands, in
softening materials using standard plasticity formulations that are based on local contin-
uum descriptions yields mesh dependent results, see e.g. [73]. Motivated by this problem
we will analyse the regularising nature of the presented gradient plasticity formulation
and compare the simulation results with those of a standard plasticity formulation. To
this end, we focus on the boundary value problem sketched out in Figure 3.6 where the
shear band formation is triggered by means of a geometric imperfection as the specimen
is elongated, see also [42]. The load will be applied in terms of displacements at the
right boundary while homogeneous Dirichlet boundary conditions are prescribed at the
left boundary. Moreover, the material parameters which are used in the finite element
simulations are provided in Table 3.2 and are chosen in accordance with Section 3.2.4.1.

The distribution of the hardening variable κ for an elongation of 2.5 mm is provided
in Figures 3.7(a-c) for the reference formulation and in Figures 3.7(d-f) for the gradient
plasticity formulation with HD = 0 GPa mm2. It can be observed that in both cases
the plastic deformation localises in the vicinity of a few elements along the shear band
and that the lateral width of the shear band decreases upon mesh-refinement. This
significant mesh dependence is further underlined taking into account the corresponding
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e1
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Figure 3.6: Sketch of the geometrically imperfect sample (in mm) subjected to tensile load.

Table 3.2: Material parameters for the simulation of the boundary value problem depicted in Figure 3.6.

λ µ q0 Hκ HD

100 GPa 69 GPa 200 MPa −200 MPa 0-50 GPa mm2

load-displacement curves provided in Figures 3.10(a,b) for discretisations with 10 × 20,
20× 40 and 30× 60 elements. Note, that the simulation results for the reference formu-
lation and for the gradient plasticity formulation with HD = 0 GPa mm2 are similar but
not equal, in the sense that the plastic zone is slightly smeared in the gradient plasticity
case even if HD = 0 GPa mm2. This effect can be explained by taking into account (3.68)
where F p is required to be equal to the C0-continuous field Θp in a weak sense, whereas
F p is not constrained by such an equality in the reference formulation.

In contrast, the activation of the gradient energy contribution (3.59) regularises the
plasticity formulation and results in shear bands of finite thickness as depicted in Fig-
ure 3.8 – the lateral width of the shear band is no longer determined by the finite
element mesh but by the material parameter HD which may take the interpretation of a
(natural) material length scale parameter. These findings are underpinned by the load-
displacement curves provided in Figures 3.10(c-f) which clearly indicate convergence
upon mesh refinement in contrast to the load-displacement curves of the non-regularised
formulations. We furthermore note that an increase of the value of HD has a noteworthy
influence on the deformation pattern as shown in Figure 3.8 and Figure 3.9 with the
horizontal displacement of the upper boundary that results due to the shear band for-
mation being significantly reduced. In fact, the formation of a shear band is suppressed
for high values of HD, see Figure 3.9(f). Similar to the simulation results discussed in
Section 3.2.4.1, the maximum accumulated plastic strain κ is found to decrease with
increasing values of the material parameter HD, whereas the domain that shows plastic
deformation is significantly widened.
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Figure 3.7: Shear band formation for the geometrically imperfect sample according to Figure 3.6 for
an applied displacement of 2.5 mm. The simulation results of the reference formulation (a-c) and those
of the novel formulation with an inactive gradient energy contribution (d-f) show a significant mesh
dependence. To facilitate the evaluation of the deformation, the contour of the undeformed sample is
depicted in light-grey colour.
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Figure 3.8: Shear band formation for the geometrically imperfect sample according to Figure 3.6 for
an applied displacement of 2.5 mm and moderate values of the material parameter HD. In contrast to
the results depicted in Figure 3.7, the gradient plasticity formulation converges upon mesh refinement
resulting in a shear band of finite thickness. The width of the shear band significantly increases with
increasing values of HD. To facilitate the evaluation of the deformation, the contour of the undeformed
sample is depicted in light-grey colour.
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Figure 3.9: Shear band formation for the geometrically imperfect sample according to Figure 3.6 for an
applied displacement of 2.5 mm and high values of the material parameter HD. A significant reduction
in the horizontal displacement (e1-direction) for increasing values of HD is observed. To facilitate the
evaluation of the deformation, the contour of the undeformed sample is depicted in light-grey colour.
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Figure 3.10: Mesh convergence study for the reference plasticity formulation and the multi-field gradient
plasticity formulation in softening for a shear band formation that is induced by geometric imperfections.
The calculation of the total longitudinal reaction forces is based on a sample thickness of 1 mm.
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Figure 3.11: Sketch of a plate with two round notches (in mm) subjected to tensile loading.

Table 3.3: Material parameters for the simulation of the boundary value problem depicted in Figure 3.11.

λ µ q0 Hκ (softening) Hκ (hardening) HD

100 GPa 69 GPa 200 MPa −50 MPa 2000 MPa 10 GPa mm2

3.2.4.3 Finite deformation of a plate with two round notches

To study the model’s properties in a finite deformation regime we consider the finite
plastic deformation of a plate with two round notches as depicted in Figure 3.11 for
both softening and hardening, using the gradient plasticity approach introduced in this
contribution. As indicated in Figure 3.11, homogeneous Dirichlet boundary conditions
in both spatial directions are enforced at the left boundary and in e1-direction at the
right boundary, while displacements in e2-direction are prescribed at the right boundary.
The material parameters are chosen in accordance with the simulations presented in
Section 3.2.4.1 and Section 3.2.4.2, see Table 3.3.

The accumulated plastic strain-like variable κ which serves as a measure of the local
accumulated plastic deformation is provided in Figure 3.12 for an applied displacement of
8 mm. Taking this information into account and comparing the deformed configurations
depicted in Figure 3.12 against the undeformed configuration of the sample, the contour
of which is given in light-grey colour, a significant deformation of the area in between
the two round notches is revealed. In contrast and as expected, a notably smaller
deformation takes place in the vicinity of the left and right boundaries. Comparing the
resulting deformation in the case of softening Figures 3.12(a,b) with the one in the case
of hardening Figures 3.12(c,d) we first find that κ takes significantly higher values in
the case of softening. This is due to the existence of a plastic localisation zone between
the two round notches as shown in Figures 3.12(a,b) which, moreover, results in notable
necking in this area. In contrast, the plastic deformation is smeared over a larger area of
the body in the case of hardening which results in a more accentuated lateral contraction
near the left and right boundaries. We note that the transition area between the (left
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Figure 3.12: Deformation pattern and distribution of the accumulated plastic strain-like variable κ
for the finite plastic deformation of a plate with two round notches according to Figure 3.11 and an
applied displacement of 8 mm. The plate is analysed for softening (Hκ = −50 MPa, HD = 10 GPa mm2)
and hardening (Hκ = 2000 MPa, HD = 10 GPa mm2) and two different discretisations are studied. To
facilitate the evaluation of the deformation, the contour of the undeformed sample is depicted in light-
grey colour.
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(b) hardening with Hκ = 2000 MPa

Figure 3.13: Total longitudinal reaction force as a function of the elongation for the boundary value
problem sketched in Figure 3.11. The reaction force is calculated based on an assumed sample thickness
of 1 mm and focus is on the analysis of the gradient plasticity formulation (HD = 10 GPa mm2) in
softening (Hκ = −50 MPa) as well as in hardening (Hκ = 2000 MPa).
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3 Dislocation density tensor-based gradient plasticity

Table 3.4: Material parameters for the simulation of the boundary value problem depicted in Figure 3.14.

λ µ q0 Hκ HD

100 GPa 69 GPa 200 MPa −200 MPa 0-25 GPa mm2

and right) boundaries and the geometrically perturbed area may need to be larger in
order to reduce the possible influence of boundary effects, especially when a comparison
with experiments is envisaged.

Note that the formation of the shear band in the case of softening is not determined
by the mesh size as revealed in Figures 3.12(a,b) when comparing the simulation results
which are achieved with a 576-element discretisation to those resulting from a discreti-
sation with 1600 elements, see also Section 3.2.4.2 for a more detailed analysis of the
formulation’s mesh objectivity. Thus, convergence upon mesh refinement of the load-
displacement curves, additionally provided in Figure 3.13, is observed in both hardening
as well as in softening.

3.2.4.4 Shear band formation in a three-dimensional setting

Extending the two-dimensional boundary value problems discussed in Section 3.2.4.2
to a three-dimensional setting, this section focuses again on the shear-band formation
induced by geometric imperfections. The geometrically imperfect sample is visualised
in Figure 3.14 and material parameters according to Table 3.4 are chosen. As indicated
in Figure 3.14, the displacement in all three dimensions is suppressed at the left bound-
ary. At the right boundary, the displacement in e2-direction is prescribed while the
displacement in e3-direction is suppressed. The geometry, the placement field ϕ and the
Θp-field are discretised by means of 20-node serendipity elements, whereas eight-node

Lagrangian elements are chosen for the discretisation of the generalised stress field M̃
and of the κ-field for the novel formulation introduced in this contribution. Similar to
Section 3.2.4.2, a standard von Mises plasticity model is taken into account as a refer-
ence which utilises a discretisation of the geometry and of the placement field in terms
of 20-node serendipity elements. Occurring integrals are evaluated numerically in both
formulations by means of a Gaussian quadrature scheme with 27 sampling points.

Analysing the shear band formation, four different models will be taken into ac-
count. These are: the novel gradient plasticity model with HD = 25 GPa mm2 and
HD = 10 GPa mm2, a model which uses the same element formulation as the gradient
plasticity model but neglects the gradient effect such that HD = 0 GPa mm2, and a
standard von Mises plasticity model as described above. The distribution of the ac-
cumulated plastic strain-like variable κ is provided in Figure 3.15 for a longitudinal
elongation of 2.5 mm and for two different discretisations featuring 800, respectively
3200 elements. As expected on the basis of the two-dimensional simulation results dis-
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Figure 3.14: Sketch of a geometrically imperfect sample (in mm) in a three-dimensional setting subjected
to tensile load.

cussed in Section 3.2.4.2, the κ-distribution indicates a strong mesh dependence of the
reference formulation and of the novel formulation when the gradient term is not acti-
vated, i.e. when HD = 0 GPa mm2. This mesh dependence is further underlined by the
corresponding load-displacement curves provided in Figure 3.16. On the other hand,
the formation of a shear band of finite thickness is observed in the gradient-enhanced
formulation with HD = 10 GPa mm2, respectively HD = 25 GPa mm2, Figures 3.15(e,f)
and Figures 3.15(g,h). Furthermore, the respective load-displacement curves suggest
convergence upon mesh refinement, see Figure 3.16(c) and Figure 3.16(d).

3.2.5 Summary

In this section, a thermodynamically consistent gradient plasticity theory has been dis-
cussed which relies on the nonlocal extension of the Clausius-Duhem inequality proposed
in [106]. Making use of these theoretical fundamentals, higher gradients of the plastic
part of the deformation gradient tensor were introduced as additional arguments of the
free energy function. In contrast to purely phenomenological approaches, these gradi-
ent terms could be interpreted as measures of the dislocation density and gave rise to
the occurrence of back stress-type tensors in the respective yield functions based on
thermodynamic considerations. We showed that assuming a specific quadratic energy
contribution in the dislocation density tensor results in a well-interpretable form of the
back stress-type tensor and analysed the model properties for this particular form of
the free energy function. To be more specific, a multi-field finite element framework
was established for the solution of the coupled system of (partial) differential equations,
with the Karush-Kuhn-Tucker conditions being enforced on a global level by means of
Fischer-Burmeister complementarity functions, and boundary value problems in two-
and three-dimensional settings were analysed. Specifically speaking, the smoothing be-
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Figure 3.15: Shear band formation for the geometrically imperfect sample according to Figure 3.14 for
an applied displacement of 2.5 mm. To facilitate the evaluation of the deformation, the contour of the
undeformed sample is depicted in light-grey colour.
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Figure 3.16: Mesh convergence study for the reference plasticity formulation and the multi-field gradient
plasticity formulation in softening for a shear band formation that is induced by geometric imperfections
in a three-dimensional setting.

haviour of the formulation at a material interface where the yield limit exhibits a jump
discontinuity, the formation of shear bands in softening materials and the experimentally
motivated, inhomogeneous, finite plastic deformation of tensile test samples were studied
in detail in a two-dimensional setting. Extending the formulation to a three-dimensional
setting, the focus was laid on the formation of shear bands that were induced by ge-
ometric imperfections. In summary, the presented results suggest that the regularised
modelling framework can be used to simulate finite plastic deformation processes both
in hardening as well as in softening, providing a physically well-motivated approach
towards gradient plasticity.

Especially the replacement of the phenomenological associated-type flow rule by a
crystal plasticity formulation seems a natural extension of the present formulation in
terms of plastic anisotropies and will be discussed in detail in Section 3.3.
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Figure 3.17: Representation of slip systems in the reference, intermediate and spatial configuration.

3.3 A gradient crystal plasticity formulation

This section focuses on the extension of the gradient plasticity framework developed
in Section 3.2 to gradient crystal plasticity. To this end, the fundamentals of crystal
plasticity are briefly summarised and the resulting form of the dissipation inequality
is studied in detail in Section 3.3.1. Based on these theoretical foundations, a specific
model is elaborated in Section 3.3.2, and the implementation with a focus on stabilisation
algorithms and a multi-field finite element formulation are elaborated in Section 3.3.3.
Section 3.3.4 eventually focuses on the simulation of representative boundary value prob-
lems. In particular, the constitutive response at material point level is studied first before
the model is applied to the simulation of tension tests in a two-dimensional setting and
to the experimentally motivated simulation of micro torsion tests in a three-dimensional
setting.

3.3.1 Extension to crystal plasticity

This section focuses on the extension of the gradient plasticity theory introduced in
Section 3.1 to crystal plasticity. Taking into account the definition of the spatial velocity
gradient and inserting the multiplicative split (3.3) yields

l = Ḟ · F−1 = Ḟ e · F−1
e + F e · Ḟ p · F−1

p · F−1
e . (3.82)

The second summand on the right-hand side is identified as the plastic part of the
(spatial) velocity gradient. In crystal plasticity, this part can be well-motivated based on
kinematic considerations, i.e. it is assumed that plastic slip occurs on distinct slip planes,
identified by their normal vectors m(α), in certain slip directions s(α). A slip system is
then defined by the pair {m(α), s(α)}, see Figure 3.17. Since atomic bonds have to
be broken and re-established in the sliding process, and since the atomic bonds weaken
with increasing distance of the atoms, plastic slip tends to occur between crystallographic
planes of greatest atomic density. Likewise, closest-packed directions in the slip planes
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are identified with slip directions, see e.g. [33] for a detailed presentation. Based on these
kinematic considerations, the plastic part of the spatial velocity gradient lp is assumed
to take the form

lp = F e · Ḟ p · F−1
p · F−1

e =
nα∑
α=1

s(α) ⊗m(α) γ̇(α) , (3.83)

with γ̇(α) denoting the slip rate on the respective slip system and with the total number
of slip systems nα. In the case of face-centred cubic crystals one finds for example that
nα = 12. Note, that we do not restrict the slip rates γ̇(α) to be positive and thus do not
need to distinguish between positive and negative slip directions as done in [27, 115].
The pull-back of (3.83) to the intermediate configuration yields

Lp = F−1
e · lp · F e =

nα∑
α=1

s(α) ⊗m(α) γ̇(α) =
nα∑
α=1

Z
(α)
γ̇(α) , (3.84)

with the representation of the slip direction and of the slip plane normal in the interme-
diate configuration

s(α) = F−1
e · s(α) , (3.85) m(α) = F t

e ·m(α) , (3.86)

and the associated projection tensor

Z
(α)

= s(α) ⊗m(α) . (3.87)

The slip directions and the slip plane normals are assumed to be convected with the
elastic deformation and assumed to be left unaltered by the plastic deformation which
resembles the assumption of an isoclinic intermediate configuration, see [29, 43]. Fur-
thermore, s(α) and m(α) are introduced as normalised vectors and are clearly orthogonal
such that

s(α) · s(α) = 1 (3.88) m(α) ·m(α) = 1 (3.89) s(α) ·m(α) = 0 (3.90)

hold (no summation over α). The orthogonality of s(α) andm(α) results in tr
(
Z

(α)
)

= 0

which with regard to (3.84) essentially implies that the plastic flow is volume preserving
(at least in the continuous setting). As an example, the twelve slip systems of a face-
centred cubic atomic arrangement are provided in Table 3.5 and sketched in Figure 3.18.
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Figure 3.18: Slip systems in fcc-crystals according to Table 3.5.

Inserting (3.84) into (3.20) results in the specific form of the reduced dissipation
inequality

D̃red =
nα∑
α=1

M̃
(α)

˙̃γ
(α)

+ q κ̇ ≥ 0 (3.91)

where the definition of the projected generalised Mandel-type stress tensor

M̃
(α)

= M̃ : Z
(α)

(3.92)

was used and where a tilde was added in the notation to underline the energetic duality

between ˙̃γ
(α)

and M̃
(α)

. In the case that the gradient effects are neglected, M̃ reduces
to M , cf. (3.24), such that making use of the identity

M
(α)

= M : Z
(α)

= M :
[
s(α) ⊗m(α)

]
= τ :

[
s(α) ⊗m(α)

]
= τ (α) (3.93)

with τ = F−t
e ·M · F t

e denoting the (mixed-variant) Kirchhoff stress tensor, gives rise
to the classic form of the (reduced) dissipation inequality

Dred =
nα∑
α=1

M
(α)
γ̇(α) + q κ̇ (3.94a)

=
nα∑
α=1

τ (α) γ̇(α) + q κ̇ ≥ 0 , (3.94b)

which implies the well-established energetic duality between the Schmid stress τ (α) and
the plastic slip rate γ̇(α).

3.3.2 Specification of the constitutive model

The activity of slip systems in rate-independent crystal plasticity cannot generally be
uniquely determined, see e.g. [6, 33, 54, 93, 115]. In the (time-)continuous case, this
issue manifests itself in the singularity of matrices which need to be inverted in order
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Table 3.5: Miller indices, slip plane normals m(α) and slip directions s(α) in an fcc-crystal, see e.g.
[93, 115], with [•]i denoting the coefficient matrix of a vector • with respect to an orthonormal basis
that is aligned with the lattice vectors defining the unit cell, see Figure 3.18.

slip system α Miller index slip plane normal m(α) slip direction s(α)

1 (1, 1, 1)[1, 1̄, 0]
[
m(1)

]
i

= 1√
3

[1, 1, 1]
[
s(1)
]
i

= 1√
2

[1,−1, 0]

2 (1, 1, 1)[1, 0, 1̄]
[
m(2)

]
i

= 1√
3

[1, 1, 1]
[
s(2)
]
i

= 1√
2

[1, 0,−1]

3 (1, 1, 1)[0, 1, 1̄]
[
m(3)

]
i

= 1√
3

[1, 1, 1]
[
s(3)
]
i

= 1√
2

[0, 1,−1]

4 (1, 1, 1̄)[1, 1̄, 0]
[
m(4)

]
i

= 1√
3

[1, 1,−1]
[
s(4)
]
i

= 1√
2

[1,−1, 0]

5 (1, 1, 1̄)[1, 0, 1]
[
m(5)

]
i

= 1√
3

[1, 1,−1]
[
s(5)
]
i

= 1√
2

[1, 0, 1]

6 (1, 1, 1̄)[0, 1, 1]
[
m(6)

]
i

= 1√
3

[1, 1,−1]
[
s(6)
]
i

= 1√
2

[0, 1, 1]

7 (1, 1̄, 1)[1, 1, 0]
[
m(7)

]
i

= 1√
3

[1,−1, 1]
[
s(7)
]
i

= 1√
2

[1, 1, 0]

8 (1, 1̄, 1)[1, 0, 1̄]
[
m(8)

]
i

= 1√
3

[1,−1, 1]
[
s(8)
]
i

= 1√
2

[1, 0,−1]

9 (1, 1̄, 1)[0, 1, 1]
[
m(9)

]
i

= 1√
3

[1,−1, 1]
[
s(9)
]
i

= 1√
2

[0, 1, 1]

10 (1̄, 1, 1)[1, 1, 0]
[
m(10)

]
i

= 1√
3

[−1, 1, 1]
[
s(10)

]
i

= 1√
2

[1, 1, 0]

11 (1̄, 1, 1)[1, 0, 1]
[
m(11)

]
i

= 1√
3

[−1, 1, 1]
[
s(11)

]
i

= 1√
2

[1, 0, 1]

12 (1̄, 1, 1)[0, 1, 1̄]
[
m(12)

]
i

= 1√
3

[−1, 1, 1]
[
s(12)

]
i

= 1√
2

[0, 1,−1]

to determine the plastic slip rates based on a prescribed stress or strain rate, i.e. slip
mode uniqueness is generally not guaranteed, see [6, 54, 93]. In the (time-)discrete
case, this shortcoming results in two main problems. Firstly, the active set search
for the determination of the set of active slip systems does, in general, not result in
a unique solution – i.e. different active sets which fulfil the discrete plastic consistency
conditions may exist. Secondly, even if an active set has been determined, many different
combinations of the plastic multipliers which represent the time discrete equivalent of
the slip-rates may constitute a solution, see e.g. [33, 115]. Several numerical tools have
been developed to deal with the latter problems such as the construction of generalised
or pseudo inverses of the Jacobian, perturbation techniques or diagonal shift methods,
e.g. [4, 21, 93]. However, by using these methods to generate a solution, there is no
clear distinction between constitutive modelling and the algorithmic treatment of the
resulting system of equations because the chosen algorithm influences the activity of the
slip systems.

Against this background we will resort to rate-dependent viscoplasticity where the
slip rates are uniquely determined by the stress state and possibly by some internal
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variables, [115]. As argued in [134] it is always possible to regard the rate-independent
theory as the limit case of the rate-dependent theory. However, by approaching this
limit the system to be solved becomes considerably stiff and requires special numerical
treatment. In what follows, we will take into account an extended version of the crystal
(visco-)plasticity framework proposed in [134] and enhance the formulation in terms of
a gradient energy contribution.

