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Abstract

Interest in functional time series has spiked in the recent past with papers covering both methodology

and applications being published at a much increased pace. This article contributes to the research in this

area by proposing a new stationarity test for functional time series based on frequency domain methods.

The proposed test statistics is based on joint dimension reduction via functional principal components

analysis across the spectral density operators at all Fourier frequencies, explicitly allowing for frequency-

dependent levels of truncation to adapt to the dynamics of the underlying functional time series. The

properties of the test are derived both under the null hypothesis of stationary functional time series and

under the smooth alternative of locally stationary functional time series. The methodology is theoretically

justified through asymptotic results. Evidence from simulation studies and an application to annual tem-

perature curves suggests that the test works well in finite samples.

Keywords: Frequency domain methods, Functional data analysis, Locally stationary processes, Spectral

analysis

MSC 2010: Primary: 62G99, 62H99, Secondary: 62M10, 62M15, 91B84

1 Introduction

The aim of this paper is to provide a new stationarity test for functional time series based on frequency

domain methods. Particular attention is given to taking into account alternatives allowing for smooth variation

as a source of non-stationarity, even though non-smooth alternatives are covered within the simulation study.

Functional data analysis has seen an upsurge in research contributions for at least one decade. This is reflected

in the growing number of monographs in the area. Readers interested in the current state of statistical inference

procedures may consult Bosq (2000), Ferraty & Vieu (2010), Horváth & Kokoszka (2012), Hsing & Eubank

(2015) and Ramsay & Silverman (2005).
∗AA was partially supported by NSF grants DMS 1305858 and DMS 1407530. AvD was partially supported by Maastricht

University, the contract “Projet d’Actions de Recherche Concertées” No. 12/17-045 of the “Communauté française de Belgique” and
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Papers on functional time series have come into the focus more recently and constitute now an active area

of research. Hörmann & Kokoszka (2010) introduced a general weak dependence concept for stationary func-

tional time series, while van Delft & Eichler (2018a) provided a framework for locally stationary functional

time series. Antoniadis & Sapatinas (2003), Aue et al. (2015) and Besse et al. (2000) constructed prediction

methodology that may find application across many areas of science, economics and finance. With the ex-

ception of van Delft & Eichler (2018a), the above contributions are concerned with procedures in the time

domain. Complementing methodology in the frequency domain has been developed in parallel. One should

mention Panaretos & Tavakoli (2013), who provided results concerning the Fourier analysis of time series in

function spaces, and Hörmann et al. (2015), who addressed the problem of dimension reduction for functional

time series using dynamic principal components.

The methodology proposed in this paper provides a new frequency domain inference procedure for func-

tional time series. More precisely, tests for second-order stationarity are developed. In the univariate case,

such tests have a long history, going back at least to the seminal paper Priestley & Subba Rao (1969), who

based their method on the evaluation of evolutionary spectra of a given time series. Other contributions build-

ing on this work include von Sachs & Neumann (2000), who used local periodograms and wavelet analysis,

and Paparoditis (2009), whose test is based on comparing a local estimate of the spectral density to a global

estimate. Dette et al. (2011) and Preuß et al. (2013) developed methods to derive both a measure of and a test

for stationarity in locally stationary time series, the latter authors basing their method on empirical process

theory. In all papers, interest is in smoothly varying alternatives. The same tests, however, also tend to have

power against non-smooth alternatives such as structural breaks or change-points. A recent review discussing

methodology for structural breaks in time series is Aue & Horváth (2013), while Aue et al. (2018) is a recent

contribution to structural breaks in functional time series.

The proposed test for second-order stationarity of functional time series seeks to exploit that the Discrete

Fourier Transform (DFT) of a functional time series evaluated at distinct Fourier frequencies are asymptot-

ically uncorrelated if and only if the series is second-order stationary. The proposed method is therefore

related to the initial work of Dwivedi & Subba Rao (2011), who put forth similar tests in a univariate frame-

work. Their method has since been generalized to multivariate time series in Jentsch & Subba Rao (2015) as

well as to spatial and spatio-temporal data by Bandyopadhyay & Subba Rao (2017) and Bandyopadhyay et al.

(2017), respectively. A different version of functional stationarity tests, based on time domain methodology

involving cumulative sum statistics (Aue & Horváth, 2013), was given in Horváth et al. (2014).

The intrinsic variation of a functional time series is always larger than any sample size, and standard results

known from univariate and multivariate time series analysis do not directly apply. From a practical perspective

this brings to the fore the question of how to compress this infinite-dimensional variation to finite dimension

in a meaningful way, as there is a complex interplay between dynamics occurring across frequencies and the

function space. This means that dimension reduction has to be done jointly across estimated spectral density

operators at all Fourier frequencies, yet separately as the exact level of dimension reduction has to be decided
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per frequency. The proposed test statistics collect these different sets of projections, obtained via functional

principal components analysis, into a quadratic form encapsulating the second-order dynamics. To derive the

large-sample behavior of this statistic under both the null hypothesis of a stationary time series and the alterna-

tive of a locally stationary functional time series requires new, and perhaps independently interesting, results

on distributional convergence of a cross-periodogram operator in function space, where verifying existence of

the limit process and tightness are nontrivial tasks. The subsequent proofs of distributional convergence of the

test statistics which require taking into account the pecularities of fPCA estimators, are also complex and new.

The main results are derived under the assumption that the curves are observed in their entirety, corresponding

to a setting in which functions are sampled on a dense grid rather than a sparse grid. Differences for these two

cases have been worked out in Li & Hsing (2010).

The remainder of the paper is organized as follows. Section 2 provides background, gives requisite nota-

tions, introduces properties of functional version of the DFT and gives intuition for the test. The exact form

of the hypothesis test, model assumptions and the test statistics are introduced in Section 3. The large-sample

behavior under the null hypothesis of second-order stationarity and the alternative of local stationarity is es-

tablished in Sections 4. Empirical aspects are highlighted in Section 5. The proofs are technical and relegated

to the Appendix. Several further auxiliary results are proved in the supplementary document Aue & van Delft

(2019), henceforth referred to simply as the Online Supplement.

2 Notation and setup

A functional time series pXt : t P Zq will be viewed as a sequence of random elements on a probability space

pΩ,A, P q with paths in a separable Hilbert space. Without loss of generality, we shall focus on processes

taking values in HR “ L2
Rpr0, 1sq, the space of equivalence classes of real-valued, square integrable functions

on the unit interval r0, 1s. Because the methodology introduced in this paper is based on a frequency domain

approach, we shall make extensive use of the complex Hilbert space H “ L2
Cpr0, 1sq. We briefly introduce

notation and relevant properties of this space and associated operators. The complex conjugate of z P C is

denoted by z and the imaginary number by i. For f, g P H , the inner product and the induced L2-norm on H

are respectively given by

xf, gy “

ż 1

0
fpτqgpτqdτ and }f}2 “

a

xf, fy. (2.1)

Two elements of H are understood to be equal if their difference has vanishing L2-norm. More generally,

for measurable functions g : r0, 1sk Ñ C, the Lp-norm shall be denoted by }g}p and the supremum norm by

}g}8 “ supτPr0,1sk |gpτ q|.

Next, some properties of linear operators onH are stated. Denote by S8pHq the Banach space of bounded

linear operators A : H Ñ H equipped with the operator norm ~A~8 “ sup}g}2ď1 }Ag}2. For all f, g P H ,

the adjoint operator of A, denoted by A:, is defined by xAf, gy “ xf,A:gy and the conjugate operator of A
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is given by Ag “ pAgq. An operator A is called self-adjoint if xAf, gy “ xf,Agy for all f, g P H and non-

negative definite if xAg, gy ě 0 for all g P H . For v P H , define the tensor product fbg : HbH Ñ H as the

bounded linear operator pf b gqv “ xv, gyf . A compact operator A admits a singular value decomposition

A “
8
ÿ

n“1

snpAqψn b φn, (2.2)

where psnpAq : n P Nq, are the singular values of A, pφn : n P Nq and pψn : n P Nq orthonormal bases

of H . The singular values are ordered to form a monotonically decreasing sequence of non-negative num-

bers. A compact operator A is said to belong to the Schatten p-class SppHq if and only if the sequence

spAq “ psnpAq : n P Nq of singular values of A belongs to the sequence space `p, so if and only if

~A~p “ p
ř8
n“1 s

p
npAqq

1{p
ă 8, where ~A~p is referred to as the Schatten p-norm. Relevant here are

S1pHq, the space of trace-class operators, and particularly S2pHq, the space of Hilbert–Schmidt operators.

The latter is also a Hilbert space with inner product xA,ByS “
ř8
i“1xAψi, Bψiy where A,B P S2pHq

and pψn : n P Nq is an ONB of H . The mapping T : H b H Ñ S2pHq defined by the linear extension of

Tpf b gq “ f b g is an isometric isomorphism and defines a Hilbert–Schmidt operator with kernel in H ˆH

given by pf b gqpτ, σq “ fpτqgpσq, τ, σ P r0, 1s. As a consequence, A P S2pHq if and only if there exists

a P H ˆH such that ~A~2 “ }a}2. Further useful properties needed in the proofs of the various statements

of this paper are relegated to the Appendix and the Online Supplement.

2.1 Dependence structure on the function space

Let L2
CpΩq be the Hilbert space with elements satisfiying Er}X}22s ă 8 and denote by ErXs the mean

function ofX , where the expectation should be viewed in the sense of a Bochner integral. For X,Y P L2
CpΩq,

the covariance operator CX,Y : H b H Ñ H is defined as CX,Y “ ErpX ´ ErXsq b pY ´ ErY sqs and

belongs to S2pHq. A functional time series X “ pXt : t P Zq is called strictly stationary if, for all finite sets

of indices J Ă Z, the joint distribution of pXt`j : j P Jq does not depend on t P Z. Similarly, X is weakly

stationary if its first- and second-order moments exist and are invariant under translation in time. Without

loss of generality, it is assumed throughout that ErXts “ 0 and that Xt P L
2
RpΩq for all t P Z. The lag-h

covariance operator between Xt and Xt`h is denoted by

Ct,h “ ErXt`h bXts

which reduces to Ch “ ErXh b X0s in case of weak stationarity. Note that this object is a non-negative

definite element of S1pHRq for h “ 0. The covariance operator Ch can be shown to form a Fourier pair with a

non-negative Hermitian element of SppHq. Provided sufficiently fast decay of the second-order structure, the

spectral density operator Fω is well-defined and given by the Fourier transform of Ch,

Fω “
1

2π

ÿ

hPZ
Ch e

´iωh. (2.3)
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A sufficient condition for the existence of Fω in SppHq is
ř

hPZ ~Ch~p ă 8.

Higher-order dependence among the functional observations is defined through cumulant mixing condi-

tions (Brillinger, 1981; Brillinger & Rosenblatt, 1967). For this, the notion of higher-order cumulant tensors is

required; see Appendix B for their definition and a discussion of their properties for nonstationary functional

time series.

2.2 The functional discrete Fourier transform

The starting point of this paper is the following proposition that characterizes second-order stationary behavior

of a functional time series in terms of a spectral representation. Its proof is in Appendix A.

Proposition 2.1. A zero-mean, H-valued stochastic process pXt : t P Zq whose spectral measure is trace

class admits the representation

Xt “

ż π

´π
eitωdZω a.s., (2.4)

where pZω : ω P p´π, πsq is a right-continuous functional orthogonal-increment process, if and only if it is

weakly stationary.

If the process is not weakly stationary, then a representation in the frequency domain is not necessar-

ily well-defined and certainly not with respect to complex exponential basis functions. However, a time-

dependent functional Cramér representation exists if the characteristics of the process are captured by a

Bochner-measurable mapping that is an evolutionary operator-valued mapping in time direction (van Delft

& Eichler, 2018a). Assume that the functions X1, . . . , XT have been observed. If the process is weakly

stationary, the functional Discrete Fourier Transform (fDFT) evaluated at frequency ω, given by

DpT qω “
1

?
2πT

T
ÿ

t“1

Xte
´iωt, (2.5)

can be seen as an estimate of the increment process Zω and exists almost surely as an element of H . The

functional time series itself can then be represented through the inverse fDFT as

Xt “

c

2π

T

T
ÿ

j“1

DpT qωj e
iωjt. (2.6)

Under regularity conditions, a set of fDFTs evaluated at distinct frequencies yield asymptotically independent

Gaussian random elements in H and, for fixed ω, one has VarpD
pT q
ω q Ñ Fω (Panaretos & Tavakoli, 2013).

The fDFT sequence of a Hilbertian-valued stationary process is in particular asymptotically uncorrelated at

the canonical frequencies ωj “ 2πj{T . Consequently, provided the series is weakly stationary, for j ‰ j1 or

j ‰ T ´ j1, we have ~CovpD
pT q
ωj , D

pT q
ωj1 q~2 “ Op1{T q. In other words, the lag-h covariance operator of the

fDFT converges in norm and hence weak operator topology to the zero operator as T Ñ 8. Similar to the

above, the reverse argument (uncorrelatedness of the functional DFT sequence implies weak stationarity) can
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be shown by means of the inverse fDFT. Using expression (2.5), the covariance operator Ct,h of Xt`h and Xt

can be written in terms of the fDFT sequence as

Ct,h “
2π

T

T
ÿ

j,j1“1

ErDpT qωj bD
pT q
ωj1
seiωjh “

2π

T

T
ÿ

j“1

ErDpT qωj bD
pT q
ωj se

iωjh “ Ch,

where the equality holds in an L2-sense. This demonstrates that the autocovariance kernel of a second-order

stationary functional time series is obtained and, hence, that an uncorrelated fDFT sequence implies second-

order stationarity up to lag T ´1. The fDFT thus captures exactly the defining property of a weakly stationary

process and provides a natural starting point for a test of stationarity. It is, however, a nontrivial task to

construct a test statistic that optimally extracts the information contained in the infinite-dimensional process to

finite dimensions. Not only can the dependence structure and the resulting dynamics of a functional time series

be of a complicated nature (see Figure 5.1 and the example given in Section S8 of the Online Supplement),

but the process will vary along both frequency and functional directions. To construct a powerful test it is

therefore crucial to understand how the fDFT’s behave when weak stationarity is violated. In accordance with

aforementioned time series literature, the theoretical behavior of the fDFT sequence under smooth alternatives

is studied. These properties will then be exploited to verify large-sample results for a testing framework for

functional stationarity.

3 The functional stationarity testing framework

This section gives precise formulations of the hypotheses of interest, states the main assumptions of the paper

and introduces the test statistics. Throughout, interest is in testing the null hypothesis

H0 : pXt : t P Zq is a weakly stationary functional time series

versus the alternative

HA : pXt : t P Zq is a locally stationary functional time series,

where locally stationary functional time series are defined as follows.

Definition 3.1. A stochastic process pXt : t P Zq taking values in HR is said to be locally stationary if

(1) Xt “ X
pT q
t for t “ 1, . . . , T and T P N; and

(2) for any rescaled time u P r0, 1s, there is a strictly stationary process pXpuqt : t P Zq such that

›

›X
pT q
t ´X

puq
t

›

›

2
ď

´
ˇ

ˇ

ˇ

t
T ´ u

ˇ

ˇ

ˇ
` 1

T

¯

P
puq
t,T a.s.,

where P puqt,T is a positive, real-valued triangular array of random variables such that, for some ρ ą 0,

Er|P puqt,T |
ρs ă 8 for all t and T , uniformly in u P r0, 1s.

6



Note that, under HA, the process constitutes a triangular array of functions. Inference methods are then

based on in-fill asymptotics as popularized in Dahlhaus (1997) for univariate time series. The process is then

considered to be observed on a finer grid as T increases such that more observations are available at a local

level. A rigorous statistical framework for locally stationary functional time series was recently provided in

van Delft & Eichler (2018a). Note that weakly stationary processes are included in Definition 3.1, which then

reduces to standard asymptotics.

Based on the observations in Section 2.2, a test for weak stationarity can be set up exploiting the uncor-

relatedness of the elements in the sequence pDpT qωj : j “ 1, . . . , T q. This could be done considering the lag-h

sample covariance operator T´1
řT
j“1D

pT q
ωj bD

pT q
ωj`h which should be centered at the zero operator in S2 for

all h “ 1, . . . , T ´ 1. Here, two statistics based on the coefficients in the Karhunen–Loève decomposition

of the fDFTs are considered. For j “ 1, . . . , T , let pφωjl : l P Nq be the orthonormal basis of eigenfunc-

tions of Fωj and observe that for this choice of basis VarpxDωj , φ
ωj
l yq “ xFωj pφ

ωj
l q, φ

ωj
l y “ λ

ωj
l , where

pλ
ωj
l : l P Nq P R` are the eigenvalues of Fωj . Then, for any j, j1, pφωjl b φ

ωj1

l1 : l, l1 P Nq is an orthonormal

basis of L2
Cpr0, 1s

2q and, by definition of the Hilbert–Schmidt inner product on the algebraic tensor product

space H bH ,

1

T

T
ÿ

j“1

DpT qωj bD
pT q
ωj`h

“
1

T

T
ÿ

j“1

8
ÿ

l“1

8
ÿ

l1“1

@

DpT qωj bD
pT q
ωj`h

, φ
ωj
l b φ

ωj`h
l1

D

S
φ
ωj
l b φ

ωj`h
l1 (3.1)

«
1

T

T
ÿ

j“1

L
ÿ

l“1

L1
ÿ

l1“1

xDpT qωj , φ
ωj
l yxD

pT q
ωj`h , φ

ωj`h
l1 yφ

ωj
l b φ

ωj`h
l1

for sufficiently large L and L1. The foregoing motivates to set up tests based on the score products

γ
pT q
j,h pl, l

1q “ xDpT qωj , φ
ωj
l yxD

pT q
ωj`h , φ

ωj`h
l1 y (3.2)

or on the standardized score products

ρ
pT q
j,h pl, l

1q “
γ
pT q
j,h pl, l

1q
b

λ
ωj
l λ

ωj`h
l1

. (3.3)

In practice, the unknown spectral density operators Fωj and Fωj`h are to be replaced with consistent estima-

tors F̂
pT q
ωj and F̂

pT q
ωj`h , which will then yield respective sample eigenvalues λ̂ωjl and eigenfunctions φ̂ωjl . The

estimated quantities corresponding to (3.2) and (3.3) will be denoted by γ̂pT qj,h pl, l
1q and ρ̂pT qj,h pl, l

1q, respectively.

As an estimator of Fω, take

F̂pT qω “
2π

T

T
ÿ

j“1

Kbpω ´ ωjq
`

DpT qωj bD
pT q
ωj

˘

, (3.4)

where Kbp¨q is a kernel with bandwidth b satisfying the following conditions.

Assumption 3.1. (a) Let K : r´1
2 ,

1
2 s Ñ R` be symmetric with

ş

Kpxqdx “ 1 and
ş

Kpxq2dx ă 8.
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(b) Let b “ bT be a bandwidth such that T´1{2 ! bT ! T´1{4.

(c) Let Kbpxq “ b´1Kpp2πbq´1xq and and extend the kernel periodically such that Kbpxq “ Kbpx˘ 2πq

in order to include estimates for frequencies around ˘π.

To set up the test statistics, it now appears reasonable to extract information across a range of directions

l “ 1, . . . , Lj and l1 “ 1, . . . , Lj`h as well as a selection of lags h “ 1, . . . , h̄, where h̄ denotes an upper

limit. The truncation parameters Lj “ Lpωjq and Lj`h “ Lpωj`hq are explicitly allowed to depend on

the j-th and pj ` hq-th Fourier frequencies in order to accommodate heterogeneity in the Karhunen–Loève

decompositions across the spectral domain. Set

β̂
pT q
h,u “

1

T

T
ÿ

j“1

Lj
ÿ

l“1

Lj`h
ÿ

l1“1

γ̂
pT q
j,h pl, l

1q and β̂
pT q
h,s “

1

T

T
ÿ

j“1

Lj
ÿ

l“1

Lj`h
ÿ

l1“1

ρ̂
pT q
j,h pl, l

1q, (3.5)

where the subscripts u and s refer to the un-standardized and standardized forms, respectively. In the follow-

ing, the subscript x will be used to refer to any of these two versions when no confusion can arise.

Choose next a collection h1, . . . , hM of lags each of which is upper bounded by h̄ to pool information

across a number of autocovariances and build the vectors

b̂
pT q
M,x “

`

<β̂pT qh1,x
, . . . ,<β̂pT qhM ,x

,=β̂pT qh1,x
, . . . ,=β̂pT qhM ,x

˘J
,

where < and = denote real and imaginary part, respectively. Finally, set up the quadratic forms

Q̂
pT q
M,x “ T pb̂

pT q
M,xq

JΣ̂´1
M,xb̂

pT q
M,x, (3.6)

where Σ̂M,x is an estimator of the asymptotic covariance matrix of the vectors bpT qM,x which are defined by

replacing γ̂pT qj,h pl, l
1q and ρ̂pT qj,h pl, l

1q with γpT qj,h pl, l
1q and ρpT qj,h pl, l

1q in (3.5) and then using the resulting βpT qh,x in

place of β̂pT qh,x in the definition of b̂pT qM,x. The foregoing provides the two test statistics Q̂pT qM,u and Q̂pT qM,s that

will be used to test the null of stationarity against the alternative of local stationarity. Note that both quadratic

forms depend on the tuning parameters Lj , Lj`h and M , the selection of which will be evaluated empirically

in Section 5.

To facilitate the derivation of large-sample results, the following assumptions are made: for the un-

standardized respectively standardized test require

Condition Cu: Let Lj „ log T and liml infω λ
ω
l ą 0;

Condition Cs: Let infω λ
ω
L̄
ą 0 for some L̄ ě supj Lj .

In keeping with the above arrangement, the respective conditions will be referred to as Cx if no confusion

arises. Condition Cu for the un-standardized test allows to send the truncation levels Lj to infinity in a

coordinated manner as long as the divergence is slow (here, logarithmic) compared to T ; see Fremdt et al.

(2014). Condition Cs for the standardized test on the other hand requires a finite truncation level, to ensure

that the smallest eigenvalues of the compact operators Fωj are bounded away from zero as these show up in

the denominator of (3.3).
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4 Large-sample results

4.1 Assumptions

The following gives the main requirements under both stationarity and local stationarity in terms of cumulant

tensors of the functional time series (Appendix B) that are needed to establish the asymptotic behavior of the

test statistics under both hypotheses. Note that the null hypothesis is nested within the alternative. Because

of this basic fact, we start with the general assumptions under local stationarity before specializing to the

stationary case.

