
SFB 
823 

Efficient model-based 
bioequivalence testing 

D
iscussion P

aper 

 
Kathrin Möllenhoff, Florence Loingeville,  
Julie Bertrand, Thu Thuy Nguyen, Satish Sharan, 
Guoying Sun, Stella Grosser, Liang Zhao, 
Lanyan Fang, France Mentré, Holger Dette 
 
  
 

 
Nr. 21/2019 

 
 
 
 
 

 



 



Efficient model-based Bioequivalence Testing
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Abstract

The classical approach to analyze pharmacokinetic (PK) data in bioequivalence studies

aiming to compare two different formulations is to perform noncompartmental analysis

(NCA) followed by two one-sided tests (TOST). In this regard the PK parameters AUC

and Cmax are obtained for both treatment groups and their geometric mean ratios are

considered. According to current guidelines by the U.S. Food and Drug Administration

and the European Medicines Agency the formulations are deemed to be similar if the

90%- confidence interval for these ratios falls between 0.8 and 1.25. As NCA is not a

reliable approach in case of sparse designs, a model-based alternative has already been

proposed for the estimation of AUC and Cmax using non-linear mixed effects models.

Here we propose another test than the TOST, called BOT, and evaluate it through a

simulation study both for NCA and model-based approaches. For products with high
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variability on PK parameters, this method appears to have closer type I errors to the

conventionally accepted significance level of 0.05, suggesting its potential use in situations

where conventional bioequivalence analysis is not applicable.

Keywords and Phrases: bioequivalence, nonlinear mixed effects model, pharmacokinetics, non-

compartmental bioequivalence analysis, two one-sided tests

1 Introduction

In drug development the comparison of two different formulations is a frequently addressed

issue. In this regard bioequivalence studies investigating the difference between two treatment

groups are performed. According to current guidelines by the U.S. Food and Drug Admin-

istration (2003) and the EMA (2014) this question is commonly addressed by comparing the

ratios of the geometric means of the pharmacokinetic (PK) parameters area under the curve

(AUC) and the maximal concentration (Cmax) to a prespecified threshold. More precisely, bioe-

quivalence is established if the boundaries of the 90%-confidence intervals for these ratios fall

between 0.8 and 1.25 which is equivalent to performing two one-sided tests (TOST) proposed

by Schuirmann (1987). As the data are usually log-transformed, we consider the log-ratio (also

defined as the treatment effect) and hence the commonly used threshold of equivalence is given

by δ = log(1.25).

When performing bioequivalence studies, the classical approach to analyze PK data is given by

noncompartmental analysis (NCA), see for example Gabrielsson and Weiner (2001), followed

by a linear mixed effect analysis of the AUC or Cmax. The advantage of this approach is

that it is very simple and comes without any further assumptions or knowledge of the data.

However, it requires a sufficiently large number of samples and subjects which cannot be pro-

vided in each trial. As pointed out by Dubois et al. (2011) and Hu et al. (2004) the estimates

obtained by NCA are biased if these conditions are not fulfilled. Further, in numerous studies a

sufficiently large number of samples cannot be guaranteed. For instance, in pediatric research,

ethical considerations lead to difficulties in the planning of studies which are therefore typically

very small in size (for an example see Mentré et al. (2001)). But also in other areas where

patients are especially frail, as for example in cancer research, these requirements are often

not met and therefore methods for sparse designs are required. In such situations the Nonlin-

ear Mixed Effects Models (NLMEM) have become very popular for analyzing pharmacokinetic

data (see Sheiner and Wakefield (1999)). NLMEM turned out to be a promising alternative to

the classical approach as the estimation of individual effects allows for incorporating variabil-

ities, as the Between-subject-variability (BSV) and the Within-subject-variability (WSV), for

a detailed comparison see Pentikis et al. (1996); Combrink et al. (1997); Panhard and Mentré

(2005). Consequently the main advantage of the NLMEM consists in the improved accuracy of

the estimates in particular when dealing with sparse designs (see also Hu et al. (2004)).
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In order to assess bioequivalence between two products typically the two one-sided tests (TOST)

proposed by Schuirmann (1987) is performed, where two level α-tests are combined for testing

two seperate sub-hypotheses. This method is based on the Intersection-Union Principle (see

Berger (1982)) and one concludes bioequivalence if for both one-sided tests the null hypotheses

can be rejected. Due to its simplicity, this approach which is still recommended in the FDA

guidelines has become very popular and is common practice nowadays (see for example Bristol

(1993), Brown et al. (1997) and Midha and McKay (2009) among many others). However,

it was demonstrated by Phillips (1990) and Tsai et al. (2014) that for a small number of in-

dividuals, high variability in the data or only few samples per patient this method is rather

conservative and suffers from a lack of power.

The present paper addresses this problem. Here we propose a new approach for the assessment

of bioequivalence which turns out to have always more power than the corresponding TOST.

The superiority of the new approach is particularly visible in situations with a large variability

in the data in parallel designs. We develop a methodology which mimics the uniformly most

powerful test for normally distributed data with known variance, which can be found in many

text books on mathematical statistics (see for example, Lehmann and Romano (2006), or

Wellek (2010)). We argue that the superiority of this methodology for NCA also carries over

to model-based inference for reasonable large sample sizes and demonstrate this fact by means

of a simulation study.