3.3.2.1 A specific crystal (visco-)plasticity model

The crystal (visco-)plasticity model to be used in this contribution is a modified version of
the model proposed in [134]. At the outset, the free-energy density function is assumed to

be additively composed of an elastic part W̃ cp,e and of a hardening part W̃ cp,p according
to

W̃ cp,ref (F ,F p, κcp) = W̃ cp,e (F ,F p) + W̃ cp,p (κcp) . (3.95)

The elastic part is chosen identical to the one used in Section 3.2.2.1, i.e. (3.39), such
that the specific forms of the Piola stress tensor (3.44), and of the (local) Mandel stress
tensor (3.45), are recovered. The hardening part is chosen to be of the form

W̃ cp,p = τ0 κcp +
[τ∞ − τ0]2

h0

ln

(
cosh

(
h0 κcp

τ∞ − τ0

))
, (3.96)

with the material constants τ0, τ∞ and with h0 representing the initial shear yield stress,
the saturation strength and the initial hardening rate. Evaluating (3.19) for the specific
form of the free energy function yields

qcp = −
[
τ0 + [τ∞ − τ0] tanh

(
h0 κcp

τ∞ − τ0

)]
< 0 . (3.97)

Furthermore, the existence of a plastic potential which is additively composed of slip
system contributions Φ(α) according to

Φcp =
nα∑
α=1

Φ(α) (3.98)

is assumed from which the slip rates γ̇(α) and the rate of the internal variable κcp are
derivable via

γ̇(α) =
∂Φcp

∂M
(α)

, (3.99) κ̇cp =
∂Φcp

∂qcp

. (3.100)

Note, that this format also allows for an interpretation in terms of constrained optimisa-
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3.3 A gradient crystal plasticity formulation

tion conditions as shown in [134]. For the specific form of the slip system contributions
to the plastic potential that is adopted in this contribution,

Φ(α) = −γ̇0
qcp

he + 1

∣∣∣∣∣M
(α)

qcp

∣∣∣∣∣
he+1

, (3.101)

with γ̇0 denoting the reference shear strain rate and with the rate sensitivity parameter
he, one finally arrives at

γ̇(α) = γ̇0 sgn
(
M

(α)
) ∣∣∣∣∣M

(α)

qcp

∣∣∣∣∣
he

(3.102)

and

κ̇cp = − he
he + 1

nα∑
α=1

γ̇(α) M
(α)

qcp

. (3.103)

Inserting (3.102) and (3.103) in (3.94a) in order to evaluate the dissipation inequality
we find

Dred =
nα∑
α=1

M
(α)
γ̇(α) + qcp κ̇cp (3.104a)

=
nα∑
α=1

[
1− he

he + 1

]
M

(α)
γ̇(α) (3.104b)

=
nα∑
α=1

[
1− he

he + 1

]
γ̇0

∣∣∣M (α)
∣∣∣ ∣∣∣∣∣M

(α)

qcp

∣∣∣∣∣
he

≥ 0 (3.104c)

since γ̇0 > 0 and he > 0, hold.

Remark 3.5 (Simplified rate equation for the plastic slip) The simplified version of the
rate equation (3.103)

κ̇cp =
nα∑
α=1

∣∣γ̇(α)
∣∣ (3.105)

that was proposed in [134], may violate the dissipation inequality (3.94a), as

Dred =
nα∑
α=1

M
(α)
γ̇(α) + qcp κ̇cp =

nα∑
α=1

M
(α)
γ̇(α) +

nα∑
α=1

qcp

∣∣γ̇(α)
∣∣ T 0 , (3.106)
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holds. To see this, assume a load state with M
(α)

> 0 ∀α and accordingly γ̇(α) > 0 ∀α but

with M
(α)

being sufficiently small such that M
(α)

< |qcp| ∀α. In this case the dissipation
is found to be negative and the dissipation inequality is violated. Note that it is always

possible to generate a load state with M
(α)

> 0 ∀α by changing the definition of the
positive slip direction in the definition of the slip systems.

3.3.2.2 A specific gradient crystal (visco-)plasticity model

For the gradient crystal (visco-)plasticity model, the gradient energy contribution (3.59)
that was proposed in Section 3.2.2.3 is added to (3.95) so that the gradient-enhanced
free energy density function reads

W̃ cp (F ,F p,D, κ̃cp) = W̃ cp,e (F ,F p) + W̃ cp,p (κ̃cp) + W̃ g (D) . (3.107)

With the exception of renaming parameter κcp to κ̃cp, the energy contributions W̃ cp,e and

W̃ cp,p remain identical with their counterparts of the reference formulation, see (3.39)
and (3.96), such that the stresses (3.44)-(3.45) remain unchanged and (3.97) results in

q̃cp = −
[
τ0 + [τ∞ − τ0] tanh

(
h0 κ̃cp

τ∞ − τ0

)]
< 0 . (3.108)

Moreover, evaluation of (3.18) for the energy function (3.107) yields the specific form of
the energetic dual to the dislocation density tensor (3.60) that was discussed in detail
in Section 3.2.2.3.

In Section 3.3.1, the energetic duality between the projected generalised Mandel stress

M̃
(α)

and the slip rates ˙̃γ
(α)

was shown. Based on this observation, we propose to
formulate the plastic potential

Φ̃cp =
nα∑
α=1

Φ̃(α) , (3.109)

or rather the contribution of each slip system to the latter, based on the projected

generalised Mandel stress M̃
(α)

, i.e.

Φ̃(α) = −γ̇0
q̃cp

he + 1

∣∣∣∣∣M̃
(α)

q̃cp

∣∣∣∣∣
he+1

(3.110)

and define the energetic duals as
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˙̃γ
(α)

=
∂Φ̃cp

∂M̃
(α)

, (3.111) ˙̃κcp =
∂Φ̃cp

∂q̃cp

, (3.112)

in accordance with (3.98)-(3.101). Evaluating (3.111) and (3.112) for the plastic poten-
tial (3.110) eventually yields the specific rate equations

˙̃γ
(α)

= γ̇0 sgn

(
M̃

(α)
) ∣∣∣∣∣M̃

(α)

qcp

∣∣∣∣∣
he

(3.113)

and

˙̃κcp = − he
he + 1

nα∑
α=1

˙̃γ
(α)
M̃

(α)

q̃cp

, (3.114)

similar to (3.102) and (3.103). Following the same procedure as for the reference for-
mulation, inserting (3.113) and (3.114) in (3.91) yields the specific reduced form of the
dissipation power

D̃red =
nα∑
α=1

M̃
(α)

˙̃γ
(α)

+ q̃cp
˙̃κcp (3.115a)

=
nα∑
α=1

[
1− he

he + 1

]
γ̇0

∣∣∣M̃ (α)∣∣∣ ∣∣∣∣∣M̃
(α)

q̃cp

∣∣∣∣∣
he

≥ 0 , (3.115b)

where, γ̇0 > 0 and he > 0 has once more been assumed.

Overall two main differences between the reference crystal plasticity formulation and
the gradient crystal plasticity formulation exist: firstly, the introduction of the energy
contribution (3.59) manifests itself in the action of the energetic dual to the dislocation
density tensor Ξ in the balance equation (3.24). Secondly, the rate equations for the
plastic slip (3.113) and for the accumulated plastic strain-like variable (3.114) are for-

mulated with respect to the generalised Mandel stress tensor M̃ motivated by energetic
dualities. In fact, the gradient formulation reduces to the reference formulation for an
inactive gradient energy contribution.

3.3.3 Numerics and finite element formulation

This section focuses on the finite element implementation of the gradient crystal (visco-)
plasticity theory presented in Section 3.3.2.2 and on the system of evolution equations
which needs to be solved at integration point level.
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3 Dislocation density tensor-based gradient plasticity

3.3.3.1 Field equations

The system of balance equations which describes the motion of the body under consid-
eration consists of the balance equation of linear momentum

∇X · P = 0 in B0, (3.116)

which is complemented by suitable boundary conditions in terms of placements ϕ̄ and
tractions t̄ on mutually disjoint parts of the boundary such that

P ·N = t̄ on ∂Bt0, ϕ = ϕ̄ on ∂Bϕ0 , ∂Bt0 ∪ ∂B
ϕ
0 = ∂B0, ∂Bt0 ∩ ∂B

ϕ
0 = ∅ (3.117)

hold in the classic sense. In addition, by introducing the relative Mandel stress tensor

M̃
rel

= M̃ −M (3.118)

the balance equation (3.24) will be taken into account in a modified form, namely

M̃
rel

− Curlt (Ξ) · F t
p = 0 in B0 (3.119)

subject to the non-ambiguous constitutive boundary condition

Ξ · Spn (N ) · F t
p = 0 on ∂B0 , (3.120)

derived in Section 3.1.2. The introduction of M̃
rel

has the advantage that the principle
structure of the numerical scheme at the quadrature point level can be maintained.

Moreover, M̃
rel

will be regarded as a primary field variable and discretised by means of

C0-continuous functions such that M̃ is composed of a continuous part given by M̃
rel

and of a part which may exhibit discontinuities, i.e. M , if a standard C0-continuous
approximation is chosen for the placement field.

3.3.3.2 Weak form of field equations

Multiplication of (3.116) and (3.119) with test functions ηϕ and ηM̃
rel

, integration over
the domain B0 and application of Gauss’s theorem results in the weak form of the balance
equation of linear momentum

0 =

∫
B0

∇Xηϕ : P dV −
∫
∂B0

ηϕ · P ·N dA (3.121)
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and in the weak form of the balance equation for the relative stress

0 =

∫
B0

ηM̃
rel

: M̃
rel

−Ξ : Curlt
(
ηM̃

rel

· F p

)
dV

+

∫
∂B0

[
Ξ · Spn (N ) · F t

p

]
: ηM̃

rel

dA .

(3.122)

For the approximation of the spatial derivative of F p we additionally introduce the field
variable Θp that is coupled to F p in terms of an L2-projection, namely

0 =

∫
B0

ηΘp : [F p −Θp] dV , (3.123)

with ηΘp denoting the corresponding test function.

In the following, ϕ, M̃
rel

and Θp will be regarded as the primary fields to be solved
for and discretised using polynomial approximations according to

ϕh =

nen,ϕ∑
A=1

Nϕ
A ϕA (3.124a) ηϕ h =

nen,ϕ∑
D=1

Nϕ
D η

ϕ
D (3.124b)

M̃
rel h

=

n
en,M̃

rel∑
B=1

NM̃
rel

B M̃
rel

B (3.124c) ηM̃
rel

h =

n
en,M̃

rel∑
E=1

NM̃
rel

E ηM̃
rel

E (3.124d)

Θh
p =

nen,Θp∑
C=1

N
Θp

C ΘpC (3.124e) ηM̃ h =

nen,Θp∑
F=1

N
Θp

F η
Θp

F (3.124f)

In analogy with the derivations presented in Section 3.2.3.3 the vector of internal forces
that corresponds to the balance equation of linear momentum, (3.121), is defined as

fϕh
int =

nel

A
e=1

∫
Be0
P · ∇XNϕ

D dVe , (3.125)

the generalised vector of internal forces corresponding to the balance equation of the
relative Mandel stress, (3.122), as

fM̃
rel

h
int =

nel

A
e=1

∫
Be0
NM̃

rel

E M̃
rel

+Ξ ·
[
NM̃

rel

E ∇XΘp : ε0 − F p · ε0 · ∇XNM̃
rel

E

]t

dVe ,

(3.126)
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and the one corresponding to (3.123) as

f
Θph
int =

nel

A
e=1

∫
Be0
N
Θp

F [F p −Θp] dVe . (3.127)

The consistent algorithmic tangent stiffness matrix that is required for a gradient-based
solution of the discrete system (3.125)-(3.127) is provided in Appendix B.2.

3.3.3.3 Discrete system of evolution equations

Strategies to deal with the stiff systems that occur when the rate-independent limit is
approached in crystal (visco-)plasticity will be presented in this section with reference
to [134]. At each quadrature point, an update needs to be carried out of the stress state
in terms of P , respectively of M , of the energetic dual to the dislocation density tensor
Ξ and of the internal variables that characterise the plastic deformation, i.e. of F p and
of the accumulated plastic slip κcp. To this end, the material state at time tn is assumed
to be known and characterised by the internal variables F n

p, κ̃ncp. Advancing a time in-
crement ∆t to the next discrete point in time, tn+1, the set of evolution equations (3.84),
(3.113), (3.114) is discretised and evaluated by making use of the constitutive relations
(3.44), (3.45), (3.60), (3.108). Although the derivations to be presented in the following
will focus on the gradient crystal (visco-)plasticity formulation, the outlined algorithmic

structure remains the same for the reference formulation with M̃
rel

being zero in this
case. Moreover, superscripts referring to time tn+1 are omitted in the derivations for the
sake of clarity.

In the spirit of an incremental description, the rate equation for the plastic slip on
each slip system, (3.113), is discretised by means of an implicit Euler scheme, resulting
in

∆γ̃(α) = ∆γ0 sgn

(
M̃

(α)
) ∣∣∣∣∣M̃

(α)

q̃cp

∣∣∣∣∣
he

, (3.128)

with ∆γ0 = γ̇0 ∆t and the increments in plastic slip variables ∆γ̃(α). By once more
applying an implicit Euler scheme to discretise (3.114), by inserting (3.113) and using
(3.128) one arrives at

∆κ̃cp = − he
he + 1

nα∑
α=1

∆γ̃(α) M̃
(α)

q̃cp

. (3.129)
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To evaluate the stresses on the right-hand side of (3.128) and (3.129), with F assumed
to be given, the plastic part of the deformation gradient is updated by means of the
generalised midpoint rule

F p = [I −ΘΛp]−1 · [I + [1−Θ] Λp] · F n
p (3.130)

that results from the approximation of the exponential map discretisation of (3.84), as
proposed in [134], with the incremental projection tensor

Λp =
nα∑
α=1

∆γ̃(α)Z
(α)

(3.131)

and the parameter Θ that controls the integrator. In this contribution Θ = 1/2 will be
used which yields the second-order accurate midpoint rule. The update in F p can hence
be parametrised in terms of the increments in the plastic slip variables ∆γ̃(α), while the
discrete update of the energetic dual to κ̃cp, cf. (3.108),

q̃cp = −

[
τ0 + [τ∞ − τ0] tanh

(
h0

[
κ̃ncp + ∆κ̃cp

]
τ∞ − τ0

)]
(3.132)

is defined in terms of the increment in the accumulated plastic slip-like variable ∆κ̃cp.

Based on this observation, the discrete system of evolution equations is formulated
in and solved for ∆γ̃(α) and ∆κ̃cp. As elaborated in detail in [134] for a simplified, non-
gradient-enhanced case, approaching the rate-independent limit by increasing he, the

slightest overshoot in M̃
(α)

compared with q̃cp prevents (3.128) from being evaluated.

To deal with this difficulty it is proposed to reformulate the residual if M̃
(α)

> q̃cp as

R >
∆γ̃(α)

(
∆γ̃(1), . . . ,∆γ̃(nα),∆κ̃cp;F ,F n

p, κ̃
n
cp

)
= −

he

√√√√√ ∆γ̃(α)

∆γ0 sgn

(
M̃

(α)
) +

∣∣∣∣∣M̃
(α)

q̃cp

∣∣∣∣∣. (3.133)

However, for ∆γ̃(α) → 0 the derivative of R >
∆γ̃(α) with respect to ∆γ̃(α) that needs to be

evaluated if a gradient-based solver is used, becomes infinite and requires the residual
to be reformulated, again, with

R <
∆γ̃(α)

(
∆γ̃(1), . . . ,∆γ̃(nα),∆κ̃cp;F ,F n

p, κ̃
n
cp

)
= −∆γ̃(α) + ∆γ0 sgn

(
M̃

(α)
)∣∣∣∣∣M̃

(α)

q̃cp

∣∣∣∣∣
he

(3.134)
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representing a natural choice. Moreover, the residual which corresponds to the discrete
evolution equation (3.129) is given by

R∆κ̃cp

(
∆γ̃(1), . . . ,∆γ̃(nα),∆κ̃cp;F ,F n

p, κ̃
n
cp

)
= −∆κ̃cp −

he
he + 1

nα∑
α=1

∆γ̃(α) M̃
(α)

q̃cp

. (3.135)

The initial values of the plastic slip increments ∆γ̃
(α)
init are calculated on the basis of

a trial stress state M̃
(α)

trial = M̃
(α) (

F ,F n
p

)
as ∆γ̃

(α)
init = ∆γ0 sgn

(
M̃

(α)

trial

)
and a line-

search is used on the set of iteration variables
{

∆γ̃(1), . . . ,∆γ̃(nα),∆κ̃cp

}
if the constraint

sgn
(
∆γ̃(α)

)
= sgn

(
M̃

(α)
)
∀α is violated. If no convergence is achieved with this pro-

cedure, an augmented Lagrangian-type method is invoked, where the rate sensitivity
parameter is slowly increased to its maximum value, analogous to the simplified model
presented in [134]. Since Θp was introduced as a primary field variable, Curlt (Θp) is
known at quadrature point level so that the update of Ξ reduces to the evaluation of
(3.60). The derivatives of the residual functions R >

∆γ̃(α) , R
<

∆γ̃(α) and R∆κ̃cp with respect to

the primary variables ∆γ̃(α) and ∆κ̃cp which are required for a gradient-based solution
scheme are finally provided in Appendix B.3.

3.3.4 Representative simulation results

This section focuses on the analysis of representative boundary value problems in two-
and three-dimensional settings. In order to validate the model, homogeneous simple
shear deformation tests on a fictitious single crystal with two slip systems according to
the planar double slip problem discussed in [134] are presented first, and extended to
the case of an fcc crystal structure in a second step in Section 3.3.4.1. Focusing on finite
element-based simulation results in a two-dimensional setting, the localised finite plastic
deformation of a notched plate will be analysed in detail in Section 3.3.4.2. Proceeding
to the three-dimensional case, experimentally motivated torsion tests on micro wires are
presented in Section 3.3.4.3 and compared with the experimental findings documented
in [48].

3.3.4.1 Simple shear deformation test

This section deals with the simulation of (homogeneous) simple shear deformation tests
in order to 1) validate the model via a brief comparison with the results presented in
[134] and to 2) show that the constitutive response is to a good approximation rate-
independent for the chosen set of material parameters. Since the deformation state to
be analysed is homogeneous, no finite element simulations are required and the problem
reduces to the evaluation of constitutive relations at the material point level. The
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Figure 3.19: Fictitious crystal featuring two slip systems in simple shear deformation.

material parameters used in the simulations are summarised in Table 3.6 and are chosen
in accordance with [134].

We first focus on the planar double slip problem sketched in Figure 3.19. This problem
studies the simple shear deformation of a fictitious crystal featuring two slip systems
with the slip planes being oriented at ±30◦ relative to the e2-axis. The (single) crystal
is subjected to a simple shear deformation state, namely,

F = I + γ e1 ⊗ e2 , (3.136)

with the parameter γ that controls the shear deformation being linearly increased from
0.0 to 5.0. The deformation is applied within the course of tL = 10 s, respectively
tL = 100 s, and nL = 10, nL = 100 or nL = 1000 loadsteps are used for the discreti-
sation in time. The 11-, 12- and the 22-coefficients of the Kirchhoff stress tensor as a
function of the applied deformation are provided in Figure 3.20. It can be seen that
a discretisation with only nL = 10 time steps is too coarse to accurately reproduce
the stress-strain curves. On the other hand, the difference between a discretisation with
nL = 100 and nL = 1000 time steps is nearly negligible. Moreover, comparing the consti-
tutive responses for tL = 10 s, Figures 3.20(a,c,e), with those corresponding to tL = 100 s,
Figures 3.20(b,d,f), one observes that the material response is, to a good approximation,
rate-independent. At this point, we do not further focus in more detail on the interpreta-
tion of the stress-strain curves. Rather, we would like to point out that the stress-strain
curves shown in Figure 3.20 compare well with those provided in [134], especially when
taking into account that the models are based on different (elastic) free energy density
functions, which to some extent validates the implementation.

Extending the model, the crystallographic structure of face-centred cubic metals is
taken into account. The respective slip systems are sketched in Figure 3.18 and detailed
information on each slip system is provided in Table 3.5. For the simple shear test to
be simulated, it is assumed that the crystallographic axes in Figure 3.18 are aligned
with the coordinate system in Figure 3.19. In accordance with the planar double slip
simulations, the influence of the duration of the experiment and of the time discretisation
on the stress-strain curves is studied. Regarding Figure 3.21, a more complex stress-
strain response compared with the double slip problem is revealed. However, the same
tendencies are observable in the sense that a time discretisation with nL = 10 time steps
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Table 3.6: Material parameters for the gradient crystal plasticity model in accordance with [134].

λ µ τ0 τ∞ γ̇0 h0 he HD

35.1 GPa 23.4 GPa 60 MPa 110 MPa 0.001 s−1 540 200 1.0− 5.0 GPa mm2

is too coarse to accurately reproduce the stress-strain curves and that the constitutive
response is, to a good approximation, rate-independent for the chosen set of material
parameters.

3.3.4.2 Notched plate in a two-dimensional setting

In order to study the gradient energy contribution (3.59), inhomogeneous boundary
value problems in a two-dimensional setting are analysed in this section. Being more
specific, the focus lies on the plate with two round notches as depicted in Figure 3.22.
The displacements of the centre nodes on the left and on the right boundary are fixed in
vertical direction. In horizontal direction, homogeneous Dirichlet boundary conditions
are assumed at the left boundary, and the displacement of the right boundary nodes is
linearly increased to 6 mm within the course of tL = 120 s. An adaptive time-stepping
scheme was used with a maximum allowed time step of 1 s for the reference and of 0.5 s
for the gradient crystal (visco-)plasticity formulation. Moreover, the set of material
parameters provided in Table 3.6 is used and an fcc crystallografic structure as defined
in Table 3.5 is assumed, with the crystallographic axes being aligned with the e1-, e2-
and e3-direction in the simulations as defined in Figure 3.22.