Assumption I (k, `). Assume pXpT qt : t ď T, T P Nq and pXpuqt : t P Zq are as in Definition 3.1. Suppose

supt Er}Xt}
minpk,12q
2 s ă 8 and that there exists a a positive sequence κk;t1,...,tk´1

in L2
Rpr0, 1s

kq, independent

of T such that, for all j “ 1, . . . , k ´ 1 and some ` P N,

ÿ

t1,...,tk´1PZ
p1` |tj |

`q}κk;t1,...,tk´1
}2 ă 8. (4.1)

Suppose furthermore that there exist representations

X
pT q
t ´X

pt{T q
t “ Y

pT q
t and X

puq
t ´X

pvq
t “ pu´ vqY

pu,vq
t , (4.2)

for some processes pY pT qt : t ď T, T P Nq and pY pu,vqt : t P Zq taking values in HR whose k-th order joint

cumulants satisfy

(i) }cumpX
pT q
t1
, . . . , X

pT q
tk´1

, Y
pT q
tk
q}2 ď

1
T }κk;t1´tk,...,tk´1´tk}2,

(ii) }cumpX
pu1q
t1

, . . . , X
puk´1q

tk´1
, Y

puk,vq
tk

q}2 ď }κk;t1´tk,...,tk´1´tk}2,

(iii) supu }cumpX
puq
t1
, . . . , X

puq
tk´1

, X
puq
tk
q}2 ď }κk;t1´tk,...,tk´1´tk}2,

(iv) supu }
B`

Bu`
cumpX

puq
t1
, . . . , X

puq
tk´1

, X
puq
tk
q}2 ď }κk;t1´tk,...,tk´1´tk}2.

Assumption I provides Lipschitz conditions that are generalizations of those in Lee & Subba Rao (2016),

who investigated the properties of quadratic forms of stochastic processes in a finite-dimensional setting. The

above conditions enable to express the behavior of the fDFT’s of a k-th order locally stationary process in

terms of k-th order time-varying spectral density tensors (Lemma B.1). This is convenient in order to derive

explicit expressions of the distributional properties under the alternative and to understand departures from

stationarity. Under HA, we can uniquely characterize the second-order stucture of the stochastic process

pX
pT q
t : t ď T, T P Nq via the time-varying spectral density operator

Fu,ω “
1

2π

ÿ

hPZ
Cu,he

´iωh, (4.3)

where Cu,h “ cumpX
puq
h , X

puq
0 q denotes the local cumulant tensor at fixed time u of the stationary approximat-

ing process pXpuqt : t P Zq. Note that the parameter ` and (iii)-(iv) in Assumption I, influence the smoothness

of the operator-valued mapping pu, ωq ÞÑ Fu,ω. Under Assumption I(2,2), derivative maps are well-defined

9



elements of S2pHq and ω ÞÑ Fu;ω is uniformly continuous in ω with respect to ~¨~2. We refer to Lemma

S2.2 for details. More generally, under k-th order local stationarity, these properties carry over to the local

k-th order cumulant spectral density tensor

Fu;ω1,...,ωk´1
“

1

p2πqk´1

ÿ

t1,...,tk´1PZ
Cu;t1,...,tk´1

e´i
řk´1
j“1 ωjtj , (4.4)

where ω1, . . . , ωk´1 P p´π, πs and Cu;t1,...,tk´1
“ cum

`

X
puq
t1
, . . . , X

puq
tk´1

, X
puq
t0

˘

is the corresponding local

cumulant kernel tensor of order k at time u0. Observe that, for k ą 1, (4.4) can be viewed as an element of

S2pH
btpk`1q{2u

, Hb
tk{2u

q. Under k-th order stationarity the above objects become independent of local time u,

so that Fu;ω1,...,ωk´1
” Fω1,...,ωk´1

, and Assumption I specializes to the following.

Assumption I* (k, `). Let pXt : t P Zq be a k-th order stationary functional time series with values in HR

such that (i) Er}X0}
minpk,12q
2 s ă 8 and (ii)

ř8
t1,...,tk´1“´8

p1`|tj |
`q}Ct1,...,tk´1

}2 ă 8 for all 1 ď j ď k´1.

Because the test statistics require estimators of the eigenelements of Fω, it is of importance to consider

the properties of the estimator (3.4) for both null and alternative hypotheses. The next theorem shows that it

is a consistent estimator of the integrated (in a Bochner sense) time-varying spectral density operator

Gω “

ż 1

0
Fu,ωdu,

where the convergence is uniform in ω P r´π, πs with respect to ~¨~2. This therefore becomes an operator-

valued function in ω that acts on H and is independent of rescaled time u. Under H0, Gω thus reduces to Fω.

Theorem 4.1 (Consistency and uniform convergence). Suppose pXpT qt : t ď T, T P Nq satisfies Assumption

Ip4, 2q. Consider the estimator F̂pT qω in (3.4) with smoothing kernel K fulfilling Assumption 3.1(a) and (c).

Then,

(a) Er~F̂pT qω ´Gω~
2
2s “ OppbT q´1 ` b4q, uniformly in ω P r´π, πs.

(b) If, in addition, Assumption 3.1(b) holds and K has bounded derivative on p´1{2, 1{2q then,

supωPr´π,πs ~F̂
pT q
ω ´Gω~2

p
Ñ 0.

The proof of Theorem 4.1 is given in Section C.3 of the Appendix. Since the theorem shows consistency of

F̂ω, a self-adjoint element of S2pHq, it follows from Mas & Menneteau (2003) that the sample eigenelements

pλ̂ωl , φ̂
ω
l : l P Nq of F̂ω provide consistent estimators for the eigenelements pλ̃ωl , φ̃

ω
l : l P Nq of Gω. If H0 is

satisfied, then the stated consistency holds for the eigenelements pλωl , φ
ω
l : l P Nq of Fω.

4.2 Properties under the null of stationarity

The asymptic results under H0 are collected in this section. The first theorem establishes that the scaled

difference between βpT qh,x and β̂pT qh,x is negligible in large samples. Note that the assumptions here and for other

10



theorems in this section are formulated imposing stationarity on certain moments for the null hypothesis via

Assumption I*. To verify the results, typically further assumptions on higher-order cumulants are required.

These are controlled via Assumption I.

Theorem 4.2. Let Assumption 3.1, Assumption I(12,2) and Cx hold. Then, under H0, for any fixed h,

?
T
ˇ

ˇβ̂
pT q
h,x ´ β

pT q
h,x

ˇ

ˇ “ Op

ˆ

1

bT
` b2

˙

pT Ñ8q.

The proof is given in Section D.2.2 of the Appendix. In view of Assumption 3.1, Theorem 4.2 shows that

the distributional properties of β̂pT qh,x are asymptotically the same as those of βpT qh,x . Note that these rates are

necessary for the estimator in (3.4) to be consistent, as is seen from part (a) of Theorem 4.1, which reduces

to the stationary case if the process does not depend on u. They hence do not impose an additional constraint

under H0.

The next theorem derives that, under the additional assumption of fourth-order stationarity, the asymptotic

variance is uncorrelated for all lags h and that there is no correlation between the real and imaginary parts.

For n P N, set rns “ t1, . . . , nu.

Theorem 4.3. Let Assumption 3.1 and Cx hold. Suppose further that Assumption I*(4,2) is satisfied. Then,

for h1 “ h2 “ h,

paq T Cov
´

<β̂pT qh,u ,<β̂
pT q
h,u

¯

“ T Cov
´

=β̂pT qh,u ,=β̂
pT q
h,u

¯

Ñ
1

4π

ż ż

ÿ

pl,l1qPLˆL1

xFω,´ω´ωh,´ω1pφ
ω1

l11
b φ

ω1`ω1h
l12

q, φωl1 b φ
ω`ωh
l2

ydωdω1 `
1

2π

ż

ÿ

lPL

λωl1λ
ω`ωh
l2

dω,

pbq T Cov
´

<β̂pT qh,s ,<β̂
pT q
h,s

¯

“ T Cov
´

=β̂pT qh,s ,=β̂
pT q
h,s

¯

Ñ
1

4π

ż ż

ÿ

pl,l1qPLˆL1

xFω,´ω´ωh,´ω1pφ
ω1

l11
b φ

ω1`ω1h
l12

q, φωl1 b φ
ω`ωh
l2

y
c

λωl1λ
ω`ωh
l2

λω
1

l11
λ
ω1`ω1h
l12

dωdω1 `
1

2π

ż

ÿ

lPL

δl1,l2dω,

where l “ pl1, l2q, l1 “ pl11, l
1
2q, L “ rLpωqs ˆ rLpω ` ωhqs, L1 “ rLpω1qs ˆ rLpω1 ` ω1hqs, and δi,j “ 1

if i “ j and 0 otherwise. If h1 ‰ h2, T Covp<β̂pT qh1,x
,<β̂pT qh2,x

q Ñ 0, T Covp=β̂pT qh1,x
,=β̂pT qh2,x

q Ñ 0 and

T Covp<β̂pT qh1,x
,=β̂pT qh2,x

q Ñ 0.

The proof of Theorem 4.3 is given in Appendix C.2. Observe that the results in part (b) imply that the

standardized test statistics is pivotal if the data is Gaussian. Note also that the results in the theorem use at

various instances the fact that the k-th order spectral density operator at frequency ω “ pω1, . . . , ωkq
T P Rk

is equal to the k-th order spectral density operator at frequency ´ω in the manifold
řk
j“1 ωj mod 2π.

With the previous results in place, the large-sample behavior of the quadratic form statistics Q̂pT qM,x defined

in (3.6) can be derived. This is done in the following theorem.

Theorem 4.4. Let Assumption 3.1 and Cx hold. Suppose further that Assumption I(k, 2) is satisfied for all

k ě 3. Then, under H0,
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(a) For any collection h1, . . . , hM bounded by h̄,
?
T b̂

pT q
M,x

D
Ñ N2M p0,Σ0,xq pT Ñ8q,

where D
Ñ denotes convergence in distribution. Under the additional assumption of fourth-order station-

arity, N2M p0,Σ0,xq is a 2M -dimensional normal distribution with mean 0 and diagonal covariance

matrix Σ0,x “ diagpσ2
0,m,x : m “ 1, . . . , 2Mq whose elements are

σ2
0,m,x “ lim

TÑ8
TCov

`

<β̂hm,x,<β̂hm,x
˘

, m “ 1, . . . ,M,

and σ2
0,M`m,x “ σ2

0,m,x. The explicit form of the limit is determined by Theorem 4.3. If fourth-order

stationarity is violated, then the limiting normal distribution has a non-diagonal covariance structure.

(b) Using the result in (a), it follows that for the statistic defined in (3.6)

Q̂
pT q
M,x

D
Ñ χ2

2M pT Ñ8q,

where χ2
2M is a χ2-distributed random variable with 2M degrees of freedom.

The proof of Theorem 4.4 is provided in Appendix D. Part (b) of the theorem can now be used to construct

tests with asymptotic level α. Note that the application of the test requires an estimator of Σ̂M,x. This will be

discussed in Section 4.4.

To explicitly compute the limiting covariance structure in part (a) of Theorem 4.4 under second-order

stationarity but fourth-order nonstationarity, the source of nonstationarity needs to be specified. For example,

the results put forward in the next two sections allow for the computation of Σ0,x if the process is fourth-order

locally stationary. Then, in the covariance structure of the covariance operator of the fDFT’s, the fourth-

order cumulant tensor component will, for h1 ‰ h2, (quadratically) decay in norm as the distance |h1 ´ h2|

increases (see Lemma B.1, Corollary B.1 (ii) and equation (C.2)). As a consequence of this term being present

in the covariance structure, the real and imaginary part of the projections are no longer uncorrelated but the

correlation decays with increasing distance |h1 ´ h2|. In this scenario, a small loss of power is to be expected

when the test statistic is built under the assumption of a diagonal covariance structure.

4.3 Properties under the alternative

This section contains a generalization of the results in Section 4.2 to locally stationary functional time series.

The following theorem is the counterpart to Theorem 4.2 under the null hypothesis.

Theorem 4.5. Let Assumption 3.1, Assumption I(12,2) and Cx hold. Then, under HA,
?
TE

”

ˇ

ˇβ̂
pT q
h,x ´ β

pT q
h,x ´B

pT q
h,x

ˇ

ˇ

ı

“ O

ˆ

1

bT
` b2 `

1

b
?
T
` b2

?
T

˙

pT Ñ8q,

where

B
pT q
h,x “

1

T

T
ÿ

j“1

ÿ

lPL

ζl,x
@

ErDωj bDωj`h

‰

,Erφ̂ωjl b φ̂
ωj`h
l1 s ´ φ̂

ωj
l b φ̂

ωj`h
l1

D

S

is a stochastic bias term satisfying
?
TB

pT q
h,x “ OP p1q, and ζl,u “ 1 and ζl,s “ pλ̃ωl , λ̃

ω`ωh
l1 q´1{2.
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The proof of Theorem 4.5 is given in Section D.2.2 of the Appendix. In view of Assumption 3.1, the

theorem shows that β̂pT qh,x has the same asymptotic sampling properties as βpT qh,x up to a stochastically bounded

bias term (after scaling with
?
T ). Note that |β̂pT qh,x ´ ErβpT qh,x s|

P
Ñ 0, where

ErβpT qh,x s Ñ
1

2π

ż 2π

0

ż 1

0

ÿ

lPL

ζl,xxFu;ωe
´ı2πuh, φ̃ωl b φ̃

ω`ωh
l1 ySdudω “ µh,x (4.5)

is an noncentrality parameter (see Appendix C.1) that will have to enter the limit distribution of Q̂pT qM,x as a

consequence of the violation of weak stationarity. We discuss this term in some more detail below.

A precise formulation of the asymptotic properties under HA is given in the next theorem.

Theorem 4.6. Let Assumption 3.1 and Cx hold. Suppose further that Assumption I(k, 2) is satisfied for all

k ě 2. Then, under HA,

(a) For any collection h1, . . . , hM bounded by h̄,

?
T b̂

pT q
M,x

D
Ñ N2M pµx,ΣA,xq pT Ñ8q,

where N2M pµx,ΣA,xq denotes a 2M -dimensional normal distribution with mean vector µx whose first

M components are <µhm,x and last M components are =µhm,x, where µhm,x is defined through (4.5),

and non-diagonal block covariance matrix

ΣA,x “

¨

˝

Σ
p11q
A,x Σ

p12q
A,x

Σ
p21q
A,x Σ

p22q
A,x

˛

‚

whose M ˆ M blocks are determined by the results in Appendix E and Section S6.2 of the Online

Supplement.

(b) Using the result in (a), it follows that for the statistic defined in (3.6)

Q̂
pT q
M,x

D
Ñ χ2

µx,2M , pT Ñ8q,

where χ2
µx,2M

denotes a generalized noncentral χ2-distributed random variable with noncentrality pa-

rameter µx “ }µx}22 and 2M degrees of freedom.

The proof of Theorem 4.6 can be found in Appendix E. Observe that the limiting noncentrality parameter

µx of the statistic Q̂pT qM,x measures the aggregation of the functions in (4.5). Under HA, the operator in (3.1)

no longer converges in norm to the zero operator but instead to the operator 1
2π

ş2π
0

ş1
0 Fu,ωe

´i2πuhdudω. The

properties of the latter, which are extracted to finite dimension via µh,x, carry some meaningful information

on the behavior of the test under the alternative. Firstly, denote a general term in the limiting expansion of

µh,x by

µh,xplq “
1

2π

ż 2π

0

ż 1

0
ζl,xxFu;ωe

´i2πuh, φ̃ωl b φ̃
ω`ωh
l1 ySdudω.
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For fixed directions l “ pl, l1q, this function can be seen to approximate the ph, 0q-th Fourier coefficients of

the function pu, ωq ÞÑ ζl,xxFu,ωpφ̃
ω`ωh
l1 q, φ̃ωl y , i.e., for small h and T Ñ8 they approximate

ϑh,j,xplq “
1

2π

ż 2π

0

ż 1

0
ζl,xxFu,ωφ̃

ω`ωh
l1 , φ̃ωl ye

i2πuh´ijωdudω

with j “ 0. In other words, µh,xplq « ϑh,0,xplq. If the process is weakly stationary then the integrand

of the coefficient does not depend on u and all Fourier coefficients are zero except ϑ0,j,xplq. In particular,

ϑ0,0,splq “ 1. Following Paparoditis (2009) and Dwivedi & Subba Rao (2011), the mean functions can

thus be seen to reveal long-term non-stationary behavior. Unlike testing methods based on segments in the

time domain, the proposed method is therefore able to detect smoothly changing behavior in the temporal

dependence structure.

Secondly, the operator
ş1
0 Fu,ωe

´i2πuhdu can be viewed as the h-th Fourier coefficient of the operator-

valued function puq ÞÑ Fu,ω for fixed ω (Lemma B.1), which exhibits a quadratic decay in norm as a function

of h such that the sum of the norms of these coefficients is finite (Corollary B.1). Since this behavior carries

over to the projections, the contribution to µx of the functions µh,x in (4.5) for larger values of h will become

negligible. Intuitively, utilizing large values of M in the statistic Q̂pT qM,x is hence expected to increase the

likelihood of a type II error; see also Section 5.

The results in this and the previous section require an understanding of the estimator Σ̂M,x used in the

definition of the test statistics Q̂pT qM,x in (3.6). The corresponding results are part of the next subsection.

4.4 Estimating the fourth-order spectrum

The estimation of the matrix ΣM is a necessary ingredient in the application of the proposed stationarity test.

Generally, the estimation of the sample (co)variance can influence the power of tests, as has been observed

in a number of previous works set in similar albeit nonfunctional contexts. Among the contributions more

closely related to this paper are Paparoditis (2009) who used the spectral density of the squares, Dwivedi &

Subba Rao (2011), who focused on Gaussianity of the observations, and Jentsch & Subba Rao (2015), who

employed a stationary bootstrap procedure. A different idea was put forward by Bandyopadhyay & Subba Rao

(2017) and Bandyopadhyay et al. (2017). These authors utilized the notion of orthogonal samples to estimate

the variance, falling back on a general estimation strategy developed in Subba Rao (2018).

In order to utilize the results of Theorem 4.4, we require an estimator of the tri-spectral density operator

Fω,´ω´ωh,´ω1 , which can then subsequently be projected onto the (standardized) empirical eigenfunctions and

integrated over ω, ω1. As an estimator, consider

F̂ωj1 ,...,ωj4 “
p2πq3

pb4T q
3

ÿ

k1,k2,k3

K4

´ωj1 ´ ωk1
b4

, . . . ,
ωj4 ´ ωk4

b4

¯

Φpωk1 , . . . , ωk4qI
pT q
ωk1 ,...,ωk4

, (4.6)

where

IpT qωk1 ,ωk2 ,ωk3 ,ωk4
“

T

2π
Dωk1

bDωk2
bDωk3

bDωk4
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denotes the tri-periodogram tensor and where K4px1, . . . , x4q is a smoothing kernel with compact support on

R4 and where

Φpα1, α2, α3, α4q “ 1

if
ř4
k“1 αk ” 0 mod 2π such that

ř

kPJ αk ı 0 mod 2π where J is any non-empty subset of t1, 2, 3, 4u

and equals 0 otherwise. This function therefore controls that we are only working with those combinations

of frequencies that lie on the principal manifold but do not lie in any proper submanifold. The reason for this

is that, for k ą 2, the expectation of k-th order periodogram tensors evaluated at such submanifolds possibly

diverges (see also Brillinger & Rosenblatt, 1967, for the Euclidean case). As the next theorem shows, the

estimator in (4.6) can be shown to be consistent if the bandwidth b4 satisfies b4 Ñ 0 but b´3
4 T Ñ 8 as

T Ñ8.

Theorem 4.7. Suppose Assumption I*(4,2) and Assumption I(8,2) hold. Then the estimator (4.6) of the tri-

spectral density operator satisfies

E
„
�

�

�

�

p2πq2

T 2

T
ÿ

j1,j2“1

F̂ωj1 ,´ωj1`h,´ωj2 ´

ż ż

Fω,´ω`ωh,´ω1dωdω
1

�

�

�

�

2

2



“ O

ˆ

1

b34T
` b44

˙

. (4.7)

The section is rounded out with large-sample behavior under the alternative.

Theorem 4.8. Suppose Assumption I(8,2) holds. Then,

paq

�

�

�

�

E
„

p2πq2

T 2

T
ÿ

j1,j2“1

F̂ωj1 ,´ωj1`h,´ωj2



´

ż ż

Gω,´ω`ωh,´ω1dωdω
1 ´ Zh

�

�

�

�

2

“ O

ˆ

1

b4T
` b4

˙

,

pbq
�

�CovpF̂ωj1 ,ωj2 ,ωj3 , F̂ωj1 ,ωj2 ,ωj3 q
�

�

2

2
“ O

ˆ

1

b34T

˙

,

where Gω,´ω`ωh,´ω1 denotes the time-integrated tri-spectral operator and where Zh P S2pH bHq is a bias

term of order Op~Zh~2q “ 1.

The proofs of Theorems 4.7 and S7.2 are given in Section S7 of the Online Supplement. Using continuity

of the inner-product, Theorem 4.1(a) and the continuous mapping theorem imply projecting onto the empirical

eigenfunctions will not affect the rates.

5 Empirical results

This section reports the results of an illustrative simulation study designed to verify that the large-sample

theory is useful for applications to finite samples. The test is subsequently applied to annual temperature

curves data. The findings provide guidelines for a further fine-tuning of the test procedures to be investigated

in future research.
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5.1 Simulation setting

To generate functional time series, the general strategy applied, for example, in Aue et al. (2015) and Hörmann

et al. (2015), is utilized. For this simulation study, all processes are built on a Fourier basis representation on

the unit interval r0, 1s with basis functions ψ1, . . . , ψ15. Note that the lth Fourier coefficient of a pth-order

functional autoregressive, FAR(p), process pXt : t P Zq satisfies

xXt, ψly “
8
ÿ

l1“1

p
ÿ

t1“1

xXt´t1 , ψlyxAt1pψlq, ψl1y ` xεt, ψly

«

Lmax
ÿ

l1“1

p
ÿ

t1“1

xXt´t1 , ψlyxAt1pψlq, ψl1y ` xεt, ψly, (5.1)

the quality of the approximation depending on the choice of Lmax. The vector of the first Lmax Fourier coef-

ficients Xt “ pxXt, ψ1y, . . . , xXt, ψLmaxyq
J can thus be generated using the pth-order vector autoregressive,

VAR(p), equations

Xt “

p
ÿ

t1“1

At1Xt´t1 ` εt,

where the pl, l1q element of At1 is given by xAt1pψlq, ψl1y and εt “ pxεt, ψ1y, . . . , xεt, ψLmaxyq
J. The entries

of the matrices At1 are generated as Np0, νpt
1q

l,l1 q random variables, with the specifications of νl,l1 given below.