This paper is organized as follows. In Section 2 we present the classical problem of bioequiv-

alence and the commonly used TOST for NCA-based inference. We also introduce the new

method proposed in this paper, which will be called bioequivalence optimal testing (BOT), and

demonstrate its superiority by means of a small simulation study. In Section 3 we introduce

the NLMEM, then we present the model based TOST as first introduced by Panhard and

Mentré (2005) and Dubois et al. (2011) and after that the model based BOT. Subsequently,

these tests are compared by means of a simulation study in Section 4 with NCA-based tests

both for parallel and cross-over designs varying BSV and WSV. In particular we demonstrate

that the BOT (model and NCA-based) usually yields larger power than methodology based

on the TOST, where the superiority of the BOT is particularly visible in situations with a

large variability. Some theoretical arguments for these finding can be found in the Appendix,

where we investigate the properties of both methods in the problem of comparing the means

from two normal distributions with known variance. This scenario corresponds to some kind of

asymptotic regime for the problems considered in practice, if the sample sizes are reasonably

large.

Summarizing, the new BOT introduced in the present paper improves the commonly used

TOST for bioequivalence testing based on NCA or model-based inference. It has never lower

power than this test, but substantially larger power in scenarios with a large variability in

parallel designs.
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2 Bioequivalence Tests

In this section we will briefly review a commonly used approach for bioequivalence testing, which

is based on the well-known two one-sided test (TOST) introduced by Schuirmann (1987). We

introduce a new method for testing bioequivalence, which will turn out to be more powerful than

the TOST as illustrated by means of a small simulation study. Some theoretical explanation for

our findings is given in the Appendix. For the sake of simplicity, both methods are described

here in the case of a two groups parallel design, but can be applied to crossover design, more

standard in BE.

In a bioavailability/bioequivalence study a test (T) and a reference product (R) are adminis-

tered and it is investigated whether the two formulations of the drug have similar properties

with respect to average exposure in the population. Exposure, in this context, is usually char-

acterized by blood concentration profile variables and summarized by the area under the time

concentration curve (AUC) and the maximum concentration (Cmax). More precisely, let µT and

µR denote the average means of the test and reference product for logAUC or logCmax, then

the common testing problem in bioequivalence is defined by the hypotheses

H0 : |µT − µR| ≥ δ vs. H1 : |µT − µR| < δ, (2.1)

where δ is a given threshold. For example, according to the 80/125-rule considered in the

guidelines by EMA (2014) and U.S. Food and Drug Administration (2003) the threshold δ is

given by δ = log 1.25.

For the problem of testing for PK bioequivalence the metrics of interest are given by AUC and

Cmax, which means that we consider

βTAUC := µT − µR = logAUCT − logAUCR

βTCmax
:= µT − µR = logCmax,T − logCmax,R (2.2)

in (2.1), where βTAUC and βTCmax
are the treatment effects on AUC and Cmax respectively.

2.1 The two one-sided Tests (TOST)

We consider the following sub-hypotheses of H0 as described in (2.1) given by

H0,−δ : µT − µR ≤ −δ and H0,δ : µT − µR ≥ δ. (2.3)

The idea of the TOST consists in testing each of these hypotheses separately by a one-sided

test. The global null hypothesis H0 in (2.1) is rejected with a type I error α if both one-

sided hypotheses are rejected with a type I error α. To be precise let XT,1, . . . XT,NT and

XR,1, . . . XR,NR denote the samples from the test (T) and a reference product (R) respectively

and denote by X̄k = 1
Nk

∑Nk
i=1Xk,i (k = R, T ) the mean measured endpoints (over all individuals
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for the two treatments). Under the assumption that the random variables {Xk,i : i =

1, . . . Nk, k = R, T} are independent and normally distributed with a common (but unknown)

variance σ2, that is XR,i ∼ N (µR, σ
2); i = 1 . . . , NR , XT,i ∼ N (µT , σ

2); i = 1 . . . , NT we have

for the corresponding means

X̄R ∼ N (µR,
σ2

NR
) and X̄T ∼ N (µT ,

σ2

NT
). (2.4)

In applications XR,i and XT,i usually represent AUCk and Cmaxk , k = R, T , which are typically

assumed to be lognormally distributed (see Lacey et al. (1997)). We denote by σ2
P :=

(
1
NR

+
1
NT

)
σ2 the pooled variance and by d := µT − µR the difference between the expectations of the

reference and the treatment group. This yields for the difference of the means

X̄T − X̄R ∼ N (d, σ2
P ). (2.5)

The unknown variance σ2
P is estimated by

σ̂2
P :=

(
1
NT

+ 1
NR

)
σ̂2, (2.6)

where

σ̂2 =
1

NT +NR − 2

∑
k∈{R,T}

Nk∑
i=1

(
Xk,i − X̄k

)2
.

Consequently the null hypothesis in (2.1) is rejected if

X̄T − X̄R − (−δ)
σ̂P

≥ tN−2,1−α and
X̄T − X̄R − δ

σ̂P
≤ −tN−2,1−α, (2.7)

where tN,1−α is the (1 − α)-quantile of the t-distribution with N − 2 = NR + NT − 2 degrees

of freedom (see for example Chow and Liu (1992)). This method is equivalent to constructing

a (1 − 2α)-confidence interval for µT − µR and concluding bioequivalence if its completely

contained in the equivalence interval [−δ, δ] (see Schuirmann (1987)).

The approach presented above has been extended for model-based bioequivalence inference by

Dubois et al. (2011) and will be explained in detail in Section 3.2.

2.2 An efficient alternative to TOST

In this section we will propose an alternative test which turns out to be the (asymptotically)

most powerful test in this setting. The proof of this property is deferred to the Appendix A.2.

This new approach motivates the model-based method which will be derived in Section 3.3.