The model problem will be analysed by means of the reference crystal
(visco-)plasticity formulation which is based on standard eight-node serendipity-type
elements for the discretisation of the placement field, and by means of the gradient crys-
tal (visco-)plasticity formulation for which a mixed-type element formulation is used.
Specifically speaking, eight-node serendipity-type elements are used for the discretisa-
tion of the placement field and linear Lagrangian elements are used for the discretisation

of the Θp- and of the M̃
rel

-field. For these element formulations, discretisations with
1200, 2352 and 4800 elements will be taken into account.

Focusing on the load-displacement curves depicted in Figure 3.23, one first finds
that the reference formulation and a gradient crystal (visco-)plasticity formulation with
HD = 0.0 GPa mm2 both yield, within numerical tolerances, identical results. Activating
the gradient contribution one observes an increase in the overall stiffness with increasing
values of HD. The influence of the discretisation on the load displacement curves is
small for all formulations.

Figure 3.24 and Figure 3.25 show the deformation of the plate and the distribu-
tion of the accumulated plastic strain-like variable κcp, respectively of κ̃cp, for an
applied displacement of 6 mm. For both the reference as well as for the gradient
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Figure 3.20: Simple shear deformation tests for planar double slip. Depicted are the coefficients of the
Kirchhoff stress tensor as a function of the load which is applied in nL equal time steps over a time
interval tL.
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Figure 3.21: Simple shear deformation tests for fcc-single crystals with slip systems according to Ta-
ble 3.5. Depicted are the coefficients of the Kirchhoff stress tensor as a function of the load which is
applied in nL equal time steps over a time interval tL.
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Figure 3.22: Sketch of a symmetric plate with two round notches (in mm) subjected to tensile loading.

crystal (visco-)plasticity formulation, the formation of a cross-like plastic deformation
zone is observable which results in pronounced necking. We observe once more that
the reference formulation and the gradient crystal (visco-)plasticity formulation with
HD = 0.0 GPa mm2 show practically identical results with a striking change in the cur-
vature of the outer boundary near the centre of the plate, Figure 3.24. Activating the
gradient energy contribution significantly influences the deformation pattern and results,
for instance, in a significant reduction of the observed change in curvature near the centre
of the plate, Figure 3.25. Focusing in more detail on the distribution of κcp, respectively
of κ̃cp, one finds that, although the principle cross-like structure is maintained in the
gradient crystal (visco-)plasticity formulations, the plastic deformation zone seems to
be smeared with increasing values of HD. This effect is in good agreement with the
findings of Section 3.2. Again, we do not observe significant differences between the
different discretisations.

It is important to note that the problem geometry and the boundary conditions on
the placement field allow for a symmetric deformation with regard to the e1- and e2-
axes. In addition, the initial orientation of the crystallographic unit cell has been chosen
such that the crystallographic axes align with the e1- and e2-directions in Figure 3.22,
which does not disturb the overall symmetry. Thus, symmetries with respect to both
axes are observable in the deformation pattern and in the accumulated plastic strain-
like variable. However, focusing on the individual slip systems, these symmetries are not
maintained when the gradient energy contribution is activated as shown in Figure 3.26

and Figure 3.27. Regarding the coefficients of the projection operators Z
(1)

, Z
(4)

, Z
(7)

and Z
(10)

, which represent the dominant slip systems, with respect to the Cartesian base
vectors {e1, e2, e3}, namely
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3 Dislocation density tensor-based gradient plasticity

[
Z

(1)
]
ij

=

 1 1 1
−1 −1 −1

0 0 0

 (3.137a)
[
Z

(4)
]
ij

=

 1 1 −1
−1 −1 1

0 0 0

 (3.137b)

[
Z

(7)
]
ij

=

 1 −1 1
1 −1 1
0 0 0

 (3.137c)
[
−Z(10)

]
ij

=

 1 −1 −1
1 −1 −1
0 0 0

 (3.137d)

one would expect all four slip systems to show the same activity, if no shear stresses in
the third spatial direction occurred and if the driving force for the plastic slip, i.e. M , re-

spectively M̃ , was symmetric. This is indeed the case for the reference formulation where
M is found to be symmetric due to the assumed elastic isotropy, cf. (3.45), and where
the shear strains in e3-direction of the dominant slip systems, i.e. for α ∈ {1, 4, 7, 10},
cancel each other out pair-wise, see also (3.137) together with (3.45) and (3.84). Thus,
as is revealed in Figures 3.26(a-d) and Figures 3.27(a-d), the cross-like shape of the plas-
tic deformation zone which has previously been observed for the accumulated plastic
strain-like variable is recovered for each of the four slip systems.

In contrast, activating the gradient energy contribution the cross-like structure re-
duces to individual bands which are practically identical for the slip systems 1 and 4,
Figures 3.26(e-h), and for the slip systems 7 and 10, Figures 3.27(e-h). Accordingly, the
individual shear strain contributions in e3-direction cancel each other out, once again.

However, taking a closer look at the generalised stress tensor M̃ in (3.118), one finds

that contribution M̃
rel

is, in general, not symmetric for the specific form of the gradient
energy contribution (3.59). Inserting (3.60) in (3.119) yields the specific (point-wise)
definition of the relative stress field

M̃
rel

= −2HD Curlt
(
Curlt (F p)

)
· F t

p , (3.138)

where HD has been assumed to be constant and with the coefficient matrix of the Curl-
Curl term on the right-hand side given by (3.62).

Thus, the unsymmetry in the M̃ -stress field that is induced by the gradient energy
contribution seems to give rise to a different activity of the slip systems. Keeping these
observations in mind, it is useful to take a closer look at the shear-coefficients of the
plastic deformation gradient field which are presented in Figure 3.28. Whereas the shear
activities in the e1-e2-plane (nearly) cancel each other out in the non-gradient-enhanced
formulations, Figures 3.28(a-d), significant shear deformations are observable for the
gradient crystal (visco-)plasticity formulations, Figures 3.28(e-h), which result from the
different activity of the slip systems 1 and 7, respectively 4 and 10.
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(b) gradient plasticity formulation with
HD = 0.0 GPa mm2
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(c) gradient plasticity formulation with
HD = 1.0 GPa mm2
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HD = 5.0 GPa mm2

Figure 3.23: Load-displacement curves for the reference plasticity formulation and the multi-field gra-
dient crystal (visco-)plasticity formulation for the plate with two round notches. The calculation of the
total longitudinal reaction forces is based on a sample thickness of 1 mm.
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Figure 3.24: Deformation pattern and accumulated plastic strain-like variable κcp, respectively κ̃cp,
for the plate with two round notches according to Figure 3.22 and an applied displacement of 6 mm.
To facilitate the evaluation of the deformation, the contour of the undeformed sample, re-centred with
respect to the centre of the deformed plate, is depicted in light-grey colour.
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Figure 3.25: Deformation pattern and accumulated plastic strain-like variable κ̃cp for the plate with
two round notches according to Figure 3.22 and an applied displacement of 6 mm. To facilitate the
evaluation of the deformation, the contour of the undeformed sample, re-centred with respect to the
centre of the deformed plate, is depicted in light-grey colour.
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Figure 3.26: Activity of slip systems 1 and 4, for the plate with two round notches according to Fig-
ure 3.22 and an applied displacement of 6 mm. Depicted are the results of finite element simulations with
4800 elements for the reference formulation and for the gradient crystal (visco-)plasticity formulation
with various values of the material parameter HD.
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Figure 3.27: Activity of slip systems 7 and 10, for the plate with two round notches according to
Figure 3.22 and an applied displacement of 6 mm. Depicted are the results of finite element simula-
tions with 4800 elements for the reference formulation and for the gradient crystal (visco-)plasticity
formulation with various values of the material parameter HD.
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Figure 3.28: Distribution of the plastic deformation gradient coefficients Fp12 and Fp21, for the plate
with two round notches according to Figure 3.22 and an applied displacement of 6 mm. Depicted are
the results of finite element simulations with 4800 elements for the reference formulation and for the
gradient crystal (visco-)plasticity formulation with various values of the material parameter HD.
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Figure 3.29: Sketch of a micro wire subjected to torsion load.

3.3.4.3 Torsion tests on (micro) wires

Motivated by the experimental findings on polycrystalline copper micro wires presented
in [48] and summarised in Section 1.1.2, this section focuses on the size dependent
response and, accordingly, on the internal length scale that is induced by higher-gradient
contributions in terms of the dislocation density tensor.

Before analysing the torsion tests in detail it should be noted that this work does not
intend to exactly reproduce the constitutive response of polycrystalline copper micro
wires – it shall rather be shown that the proposed formulation is, in principle, capable
of reproducing the observed size effect, while the reference formulation fails to do so. To
this end, the focus will lie on the boundary value problem sketched out in Figure 3.29,
and wires of three different radii, namely rt ∈ {5 mm, 10 mm, 20 mm} will be analysed.
The wires have a total length of 100 mm with the grip sections at both ends having a
length of lg = 10 mm and, accordingly, lt = 80 mm holds. The displacement is assumed
to be fixed in all three spatial dimensions at the lower grip section. At the upper grip
section, a rotation ∆ϕt with respect to the e3-axis is prescribed at the outer boundary
nodes. The radial displacement is suppressed while an elongation or contraction in axial
direction is not hindered, see Figure 3.29. Furthermore, the set of material parameters
provided in Table 3.6 will be used for both the reference formulation and the gradient
crystal (visco-)plasticity formulation with HD = 10 GPa mm2. From a numerical point
of view, 20-node serendipity elements are used for the discretisation of the placement

field, while both the Θp- and the M̃
rel

-field in the gradient crystal (visco-)plasticity
formulation are discretised by means of linear Lagrangian elements. Occurring integrals
are evaluated using a standard Gaussian quadrature scheme with 27 quadrature points.
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3 Dislocation density tensor-based gradient plasticity

In the simulations, the relative rotation between the upper and lower support is lin-
early increased within 100 s to ∆ϕmax

t = π/4 and the overall torque Mt at the (upper or
lower) support is calculated. To allow for a good comparison with the experimental re-
sults of Figure 1.4(b) and in analogy with the presentation therein, the moment-rotation
curves are provided in terms of the normalised torque Mt/r

3
t and of the scaled twist per

unit length ∆ϕt rt/lt, which can be interpreted in terms of the shear strain at the wire’s
surface, see [48]. Focusing on the reference formulation first, the normalised moment-
rotation curves for the different radii presented in Figure 3.30(a) in fact coincide, as is
theoretically expected since the reference formulation does not feature an internal length
scale. In contrast, the simulation results of the gradient crystal (visco-)plasticity formu-
lation depicted in Figure 3.30(b) clearly do not coincide but show the same tendency as
was observed in the experiments, i.e. the overall hardening rate significantly increases
with a decreasing wire diameter.

In addition, the distribution of the accumulated plastic slip-like variable κcp for the
reference formulation, respectively κ̃cp for a gradient crystal (visco-)plasticity formula-
tion with HD = 10 GPa mm2, is provided in Figure 3.31. To give an example, the results
for an applied twist of ∆ϕt = π/4 and for wires with radii rt = 5 mm and rt = 10 mm
are depicted. In the case of the reference formulation, the anisotropic features that
are naturally induced by the crystal (visco-)plasticity framework are revealed. A com-
parison of the results of the reference formulation with those of the gradient crystal
(visco-)plasticity formulation reveals that the plastic zone is smeared in the gradient
formulation. Moreover, one observes that the gradient effect becomes more dominant
with a decreasing wire diameter.

Equation (3.24) together with the specific gradient energy contribution (3.59) and, ac-
cordingly, the specific form of the energetic dual to the dislocation density tensor (3.60)
gives rise to a back stress-type stress contribution with regard to the plastic evolution, see
(3.61), (3.92) and (3.113). Against this background, the constitutive response for cyclic
loading is exemplarily analysed for wires with radius rt = 10 mm and for three differ-
ent material models, respectively sets of material parameters. Specifically, the reference
crystal (visco-)plasticity formulation and gradient crystal (visco-)plasticity formulations
with HD = 5 GPa mm2 and HD = 10 GPa mm2 are taken into account. The finite ele-
ment simulations are based on the element formulations proposed at the beginning of
this section and a discretisation with 450 elements is used. In analogy with the simu-
lations presented before, the relative rotation between the upper and lower support is
linearly increased within 100 s to ∆ϕt = π/4, first. Next, the relative rotation is linearly
decreased to ∆ϕt = −π/4 within 200 s. Upon reaching the minimal value, the loading
is again reversed and the simulation is stopped 200 s later when a final relative rotation
of ∆ϕt = π/4 is reached. The corresponding moment-rotation curves are given in terms
of the normalised torque Mt/r

3
t and of the scaled twist per unit length ∆ϕt rt/lt, with a

significant influence of the gradient energy contribution being revealed, see Figure 3.32.
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HD = 10.0 GPa mm2

Figure 3.30: Simulation results of torsion tests according to Figure 3.29 for the reference formulation
and for a gradient crystal (visco-)plasticity formulation with HD = 10.0 GPa mm2. The simulation
results are presented in terms of the normalised torque Mt/r

3
t and of the scaled twist per unit length

∆ϕt rt/lt in analogy with the experimental findings of Figure 1.4(b). The normalised simulation results
of the reference formulation in fact coincide for the different radii. In contrast, a size dependent response
is revealed for the gradient crystal (visco-)plasticity formulation.

3.3.5 Summary

This section dealt with a thermodynamic consistent gradient crystal (visco-)plasticity
formulation which accounts for hardening effects that can be attributed to the presence
of geometrically necessary dislocations by incorporating dislocation density tensors as
additional arguments of the free energy density function. On the basis of the constitutive
framework presented in Section 3.1, it was shown how the phenomenological gradient
plasticity framework that was proposed in Section 3.2 can be extended to gradient crystal
(visco-)plasticity. In particular, a numerical framework was developed on the basis of
a different interpretation of the balance equation for the generalised stress field which
allowed us to use the same stabilisation algorithms that were used for the reference
crystal (visco-)plasticity formulation to approach the rate-independent limit.

For a specific model featuring twelve slip systems, the constitutive response at ma-
terial point level was then studied first. In a second step, the focus was laid on the
necking of a tension test specimen. It was observed that accounting for the presence of
geometrically necessary dislocations in the present crystal (visco-)plasticity framework,
significantly influenced the activity of the slip systems and the deformation pattern.
Motivated by experimental findings on copper micro wires, the focus was finally laid on
three-dimensional torsion tests, and it was shown that the reference formulation which
does not feature an internal length scale failed to reproduce the experimentally observed
size effect, whereas the gradient crystal (visco-)plasticity formulation was capable of
doing so.
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Figure 3.31: Simulation results for torsion tests according to Figure 3.29 and an applied twist of
∆ϕt = π/4. Depicted is the distribution of the accumulated plastic slip-like variable κcp for the
reference formulation, respectively κ̃cp for the gradient crystal (visco-)plasticity formulation with
HD = 10 GPa mm2. For both formulations, the simulation results of wires with radii rt = 5 mm and
rt = 10 mm are presented and discretisations with 3600 elements are used. Clearly, the plastic zone is
smeared in the gradient-enhanced case in comparison with the reference simulations.
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Figure 3.32: Simulation results of cyclic torsion tests according to Figure 3.29 with rt = 10 mm, for the
reference formulation and for gradient crystal (visco-)plasticity formulations with HD = 5.0 GPa mm2

and HD = 10.0 GPa mm2. The simulation results are presented in terms of the normalised torque Mt/r
3
t

and the scaled twist per unit length ∆ϕt rt/lt.
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B Appendix

B.1 Derivation of the algorithmic tangent stiffness

In this section, the contributions to the consistent algorithmic tangent stiffness matrix,
required for an iterative gradient-based solution of the non-linear system of equations
(3.79), are derived subject to the assumption of the following functional dependencies

F p

(
M̃ , κ; F pn, κn

)
(3.139a)

M
(
F (ϕ) , F p

(
M̃ , κ; F pn, κn

))
(3.139b)

P
(
F (ϕ) , F p

(
M̃ , κ; F pn, κn

))
(3.139c)

Ξ
(

Curlt (Θp) ,F p

(
M̃ , κ; F pn, κn

))
(3.139d)

f̃
(
M̃ , κ

)
(3.139e)

An update step i in the global iteration procedure is then given by
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(3.140)

with ∆• denoting the update in the field variable • to be solved for. Note, that here
and in the following, superscripts referring to the time step n + 1 are omitted for the
sake of brevity.

Balance of linear momentum
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Balance equation of the generalised Mandel stress tensor
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F p · ε0 · ∇XNM̃

F

]]
:

∂Ξ

∂∇XΘp

· ∇XNΘp

C

+
[
I ⊗

[
∇XΘp : ε0 N

M̃
F

]]
:

∂Ξ

∂∇XΘp

· ∇XNΘp

C

+NM̃
F

[
Ξ · ε0 · ∇XNΘp

C

]
⊗ I dVe (3.142c)

KM̃κ =

nel

A
e=1

∫
Be0
−∂Ξ
∂κ
· ε0 :

[
∇XNM̃

F ⊗ F t
p

]
Nκ
D −NM̃

F

∂M

∂κ
Nκ
D

−Ξ · ε0 :

[
∇XNM̃

F ⊗
∂F t

p

∂κ

]
Nκ
D +NM̃

F

∂Ξ

∂κ
· [∇XΘp : ε0]t Nκ

D dVe

(3.142d)

L2-projection of the plastic deformation gradient

KΘpϕ =

nel

A
e=1

0 (3.143a)

KΘpM̃ =

nel

A
e=1

∫
Be0

N
Θp

G

∂F p

∂M̃
NM̃
B dVe (3.143b)

KΘpΘp =

nel

A
e=1

∫
Be0
−NΘp

G I ⊗ I NΘp

C dVe (3.143c)

KΘpκ =

nel

A
e=1

∫
Be0

N
Θp

G

∂F p

∂κ
Nκ
D dVe (3.143d)
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Karush-Kuhn-Tucker condition To calculate the derivative of the Fischer-Burmeister
function (3.78) with respect to the field variables we first note that

∂fκh
int

∂f f̃ h
int

= diag
(
υ1, . . . , υnnp,κ

)
, υi =

[
f f̃ h

int

]
i√[

f f̃ h
int

]2

i
+
[
f
λph
int

]2

i

+ 1 (3.144)

and

∂fκh
int

∂f
λph
int

= diag
(
Υ1, . . . , Υnnp,κ

)
, Υi =

[
f
λph
int

]
i√[

f f̃ h
int

]2

i
+
[
f
λph
int

]2

i

− 1 . (3.145)

Using (3.144) and (3.145), the contributions to the consistent algorithmic stiffness matrix
can be specified as

Kκϕ =
∂fκh

int

∂f f̃ h
int

·Kf̃ϕ +
∂fκh

int

∂f
λph
int

·Kλpϕ (3.146a)

KκM̃ =
∂fκh

int

∂f f̃ h
int

·Kf̃ M̃ +
∂fκh

int

∂f
λph
int

·KλpM̃ (3.146b)

KκΘp =
∂fκh

int

∂f f̃ h
int

·Kf̃Θp +
∂fκh

int

∂f
λph
int

·KλpΘp (3.146c)

Kκκ =
∂fκh

int

∂f f̃ h
int

·Kf̃κ +
∂fκh

int

∂f
λph
int

·Kλpκ (3.146d)

with

Kf̃ϕ =

nel

A
e=1

0 (3.147a) Kf̃ M̃ =

nel

A
e=1

∫
Be0
Nκ
H

∂f̃

∂M̃
NM̃
B dVe (3.147b)

Kf̃Θp =

nel

A
e=1

0 (3.147c) Kf̃κ =

nel

A
e=1

∫
Be0
Nκ
H

∂f̃

∂κ
Nκ
D dVe (3.147d)

and

Kλpϕ =

nel

A
e=1

0 (3.148a) KλpM̃ =

nel

A
e=1

0 (3.148b)

KλpΘp =

nel

A
e=1

0 (3.148c) Kλpκ =

nel

A
e=1

∫
Be0
Nκ
I N

κ
D dVe (3.148d)
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Supplementary derivatives In this paragraph, the derivatives of the functions F p, P ,

M , Ξ and f̃ with respect to F , ∇XΘp, M̃ and κ that are required for the finite element
implementation will be specified for the material model proposed in Section 3.2.2.

Focusing first on the derivatives of the plastic part of the deformation gradient, which
is defined in (3.58), we find

∂F p

∂M̃
= − ∂F p

∂

[
I − M̃dev∥∥M̃dev

∥∥ [κ− κn]

] :

I ⊗ I − 1

3
I ⊗ I − M̃dev∥∥M̃dev

∥∥ ⊗ M̃dev∥∥M̃dev

∥∥
 κ− κn∥∥M̃dev

∥∥
(3.149a)

and

∂F p

∂κ
= − ∂F p

∂

[
I − M̃dev∥∥M̃dev

∥∥ [κ− κn]

] :
M̃dev∥∥M̃dev

∥∥ , (3.149b)

with

∂F p

∂

[
I − M̃dev∥∥M̃dev

∥∥ [κ− κn]

] =−

I − M̃dev∥∥M̃dev

∥∥ [κ− κn]

−1

⊗

I − M̃dev∥∥M̃dev

∥∥ [κ− κn]

−1

· F n
p

t

.