To ensure stationarity or the existence of a causal solution, the norms κt1 ofAt1 are required to satisfy certain

conditions, for example,
řp
t1“1 ~At1~8 ă 1, which might be of more complicated nature (see Bosq, 2000;

van Delft & Eichler, 2018a, for the stationary and locally stationary case, respectively). The functional white

noise, FWN, process is included in (5.1) setting p “ 0. All simulation experiments were implement in R and

any result reported in the remainder of this section is based on 1,000 simulation runs.

5.2 Specification of tuning parameters

The test statistics in (3.6) depends on the tuning parameters Lj “ Lpωjq, determining the dimension of the

projection spaces, and M , the number of frequency lags to be included in the procedure. In the following, a

criterion will be set up to choose Lj , while for M only a limited number of values were entertained because

the selection is less critical for the performance as long as it is not chosen too large. Figure 5.1 shows that

it can well be of interest in practice to choose Lj in a frequency-dependent way, as the eigenvalue decay

might vary significantly between different ωj . The left part of the figure shows the situation for a functional

white noise sequence. The spectral density operators are constant operator-valued functions of frequency

and consequently their spectral decompositions coincide, producing relatively straight lines in the sample

eigenvalue plots. In this case, one would not necessarily have to resort to determining the various truncation

levels Lj individually. However, the right part of the figure shows a time series with a significant level of

dependence, in fact DGP (b) introduced in Section 5.3 below. The functional variation of this second-order

autoregressive process receives drastically different contributions from different frequency bands, yielding
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Figure 5.1: Plot of sample eigenvalues λωjl across Fourier frequencies ωj for l “ 1, . . . , 15 for a functional
white noise process (left) and a second-order functional autoregression (right).

large differences also in the spectral decompositions: sample eigenvalues plotted against frequency are far

from constant. Note also how the plot of the top sample eigenvalue resembles the univariate spectral density

of a scalar second-order autoregression with levels of dependence determined by the operator norm ~¨~8.

Both plots taken together highlight that some flexibility in choosing the Lj is desirable.

To accommodate the previous observation, the following arrangements were made for the standardized

test based on Q̂pT qM,s. In the first part, a reasonable level of variation explained at each frequency ωj is ensured

through requiring that 0.5 ă TVEj ă 0.9 for all j. In the second part, the procedure adapts to different

eigenvalue decays by choosing

Lj “ max

"

l :
λ
ωj
l

λ
ωj
1

ą .2´
1
?
bT

*

subject to the TVE criterion being satisfied. If no such Lj exists, choose Lj “ 1. The unstandardized test

statistics is very stable in practice and does not require the specification of tuning parameters.

Estimation of the spectral density operator and its eigenelements, needed to compute the two statistics,

was achieved using (3.4) with the concave smoothing kernel Kpxq “ 6p0.25 ´ x2q with compact support

on x P r´1{2, 1{2s and bandwidth b “ T´.26. The fourth-order estimation is done with K4px1, . . . , x4q “
ś4
j“1Kpxjq, where K is same as before, and bandwidth b4 “ T´1{5. It should be noted that the outcomes

were not overly sensitive with respect to bandwidth choices for b respecting Assumption 3.1. It is worthwhile

to mention that the computational complexity of the fourth-order estimator is considerable for larger sample

sizes. The implementation was therefore partially done with the compiler language C++ and the Rcpp-

package in R.
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5.3 Finite sample performance under the null

Under the null hypothesis of stationarity the following data generating processes, DGPs, were studied:

(a) The Gaussian FWN variables ε1, . . . , εT with coefficient variances Varpxεt, ψlyq “ expp´pl´ 1q{10q;

(b) The FAR(2) variables X1, . . . , XT with operators specified through the respective variances νp1ql,l1 “

expp´l ´ l1q and νp2ql,l1 “ 1{pl ` l13{2q and operator norms κ1 “ 0.75 and κ2 “ ´0.4, and innovations

ε1, . . . , εT as in (a);

(c) The FAR(2) variables X1, . . . , XT as in (b) but with operator norms κ1 “ 0.4 and κ2 “ 0.45.

The sample sizes under consideration are T “ 2n for n “ 6, . . . , 10, so that the smallest sample size consists

of 64 functions and the largest of 1024. The processes in (a)–(c) comprise a range of stationary scenarios.

DGP (a) is the simplest model, specifying an independent FWN process. DGPs (b) and (c) exhibit significant

second-order autoregressive dynamics of different persistence.

% level % level % level % level
T Q̂

pT q
1,u 5 1 Q̂

pT q
5,u 5 1 Q̂

pT q
1,s 5 1 Q̂

pT q
5,s 5 1

(a) 64 1.33 5.80 1.40 8.93 9.10 2.60 1.29 4.30 1.50 8.26 7.80 2.70
128 1.41 5.90 1.20 9.03 7.20 2.10 1.36 5.70 1.00 8.96 5.70 2.10
256 1.26 5.10 0.90 9.15 5.30 1.70 1.27 5.20 1.40 9.02 5.10 1.00
512 1.37 4.80 1.30 9.27 6.80 1.40 1.40 4.60 1.30 9.16 6.30 1.30

1024 1.32 4.70 1.20 9.19 5.20 1.50 1.33 5.40 0.60 9.33 4.60 1.10
(b) 64 1.58 6.00 1.50 9.50 9.40 3.50 1.35 5.70 1.40 8.65 6.10 2.70

128 1.44 5.70 1.60 9.35 8.90 2.80 1.30 4.70 1.50 8.72 6.30 1.70
256 1.28 4.20 0.90 9.11 6.20 2.30 1.32 4.70 0.60 8.78 7.00 1.70
512 1.32 5.00 1.70 9.42 6.70 1.90 1.26 4.70 0.90 9.11 6.10 0.90

1024 1.44 4.40 0.80 9.26 5.40 1.10 1.32 4.70 0.50 8.87 4.80 0.90
(c) 64 1.42 5.60 1.90 8.50 7.60 3.30 1.20 5.70 0.90 8.36 8.20 2.60

124 1.31 5.20 1.00 9.05 6.20 2.50 1.29 4.00 0.50 8.77 5.70 2.00
256 1.48 6.10 1.20 9.19 6.70 1.90 1.42 5.20 1.70 8.90 6.10 1.30
512 1.35 5.60 0.70 9.48 4.90 1.00 1.41 4.50 0.60 8.99 5.30 1.40

1024 1.34 6.90 1.60 9.26 5.70 1.30 1.35 4.60 1.10 9.10 4.40 0.90

Table 5.1: Median of test statistic values and rejection rates of Q̂pT qM,u and Q̂pT qM,s at the 1% and 5% asymptotic
level for the processes (a)–(c) for various choices of M and T . All table entries are generated from 1000
repetitions.

The empirical rejection levels for the processes (a)–(c) can be found in Table 5.1. It can be seen that the

empirical levels for both statistics with M “ 1 are generally well adjusted with slight deviations in a few

cases. The performance of the statistics with M “ 5 is similar, although the empirical rejection levels tend

towards the nominal ones with increasing sample size. Some evidence on closeness between empirical and

limit densities for the statistics Q̂pT q5,u and Q̂pT q5,s are provided in Figure 5.2.

Figure 5.3 shows the average choices of L over the 1000 repetitions for the various DGPs for the sample

sizes T “ 64 and T “ 1024. First, one can see that the average L increases with the sample size, as
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more degrees of freedom become available. For the small sample size T “ 64, choices of Lj under the

null hypothesis are more similar both across frequencies and across the three DGPs because the form of

dependence is not yet entirely evident. With increasing sample size, the average Lj increases uniformly for

DGP (a), while for DGPs (b) and (c) Lj in certain frequency bands are accentuated while others are attenuated

according to their contributions to the spectral analysis of variance of the underlying functional time series.

For DGP (b) the shape of the curve ωj ÞÑ Lj might also be compared to the shape of the curve ωj ÞÑ λ
ωj
1 in

the right panel of Figure 5.1.

5.4 Finite sample performance under the alternative

Under the alternative, the following data generating processes are considered:

(d) The tvFAR(1) variables X1, . . . , XT with operator specified through the variances νp1ql,l1 “ expp´l´ l1q

and operator norm κ1 “ 0.8, and innovations given by (a) with added multiplicative time-varying

variance

σ2ptq “ cos

ˆ

1

2
` cos

ˆ

2πt

T

˙

` 0.3 sin

ˆ

2πt

T

˙˙

;

(e) The tvFAR(2) variables X1, . . . , XT with both operators as in (d) but with time-varying operator norm

κ1,t “ 1.8 cos

ˆ

1.5´ cos

ˆ

4πt

T

˙˙

,

constant operator norm κ2 “ ´0.81, and innovations as in (a);

(f) The structural break FAR(2) variables X1, . . . , XT given in the following way.

– For t ď 3T {8, the operators are as in (b) but with operator norms κ1 “ 0.7 and κ2 “ 0.2, and

innovations as in (a);

– For t ą 3T {8, the operators are as in (b) but with operator norms κ1 “ 0 and κ2 “ ´0.2, and

innovations as in (a) but with variances Varpxεt, ψlyq “ 2 expp´pl ´ 1q{10q.

All other aspects of the simulations are as in Section 5.3. The processes studied under the alternative provide

intuition for the behavior of the proposed tests under different deviations from the null hypothesis. DGP (d)

is time-varying only through the innovation structure, in the form of a slowly varying variance component.

The first-order autoregressive structure is independent of time. DGP (e) is a time-varying second-order FAR

process for which the first autoregressive operator varies with time. The final DGP in (f) models a structural

break, a different type of alternative. Here, the process is not locally stationary as prescribed under the

alternative in this paper, but piecewise stationary with the two pieces being specified as two distinct FAR(2)

processes.

The empirical power of the various test statistics for the processes in (d)–(f) are in Table 5.2. Power results

are roughly similar across the selected values of M for both statistics. For DGP (f) and to some extend for

DGP (d), power is low for the small sample sizes T “ 64. It reaches 100% for all T larger or equal to 256
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Figure 5.2: Empirical density of Q̂pT q5,u (black) and Q̂pT q5,s (blue) for T “ 64 (left panel) and T “ 512 (right
panel) for DGPs (a)–(c) (top to bottom). Red: The corresponding chi-squared densities predicted under the
null.
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Figure 5.3: Average choice of truncation level Lj against frequency ωj for the six DGPs (solid lines) with
respective standard deviations (dashed lines) for T “ 64 (left) and T “ 1024 (right).

% level % level % level % level
T Q̂

pT q
1,u 5 1 Q̂

pT q
5,u 5 1 Q̂

pT q
1,s 5 1 Q̂

pT q
5,s 5 1

(d) 64 9.84 77.80 54.30 20.33 57.30 39.80 8.61 71.30 46.70 17.92 48.80 30.70
128 19.55 99.00 94.40 33.34 94.10 84.10 18.26 98.20 91.40 30.44 90.20 76.30
256 36.70 100.00 100.00 54.07 99.90 99.70 34.40 100.00 100.00 50.27 99.80 99.40
512 69.49 100.00 100.00 94.47 100.00 100.00 62.90 100.00 100.00 84.75 100.00 100.00

1024 140.53 100.00 100.00 179.75 100.00 100.00 118.18 100.00 100.00 152.12 100.00 100.00
(e) 64 33.38 100.00 100.00 131.80 100.00 98.10 33.46 99.50 99.20 100.13 99.30 99.20

128 49.04 100.00 100.00 118.13 100.00 100.00 66.48 99.70 99.30 172.30 99.80 99.70
256 98.43 100.00 100.00 393.65 100.00 100.00 151.44 99.70 99.60 568.55 99.90 99.80
512 173.35 100.00 100.00 763.11 100.00 100.00 302.51 100.00 100.00 1257.93 100.00 100.00

1024 286.54 99.90 99.90 1311.08 100.00 100.00 579.00 99.80 99.80 2484.54 100.00 99.90
(f) 64 5.64 46.50 25.40 15.02 33.70 19.90 4.38 35.20 16.50 12.36 24.40 12.70

128 10.90 82.80 60.90 21.65 64.30 43.00 8.93 83.10 48.40 18.37 50.40 29.30
256 18.29 98.20 90.50 30.40 90.00 77.50 15.71 95.70 85.20 27.03 84.70 66.00
512 31.81 100.00 100.00 47.49 99.90 99.20 30.71 99.90 99.80 45.71 99.80 98.50

1024 62.72 100.00 100.00 83.82 100.00 100.00 62.29 100.00 100.00 83.18 100.00 100.00

Table 5.2: Median of test statistic values and rejection rates of Q̂pT qM,u and Q̂pT qM,s at the 1% and 5% asymptotic
level for the processes (d)–(f) for various choices of M and T . All table entries are generated from 1000
repetitions.

for all DGPs but (f), where close to perfect detection is reached for T “ 512. Generally, the standardized

statistics is slightly more unstable than its unstandardized counterpart for DGP (e), while both statistics behave

remarkably similar for the other processes. The results for DGP (f) indicate that the proposed statistics have

power against structural break alternatives. This is intuitive since the second-order structure is in this case not

invariant under translations of time and hence induces a non-zero mean in the test statistics.

Figure 5.4 exhibits exemplary the empirical densities for DGP (d). It can be seen that the deviation from

the chi-squared distribution predicted under the null hypothesis grows with increasing sample size. Figure
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5.3 contains the average choice of Lj for DGPs (d)-(f) under the alternative. While processes (d) and (f)

display behavior more similar to the null DGPs, process (e) is significantly different, as almost always only

one principal component is chosen at each frequency for both the small and the large sample size.
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Figure 5.4: Empirical density of Q̂pT q5,u (black) and Q̂pT q5,s (blue) for T “ 64 (left panel) and T “ 512 (right
panel) for DGP (d).

5.5 Finite sample performance under non-Gaussian observations

In this section, the behavior of the eigenbased test under non-Gaussianity is further investigated through the

following processes:

(g) The FAR(2) variables X1, . . . , XT as in (b) but with both independent t19-distributed FWN and inde-

pendent βp6, 6q-distributed FWN;

(h) The tvFAR(1) variables X1, . . . , XT as in (d) but with independent t19-distributed FWN and indepen-

dent βp6, 6q-distributed FWN.

For direct comparison, both t19- and βp6, 6q-distributions were standardized to conform to zero mean and unit

variance as the standard normal. All other aspects are as detailed in Section 5.3. The additional simulations

were designed to shed further light on the effect of estimating the fourth-order spectrum in situations deviating

from the standard Gaussian setting. Note in particular that the t19-distribution serves as an example for

leptokurtosis (the excess kurtosis is 0.4) and the βp6, 6q distribution for platykurtosis (the excess kurtosis

is ´0.4). Process (g) showcases the behavior under the null, while process (h) highlights the performance

under the alternative. The corresponding results are given in Table 5.3 and can be readily compared with

corresponding outcomes for the Gaussian processes (b) and (d) in Tables 5.1–.5.2.

It can be seen from the results in Table 5.3 that the proposed procedures perform roughly as expected.

First, under the null hypothesis for levels for both types of innovations, both sets of tests and both choices of
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% level % level % level % level
T Q̂

pT q
1,u 5 1 Q̂

pT q
5,u 5 1 Q̂

pT q
1,s 5 1 Q̂

pT q
5,s 5 1

(g), t 64 1.58 5.60 0.70 9.46 7.70 2.70 1.40 2.90 0.60 8.65 6.20 1.40
128 1.42 4.50 1.30 9.37 6.90 2.00 1.30 3.60 0.40 8.81 4.80 1.30
256 1.40 4.40 0.80 9.17 5.50 1.70 1.29 4.90 0.90 8.89 5.70 1.20
512 1.47 4.70 0.70 9.33 4.70 1.30 1.44 4.10 0.50 9.32 4.30 1.20

1024 1.53 5.90 0.40 9.52 5.00 1.00 1.43 5.40 0.90 8.92 4.70 1.10
(g), β 64 1.31 3.10 0.80 9.00 6.70 1.60 1.29 3.40 0.80 8.66 5.50 1.10

128 1.37 4.80 1.10 9.13 6.10 1.90 1.25 3.70 0.60 8.89 4.50 0.90
256 1.39 4.70 1.00 9.13 4.10 1.30 1.32 4.70 1.10 8.57 3.40 0.60
512 1.30 3.90 0.70 9.22 4.50 1.00 1.32 4.50 0.90 9.13 5.80 1.40

1024 1.43 5.00 0.90 9.57 4.40 0.80 1.34 4.20 1.20 9.37 4.90 0.70
(h), t 64 9.07 77.10 49.00 18.95 53.10 29.10 8.16 69.30 41.30 16.82 43.50 22.10

128 17.21 98.30 92.80 28.78 91.10 74.30 16.47 98.00 89.70 26.52 87.00 66.70
256 31.12 100.00 99.90 45.94 100.00 99.70 30.12 100.00 99.70 43.54 99.70 98.60
512 57.81 100.00 100.00 78.95 100.00 100.00 53.14 100.00 100.00 71.69 100.00 100.00

1024 112.95 100.00 100.00 146.21 100.00 100.00 98.88 100.00 100.00 127.16 100.00 100.00
(h), β 64 9.17 77.80 49.60 18.30 50.00 28.10 8.20 69.40 40.20 16.86 42.60 21.60

128 17.49 98.40 91.40 29.06 91.30 74.10 16.31 97.20 88.50 27.21 87.00 67.70
256 31.05 100.00 100.00 46.75 99.90 99.30 29.58 100.00 100.00 44.06 99.90 98.60
512 57.90 100.00 100.00 78.97 100.00 100.00 52.97 100.00 100.00 71.40 100.00 100.00

1024 114.13 100.00 100.00 146.75 100.00 100.00 100.95 100.00 100.00 128.45 100.00 100.00

Table 5.3: Median of test statistic values and rejection rates of Q̂pT qM,u and Q̂pT qM,s at the 1% and 5% asymptotic
level for the processes (g) and (h), where t and β indicate t19- and βp6, 6q-distributed innovations, respectively.
All table entries are generated from 1000 repetitions.

M are well adjusted and observe similar patterns as their normal counterparts in DGP (b) in Table 5.1. Second,

under the alternative for process (h), powers align roughly as for the Gaussian case in Table 5.2. Overall, the

simulation results reveal that the estimation of the fourth-order spectrum does not lead to a marked decay in

performance.

5.6 Application to annual temperature curves

To give an instructive data example, the proposed method was applied to annual temperature curves recorded

at several measuring stations across Australia over the last century and a half. The exact locations and lengths

of the functional time series are reported in Table 5.4, and the annual temperature profiles recorded at the

Gayndah station are displayed for illustration in the left panel of Figure 5.5. To test whether these annual

temperature profiles constitute stationary functional time series or not, the proposed testing method was uti-

lized, using specifications similar to those in the simulation study. To get an idea of the spectral structure

of these different temperature curves, the left-hand side of Figure 5.6 shows the averaged eigenvalue decay

standardized with respect to the largest eigenvalue at each frequency. More precisely, 1
T

řT
j“1 λ

ωj
l {λ

ωj
1 is

plotted against l. Figure 5.7 displays in addition the plots of the l-largest sample eigenvalues λωjl against j

for l “ 1, . . . , 15. It can be seen that frequency-specific contributions are heterogeneous for each of the four

stations. There are also substantial differences in the eigenvalue plots across different stations. The choices of
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Lj across frequency ωj as used by the standardized test procedure are shown in the right-hand side of Figure

5.6.

The p-values for the standardized test statistics are essentially zero for all stations and all M “ 1, . . . , 5.

The testing results for the unstandardized statistics are summarized in Table 5.4. Stationarity is rejected in

favor of the alternative at the 1% significance level at all measuring stations for Q̂pT qM,u with all specifications

of M , with one notable exception: no choice of M leads to a rejection of the null hypothesis at Boulia station.

Additionally, rejection at Melbourne and Sydney stations is not possible at the smallest significance levels for

severalM . At all other measuring stations rejection of the null is very strong. Note that Boulia station showed

the slowest eigenvalue decay in Figure 5.6 and the spectral behavior most separated from the other stations in

Figure 5.7. It is particularly interesting that around frequency π there is little to no separation between first and

second sample eigenvalues. The lack of estimation accuracy in the case of tied eigenvalues might help explain

why Boulia station delivers results at odds with the findings at the other stations. In the future, it might

be worthwhile looking into running the stationarity tests only in certain frequency bands, excluding those

frequencies for which separation of sample eigenvalues is not sufficiently large. This is, however, beyond the

scope of the current paper.

Station T M “ 1 M “ 2 M “ 3 M “ 4 M “ 5

Boulia 120 0.71 0.17 0.20 0.36 0.44
Robe 130 0.01 0.00 0.00 0.00 0.00
Cape Otway 150 0.00 0.00 0.00 0.00 0.00
Gayndah 118 0.00 0.00 0.00 0.00 0.00
Gunnedah 134 0.00 0.00 0.00 0.00 0.00
Hobart 122 0.00 0.00 0.00 0.00 0.00
Melbourne 158 0.03 0.04 0.02 0.01 0.01
Sydney 154 0.15 0.01 0.00 0.00 0.00

Table 5.4: Summary of results for eight Australian measuring stations. The column labeled T reports the
sample size, the other columns report p-values for the given choices of M for Q̂pT qM,u.
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Figure 5.5: Annual temperature curves at Gayndah station.
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Figure 5.7: Plots of the 15 largest sample sample eigenvalues across Fourier frequencies at Boulia (top left),
Cape Otway (top right), Gayndah (bottom left) and Gunnedah (bottom right) stations.
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6 Conclusions and future work

In this paper methodology for testing the stationarity of a functional time series is put forward. The tests are

based on frequency domain analysis and exploit that fDFTs at different canonical frequencies are uncorrelated

if and only if the underlying functional time series are stationary. The limit distribution of the quadratic form-

type test statistics has been determined under the null hypothesis as well as under the alternative of local

stationarity. Finite sample properties were highlighted in simulation experiments with various data generating

processes and an application to annual temperature profiles.