For the sake of brevity we call this test BOT (Bioequivalence Optimal Test) throughout this

paper. Let NF (d, σ2
P ) denote the folded normal distribution with parameters (d, σ2

P ), that is

the distribution of the random variable |Z|, where Z ∼ N (d, σ2
P ). Due to (2.5) we have for the

absolute difference ∣∣X̄T − X̄R

∣∣ ∼ NF (d, σ2
P ).
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This result motivates the choice of the quantile determining the decision rule of the test, which

is described in the following algorithm.

Algorithm 2.1. (The BOT)

1. Estimate the parameters of interest µ̂R and µ̂T by X̄R and X̄T (for instance by non-

compartmental analysis) and estimate the variance of the difference X̄T − X̄R by the

statistic defined in (2.6).

2. Reject the null hypothesis, whenever∣∣X̄T − X̄R

∣∣ < ûα, (2.8)

where ûα is the α-quantile of the folded normal distribution NF (δ, σ̂2
P ).

The quantile ûα can be calculated solving the equation

α = Φ
(

1
σ̂P

(u− δ)
)
− Φ

(
1
σ̂P

(−u− δ)
)
.

Alternatively, it can directly be obtained by using statistical software, as for example the

V GAM package by Yee (2015) in R.

The approach presented in Algorithm 2.1 is extended in Algorithm 3.1 for model-based bioe-

quivalence inference, where we will estimate the parameters of interest µ̂R and µ̂T by fitting a

nonlinear mixed model to the data.

2.3 A finite sample comparison

In the following we will compare the TOST and the BOT introduced in Section 2.1 and 2.2

respectively by means of a small simulation study. For this purpose we generate observations

XR,i, i = 1, . . . , NR and XT,i, i = 1, . . . , NT , respectively, from a normal distribution, that is

XR,i ∼ N (log(1.25) + βT , σ2), i = 1, . . . , NR and XT,i ∼ N (log(1.25), σ2), i = 1, . . . , NT ,

where βT ∈ R is chosen from the set {log(1), log(1.1), log(1.2), log(1.25), log(1.35), log(1.5)}.
Note that βT directly corresponds to the true underlying treatment effect βT = d = µT − µR.

We fix the number of subjects to NR = NT = 20, resulting in a total sample size of N = 40

and consider four different variance settings, that is σ2 chosen from the set {0.05, 0.1, 0.2, 0.25}.
Further we choose a threshold of δ = log(1.25) in the hypotheses (2.1) corresponding to current

guidelines (as explained in Section 2.1) and set the level of the test to α = 0.05.

In Table 1 we display the type I error rates of the TOST (2.7) and the BOT (2.8). The

simulations are based on 1000 simulation runs. It turns out that for small variances (that is

σ2 = 0.05 and σ2 = 0.1) we obtain similar results for both methods. Further, for increasing
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σ2 = 0.05 σ2 = 0.1 σ2 = 0.15 σ2 = 0.2 σ2 = 0.25

βT TOST BOT TOST BOT TOST BOT TOST BOT TOST BOT

log(1.5) 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.002 0.000 0.004

log(1.35) 0.006 0.007 0.009 0.009 0.010 0.016 0.002 0.016 0.002 0.030

log(1.25) 0.040 0.044 0.047 0.050 0.027 0.059 0.009 0.054 0.004 0.050

Table 1: Type I error of the TOST defined in (2.7) and the BOT defined in (2.8) for the hypothesis

(2.1) with δ = log(1.25). The 95% prediction is given by [0.0373; 0.0656] centered at 0.05.

variance the TOST becomes very conservative as the proportion of rejection tends to zero, even

on the boundary of the null hypothesis, that is βT = d = log(1.25). On the other hand, the

BOT yields a very precise approximation of the nominal level, as rejection probabilities for

βT = d = log(1.25) are very close to α = 0.05.

In Table 2 we display the power of both tests. Again, for the low variance setting we obtain

very similar results for both tests. For σ2 = 0.1 we can already observe a higher power for the

BOT and for σ2 = 0.15 this effect becomes even more visible. Moreover, it turns out that the

TOST does not have any power when considering σ2 = 0.2 and σ2 = 0.25 (the proportions of

rejection are 0.041 and 0.006 respectively).

σ2 = 0.05 σ2 = 0.1 σ2 = 0.15 σ2 = 0.2 σ2 = 0.25

βT TOST BOT TOST BOT TOST BOT TOST BOT TOST BOT

log(1.2) 0.130 0.144 0.083 0.105 0.043 0.093 0.022 0.076 0.003 0.056

log(1.1) 0.548 0.565 0.254 0.286 0.097 0.195 0.032 0.141 0.009 0.113

log(1) 0.852 0.868 0.421 0.490 0.134 0.272 0.041 0.198 0.006 0.143

Table 2: Power of the TOST defined in (2.7) and the BOT defined in (2.8) under the alternative, for

the hypothesis (2.1) with δ = log(1.25).

Summarizing the BOT exhibits a better performance than the TOST in all scenarios under

consideration. The superiority is negligible in settings with low variances but for larger vari-

ances the BOT has substantially more power. In such cases the TOST is conservative but the

approximation of the level by the BOT is very accurate. These empirical findings are investi-

gated from a theoretical point of view in Appendix A. Here we show that the probability of

rejection by the BOT is always close (in the case of a known variance in both treatment groups

precisely equal) to α on the boundary of the null hypothesis, that is |µT − µR| = δ . On the

other hand the level is only smaller or equal than α for the TOST, and the difference may be
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very substantial in scenarios with large variability. As a consequence the power of the BOT is

always larger than the power of the TOST, and BOT offers a very promising alternative to the

classical TOST.