(3.150)

Taking into account (3.149a) and (3.149b), the derivatives of the Piola stress tensor, see
(3.44), can be specified as

∂P

∂F
= λ J2

e F
−t ⊗ F−t −

[
λ

2

[
J2

e − 1
]
− µ

]
F−1 ⊗ F−t + µ I ⊗ C−1

p (3.151a)

and

∂P

∂M̃
= −

[
λ J2

e F
−t ⊗ F−t

p + µ
[
F ·C−1

p

]
⊗ F−1

p + µF e ⊗ C−1
p

]
:
∂F p

∂M̃
, (3.151b)

∂P

∂κ
= −

[
λ J2

e F
−t ⊗ F−t

p + µ
[
F ·C−1

p

]
⊗ F−1

p + µF e ⊗ C−1
p

]
:
∂F p

∂κ
. (3.151c)

Analogously, the derivatives of the Mandel stress tensor of the intermediate configuration
are given by

∂M

∂F
= λ J2

e I ⊗ F−t + µF−t
p ⊗ F t

e + µF t
e ⊗ F−t

p (3.152a)
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and

∂M

∂M̃
= −

[
λ J2

e I ⊗ F−t
p + µF−t

p ⊗ Ce + µCe ⊗ F−t
p

]
:
∂F p

∂M̃
, (3.152b)

∂M

∂κ
= −

[
λ J2

e I ⊗ F−t
p + µF−t

p ⊗ Ce + µCe ⊗ F−t
p

]
:
∂F p

∂κ
. (3.152c)

Finally, the derivatives of the yield function are given by

∂f

∂M̃
=

M̃dev∥∥M̃dev

∥∥ (3.153)
∂f

∂κ
= −HD (3.154)

and those of the energetic dual to the dislocation density tensor (3.60) by

∂Ξ

∂∇XΘp

= 2HD I ⊗ ε0 (3.155a)
∂Ξ

∂κ
= 0 (3.155b)

and

∂Ξ

∂M̃
= 0 . (3.155c)

B.2 Derivation of the algorithmic tangent stiffness –
crystal plasticity

In this appendix, the contributions to the consistent algorithmic tangent stiffness ma-
trix that is required for a gradient-based solution of the non-linear system of equations
(3.125)-(3.127) with corresponding boundary conditions, are presented. A standard
Newton update step i in the global iteration procedure is of the form

0
0
0

 =


fϕh

int − f
ϕh
ext

fM̃
rel

h
int

f
Θph
int


i

+


Kϕϕ KϕM̃

rel

KϕΘp

KM̃
rel
ϕ KM̃

rel
M̃

rel

KM̃
rel
Θp

KΘpϕ KΘpM̃
rel

KΘpΘp


i

·


∆ϕ̂

∆
̂̃
M

rel

∆Θ̂p


i

(3.156)

with ∆•̂ denoting the update in the global list of degrees of freedom •̂, corresponding
to the field variable •, to be solved for. Here and in the following, the superscripts
referring to the time step n + 1 are omitted for the sake of brevity and frequently
occurring derivatives are not inserted but summarised at the end of this appendix.

162



B Appendix

Balance of linear momentum

Kϕϕ =

nel

A
e=1

∫
Be0
∇XNϕ

D ·
dP t

dF
· ∇XNϕ

A dVe (3.157a)

KϕM̃
rel

=

nel

A
e=1

∫
Be0
∇XNϕ

D ·
dP t

dM̃
rel
NM̃

rel

B dVe (3.157b)

KϕΘp =

nel

A
e=1

0 (3.157c)

Balance equation of the generalised Mandel stress tensor

KM̃
rel
ϕ =

nel

A
e=1

∫
Be0

Ξ ·
[
ε0 · ∇XNM̃

rel

E

]
·

dF t
p

dF
· ∇XNϕ

A dVe (3.158a)

KM̃
rel
M̃

rel

=

nel

A
e=1

∫
Be0

NM̃
rel

E I ⊗ I NM̃
rel

B

+Ξ ·
[
ε0 · ∇XNM̃

rel

E

]
·

dF t
p

dM̃
rel
NM̃

rel

B dVe (3.158b)

KM̃
rel
Θp =

nel

A
e=1

∫
Be0

[
I ⊗

[
F p · ε0 · ∇XNM̃

rel

E

]]
:

∂Ξ

∂∇XΘp

· ∇XNΘp

C

+

[
I ⊗

[
∇XΘp : ε0 N

M̃
rel

E

]]
:

∂Ξ

∂∇XΘp

· ∇XNΘp

C

+NM̃
rel

E

[
Ξ · ε0 · ∇XNΘp

C

]
⊗ I dVe (3.158c)

L2-projection of the plastic deformation gradient

KΘpϕ =

nel

A
e=1

∫
Be0

N
Θp

F

dF p

dF
Nϕ
A dVe (3.159a)

KΘpM̃
rel

=

nel

A
e=1

∫
Be0

N
Θp

F

dF p

dM̃
rel
NM̃

rel

B dVe (3.159b)

KΘpΘp =

nel

A
e=1

∫
Be0
−NΘp

F I ⊗ I NΘp

C dVe (3.159c)

Supplementary derivatives This paragraph focuses on (the derivation of) the deriva-

tives dP /dF , dP /dM̃
rel

, dF p/dF , dF p/dM̃
rel

and ∂Ξ/∂∇XΘp, which are required to
set up the consistent algorithmic tangent stiffness. Noting that the Piola stress tensor P
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in (3.44) can be regarded as a function of F and F p, with F p being an implicit function

of F and M̃
rel

, the total differential of P results in

dP =

[
∂P

∂F
+

∂P

∂F p

:
dF p

dF

]
: dF +

[
∂P

∂F p

:
dF p

dM̃
rel

]
: dM̃

rel

, (3.160)

with

∂P

∂F
= λ J2

e F
−t ⊗ F−t −

[
λ

2

[
J2

e − 1
]
− µ

]
F−1 ⊗ F−t + µ I ⊗ C−1

p , (3.161a)

∂P

∂F p

= −
[
λ J2

e F
−t ⊗ F−t

p + µ
[
F ·C−1

p

]
⊗ F−1

p + µF e ⊗ C−1
p

]
, (3.161b)

and

dF p=

[
nα∑
α=1

[I −ΘΛp]−1 ·Z(α) ·
[
I + Θ [I −ΘΛp]−1 ·Λp

]
· F n

p ⊗
d∆γ̃(α)

dF

]
:dF

+

[
nα∑
α=1

[I −ΘΛp]−1 ·Z(α) ·
[
I + Θ [I −ΘΛp]−1 ·Λp

]
· F n

p ⊗
d∆γ̃(α)

dM̃
rel

]
:dM̃

rel
(3.162)

To derive the derivatives d∆γ̃(α)/dF and d∆γ̃(α)/dM̃
rel

use will be made of the implicit
function theorem. Denoting the generalised residual of a slip system at integration point
level by R∆γ̃(α) , with R∆γ̃(α) being either R <

∆γ̃(α) or R >
∆γ̃(α) , depending on the current state

as outlined in Section 3.3.3.3, and following standard procedure one arrives at

d∆γ̃(1)

...

d∆γ̃(nα)

d∆κ̃cp


= −



∂R
∆γ̃(1)

∂∆γ̃(1) · · ·
∂R

∆γ̃(1)

∂∆γ̃(nα)

∂R
∆γ̃(1)

∂∆κ̃cp

...
. . .

...
...

∂R
∆γ̃(nα)

∂∆γ̃(1) · · ·
∂R

∆γ̃(nα)

∂∆γ̃(nα)

∂R
∆γ̃(nα)

∂∆κ̃cp

∂R∆κ̃cp

∂∆γ̃(1) · · · ∂R∆κ̃cp

∂∆γ̃(nα)

∂R∆κ̃cp

∂∆κ̃cp



−1

·



∂R
∆γ̃(1)

∂F

...

∂R
∆γ̃(nα)

∂F

∂R∆κ̃cp

∂F


: dF

−



∂R
∆γ̃(1)

∂∆γ̃(1) · · ·
∂R

∆γ̃(1)

∂∆γ̃(nα)

∂R
∆γ̃(1)

∂∆κ̃cp

...
. . .

...
...

∂R
∆γ̃(nα)

∂∆γ̃(1) · · ·
∂R

∆γ̃(nα)

∂∆γ̃(nα)

∂R
∆γ̃(nα)

∂∆κ̃cp

∂R∆κ̃cp

∂∆γ̃(1) · · · ∂R∆κ̃cp

∂∆γ̃(nα)

∂R∆κ̃cp

∂∆κ̃cp



−1

·



∂R
∆γ̃(1)

∂M̃
rel

...

∂R
∆γ̃(nα)

∂M̃
rel

∂R∆κ̃cp

∂M̃
rel


: dM̃

rel

(3.163)
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The derivatives of the residual functions with respect to the increments in the plastic
slips ∆γ̃(α) and with respect to the increment in the accumulated plastic strain-like
variable ∆κ̃cp are provided in Appendix B.3. The derivatives of the residual functions
with respect to F read

∂R <
∆γ̃(α)

∂F
= ∆γ0 he

2µ∣∣∣M̃ (α)∣∣∣
∣∣∣∣∣M̃

(α)

q̃cp

∣∣∣∣∣
he

F e ·Z
(α) · F−t

p , (3.164a)

∂R >
∆γ̃(α)

∂F
=

2µ∣∣∣q̃cp

∣∣∣ sgn

(
M̃

(α)
)
F e ·Z

(α) · F−t
p , (3.164b)

∂R∆κ̃cp

∂F
=

nα∑
α=1

− he
he + 1

2µ

q̃cp

∆γ̃(α) F e ·Z
(α) · F−t

p , (3.164c)

and those with respect to M̃
rel

are given by

∂R <
∆γ̃(α)

∂M̃
rel

= ∆γ0 he
1∣∣∣M̃ (α)∣∣∣

∣∣∣∣∣M̃
(α)

q̃cp

∣∣∣∣∣
he

Z
(α)

, (3.165a)

∂R >
∆γ̃(α)

∂M̃
rel

=
1∣∣∣q̃cp

∣∣∣ sgn

(
M̃

(α)
)
Z

(α)
, (3.165b)

∂R∆κ̃cp

∂M̃
rel

=
nα∑
α=1

− he
he + 1

1

q̃cp

∆γ̃(α)Z
(α)

. (3.165c)

Finally, the derivative of the energetic dual to the dislocation density tensor Ξ with
respect to ∇XΘp can be specified as

∂Ξ

∂∇XΘp

= 2HD I ⊗ ε0 . (3.166)

B.3 Iteration scheme at quadrature point level

In this appendix, the derivatives of the residual functions (3.133)-(3.135) with respect to
the primary variables ∆γ̃(1), . . . ,∆γ̃(nα) and ∆κ̃cp will briefly be summarised, assuming
the functional dependencies
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R <
∆γ̃(α)

(
∆γ̃(1), . . . ,∆γ̃(nα),∆κ̃cp;F ,F n

p, κ̃
n
cp

)
, (3.167a)

R >
∆γ̃(α)

(
∆γ̃(1), . . . ,∆γ̃(nα),∆κ̃cp;F ,F n

p, κ̃
n
cp

)
, (3.167b)

R∆κ̃cp

(
∆γ̃(1), . . . ,∆γ̃(nα),∆κ̃cp;F ,F n

p, κ̃
n
cp

)
. (3.167c)

The derivatives of the residual function (3.133) with respect to the increments in the
plastic slips and with respect to the accumulated plastic strain-like variable are given
by

∂R <
∆γ̃(α)

∂∆γ̃(β)
= −δαβ + ∆γ0 he

1∣∣∣M̃ (α)∣∣∣
∣∣∣∣∣M̃

(α)

q̃cp

∣∣∣∣∣
he
∂M̃

(α)

∂∆γ̃(β)
, (3.168a)

∂R <
∆γ̃(α)

∂∆κ̃cp

= sgn

(
M̃

(α)
)

∆γ0 he
1∣∣∣q̃cp

∣∣∣
∣∣∣∣∣M̃

(α)

q̃cp

∣∣∣∣∣
he

∂q̃cp

∂∆κ̃cp

. (3.168b)

The derivatives of the reformulated residual function, (3.134), read

∂R >
∆γ̃(α)

∂∆γ̃(β)
=− 1

he

 ∆γ̃(α)

∆γ0 sgn

(
M̃

(α)
)


1
he
−1

δαβ

∆γ0 sgn

(
M̃

(α)
)

+
1∣∣∣q̃cp

∣∣∣ sgn

(
M̃

(α)
)

∂M̃
(α)

∂∆γ̃(β)
,

(3.169a)

∂R >
∆γ̃(α)

∂∆κ̃cp

=

∣∣∣M̃ (α)∣∣∣
q̃ 2

cp

∂q̃cp

∂∆κ̃cp

, (3.169b)

and the ones corresponding to (3.135) can be specified as

∂R∆κ̃cp

∂∆γ̃(β)
= − 1

q̃cp

he
he + 1

M̃ (β)

+
nα∑
α=1

∆γ̃(α) ∂M̃
(α)

∂∆γ̃(β)

 , (3.170a)

∂R∆κ̃cp

∂∆κ̃cp

= −1 +
he

he + 1

[
nα∑
α=1

∆γ̃(α) M̃
(α)
]

1

q̃ 2
cp

∂q̃cp

∂∆κ̃cp

. (3.170b)
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The derivative of M̃
(α)

with respect to ∆γ̃(β), namely

∂M̃
(α)

∂∆γ̃(β)
=
[
2µF e ·Z

(α)
]

:
[
−F e ⊗ F−t

p

]
:
[
[I −ΘΛp]−1 ·Z(α) ·

[
I + Θ [I −ΘΛp]−1 ·Λp

]
· F n

p

]
(3.171)

and the derivative of q̃cp with respect to ∆κ̃cp, i.e.

∂q̃cp

∂∆κ̃cp

= −h0 sech2

(
h0

[
κ̃ncp + ∆κ̃cp

]
τ∞ − τ0

)
(3.172)

have not been inserted in the previous equations for the sake of clarity.
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4 Deformation-induced anisotropy
evolution in finite plasticity

Motivated by the experimental findings on cold-rolled sheet metal by Kim and Yin,
[65], which suggest an evolution of the (plastic) material symmetry group in finite
plastic deformation processes, this chapter focuses on the modelling of evolving plas-
tic anisotropies and is structured as follows:

Section 4.1 (Constitutive framework) sets the stage by briefly introducing the extended
notation, and the covariant modelling framework which was proposed in [77]. In ad-
dition, general results with regard to the evaluation of the dissipation inequality are
presented.

Section 4.2 (Elasto-plastic prototype model) focuses on the elaboration of a specific
elasto-plastic prototype model. In particular, the dissipation inequality is analysed and
the thermodynamic consistency of the proposed model is shown.

Section 4.3 (Plastic spin prototype model) first gives a brief summary of the experimen-
tal findings by Kim and Yin, [65]. Motivated by the latter, the evolution equation for the
structural tensor is studied in detail in a second step and a specific, well-interpretable,
form is proposed.

Section 4.4 (Representative simulation results) addresses the solution of the resulting
coupled system of differential equations and presents finite element-based simulation re-
sults for tension tests in two- and three-dimensional settings which are compared with
the experimental observations. In addition, simulation results for in-plane torsion tests
are discussed to analyse the model’s properties for shear dominated deformation states.
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4.1 Constitutive framework

After introducing the extended notation to be used in this chapter in Section 4.1.1, the
theoretical foundations of the modelling of evolving material symmetry groups as derived
in [77] are briefly summarised in Section 4.1.2, and the implications on the dissipation
inequality are studied in Section 4.1.3 based on the findings presented in [9].

4.1.1 Notation

Since the differential geometric nature of the various tensor valued quantities to be
introduced in this section is of primary interest for the ensuing developments, a more
rigorous notation than the one used in the previous chapters will be adopted. To this end
let α and β be elements of the tangent space TXB0 at point X and let γ be an element
of the corresponding cotangent space T ?XB0 which is defined by means of duality pairings
according to 〈•, •〉B0 : T ?XB0 × TXB0 → R. Furthermore, let G[ denote the (covariant)
metric tensor on B0, see e.g. [77, 83] for further details.

For a mixed-variant tensor T : TXB0 → TXB0 the adjoint T ? : T ?XB0 → T ?XB0 is
defined by the identity

γ · T ·α = α · T ? · γ ∀ α ∈ TXB0, γ ∈ T ?XB0 (4.1)

and the transpose T t : TXB0 → TXB0 is given by[
G[ ·α

]
· [T · β] =

[
G[ · β

]
·
[
T t ·α

]
∀ α, β ∈ TXB0 . (4.2)

Taking into account (4.1) and (4.2) furthermore reveals the useful relation

T t =
[
G[
]−1

· T ? ·G[ . (4.3)

If the tensor T : TXB0 → TXB0 fulfils the property T = T t, respectively
T ? ·G[ = G[ · T , it will be termed G[-symmetric. Likewise, the tensor T will be re-
ferred to as G[-skew if the relation T = −T t or equivalently T ? ·G[ = −G[ · T , holds.

The G[-symmetric part of a tensor will be denoted by TG
[−sym and the G[-skew part by

TG
[−skw. Moreover, we term a tensor G[-orthogonal if it fulfils the metric preservation

property, that is if

α · T ? ·G[ · T · β = α ·G[ · β ∀ α, β ∈ TXB0 (4.4)

holds.
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4.1.2 Modelling of evolving material symmetry groups

In [77] a continuum-mechanical theory for the modelling of anisotropic finite plastic-
ity is proposed which is based on the principle of covariance. Although the proposed
modelling approach tries to circumvent the explicit use of a local, unstressed intermedi-
ate configuration such that the classic multiplicative split does not need to be invoked
explicitly and hence the (indeterminate) plastic rotation does not enter the associated
constitutive functions, it is instructive to invoke the multiplicative split for the sake of
motivation. To this end let B0 ⊂ R3 be the region occupied by the body under consid-
eration at a certain reference time t0 ∈ R and let Bt ⊂ R3 be the region occupied at
time t ≥ t0. The position vector of a material point at time t, i.e. x ∈ Bt, is related
to the position vector in the reference configuration X ∈ B0 via the deformation map
ϕ (X, t) : B0 × R → Bt ⊂ R3. The deformation gradient F : TXB0 → TxBt is defined
as the associated tangent map, more specifically F = TXϕ with JF = det (F ) > 0
and TXB0, respectively TxBt, designating the tangent spaces at X and x. The cor-
responding cotangent spaces, denoted by T ?XB0 and T ?xBt, are related by the adjoint
mapping F ? : T ?xBt → T ?XB0 and the co- and contravariant metric tensors are given by
G[ : TXB0 → T ?XB0 and g[ : TxBt → T ?xBt, respectively by G] : T ?XB0 → TXB0 and
g] : T ?xBt → TxBt. In addition, the referential and spatial mixed-variant second order
identity tensors will be indicated by G\ : TXB0 → TXB0 and g\ : TxBt → TxBt, as
summarised in Figure 4.1. Based on the multiplicative split of the deformation gradient,
see [71],

F = F e · F p (4.5)

with F p : TXB0 → TXB and F e : TXB → TxBt, the local incompatible intermediate
configuration B with tangent space TXB and cotangent space T ?

X
B is introduced. In

analogy with the reference and current configuration, the co- and contravariant metric

tensors are denoted by G
[

: TXB → T ?
X
B, respectively G

]
: T ?

X
B → TXB, and the

second order mixed-variant identity tensor is given by G
\

: TXB → TXB. We take
note of the fact that the multiplicative split and hence the intermediate configuration is
defined except for a rotation. This rotational indeterminacy merits special attention with
regard to anisotropic plasticity, see e.g. [29], and motivated the theoretical developments
presented in [77] and the current work.

Assuming a stored energy function of the form

W = Ŵ
(
F · F−1

p , g[,G
[
, κ
)

(4.6)

in a first step, with κ being a scalar valued internal variable that characterises the
hardening, it is shown in [77, 78, 88, 89] that invoking the postulate of covariance yields,
as a special case, the same constitutive reductions as invariance under superposed rigid
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F

F ⋆

F e

F ⋆
e

F p

F ⋆
p

ϕ (X, t)

B0

TXB0 T ⋆
X
B0

G♭ G♯ G♮

B

T
X
B T ⋆

X
B

G
♭

G
♯

G
♮

Bt

TxBt T ⋆
xBt

g♭ g♯ g♮

Figure 4.1: Referential, spatial and intermediate configuration with tangent spaces, cotangent spaces
and the corresponding mappings.

body motions on the spatial and intermediate configuration. Specifically (4.6) may
equivalently be written in terms of

W = W̃ (C,Cp, κ) , (4.7)

with the right Cauchy-Green tensor C and the right Cauchy-Green plastic deformation
tensor Cp defined as

C = F ? · g[ · F , (4.8a) Cp = F ?
p ·G

[ · F p . (4.8b)

We point out that referential covariance implies that a material characterised by (4.7)
is (elastically) isotropic. Moreover, we should like to stress that the plastic metric
Cp will be regarded as a primitive variable such that the multiplicative split and the
definition (4.8b) are only invoked for the sake of motivation. The evolution of the plastic
deformation may then be defined in terms of rate-type equations for Cp in the form

Ċp = Cp · Γ p + Γ ?
p ·Cp , (4.9)

with Γ p representing a constitutive function which needs to be specified in accordance
with the dissipation inequality and which may be motivated based on the multiplicative
split, see Section 4.1.3, Section 4.2.3 and [77] for a detailed discussion. Furthermore,
note that Γ p is assumed to be Cp-symmetric, as adding any Cp-skew tensor to Γ p would
not alter the right-hand side of (4.9).
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4.1 Constitutive framework

Both the elastic material response and the yielding behaviour may show a significant
directional dependency. Based on the physical assumptions that the material symmetry
group is induced by the crystalline structure and that the plastic deformation leaves
the structure of the crystal lattice unaltered, it is proposed in [77] to characterise the
symmetry group by means of Euclidean orthogonal transformations in the intermediate
configuration. Referring to Noll’s rule it is then argued that the representation of the
symmetry group relative to the reference configuration G is a subgroup of the Cp-
orthogonal group and hence characterised by (referential) tensors Q that satisfy the
property

Q? ·Cp ·Q = Cp . (4.10)

The symmetry group of the elastic response may certainly be different from the one
of the yield function. It may, for example, be assumed with regard to metal plasticity
that the yielding behaviour exhibits appreciable directional dependence, while the elastic
response may merely be treated as isotropic. In this case, the symmetry group of the
yield function is a subgroup of the symmetry group of the elastic response, i.e. a subgroup
of the symmetry group of the strain energy function. Essentially, this reflects the notion
that the anisotropic features which are assumed to be induced by the crystalline structure
manifest themselves in the yielding behaviour and, possibly, in the elastic response.