The empirical results show promise for further applications to real data, but future research has to be

devoted to a further fine-tuning of the proposed method; for example, an automated selection of frequencies

hm outside of the standard choice hm “ m for all m “ 1, . . . ,M . This can be approached through a more

refined analysis of the size of the various β̂pT qhm,x
in (3.5) whose real and imaginary part make up the vector

b̂
pT q
M,x in the test statistics Q̂pT qM,x.

A A functional Cramér representation

Proof of Proposition 2.1. Let pXt : t P Zq be a zero-mean, weakly stationary H-valued stochastic process. It

has been shown (van Delft & Eichler, 2018b, Thm 4.4) that for processes with a trace-class spectral measure

F , there exists an isomorphic mapping between the subspaces sppXt : t P Zq of L2
CpΩq and sppeit¨ : t P Zq of

L2pr´π, πs,B, µF q. As a consequence, X admits the representation in (2.4). Conversely,

CovpXt, Xsq “ E
„
ż π

´π
eitλ1dZλ1 b

ż π

´π
eisλ2dZλ2



“

ż π

´π
eipt´sqλdµF “ Ct´s,

showing that a process that admits representation (2.4) must be weakly stationary.

B Properties of functional cumulants

For random elements X1, . . . , Xk in a Hilbert space H , the moment tensor of order k can be defined as

E
“

X1 b ¨ ¨ ¨ bXk

‰

“
ÿ

l1,...lkPN
E
”

k
ź

t“1

xXt, ψlty
ı

pψl1 b ¨ ¨ ¨ b ψlkq,

where the elementary tensors pψl1b¨ ¨ ¨bψlk : l1, . . . , lk P Nq form an orthonormal basis in the tensor product

space
Âk

j“1H if pψl : l P Nq is an orthornormal basis of the separable Hilbert space H . Similarly, define the

k-th order cumulant tensor by

cum
`

X1, . . . , Xk

˘

“
ÿ

l1,...lkPN
cum

`

xX1, ψl1y, . . . , xXk, ψlky
˘

pψl1 b ¨ ¨ ¨ b ψlkq, (B.1)

where the cumulants on the right-hand side are as usual given by

cum
`

xX1, ψl1y, . . . , xXk, ψlky
˘

“
ÿ

ν“pν1,...,νpq

p´1qp´1 pp´ 1q!

p
ź

r“1

E
”

ź

tPνr

xXt, ψlty
ı

,
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the summation extending over all unordered partitions ν of t1, . . . , ku. The following is a generalization of

the product theorem for cumulants (Brillinger, 1981, Theorem 2.3.2).

Theorem B.1. Consider the tensor Xt “ b
Jt
j“1Xtj for random elements Xtj in H with j “ 1, . . . , Jt and

t “ 1, . . . , k. Let ν “ tν1, . . . , νpu be a partition of t1, . . . , ku. The joint cumulant tensor is given by

cumpX1, . . . , Xkq “
ÿ

r11,...,rkJt

ÿ

ν“pν1,...,νpq

p
ź

n“1

cum
`

xXtj , ψrtjy|pt, jq P νn
˘

ψr11 b ¨ ¨ ¨ b ψrkJt ,

where the summation extends over all indecomposable partitions ν “ pν1, . . . , νpq of the table

p1, 1q ¨ ¨ ¨ p1, J1q
...

. . .
...

pk, 1q ¨ ¨ ¨ pk, Jtq.

Formally, abbreviate this by

cumpX1, . . . , Xkq “
ÿ

ν“pν1,...,νpq

Sν

´

b
p
n“1 cum

`

Xtj |pt, jq P νn
˘

¯

,

where Sν is the permutation that maps the components of the tensor back into the original order, that is,

Sνpb
p
r“1 bpt,jqPνr Xtjq “ X11 b ¨ ¨ ¨ bXkJt .

Next, expressions and bounds for cumulants of the fDFT are given in both locally stationary and stationary

regimes.

Lemma B.1 (Cumulants of the fDFT under local stationarity). Let pXt,T : t ď T, T P Nq be a k-th order

locally stationary process in H satisfying Assumption I(k, 1) for arbitrary fixed k. The cumulant tensor of the

local fDFT satisfies

cum
`

DpT qωj1
, . . . , DpT qωjk

˘

“
p2πqk{2´1

T k{2

T´1
ÿ

t“0

Ft{T ;ωj1 ,...,ωjk´1
e´i

řk
l“1 tωjl `Rk,T (B.2)

“
p2πqk{2´1

T k{2´1
F̃j1`...`jk;ωj1 ,...,ωjk´1

`Rk,T ,

where }Rk,T }2 “ OpT´k{2q and the operator

F̃s;ωj1 ,...,ωjk´1
“

ż 1

0
Fu;ωj1 ,...,ωjk´1

e´i2πsudu (B.3)

denotes the s-th Fourier coefficient of Fu;ωj1 ,...,ωjk´1
and belongs to S2.

The proof can be found in Section S2 of the Online Supplement. Lemma B.1 provides a relation between

the k-th order cumulant tensor of the local fDFT and the Fourier coefficients of the k-th order time-varying

spectral density tensors, which induce Hilbert–Schmidt operators. The proof of (B.3) makes apparent that

the dependence structure of the local fDFT behaves in a very specific manner that is based on the distance of

the frequencies. The Fourier coefficients additionally provide an upper bound on the norm of the cumulant

operator.
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Corollary B.1. If Assumption I(k, 2) holds for arbitrary fixed k, then

(i) ~cumpDpT qωj1
, . . . , DpT qωjk

q~2 ď
C

T k{2´1|j1 ` ¨ ¨ ¨ ` jk|2
`O

ˆ

1

T k{2

˙

;

(ii) sup
ω

ÿ

sPZ
~F̃s;ω~2 ď 8.

Note that if
řk
l“1 ωjl “ 0 mod 2π, then (B.2) yields approximately a time average of the k-th order

time-varying spectral density tensor. In case the process does not depend on time u, F̃s;ωj1 ,...,ωj2k´1
“ OH for

s ‰ 0. That is, the operator F̃s;ωj1 ,...,ωj2k´1
maps any ψ P L2pr0, 1sk,Cq to the origin for s ‰ 0. Consequently,

under k-th order stationarity the following corollary holds.

Corollary B.2 (Cumulants of the fDFT under stationarity). Let pXt : t P Zq be a k-th order stationary

sequence taking values in HR that satisfies Assumption I*(k,1) for arbitrary fixed k. Then the cumulant tensor

of the fDFT satisfies

cum
`

DpT qωj1
, . . . , DpT qωjk

˘

“
p2πqk{2´1

T k{2
∆
p
řk
l“1 ωjl q

T Fωj1 ,...,ωjk´1
`RT,k, (B.4)

where the function ∆
pωq
T “ T for ω ” 0 mod 2π, ∆

pωjq
T “ 0 for j ı 0 mod T and the remainder satisfies

~RT,k~2 “ OpT´k{2q.

C First- and second-order dependence structure

C.1 Expectation

From Lemma B.1, for h ‰ 0 mod T ,

�

�

�

1

T

T
ÿ

j“1

E
`

DpT qωj bD
pT q
ωj`h

˘

�

�

�

2
“

�

�

�

1

T

T
ÿ

j“1

1

T

T
ÿ

t“1

Ft{T ;ωje
´itωh `RT,2

�

�

�

2
“

#

OpT´1q under H0.

Oph´2 ` T´1q under HA.

In particular, using that the operator-valued functions pu, ωq ÞÑ Fu,ω are Lipschitz continuous in pu, ωq, yields

that, under HA,

1

T

T
ÿ

j“1

1

T

T
ÿ

t“1

Ft{T ;ωje
´itωh Ñ

1

2π

ż 2π

0

ż 1

0
Fu,ωe

´i2πuhdudω,

where the convergence is in S2pHq. Since Er}DpT qω }22s ă 8, the Cauchy–Schwarz inequality implies Fubini’s

theorem can be applied. Together with the above, it follows that the expectation of βpT qh,u satisfies

ErβpT qh,u s “
1

T

T
ÿ

j“1

Lpωjq
ÿ

l“1

Lpωj`hq
ÿ

l1“1

xE
`

DpT qωj bD
pT q
ωj`h

˘

, φ̃
ωj
l b φ̃

ωj`h
l1 yS

“
1

T

T
ÿ

j“1

Lpωjq
ÿ

l“1

Lpωj`hq
ÿ

l1“1

x
1

T

T´1
ÿ

t“0

Ft{T,ωje
´itωh `R2,T , φ̃

ωj
l b φ̃

ωj`h
l1 yS “ O

ˆ

1

h2

˙

`O

ˆ

1

T

˙
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Ñ
1

2π

ż 2π

0

ż 1

0

Lpωq
ÿ

l“1

Lpω`ωhq
ÿ

l1“1

xFu,ωe
´i2πuh, φ̃ωl b φ̃

ω`ωh
l1 ySdudω,

where the stated order Op¨q for the projections follows from the previously stated convergence in norm. Sim-

ilarly,

ErβpT qh,s s Ñ
1

2π

ż 2π

0

ż 1

0

Lpωq
ÿ

l“1

Lpω`ωhq
ÿ

l1“1

xFu,ωpφ̃
ω`ωh
l1 q, φ̃ωl ye

´i2πuh

b

λ̃ωl λ̃
ω`ωh
l1

dudω.

under Condition Cs.

C.2 Covariance structure

Theorem B.1 implies that the covariance structure of the cross-periodogram operators is given by

Cov
`

DpT qωj1
bDpT qωj1`h1

, DpT qωj2
bDpT qωj2`h2

˘

“ cumpDpT qωj1
, D

pT q
´ωj1`h1

, D
pT q
´ωj2

, DpT qωj2`h2
q (C.1)

` S1324

`

cumpDpT qωj1
, D

pT q
´ωj2

q b cumpD
pT q
´ωj1`h1

, DpT qωj2`h2
q
˘

` S1423

`

cumpDpT qωj1
, DpT qωj2`h2

q b cumpD
pT q
´ωj1`h1

, D
pT q
´ωj2

q
˘

,

where Sijkl denotes the permutation operator on b4
i“1L

2
Cpr0, 1sq that permutes the components of a tensor

according to the permutation p1, 2, 3, 4q ÞÑ pi, j, k, lq, that is, Sijklpx1 b ¨ ¨ ¨ b x4q “ xi b ¨ ¨ ¨ b xl. Under

Assumption I(4,2), we obtain from Lemma B.1,

Cov

˜

1
?
T

T
ÿ

j1

DpT qωj1
bDpT qωj1`h1

,
1
?
T

T
ÿ

j2

DpT qωj2
bDpT qωj2`h2

¸

(C.2)

“
1

T

T
ÿ

j1,j2

˜

2πq

T 2

ÿ

t

Ft{T :ωj1 ,´ωj1`h1 ,´ωj2
e´itpωh2´ωh1 q `RT,4

˙

` S1324

˜

` 1

T

ÿ

t

Ft{T :ωj1
e´itpωj1´ωj2 q `RT,2

˘

b
` 1

T

ÿ

t

Ft{T :´ωj1`h1
e´itp´ωj1`h1`ωj2`h2 q `RT,2

˘

¸

` S1423

˜

` 1

T

ÿ

t

Ft{T :ωj1
e´itpωj1`ωj2`h2 q `RT,2

˘

b
` 1

T

ÿ

t

Ft{T :´ωj1`h1
e´itp´ωj1`h1´ωj2 q `RT,2

˘

¸

.

Using Minkowski’s inequality and Corollary B.1(ii) it follows that, for all T, h1, h2,

�

�

�

�

Cov
` 1
?
T

T
ÿ

j1

DpT qωj1
bDpT qωj1`h1

,
1
?
T

T
ÿ

j2

DpT qωj2
bDpT qωj2`h2

˘

�

�

�

�

2

“ Op1q, (C.3)

both under HA and H0. The focus is here on the covariance structure under fourth-order stationarity. The

more general expression is derived in Section S6 of the Online Supplement.

Proof of Theorem 4.3. Under Assumption I*(4,2), Corollary B.2 implies that (C.2) becomes

Cov

ˆ

1
?
T

T
ÿ

j1

DpT qωj1
bDpT qωj1`h1

,
1
?
T

T
ÿ

j2

DpT qωj2
bDpT qωj2`h2

˙
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“
1

T

T
ÿ

j1,j2

˜

p2πq

T 2
Fωj1 ,´ωj1`h1 ,´ωj2∆

pωh2´ωh1 q

T `RT,4

˙

` S1324

˜

´

Fωj1
1

T
∆
pωj1´ωj2 q

T `RT,2

¯

b

´

F´ωj1`h1
1

T
∆
p´ωj1`h1`ωj2`h2 q

T `RT,2

¯

¸

` S1423

˜

´

Fωj1
1

T
∆
pωj1`ωj2`h2 q

T `RT,2

¯

b

´

F´ωj1`h1
1

T
∆
p´ωj1`h1´ωj2 q

T `RT,2

¯

¸

.

By the properties of ∆
p¨q

T , the term on the second line is of lower order unless h1 ´ h2 “ 0 mod T , while

the third line requires j1 ´ j2 “ 0 mod T and h1 ´ h2 “ 0 mod T . For the fourth line to not be of lower

order we require j1 ` j2 ` h2 “ 0 mod T and ´j1 ´ h1 ´ j2 “ 0 mod T which give the constraints

j1` j2 “ T ´h2 and j1` j2 “ T ´h1, implying we must have j1` j2 “ T ´h. It follows therefore that the

covariance is of order OpT´1q in Hilbert–Schmidt norm if h1 ´ h2 ‰ 0 mod T . If h1 ´ h2 “ 0 mod T ,

then

Cov

ˆ

1
?
T

T
ÿ

j1

DpT qωj1
bDpT qωj1`h

,
1
?
T

T
ÿ

j2

DpT qωj2
bDpT qωj2`h

˙

“
1

T

T
ÿ

j1,j2

p2πq

T
Fωj1 ,´ωj1`h,´ωj2 `RT,2

`
1

T

T
ÿ

j1

˜

`

Fωj1 `RT,2
˘

rb
`

Fωj1`h `RT,2
˘

`
`

Fωj1 `RT,2
˘

rbJ
`

Fωj1`h1 `RT,2
˘

¸

, (C.4)

where Definition S1.1 was used. Thus, as T Ñ8, this converges in norm to

1

4π

ż ż

Fω,´ω´ωh,´ω1dωdω
1 `

ż

Fω rbFω`ωh ` Fω rbJFω`ωhdω.

Consider then the covariance structure of β̂pT qh,u , which is obtained by projecting the fDFT onto the eigenfunc-

tions of Fω. Write this covariance structure as

Covp
?
Tβ

pT q
h1,u

,
?
Tβ

pT q
h2,u
q “

1

T

T
ÿ

j1,j2

ÿ

l1PrLpωj1 qs,l2PrLpωj1`h1
qs,

l3PrLpωj2 qs,l4PrLpωj2`h2
qs

A

Cov
´

DpT qωj1
bDpT qωj1`h

, DpT qωj2
bDpT qωj2`h

¯

`

φ
ωj2
l3
b φ

ωj2`h2
l4

˘

, φ
ωj1
l1
b φ

ωj1`h1
l2

E

.

Under the conditions of Theorem 4.3, (C.4) yields that the summand of the above expression reduces to

“
p2πq

T 2
xFωj1

,´ωj1`h1
,´ωj2

pφ
ωj2

l3
b φ

ωj2`h2

l4
q, φ

ωj1

l1
b φ

ωj1`h1

l2
y∆

pωh2
´ωh1

q

T `O
´ 1

T 2

¯

`

„

λ
ωj1

l1
xφ

ωj2

l3
, φ

ωj1

l1
y

1

T
∆
pωj1

´ωj2
q

T `O
´ 1

T

¯

„

λ
´ωj1`h1

l2
xφ
´ωj2`h2

l4
, φ
´ωj1`h1

l2
y

1

T
∆
pωj1`h1

´ωj2`h2
q

T `O
´ 1

T

¯



`

„

λ
ωj1

l1
xφ
´ωj2`h2

l4
, φ

ωj1

l1
y

1

T
∆
pωj1

`ωj2`h2
q

T `O
´ 1

T

¯

„

λ
´ωj1`h1

l2
xφ

ωj2

l3
, φ
´ωj1`h1

l2
y

1

T
∆
p´ωj1`h1

´ωj2
q

T `O
´ 1

T

¯



,

where self-adjointness of the spectral density operator gave

xFωj1 pφ
ωj2
l2
q, φ

ωj1
l1
y “ xφ

ωj2
l2
,Fωj1 pφ

ωj1
l1
qy “ λ

ωj1
l1
xφ
ωj2
l2
, φ

ωj1
l1
y.
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Self-adjointness of Fω, orthogonality of the eigenfunctions and 2π-periodicity of the eigenelements imply that

Covp
?
Tβ

pT q
h,u ,

?
Tβ

pT q
h,u q “

2π

T 2

T
ÿ

j1,j2“1

ÿ

l1PrLpωj1
qs,l2PrLpωj1`hqs,

l3PrLpωj2
qs,l4PrLpωj2`hqs

xFωj1 ,´ωj1`h,´ωj2 pφ
ωj2
l3
b φ

ωj2`h
l4

q, φ
ωj1
l1
b φ

ωj1`h
l2

y

`
2

T

T
ÿ

j1

ÿ

l1PrLpωj1
qs,l2PrLpωj1`hqs

λ
ωj1
l1
λ
ωj1`h
l2

`O
` 1

T

˘

,

in case h1 “ h2 “ h and Covp
?
Tβ

pT q
h1,u

,
?
Tβ

pT q
h2,u
q “ OpT´1q if h2 ‰ h1 mod T . It can then be derived

similarly that TCovpβ
pT q
h1,u

,β
pT q
h2,u
q “ OpT´1q for h2 ‰ T ´ h1 mod T . Since

<βpT qh1,u
“

1

2
pβ
pT q
h1,u

` β
pT q
h1,u
q and =βpT qh1,u

“
1

2i
pβ
pT q
h1,u

´ β
pT q
h1,u
q,

it follows therefore that

TCov
`

<βpT qh1,u
,=βpT qh2,u

q “ OpT´1q

uniformly in h1, h2 and thus T Cov
`

<βpT qh1,u
,<βpT qh2,u

˘

“ T Cov
`

=βpT qh1,u
,=βpT qh2,u

˘

“ T
2 Cov

`

β
pT q
h1,u

,β
pT q
h2,u

˘

. Fi-

nally, using Lipschitz-continuity of ω ÞÑ Fω and of its eigenelements to replace the Riemann approximations

with their limits completes the proof.

C.3 Proof of Theorem 4.1

Proof of Theorem 4.1. (i) In order to prove the first assertion of the theorem, introduce the bias-variance

decomposition

E
”

�

�F̂pT qω ´ E
“

F̂pT qω

‰

` E
“

F̂pT qω

‰

´Gω
�

�

2

2

ı

“ E
”

�

�F̂pT qω ´ E
“

Ĝω
‰�

�

2

2

ı

` E
”

�

�E
“

F̂pT qω

‰

´Gω
�

�

2

2

ı

. (C.5)

The cross terms cancel because ErxF̂pT qω ´ ErF̂pT qω s,ErF̂pT qω s ´ GωyHbHs and ErF̂pT qω ´ ErF̂pT qω ss “ OH .

Now, by Corollary B.2,

cum
`

DpT qω , D
pT q
´ω

˘

“
1

T

T´1
ÿ

t“0

Ft{T,ω `RT,2 “ GpT qω `RT,2,

where }RT,2}2 “ OpT´1q. Note that the integral approximation in time direction does not change the error

term because of Lipschitz continuity of the mapping pu, ωq ÞÑ Fu,ω in u. Convolution of the cumulant tensor

with the smoothing kernel, replacing the integral approximation with the limit and a change of variables give

E
“

F̂pT qω

‰

“
2π

bT

T
ÿ

j“1

Kbpω ´ ωjqcum
`

DpT qωj , D
pT q
´ωj

˘

“

ż

KpxqGω´xbdx`Rb,T `RT,2,

where }Rb,T }2 “ OpbT´1q. Since supω,u ~Fu,ω~2 ă 8 and supω,u ~
B2

Bω2
Fu,ω~2 ă 8, the mapping ω ÞÑ Gω

is twice differentiable and supω ~
B2

Bω2
Gω~2 ă 8. Therefore, a Taylor expansion around ω and symmetry of

the kernel then lead to

32



E
“

F̂pT qω

‰

“

ż

KpxqGω´xbdx “ Gω `
2
ÿ

i“1

1

i!
pbqi

BiGν
Bνi

ˇ

ˇ

ˇ

ν“ω

ż

xiKpxqdx “ Gω ` εb,T ,

where }εb,T }2 “ Opb2 ` pbT qq´1. Thus, the second term on the right-hand side of (C.5) satisfies

E
“

~EF̂pT qω ´Gω~
2
2

‰

“ O

ˆ

b2 `
1

bT

˙2

(C.6)

uniformly in ω P r´π, πs. To bound the first term of the right-hand side in (C.5), observe that, for j1` j2 ” 0

mod T , Lemma B.1 with k “ 2 yields

cumpDpT qωj1
, DpT qωj2

q “
1

T

T
ÿ

t“1

Ft{T e
´ipωj1`ωj2 qt `R2,T Ñ

ż 1

0
Fu;ωj1

e´i2πupj1`j2qdu “ F̃j1`j2;ωj1
.

Furthermore, from Corollary B.2 and Minkowski’s inequality

�

�

�
cumpDpT qω , D

pT q
´ω , D

pT q
ω1 , D

pT q
´ω1q

�

�

�

2
ď

1

T

�

�

�

�

1

T

T´1
ÿ

t“0

F t
T
,ω,´ω,ω1

�

�

�

�

2

`O

ˆ

1

T 2

˙

“
1

T

�

�

�
G
pT q
ω,´ω,ω1

�

�

�

2
`O

ˆ

1

T 2

˙

“ O

ˆ

1

T

˙

. (C.7)

The last equality follows since supu,ω,ω1 ~Ft{T,ω,´ω,ω1~2 ď
ř

h1,h2,h3PZ }κ3;h1,h2,h3}2 “ Op1q by Assump-

tion I. Theorem B.1 hence implies that

CovpF̂ω, F̂ωq “
1

pbT q2

T
ÿ

k1,k2“1

K

ˆ

ω ´ ωk1
b

˙

K

ˆ

ω ´ ωk2
b

˙

”

cum
`

DpT qωk1
, D

pT q
´ωk1

, D
pT q
´ωk2

, DpT qωk2

˘

` S1324

´

cum
`

DpT qωk1
, D

pT q
´ωk2

˘

b cum
`

D
pT q
´ωk1

, DpT qωk2

˘

¯

` S1423

´

cum
`

DpT qωk1
, DpT qωk2

˘

b cum
`

D
pT q
´ωk1

, D
pT q
´ωk2

˘

¯ı

.