2.4 Noncompartmental analysis

If we are testing for PK bioequivalence considering the hypotheses in (2.2) we need to calculate

estimates of AUC and Cmax directly from the data. In this regard the classical approach is given

by NCA, as described for example in Gabrielsson and Weiner (2001). More precisely, Cmax is

directly obtained from the data, whereas AUC is approximated by the linear trapezoidal rule.

This means that the total area under the curve is obtained by separating it into several smaller

trapezoids and summing up these areas. Of course the accuracy of this approach strongly

depends on the number of measurements as this gives the number of trapezoids but it does

not require a model assumption and is widely applicable. As these methods do not take the

profile of the blood concentration-time curve into account, we call them NCA-based methods

throughout this paper. More precisely, we will denote the tests proposed in Sections 2.2 and 2.3

by NCA-TOST and NCA-BOT respectively. Model-based-methods will be discussed in more

detail in Section 3.

3 Model-based Bioequivalence Tests

Classical NCA-based tests are a useful tool to establish bioequivalence if the blood concentration

profile variables AUC and Cmax can be calculated with a reasonable precision without using

information about the form of the concentration profiles. For this purpose one usually needs a

relatively dense design to determine the area under the curve or the maximum of the profile.

However, there are many situations, where only a sparse design is available (for some examples

see Hu et al. (2004)) and the NCA-based calculation of AUC and Cmax might be misleading as

the estimates are biased in this case (see Dubois et al. (2011)). In such situations where NCA is

not reliable a model-based approach as proposed for the TOST by Panhard and Mentré (2005)

and Dubois et al. (2011) might have important advantages.

Roughly speaking they proposed to use non-linear mixed effects models (NLMEM) to describe

the blood concentration profile and derive AUC and Cmax estimates. These quantities are then

further analyzed using the methodology introduced in Section 2. By this approach they were

willing to increase the accuracy of bioequivalence tests in the case of sparse designs.

We will use the same methodology to extend the BOT derived in Section 2.1 to situations with

sparse designs. This new test achieves more power and simultaneously control the type I error.
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3.1 Nonlinear mixed effects models (NLMEM)

We first consider crossover trials with K periods and N subjects, investigating the difference

between a test and a reference treatment. A classical situation is given by the (balanced) two-

period, two-sequence crossover design (K = 2), where the N/2 patients receive treatment R

in the first period and treatment T in the second one while the other N/2 patients receive the

treatments in the reverse order.

For each subject concentrations of the drug are measured in all periods and at different sampling

points. In order to represent the dependence of the concentration on time for one subject we

follow Dubois et al. (2011) and use a non-linear function, say f in order to fit one global model

to the data, that is

yi,j,k = f(ti,j,k, ψi,k) + g(ti,j,k, ψi,k)εi,j,k, (4.1)

where yi,j,k denotes the concentration of the i-th subject (i = 1, . . . N) at sampling time ti,j,k
(j = 1, . . . , ni,k) of period k (k = 1, . . . K). In (4.1) the residual errors εi,j,k are indepen-

dent and standard-normally distributed random variables and the function g is used to model

heteroscedasticity. In particular we consider a combined error model with

g(ti,j,k, ψi,k) = a+ b · f(ti,j,k, ψi,k), (4.2)

where the parameters a, b ∈ R≥0 account for the additive and the proportional part of the error

respectively. This gives for the variance of the errors in (4.1)

Var(yi,j,k) = (g(ti,j,k, ψi,k))
2 = |a+ b · f(ti,j,k, ψi,k)|2.

The individual parameters ψi,k = (ψi,k,1, . . . , ψi,k,p)
> (of length p) are defined by

log(ψi,k,l) = log λl + βTl Tri,k + βPl Pk + βSl Si + ηi,l + κi,k,l, l = 1, . . . , p, (4.3)

where λ = (λ1, . . . , λp)
> denotes a vector of fixed effects, Tri,k, Pk and Si the (known) vectors

of treatment, period and sequence covariates respectively and βT , βP and βS the vectors of

coefficients of treatment, period and sequence effects. In order to account for the variability

between individuals, denoted as between-subject-variability (BSV), and the variability of one

subject between two periods respectively, that is the within-subject-variability (WSV), we

introduce random effects ηi = (ηi,1, . . . , ηi,p)
> and κi,k = (κi,k,1, , . . . , κi,k,p)

>. More precisely,

the random effect ηi represents the BSV of subject i and κi,k the WSV of subject i at period k

respectively. Throughout this section we assume that the random effects are normal distributed,

that is

ηi ∼ N (0,Ω), κi,k ∼ N (0,Γ), i = 1, . . . N, k = 1, . . . K, (4.4)

with p× p-dimensional covariance matrices Ω and Γ and denote the diagonal elements of these

matrices by ω2
l and γ2

` respectively. Finally, the vector of all parameters in model (4.1) is given

by

θ = (λ, βT , βS, βP ,Ω,Γ, a, b). (4.5)
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For biologics with a long half-life, such as monoclonal antibodies, a parallel group design, that

is each individual receives only the test or the reference treatment, may be necessary (Dubois

et al. (2012)). In that case, we consider only one period and the WSV can be omitted and (4.3)

simplifies to

log(ψi,l) = log λl + βTl Tri + ηi,l, l = 1, . . . , p. (4.6)

Note that in this case we do not assume any period or sequence effects and hence the vec-

tor in (4.5) simplifies to θ = (λ, βT ,Ω, a, b). For the sake of simplicity we now introduce a

vector β which is defined by β := βT in case of parallel designs and β := (βT , βS, βP ) for

crossover designs. Consequently we can write for the vector of all parameters in model (4.1)

θ = (λ, β,Ω,Γ, a, b), where Γ disappears in case of parallel design.