A natural approach to account for the anisotropic material response is given by the
introduction of (referential) structural tensors Ai, which characterise the respective sym-
metry group, into the constitutive equations. The structural tensors are invariant with
respect to transformations which belong to the respective symmetry group. In particular,
for second order structural tensors

Q ·Ai ·Q? = Ai ∀ Q ∈ Gi (4.11)

holds, and it is shown in [76, 89] for the case of non-linear elasticity that anisotropic
tensor functions may be rewritten as covariant functions when suitable structural ten-
sors are additionally included in the list of arguments. The latter approach has been
extended to elastic-plastic materials in [77] and is the basis for the modelling of evolving
plastic anisotropies in the present contribution. Since the structural tensors reflect the
material anisotropy in the constitutive equations, the evolution of the material’s sym-
metry group may equivalently be described in terms of appropriate rate-type equations
for the structural tensors. It has specifically been shown in [77] that, in order to be
consistent with (4.9), (4.10) and (4.11), the structural tensors must evolve according to

Ȧi =
[
−Γ p ·Ai −Ai · Γ ?

p

]︸ ︷︷ ︸
1○

+ [−W i ·Ai −Ai ·W ?
i ]︸ ︷︷ ︸

2○

, (4.12)
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4 Deformation-induced anisotropy evolution in finite plasticity

with W i denoting arbitrary Cp-skew tensors, i.e. tensors that satisfy the relation
W ?

i ·Cp +Cp ·W i = 0. Equation (4.12) suggests that the rate of the structural tensor
may additively be decomposed into two contributions. The first one, termed ”convected
evolution”, is directly related to changes in the right Cauchy-Green plastic deformation
tensor. The second contribution, which we will refer to as the ”residual evolution”,
on the other hand, allows the structural tensor to evolve independently of the plastic
deformation tensor Cp, reflecting a rotation of the preferred material axes which may
be related to the notion of a plastic spin. For a deeper understanding of the convected
and residual evolution, the multiplicative split may further be invoked as shown in Re-
mark 4.1.

4.1.3 Dissipation inequality

In this section we focus on the constitutive restrictions which may be deduced from the
dissipation inequality. To this end, assume a stored energy function of the form

W = W̆ (C, Cp,Ai, κ) (4.13)

and evaluate the dissipation rate (in local referential form)

D =
1

2
S : Ċ − ˙̆

W =

[
1

2
S − ∂W̆

∂C

]
: Ċ − ∂W̆

∂Cp

: Ċp −
∑
i

∂W̆

∂Ai

: Ȧi −
∂W̆

∂κ
κ̇ . (4.14)

Using standard argumentation yields the classic definition of the Piola-Kirchhoff stress
tensor

S = 2
∂W̆

∂C
(4.15)

and the reduced dissipation rate according to

Dred = − ∂W̆
∂Cp

: Ċp −
∑
i

∂W̆

∂Ai

: Ȧi + q κ̇ , (4.16)

with the energy-conjugate variable to κ introduced as

q = −∂W̆
∂κ

. (4.17)

Invoking the covariance condition, see [76, 77, 88, 89] for details,

C · ∂W̆
∂C

+Cp ·
∂W̆

∂Cp

−
∑
i

∂W̆

∂Ai

·Ai = 0 (4.18)
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and making use of the rate equations (4.9) and (4.12), (4.16) may further be rewritten
as

Dred = [C · S] : Γ p + 2
∑
i

[
∂W̆

∂Ai

·Ai

]
: W i + q κ̇ . (4.19)

At this stage we observe the energy conjugacy between the referential Mandel stress
tensor

M = C · S (4.20)

and Γ p.

To proceed, assume for now that all structural tensors spin with the same rate, i.e.
W i = W ∀ i, and use again (4.18) such that

2
∑
i

[
∂W̆

∂Ai

·Ai

]
: W i = 2

[∑
i

∂W̆

∂Ai

·Ai

]
: W = 2

[
C · ∂W̆

∂C
+Cp ·

∂W̆

∂Cp

]
: W . (4.21)

Noting that
[
Cp · ∂W̆/∂Cp

]
: W = ∂W̆/∂Cp : [Cp ·W ] = 0 due to the symmetry of

∂W̆/∂Cp and the Cp-skew symmetry of W results in

Dred = M : Γ p +M : W + q κ̇ , (4.22)

where (4.15) and (4.20) were used again. Since W is Cp-skew, the Cp-symmetric part of
M does not contribute to M : W . We hence find that the Cp-skew part of the Mandel
stress tensor is the thermodynamic-conjugate force to the plastic spin tensor W .

Consider now a material which is elastically isotropic. For this particular case, the ref-
erential Mandel stress tensorM can be shown to beCp-symmetric such thatM : W = 0
holds. Essentially, the latter observation means that the spin tensor W is not thermody-
namically constrained in the case of elastic isotropy such thatW may be chosen arbitrar-
ily (within the group of Cp-skew tensors) without violating thermodynamic consistency.
This result is of particular importance for the ensuing developments.

Remark 4.1 (Interpretation of the convected and residual evolution) To provide a better
understanding of the convected and residual evolution, the multiplicative split will be
invoked in this remark. To this end we note that the referential representation of a
structural tensor A may be related to its representation in the intermediate configuration
via

A = F p ·A · F ?
p . (4.23)
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Furthermore, we take note of the fact that the purely referential tensor Γ p may be mo-
tivated based on the multiplicative split of the deformation gradient as shown in [77],
resulting in relation

Γ p = [Lp]Cp−sym = Lp − [Lp]Cp−skw , (4.24)

with

Lp = F−1
p · Ḟ p (4.25)

denoting the referential representation of the plastic velocity gradient. By making use of
(4.12) and (4.23)–(4.25), the rate of A can be specified as

Ȧ= Ḟ p ·A · F ?
p + F p ·A · Ḟ ?

p + F p · Ȧ · F ?
p (4.26a)

= Ḟ p ·A · F ?
p + F p ·A · Ḟ ?

p

+ F p ·
[[
−Γ p ·A−A · Γ ?

p

]
+ [−W ·A−A ·W ?]

]
· F ?

p

(4.26b)

= Ḟ p ·A · F ?
p + F p ·A · Ḟ ?

p −
[
Ḟ p ·A · F ?

p + F p ·A · Ḟ ?
p

]
+
[
F p · [Lp]Cp−skw ·A · F ?

p + F p ·A ·
[
[Lp]Cp−skw

]?
· F ?

p

]
−
[
F p ·W · A · F ?

p + F p ·A ·W ? · F ?
p

] (4.26c)

=
[
Lp

]G[−skw ·A+A ·
[[
Lp

]G[−skw
]?
−W ·A−A ·W ?

, (4.26d)

with the classic plastic velocity gradient-type tensor

Lp = Ḟ p · F−1
p , (4.27)

and the spin tensor

W = F p ·W · F−1
p , (4.28)

which resembles the push forward of W with respect to tangent map F p. Since W is

Cp-skew as argued in Section 4.1.2, W turns out to be G
[
-skew. It is thus revealed

that an evolution equation of the form (4.12) results in a pure rotation of the structural
tensor A. The corresponding rate equation (4.26d) consists of two additive parts: the
first part which is governed by Lp renders the structural tensor spin at the same rate as
the intermediate configuration while the second part which is defined by W allows the
structural tensor to spin at a rate different from that of the intermediate configuration.
The second part is thus closely related to the notion of the plastic spin. We take note
of the fact that (4.26d) can also be well interpreted in the context of co-rotational rates,
see [80, 83].
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4.2 Elasto-plastic prototype model

4.2 Elasto-plastic prototype model

In this section, a specific prototype model will be proposed on the basis of [9]. We will
especially focus on the stored energy function and on the form of the yield function which
will be introduced in the intermediate configuration based on physical considerations.
An equivalent referential form is then derived and the thermodynamic consistency of
the model is shown.

4.2.1 Stored energy function and hardening potential

Following standard practise we assume that the material response may be characterised
by the energy density function W which is additively decomposed into the stored energy
function W e and the hardening potential W p according to

W = W e (C,Cp) +W p (κ) . (4.29)

Although W e may, in general, be an anisotropic function of C and Cp, we will assume
the elastic material behaviour to be isotropic. Being more specific, the Neo-Hookean-
type energy function

W e (C,Cp) =
µ

2
[Je1 − 2 ln (Je)− 3] +

λ

2
ln2 (Je) , (4.30)

with

Je1 = tr
(
C ·C−1

p

)
(4.31a) Je3 = det

(
C ·C−1

p

)
(4.31b) Je =

√
Je3 (4.31c)

and the material parameters λ and µ which are akin to the Lamé constants of the small
strain theory, will be adopted. Furthermore, we will use a hardening potential of the
form

W p (κ) = Rinf

[
κ+ ε0 exp

(
− κ
ε0

)]
, (4.32)

similar to [52], with the material parameter Rinf controlling the maximal yield stress and
with ε0 controlling the hardening speed. By making use of (4.15), (4.17) and (4.20), the
Piola-Kirchhoff stress tensor

S = µ
[
C−1

p −C−1
]

+ λ ln (Je) C
−1 , (4.33)

the Mandel stress tensor

M = µ
[
C ·C−1

p −G\?
]

+ λ ln (Je) G
\? (4.34)
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and the energetic dual to κ

q = −Rinf

[
1− exp

(
− κ
ε0

)]
(4.35)

may be specified.

4.2.2 Yield function

In contrast to the elastic material behaviour it will be assumed that the yielding be-
haviour exhibits appreciable directional dependence. Being more specific, a yield func-
tion of orthotropic type will be chosen in accordance with the experimental findings
to be discussed in Section 4.3.1. As stated before, it is assumed that the anisotropic
material behaviour is thought to be induced by the crystallographic symmetry itself.
Based on this motivation we propose to formulate the yield function as an orthotropic
function of the Mandel stress tensor in the intermediate configuration. To this end, the
contravariant second order structural tensor

A =
1

2

[
NA1 ⊗NA1 −NA2 ⊗NA2

]
(4.36)

is introduced in accordance with [101, 153], with NA1 and NA2 denoting the normals of
the two planes of reflectional symmetry. We take note of the fact that the two direction
vectors NA1 and NA2 are normalised with respect to the metric of the intermediate

configuration G
[
, such that

NA1·G
[·NA1 = 1 (4.37a) NA2·G

[·NA2 = 1 (4.37b) NA1·G
[·NA2 = 0 (4.37c)

hold. With the appropriate structural tensor at hand, the anisotropic yield function can
be rewritten as an isotropic function of the structural tensor and of the Mandel stress
tensor of the intermediate configuration M , enabling an invariant-based representation.
Specifically the set of invariants{

tr
(
M
)
, tr
(
M

2
)
, tr
(
M

3
)
, tr
(
M ·G[ ·A

)
,

tr
(
M

2 ·G[ ·A
)
, tr

(
M ·

[
G
[ ·A

]2
)
, tr

(
M

2 ·
[
G
[ ·A

]2
)} (4.38)

forms an integrity basis, since M is symmetric due to the assumed elastic isotropy. If
we restrict the yield function to be quadratic in M , we find that it may be composed
as a linear combination of the invariants
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{
tr
(
M
)

tr
(
M
)
, tr

(
M

2
)
, tr

(
M ·Ap

)
tr
(
M ·Ap

)
, tr

(
M ·A2

p

)
tr
(
M ·A2

p

)
,

tr
(
M
)

tr
(
M ·Ap

)
, tr

(
M
)

tr
(
M ·A2

p

)
, tr

(
M ·Ap

)
tr
(
M ·A2

p

)
,

tr
(
M

2 ·Ap

)
, tr

(
M

2 ·A2

p

)}
, (4.39)

with the mixed variant structural tensor being introduced according to

Ap = G
[ ·A (4.40)

for the sake of brevity. If we further assume the yielding behaviour to be independent of
the hydrostatic pressure, the Mandel stress tensor should only enter the yield function
in terms of its deviatoric component which is given by

Mdev = M − 1

3
tr
(
M
)
G
\?

, (4.41)

resulting in a possible yield function of the form

f =

[
a1 tr

(
M

2

dev

)
+ a2 tr

(
Mdev ·Ap

)
tr
(
Mdev ·Ap

)
+ a3 tr

(
Mdev ·A

2

p

)
tr
(
Mdev ·A

2

p

)
+a4 tr

(
Mdev ·Ap

)
tr
(
Mdev ·A

2

p

)
+ a5 tr

(
M

2

dev ·Ap

)
+ a6 tr

(
M

2

dev ·A
2

p

)]
−My .

(4.42)

In (4.42), the constants a1 - a6 denote material parameters which control the shape of the
yield surface and which need to be adjusted based on experiments as will be discussed
in Appendix C.1. On the other hand, the current yield limit My is assumed to be of the
form

My = 1− q (4.43)

which, in conjunction with the specific form of the hardening potential (4.32) and the
associated-type evolution equation (4.51b) that will be assumed as this work proceeds,
results in an exponential-type hardening behaviour.

Since the intermediate configuration and, accordingly, the multiplicative split are only
introduced for the sake of motivation, a representation of the yield function in terms of
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purely referential quantities is aspired. To this end, performing the pull-back operation
with respect to the tangent map F p results in

f =

[
a1 tr

(
M 2

dev

)
+ a2 tr (Mdev ·Ap) tr (Mdev ·Ap) + a3 tr

(
Mdev ·A2

p

)
tr
(
Mdev ·A2

p

)
+a4 tr (Mdev ·Ap) tr

(
Mdev ·A2

p

)
+ a5 tr

(
M 2

dev ·Ap

)
+ a6 tr

(
M 2

dev ·A2
p

) ]
−My ,

(4.44)

with the deviatoric part of the referential Mandel stress tensor defined as

Mdev = M − 1

3
tr (M ) G\? (4.45)

and the mixed-variant referential structural tensor as

Ap = Cp ·A =
1

2
Cp · [NA1 ⊗NA1 −NA2 ⊗NA2] . (4.46)

We note that the direction vectors

NA1 = F−1
p ·NA1 (4.47a) NA2 = F−1

p ·NA2 (4.47b)

are Cp-orthonormal, i.e.,

NA1·Cp·NA1 = 1 (4.48a) NA2·Cp·NA2 = 1 (4.48b) NA1·Cp·NA2 = 0 (4.48c)

which allows for a simple representation of higher-order powers of the mixed-variant
structural tensor, e.g.,

A2
p =

1

4
Cp · [NA1 ⊗NA1 +NA2 ⊗NA2] . (4.49)

4.2.3 Evaluation of the dissipation inequality

For an elastically isotropic material it was shown in Section 4.1.3 that the reduced
dissipation inequality takes the form

Dred = M : Γ p + q κ̇ ≥ 0 . (4.50)

In order to fulfil (4.50) a priori for every possible load path we will assume the existence
of a convex plastic potential in the spirit of generalised standard materials, [51]. More
specifically speaking, an associated-type flow rule is used such that the plastic potential
coincides with the yield function. Following a standard procedure, the corresponding rate
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equations for the plastic velocity gradient-type tensor Γ p and for the internal variable
κ are then given by

Γ p = λp
∂f

∂M
= λpΛp (4.51a) κ̇ = λp

∂f

∂q
(4.51b)

with the plastic multiplier λp ≥ 0. We take note of the fact that λp > 0 in the case of
plastic loading, while the identity λp = 0 holds if the material deforms only elastically.
Moreover, evaluating (4.51a) and (4.51b) for the specific yield function (4.44) yields

Γ p = λp

[
2 a1M

?
dev + 2 a2 tr (Mdev ·Ap) A?

p + 2 a3 tr
(
Mdev ·A2

p

) [
A2

p

]?
+ a4

[
tr
(
Mdev ·A2

p

)
A?

p + tr (Mdev ·Ap)
[
A2

p

]?]
+ a5 [M ·Ap +Ap ·M ]? + a6

[
M ·A2

p +A2
p ·M

]? ]
: I\?dev

(4.52)

and

κ̇ = λp , (4.53)

with the fourth order deviatoric projection operator defined as

I\?dev = G\? ⊗ G\ − 1

3
G\? ⊗ G\ . (4.54)

Note that the specific form of Γ p proposed in (4.52) can be shown to be Cp-symmetric
by appealing to the Cp-symmetry of Mdev and Ap. Since the yield function is cho-
sen to be a function of the deviatoric referential Mandel stress tensor, Γ p is likewise
found to be deviatoric. By making use of (4.9) this observation furthermore implies

tr
(
Ċp ·C−1

p

)
= 0 and, accordingly, d (det (Cp)) /dt = 0, i.e. the plastic flow is volume

preserving.

For a convex yield function of the form

f = Meq − [1− q] , (4.55)

which will be employed in this contribution with Meq being given by the quadratic form
in (4.44), the dissipation inequality can be estimated for the case that plastic deformation
occurs according to

Dred = M : λp
∂f

∂M
+ q λp

∂f

∂q
= λp

[
∂f

∂M
: M + q

]
≥ λp [1− q + q] = λp > 0 . (4.56)
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On the other hand, if the material only deforms elastically, the plastic multiplier is zero,
such that the dissipation inequality is trivially fulfilled.

4.2.4 On the convexity of the yield function

In Section 4.2.3 it is shown that the dissipation inequality is fulfilled if the yield function
which serves as the plastic potential is a convex function of the referential Mandel stress
tensor. In this contribution we focus on an orthotropic yield function of the deviatoric
part of the referential Mandel stress tensor Mdev which is given in its general form by
(4.44). For the yield function to be convex in M , the condition

dM :
∂2f

∂M∂M
: dM ≥ 0 (4.57)

has to hold for every possible load state. By inserting the second derivatives with respect
to the Mandel stresses, we arrive at

dM :
∂2f

∂M∂M
: dM =

[
I\?dev : dM

]
:

∂2f

∂Mdev∂Mdev

:
[
I\?dev : dM

]
(4.58)

with

∂2f

∂Mdev∂Mdev

= 2 a1G
\ ⊗ G\?

+ 2 a2A
?
p ⊗A?

p + 2 a3

[
A2

p

]? ⊗ [A2
p

]?
+ a4

[
A?

p ⊗
[
A2

p

]?
+
[
A2

p

]? ⊗A?
p

]
+ a5

[
A?

p ⊗ G\? +G\ ⊗ Ap

]
+ a6

[[
A2

p

]? ⊗ G\? +G\ ⊗ A2
p

]
.

(4.59)

Since the material parameters a5 and a6 are chosen to be zero for the specific prototype
model to be employed in this contribution, see Appendix C.1, we will focus on the
remaining four summands. First, we find that[

I\?dev : dM
]

:
[
2G\ ⊗ G\?

]
:
[
I\?dev : dM

]
= 2 tr (dMdev · dMdev) ≥ 0 (4.60)

holds. Note, that all eigenvalues of M are real-valued since M is defined as the product
of the two symmetric tensors C and S, cf. (4.20), with C being positive definite. By
using (4.60), introducing the abbreviations

dM− = A?
p :

[
I\?dev : dM

]
(4.61a)

dM+ =
[
A2

p

]?
:
[
I\?dev : dM

]
(4.61b)

and with the requirement
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4.3 Plastic spin prototype model

a1 ≥ 0 (4.62a) a2 ≥ 0 (4.62b) a3 ≥ 0 (4.62c)

one finally arrives at

dM :
∂2f

∂M∂M
: dM ≥ 2 a2 dM2

− + 2 a3 dM2
+ + 2 a4 dM− dM+ (4.63a)

≥ 4 |
√
a2 dM−| |

√
a3 dM+|+ 2 a4 dM− dM+ (4.63b)

where the inequality

[ |
√
a2 dM−| − |

√
a3 dM+| ]2 = |

√
a2 dM−|2 + |

√
a3 dM+|2 − 2 |

√
a2 dM−| |

√
a3 dM+| ≥ 0

(4.64)

has been invoked. For the dissipation inequality to be fulfilled we thus require relation

2
√
a2

√
a3 ≥ |a4| (4.65)

between the material parameters to hold.

4.3 Plastic spin prototype model

After a brief summary of the experimental findings presented in [65] and motivated by
the latter, this section focuses on the development of a specific form of the plastic spin
tensor W .

4.3.1 Experimental findings

Kim and Yin experimentally analysed the yielding behaviour of cold-rolled steel sheet
metal made of low-carbon steel by means of tension tests with the focus of the inves-
tigations being on the directional dependency of the uni-axial yield limit, i.e. on the
symmetry group of the yield function, and its evolution due to finite plastic deforma-
tion processes. Their experimental results published in [65] suggest that the symmetry
group is maintained throughout the deformation process, but that the principal material
axes of the initially (plastically) orthotropic material align with the principal loading
directions of the tension tests.

In a first experimental step, full size metal sheets were stretched along the rolling
direction (RD) to increase the initially mild plastic anisotropy which was induced by
the rolling process. From these sheets, medium size tensile specimens were prepared
at various angles φL relative to the rolling direction in a second step, as schematically
indicated by the light grey surface in Figure 4.2. The medium size specimens were
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Figure 4.2: Experimental setup and definitions of various angles.

then subjected to various amounts of strain, given in terms of the respective coeffi-
cient of the Hencky strain tensor in loading direction, HL. For each load level, i.e.
HL ∈ {0%, 1%, 2%, 5%, 10%}, the distribution of the uni-axial yield limit relative to
the tensile axis was determined in a final step. To this end, miniature tensile specimens
were prepared from the gauge section of the medium size tensile specimens at angles φM

as indicated in Figure 4.2, and tension tests were carried out. The experimental results
are summarised in Figures 4.3(a-c) with the solid lines indicating the quadratic yield
function of Hill [55] which Kim and Yin fitted to the experimental data. Based on these
experiments, Kim and Yin argued that the initial orthotropic symmetry is maintained
but that the orientations of the orthotropy axes change continuously with the deforma-
tion, meaning that they align with the loading direction. The observed rotation of the
preferred material axes was furthermore quantified in terms of the angle φR between
the rolling direction (RD) and the first preferred material direction nA1, respectively,
between the transverse direction (TD) and the second preferred material direction nA2,
and is provided in Figure 4.10. It is noted that the rolling direction and the preferred
material direction nA1 coincide after the rolling process and hence also after the first
pre-stretching such that φR resembles the rotation of the material axes.