Using Lemma B.1, this equals

1

pbT q2

T
ÿ

k1,k2“1

K

ˆ

ω ´ ωk1
b

˙

K

ˆ

ω ´ ωk2
b

˙

”

S1324

`

F̃k1´k2;ωk1
b F̃´k1`k2;´ωk1

˘

` S1423

`

F̃k1`k2;ωk1
b F̃´k1´k2;´ωk1

˘

`R2,T

ı

. (C.8)

where we used (C.7) is of order Op 1
T q in S2 uniformly in ´π ď ω, ω1 ď π. Using a change of variables, the

properties of the smoothing kernel, Hölder’s inequality and Corollary B.1, it follows that

�

�

�

�

1

pbT q2

T
ÿ

k1,k2“1

K

ˆ

ω ´ ωk1
b

˙

K

ˆ

ω ´ ωk2
b

˙

F̃k1´k2;ωk1
rbF̃´k1`k2;´ωk1

�

�

�

�

2

ď

�

�

�

�

1

pbT q2

T
ÿ

k1

K

ˆ

ω ´ ωk1
b

˙2
ÿ

s

F̃s;ωk1 b F̃´s;´ωk1

�

�

�

�

2
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ď sup
ω

ÿ

sPZ

�

�F̃s;ω
�

�

2

2

ˇ

ˇ

ˇ

ˇ

1

pbT q2

T
ÿ

k1

K

ˆ

ωj1 ´ ωk1
b

˙2ˇ
ˇ

ˇ

ˇ

“ O

ˆ

1

bT

˙

.

A similar argument holds for the remaining term of (C.8). Hence,

�

�

�
Cov

`

F̂pT qω , F̂pT qω

˘

�

�

�

2
“

�

�

�

ˆ

2π

T

˙2 T
ÿ

j,j1“1

Kbpω ´ ωjqKbpω ´ ωj1qCovpIpT qωj , I
pT q
ωj1
q

�

�

�

2
“ O

ˆ

1

bT

˙

.

Fubini’s theorem together with the above implies that the first term of (C.5) satisfies

E
“

~F̂pT qω ´ EF̂pT qω ~2
2

‰

“ tracepVarpF̂pT qω qq “ O

ˆ

1

bT

˙

uniformly in ω P r´π, πs. This establishes (i).

(ii) This part of the proof requires the following lemma verified in Section S1 of the Online Supplement.

Lemma C.1. Let Yν , ν P ra, bs be a zero-mean L2pr0, 1skq-valued stochastic process of which the derivative

mapping ν ÞÑ B
BνYν is well-defined in L2pr0, 1skq for any ν P ra, bs. If E}Yν}22 ă 8 and E}BYν

Bν }
2
2 ă 8, then

2E sup
aďνďb

}Yν}
2
2 ď E}Ya}22 ` E}Yb}22 `

ż b

a

c

E}
B

Bα
Yα}22

b

E}Yα}22 `
ż b

a

b

E}Yα}22dα
c

E}
B

Bα
Yα}22dα.

Lemma C.1 with k “ 2 applied to the spectral density kernel function f̂ω implies — due to the norm

equivalence with the operator F̂ω — that

E sup
0ďωďπ

2~F̂ω ´ EF̂ω~2
2 ďE~F̂0 ´ EF̂0~

2
2 ` E~F̂π ´ EF̂π~2

2

` 2

ż π

0

b

E~F̂ω ´ EF̂ω~2
2

c

E~
B

Bω
pF̂ω ´ EF̂ωq~2

2dω

“ TrVarpF̂0q ` TrVarpF̂πq ` 2

ż π

0

b

TrVarpF̂ωq

c

TrVarp
B

Bω
F̂ωqdω

“ O

ˆ

1

bT

˙

`O

ˆ

1
?
bT
?
b2T

˙

“ O

ˆ

1

b2T

˙

, (C.9)

where the latter follows from part (i). The rate for the covariance structure of the operator-valued function

ω ÞÑ B
Bω F̂ω follow as before, noting that an application of the chain rule of the derivative will lead to an extra

Op 1
b2
q term in S2pHq in comparison to the covariance of F̂ω. Minkowski’s inequality therefore implies

P
ˆ

sup
ωPr´π,πs

~F̂pT qω ´Gω~2 ą ε

˙

ď P
ˆ

sup
ωPr´π,πs

~F̂pT qω ´ EF̂ω~2 ą
ε

2

˙

`P
ˆ

sup
ωPr´π,πs

~EF̂pT qω ´Gω~2 ą
ε

2

˙

.

Using Markov’s inequality together with (C.9), for any ε ą 0,

P
ˆ

sup
ωPr´π,πs

~F̂pT qω ´ EF̂ω~2 ą
ε

2

˙

ď O

ˆ

1

ε2b2T

˙

Ñ 0

as b2T Ñ8. Similary, Markov’s inequality together with (C.6) yields

P
ˆ

sup
ωPr´π,πs

~EF̂pT qω ´Gω~2 ą
ε

2

˙

ď O

ˆ

1

ε2

´

b2 `
1

bT

¯2
˙

Ñ 0

as bT Ñ8 and bÑ 0 as T Ñ8. The result therefore holds provided Assumption 3.1 is satisfied.
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D Weak convergence

The proof of the distributional properties of β̂pT qh,x as stated in Theorem 4.4 and 4.6 are established in this

section. The proof consists of several steps. First, the distributional properties are derived for βpT qh,x , when

spectral density operators and their corresponding eigenelements are known. For this, we investigate the

distributional properties of the operator

w
pT q
h “

1

T

T
ÿ

j“1

DpT qωj bD
pT q
ωj`h

h “ 1, . . . T ´ 1. (D.1)

Theorem D.1 below shows that
?
T pw

pT q
h ´ EwpT qh q converges weakly to a functional Gaussian process both

under the null and the alternative. The distributional properties of βpT qh,x immediately follow from this result

and thus converge weakly to a Gaussian process under both hypotheses. Focus is finally on β̂pT qh,x , where

the effect of replacing the eigenelements with their empirical counterparts on the distributional properties is

clarified. In particular, Theorems 4.2 and 4.5 are established as well as the orders of

E
?
T |β̂

pT q
h,u ´ β

pT q
h,u | and E

?
T |β̂

pT q
h,s ´ β

pT q
h,s |.

D.1 Weak convergence on the function space

To demonstrate weak convergence of (D.1), the following result by Cremers & Kadelka (1986) is used, which

considerably simplifies the verification of the usual tightness condition often invoked in weak convergence

proofs of Banach space-valued random variables.

Lemma D.1. Let pT ,A, µq be a measure space, let pB, | ¨ |q be a Banach space, and let X “ pXn : n P Nq
be a sequence of random elements in LpBpT , µq such that

(i) the finite-dimensional distributions ofX converge weakly to those of a random elementX0 inLpBpT , µq;

(ii) lim sup
nÑ8

Er}Xn}
p
ps ď Er}X0}

p
ps ă 8.

Then, X converges weakly to X0 in LpBpT , µq.

To apply Lemma D.1 in the present context, consider the sequence pÊpT qh : T P Nq of random elements in

L2
Cpr0, 1s

2q, for h “ 1, . . . , T ´ 1 defined through

Ê
pT q
h “

?
T
´

w
pT q
h ´ E

“

w
pT q
h

‰

¯

“

8
ÿ

l,l1“1

xÊ
pT q
h , ψll1yψll1 ,

where the second equality uses a representation with respect to an L2
Cpr0, 1s

2q orthonormal basis ψll1 “ ψl b

ψ1l. From this representation it is easily seen that the finite-dimensional distributions of the basis coefficients

provide a complete characterization of the distributional properties of ÊpT qh . To formalize this, we put the

functional ÊpT qh in duality with pÊpT qh q˚ P L2
Cpr0, 1s

2q
˚ through the pairing ÊpT qh pφq “ xÊ

pT q
h , φy for all

φ P L2
Cpr0, 1s

2q˚. This leads to the following result, which is stated under the more general Assumption I,

which encompasses the stationary case.
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Theorem D.1 (Weak convergence). Let pXt : t P Zq be a stochastic process taking values in HR satisfying

Assumption I with ` “ 2. Then,

`

<ÊpT qhi
,=ÊpT qhi

: i “ 1, . . . , k
˘ d
Ñ pRhi , Ihi : i “ 1, . . . , kq, (D.2)

where Rh, Ih1 , h, h1 P t1, . . . , T ´1u, are jointly Gaussian elements in L2
Cpr0, 1s

2q with means ErRhpψll1qs “
ErIh1pψll1qs “ 0 and covariance structure

1. CovpRhpψl1l11q,Rh1pψl2l12qq “

1

4

“

Υh,h1pψl1l11 l2l12q ` Ύh,h1pψl1l11 l2l12q ` Ὺh,h1pψl1l11 l2l12q ` Ῡh,h1pψl1l11 l2l12q
‰

2. CovpIhpψl1l11q,Rh1pψl2l12qq “

1

4i

“

Υh,h1pψl1l11 l2l12q ` Ύh,h1pψl1l11 l2l12q ´ Ὺh,h1pψl1l11 l2l12q ´ Ῡh,h1pψl1l11 l2l12q
‰

3. CovpRhpψl1l11q, Ih1pψl2l12qq “

1

4i

“

Υh,h1pψl1l11 l2l12q ´ Ύh,h1pψl1l11 l2l12q ` Ὺh,h1pψl1l11 l2l12q ´ Ῡh,h1pψl1l11 l2l12q
‰

4. CovpIhpψl1l11q, Ih1pψl2l12qq “

1

4

“

Υh,h1pψl1l11 l2l12q ´ Ύh,h1pψl1l11 l2l12q ´ Ὺh,h1pψl1l11 l2l12q ` Ῡh,h1pψl1l11 l2l12q
‰

for all h, h1 and l1, l11, l2, l
1
2, and where Υh,h1 , Ύh,h1 , Ὺh,h1 and Ῡh,h1 are given in (S6.3)–(S6.5).

Proof. It remains to verifiy the conditions of Lemma D.1. For the first, the following theorem establishes

that the finite-dimensional distributions converge weakly to a Gaussian process both under the null and the

alternative.

Theorem D.2. Under the conditions of Theorem D.1, we have for all li, l1i P N, hi “ 1, . . . , T´1, i “ 1, . . . , k

and k ě 3,

cum
´

Ê
pT q
h1
pψl1l11q, . . . , Ê

pT q
hk
pψlkl1kq

¯

“ op1q pT Ñ8q.

The proof of D.2 can be found in Section S3 of the Online Supplement. Note that, for the second condition

of Lemma D.1, Parseval’s identity and the monotone convergence theorem yield

E
“›

›Ê
pT q
h

›

›

2

2

‰

“

8
ÿ

l,l1“1

E
“ˇ

ˇÊ
pT q
h pψll1q

ˇ

ˇ

2‰
Ñ

8
ÿ

l,l1“1

E
“ˇ

ˇEhpψll1q
ˇ

ˇ

2‰
“ E

“›

›Eh
›

›

2

2

‰

pT Ñ8q, (D.3)

with Eh denoting the limiting process. Observe that, from (C.3) and the Cauchy–Schwarz inequality, the

terms Υh,h1 , Ύh,h1 , Ὺh,h1 and Ῡh,h1 are finite. Condition (ii) of Lemma D.1 is then satisfied, since

E
“›

›Ê
pT q
h

›

›

2

2

‰

“

ż

r0,1s2
Var

`

Ê
pT q
h pτ, τ 1q

˘

dτdτ 1 “ TE}wpT qh }22 Ñ TrpVarpRhqq ` TrpVarpIhqq ă 8,

where Tonelli’s theorem was applied to obtain the first equality. This completes the proof.
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D.2 Replacing eigenelements with estimates

D.2.1 Invariance under rotation

We now focus on replacing the projection basis with estimates of the eigenfunctions of the spectral density

operators. It can be shown (Mas & Menneteau, 2003) that for rates of the bandwidth b for which the estimated

spectral density operator is a consistent estimator of the true spectral density operator, the corresponding

estimated eigenprojectors Π̂ω
l “ φ̂l

ω
b φ̂l

ω
are consistent for the eigenprojectors Πω

l . However, the estimated

eigenfunctions are not unique and only identified up to rotation on the unit circle. In order to show that

replacing the eigenfunctions with estimates does not affect the limiting distribution, the issue of rotation has

to be considered first. More specifically, when estimating, a version ẑlφ̂
ωj
l , where ẑl P C with modulus

|ẑl| “ 1, is obtained which cannot be guaranteed to be close to the true eigenfunction φωjl . It is therefore

essential that the test statistic is invariant under rotations. To show this, write

Ψhpj, l, l
1q “ xDpT qωj , φ̂

ωj
l yxD

pT q
ωj`h , φ̂

ωj`h
l1 y

and let Ψphq “ vecpΨhpj, l, l
1, qq be the stacked vector of dimension

śT´h
j“1 LpωjqLpωj`hq. Note that then

β̂
pT q
h,u “ eJΨphq. Construct the diagonal matrix

ZjLpωjq “

¨

˚

˚

˚

˚

˝

ẑj1 ¨ ¨ ¨
... ẑj2

. . .
ẑjLpωjq

˛

‹

‹

‹

‹

‚

,

the block diagonal matrix Z1:T
Lpωjq

“ diagpZjLpωjq : j “ 1, . . . , T q and the Kronecker product Zphq “

Z1:T´h
Lpωjq

b Zh:T
Lpωjq

. This is a diagonal object of dimension p
śT´h
j“1 LpωjqLpωj`hqq

2, whose diagonal elements

are given by tẑjl ẑ
j`h
l1 u. Rotating the eigenfunctions on the unit circle, yields versions

β̂
pT q
h,u “ eJZphqΨphq.

For these versions, write
?
TZM b̂

pT q
M,u “

?
T
`

<β̂pT qh1,u
, . . . ,=β̂pT qhM ,u

,=β̂pT qh1,u
, . . . ,=β̂pT qhM ,u

˘J
, where the block

diagonal matrix is given by ZM “ diagp<Zph1q, . . . ,<ZphM q,=Zph1q, . . .=ZphM qqJ. The same rota-

tion, however, also implies that Σ̂M,u becomes ZM Σ̂M,uZ
J
M and hence

T pb̂
pT q
M,uq

JpZM q
JrZM Σ̂M,uZM

Js
´1

ZM b̂
pT q
M,u “ Q̂

pT q
M,u,

thereby showing that the value of the test statistic is not affected by rotation of the estimated eigenfunctions.

In the rest of the proof, focus is therefore only on estimates φ̂ωj`hl and φ̂ωj`hl1 and their respective unknown

rotations ẑjl and ẑ
j`h
l1 are ignored.
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D.2.2 Limiting distristributions of β̂pT qh,u and β̂pT qh,s

We now investigate the rate of convergence of the statistic when the eigenfunctions as a basis are replaced

with their empirical counterparts, and prove Theorems 4.2 and 4.5. For this, it is sufficient to derive the order

of the difference

?
TE|β̂pT qh,x ´ β

pT q
h,x |. (D.4)

In the following we shall focus on β̂pT qh,u and postpone the derivation for β̂pT qh,s to Section S5.2. In order to

bound (D.4), relate φ̂ωjl b φ̂
ωj`h
l1 ´ φ

ωj
l b φ

ωj`h
l1 with F̂ωj1

rbF̂ωj1`h ´ Fωj1
rbFωj1`h from noting that

pFωj rbFωj`hqpφ
ωj
l b φ

ωj`h
l1 q “

ÿ

m,m1

λ
ωj
m λ

ωj`h
m1 φ

ωj
m b φ

ωj
m pφ

ωj
l b φ

ωj`h
l1 qφ

ωj`h
m b φ

ωj`h
m1

“ λ
ωj
l λ

ωj`h
l1 pφ

ωj
l b φ

ωj`h
l1 q

where we used Definition S1.1(i). Similarly, pF̂ωj rbF̂ωj`hqpφ̂
ωj
l b φ̂

ωj`h
l1 q “ λ̂

ωj
l λ̂

ωj`h
l1 pφ̂

ωj
l b φ̂

ωj`h
l1 q. A first-

order Taylor expansion of the eigenvalue-eigenvector equation yields (e.g., Hall & Hosseini–Nasab, 2006)

φ̂
ωj
l b φ̂

ωj`h
l1 ´ pφ

ωj
l b φ

ωj`h
l1 q (D.5)

“
ÿ

m‰l
m1‰l1

1

λ
ωj
l λ

ωj`h
l1 ´ λ

ωj
m λ

ωj`h
m1

@`

F̂ωj1
rbF̂ωj`h ´ Fωj rbFωj`h

˘

pφ
ωj
l b φ

ωj`h
l1 q, φ

ωj
m b φ

ωj`h
m1

D

φ
ωj
m b φ

ωj`h
m1 `R,

where the remainder R is of order ~R~2 “ Opp~F̂ωj1
rbF̂ωj1`h ´ Fωj1

rbFωj1`h~
2
2q and will be of smaller

order than the first term on the right-hand side of (D.5). In the proof we require thus that

λ
ωj
l λ

ωj`h
l1 ´ λ

ωj
m λ

ωj`h
m1 “ λ

ωj
l pλ

ωj`h
l1 ´ λ

ωj`h
m1 q ` pλ

ωj
l ´ λ

ωj
m qλ

ωj`h
m1 ą 0, (D.6)

which implies no multiplicity of eigenvalues. It is also required that the spectral density operators are strictly

positive definite, a condition needed to ensure that their eigenfunctions form a complete orthonormal basis

of H . Note, however, that the assumption of no multiplicity is without loss of generality as one can group

multiple eigenelement pairs into blocks and apply the same techniques over these blocks (e.g., Mas & Men-

neteau, 2003). Given (D.6) holds true, linearity and continuity of the inner product imply that the error can be

rewritten as

1?
T

řT
j“1

ř

l,l1xDωjbDωj`h ,φ
ωj
l bφ

ωj`h

l1
´pφ̂

ωj
l bφ̂

ωj`h

l1
qyS ,

“Opp
1?
T

řT
j“1

ř

l,l1
ř

m‰l
m1‰l1

xDωjbDωj`h ,φ
ωj
m bφ

ωj`h

m1
yS

@

´

F̂ωj
rbF̂ωj`h´Fωj

rbFωj`h

¯

pφ
ωj
l bφ

ωj`h

l1
q,φ

ωj
m bφ

ωj`h

m1

D

S
q

“Op

´

1?
T

řT
j“1

ř

l,l1

@

DωjbDωj`h ,
`

F̂´ωj
rbF̂´ωj`h´F´ωj

rbF´ωj`h

˘

pφ
´ωj
l bφ

´ωj`h

l1
q

D

S

¯

, (D.7)

using that xA,ByS “
ř

mPNxA,ψmm1ySxψmm1 , ByS for any orthonormal basis tψmm1um,m1PN of S2. In other

words, the order of the difference is completely determined by the order of the difference when replacing the

Kronecker products of the estimated spectral density operators with their empirical counterparts. This finding
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can be utilized to determine the order of (D.4) by decomposing it as follows, and considering each of the terms

separately:

J1 “
1
?
T

T
ÿ

j“1

ÿ

l,l1

xDωj bDωj`h ´ E
`

Dωj bDωj`hq, φ
ωj
l b φ

ωj`h
l1 ´ Epφ̂ωjl b φ̂

ωj`h
l1 qyS , (D.8)

J2 “
1
?
T

T
ÿ

j“1

ÿ

l,l1

xDωj bDωj`h ´ E
`

Dωj bDωj`hq,Epφ̂
ωj
l b φ̂

ωj`h
l1 q ´ φ̂

ωj
l b φ̂

ωj`h
l1 yS , (D.9)

J3 “
1
?
T

T
ÿ

j“1

ÿ

l,l1

xE
`

Dωj bDωj`hq, φ
ωj
l b φ

ωj`h
l1 ´ Epφ̂ωjl b φ̂

ωj`h
l1 qyS , (D.10)

J4 “
1
?
T

T
ÿ

j“1

ÿ

l,l1

EpxDωj bDωj`hq,Epφ̂
ωj
l b φ̂

ωj`h
l1 q ´ φ̂

ωj
l b φ̂

ωj`h
l1 yS . (D.11)

The following lemma contains the order of these four terms.

Lemma D.2. Under Assumption I(12,2),

E|J1| “ Op
1

bT
` b2q, (D.12)

E|J2| “

#

Op 1
bT
?
T
q `Op 1

bT q under H0,

Op 1
b
?
T
q `Op 1

bT q under HA,
(D.13)

E|J3| “

#

Op 1
bT
?
T
` b2?

T
q under H0,

Op 1
b
?
T
` b2

?
T q under HA,

(D.14)

E|J4| “

#

Op 1?
bT
q under H0.

Op1q under HA.
(D.15)

The proof is relegated to Section S5 of the Online Supplement.

E Limiting distribution under HA

Theorem E.1. Under the conditions of Theorem 4.6, we have, for all hi, hj P Z with i, j “ 1, . . . , k,

T k{2cumn,rpβ
pT q
hi
,B
pT qq
hj
q “ op1q pT Ñ8q, (E.1)

where cumn,rpβ
pT q
h ,B

pT qq
h1 q denotes the joint cumulant

cumpβ
pT q
h , . . . ,β

pT q
h

looooooomooooooon

n times

,B
pT qq
h1 , . . . ,B

pT qq
h1

loooooooomoooooooon

r times

q

with 0 ď n, r ď k such that n` r “ k.

