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I 

 

Abstract 

The design and synthesis of novel biologically relevant chemical matter finds valuable 

inspiration in nature´s evolutionary pre-validated molecular repository. Biology-oriented 

synthesis (BIOS) exploits the power of evolution to generate privileged natural product-like 

scaffolds. However, the guiding natural products (NPs) restrain the exploration of total NP-like 

chemical space and the associated target space which renders BIOS limited in the discovery of 

novel chemotypes and their biological activities. Combining NP-inspired strategies with 

fragment-based compound design bears the potential to overcome these limitations by de novo 

combination of NP-derived fragments to unprecedented and biosynthetically inaccessible 

compound classes termed pseudo natural products (pseudo NPs). 

In the course of this project pyrano-furo-pyridones (PFPs) were designed as a novel class of 

pseudo NPs and synthesized by combination of biosynthetically rarely related 2-pyridone and 

dihydropyrane NP-fragments in three isomeric arrangements. Cheminformatic analysis 

indicated that PFPs resemble drugs and related compounds that occupy NP-like chemical space 

not covered by existing NPs.  Morphological profiling by means of the target-agnostic “cell 

painting” assay enabled unbiased biological investigation of the novel pseudo NP class and 

guided the discovery of PFPs as structurally novel inhibitors of mitochondrial complex I and 

inducers of reactive oxygen species. These results further establish the concept of pseudo NPs 

as a novel guiding principle for library design in small molecule drug and probe discovery. 

 

Graphical Abstract. Synthetic combination of NP derived 2-pyridone and dihydropyran fragments leads to 

unprecedented pyrano-furo-pyridone pseudo NPs.  
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Kurzzusammenfassung 

Von der Natur evolutionär vorselektierte Moleküle inspirieren die Gestaltung und Synthese von 

neuen biologisch relevanten Substanzen. Im Zuge der Biologie-orientierten Synthese (BIOS) 

werden aus Naturstoffen mit interessanter biologischer Aktivität privilegierte und 

naturstoffähnliche Molekülgerüste abgeleitet. Die Wahl eines Naturstoffes begrenzt hierbei 

jedoch die Erforschung des gesamten naturstoffähnlichen chemischen Raumes und der 

zugehörigen biologischen Aktivität. Somit ist das BIOS Konzept eingeschränkt in der 

Entdeckung neuer Chemotypen und deren biologischer Relevanz. Die Kombination von 

naturstoff-inspirierten Synthesestrategien mit Konzepten des fragmentbasierten 

Strukturdesigns ermöglicht es diese Einschränkungen zu überwinden, indem naturstoff-

abgeleitete Fragmente zu neuartigen und biosynthetisch unzugänglichen Verbindungsklassen, 

sogenannten Pseudo-Naturstoffen, kombiniert werden.           

Im Rahmen dieses Projekts wurden Pyrano-Furo-Pyridone (PFP) als neuartige Klasse von 

Pseudo-Naturstoffen entworfen und synthetisiert, indem 2-Pyridon und Dihydropyran 

Naturstofffragmente in drei isomeren Anordnungen kombiniert wurden. Chemoinformatische 

Analysen zeigten, dass PFP den chemischen Raum von naturstoffähnlichen Wirkstoffen 

einnehmen, welcher jedoch nicht von existierenden Naturstoffen abgedeckt wird. Die 

morphologische Profilierung in einem sogenannten „Cell Painting“-Test ermöglichte die 

unvoreingenommene biologische Untersuchung der neuen Pseudo-Naturstoffklasse sowie die 

Entdeckung von PFP als strukturell neue Inhibitoren des mitochondrialen Komplexes I und die 

damit verbundene Zunahme reaktiver Sauerstoffspezies. Dies bestätigt das Pseudo-Naturstoff 

Konzept als neuartiges Leitprinzip für das Design von Substanzbibliotheken zur Erforschung 

von biologisch relevanten niedermolekularen Wirkstoffen und chemischen Sonden. 

 

Kurzzusammenfassung. Pyrano-furo-pyridon pseudo Naturstoffe lassen sich durch die synthetische Kombination 
von naturstoffabgeleiteten 2-Pyridon und Dihydropyran Bausteinen darstellen.   
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1. Introduction 

Identifying tools that shed light on known and novel biological phenomena lies at the heart of 

Chemical Biology. A deeper understanding of disease- and non-disease states requires tools 

with distinct features regarding selectivity, efficacy and potency to identify, characterize and 

elucidate molecular mechanisms of interactions between proteins and their modulators. 

Eventually, the discovery of powerful tools in Chemical Biology has a direct impact on the 

development of effective, potent and safe drugs.[1]  

In contrast to genetic alterations, small molecules can be applied in adjustable doses and often 

in a reversible manner, allowing precise control over a biological process in terms of time and 

magnitude.[2] In addition, employing small molecules to modulate a specific function of one or 

multiple proteins enables the investigation of a biological process of interest without the 

necessity to remove or change the protein itself.[1, 3] In forward chemical genetics[4], the 

successful identification of a small molecule eliciting a desired biological effect strongly 

depends on the composition of the substance library which is supposed to be screened. With 

the number of hypothetically synthesizable and drug-like molecules being estimated between 

1020 and 1030,[5] it is of major importance to choose a promising point of departure for the 

exploration of vast chemical space.  