Focusing in more detail on the experimental findings, Figure 4.3 suggests that an an-
ticlockwise rotation of the symmetry group is observable for φL = 30◦, while a clockwise
rotation is seen for φL = 60◦, with nearly the same qualitative evolution being observ-
able. This observation might be explained based on the, to a good approximation, 90◦

symmetry of the yielding behaviour such that the load case φL = 60◦ is approximately
equal with a loading at an angle φL = −30◦. If we suppose, based on this observation,
that the spin of the symmetry group is a function of the angle between the loading
direction and the closest preferred material direction, and if this function is supposed
to be continuous, this essentially means that the spin of the symmetry group needs to
be zero for an angle of 30◦ < φ0

L < 60◦. Moreover, due to symmetry considerations, it
seems reasonable to expect the root to be close to φL = 45◦.

Interestingly, the experimental results for φL = 45◦ do not show the same qualitative
pattern as those for φL = 30◦ and φL = 60◦. Specifically speaking, we do observe an
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Figure 4.3: Experimental findings by Kim and Yin, reproduced from [65]. Depicted is the uni-axial
yield limit in terms of the Cauchy stresses σu for various angles φM relative to the loading direction φL
and various (uni-axial) elongations in terms of the Hencky strain in loading direction HL. The solid
lines represent Hill’s quadratic yield function which is fitted against the experimental data in [65].

alignment of the preferred material axes with the loading direction, cf. the experimental
results for HL = 5% and HL = 10% in Figure 4.3(b). However, a closer look at the
experimental results for HL = 1% and HL = 2% reveals an isotropic yielding behaviour
rather than an orthotropic one such that, although the final results suggest a rotation
of the symmetry group, the path does not. We suppose that this observation can be
explained if we think of the material being a polycrystalline metal and taking into ac-
count the observations for φL = 30◦ and φL = 60◦ discussed before. Due to the rolling
process, a preferred material axis at each material point is nearly aligned with the rolling
direction. However, this alignment is not perfect – nor is the loading direction φL = 45◦.
Thus, an anticlockwise rotation of the symmetry group should be observable at some
material points, while a clockwise rotation might be observed in others. Hence, we
expect a (macroscopically) quasi-isotropic material behaviour for a rotation of approxi-
mately ±22.5◦ (at each material point) due to the almost 90◦ symmetry of the yielding
behaviour. Appealing to the same notion we furthermore expect a (macroscopically)
anisotropic response for rotations |φR| > 22.5◦, again, which is in good accordance with
the experimental results shown in Figure 4.3(b).

The latter observations have important implications on the development of the specific
form of the spin tensor W to be discussed in Section 4.3.2 and will be subject to a
detailed analysis with regard to the finite element-based simulations to be presented in
Section 4.4.2.

4.3.2 A specific evolution equation for the structural tensor

In the following we attempt to simulate the experimentally observed rotation of the
preferred material axes based on the constitutive framework summarised in Section 4.1
and on the specific model presented in Section 4.2. However, to complete the model
description, a suitable form of the residual-type evolution equation still needs to be
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4 Deformation-induced anisotropy evolution in finite plasticity

developed, since a model which is solely based on a convected-type evolution of the
structural tensor cannot capture the experimental findings, as will be shown as this
work proceeds.

As the elastic material response is assumed to be isotropic, the plastic spin tensor W ,
governing the residual-type evolution of the material symmetry group, may be chosen
arbitrarily without violating thermodynamic consistency, see Section 4.1.3. By again
invoking the multiplicative split for the sake of motivation, it is observed that the (refer-

ential) Cp-skew tensor W can be related to the G
[
-skew tensor W of the intermediate

configuration. Following the same lines as for the yield function we will derive a well-
interpretable form of the plastic spin tensor in the intermediate configuration first, and
in a second step define W based on the pull-back operation to the reference configura-
tion. To this end, we first assume that the evolution of the symmetry group takes place
during plastic deformation only and that it is inactive for purely elastic loadings. In
accordance with the experimental findings presented in Section 4.3.1 we further require
that the preferred material axes undergo a rotation such that they align with the princi-
pal loading direction, in terms of the stresses or strains as will be discussed in the ensuing
developments. This additionally implies that no rotation of the preferred material axes
occurs if the principal loading direction is aligned with a preferred material direction,
i.e. if the loading direction coincides with the rolling direction or the direction perpen-
dicular to it, and that a saturation-kind behaviour is to be expected. According to the
experimental findings presented in Section 4.3.1, the sense of rotation should moreover
depend on the direction of the principal loading relative to the preferred material axes.

Since the elastic material response is assumed to be isotropic, it is observed that
the elastic right Cauchy-Green tensor Ce = F ?

e · g[ · F e and the elastic Piola-Kirchhoff
stress tensor Se = 2 ∂W/∂Ce commute. Accordingly, the Mandel stress tensor of the
intermediate configuration M = Ce · Se is symmetric and features the same principal
directions as Ce and Se. We thus note that by aligning any of the latter tensors with the
preferred material directions, i.e. with the eigenvectors ofA, the other tensors considered
are aligned likewise. To motivate a suitable form of the plastic spin tensor W we will
make use of the spectral decompositions of the tensors A and Ce, specifically,

A =
3∑
i=1

λAiNAi ⊗NAi =
1

2
NA1 ⊗NA1 −

1

2
NA2 ⊗NA2 (4.66a)

Ce =
3∑
i=1

λCe iNCe i ⊗NCe i = λCe1NCe1 ⊗NCe1 + λCe2NCe2 ⊗NCe2

+ λCe3 NCe3 ⊗NCe3 (4.66b)

with eigenvalues λ• and eigenvectors N • as well as λCe1 ≥ λCe2 ≥ λCe3 > 0. In the
experiments discussed in Section 4.3.1, the principal material axes are initially aligned
with the rolling direction (RD) and the transverse direction (TD). The prepared samples
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4.3 Plastic spin prototype model

are then subjected to a load acting in the plane which is spanned by the latter two
directions, and an in-plane rotation of the preferred material axes is observed. Motivated
by the latter observations let us assume for now that the first two eigenvectors of Ce lie
in the RD-TD-plane and denote the angle between NA1 and NCe1 by χ, Figure 4.4(a).

The non-zero coefficients of the G
[
-skew part of A ·Ce with respect to an orthonormal

basis with two base vectors in the RD-TD-plane, e.g. NA1 and NA2, read

NA1 ·G
[ · 1

2

[
A ·Ce −

[
A ·Ce

]t] ·NA2 =
1

2
[λCe1 − λCe2] cos (χ) sin (χ) , (4.67a)

NA2 ·G
[ · 1

2

[
A ·Ce −

[
A ·Ce

]t] ·NA1 = −1

2
[λCe1 − λCe2] cos (χ) sin (χ) . (4.67b)

In addition, we observe that

A : Ce =
1

2
[λCe1 − λCe2]

[
cos2 (χ)− sin2 (χ)

]
. (4.68)

Based on (4.67) and (4.68) we thus propose W to be of the form

W = λp cW
1

2

[
A ·Ce −

[
A ·Ce

]t]
A : Ce (4.69a)

= λp cW
1

2

[
A ·Ce −G

] ·Ce ·A ·G
[
]
A : Ce (4.69b)

such that

NA1 ·G
[ ·W ·NA2 =

1

16
λp cW [λCe1 − λCe2]2 sin (4χ) , (4.70a)

NA2 ·G
[ ·W ·NA1 = − 1

16
λp cW [λCe1 − λCe2]2 sin (4χ) , (4.70b)

with the material parameter cW ≥ 0 controlling the speed of the residual-type evolution.
By construction, the operator W is scaled by the plastic multiplier λp such that the
plastic spin is inactive for purely elastic loading, and increases with the rate of plastic
deformation. Furthermore, we observe that the residual-type evolution increases with
the difference of the eigenvalues of Ce. Essentially this means that no rotation will
occur in the limiting case when the two (in-plane) eigenvalues of Ce coincide. In this
case, every vector in the RD-TD-plane would be an eigenvector so that there is no
distinct orthonormal set of vectors which the preferred material directions could align
with. On the other hand, if the difference between the two in-plane eigenvalues is
significant, two distinct principal directions of deformation exist. Whereas the other
factors were restricted to being positive, the last factor in (4.70) may take a negative
or positive sign, thus controlling the plastic spin direction. Specifically speaking, as
illustrated in Figure 4.4(a) and Figure 4.4(b), the sign depends on the relative orientation
between the preferred material axes and the principal loading direction, and thus allows
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Figure 4.4: Direction and normalised amplitude of W as a function of the relative orientation χ between
the principal loading direction and the preferred material axes.

us to account for the experimentally observed clockwise or anticlockwise rotation of the
preferred material axes.

Since the multiplicative split is only invoked for the sake of motivation and since a

purely referential representation is sought, the G
[
-skew tensor W needs to be related to

the Cp-skew tensor W , which determines the residual-type evolution of the structural
tensor, cf. (4.12). Performing the pull-back operation with respect to the tangent map
F p according to (4.28) results in

W = λp cW
1

2

[
A ·C −C−1

p ·C ·A ·Cp

]
A : C = λpΩ . (4.71)

4.4 Representative simulation results

In this section we will focus on the application of the specific model proposed in Sec-
tion 4.2 and Section 4.3 to the modelling of evolving anisotropies of rolled sheet metal
as experimentally observed in [65]. To this end, we will investigate as to whether a
convected evolution-based model is capable of reproducing the experimentally observed
rotation of the preferred material axes or whether a residual-type evolution additionally
needs to be taken into account. In addition to tension tests, we will furthermore focus
on the simulation of in-plane torsion tests to analyse the principal model properties for
shear-dominated boundary value problems.

Focusing on the calculation of the symmetry group’s rotation we face the conceptual
difficulty that the symmetry group is defined in the intermediate configuration based on
the notion of the multiplicative split. However, the multiplicative split is only used for
motivation purposes and not invoked in the calculations for its rotational indeterminacy,
which is a key advantage of the modelling approach summarised in Section 4.1, so
that the quantities which are defined in the fictitious intermediate configuration are not
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accessible. The primary and the referential form of the yield function (4.42) and (4.44)
give rise to the spatial representation

f =

[
a1 tr

([
τ \?dev

]2
)

+ a2 tr
(
τ \?dev · ce · a

)
tr
(
τ \?dev · ce · a

)
+ a3 tr

(
τ \?dev · [ce · a]2

)
tr
(
τ \?dev · [ce · a]2

)
+ a4 tr

(
τ \?dev · ce · a

)
tr
(
τ \?dev · [ce · a]2

)
+ a5 tr

([
τ \?dev

]2

· ce · a
)

+ a6 tr

([
τ \?dev

]2

· [ce · a]2
)]
−My (4.72)

with the deviatoric mixed-variant Kirchhoff stress tensor

τ \?dev = F−? ·Mdev · F ? = F−?e ·Mdev · F ?
e , (4.73)

respectively the spatial Mandel-type stress tensor, the (contravariant) spatial structural
tensor

a = F ·A · F ? = F e ·A · F ?
e (4.74)

and the spatial representation of the intermediate configuration’s metric

ce = F−? ·Cp · F−1 = F−?e ·G
[ · F−1

e . (4.75)

Regarding metal plasticity, the elastic strain is usually assumed to be small so that ce is
expected to be close to the identity. Since Cp is a primary variable, this condition can
easily be verified for the particular implementation at hand by invoking (4.75). Keeping
the latter observation in mind and taking into account (4.72) we propose to carry out
the spectral decomposition on the spatial structural tensor according to

a =
3∑
i=1

λainai ⊗ nai , (4.76)

with λa1 ≥ λa2 ≥ λa3, to approximate the eigen-directions NAi of the structural tensor
A which was defined in the intermediate configuration, see also (4.66a), respectively to
approximate their spatial representations nAi = F e ·NAi. Expressed differently, if ce is
close to the identity, F e reduces to a pure rotation such that carrying out the spectral
decomposition on A and pushing the eigen-directions to the spatial configuration is
identical with carrying out the spectral decomposition on a. Note that a is symmetric
so that the left and right eigenvectors are identical. As this work proceeds, the rotation
of the material symmetry group will be calculated based on the rotation of the (first)
eigenvector na1 at a selected quadrature point of each element. To quantify an effective
value of the rotation φR which can be compared with the experiments [65], we will finally
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4 Deformation-induced anisotropy evolution in finite plasticity

take the mean value of the rotations which are observed at the elements of the gauge
section.

4.4.1 Algorithmic formulation

The system of differential equations which governs the evolution of the internal variables
in the case of plastic loading is given by the rate equations for the plastic right-Cauchy-
Green tensor (4.9), the (contravariant) structural tensor (4.12) and the accumulated
plastic strain (4.53), and is complemented by the yield condition f = 0. Applying
standard Adams-Moulton-type time integration in terms of the trapezoidal rule, see
also Remark 4.2, and making use of the symmetry properties of Cp and A results in the
discrete system of 14 unknowns

0 = −Cp
n+1 +Cp

n + λp
∆t

2

[
Cp

n+1 ·Λp
n+1 +Λ?

p
n+1 ·Cp

n+1
]

+ λp
∆t

2

[
Cp

n ·Λp
n +Λ?

p
n ·Cp

n
]

=: RCp

(4.77a)

0 = −An+1 +An − λp
∆t

2

[
Λp

n+1 ·An+1 +An+1 ·Λ?
p
n+1
]

− λp
∆t

2

[
Ωn+1 ·An+1 +An+1 ·Ω?n+1

]
− λp

∆t

2

[
Λp

n ·An +An ·Λ?
p
n
]

− λp
∆t

2
[Ωn ·An +An ·Ω?n] =: RA

(4.77b)

0 = −κn+1 + κn + λp ∆t =: Rκ (4.77c)

0 = fn+1 =: Rf (4.77d)

which is to be solved on integration point level, see Appendix C.2 for details on the
sensitivities . In (4.77), •n+1 designates the unknown value of an internal variable or
function • after the application of a load increment in (fictitious) time ∆t = tn+1−tn ≥ 0,
while •n refers to the known value of the state variable or the known value of the function
from the previous load step.

For a finite element-based implementation in terms of the Piola stress tensor P , the
(consistent) algorithmic tangent stiffness

dP n+1

dF n+1 = g\ ⊗ Sn+1 + F n+1 ·

[
∂Sn+1

∂F n+1 +
∂Sn+1

∂Cn+1
p

:
dCp

n+1

dF n+1 +
∂Sn+1

∂An+1 :
dAn+1

dF n+1

+
∂Sn+1

∂κn+1
⊗ dκn+1

dF n+1 +
∂Sn+1

∂λp

⊗ dλp

dF n+1

] (4.78)

190



4.4 Representative simulation results

is required. The respective sensitivities of the internal variables with respect to the
deformation gradient can be calculated following standard procedure as

dCn+1
p

dAn+1

dκn+1

dλp

 = −



∂RCp

∂Cn+1
p

∂RCp

∂An+1

∂RCp

∂κn+1

∂RCp

∂λp

∂RA
∂Cn+1

p

∂RA
∂An+1

∂RA
∂κn+1

∂RA
∂λp

∂Rκ
∂Cn+1

p

∂Rκ
∂An+1

∂Rκ
∂κn+1

∂Rκ
∂λp

∂Rf
∂Cn+1

p

∂Rf
∂An+1

∂Rf
∂κn+1

∂Rf
∂λp



−1 

∂RCp

∂Fn+1

∂RA
∂Fn+1

∂Rκ
∂Fn+1

∂Rf
∂Fn+1

 : dF n+1 , (4.79)

by making use of an appropriate matrix notation and of the derivatives of the residual
terms R• with respect to the internal variables as specified in Appendix C.2.

Remark 4.2 (Numerical time integrator) The simulation results to be presented in this
contribution use the trapezoidal rule as a numerical time integration scheme. Sample
calculations suggest that this integration scheme is more suitable for the problem at hand
than the classic implicit Euler method would be. We furthermore point out that the
integration scheme preserves the symmetry of the tensors A and Cp in the discrete
setting, cf. (4.77). The plastic incompressibility constraint is not explicitly enforced but
could be accounted for as a side condition in the Newton-Raphson scheme as proposed
in e.g. [34].

Remark 4.3 (Evolution equation in terms of Ap) The structural tensor A enters the
yield function only in terms of its associated mixed-variant tensor Ap so that it is al-
ternatively possible to describe the evolution of the symmetry group directly in terms of
the evolution of Ap. To this end, taking the time derivative of (4.46), inserting (4.9)
and (4.12) in the ensuing equation and making use of the Cp-skew property of W one
arrives at

Ȧp =
[
Γ ?

p ·Ap −Ap · Γ ?
p

]
+ [W ? ·Ap −Ap ·W ?] , (4.80)

which is similar in structure to (4.12). However, since Ap is Cp-symmetric it features,
in general, nine independent coefficients. Moreover, formulating the evolution equations
directly in A allows us to conveniently enforce the symmetry condition (in Euclidean
sense) on A in the discrete setting.

4.4.2 Tension tests

Motivated by the experimental findings on uni-axial tension tests by Kim and Yin pre-
sented in Section 4.3.1, we will focus on finite element-based simulations of tension tests
in a two- and three-dimensional setting. The ensuing simulations are based on the spe-
cific model presented in Section 4.2 which is complemented by the specific form of the
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4 Deformation-induced anisotropy evolution in finite plasticity

Table 4.1: Material parameters used in the finite element simulations in accordance with [52] and with
a1 – a6 given in GPa−2.

λ µ Rinf ε0 a1 a2 a3 a4 a5 a6

121.2 GPa 80.7 GPa 0.5 2 MPa 19.6 21.1 296.4 -21.6 0.0 0.0

spin tensor W derived in Section 4.3.2 so that a local system of evolution equations of
the form (4.77) is to be solved at integration point level.

The material parameters are chosen in accordance with [52] and are summarised in
Table 4.1. With regard to the parameters {a1, . . . , a6} we would like to point out that an
orthotropic quadratic yield function in terms of the Kirchhoff stress tensor is used in [52].
This yield function can be taken into account to calibrate the material parameters of the
yield function (4.44) used in this contribution via a structural comparison as shown in
Appendix C.1. However, we note that the orthotropic quadratic yield function in terms
of the Mandel stress tensor of the intermediate configuration and the one in terms of
the Kirchhoff stress tensor used in [52] are not equal.

Regarding the specific boundary value problem we will focus on a tensile-test speci-
men of type E as standardised according to DIN 50125, [1]. The specific dimensions of
the specimen used in the simulations are provided in Figure 4.5. With regard to the
experimental findings we are primarily interested in the rotation of the material sym-
metry group and in the component of the Hencky strain tensor HL = H : [eL ⊗ eL],
with H = 1/2 ln (C) and with eL denoting the unit vector in loading direction. The
longitudinal stretch of the specimen HL will be approximated based on the displacement
of the surface nodes which are positioned at the boundary of the gauge section according
to

HL = ln

(
1 +

∆uG

lG

)
(4.81)

with the mean change of the gauge length ∆uG and the initial gauge length lG = 60mm.
Regarding the three-dimensional case, only the nodes at the top and bottom surface (at
the boundaries of the gauge section) will be taken into account, resembling the use of
an extensometer in an experiment.

4.4.2.1 Two-dimensional simulations

This section focuses on the finite element-based simulation of tension tests in a two-
dimensional setting subject to the assumption of a plane strain state, negligible body
forces and to quasi-statics. The simulations are based on the specific tension test spec-
imen of type E depicted in Figure 4.5 and standardised in DIN 50125. From a numeric
point of view, (standard) four-node quadrilateral elements are used for the discretisation
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t = 6

R
2
5

3535 60

80

210

5050

3
0

2
0

Figure 4.5: Dimensions (in mm) of tension test specimen of type E according to DIN 50125, see [1],
used in the finite element-based simulations.

of both the geometry and the placement field, resulting e.g. in the finite element meshes
depicted in Figure 4.6 to Figure 4.9. The boundary conditions at the grip sections of the
specimen, specifically at the last 35mm of each end, are of special interest. Assuming
that no slip between the grips and the specimen occurs in the experiments, homoge-
neous Dirichlet boundary conditions in both spatial dimensions are applied at the left
boundary. At the right boundary, the displacement in eT-direction is fixed, while the
displacement in eL-direction is prescribed, resulting in displacement-controlled simula-
tions. We take note of the fact that this type of boundary condition is equivalent to
the prescription of the displacement at the inner boundaries of the grip sections, since
the displacement of the grip sections is completely controlled – this, however, will be
different regarding the three-dimensional setting in Section 4.4.2.2.

With regard to the experimental findings summarised in Section 4.3.1 the analysis will
especially focus on load states which are characterised by specific Hencky strain values
in loading direction, i.e. HL ∈ {0%, 1%, 2%, 5%, 10%}. Taking into account (4.76),
(4.81) and Appendix C.3, the rotation of the material symmetry group is depicted as
a function of HL in Figure 4.10, with lines indicating the simulation results for various
values of material parameter cW and with circles representing the experimental results
reproduced from [65]. Regarding the results for a loading direction φL = 30◦ we find
that the experiments, as well as the finite element simulations, predict an asymptotic
behaviour with limit value 30◦, see Figure 4.10(a). As expected based on the observations
of Section 4.3.1 and Section 4.3.2, an asymptotic behaviour with limit value −30◦ is also
predicted by the finite element-based simulations for φL = 60◦, however, the absolute
value of the limit observed in the experiments is slightly smaller, see Figure 4.10(b). In
order to assess the experimental results better with regard to e.g. the scattering of the
data, more experimental data is desirable but to the author’s best knowledge currently
not available. Furthermore, we note that load-rotation curves for the loading direction
φL = 45◦ will not be discussed for the reasons stated in Section 4.3.1.