Considering now the hypotheses in (2.2) the treatment effects βTAUC and βTCmax
on AUC and

Cmax respectively can be directly obtained from the parameters of the global NLMEM. In other

words, there exist functions, hAUC, hCmax , such that

βTAUC = hAUC(λ, β), βTCmax
= hCmax(λ, β). (4.7)

By this we obtain an estimate for its variance using the delta method (Oehlert (1992)), which

has been proposed by Panhard et al. (2007). With these notations the hypotheses in (2.1) can

be rewritten as

H0 : |βT | ≥ δ versus H1 : |βT | < δ (4.8)

where we do the same for AUC and Cmax.

3.2 Model-based TOST

A model-based version introduced by Panhard and Mentré (2005); Panhard et al. (2007) and

Dubois et al. (2011) of the TOST for bioequivalence can be obtained by fitting the NLMEM

(4.1) to the data and calculate the estimate β̂Tc of the treatment effect βTc , c = AUC, Cmax. We

can assume from the theory of mixed effects modeling (see for example Demidenko (2013)) that

this estimate β̂Tc is asymptotically normal distributed and following the discussion in Section

2.1 the null hypothesis in (4.8) is rejected whenever

β̂Tc − (−δ)
SE(β̂Tc )

≥ z1−α and
β̂Tc − δ
SE(β̂Tc )

≤ −z1−α, c = AUC,Cmax, (4.9)

where z1−α is the (1−α)-quantile of the standard normal distribution and SE(β̂Tc ) is an estimate

of the standard error of the estimate β̂Tc .

We obtain SE(β̂Tc ) by using an asymptotic approximation based on the estimated covariance

matrix of the fixed effects (given by a submatrix of the inverse of the Fisher information

matrix) and the Delta-method (see Oehlert (1992) and Dubois et al. (2011) for the concrete
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calculation). More precisely, considering (4.7) and denoting the estimated covariance matrix of

the fixed effects by V̂ , we have

SE(β̂Tc ) =

√
∇hc(λ̂, β̂) · V̂ · ∇hc(λ̂, β̂), c = AUC, Cmax, (4.10)

where ∇hc denotes the gradient of the function hc, expressing βTc as a function of the model

parameters (c = AUC or Cmax). As the functions hAUC and hCmax are known, all quantities of

the rejection rule given in (4.9) can be directly obtained from the estimates of the parameters

in model (4.1).

3.3 Model-based optimal Bioequivalence Test

In this section we extend the bioequivalence test described in Section 2.2 to NLMEM. It will

be shown in Section 4 that the new method significantly improves currently used tests for

bioequivalence of concentration curves measured by the pharmacokinetic parameters AUC and

Cmax as it can also be applied in the case of sparse designs. Further this test turns out to be

more powerful than the model-based TOST described in Section 3.2, in particular for small

sample sizes or data with high variability. The adaption of Algorithm 2.1 to model-based

bioequivalence is very straight forward and is summarized in the following algorithm:

Algorithm 3.1. (The model-based BOT on AUC and Cmax)

1. Estimate a NLMEM to the data, resulting in the parameter estimate θ̂ = (λ̂, β̂, Ω̂, Γ̂, â, b̂).

This can be done for example for parallel designs using the saemix package by Comets

et al. (2011). The test statistic can be directly calculated as secondary parameter of the

model parameters (see (4.7)) and is given by

|β̂Tc | = |hc(λ̂, β̂)|, c = AUC,Cmax.

Approximate the standard error of the estimate SE(β̂Tc ), c = AUC,Cmax, by using the

Delta-Method as describred in (4.10).

2. Reject the null hypothesis, whenever

|β̂Tc | < ûα, (4.11)

where ûα is the α-quantile of the folded normal distribution NF (δ, (SE(β̂Tc ))2).

Finite sample properties of this method are given in Section 4.
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4 Numerical comparison of NCA- and model-based- ap-

proaches

In this section we investigate the finite sample properties of the different methods by means of a

simulation study. For this purpose we consider eight different scenarios for parallel designs and

for two-periods-two-sequence-cross-over studies respectively. Note that the latter represent the

standard design for bioequivalence trials. More precisely, we will use the models as described in

Section 3.1 in order to simulate pharmacokinetic (PK) data using a population PK model with

several scenarios varying the study design, the number of sampling times per subject n and the

magnitude of BSV and WSV (for the cross-over designs). The threshold for bioequivalence in

(2.1) is as explained in Section 2 chosen as δ = log(1.25) in all cases under consideration.

4.1 Settings

We use the same PK model as described in Dubois et al. (2011), which describes concentra-

tions (mg/l) of the anti-asthmatic drug theophylline, for both reference and test group. More

precisely, we consider a one-compartment model with first-order absorption and first-order

elimination and hence the pharmacokinetic function f in (4.1) is defined by

f(t,D, ka, CL/F, V/F ) =
F ·D · ka
V (CL

V
− ka)

(
exp(−ka · t)− exp(−CL

V
· t)
)
, (5.1)

where D is the dose, F the bioavailability, ka the absorption rate constant, CL the clearance

of the drug, and V the volume of distribution and hence ψ is composed of ka, CL/F and V/F .