Proof. We will show that
?
Tβ

pT q
h and

?
TB

pT q
h are jointly normal. Using (D.7) and hence that the order of

B
pT q
h is determined by the order of

V
pT q
h “

1

T

T
ÿ

j“1

xEpDωj bDωj`hq,
´

F̂ωj1
rbF̂ωj`h ´ EF̂ωj rbF̂ωj`h

¯

pφ
ωj
l b φ

ωj`h
l1 qyS ,
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we will show that, for k ą 2,

T k{2cumn,rpβ
pT q
h ,V

pT qq
h q “ cumpβ

pT q
h , . . . ,β

pT q
h

looooooomooooooon

n times

,V
pT qq
h , . . . ,V

pT qq
h

loooooooomoooooooon

r times

q “ op1q,

where 0 ď n, r ď n such that n ` r “ k. First note that the operator ErDωj b Dωj`hs is compact and

therefore separable. Without loss of generality, in order to ease notation, write therefore Dplqωjk “ xD
pT q
ωjk
, ψly

and F̂
plmq
ωj “ xF̂ωj pψmq, ψly, where tψlulPN forms a basis of H . Using then Theorem B.1

T k{2cumn,rpβ
pT q
h ,V

pT qq
h q

“ T k{2
ÿ

j1,...,jk

cum
`

Dpl1qωj1
D
pl11q
´ωj1`h1

, . . . , Dplnqωjn
D
pl1nq
´ωjn`hn

, F̂pln`1mn`1q
ωjn`1

F̂
pl1n`1m

1
n`1q

ωjn`1`hn`1
, . . . , F̂plkmkqωjk

F̂
pl1km

1
kq

ωjk`hk

˘

“ T´k{2
ÿ

j1,...,jk

´2π

bT

¯2r k
ź

d“n`1

T
ÿ

qd“1

Kp
ωjd ´ ωq2pd´nq´1

b
qKp

ωjd`hd ´ ωq2pd´nq
b

q

ˆ
ÿ

i.p.

cumpD
pvsq
λjs

: s P P1q ¨ ¨ ¨ cumpDpvsqωjs
: s P PQq,

where the summation extends over all indecomposable partitions P “ tP1, . . . , PQu of the array

p1, 1q p1, 2q
...

...
pn, 1q pn, 2q
pn` 1, 1q pn` 1, 2q pn` 1, 3q pn` 1, 4q

...
...

...
pk, 1q pk, 2q pk, 3q pk, 4q,

(E.2)

using similar notation as in the proof of Theorem D.1. In particular, the value s “ ii1 corresponds to entry

pi, i1q of (E.2). For a partition P “ tP1, . . . , PQu, the elements of a set Pν will be denoted by sν1, . . . , sν|Pν |,

with |Pν | being the number of elements in Pν . In this case, we associate with entry s the frequency index

js “ jii1 “ p´1qi
1´1pji ` hi

1´1
i q for i ď n; for i ą n we associate the frequency index js “ qii1 “

p´1qi
1´1q2pi´nq´1`ti1{3u such that λjs “

2πjs
T and the basis function index vs “ vii1 “ l2´i

1

i l1i
i1´1 for i “

1, . . . , k and i1 “ t1, 2u, while for i1 “ t3, 4u we set vs “ vii1 “ m4´i1

i m1i
i1´3.

For the array to be indecomposable, the rows must hook (Brillinger, 1981, pp. 20/21). Since interest is

only in a bound for the partition of highest order, only partitions have to be considered for which each set

satisfies |Pν | “ 2, since all other partitions will be of lower order. Without loss of generality, consider that

row i hooks with i ` 1 for i “ 2, . . . k ´ 1 and let the first and the last row hook. In particular, a partition of

highest order would be one for which Pi “ tpi, 2q Y pi ` 1, 1qu for i “ 2, . . . k and P1 “ tp1, 1q Y pk, 2qu

and where the 2r variables in the third and fourth columns of the last r rows are decomposable, meaning that

Pn`i “ tpn ` i, 3q Y pn ` i, 4qu for i “ 1, . . . r, s that these latter r sets form proper submanifolds of the

frequency manifold. Using Lemma B.1 such a partition can be written as

T´k{2
ÿ

j1,...,jk

´2π

bT

¯2r k
ź

d“n`1

T
ÿ

qd“1

Kp
ωjd ´ ωq2pd´nq´1

b
qKp

ωjd`hd ´ ωq2pd´nq
b

q
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ˆ

k
ź

ν“1

„

`

F̃
pvsq
ř

s js;λjs
: s P Pν

˘

`O

ˆ

1

T

˙ n`r
ź

ν“n`1

„

`

F̃
pvsq
0;λjs

: s P Pν
˘

`O

ˆ

1

T

˙

.

In exactly k sets of the partition there are exactly k ´ 1 equations of the form ys “
ř

s js. In the above

partition, the first k sets yield the following set of equations

yi “ p´1qipji ` hi ´ ji`1q i “ 1, . . . , n´ 1,

ỹi “ p´1qipq2i´1 ´ q2i`1q i “ 1, . . . r ´ 2,

ỹr´1 “ pjn ´ q1q,

ỹr “ pj1 ´ q2r´1q.

By Corollary B.1 these equations correspond to k´ 1 summations out of the total k` 2r summations that are

bounded. It can be verified that the above set of equations and an iterative change of variables shows that the

other 2r ` 1 free variables are interrelated via the 2r kernel functions. These means that 2r sums can at most

be of order bT , while one of them can be of order T . Consequently,

T k{2cumn,rpβ
pT q
h ,V

pT qq
h q “ OpT´k{2pbT q´2r

pbT q2rT q “ OpT´k{2`1q,

which converges to zero for k ą 2 as T Ñ8, for any choice of n and r such that n` r “ k.

References

Antoniadis, A. & T. Sapatinas (2003). Wavelet methods for continuous time prediction using Hilbert-valued

autoregressive processes. Journal of Multivariate Analysis 87, 133–158.
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Lemma S1.1. For a probability space pΩ,A, P q, let Xi, Yi, i P N, be measurable mappings from pΩ,Aq

into
`

S2pb
k
n“1Hnq,B

˘

, where B denotes the Borel σ-algebra in S2pb
k
n“1Hnq, i.e., E~Yi~2 ă 8 and

E~Xi~2 ă 8. Moreover, let Ai P
`

S2pb
k
n“1Hnq. Then, for any i1, i2 P N,

piq EpxYi1 , Ai2ySq “ xEYi1 , Ai2yS;

piiq EpxYi1 , Yi2ySq “ TrpEpYi1 b Yi2qq.

If moreover, E~Yi~2
2 ă 8 and E~Xi~

2
2 ă 8, then

piiiq CovpxYi1 , Ai1yS , xYi2 , Ai2ySq “ xCovpYi1 , Yi2q, Ai1 bAi2yS;

pivq CovpxXi1 , Yi1yS , xXi2 , Yi2ySq “ Tr
´

CovpXi1 b Yi1 , Xi2 b Yi2q
¯

.

Proof. (i) Follows directly from Fubini’s theorem and the Cauchy–Schwarz inequality. For (ii), note that a

basis expansion for each of the two operators A,B P S2pb
k
n“1Hnq yields

xA,ByS2 “ TrpAB:q

“
ÿ

l,k

xAψk, ψlyxψl, Bψky

“
ÿ

l,k

xAbB, pψl b ψkq b pψl b ψkqyS

“
ÿ

l,k

x
`

AbB
˘

pψl b ψkq, ψl b ψky

“ TrpAbBq.

The interchange of race and expectation follows again from Fubini’s theorem and the Cauchy–Schwarz in-

equality. For (iii), Fubini’s theorem implies that, for sequences pXj : j P Nq and pYj : j P Nq of random

operators satisfying E~Xj~
2
2 ă 8 and E~Yj~2

2 ă 8,

Varp
ÿ

j

xXj , YjySq “
ÿ

j1,j2

CovpxXj1 , Yj1yS , xXj2 , Yj2ySq

“
ÿ

j1,j2

Tr
´

ErXj1 b Yj1 rbYj2 bXj2s ´ ErXj1 b Yj1s rbErYj2 bXj2s

¯

“
ÿ

j1,j2

Tr
´

CovpXj1 b Yj1 , Xj2 b Yj2q
¯

.

Additionally note that, for a sequence of deterministic operators pAj : j P Nq with ~Aj~2
2 ă 8,

Var

ˆ

ÿ

j

xAj , YjyS

˙

“
ÿ

j1,j2

CovpxAj1 , Yj1yS , xAj2 , Yj2ySq

“
ÿ

j1,j2

EpxAj1 bAj2 , Yj1 b Yj2yS ´ xAj1 bAj2 ,EYj1 b EYj2yS

“
ÿ

j1,j2

xAj1 bAj2 ,CovpYj1 , Yj2qyS ,

and similarly Varp
ř

jxYj , AjySq “
ř

j1,j2
xCovpYj1 , Yj2q, Aj1 bAj2yS .
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Proof of Lemma C.1. Integration by parts with respect to ν yields

2|Yνpτ q|
2 L2

“ |Yapτ q|
2 ` |Y 2

b pτ q|
2 `

ż ν

a

B

Bα
Yαpτ qYαpτ qdα´

ż b

ν

B

Bα
Yαpτ qYαpτ qdα

`

ż ν

a
Yαpτ q

B

Bα
Yαpτ qdα´

ż b

ν
Yαpτ q

B

Bα
Yαpτ qdα

ď |Yapτ q|
2 ` |Y 2

b pτ q|
2 `

ż b

a
|
B

Bα
Yαpτ qYαpτ q|dα`

ż b

a
|Yαpτ q

B

Bα
Yαpτ q|dα

for any a ď ν ď b. This implies in particular

2 sup
aďνďb

ż

r0,1sk
|Yνpτ q|

2dτ ď

ż

r0,1sk
|Yapτ q|

2dτ `

ż

r0,1sk
|Y 2
b pτ q|

2dτ

`

ż

r0,1sk

ż b

a
|
B

Bα
Yαpτ qYαpτ q|dαdτ `

ż

r0,1sk

ż b

a
|Yαpτ q

B

Bα
Yαpτ q|dαdτ .

Taking expectations on both sides yields

2E sup
aďνďb

ż

r0,1sk
|Yνpτ q|

2dτ ď E
ż

r0,1sk
|Yapτ q|

2dτ ` E
ż

r0,1sk
|Y 2
b pτ q|

2dτ

` E
ż

r0,1sk

ż b

a
|
B

Bα
Yαpτ qYαpτ q|dαdτ ` E

ż

r0,1sk

ż b

a
|Yαpτ q

B

Bα
Yαpτ q|dαdτ .

Tonelli’s theorem allows to interchange the integrals in the last two terms from which we find

2E sup
aďνďb

}Yν}
2
2

ď E}Ya}22 ` E}Yb}22 `
ż b

a
E
ż

r0,1sk
|
B

Bα
Yαpτ qYαpτ q|dτdα`

ż b

a
E
ż

r0,1sk
|Yαpτ q

B

Bα
Yαpτ q|dτdα

ď E}Ya}22 ` E}Yb}22 `
ż b

a

c

E}
B

Bα
Yα}22

b

E}Yα}22 `
ż b

a

b

E}Yα}22dα
c

E}
B

Bα
Yα}22dα

where the Cauchy–Schwarz inequality was applied twice to obtain the last inequality.

S2 Properties of functional cumulants under local stationarity

Lemma S2.1. Let Assumption I(k,1) be satisfied and let Cu;t1,...,tk´1
be as in (4.4) . Then,

›

›

›
cum

`

X
pT q
t1
, . . . , X

pT q
tk´1

, X
pT q
tk

˘

´ Ct1{T ;t1´tk,...,tk´1´tk

›

›

›

2
ď

ˆ

k

T
`

k´1
ÿ

j“1

ˇ

ˇ

ˇ

tj ´ tk
T

ˇ

ˇ

ˇ

˙

}κk;t1´tk,...,tk´1´tk}2.

Proof. By linearity of the cumulant operation, consecutively taking differences leads, by equation (4.2) of the

main paper and Minkowski’s inequality, to

›

›

›
cum

`

X
pT q
t1
, . . . , X

pT q
tk

˘

´ cum
`

X
pt1{T q
t1

, . . . , X
ptk{T q
tk

˘

›

›

›

2
ď K

k

T
}κk;t1´tk,...,tk´1´tk}2,
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using part (i) of Assumption I. By (4.2),

X
ptj{T q
tj

´X
ptk{T q
tk

“
ptj ´ tkq

T
Y
ptj{T,tk{T q
tj

. (S2.1)

Similarly,

›

›

›
cum

`

X
pt1{T q
t1

, . . . , X
ptk{T q
tk

q ´ ct1{T ;t1´tk,...,tk´1´tk

›

›

›

2
ď

k´1
ÿ

j“1

|tj ´ tk|

T
}κk;t1´tk,...,tk´1´tk}2,

which follows from part (iii) of Assumption I. Minkowski’s inequality then implies the lemma.

Lemma S2.2. Consider a sequence of functional processes pXpT qt : t ď T, T P Nq as in Definition 3.1

which satisfies Assumption I(2,2). Then, pXpT qt : t ď T, T P Nq uniquely characterizes the time-varying local

spectral density operator

Fu,ω “
1

2π

ÿ

hPZ
Cu,he

´iωh, (S2.2)

which belongs to S2pHq. Denoting by pu, ωq ÞÑ Bi`j

BuiBωj
Fu,ω the derivative map of the operator-valued function

Fu,ω of order i in u-direction and of order j in ω-direction, we have

(i) supu,ω
�

�

Bi

Bui
Fu,ω

�

�

2
ă 8 for i “ 1, 2,

(ii) supu,ω
�

�

Bi

Biω
Fu,ω

�

�

2
ă 8 for i “ 1, 2,

(iii) supu,ω
�

�

B2

BωBuFu,ω
�

�

2
ă 8.

Proof. Using Lemma S2.1, it can be shown that pXT
t : t ď T, T P Nq uniquely determines the time-varying

spectral density operator, that is,
ż π

´π
~FpT qu,ω ´ Fu,ω~

2
2 dω “ op1q pT Ñ8q. (S2.3)

Existence of the derivatives follows from the dominated convergence theorem, justified by Assumption I (iv)

and (4.1), and the product rule for differentiation in Banach spaces (Nelson, 1969).

Proof of Lemma B.1. The first line of (B.2) follows on replacing the cumulants cumpX
pT q
t1
, . . . , X

pT q
tk´1

, X
pT q
tk
q

with Ctk{T ;t1´tk,...,tk´1´tk and Lemma S2.1. The second line follows because the discretization of the integral

is an operation of order OpT´2q.

Using part (iv) of Assumption I, it is seen that the kernel of u ÞÑ B
BuFu;ω1 ,...,ωk´1

satisfies

›

›

›
sup
u

B

Bu
fu;ω1,...,ωk´1

›

›

›

2
ď

1

p2πqk´1

ÿ

t1,...,tk

}κk;t1´tk,...,tk´1´tk}2 ă 8.

The dominated convergence theorem therefore yields

sup
u,ω1,...,ωk´1

›

›

›

B

Bu
fu,ω1,...,ωk´1

›

›

›

2
ă 8. (S2.4)
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Finally, integration by parts for a periodic function in L2pr0, 1skq with existing n-th directional derivative in

u, yields

}f̃s;ωj1 ,...,ωjk´1
}22

“

ż

r0,1sk

ˇ

ˇ

ˇ

ˇ

„ Bn´1

Bun´1 fu;ωj1 ,...,ωjk´1
pτ q

p´i2πsqn´1 e´is2πu

1

0

´

ż 1

0

e´is2πu

p´i2πsqn
Bn

Bun
fu;ωj1 ,...,ωjk´1

pτ qdu

ˇ

ˇ

ˇ

ˇ

2

dτ

“

ż

r0,1sk`2

1

p2πsq2n
ei2πspu´vq B

2

Bu2
fu;ωj1 ,...,ωjk´1

pτ q
B2

Bv2
fv;ωj1 ,...,ωjk´1

pτ qdτdudv

ď
1

p2πsq2n

ż

r0,1s2

›

›

›

›

B2

Bu2
fu;ωj1 ,...,ωjk´1

›

›

›

›

2

›

›

›

›

B2

Bv2
fv;ωj1 ,...,ωjk´1

›

›

›

›

2

dudv

ď
1

p2πsq2n

ˆ

sup
u

›

›

›

›

B2

Bu2
fu;ωj1 ,...,ωjk´1

›

›

›

›

2

˙2

ă 8,

where the Cauchy–Schwarz inequality was applied in the second-to-last equality. The interchange of integrals

is justified by Fubini’s theorem. Thus,

sup
ω1,..,ωk´1

}f̃s;ωj1 ,...,ωjk´1
}2 ď

1

p2πq2n
sup

u,ω1,...,ωn

›

›

›

›

Bn

Bun
fu;ωj1 ,...,ωjk´1

›

›

›

›

2

|s|´n (S2.5)

and the proof is complete.

Proof of Corollary B.1. Part (i) follows directly from equation (S2.5), the isometry with the Hilbert–Schmidt

class, and part (iv) of Assumption I. To elaborate on part (ii) of the corollary, observe that

~F̃0:ω~2 ď sup
ω,u
~Fu,ω~2 ă

ÿ

h

}κ2,h}2 ă 8.

The p-harmonic series for p “ 2 then yields

sup
ω

ÿ

sPZ
~F̃s;ω~2 ď

ÿ

h

}κ2,h}2

ˆ

1`
1

p2πq4
π2

3

˙

ă 8, (S2.6)

where the constant p2πq´4 is implied by (S2.5).

S3 Proof of Theorem D.2: Convergence of finite-dimensional distributions

We shall now prove Theorem D.2, which is repeated here for convenience.

Theorem S3.1. Under the conditions of Theorem D.1, we have for all li, l1i P N, hi “ 1, . . . , T ´ 1, i “

1, . . . , k and k ě 3,

cum
´

Ê
pT q
h1
pψl1l11q, . . . , Ê

pT q
hk
pψlkl1kq

¯

“ op1q pT Ñ8q.
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Proof. We first provide the outset and then derive the result under local stationarity as this encompasses the

stationary case.

Preliminaries. As explained in Section D of the Appendix, it will be shown that the finite-dimensional distri-

butions of ÊpT q converge to a Gaussian distribution by proving that the higher-order cumulants of the terms

ÊpT qpψll1q “ xÊ
pT q, ψll1y vanish asymptotically. To formulate this, consider an array of the form

p1, 1q p1, 2q
...

...
pk, 1q pk, 2q

(S3.1)

and let the value s “ ii1 correspond to entry pi, i1q. For a partition P “ tP1, . . . , PQu, the elements of a set Pq

will be denoted by sq1, . . . , sqmq where |Pq| “ mq is the corresponding number of elements in Pq. Associate

with entry s the frequency index js “ jii1 “ p´1qi
1´1pji`h

i1´1
i q, Fourier frequency λjs “

2πjs
T and the basis

function index vs “ vii1 “ l2´i
1

i l1i
i1´1 for i “ 1, . . . , k and i1 “ 1, 2.

Proof. To ease notation, writeDplqωjk “ xD
pT q
ωjk
, ψly and pFpvsqt{T ;λjs

: s P Pqq “ xft{T ;λjq1 ,...,λjqmq´1
,b

mq
i1“1ψvsqi1

y

where, by Corollary B.1, the latter quantities are well-defined both under HA and H0 since the convergence

in norm implies convergence of the coefficients. Furthermore, since Xt P L
2pΩq, we have E}Dω}

2
2 ă 8 and

therefore the fDFT’s are in L2
Cpr0, 1sq. Therefore, we can consider an application of the product theorem for

cumulants yields on the coefficients,

cum
´

T
ÿ

j1“1

Dpl1qωj1
D
pl11q
´ωj1`h1

, . . . ,
T
ÿ

jk“1

Dplkqωjk
D
ppl1kq
´ωjk`hk

¯

“
ÿ

j1,...,jk

ÿ

i.p.

cumpD
pvsq
λjs

: s P P1q ¨ ¨ ¨ cumpD
pvsq
λjs

: s P PQq,

where the summation extends over all indecomposable partitions P “ tP1, . . . , PQu of (S3.1). Because Xt

has zero-mean, the number of elements within each set must satisfy mq ě 2 and thus Q ď k. By Lemma B.1

we obtain we obtain

1

T k{2

T
ÿ

j1,...,jk“1

ÿ

i.p.

Q
ź

q“1

cum
`

D
pvsq
λks

: s P Pq
˘

“
1

T k{2

T
ÿ

j1,...,jk“1

ÿ

i.p.

Q
ź

q“1

„

p2πqmq{2´1

Tmq{2´1

`

F̃
pvsq
ř

s js;λjs
: s P Pq

˘

`O

ˆ

1

Tmq{2

˙

.

Note that, by Corollary B.1 and the Cauchy–Schwarz inequality,

T
ÿ

j“1

ˇ

ˇF̃
pvsq
ř

s js;λjs

ˇ

ˇ ď sup
ω

ÿ

jPZ
}F̃j;ω}2

mq
ź

i“1

}ψvqi}2 ă 8, s P Pq,

for all q “ 1, . . . , Q. If Q ă k or if Q “ k and there are hi1 and hi2 such that hi1 ‰ hi2 for i1, i2 P t1, . . . , ku

within the same set, then there is dependence on Q of the k sums j1, . . . , jn. On the other hand, if the size of
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the partition is equal to k and hi1 “ hi2 for all i1, i2 “ 1, . . . , k, then there areQ´1 constraints on j1, . . . , jn.

Thus it follows that the order is

OpT´k{2T k´Q`1T´2k{2`Qq “ OpT´k{2`1q.

The cumulants of order k ě 3 will therefore tend to 0 as T Ñ8.

S4 Dealing with condition Cu

Condition Cu regulates how to handle the number of fPCs included in the unstandardized test statistics. It

specifically allows the number of fPCs to be increased logarithmically with sample size. This small section

provides a heuristic argument for why this does not change the asymptotics. Note that one can focus without

loss of generality on the fixed L “ minj Lj in place of the frequency-dependent truncations Lj , as the

difference is asymptotically negligible so that

1

T

T
ÿ

j“1

DpT qωj bD
pT q
ωj`h

«
1

T

T
ÿ

j“1

L
ÿ

l“1

L
ÿ

l1“1

xDpT qωj , φ
ωj
l yxD

pT q
ωj`h , φ

ωj`h
l1 yφ

ωj
l b φ

ωj`h
l1 .

Subsequently sending L to8 in logarithmic fashion does not alter the limit distribution.

S5 Auxiliary proofs for Theorem 4.2 and Theorem 4.5

S5.1 Proof of Lemma D.2

In the proof of Lemma D.2, we shall make use Lemma of S1.1 and of the following result.

Lemma S5.1. If Assumption I(4, 2) is satisfied, then

sup
ω1,ω2

~EF̂ω1
rbF̂ω2 ´ Fω1

rbFω2~2 “ O

ˆ

1

bT
` b2

˙

.

Proof. The proof mimics the first part of the proof of Theorem 4.1 and is therefore omitted.