Focusing in more detail on the evolution of the material symmetry group and on
the evolution of the plasticity itself, the first eigen-direction of the spatial structural
tensor, i.e. na1, calculated at a selected quadrature point of each element is depicted
on the spatial configuration of the specimen alongside the element-wise mean value of
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4 Deformation-induced anisotropy evolution in finite plasticity

the accumulated plastic strain κ in Figure 4.6 to Figure 4.9. In addition to the load-
ing directions φL ∈ {30◦, 45◦, 60◦} we will take into account an element-wise-perturbed
loading direction defined by a Gaussian distribution with expected value EφL

= 45◦ and
standard deviation σφL

= 2.5◦ . The latter distribution may account for the non-perfect
initial alignment of the individual crystals with the rolling direction as discussed in Sec-
tion 4.3.1. Furthermore, it is noted that the grip sections of the samples are not depicted
in Figure 4.6 to Figure 4.9.

Due to the anisotropic nature of the yield function, the formation of a band-like struc-
ture for the loading directions φL = 30◦ and φL = 60◦ is observable in Figure 4.6 and
Figure 4.7. Although the band is clearly visible at the beginning of the tension test, it
vanishes with increasing (plastic) deformation which can be explained by the alignment
of the material symmetry group with the principal loading directions. For the present
setting with cW = 0.15 Pa−1 and a deformation of approximately HL ≈ 5% the material
symmetry group and the loading direction are nearly aligned in the gauge section so that
the plastic flow direction coincides with the principal loading direction. Moreover, the
anticlockwise rotation of the symmetry group for φL = 30◦ and the clockwise rotation for
φL = 60◦ is clearly revealed. Regarding the simulation results for φL = 45◦ we observe
an anticlockwise rotation in the upper right and in the lower left part of the sample,
while a clockwise rotation is observable in the lower right and in the upper left part. The
rotation starts near the outer boundaries of the gauge section, Figure 4.8(d), and evolves
in the direction of the sample’s centre, Figure 4.8(e). On the other hand, if we take into
account an element-wise perturbation of the symmetry group’s initial orientation with
a standard perturbation σφL

= 2.5◦, the position where the plastic deformation starts to
evolve (in the gauge section) is not deterministic. As shown in Figure 4.9 for one specific
perturbed distribution of the symmetry group’s initial orientation, plasticity starts to
evolve close to the right boundary with adjacent elements showing significantly different
values of the accumulated plastic strain, cf. Figure 4.9(b) and Figure 4.9(c) – inter-
estingly, the observed evolution of the plastic deformation is quite different compared
to the previously discussed load case φL = 45◦. To be specific, we find that the slight
perturbation is sufficient to induce rotations with different senses in adjacent elements in
the gauge section, see Figure 4.9(d). This observation is of particular importance since
it might be related to the macroscopically quasi-isotropic yielding behaviour observed
in the experiments, see Section 4.3.1. Due to the nearly 90◦-symmetry of the yielding
behaviour, elements which exhibited a +45◦ rotation and those which exhibited a −45◦

rotation show a similar response such that the macroscopically observable yielding be-
haviour for specimens prepared from the gauge section should again be orthotropic, cf.
Figure 4.9(e).

Finally, the load-displacement curves which are predicted by the finite element simula-
tions are provided in Figure 4.11. Essentially, these curves result from three main, partly
opposing, effects. First, regarding the curves for cW = 0.00 Pa−1 which resemble models
based on classic anisotropic plasticity with an exponential-type hardening behaviour,
we observe an increase in the force required for a certain elongation after the onset of
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plasticity due to the hardening behaviour. At a certain deformation stage, the necking
effect dominates the hardening behaviour, so that the slope of the load-displacement
curve becomes negative. Focusing on the simulation results with cW 6= 0.00 Pa−1, we
observe a distinct decrease in the yield limit after a certain amount of plastic deforma-
tion which can be explained by the rotation of the material symmetry group or rather
by the alignment of the preferred material axes with the loading direction such that the
yield limit in loading direction decreases. Finally, we note that the initial yield limit of,
e.g., about 295 MPa for φL = 30◦ and 316 MPa for φL = 45◦ is slightly higher than the
one predicted by the experiments which may be attributed to the plane strain conditions
as will be shown in Section 4.4.2.2.

4.4.2.2 Three-dimensional simulations

In accordance with the two-dimensional plane strain simulations presented in Sec-
tion 4.4.2.1, this section focuses on the simulation of tension tests in a three-dimensional
setting, again assuming a quasi static deformation process and negligible body forces.
To this end, the three-dimensional tension test sample of type E depicted in Figure 4.5 is
discretised by means of (standard) eight-node hexahedral elements, see e.g. Figure 4.12
to Figure 4.15. Regarding the boundary conditions which are applied at the grip sec-
tions, we will fix the displacement in eL- and eT-direction at the top and bottom on the
left side of the sample. On the right side, the displacement in eT-direction is assumed
to be zero, while the displacement in eL-direction is prescribed such that the boundary
conditions in eL- and eT-direction are comparable to those used in the two-dimensional
simulations. Regarding the eN-direction we assume the same boundary conditions for
the left and right grip section – specifically speaking, homogeneous Dirichlet boundary
conditions are enforced at the bottom of the grip sections, while homogeneous Neumann
boundary conditions are chosen at the top. Thus, we do not hinder a contraction of the
grip sections in eN-direction and we do not induce a certain symmetry pattern as would
be the case if the eN-displacement in the middle-plane was chosen to be zero.

The rotation-displacement curves for the loading directions φL = 30◦ and φL = 60◦

are provided in Figure 4.16 for various values of the material parameter cW and by taking
into account (4.76), (4.81) and Appendix C.3. As in the two-dimensional case we observe
an asymptotic behaviour with limit value φR = 30◦, respectively φR = −30◦. Although,
the two- and three-dimensional simulation results are qualitatively similar and in good
agreement with the experimental findings, the three-dimensional simulations predict a
slower saturation speed for the same values of the material parameter cW .

Focusing on the evolution of plasticity and on the specific spatial distribution of the
symmetry group’s orientation for certain deformation states, the eigenvector na1 of the
spatial structural tensor (predicted at a selected quadrature point) and the element-
wise mean value of the accumulated plastic strain κ are provided in Figure 4.12 to
Figure 4.15, with the specimen’s grip sections not being depicted. With regard to κ
we once more observe the formation of band-like structures for the loading directions

195



4 Deformation-induced anisotropy evolution in finite plasticity

κ

0.0 0.5 1.0 1.5 2.0

(a) HL ≈ 0%, φL = 30◦, cW = 0.15 Pa−1
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(e) HL ≈ 10%, φL = 30◦, cW = 0.15 Pa−1

Figure 4.6: Evolution of the plastic deformation in terms of the accumulated plastic strain κ and rotation
of the (plastic) material symmetry group, predicted by (two-dimensional) plane strain finite element
simulations. Depicted is the (first) eigenvector na1 of the spatial structural tensor a that is predicted
at a selected quadrature point of each element for various loadings, φL = 30◦ and cW = 0.15 Pa−1.
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(a) HL ≈ 0%, φL = 60◦, cW = 0.15 Pa−1
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(b) HL ≈ 1%, φL = 60◦, cW = 0.15 Pa−1
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(e) HL ≈ 10%, φL = 60◦, cW = 0.15 Pa−1

Figure 4.7: Evolution of the plastic deformation in terms of the accumulated plastic strain κ and rotation
of the (plastic) material symmetry group, predicted by (two-dimensional) plane strain finite element
simulations. Depicted is the (first) eigenvector na1 of the spatial structural tensor a that is predicted
at a selected quadrature point of each element for various loadings, φL = 60◦ and cW = 0.15 Pa−1.
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(e) HL ≈ 10%, φL = 45◦, cW = 0.15 Pa−1

Figure 4.8: Evolution of the plastic deformation in terms of the accumulated plastic strain κ and rotation
of the (plastic) material symmetry group, predicted by (two-dimensional) plane strain finite element
simulations. Depicted is the (first) eigenvector na1 of the spatial structural tensor a that is predicted
at a selected quadrature point of each element for various loadings, φL = 45◦ and cW = 0.15 Pa−1.
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(a) HL ≈ 0%, EφL = 45◦ with σφL = 2.5◦, cW = 0.15 Pa−1
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(b) HL ≈ 1%, EφL = 45◦ with σφL = 2.5◦, cW = 0.15 Pa−1
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(c) HL ≈ 2%, EφL = 45◦ with σφL = 2.5◦, cW = 0.15 Pa−1
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(d) HL ≈ 5%, EφL = 45◦ with σφL = 2.5◦, cW = 0.15 Pa−1

κ

0.0 5 10 15 20

(e) HL ≈ 10%, EφL
= 45◦ with σφL

= 2.5◦, cW = 0.15 Pa−1

Figure 4.9: Evolution of the plastic deformation in terms of the accumulated plastic strain κ and
rotation of the (plastic) material symmetry group, predicted by (two-dimensional) plane strain finite
element simulations. Depicted is the (first) eigenvector na1 of the spatial structural tensor a that is
predicted at a selected quadrature point of each element for various loadings, EφL = 45◦ with σφL = 2.5◦

and cW = 0.15 Pa−1.
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Figure 4.10: Comparison of experimentally observed rotations of the preferred material axes against the
two-dimensional plane strain finite element simulation results for various deformation states in terms
of the Hencky strain HL in loading direction eL and various values of the material parameter cW . The
experimental results are reproduced from [65].
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Figure 4.11: Reaction force fL in loading direction eL as a function of the change of the gauge length
∆uG for various values of the material parameter cW and various loading directions φL, relative to
the rolling direction. The calculations are based on a two-dimensional plane strain setting and the
simulation results for the displacement-controlled loading and unloading of the sample are shown.
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φL = 30◦ and φL = 60◦ which disappear with increasing plastic deformation for the
same reasons discussed in Section 4.4.2.1, see Figure 4.12 and Figure 4.13. Whereas the
results for the (element-wise) perturbed loading direction EφL

= 45◦ with σφL
= 2.5◦

depicted in Figure 4.15 are similar to their two-dimensional counterparts presented
in Section 4.4.2.1, with the position where the plasticity starts to evolve being non-
deterministic and rotations of different senses being observed in adjacent elements, the
two- and three-dimensional simulation results for the loading direction φL = 45◦ are
noticeably different. In particular we observed in the two-dimensional simulations that
the symmetry group started to evolve simultaneously near the left and right boundary
of the gauge section with the symmetry group’s rotation direction being different in the
upper and lower parts of the specimen, Figure 4.8. In contrast to the latter results,
regarding the three-dimensional simulation results for cW = 0.15 Pa−1 presented in Fig-
ure 4.14, we find that the evolution of plasticity focuses on the centre of the specimen
where the rotation of the symmetry group also starts. Furthermore, a clockwise rotation
of the structural tensor is revealed in every element of the gauge section. However, we
take note of the fact that we still observe results similar to those of the two-dimensional
setting for significantly higher values of the material parameter cW , e.g. cW = 0.50 Pa−1.

Although the load-displacement curves which are predicted by the three-dimensional
simulations, see Figure 4.17, are found to be similar to their plane strain counterparts
depicted in Figure 4.11 with, principally, the same effects being observable, there are
two main differences which we should like to point out. First, the initial yield limit
predicted by the three-dimensional simulations is smaller compared to the one observed
under plane strain conditions. Specifically speaking, we observe an initial yield limit of
approximately 250 MPa for φL = 30◦, respectively 261 MPa for φL = 45◦. Secondly, we
find that the onset of the softening-type behaviour which is due to the alignment of the
symmetry group with the principal loading directions is delayed and that the softening
rate itself is reduced, e.g. Figure 4.17(c) and Figure 4.17(d). The latter effect can be
explained by the previously observed slower rotation of the structural tensors, see also
Figure 4.10 and Figure 4.11.
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Figure 4.12: Evolution of the plastic deformation in terms of the accumulated plastic strain κ and
rotation of the (plastic) material symmetry group, predicted by three-dimensional finite element simu-
lations. Depicted is the (first) eigenvector na1 of the spatial structural tensor a that is predicted at a
selected quadrature point of each element for various loadings, φL = 30◦ and cW = 0.15 Pa−1.
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Figure 4.13: Evolution of the plastic deformation in terms of the accumulated plastic strain κ and
rotation of the (plastic) material symmetry group, predicted by three-dimensional finite element simu-
lations. Depicted is the (first) eigenvector na1 of the spatial structural tensor a that is predicted at a
selected quadrature point of each element for various loadings, φL = 60◦ and cW = 0.15 Pa−1.
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Figure 4.14: Evolution of the plastic deformation in terms of the accumulated plastic strain κ and
rotation of the (plastic) material symmetry group, predicted by three-dimensional finite element simu-
lations. Depicted is the (first) eigenvector na1 of the spatial structural tensor a that is predicted at a
selected quadrature point of each element for various loadings, φL = 45◦ and cW = 0.15 Pa−1.
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Figure 4.15: Evolution of the plastic deformation in terms of the accumulated plastic strain κ and
rotation of the (plastic) material symmetry group, predicted by three-dimensional finite element sim-
ulations. Depicted is the (first) eigenvector na1 of the spatial structural tensor a that is predicted
at a selected quadrature point of each element for various loadings, EφL = 45◦ with σφL = 2.5◦ and
cW = 0.15 Pa−1.
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Figure 4.16: Comparison of experimentally observed rotations of the preferred material axes against the
three-dimensional finite element simulation results for various deformation states in terms of the Hencky
strain HL in loading direction eL and various values of the material parameter cW . The experimental
results are reproduced from [65].
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Figure 4.17: Reaction force fL in loading direction eL as a function of the change of the gauge length
∆uG for various values of the material parameter cW and various loading directions φL, relative to the
rolling direction. The calculations are based on a three-dimensional setting and the simulation results
for the displacement-controlled loading and unloading of the sample are shown.

206



4.4 Representative simulation results

A−A

A

A

1�30

�60

(a) Schematic design of in-plane torsion tests
based on [150].

(b) Finite element mesh used for the simulation of
in-plane torsion tests.

Figure 4.18: Schematic design, dimensions (in mm) and finite element mesh of in-plane torsion tests.
a) Depicted is the specimen (light-grey colour) which is clamped between the inner and outer clamps
(dark-grey colour) that rotate relative to each other. b) Finite element mesh that was used for the
simulations of in-plane torsion tests in a three-dimensional setting.

4.4.3 In-plane torsion tests

The proper characterisation of materials and the assessment of the applicability of a
certain material model in general requires the analysis of the material response for
different load states and different loading paths. This can for example be done by taking
into account experimental data based on tension-, compression-, shear- or bending tests.
In this section we will focus on the simulation of shear-dominated deformation states
as they are observed in the in-plane torsion test, see for example [82, 150]. In this
test, a round sheet metal sample is clamped between the outer and inner clamps of the
testing machine as schematically shown in Figure 4.18(a). By applying a relative rotation
between the outer and the inner clamps, a shear-type deformation is induced in the free
circular area between the clamps, and (cyclic) stress-strain curves are determined, see
e.g. [150]. The objective of the present contribution is not the precise reproduction of
experimentally obtained stress-strain curves. Rather, we focus on the general influence
of the residual-type part of the evolution equation and on the evolution of the yield
function’s symmetry axes for shear-dominated deformation states.

To this end, the in-plane torsion test is simulated based on three different material
models, respectively based on three different sets of material parameters. In particular,
we will take into account the prototype model presented in Section 4.2 with the set
of material parameters given in Table 4.1 and an active (cW = 0.15 Pa−1) and non-
active (cW = 0.00 Pa−1) residual-type evolution. For the sake of comparison we will
furthermore consider a plastically isotropic material model which results as a special
case of (4.44) for a2 = 0.00 1

GPa2 , a3 = 0.00 1
GPa2 , a4 = 0.00 1

GPa2 , a5 = 0.00 1
GPa2 and

a6 = 0.00 1
GPa2 . To allow for a good comparability of the results the material parameter

a1 will be scaled such that the isotropic yield function results in approximately the
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same yield limit as the anisotropic one in the three-dimensional tension test presented
in Section 4.4.2.2. Specifically speaking, a1 = 23.9 1

GPa2 will be chosen (for the isotropic
yield function) which results in a necessary force for yielding fL ≈ 30150 N, respectively
a yield limit of approximately 251 MPa.

The finite element simulations are based on the discrete geometry model depicted in
Figure 4.18(b) with an inner radius of 15 mm, an outer radius of 30 mm and a height
of 1 mm. The displacement at the inner boundary will be fixed in radial-, azimuthal-
and height direction. At the outer boundary we will enforce homogeneous Dirichlet
boundary conditions in both the radial- and the height direction, however, a displacement
ϕT in azimuthal direction will be prescribed. More precisely speaking, the azimuthal
displacement will be linearly increased to ϕT = 30◦ and afterwards reduced to ϕT = 0◦,
again. Although a more accurate simulation e.g. by means of contact elements would be
possible, this set of boundary conditions is sufficient for the present purpose. Dealing
with (rolled) sheet metal we will assume a spatially uniform distribution of the initial
axes of plastic material symmetry, as indicated in Figure 4.19(a) and Figure 4.19(b).
Together with the (initial) rotation symmetry of the geometry and taking into account
that the material will respond elastically isotropic, we find that every relative orientation
(measured in the plane spanned by the radial and azimuthal direction) between the (first)
principal stress direction and the axes of plastic material symmetry is observable as long
as no plastic deformation has taken place.

For the evaluation of the in-plane torsion tests we will focus on the accumulated
plastic strain κ as a measure of the plastic deformation and on the first eigenvector
na1 of the spatial structural tensor as a measure of the symmetry group’s rotation, see
also the discussion at the beginning of Section 4.4. Focusing on the simulation results
for a plastically anisotropic material with an active residual-type evolution, first, we
observe a spatially non-homogeneous rotation of the vectors na1 with increasing plastic
deformation. Depending on the spatial position, or rather on the angle that is enclosed
by the radial direction and the eigen-direction in the reference state, see Figure 4.19(a),
a clockwise rotation of the symmetry group is induced in some of the elements while an
anticlockwise rotation is observed in others. For the shear dominated boundary value
problem at hand and with regard to the elastic isotropy we expect that the principal
stress directions enclose an angle of approx. 45◦ with the radial direction, at least in the
small strain limit. According to the derivations presented in Section 4.3.2 the material
symmetry group undergoes an evolution such that the principal axes of plastic material
symmetry align with the principal loading directions. We thus expect a reorientation
of the vectors na1 in the direction of approx. ±45◦ relative to the radial direction with
increasing plastic deformation, as observed in Figure 4.19. Moreover, we note that the
anisotropic features of the yield function do not significantly manifest themselves in
the spatial distribution of κ due to the local alignment of the structural tensor with
the stress tensor. Before proceeding it is instructive to note that the direction vectors
na1 which correspond to elements that deformed only elastically up to the respective
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4.4 Representative simulation results
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Figure 4.19: Evolution of the plastic deformation and of the material symmetry group for the in-plane
torsion test for a plastically anisotropic material with and without a residual-type evolution of the
symmetry group. Depicted is the element-wise mean value of the accumulated plastic strain κ and the
first eigenvector na1 of the spatial structural tensor a at a selected quadrature point of each element.
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Figure 4.20: Depicted is the moment against the applied relative rotation between the outer and inner
boundary for three different sets of material parameters. We specifically focus on a plastically anisotropic
material with evolving preferred material directions (cW = 0.15 Pa−1), on a plastically anisotropic
material without a residual-type evolution of the preferred material directions (cW = 0.00 Pa−1) and
on a plastically isotropic material (a1 = 23.9 1

GPa2 , a2 = 0.00 1
GPa2 , a3 = 0.00 1

GPa2 , a4 = 0.00 1
GPa2 ,

a5 = 0.00 1
GPa2 , a6 = 0.00 1

GPa2 ).

deformation state also exhibit a certain rotation which, however, is not (directly) related
to the principal loading direction, see e.g. Figure 4.19(c).

This effect is due to the convected-type evolution and becomes more apparent when
regarding the simulation results for a material which does not show a residual-type evo-
lution of the symmetry group as depicted in Figures 4.19(b,d,f,h). Being more precise,
the directors na1 exhibit the (local) continuum rotation, except for errors due to the
elastic strain, see the discussion at the beginning of Section 4.4, and inaccuracies re-
lated to the numerical time integration. Neglecting the residual-type evolution for now,
equation (4.26d) shows that the structural tensor in the intermediate configuration spins
at the same (indeterminate) rate as the intermediate configuration. Regardless of the
chosen split of the rotation part of F into an elastic and plastic part in the spirit of
the multiplicative split, the elastic and plastic rotation must add up to the continuum
rotation. If the elastic strain is small the spatial structural tensor is thus found to rotate
with the continuum. In contrast to the previously discussed material with an active
residual-type evolution we furthermore find that the plastic material anisotropy signifi-
cantly manifests itself in the spatial distribution of the accumulated plastic strain κ, see
Figure 4.19(h).

Finally, load-displacement curves in terms of the relative rotation ϕT between the
inner and outer clamps and the applied moment with respect to the centre of the cir-
cular sample MT are provided in Figure 4.20. We observe, in principle, the same load-
displacement response for the plastically isotropic material with a modified material
parameter a1 = 23.9 1

GPa2 and a plastically anisotropic material with a purely convected-
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4.5 Summary

type evolution of the structural tensor. Furthermore it is revealed that activating the
residual-type evolution results in a smaller necessary moment after the onset of yielding
due to the alignment of the structural tensors with the principal loading directions.

4.5 Summary

The experiments on cold-rolled sheet metal by Kim and Yin, [65], suggest that the ex-
perimentally observed, initially orthotropic yielding behaviour is maintained throughout
a finite plastic deformation process. Moreover, the symmetry group of the yield function
is found to evolve in such a way that the symmetry axes align with the principal loading
directions, i.e. a rotation of the (plastic) symmetry group is observed.

Inspired by these experiments, this chapter focused on the development of a spe-
cific, thermodynamically consistent model which allows us to capture the experimen-
tally observed evolution of the plastic anisotropy. The presented developments were
substantially based on the principal theoretical developments by Lu and Papadopoulos,
[77], with respect to a covariant formulation of anisotropic finite plasticity. For motiva-
tional purposes we relied on the physical interpretation of the intermediate configuration,
although the multiplicative split was never invoked explicitly due to its rotational in-
determinacy. Being more specific, an orthotropic yield function in terms of the Mandel
stress tensor of the intermediate configuration was assumed. The respective symmetry
group of this yield function could be characterised by a structural tensor which itself
was defined in the intermediate configuration. Focusing on the modelling of evolving
material symmetries, a well-interpretable evolution equation for the structural tensor
was proposed. Taking the latter into account, we derived a purely referential represen-
tation of the yield function and of the evolution equations for the internal variables, thus
circumventing the use of the multiplicative split.