 

1.1. Natural Product Inspired Compound Collections  

Natural products (NPs) have proven to be a reliable and rich source of biologically relevant 

chemical matter as it was recently shown that 28% of all US Food and Drug Administration 

(FDA) approved first-in-class drugs between 1999 and 2013 are either NPs (15%) or NP-

derived (13%).[6] This significant impact on drug discovery ultimately results from increased 

hit rates of NPs and their analogues compared to purely chemically synthesized compounds 

which is attributed to a different and broader coverage of chemical space.[7] NPs were selected 

and optimized by nature over thousands of years by evolutionary pressure. Thus, their structures 

and scaffolds can be viewed as privileged for molecular interactions with their respective 

targets.[8] Despite their obvious predestination for drug discovery, the application of NPs and 

derivatives thereof still faces significant reluctance in the pharmaceutical industry.[9] This 

discrepancy can be rationalized by difficulties in isolation of suitable quantities of a desired NP 

from complex mixtures and challenging multi-step synthesis which may restrict structure-

activity relationship (SAR) studies.[8] However, approaches to overcome these limitations 
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include diversity-oriented synthesis (DOS), biology-oriented synthesis (BIOS), complexity-to-

diversity (CtD) and NP-fragment based ligand discovery.[10-13]  

 

1.1.1. Diversity-Oriented Synthesis 

The goal of DOS is to build up stereochemical and scaffold diversity in a small number of 

synthetic transformations. To this end, a common three-step strategic approach is followed 

consisting of the build-, the couple- and the pair-phase (Figure 1). Initially, chiral building 

blocks with orthogonal sets of functional groups are synthesized employing robust asymmetric 

syntheses. In the couple-phase these building blocks are joined ideally under full stereocontrol. 

The building and coupling provide the fundament of stereochemical diversity. In the final pair-

phase, intramolecular coupling reactions are performed to link complementary functional 

groups resulting in compounds with high scaffold diversity. Compared to commercial libraries, 

DOS-derived compound classes have a higher stereochemical content and a higher fraction of 

sp3-hybridised centers. This higher degree of complexity is also a common feature of numerous 

NPs. Hence, DOS-derived compound libraries can be considered NP-like which is also reflected 

in their enhanced biological performance.[10]  

 

Figure 1. General concept of diversity-oriented synthesis (DOS). Grey dots indicate the functional groups for 
coupling. Blue and red dots indicate functional groups for pairing. 
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1.1.2. Biology-Oriented Synthesis 

The strategy of BIOS employs nature´s pre-validated structures of bioactive NPs as leading 

scaffolds which are reduced to less complex frameworks with retained kind of bioactivity. 

These serve then as privileged starting points for the synthesis of NP-inspired compound 

collections ensuring reliable and efficient synthetic tractability (Figure 2).[11] The BIOS 

approach initially required cheminformatic analysis of NPs and their embedded scaffolds. This 

was visualized in a tree-like structural classification of NPs (SCONP) allowing the mapping of 

known NP chemical space and navigation from complex structures to simpler frameworks and 

single-ring building blocks.[14] Annotation of biological relevance and implementation as 

hierarchical guiding criterion during structure simplification additionally assures that the kind 

of bioactivity encoded in the scaffolds is retained while potency might drop.[11] Numerous 

examples based on the BIOS strategy were reported and extensively reviewed having an 

average library size of 200 – 500 compounds with a hit rate of 0.5 – 1.5%. Collectively, BIOS 

enabled thorough SAR studies which ultimately resulted in the successful discovery of various 

NP-inspired bioactive compounds.[11, 15-16]  

 

Figure 2. General concept of biology-oriented synthesis (BIOS). The simplified core scaffold is indicated in red. 

 

However, selection of a guiding NP and its linked molecular target renders the BIOS approach 

biased in the exploration of chemical and biological space. The covered chemical space by 

BIOS is dictated by the guiding NPs listed in the dictionary of natural products (DNP) which 

represent only the characterized NPs and hence only a relatively small fraction of the total NP-

like chemical space.[17]  

 

1.1.3. Ring Distortion Strategy 

In a total synthesis or drug discovery effort, the complex structures of NPs are usually regarded 

as the final product. Yet, through appropriate chemical modifications of orthogonal functional 

characteristics embedded in the NP scaffolds, they can be applied as privileged starting points 
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for the exploration of NP-like chemical space. In that sense, the ring distortion/modification 

approach aims for significant disruption of overall topology of the parent NP by manipulation 

of core ring systems to achieve a high degree of scaffold diversity. Hence, it was termed as the 

complexity-to-diversity (CtD) strategy which stands in contrast to traditional optimization 

efforts intending to improve potency or drug-like properties of NPs.[12] 

In nature, the biosynthesis of complex NPs is composed of diverse arrays of various enzymes 

which transform common intermediates into distinct secondary metabolites. Inspired by this, 

enzymes are replaced in CtD by chemoselective reactions which enable the strategic 

manipulation of a suitable NP through ring-cleavage, ring-rearrangement, ring-fusion and 

modification of ring-size (expansion or contraction) and/or its oxidation state (e.g. 

aromatization) as illustrated in Figure 3. 