Proof of Lemma D.2. We provide the proof for each of the four terms separately below. To ease notation,

we shall derive the result for fixed l, l1. Note that this is without loss of generality under conditions Cu and

Cs. Under Cs, the number of directions Lj and Lj`h are finite, whilst under Cu, the number of directions are

allowed to go to infinity in a controlled manner, in which case the directions become independent of frequency

and can be taken out of the sum over frequency; see Section S4.

Proof of (D.12). Using (D.7) we obtain for (D.8)

J1 “
1
?
T

T
ÿ

j“1

xDωj bDωj`h ´ E
`

Dωj bDωj`hq, φ
ωj
l b φ

ωj`h
l1 ´ Epφ̂ωjl b φ̂

ωj`h
l1 qyS “ OppJ̆1q,
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where

J̆1“
1
?
T

T
ÿ

j“1

@

Dωj bDωj`h´E
`

Dωj bDωj`hq,
`

F´ωj rbF´ωj`h´EpF̂´ωj rbF̂´ωj`hq
˘

pφ
´ωj
l b φ

´ωj`h
l1 q

D

S
.

Note that E|J1| ď
a

E|J1|
2 “

a

VarpJ1q ` pErJ1sq
2 and therefore consider bounds on EJ̆1 and VarpJ̆1q.

Using Lemma S1.1(i) it is immediate that EJ̆1 “ 0. Secondly, using S1.1(iii)

VarpJ̆1q “
1

T

T
ÿ

j1,j2“1

A

Cov
`

Dωj1
bDωj1`h

´ E
`

Dωj1
bDωj1`h

q, Dωj2
bDωj2`h

´ E
`

Dωj2
bDωj2`h

q
˘

,

`

EF̂ωj1 rbF̂ωj1`h ´ Fωj1
rbFωj1`h

˘

pφ
ωj1
l b φ

ωj1`h
l1 qb

`

EF̂ωj2 rbF̂ωj2`h ´ Fωj2
rbFωj2`h

˘

pφ
ωj2
n b φ

ωj2`h
o q

E

S
,

As shown in Section C of the main paper,

1

T

ÿ

j1,j2

~CovpDωj1
bDωj1`h

, Dωj2
bDωj2`h

q~2 “ Op1q.

Therefore, the Cauchy–Schwarz inequality, separability of the tensor in norm, and Lemma S5.1(i) imply

VarpJ̆1q

ď
1

T

ÿ

j1,j2

~CovpDωj1
bDωj1`h

, Dωj2
bDωj2`h

q~2

�

�

�

`

EF̂ωj1 rbF̂ωj1`h ´ Fωj1
rbFωj1`h

˘

pφ
ωj1
l b φ

ωj1`h
l1 q

�

�

�

2

ˆ

�

�

�

`

EF̂ωj2 rbF̂ωj2`h ´ Fωj2
rbFωj2`h

˘

pφ
ωj2
n b φ

ωj2`h
0 q

�

�

�

2

ď
c

T

T
ÿ

j1,j2“1

�

�

�
Cov

`

Dωj1
bDωj1`h

, Dωj2
bDωj2`h

q

�

�

�

2
sup
ω

�

�

�
EF̂ω rbF̂ω`h ´ Fω rbFω`h

�

�

�

2

2

“ Op1qO

ˆ

1

bT
` b2

˙2

.

Consequently, both under H0 and HA, E|J1| “ Op 1
bT ` b

2q.

Proof of (D.13). Use the above to write (D.9) as

J2“
1
?
T

T
ÿ

j“1

xDωj bDωj`h´E
`

Dωj bDωj`hq,Epφ̂
ωj
l b φ̂

ωj`h
l1 q´φ̂

ωj
l b φ̂

ωj`h
l1 yS “ OppJ̆2q,

where

J̆2“
1
?
T

T
ÿ

j“1

@

Dωj bDωj`h´E
`

Dωj bDωj`hq,
`

EpF̂´ωj rbF̂´ωj`hq´F̂´ωj rbF̂´ωj`h
˘

pφ
´ωj
l b φ

´ωj`h
l1 q

D

S

To consider first the order of EJ̆2, use Lemma S1.1(ii) which requires to consider the order in S of the operator

E
´

Dωj bDωj`h ´ E
`

Dωj bDωj`hq b
`

EF̂´ωj rbF̂´ωj`h ´ F̂´ωj rbF̂´ωj`h
˘

¯
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“ Cov
´

Dωj bDωj`h ,
`

F̂´ωj rbF̂´ωj`h
˘

¯

“
1

pbT q2

ÿ

k1,k2

K

ˆ

k1

b

˙

K

ˆ

k2

b

˙

Cov
´

Dωj bDωj`h , Dωk1´j
bDωk1´j

rbDωk2´j´h
bDωk2´j´h

¯

.

Using then Theorem B.1, we are looking for all indecomposable partitions of the array

Dωj
loomoon

1

D´ωj`h
loomoon

2

Dωk1´j
loomoon

3

D´ωk2´j´h
looooomooooon

4

Dωj´k1
loomoon

5

Dωk2´j´h
loooomoooon

6

.

Careful consideration shows that many terms are of lower order. Those that remain are second-order cumulant

tensors with a partition that hooks the rows but keeps as many elements with conjugate pairs in the same set.

We focus on the partitions of highest order. These are of the same order as the partition Sp13qp25qp46q. Lemma

B.2 implies under H0 that we obtain

Sp13qp25qp46q

˜

1

pbT q2

ÿ

k1,k2

K

ˆ

k1

b

˙

K

ˆ

k2

b

˙

∆
pωk1 q

T ∆
pωk1`hq

T

T 2

ˆ pFωj `RT,2q b pF´ωj`h `RT,2q b pFωj`h´k2 `RT,2q

¸

which is of order Opb´1T´2q in Hilbert–Schmidt norm since h ‰ 0. Under HA, this partition is given by

Sp13qp25qp46q

ˆ

1

pbT q2

ÿ

k1,k2

K

ˆ

k1

b

˙

K

ˆ

k2

b

˙

pF̃k1:ωj `RT,2q b pF̃´k1´h:´ωj`h `RT,2q b pGωj`h´k2 `RT,2q

˙

and using Corollary B.1 and a similar derivation as in the proof of Theorem 4.1 this is of order OppbT q´1q

in Hibert–Schmidt norm under HA. By Lemma S1.1(ii), an application of the Cauchy–Schwarz inequality

therefore implies that |EJ̆2| is bounded by
ˇ

ˇ

ˇ

ˇ

Tr

ˆ

1

pbT q2

ÿ

k1,k2

K

ˆ

k1

b

˙

K

ˆ

k2

b

˙

ˆ Cov
´

Dωj bDωj`h , pDωk1´j
bDωk1´j

qrbpDωk2´j´h
bDωk2´j´h

qpφ
´ωj
l b φ

´ωj`h
l1 q

¯

˙ˇ

ˇ

ˇ

ˇ

“ O

ˆ

1

b
?
TT

sup
ω
~Fω~2~Fωpφ

ω
l q~2~Fωpφ

ω
l1 q~2

˙

“ O

ˆ

1

bT
?
T

˙

.

Using Corollary B.1, a similar reasoning shows that EJ2 “ Opb´1T´1{2q, under HA. We now investigate the

variance of J2. Using Lemma S1.1, this equals

Tr

ˆ

Var
´ 1
?
T

T
ÿ

j1“1

”

Dωj bDωj`h

´ E
`

Dωj bDωj`hq b pEpF̂´ωj1 rbF̂´ωj`hq ´ F̂´ωj rbF̂´ωj`hqpφ
´ωj
l b φ

´ωj`h
l1 q

ı¯

˙

.
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Observe that the correction for the means implies a covariance structure of the form

CovppX ´ EXq b pW ´ EW q, pY ´ EY q b pZ ´ EZqq

“cumpX bW ´ ErXs bW ´X b ErW sq, Y b Z ´ ErY s b Z ´ Y b ErZsq

“cumpX bW,Y b Zq ´ S3124cumpY q b cumpX bW,Zq ´ cumpX bW,Y q b cumpZq

´ cumpXq b cumpW,Y b Zq ´ S2134cumpW q b cumpX,Y b Zq

` S1243cumpXq b cumpW,Zq b cumpY q ` cumpXq b cumpW,Y q b cumpZq

` S2143cumpW q b cumpX,Zq b cumpY q ` S2134cumpW q b cumpX,Y q b cumpZq.

The last four terms will be cancelled by subsets belonging to the second to fifth terms while other subsets

of these terms themselves will cancel several partitions of the first term. In particular, we are interested in

decomposable partitions of the array

Dωj1
loomoon

1

D´ωj1`h
looomooon

2
loooooooomoooooooon

X

D´ωj1´k1
loooomoooon

3

D´ωj1`h´k2
looooomooooon

4

Dωj1´k1
looomooon

5

Dωj1`h´k2
loooomoooon

6
looooooooooooooooooooooooomooooooooooooooooooooooooon

W

D´ωj2
loomoon

7

Dωj2`h
loomoon

8
looooooomooooooon

Y

Dωj2´k3
looomooon

9

Dωj2`h´k4
loooomoooon

10

D´ωj2´k3
loooomoooon

11

D´ωj2`h´k4
looooomooooon

12
looooooooooooooooooooooooomooooooooooooooooooooooooon

Z

,

but where we only have to consider the partitions that are not cancelling out, i.e., we can disregard those

partitions where at least one of the sets X,W, Y or Z form a proper set within the partition. In other words,

elements in the setsX,W, Y and Z must hook with an element from one of the other sets. Taking into account

the above constraints, we look for the structure with highest order, i.e., that allows as a partition of which as

many sets form a proper submanifold. These partitions are of the form Sp13qp28qp46qp5,11qp7,9qp10,12q. Under

H0, Lemma B.2 yields the constraints k1 “ 0, j2 ´ j1 “ 0 mod T, j1 ´ k1 ´ j2 ` k3 “ 0 mod T, k3 “ 0

mod T due to ∆
pωkq
T , which implies we are left with only j2, k2, k3 as free variables. Via a similar derivation

as for the expectation one obtains VarpJ̆2q “ Op 1
T T

1
pbT q2

q “ Op 1
pbT q2

q under H0. Similarly, using Lemma

B.1 and Corollary B.1(ii) we also obtain under HA that VarpJ̆2q “ Op 1
pbT q2

q. All together we obtain that

E|J2| “ Op 1
bT 3{2 q `Op

1
bT q under H0 and E|J2| “ Op 1

b
?
T
q `Op 1

bT q under HA.

Proof of (D.14). Write (D.10) as

J3 “
1
?
T

T
ÿ

j“1

xE
`

Dωj bDωj`hq, φ
ωj
l b φ

ωj`h
l1 ´ Epφ̂ωjl b φ̂

ωj`h
l1 qyS “ OppJ̆3q,

where

J̆3 “
1
?
T

T
ÿ

j“1

A

E
`

Dωj bDωj`hq,
`

F´ωj rbF´ωj`h ´ EpF̂´ωj rbF̂´ωj`hq
˘

pφ
´ωj
l b φ

´ωj`h
l1 q

E

S
.
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By the Cauchy–Schwarz inequality and Hölder’s inequality we obtain

E|J̆3| ď
1
?
T

T
ÿ

j“1

~E
`

Dωj bDωj`hq~2 sup
ω
~
`

Fω rbFω`ωh ´ EpF̂ω rbF̂ω`ωhq
˘

pφωl b φ
ω`ωh
l1 q~2

ď
1
?
T

T
ÿ

j“1

~E
`

Dωj bDωj`hq~2 sup
ω
~
`

Fω rbFω`ωh ´ EpF̂ω rbF̂ω`ωhq
˘

~8}φ
ω
l }2}φ

ω`ωh
l1 }2

ď
1
?
T

T
ÿ

j“1

~E
`

Dωj bDωj`hq~2 sup
ω
~
`

Fω rbFω`ωh ´ EpF̂ω rbF̂ω`ωhq
˘

~2.

Recall that under H0, we have supj ~EpDj bDj`hq~2 “ Op 1
T q for h ‰ 0 whilst under the alternative hy-

pothesis supj ~EpDj bDj`hq~2 “ Op 1
h2
q. The bounds in (D.14) therefore immediately follow from Lemma

S5.1(i).

Proof of (D.15). Write (D.11) as

J4 “
1
?
T

T
ÿ

j“1

xE
`

Dωj bDωj`hq,Epφ̂
ωj
l b φ̂

ωj`h
l1 q ´ φ̂

ωj
l b φ̂

ωj`h
l1 qyS “ OppJ̆4q,

where

J̆4 “
1
?
T

T
ÿ

j“1

A

E
`

Dωj bDωj`hq,
`

EpF̂´ωj rbF̂´ωj`hq ´ F̂´ωj rbF̂´ωj`h
˘

pφ
´ωj
l b φ

´ωj`h
l1 q

E

S
.

Under H0, (D.15) the result follows now from an application of the Cauchy–Schwarz inequality and Lemma

S5.1(ii). Under the alternative, we consider a bound on EJ̆4 and VarpJ̆4q. It is immediate from Lemma S1.1(i)

that EJ̆4 “ 0. Theorem E.1 with n “ 0, r “ 2 then implies that VarpJ̆4q “ Op1q.

The four previous steps complete the proof.

S5.2 Bound on
?
TE}β̂pT qh,s ´ β

pT q
h,s |

Proof of Theorem 4.2 and Theorem 4.5 for β̂pT qh,s . Note that in this case we are interested in the difference

?
TE}β̂pT qh,s ´β

pT q
h,s | “

1
?
T
E

T
ÿ

j“1

xDpT qωj bD
pT q
ωj`h

, pλ̂
ωj
l λ̂

ωj`h
l1 q´1{2φ̂

ωj
l bφ̂

ωj`h
l1 ´pλ

ωj
l λ

ωj`h
l1 q´1{2φ

ωj
l bφ

ωj`h
l1 yS .

Observe that

pλ̂
ωj
l λ̂

ωj`h
l1 q´1{2φ̂

ωj
l b φ̂

ωj`h
l1 ´ pλ

ωj
l λ

ωj`h
l1 q´1{2φ

ωj
l b φ

ωj`h
l1

“ pλ̂
ωj
l λ̂

ωj`h
l1 q´1{2rφ̂

ωj
l b φ̂

ωj`h
l1 ´ φ

ωj
l b φ

ωj`h
l1 s ` rpλ̂

ωj
l λ̂

ωj`h
l1 q´1{2 ´ pλ

ωj
l λ

ωj`h
l1 q´1{2sφ

ωj
l b φ

ωj`h
l1 .

Using a Taylor expansion of pλ̂ωjl λ̂
ωj`h
l1 q´1{2 around pλωjl λ

ωj`h
l1 q´1{2, yields

pλ̂
ωj
l λ̂

ωj`h
l1 q´1{2 “pλ

ωj
l λ

ωj`h
l1 q´1{2 ´

1

2
pλ
ωj
l λ

ωj`h
l1 q´3{2

`

pλ̂
ωj
l λ̂

ωj`h
l1 q ´ pλ

ωj
l λ

ωj`h
l1 q

˘
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`
3

4
pλ
ωj
l λ

ωj`h
l1 q´5{2

`

pλ̂
ωj
l λ̂

ωj`h
l1 q ´ pλ

ωj
l λ

ωj`h
l1 q

˘2
.

Additionally, it follows from solving the perturbed eigenelement approximation (see e.g., Kato, 1966),

pλ̂
ωj
l λ̂

ωj`h
l1 q ´ pλ

ωj
l λ

ωj`h
l1 q “ xpF̂ωj rbF̂ωj`h ´ Fωj rbFωj`hqφ

ωj
l b φ

ωj`h
l1 , φ

ωj
l b φ

ωj`h
l1 yS `Rωj ,h,

whereRωj ,h is a remainder term that satisfiesOppRωj ,hq “ Opp~F̂ωj rbF̂ωj`h ´ Fωj rbFωj`h~
2
2). We therefore

decompose

1
?
T

ˇ

ˇ

ˇ

ˇ

T
ÿ

j“1

xDpT qωj bD
pT q
ωj`h

, pλ̂
ωj
l λ̂

ωj`h
l1 q´1{2φ̂

ωj
l b φ̂

ωj`h
l1 ´ pλ

ωj
l λ

ωj`h
l1 q´1{2φ

ωj
l b φ

ωj`h
l1 yS

ˇ

ˇ

ˇ

ˇ

ď |Js,1| ` |Js,2| ` |Js,3| ` |JR|,

where

Js,1 “
1
?
T

T
ÿ

j“1

xDpT qωj bD
pT q
ωj`h

, pλ
ωj
l λ

ωj`h
l1 q´1{2

`

φ̂
ωj
l b φ̂

ωj`h
l1 ´ φ

ωj
l b φ

ωj`h
l1

˘

yS ,

Js,2 “
1

2
?
T

T
ÿ

j“1

@D
pT q
ωj bD

pT q
ωj`h

pλ
ωj
l λ

ωj`h
l1 q3{2

,
`

φ̂
ωj
l b φ̂

ωj`h
l1 ´ φ

ωj
l b φ

ωj`h
l1

˘D

S

ˆ
@

pF̂ωj rbF̂ωj`h ´ Fωj rbFωj`hqφ
ωj
l b φ

ωj`h
l1 , φ

ωj
l b φ

ωj`h
l1

D

S
,

Js,3 “
1

2
?
T

T
ÿ

j“1

x
D
pT q
ωj bD

pT q
ωj`h

pλ
ωj
l λ

ωj`h
l1 q3{2

,
`

φ
ωj
l b φ

ωj`h
l1

˘

yS

ˆ
@

pF̂ωj rbF̂ωj`h ´ Fωj rbFωj`hqφ
ωj
l b φ

ωj`h
l1 , φ

ωj
l b φ

ωj`h
l1

D

S
,

JR “
1
?
T
C

T
ÿ

j“1

pλ
ωj
l λ

ωj`h
l1 q´3{2Rωj ,h,l,l1xD

pT q
ωj bD

pT q
ωj`h

,
`

φ̂
ωj
l b φ̂

ωj`h
l1 ´ φ

ωj
l b φ

ωj`h
l1

˘

yS ,

for some constant C ą 0. Note that, using (D.7), we have |Js,1| “ OppJ1 ` J2 ` J3 ` J4q, from which the

respective order follows from Lemma D.2. The same holds for Js,3. A similar decomposition as in Lemma

D.2 will show that Js,2 and Js,R are of strictly lower order. The proof follows along the lines of the proof of

Lemma D.2 and is therefore omitted.

S6 Covariance structure under alternative hypothesis of local stationarity

S6.1 Completion of covariance structure of Theorem 4.6

Completion of covariance structure of Theorem 4.6. We now derive the covariance structure of β̂pT qh,x under

HA and focus on β̂pT qh,u . We have

Covp
?
Tβ

pT q
h1,u

,
?
Tβ

pT q
h2,u
q “
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1

T

T
ÿ

j1,j2

ÿ

l1PrLpωj1
qs,l2PrLpωj1`h1

qs,

l3PrLpωj2
qs,l4PrLpωj2`h2

qs

A

Cov
´

DpT qωj1
bDpT qωj1`h

, DpT qωj2
bDpT qωj2`h

¯´

φ
ωj2
l3
b φ

ωj2`h2
l4

¯

, φ
ωj1
l1
b φ

ωj1`h1
l2

E

,

where now pλωl , φ
ω
l : l ě 1q are the eigenelements of the time-integrated spectral density operatorGω. Lemma

B.1 implies the h-lag covariance operator of the fDFT’s has covariance structure as in (C.2). Hence, we find

that

Covp
?
Tβ

pT q
h1,u

,
?
Tβ

pT q
h2,u
q “ (S6.1)

1

T

T
ÿ

j1,j2

ÿ

l1PrLpωj1
qs,l2PrLpωj1`h1

qs,

l3PrLpωj2
qs,l4PrLpωj2`h2

qs

#

2π

T
xF̃h2´h1:ωj1 ,´ωj1`h1 ,´ωj2

pφ
ωj2
l3
b φ

ωj2`h2
l4

q, φ
ωj1
l1
b φ

ωj1`h1
l2

y `O
` 1

T 2

˘

˙

`

ˆ

@

F̃j1´j2:ωj1
pφ
ωj2
l3
q, φ

ωj1
l1

D

`O
` 1

T

˘

˙ˆ

@

F̃´j1´h1`j2`h2:´ωj1`h1
pφ
´ωj2`h2
l4

q, φ
´ωj1`h1
l2

D

`O
` 1

T

˘

˙

`
`@

F̃j1`j2`h2:ωj1
pφ
´ωj2`h2
l4

, φ
ωj1
l1

D

`O
` 1

T

˘

˙ˆ

@

F̃´j1´h1´j2:´ωj1`h1
pφ
ωj2
l3
q, φ

´ωj1`h1
l2

D

`O
` 1

T

˘

+

.

and

Covp
?
Tβ

pT q
h1,s

,
?
Tβ

pT q
h2,s
q “

1

T

T
ÿ

j1,j2

ÿ

l1PrLpωj1
qs,l2PrLpωj1`h1

qs,

l3PrLpωj2
qs,l4PrLpωj2`h2

qs

pλ
ωj1
l1
λ
ωj1`h
l2

λ
ωj2
l3
λ
ωj2`h
l4

q´1{2 (S6.2)

ˆ

#

2π

T
xF̃h2´h1:ωj1 ,´ωj1`h1 ,´ωj2

pφ
ωj2
l3
b φ

ωj2`h2
l4

q, φ
ωj1
l1
b φ

ωj1`h1
l2

y `O
` 1

T 2

˘

˙

`

ˆ

@

F̃j1´j2:ωj1
pφ
ωj2
l3
q, φ

ωj1
l1

D

`O
` 1

T

˘

˙ˆ

@

F̃´j1´h1`j2`h2:´ωj1`h1
pφ
´ωj2`h2
l4

q, φ
´ωj1`h1
l2

D

`O
` 1

T

˘

˙

`
`@

F̃j1`j2`h2:ωj1
pφ
´ωj2`h2
l4

, φ
ωj1
l1

D

`O
` 1

T

˘

˙ˆ

@

F̃´j1´h1´j2:´ωj1`h1
pφ
ωj2
l3
q, φ

´ωj1`h1
l2

D

`O
` 1

T

˘

+

.

Note then once more that

<βpT qh,x “
1

2

´

β
pT q
h,x ` β

pT q
h,x

¯

and =βpT qh,x “
1

2i

´

β
pT q
h,x ´ β

pT q
h,x

¯

.