The value for the residual error model in (4.2) were set to a = 0.1mg/l and b = 10%. The dose

is fixed to D = 4mg for all subjects, and the fixed effects for the reference treatment group are

λka = 1.5h−1, λCL/F = 0.04 l h−1, and λV/F = 0.5 l. The variance-covariance matrices Ω and Γ

were chosen to be diagonal and we investigate two different levels of variability for the parallel

and crossover design as specified in Table 3. To evaluate the type I error of the approaches, we

simulate a treatment effect on parameters V and CL given by βTV = βTCL = log(1.25), which

affects the AUC and Cmax similarly, that is |µT − µR| = βTAUC = |log(AUCT )− log(AUCR)| =
βTCmax = |log(CmaxT )− log(CmaxR)| = log(1.25). The power of the bioequivalence test will be

evaluated for βCL = βV = log(1). We will study two sampling time designs

- Rich design: N = 40, n = 10 samples taken at times t = (0.25, 0.5, 1, 2, 3.5, 5, 7, 9, 12, 24)

hours after dosing,

- Sparse design: N = 40, n = 3 samples taken at times t = (0.25, 3.35, 24) hours after

dosing

as described in Dubois et al. (2011), where all subjects have the same vector of sampling times.

Note that in this situation the sparse design reflects the most critical case as three sampling

12



Design Variability Scenario ωka ωV/F ωCL/F γka γV/F γCL/F

Parallel
Low BSV 22 11 22 NA NA NA

High BSV 52 NA NA NA

Crossover
Low 20 10 20 10 5 10

High 50 15

Table 3: Simulated values for the parallel and crossover design, low and high variability settings.

ω and γ are expressed as coefficient of variation in %. Entries ”NA” correspond to ”not

applicable”.

points are the minimum required for estimating a model with three parameters given in (5.1).

For each scenario, we simulate 500 data sets. For the estimation of the model parameters we use

the SAEM algorithm (see Kuhn and Lavielle (2005)). More precisely, in case of parallel designs,

we use the R package saemix developed by Comets et al. (2011) with 10 chains and (300, 100)

iterations. For crossover studies, we used Monolix 2018 R2 developed by Lixoft (2018) to fit

the model to the data with the same number of chains and interations as for parallel designs.

For the standard NCA analysis (see for example Gabrielsson and Weiner (2001)) we used the R

package MESS developed by Ekstrom (2019). As this technique is not appropriate for sparse

samples we only report results for NCA-based methods based on rich design.

We start considering a parallel design. Two-treatments parallel trials are simulated, that is

20 subjects receive the reference treatment R and the other 20 subjects are allocated to the

test treatment T. Illustrations of the simulated concentrations in groups R and T under H0

and H1 in (4.8) are presented in Figure 1. Secondly, we observe a two-periods two-sequences

crossover design. For each trial, the 20 subjects allocated to the first sequence receive the

reference treatment first and then the test treatment. The other 20 subjects allocated to the

second sequence receive treatments in the reverse order. Table 3 displays all variabilities under

consideration.

4.2 Results

4.2.1 Type I error

In Table 4 we show the results for all tests proposed in Sections 2 and 3. For parallel designs

it becomes obvious that both the NCA-based and the model-based TOST are conservative in

settings with a high variability, while the BOT yields a very accurate approximation of the

level. This corresponds to the empirical findings in Section 2 and the theoretical arguments

given in the Appendix. However, we observe a slightly increased type I error for the sparse

design with low variability for both model-based methods, probably due to standard error
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Figure 1: Spaghetti plots of simulated concentrations for parallel design with N = 40/n = 10

((a) and (c))) and N = 40/n = 3 ((b) and (d)), low variability under H0 (top line), that is

βT = log(1.25) and H1 (bottom line), that is βT = log(1). On each plot, profiles on the left

correspond to the reference group (R) and profiles on the right correspond to the treatment group

(T).
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underestimation as mentioned by Dubois et al. (2011). For rich samples and low variability all

four tests under consideration perform well and yield an accurate approximation of the nominal

level at boundary of the hypotheses, that is δ = log 1.25.

In the case of crossover designs the approximation of the level is very precise for all four tests

under consideration, even in the case of high variability. This can be explained by the fact that

each individual receives a test and a reference treatment and hence we have twice as much data

as for the parallel designs data. However, there is a slight type I error inflation (0.078) for the

model-based TOST considering a sparse design with high variability. Concluding, the type I

error rates are close to α in almost all scenarios under consideration. For increasing variances

both versions of the TOST become very conservative whereas the BOT approximates the level

still very precisely.

Study Design Parallel Crossover

Sampling time Rich Sparse Rich Sparse

Variability Low High Low High Low High Low High

NCA-TOST
AUC 0.052 0.022 - - 0.046 0.042 - -

Cmax 0.062 0.012 - - 0.062 0.070 - -

NCA-BOT
AUC 0.052 0.054 - - 0.046 0.042 - -

Cmax 0.062 0.052 - - 0.062 0.070 - -

MB-TOST
AUC 0.056 0.004 0.076 0.006 0.056 0.042 0.038 0.050

Cmax 0.058 0.008 0.066 0.002 0.064 0.070 0.044 0.078

MB-BOT
AUC 0.056 0.064 0.076 0.034 0.056 0.044 0.038 0.056

Cmax 0.070 0.060 0.070 0.058 0.064 0.054 0.044 0.056

Table 4: Type I errors of the four tests under H0. The numbers in boldface indicate that the

type I error falls outside of the 95% prediction interval [0.0326; 0.0729] centered at 0.05.