The rate equations for the structural tensor, for the right Cauchy-Green plastic de-
formation tensor and for the accumulated plastic strain formed a non-linear system of
differential equations which was solved (locally) at each integration point of the employed
finite element scheme. Focusing on the comparison with experimental findings, tension
tests in a two-dimensional plane strain setting and in a general three-dimensional setting
were simulated. Specifically speaking, we observed that a convected-type evolution equa-
tion for the structural tensor was not sufficient in order to capture the experimentally
observed rotation of the material symmetry group. However, by additionally invoking
the specific residual-type evolution equation developed in this chapter, the simulation
results closely matched the experimental findings and gave rise to some new possibili-
ties of interpreting the experimental findings. In a next step in-plane torsion tests were
simulated to analyse the principal model properties for shear-dominated boundary value
problems, revealing once again the alignment of the axes of plastic material symmetry
with the principal loading directions.
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4 Deformation-induced anisotropy evolution in finite plasticity

C Appendix

C.1 Specification of material parameters

The experimental findings by Kim and Yin suggest that the initial yield function can
be well approximated by Hill’s yield function, [55], and that the orthotropic yielding
behaviour is maintained during the experiments, while a rotation of the preferred mate-
rial axes is observed, see Section 4.3.1 and [65]. In [52], an orthotropic yield function in
terms of the Kirchhoff stress tensor was fitted based on the experimental data by Kim
and Yin, [65]. This yield function will be taken into account to calibrate the initial yield
function in terms of the Mandel stress tensor used in this contribution, similar to the
derivations presented in [9]. To this end, the equivalence of (4.42) with a yield function
of the form

f̃ = A1 Ĩy1 + A2 Ĩy2 + A3 Ĩy3 + A4

[
Ĩy4

]2

+ A5

[
Ĩy5

]2

+ A6 Ĩy4 Ĩy5 − M̃y (4.82)

with invariants

Ĩy1 = tr
(
M

2

dev

)
(4.83a)

Ĩy2 = tr
(
M

2

dev ·G
[ ·
[
NA1 ⊗NA1

])
(4.83b)

Ĩy3 = tr
(
M

2

dev ·G
[ ·
[
NA2 ⊗NA2

])
(4.83c)

Ĩy4 = tr
(
Mdev ·G

[ ·
[
NA1 ⊗NA1

])
(4.83d)

Ĩy5 = tr
(
Mdev ·G

[ ·
[
NA2 ⊗NA2

])
(4.83e)

which itself can be related to Hill’s yield function, cf. [28], will be shown. Introducing
the notation

Iy1 = tr
(
M

2

dev

)
(4.84a) Iy2 = tr

(
Mdev ·Ap

)
(4.84b) Iy3 = tr

(
Mdev ·A

2

p

)
(4.84c)

Iy4 = tr
(
M

2

dev ·Ap

)
(4.84d) Iy5 = tr

(
M

2

dev ·A
2

p

)
(4.84e)

and inserting the relations

Ĩy1 = Iy1 (4.85a) Ĩy2 = Iy4 + 2 Iy5 (4.85b) Ĩy3 = −Iy4 + 2 Iy5 (4.85c)

Ĩy4 = Iy2 + 2 Iy3 (4.85d) Ĩy5 = −Iy1 + 2 Iy3 (4.85e)
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C Appendix

into (4.82) one ends up with

f̃ = A1 Iy1 + [A4 + A5 − A6] [Iy2]2 + [4A4 + 4A5 + 4A6] [Iy3]2 + [4A4 − 4A5] Iy2 Iy3

+ [A2 − A3] Iy4 + [2A2 + 2A3] Iy5 − M̃y .

(4.86)

Comparing (4.42) with (4.86) finally yields the conditions

a1 = A1 (4.87a) a2 = A4+A5−A6 (4.87b) a3 = 4A4+4A5+4A6 (4.87c)

a4 = 4A4−4A5 (4.87d) a5 = A2 − A3 (4.87e) a6 = 2A2 + 2A3 (4.87f)

C.2 Derivation of the algorithmic tangent stiffness

In this appendix, the sensitivities with respect to the internal variables and to the defor-
mation gradient tensor which are required for a gradient-based iterative solution of the
local system of differential equations (4.77) and for the specification of the (consistent)
algorithmic tangent stiffness operator (4.78) are summarised for the prototype model
presented in Section 4.2 and Section 4.3.2. For the sake of brevity, superscripts n+ 1
will be omitted in the following.
To start with, the derivative of the Piola-Kirchhoff stresses with respect to the deforma-
tion gradient reads

∂S

∂F
=

1

2

[
[µ− λ ln (Je)]

[
C−1 ⊗ C−1 +C−1 ⊗ C−1

]
+ λC−1 ⊗ C−1

]
:
[
G\? ⊗

[
F ? · g[

]
+
[
F ? · g[

]
⊗ G\?

] (4.88)

and the derivative with respect to the plastic right Cauchy-Green tensor is given by

∂S

∂Cp

= −1

2
µ
[
C−1

p ⊗ C−1
p +C−1

p ⊗ C−1
p

]
− 1

2
λC−1 ⊗C−1

p (4.89)

while the derivatives with respect to the remaining internal variables vanish identically,
i.e.

∂S

∂A
= 0 (4.90)

∂S

∂κ
= 0 (4.91)

∂S

∂λp

= 0 (4.92)

In addition, the sensitivities of the residual terms of the local iteration scheme with
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4 Deformation-induced anisotropy evolution in finite plasticity

respect to the internal variables as well as with respect to the deformation gradient are
required. For the sake of brevity, the derivatives of the trace-terms

∂ tr (Mdev ·Ap)

∂Ap

:
∂Ap

∂Cp

=
1

2

[
[A ·Mdev]? +A ·Mdev

]
(4.93)

∂ tr (Mdev ·Ap)

∂A
=

1

2

[
[Mdev ·Cp]? +Mdev ·Cp

]
(4.94)

∂ tr
(
Mdev ·Ap

2
)

∂Ap

:
∂Ap

∂Cp

=
1

2

[
[A ·Ap ·Mdev]? +A ·Ap ·Mdev

+ [A ·Mdev ·Ap]? +A ·Mdev ·Ap

] (4.95)

∂ tr
(
Mdev ·Ap

2
)

∂A
=

1

2

[
[Ap ·Mdev ·Cp]? +Ap ·Mdev ·Cp

+ [Mdev ·Ap ·Cp]? +Mdev ·Ap ·Cp

] (4.96)

and the derivatives of the mixed-variant structural tensor Ap = Cp ·A, see (4.46),

∂Ap

∂Cp

=
1

2

[
G\? ⊗ A+G\? ⊗ A

]
(4.97)

∂Ap

∂A
=

1

2

[
Cp ⊗ G\ +Cp ⊗ G\

]
(4.98)

∂A2
p

∂Cp

=
1

2

[
G\? ⊗

[
A?

p ·A
]

+G\? ⊗
[
A?

p ·A
]

+Ap ⊗ A+Ap ⊗ A
]

(4.99)

∂A2
p

∂A
=

1

2

[
Cp ⊗ A?

p +Cp ⊗ A?
p + [Ap ·Cp] ⊗ G\ + [Ap ·Cp] ⊗ G\

]
(4.100)

with respect to the plastic right Cauchy-Green tensor and with respect to the structural
tensorA will not be inserted in the ensuing equations. The same holds for the derivatives
of Λp, which are given by

∂Λp

∂Ap

:
∂Ap

∂Cp

= I\dev :

[
2 a2

[
A?

p ⊗ ∂ tr (Mdev ·Ap)

∂Ap

:
∂Ap

∂Cp

+ tr (Mdev ·Ap)
∂A?

p

∂Cp

]

+2 a3

[[
A2

p

]? ⊗ ∂ tr
(
Mdev ·A2

p

)
∂Ap

:
∂Ap

∂Cp

+ tr
(
Mdev ·A2

p

) ∂ [A2
p

]?
∂Cp

]

+ a4

[
A?

p ⊗
∂ tr

(
Mdev ·A2

p

)
∂Ap

:
∂Ap

∂Cp

+ tr
(
Mdev ·Ap

2
) ∂A?

p

∂Cp

+
[
A2

p

]? ⊗ ∂ tr (Mdev ·Ap)

∂Ap

:
∂Ap

∂Cp

+ tr (Mdev ·Ap)
∂
[
A2

p

]?
∂Cp

]

214



C Appendix

+ a5

[[
G\ ⊗ G\?

]
:

[
Mdev ·

∂Ap

∂Cp

]
+M ?

dev ·
∂A?

p

∂Cp

]
+ a6

[[
G\ ⊗ G\?

]
:

[
Mdev ·

∂A2
p

∂Cp

]
+M ?

dev ·
∂
[
A2

p

]?
∂Cp

]]
(4.101)

and

∂Λp

∂A
= I\dev :

[
2 a2

[
A?

p ⊗ ∂ tr (Mdev ·Ap)

∂A
+ tr (Mdev ·Ap)

∂A?
p

∂A

]

+2 a3

[[
A2

p

]? ⊗ ∂ tr
(
Mdev ·A2

p

)
∂A

+ tr
(
Mdev ·A2

p

) ∂ [A2
p
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∂A

]

+ a4

[
A?

p ⊗
∂ tr

(
Mdev ·A2

p

)
∂A

+ tr
(
Mdev ·A2

p

) ∂A?
p

∂Cp

+
[
A2

p

]? ⊗ ∂ tr (Mdev ·Ap)

∂A
+ tr (Mdev ·Ap)

∂
[
A2

p

]?
∂A

]

+ a5

[[
G\ ⊗ G\?

]
:

[
Mdev ·

∂Ap

∂A

]
+M ?

dev ·
∂A?

p

∂A

]
+ a6

[[
G\ ⊗ G\?

]
:

[
Mdev ·

∂A2
p

∂A

]
+M ?

dev ·
∂
[
A2

p

]?
∂A

]]
,

(4.102)

with I\dev denoting the fourth-order deviatoric projection tensor

I\dev = G\ ⊗ G\? − 1

3
G\ ⊗ G\? . (4.103)

With these derivatives at hand and by making use of (4.52), (4.58), (4.59) and (4.71)
the derivatives of the residual terms which are related to the evolution of Cp are given
by

∂RCp

∂Cp

=− 1

2

[
G\? ⊗ G\? +G\? ⊗ G\?

]
+

1

4
∆t λp

[
G\? ⊗ Λ?

p +G\? ⊗ Λ?
p

]
+

1

4
∆t λp

[
Λ?

p ⊗ G\? +Λ?
p ⊗ G\?

]
− 1

4
∆t λp

[
G\? ⊗ G\? +G\? ⊗ G\?

]
:

[
Cp ·

∂2f

∂M∂M

]
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:
[
µC ·

[
C−1

p ⊗ C−1
p +C−1

p ⊗ C−1
p

]
+ λG\? ⊗C−1

p

]
+

1

2
∆t λp

[
G\? ⊗ G\? +G\? ⊗ G\?

]
:

[
Cp ·

∂Λp

∂Ap

:
∂Ap

∂Cp

]
(4.104)

∂RCp

∂A
=

1

2
∆t λp

[
G\? ⊗ G\? +G\? ⊗ G\?

]
:

[
Cp ·

∂Λp

∂A

]
(4.105)

∂RCp

∂κ
= 0 (4.106)

∂RCp

∂λp

=
1

2
∆t
[ [
Cp ·Λp +Λ?

p ·Cp

]
+
[
Cp

n ·Λp
n +Λ?

p
n ·Cp

n
] ]

(4.107)

and those of the residual terms which are related to the evolution of the structural tensor
read

∂RA

∂Cp

=
1

4
∆t λp

[
G\ ⊗ A+A ⊗ G\

]
:

∂2f

∂M∂M

:
[
µC ·

[
C−1

p ⊗ C−1
p +C−1

p ⊗ C−1
p

]
+ λG\? ⊗C−1

p

]
− 1

2
∆t λp
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G\ ⊗ A+A ⊗ G\

]
:
∂Λp

∂Ap
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∂Cp

− 1

8
∆t λp
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G\ ⊗ A+A ⊗ G\

]
cW

:
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G\ ⊗ [Cp ·A ·C]

]
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C−1

p ⊗ C−1
p +C−1

p ⊗ C−1
p

]
A : C

−
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C−1

p ·C ·A
]
⊗ G\? +

[
C−1

p ·C ·A
]
⊗ G\?
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A : C

]
(4.108)
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− 1

8
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]
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:
[
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∂κ
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∂RA

∂λp

=
[
−Λp ·A−A ·Λ?

p

] 1

2
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1

2
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+
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−Λp
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n
] 1

2
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2
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(4.111)

Furthermore, the sensitivities of the scalar valued evolution equation which characterises
the evolution of κ can be specified as

∂Rκ

∂Cp

= 0 (4.112)
∂Rκ

∂A
= 0 (4.113)

∂Rκ

∂κ
= −1 (4.114)

∂Rκ

∂λp

= ∆t (4.115)

and those of the yield function are given by
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∂Rf

∂A
= 2 a2 tr (Mdev ·Ap)

∂ tr (Mdev ·Ap)
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∂A
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∂Rf

∂κ
= −Rinf

ε0

exp

(
− κ
ε0

)
(4.118)

∂Rf

∂λp

= 0 (4.119)
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Finally, the (partial) derivatives of the residual terms with respect to the deformation
gradient need to be specified to evaluate (4.79). For the sake of brevity, the frequently
occurring derivatives

∂Λp

∂F
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∂M∂M
:

[[
G\? ⊗ S

]
:
[
G\? ⊗

[
F ? · g[

]
+
[
F ? · g[

]
⊗ G\?

]
+C · ∂S

∂F

]
(4.120)

and
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are not inserted into the derivatives

∂RCp
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[
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∂Rκ
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= 0 (4.124)

∂Rf
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C.3 Analysis of the elastic deformation

In this appendix we will briefly present the evolution of the tensor ce and show that, as
expected in metal plasticity, ce remains close to the identity. To this end we will focus
on the quantities

∆ceOM = max
e∈ eg

∣∣eO · [ece − g[
]
· eM
∣∣ , (4.126)

with the volumetric average of ce, see (4.75), for the specific element denoted as ece

and the maximum operation being carried out with respect to all elements eg of the
gauge section. In what follows, we will take into account the projections of ece− g[ into
the loading direction eL, the transverse direction eT and the normal direction eN, see
Figure 4.2 for the definition of the respective base vectors. With these definitions at
hand, the evolution of ce is provided in Figure 4.21 for the two-dimensional simulations
presented in Section 4.4.2.1 and in Figure 4.22 for the three-dimensional setting presented
in Section 4.4.2.2.
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Figure 4.21: Coefficients of ∆ce as a function of the load-state in terms of HL for various values of the
angle φL and the (two-dimensional) simulations discussed in Section 4.4.2.1. The different curves rep-
resent different values of the material parameter cW , specifically speaking: – 0.50 Pa−1, - - 0.25 Pa−1,
·· 0.15 Pa−1, - · 0.10Pa−1, M 0.00 Pa−1.
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Figure 4.22: Coefficients of ∆ce as a function of the load-state in terms of HL for various values
of the angle φL and the (three-dimensional) simulations discussed in Section 4.4.2.2. The different
curves represent different values of the material parameter cW , specifically speaking: – 0.50 Pa−1,
- - 0.25 Pa−1, ·· 0.15 Pa−1, - · 0.10 Pa−1, M 0.00 Pa−1.
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5 Concluding remarks

The present work dealt with the modelling and simulation of non-simple and
anisotropic materials and was structured into three primary parts covering various
aspects of gradient elasticity, gradient plasticity and of anisotropic materials. In
particular:

Chapter 2 (Fibre-reinforced composites with fibre-bending stiffness) focused on the de-
velopment of a gradient elasticity-based modelling approach for fibre-reinforced compos-
ites which takes into account the possible influence of fibre-bending stiffness in addition
to the anisotropic features that are accounted for by the classic structural tensor ap-
proach. To this end, the gradient of the spatial fibre direction field was additionally
included as an argument of the stored energy function and it was shown that by doing
so, higher gradients of the deformation map enter the formulation.

The solution of the underlying system of coupled partial differential equations was
addressed by means of a multi-field finite element formulation which was validated in
a first step. To this end, the azimuthal shear deformation of a tube-like structure for
which an analytical solution is available was analysed in detail, and the finite element-
based simulation results were found to compare well with the analytical solution. Having
validated the finite element formulation, the focus was eventually on the development of
a well-interpretable form of the gradient energy contribution. In particular we showed
that a fibre-curvature measure can be extracted from the generalised list of invariants, in
which the stored energy function is parametrised. The analysis of the specific proposed
form of the stored energy function in terms of the curvature measure was particularly
revealing as it could be shown to give rise to physically well-interpretable contributions
to the stress and couple stress tensor. Regarding possible areas of application of the
proposed formulation, experimental findings on the micro- and nanoscale were taken into
consideration which suggest the occurrence of size effects. Accounting for contributions
to the stored energy function which depend on higher gradients of the deformation map,
the presented formulation intrinsically includes a natural length scale and thus allows,
in principle, the capturing of these effects. Motivated by the experimental findings, a
detailed analysis of the size dependent response of the presented formulation was finally
carried out.
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5 Concluding remarks

Chapter 3 (Dislocation density tensor-based gradient plasticity) addressed physically
well-motivated gradient plasticity formulations which include gradients of internal vari-
ables that characterise the plastic deformation as additional arguments of the energy
function. Being more specific, incompatibilities in the plastic deformations were taken
into account which can be interpreted in terms of dislocation density tensors and thus
allow for a physical interpretation of the gradient contributions.

The gradient-enhanced form of the energy function, together with an extended form
of the Clausius-Duhem inequality gave rise to the balance equation of a generalised
stress field (together with its constitutive boundary conditions) which was shown to be
energetically conjugated to the plastic deformation. Moreover, the occurrence of a back
stress-type tensor in the respective yield function, respectively in the evolution equation
for the plastic flow was revealed, which was found to be closely related to the (geometri-
cally necessary) dislocation density. Within the framework of the presented theory, the
focus was then first on the development of a specific dislocation density-based gradient
plasticity model that represents an extension of classic associated-type plasticity mod-
els. The solution of the resulting system of coupled partial differential equations was
addressed by means of a multi-field finite element formulation with the plastic consis-
tency conditions being accounted for on a global level by means of Fischer-Burmeister
complementarity functions. Various boundary value problems that focused, for example,
on the plastic evolution at material interfaces or on the shear band formation that is
induced by geometric imperfections were eventually studied to show the applicability of
the presented formulation. In a next step, an extension of the formulation to gradient
crystal plasticity was pursued. To this end, the balance equation of the generalised stress
field was re-interpreted and a different set of primary field variables was chosen in the
finite element formulation. This modification allowed us to use the same stabilisation
algorithms as in the underlying classic crystal (visco-)plasticity model to approach the
rate-independent limit. For a specific model featuring twelve slip systems, the finite
plastic deformation of a plate with two-round notches was studied with a different activ-
ity of the slip systems in the reference and in the gradient crystal plasticity formulation
being revealed. Motivated by experimental findings on copper micro wires, micro torsion
tests for wires with different diameters were finally simulated. The observed size effect
was found to be in good accordance with the experimental findings.

Chapter 4 (Deformation-induced anisotropy evolution in finite plasticity) focused on
the deformation-induced evolution of material symmetry groups in finite plasticity.
Specifically speaking, an invariant-based formulation was pursued and a specific (thermo-
dynamically consistent) evolution equation for the structural tensor that characterised
the respective material symmetry group was proposed.

At the outset of the theory it was assumed that the evolution equation for the struc-
tural tensor which reflects the anisotropic material properties in the constitutive equa-
tions is composed of two parts which were denoted convected- and residual-type evo-
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lution. Whereas the convected-type evolution could be shown to link the evolution of
the structural tensor to that of the plastic metric, the residual-type evolution allowed
the structural tensor to evolve (to a certain extent) independently from the latter and
was observed to be closely related to the notion of the plastic spin. After analysing
the implications of the evolution equation for the structural tensor on the dissipation
inequality in detail, the focus was eventually on the development of a well-interpretable
form of the residual-type evolution equation which allowed us to capture the experimen-
tally observed evolution of the plastic anisotropy. For this specific form of the evolution
equation, finite element-based simulations of tension tests were carried out and the evo-
lution of the (plastic) material symmetry group was studied in detail. Finally, in-plane
torsion tests were simulated in order to analyse the predicted evolution of the material
symmetry group in shear-dominated deformation processes.
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[150] Q. Yin, A. E. Tekkaya, and H. Traphöner. Determining cyclic flow curves using the
in-plane torsion test. CIRP Annals - Manufacturing Technology, 64(1):261–264,
2015. doi:10.1016/j.cirp.2015.04.087.

[151] H. M. Zbib, M. Rhee, and J. P. Hirth. On plastic deformation and the dynamics
of 3D dislocations. International Journal of Mechanical Sciences, 40(2):113–127,
1998. doi:10.1016/S0020-7403(97)00043-X.

[152] H. M. Zbib, T. Diaz de la Rubia, and V. Bulatov. A multiscale model of plasticity
based on discrete dislocation dynamics. Journal of Engineering Materials and
Technology, 124(1):78–87, 2001. doi:10.1115/1.1421351.

[153] Q. S. Zheng. Theory of representations for tensor functions– a unified invariant
approach for constitutive equations. Applied Mechanics Reviews, 47(11):545–587,
1994. doi:10.1115/1.3111066.

[154] O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method for Solid
and Structural Mechanics. Elsevier Butterworth-Heinemann, 6 edition, 2005.
doi:10.1016/C2009-0-26332-X.
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