Under the alternative, these are in fact correlated and four separate cases will have to be considered:

(S6.1.1) Cov
`

<βpT qh1,x
,<βpT qh2,x

˘

“
1

4

”

Cov
`

β
pT q
h1,x

,β
pT q
h2,x

˘

` Cov
`

β
pT q
h1,x

,β
pT q
h2,x

˘

` Cov
`

β
pT q
h1,x

,β
pT q
h2,x

˘

` Cov
`

β
pT q
h1,x

,β
pT q
h2,x

˘

ı

,

(S6.1.2) Cov
`

<βpT qh1,x
,=βpT qh2,x

˘

“
1

4i

”

Cov
`

β
pT q
h1,x

,β
pT q
h2,x
q ´ Cov

`

β
pT q
h1,x

,β
pT q
h2,x
q

` Cov
`

β
pT q
h1,x

,β
pT q
h2,x

˘

´ Cov
`

β
pT q
h1,x

,β
pT q
h2,x

˘

ı

,
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(S6.1.3) Cov
`

=βpT qh1,x
,<βpT qh2,x

˘

“
1

4i

”

Cov
`

β
pT q
h1,x

,β
pT q
h2,x

˘

` Cov
`

β
pT q
h1,x

,β
pT q
h2,x

˘

´ Cov
`

β
pT q
h1,x

,β
pT q
h2,x

˘

´ Cov
`

β
pT q
h1,x

,β
pT q
h2,x

˘

ı

,

(S6.1.4) Cov
`

=βpT qh1,x
,=βpT qh2,x

˘

“
1

4

”

Cov
`

β
pT q
h1
,β
pT q
h2,x

˘

´ Cov
`

β
pT q
h1,x

,β
pT q
h2

˘

´ Cov
`

β
pT q
h1,x

,β
pT q
h2,x

˘

` Cov
`

β
pT q
h1,x

,β
pT q
h2,x

˘

ı

.

These expressions can be easily obtained from (S6.1) and (S6.2) by taking the appropriate conjugates. The

four terms on the right-hand sides of the above four equations are derived for arbitrary basis functions in

Section S6.2. It then remains to replace the basis functions with the (standardized) eigenfunctions of the

integrated spectral density operators and the sum over the dimensions.

S6.2 Covariance structure of Theorem D.1

Lemma B.1 implies the h-lag covariance operator of the fDFT’s has covariance structure as in (C.2). Observe

that the covariance structure of the real and imaginary parts are linear combinations of the four different com-

binations of the covariances with their conjugates similar to (S6.1.1)-(S6.1.4). Therefore, a tedious derivation

shows that we obtain for the covariance structure of the projections in Theorem D.1:

Υh1,h2pψl1l11 l2l12q “ lim
TÑ8

1

T

T
ÿ

j1,j2“1

´

@

F̃j1´j2;ωj1
pψl2q, ψl1

D@

F̃´j1´h1`j2`h2;´ωj1`h1
pψl12q, ψl11

D

`
@

F̃j1`j2`h2;ωj1
pψl12q, ψl1

D@

F̃´j1´h1´j2,´ωj1`h1 pψl2q, ψl11

D

`
2π

T

@

F̃p´h1`h2;ωj1 ,´ωj1`h1 ,´ωj2 q
pψl2 l12q, ψl1,l11

D

¯

, (S6.3)

Ύh1,h2pψl1l11 l2l12q “ lim
TÑ8

1

T

T
ÿ

j1,j2“1

´

@

F̃j1`j2;ωj1
pψl2q, ψl1

D@

F̃´j1´h1´j2´h2;´ωj1`h1
pψl12q, ψl11

D

`
@

F̃j1´j2´h2;ωj1
pψl12q, ψl1

D@

F̃´j1´h1`j2;´ωj1`h1
pψl2q, ψl11

D

`
2π

T

@

F̃p´h1´h2;ωj1 ,´ωj1`h1 ,ωj2 q
pψl2 l12q, ψl1 l11

D

¯

, (S6.4)

Ῡh1,h2pψl1l11 l2l12q “ lim
TÑ8

1

T

T
ÿ

j1,j2“1

´

@

F̃´j1`j2;´ωj1
pψl2q, ψl1

D@

F̃j1`h1´j2´h2;ωj1`h1
pψl12q, ψl11

D

`
@

F̃´j1´j2´h2;´ωj1
pψl12q, ψl1

D@

F̃j1`h1`j2;ωj1`h1
pψl2q, ψl11

D
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`
2π

T

@

F̃ph1´h2;´ωj1 ,ωj1`h1 ,ωj2 q
pψl2 l12q, ψl1 l11

D

¯

(S6.5)

and

Ὺh1,h2pψl1l11 l2l12q “ lim
TÑ8

1

T

T
ÿ

j1,j2“1

´

@

F̃´j1´j2;´ωj1
pψl2q, ψl1

D@

F̃j1`h1`j2`h2;ωj1`h1
pψl12q, ψl11

D

`
@

F̃´j1`j2`h2;´ωj1
pψl12q, ψl1

D@

F̃j1`h1´j2;ωj1`h1
pψl2q, ψl11

D

`
2π

T

@

F̃ph1`h2;´ωj1 ,ωj1`h1 ,´ωj2 q
pψl2 l12q, ψl1 l11

D

¯

. (S6.6)

S7 Estimation of the integrated tri-spectral density operator

S7.1 Consistency under H0

Theorem S7.1. Suppose Assumption I*(4,2) and Assumption I(8,2) hold. Then the estimator in (4.6) of the

tri-spectral density operator satisfies

~EF̂ωj1 ,ωj2 ,ωj3 ´ Fωj1 ,ωj2 ,ωj3~2 “ O

ˆ

1

b4T
` b24

˙

,

~CovpF̂ωj1 ,ωj2 ,ωj3 , F̂ωj1 ,ωj2 ,ωj3 q~
2
2 “ O

ˆ

1

b34T

˙

.

Consequently,

E
�

�

�

p2πq2

T 2

T
ÿ

j1,j2“1

F̂ωj1 ,´ωj1`h,´ωj2 ´

ż ż

Fω,´ω`ωh,´ω1dωdω
1
�

�

�

2

2
“ O

ˆ

1

b34T
` b44

˙

(S7.1)

which is therefore mean square consistent for bandwidths satisfying b4 Ñ 0 such that b34T Ñ8 as T Ñ8.

Proof of Theorem S7.1. Consider first the expectation of F̂ωj1 ,ωj2 ,ωj3 which is given by

EF̂ωj1 ,ωj2 ,ωj3 “
p2πq3

pb4T q
3

ÿ

k1,k2,k3

K4

´ωj1 ´ ωk1
b4

, . . . ,
ωj4 `

ř3
i“1 ωki

b4

¯

EΦpωkqI
pT q

ωk1 ,ωk2 ,ωk3 ,´
ř3
i“1 ωki

“
p2πq3

pb4T q
3

T

2π

ÿ

k1,k2,k3

K4

´ωj1 ´ ωk1
b4

, . . . ,
ωj4 `

ř3
i“1 ωki

b4

¯

E
`

ΦpωkqDωk1
bDωk2

bDωk3
bD

´
ř3
i“1 ωki

˘

,

where we used in the second equality that the tri-periodogram tensor can be expressed in terms the cumulant

tensors of the upscaled fDFTs. Using then Theorem B.1, we have

E
“

ΦpωkqI
pT q
ωj1 ,ωj2 ,ωj3 ,ωj4

‰

“
T

p2πq

´

Φpωkqcum
`

DpT qωj1
, . . . , DpT qωj4

˘

` Φpωkqcum
`

DpT qωj1
, DpT qωj2

˘

b cum
`

DpT qωj3
, DpT qωj4

˘
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` ΦpωkqS1324pcum
`

DpT qωj1
, DpT qωj3

˘

b cum
`

DpT qωj2
, DpT qωj4

˘

q

` ΦpωkqS1423pcum
`

DpT qωj1
, DpT qωj4

˘˘

q b cum
`

DpT qωj2
, DpT qωj3

˘

¯

. (S7.2)

Note that, due to the inclusion of the function Φ, only those terms are to be considered for which the frequen-

cies satisfy j4 “ ´j1 ´ j2 ´ j3 in such a way that j1 ‰ j2 j1 ‰ j3 and j2 ‰ j3 and j1 ‰ j4 T -periodically.

For those values not contained on a proper submanifold, the products of second-order cumulant tensors are at

most of order OpT´2q in an L2 sense under the null hypothesis. Using Lemma B.2, it follows therefore that
�

�

�

�

E
“

ΦpωkqI
pT q
ωj1 ,ωj2 ,ωj3 ,ωj4

‰

´
T

p2πq

2π

T
Fωj1 ,ωj2 ,ωj3

�

�

�

�

2

“ O

ˆ

T

T 2

˙

“ O

ˆ

1

T

˙

and hence is asymptotically unbiased. Additionally, the smoothing kernel is defined as a product of one-

dimensional smoothing kernels with compact support. Denote by V b
a pKq the total variation on ra, bs of the

function K, then a standard argument gives these kernels satisfy
ˇ

ˇ

ˇ

ˇ

ż b

a
Kpxqdx´

1

b4T

ÿ

j“1

K

ˆ

xj
b4

˙
ˇ

ˇ

ˇ

ˇ

ď
1

T
V b
a

ˆ

1

b4
K

ˆ

¨

b4

˙˙

“ O

ˆ

1

b4T

˙

,

where we used that V b
a

`

1
b4
Kp ¨b4 q

˘

“ Op 1
b4
q. This together with a change of variables yields

�

�

�

�

E
“

F̂pT qω1,ω2,ω3

‰

´

ż ż ż

1

b34
K4

´ω1 ´ α1

b4
, . . . ,

ř3
i αi ´ ωi
b4

¯

Fα1,α2,α3dα1dα2dα3

�

�

�

�

2

“

�

�

�

�

E
“

F̂pT qω1,ω2,ω3

‰

´

ż ż ż

K4

´

x1, . . . ,´b4

3
ÿ

i

xi

¯

Fω´xb4dx1dx2dx3

�

�

�

�

2

“ O

ˆ

1

b4T

˙

,

using the more compact notation ω ´ xb4 :“ pω1 ´ x1b4, ω2 ´ x2b4, ω3 ´ x3b4q P R3. For α P R3, note

that Assumption I* with ` “ 2 implies that the operator-valued derivative mappings α ÞÑ DiFα are well-

defined elements of SpH b Hq. Hence, a Taylor expansion of the operator-valued function Fα at the point

ω0 :“ pω1, ω2, ω3q yields
�

�

�

�

Fω´́́xb4 ´
´

Fω0 ` rb4xs
JDωFω

ˇ

ˇ

ˇ

ω“ω0

` rb4xs
JD2

ωFω

ˇ

ˇ

ˇ

ω“ω0

rb4xs
¯

�

�

�

�

2

“ opb24q.

Utilizing that the smoothing kernel is symmetric in each argument, we obtain for (4.6)

�

�E
“

F̂ωj1 ,ωj2 ,ωj3 ,ωj4

‰

´ Fωj1 ,ωj2 ,ωj3

�

�

2
“ O

ˆ

1

b4T
` b24

˙

.

Consequently,
�

�

�

�

E
ż ż

F̂ω,´ω`ωh,´ω1,ω1`ω1h
dωdω1 ´

ż ż

Fω,´ω`ωh,´ω1,ω1`ω1h
dωdω1

�

�

�

�

2

“ O

ˆ

1

b4T
` b24

˙

.

Consider next the covariance structure of Fωj1 ,ωj2 ,ωj3 . By definition,

Cov
´

F̂ωj1 ,ωj2 ,ωj3
, F̂ωl1

,ωl2
,ωl3

¯

(S7.3)
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“ Cov
´

p2πq3

pb4T q
3

ÿ

k1,k2,k3

K4

´ωj1 ´ ωk1

b4
, . . . ,

ωj4 `
ř3

i“1 ωki

b4

¯

ΦpωkqI
pT q

ωk1
,ωk2

,ωk3
,´

ř3
i“1 ωki

,

p2πq3

pb4T q
3

ÿ

s1,s2,s3

K4

´ωl1 ´ ωs1

b4
, . . . ,

ωl4 `
ř3

i“1 ωsi

b4

¯

ΦpωsqI
pT q

ωs1
,ωs2

,ωs3
,´

ř3
i“1 ωsi

¯

“
p2πq6

pb4T q
6

T 2

p2πq2
Cov

´

ÿ

k1,k2,k3

K4

´ωj1 ´ ωk1

b4
, . . . ,

ωj4 `
ř3

i“1 ωki

b4

¯

ΦpωkqDωk1
bDωk2

bDωk3
bD´

ř3
i“1 ωki

,

ÿ

s1,s2,s3

K4

´ωl1 ´ ωs1

b4
, . . . ,

ωl4 `
ř3

i“1 ωsi

b4

¯

ΦpωsqDωs1
bDωs2

bDωs3
bD´

ř3
i“1 ωsi

¯

“
p2πq4

b64T
4

ÿ

k1,k2,k3

K4

´ωj1 ´ ωk1

b4
, . . . ,

ωj4 `
ř3

i“1 ωki

b4

¯

ÿ

s1,s2,s3

K4

´ωl1 ´ ωs1

b4
, . . . ,

ωl4 `
ř3

i“1 ωsi

b4

¯

ˆ Cum
´

ΦpωkqDωk1
bDωk2

bDωk3
bD´

ř3
i“1 ωki

,ΦpωsqD´ωs1
bD´ωs2

bD´ωs3
bDř3

i“1 ωsi

¯

By Theorem B.1, the cumulant term implies we are looking for all indecomposable partitions of the array

Dωk1
loomoon

1

Dωk2
loomoon

2

Dωk3
loomoon

3

D
´
ř3
i“1 ωki

looooomooooon

4

D´ωs1
loomoon

5

´Dωs2
loomoon

6

D´ωs3
loomoon

7

Dř3
i“1 ωsi

loooomoooon

8

(S7.4)

We shall ignore the Φpωkq and Φpωsq as this will not change the order of the variance. Indecomposability
implies the rows must hook so at least one tensor from the first row must be in the same component with an
element from the second row. Observe that for partitions of which one element consists of a at least 4 fDFT
tensors, Lemma B.2 implies at least two constraints on the summation will enter. Moreover, such an element
is at most of order OpT´1q in norm. Hence, (S7.3) is at most of order Op b

4
4T

4

b64T
4

1
T q “ Op 1

b24T
q in SpH b Hq.

We therefore only have to consider those partitions consisting of tensor products of two fDFT’s. Notice that
we at least will have to impose three restrictions in order to make such terms not disappear. For example,

Sp15qp26qp37qp48q

implies the restrictions k1´ s3 ” 0 mod T , k2´ s2 ” 0 mod T and k3´ s3 ” 0 mod T . Consequently,
the covariance becomes
�

�

�

�

Cov
´

F̂ωj1 ,ωj2 ,ωj3 , F̂ωl1 ,ωl2 ,ωl3

¯

�

�

�

�

2

ď

sup
ω
~Fω~

4
2

p2πq4

b64T
4

ˇ

ˇ

ˇ

ˇ

ÿ

k1,k2,k3

K4

´ωj1 ´ ωk1
b4

, . . . ,
ωj4 `

ř3
i“1 ωki

b4

¯

K4

´ωl1 ` ωk1
b4

, . . . ,
ωl4 ´

ř3
i“1 ωki

b4

¯

ˇ

ˇ

ˇ

ˇ

“ O

ˆ

1

b64T
4
ˆ b34T

3

˙

“ O

ˆ

1

b34T

˙

,

showing the estimator is consistent as b4 Ñ 0 in such a way that b34T Ñ 8. The last statement (S7.1)
now follows from a bias-variance decomposition as in the proof of Theorem 4.1(i) and from noting that the
Riemann-approximation does not change the order.
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S7.2 Distributional properties under HA

Theorem S7.2. Suppose Assumption I(8, 2) holds. Then,

piq

�

�

�

�

E
p2πq2

T 2

T
ÿ

j1,j2“1

F̂ωj1 ,´ωj1`h,´ωj2 ´

ż ż

Gω,´ω`ωh,´ω1dωdω
1 ´ Zh

�

�

�

�

2

“ O

ˆ

1

b4T
` b4

˙

,

piiq
�

�CovpF̂ωj1 ,ωj2 ,ωj3 , F̂ωj1 ,ωj2 ,ωj3 q
�

�

2

2
“ O

ˆ

1

b34T

˙

,

where Gω,´ω`ωh,´ω1 denotes the time-integrated tri-spectral operator and where Zh P SpH b Hq is a bias

term of order Op~Zh~2q “ 1.

Proof of Theorem S7.2. Using Theorem B.1 and Lemma B.1 we find for the expectation of the tri-spectral

operator estimator

EF̂ωj1 ,ωj2 ,ωj3 “
p2πq2

b34T
2

ÿ

k1,k2,k3

K

ˆ

ωj1 ´ ωk1
b4

˙

K

ˆ

ωj2 ´ ωk2
b4

˙

K

ˆ

ωj3 ´ ωk3
b4

˙

K

ˆ

ωj4 `
ř3
i“1 ωki

b4

˙

ˆ Φpωkq

«

2π

T 2

T
ÿ

t“1

Ft{T ;ωk1 ,ωk2 ,ωk3
`R4,T

`

ˆ

1

T

T
ÿ

t“1

Ft{T ;ωk1
e´itpωk1`ωk2 q `R2,T

˙

b

ˆ

1

T

T
ÿ

s“1

Fs{T ;ωk3
eispωk1`ωk2 q `R2,T

˙

`

ˆ

1

T

T
ÿ

t“1

Ft{T ;ωk1
e´itpωk1`ωk3 q `R2,T

˙

rb

ˆ

1

T

T
ÿ

s“1

Fs{T ;ωk2
eispωk1`ωk3 q `R2,T

˙

`

ˆ

1

T

T
ÿ

t“1

Ft{T ;ωk1
eitpωk2`ωk3 q `R2,T

˙

bJ

ˆ

1

T

T
ÿ

s“1

Fs{T ;ωk2
e´ispωk2`ωk3 q `R2,T

˙

ff

.

For the first term we note that a similar argument as in the stationary case yields
�

�

�

�

E
p2πq2

T 2

T
ÿ

j1,j2“1

F̂ωj1 ,´ωj1`h,´ωj2 ´

ż ż

Gω,´ω`ωh,´ω1dωdω
1

�

�

�

�

2

“ O

ˆ

1

b4T
` b24

˙

.

We now turn to the three terms consisting of operators of second-order cumulant tensors of

E
p2πq2

T 2

T
ÿ

j1,j2“1

F̂ωj1 ,´ωj1`h,´ωj2 ,

which can be written as

p2πq2

T 2

T
ÿ

j1,j2“1

p2πq2

b34T
2

ÿ

k1,k2,k3

Kp
ωj1 ´ ωk1

b4
qKp

´ωj1`h ´ ωk2
b4

qKp
´ωj2 ´ ωk3

b4
qKp

ωj2`h ` ωk1 ` ωk2 ` ωk3
b4

q

ˆ Φpωkq

«

pF̃k1`k2;ωk1
`R2,T q b pF̃´k1´k2;ωk3

`R2,T q

` pF̃k1`k3;ωk1
`R2,T qrbpF̃´k1´k3;ωk2`ωk3

`R2,T q
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` pF̃´k2´k3;ωk1
`R2,T q bJ pF̃k2`k3;ωk2

`R2,T q

ff

.

Let us focus on the first term. Using a change of variables and Corollary B.1 this becomes

p2πq2

T 2

T
ÿ

j1,j2“1

p2πq2

b34T
2

ÿ

k1,l,k3

Kp
ωj1 ´ ωk1

b4
qKp

´ωj1`h ´ ωl ` ωk1
b4

qKp
´ωj2 ´ ωk3

b4
qKp

ωj2`h ` ωl ` ωk3
b4

q

ˆ Φpωk1 , ωl ´ ωk1 , ωk3 , ωl ` ωk3q
`

F̃l;ωk1 `R2,T

˘

b
`

F̃´l;ωk3 `R2,T

˘

ď
p2πq2

T 2

T
ÿ

j1,j2“1

ˇ

ˇ

ˇ

p2πq2

b34T
2

ÿ

k1,k3

Kp
ωj1 ´ ωk1

b4
qKp

´ωj1`h ` ωk1
b4

qKp
´ωj2 ´ ωk3

b4
qKp

ωj2`h ` ωk3
b4

q

ˇ

ˇ

ˇ
sup
ω

ÿ

l

~F̃l;ω~
2
2

`Op
1

T 2
b4T 5 1

b34T
2

1

T
q `Op

1

T 2

b34T
4

b44T
3
q

“ Op1` b4 `
1

b4T
q,

where the second error term is a consequence of the remainders R2,T and where the third term follows from

replacing the arguments in the second and fourth smoothing kernels. To prove (ii) note that we are also in this

case looking at the indecomposable partitions of the arrary in (S7.4). It is immediate that the terms of highest

order are those with second-order cumulants and those with one fourth-order tensor and two second-order

cumulant tensors. The latter is easily verified to impose two constraints on the summations by Corollary B.1

this will be of order Op b
4
4T

4

b64T
4

1
T q “ Op 1

b24T
q. The highest second-order partitions contain two sets with each

one element from distinct rows. The remaining two sets are decomposable and take their elements in the same

row. In particular, we find that Corollary B.1(ii) implies in this case at least three bounded summations from

which the result follows.

S8 Functional versus multivariate methods

Functional results are non-trivial extensions of their counterpart multivariate statements, even though the

results are, as in this paper, often based on projections. This can be seen, for instance, through a simple

example. Define the first-order functional autoregression Xj “ ΦXj´1 ` εj with

Φpxq “ a
`

xx, e1y ` xx, e2y
˘

e1 ` axx, e1ye2, x P H,

where a P p0, 1q and e1, e2 P H orthonormal. Assume Erxεj , e1y
2s ą 0 but Erxεj , e2y

2s “ 0. Then, the first

fPC score series satisfies

xXj , e1y “ axXj´1, e1y ` a
2xXj´2, e1y ` xεj , e1y.

It is seen that the projection of this FAR(1) process is an AR(2) process. So there is a complex interplay

at work between functional time series and their projections onto finite-dimensional subspaces, even at the
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population level. The relationship becomes more intricate if population quantities are replaced by their sample

counterparts. The extension to the functional level is therefore complicated, as the dynamics of a functional

time series may not be captured by its finite-dimensional projections and further refinements and extensions

of methods known for the latter case are needed.
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