4.2.2 Power

In order to investigate the power of the proposed methods we consider the scenarios summarized

in Table 3 with a treatment effect of βTAUC = 0 and βTCmax = 0. In Table 5 we display the results

for the four tests under consideration. In the case of parallel designs we observe that a sparse

design does not affect the performance of the tests as much as the level of variability, which when

high leads to a huge loss of power for all methods. Although in these settings the power is only

close to 0.15 for the model-based BOT, a noticeable improvement compared to the model-based

TOST is visible, as for this test the power is practically zero. For low variability the model-

based tests perform very similarly, which confirms again the empirical findings in Section 2 and
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some theoretical explanation for these observations is given in the appendix. When considering

rich designs the NCA-based methods achieve more power than the model-based ones but the

difference turns out to be quite small. However, for sparse designs NCA-based methods are not

applicable and in case of low variability we obtain a very high power for both the model-based

BOT and the model-based TOST. For the cross-over designs all tests under consideration yield

a power of one, irrespective of the sampling time, design and variability. This effect can again

be explained by the larger sample size and each individual receiving both treatments.

Study Design Parallel Design Crossover Design

Sampling Time Rich Sparse Rich Sparse

Variability Low High Low High Low High Low High

NCA-TOST
AUC 0.998 0.132 - - 1.000 1.000 - -

Cmax 0.998 0.056 - - 1.000 1.000 - -

NCA-BOT
AUC 0.998 0.228 - - 1.000 1.000 - -

Cmax 0.998 0.154 - - 1.000 1.000 - -

MB-TOST
AUC 0.830 0.008 0.804 0.004 1.000 1.000 1.000 0.998

Cmax 1.000 0.024 1.000 0.016 1.000 1.000 1.000 1.000

MB-BOT
AUC 0.838 0.140 0.808 0.132 1.000 1.000 1.000 1.000

Cmax 1.000 0.138 1.000 0.116 1.000 1.000 1.000 1.000

Table 5: Power of the four tests under H1.

5 Conclusions

In this paper we addressed the problem of sparse designs and high variability in bioequivalence

studies. As described by Phillips (1990) and Tsai et al. (2014) we demonstrated that in gen-

eral for data with high variability methods based on the TOST suffer from a lack of power.

To address this problem we introduced a new method using quantiles of the folded normal

distribution, which we called bioequivalence optimal testing (BOT) in this paper. In the case

of known variances we proved in the Appendix that this test is uniformly most powerful in

this setting and has consequently more power than the TOST. These arguments can be trans-

ferred to general bioequivalence testing using NCA or NLMEM if the sample variances can be

estimated with reasonable accuracy.

By means of a simulation study we compared the TOST and the BOT based on NCA and

NLMEM. We demonstrated that bioequivalence testing based on the BOT is a more powerful

alternative to the commonly used TOST if the AUC and Cmax are obtained by NCA. This
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superiority is also observed if these parameters are obtained by fitting an NLMEM, in particular

for data with large variability.
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A Theoretical comparison of tests for bioequivalence

In this section we provide some theoretical explanation, why the BOT proposed in Section 2.2

has more power than the TOST. For this purpose we now assume that variances in the reference

and treatment group are known. In this case the quantiles of the t-distribution in (2.7) can be
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replaced by those of a normal distribution and the power functions of all tests can be calculated

explicitly. We also note that this assumption is very well justified, if the sample sizes in both

groups are sufficiently large. In other words: all arguments presented in this section can be

applied to the NCA-based tests discussed in Section 2.1 and 2.2 provided that the sample sizes

are sufficiently large. A similar comment applies to the model-based test for bioequivalence

introduced in Section 3. We begin with a discussion of the TOST.

A.1 The two one-sided Test (TOST)

Consider the rejection rule of the TOST defined in (2.7), where we replace the estimate of the

(pooled) variance σ2
P = σ2

NT
+ σ2

NR
by its true value and the quantile tN−2,1−α by the (1 − α)

quantile of the standard normal distribution denoted by z1−α. If z1−α > δ/σP the probability

of rejection is 0 (because the conditions in (2.7) are contradicting). On the other hand, and

more importantly, if z1−α ≤ δ/σP the probability of rejection for the test (2.7) is given by

ΨTOST(d) := Pd
(
X̄T−X̄R+δ

σP
≥ z1−α,

X̄T−X̄R−δ
σP

≤ −z1−α

)
= Pd

(
z1−α − δ+d

σP
≤ X̄T−X̄R−d

σP
≤ −z1−α + δ−d

σP

)
= Φ

(
− z1−α + δ−d

σP

)
− Φ

(
z1−α − δ+d

σP

)
, (3.1)

where Φ denotes the distribution function of the standard-normal distribution. From this

formula we draw the following conclusions (if z1−α ≤ δ/σP ):

(1) The test (2.7) controls its level. For example, if d > δ we have

ΨTOST(d) < Φ (−z1−α) = α

and with a similar argument the same inequality can be derived for d < −δ.

(2) At the ”boundary” of the null hypothesis (that is d ∈ {−δ, δ}) we have

ΨTOST(±δ) = α− Φ
(
z1−α − 2δ

σP

)
≤ α,

As Φ
(
z1−α − 2δ

σP

)
converges to 0 if δ

σP
converges to infinity, we expect that the level of

the test (2.7) is close to α at the ”boundary” of the null hypothesis, if σ is small. This

happens, for example, if the variance σ2 (and hence the pooled variance σ2
P ) is small

or, alternatively, if the sample sizes NR and NT in both groups are very large. On the

other hand the test (2.7) is conservative if the variance σ2 is large. In the extreme case
δ
σP

= z1−α we have

ΨTOST(±δ) = α− Φ (−z1−α) = 0.
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A.2 The BOT is uniformly most powerful

Similar to the TOST the test proposed in Section 2.2 simplifies under the additional assumption

of a known variance. As the variance is assumed to be known, the null hypothesis is rejected,

whenever, ∣∣X̄T − X̄R

∣∣ < uα, (3.2)

where uα denotes the α-quantile of the folded normal distribution NF (δ, σ2
P ). The following

result shows that the test defined by (2.8) is the uniformly most powerful test for the hypotheses

(2.1). It is well known in the mathematical statistics literature and we present a proof here

for the sake of completeness (see also Lehmann and Romano (2006), Romano et al. (2005) or

Wellek (2010)).

Theorem A.1. The test defined by (2.8) is the uniformly most powerful (UMP) for the hypothe-

ses (2.1). Moreover, among all tests for the hypotheses (2.1) with power function Ψ satisfying

Ψ(δ) = Ψ(−δ) = α the test defined by (2.8) has also minimal type I error.

Proof: In order to prove optimality recall (2.5), that is X = X̄T − X̄R ∼ N (d, σ2
P ), and note

that the hypotheses in (2.1) can be rewritten as

H0 : |d| ≥ δ vs. H1 : |d| < δ . (3.3)

The test (2.8) rejects the null hypothesis whenever
∣∣X̄R − X̄T

∣∣ < uα, where uα is the quantile

of the folded normal distribution with parameters (δ, σ2
P ), which is defined by

α = P
(∣∣N (δ, σ2

P )
∣∣ ≤ uα

)
= Φ

(
1
σP

(uα − δ)
)
− Φ

(
1
σP

(−uα − δ)
)
. (3.4)

The probability of rejection is now given by

Pd(
∣∣X̄T − X̄R

∣∣ < uα) = Pd(−uα < X̄T − X̄R < uα)

= Pd
(

1
σP

(−uα − d) < X̄T−X̄R−d
σP

< 1
σP

(uα − d)
)

= Φ
(

1
σP

(uα − d)
)
− Φ

(
1
σP

(−uα − d)
)
, (3.5)

where Φ denotes the distribution function of the standard-normal distribution.

On the other hand the uniformly most powerful test for the problem (3.3) is well known, see for

example Theorem 6 in Section 3.7 of Lehmann and Romano (2006) or Example 1.1 in Romano

et al. (2005) This test reject the null hypothesis in (3.3), whenever

|X̄T − X̄R| < C

where the constant C = C(α, δ, σP ) is the unique solution of the equation

α = Φ
(

1
σP

(C − δ)
)
− Φ

(
1
σP

(−C − δ)
)

(3.6)
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[see Example 1.1 in Romano et al. (2005)]. As the equations (3.4) and (3.6) coincide, it follows

that uα = C and the test (2.8) coincides with the UMP test for the hypotheses (2.1). 2

As a consequence of Theorem A.1 the BOT has always more power than the test defined by

(2.7). This is indicated in Figure 2, where we display the power of both tests in different

scenarios (α = 0.05, δ = log(1.25)). The left panel shows the power curves for σ2
P = 0.0049.

In this case the curves basically coincide (although the power of the BOT is slightly larger as

stated in Theorem A.1). For increasing variance (σ2
P = 0.0144) it becomes obvious that the

power of the BOT is much higher than that for the TOST. This effect becomes even clearer in

the right panel (σ2
P =

(
log(1.25)
z1−α

)2 ≈ 0.142), where the power curve of the TOST is identical to

zero. Note that these results are in line with the findings from the simulation study in Section

2.3.
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Figure 2: Power curves of the tests (2.8) (solid red line) and the test (2.7) (dashed line) for

different σP = 0.07, σP = 0.12 and σP = log(1.25)
z1−α

≈ 0.14 (from left to right). The horizontal

line indicates the level α = 0.05 and the vertical lines mark the threshold (±δ = ±log(1.25)).

The proof of Theorem A.1 is based on the fact that for normal distributed data with known

variance, that is X = X̄T − X̄R ∼ N (d, σ2
P ), the form of the uniformly most powerful test is

known, see for example Theorem 6 in Section 3.7 of Lehmann and Romano (2006) or Example

1.1 in Romano et al. (2005). Moreover, in the latter paper the author also derives the asymptotic

optimal uniformly most powerful test for the hypothesis of bioequivalence in case of unknown

variance. Using similar arguments as in this paper it can be shown that the test proposed

in Section 2.2 coincides with the asymptotically uniformly most powerful for the hypotheses

(2.1). Romano et al. (2005) also show that the TOST is asymptotically optimal. Note that

this situation corresponds to the case σ2
P = σ2/NR + σ2/NT → 0 in the present setup, where

the power functions of the TOST and the BOT test basically coincide (see the left panel of

Figure 2 and the results from the simulation study for the low variance setting in Section 2.3).

However, for small or moderate sample sizes the results in this section indicate a superiority
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of the BOT proposed in Section 2.2, which is confirmed by the numerical results presented in

Section 2.3.

We conclude noting that the same arguments also apply for model based methods introduced

in Section 3, as the estimates of area under the curve and the maximal concentration follow

approximately a normal distribution. Consequently, by the discussion given in the previous

paragraphs, the model-based BOT is expected to have always more power than the model-based

TOST, the superiority being more sensible in scenarios with larger variability. These theoretical

arguments support the empirical results in the simulation study presented in Section 4.
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