 

Figure 3. General concept of complexity-to-diversity strategy (CtD). Changes to the NP scaffold are indicated in 
red. 

 

The diversification of several NPs including gibberellic acid[12], adrenosterone[12], quinine[12], 

abietic acid[18], yohimbine[19], sinomenine[20] and lycorine[21] outlined the proof of concept. The 

biological relevance of CtD generated NP-derived products was demonstrated in a recent 

example employing pleuromutilin as the parent NP for diversification resulting in structurally 

diverse and highly complex derivatives (Figure 4). Subsequent biological evaluation in a 

phenotypic assay for anticancer activity revealed the ring-contraction product of pleuromutilin 

P1, which was further elaborated to ferroptocide P5, as a rapid inducer of ferroptotic cell death 

by inhibiting thioredoxin.[22] 
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Figure 4. Diversification (indicated in red) of pleuromutilin (P) leads to a thioredoxin inhibitor and inducer (P5) 
of ferroptosis. 

 

CtD is limited by the guiding NPs as they need to be available in sufficient amounts. 

Furthermore, the employed NPs require orthogonal functional groups for selective 

diversification of the core scaffold. From a practical point of view, the fast exploration of NP-

like chemical space from a selected NP might be impaired by laborious screening of suitable 

reaction conditions to achieve a desired transformation, and/or isolation and characterization of 

complex isomers derived from an unanticipated reactivity of the NP.  

 

1.1.4. Natural Product Fragments 

Fragment-based drug design (FBDD) has gained increasing attention especially by the 

pharmaceutical industry as it seems to overcome high attrition rates during classic lead 

discovery approaches such as high throughput screening of combinatorial chemistry derived 

libraries.  FBDD is based on the investigation of low-affinity pharmacophores and the 
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identification of their exact binding modes to the target protein of interest by X-ray 

crystallography or NMR spectroscopy. From a determined anchor point, the fragments can then 

be grown to form new interactions with the binding pocket applying structure-based drug 

design. This leads to high quality lead compounds which can readily be optimized. Although it 

was demonstrated that FBDD rapidly explores large areas of chemical space while requiring 

smaller libraries than usually applied during high-throughput screening (HTS), there is an 

inherited impairment of the obtained chemical leads regarding their complexity and diversity. 

As most libraries screened during FBDD consist of fragments derived from known drugs or 

drug candidates, the explored chemical space should be regarded as previously examined 

containing predominantly sp2- and nitrogen-rich structures while lacking sp3 carbons and 

stereogenic centers.[23-24]  

To overcome the limitations of FBDD and the lack of straightforward synthetic accessibility to 

most NPs, Over et al. applied a modified SCONP algorithm to perform fragmentation, filtering 

and clustering of more than 180 000 NP structures from the DNP to arrive at 2000 clusters of 

NP-fragments. A principal component analysis and subsequent graphical representation 

revealed that NP-derived fragments cover distinctly different chemical space to synthetic and 

drug-like fragments. Furthermore, it was shown that the distribution of NP-derived fragment 

properties resembles the distribution of properties extracted from the DNP, especially in terms 

of three dimensionality induced by a high number of sp3-configured centers. In a sense, NP-

fragments sufficiently represent the complexity and diversity of NP structures suggesting that 

usage of NP-fragments in FBDD has the potential to identify structurally novel modulators of 

established drug targets. This approach was validated by the discovery of several phosphatase 

inhibitors and stabilizers of an inactive p38α MAP kinase conformation with truly novel 

chemotypes.[13]  

 

1.1.5. Pseudo Natural Products 

Klein et al. applied a gene transfer and expression technology in which yeast cells were 

engineered to produce 74 novel scaffold-sized (200-350 Da) compounds from diverse genetic 

material and immediately screened for biological activity by a functional Brome Mosaic Virus 

replication assay.[25] Following the concept of coevolution which refers to a continuous 

development of secondary metabolites and their cellular target proteins, the 74 active 

compounds identified by this synthetic biology effort can be regarded as prevalidated hits.[16] 

Beside their physicochemical properties satisfying the requirements for drug- and fragment 
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likeness, more than 75% of the found compounds have not been described previously and 20% 

exhibit entirely novel chemotypes.[25]  

Conceptually, Klein´s approach can be regarded as a recombination of NP-fragments through 

different arrays of classes of NP associated genes. The concept of pseudo NPs mimics the 

engineered biosynthetic assembly of unrelated NP-fragments by synthetically recombining 

privileged NP derived building blocks. This generates substance libraries extending NP-like 

chemical space beyond the structures of NPs and thereby potentially unveiling yet unknown 

biological phenomena (Figure 5). This approach merges the concepts of BIOS with NP-

fragments in capturing the biological relevance of NPs together with an expedient exploration 

of chemical space through fragments. 

 

Figure 5. General concept of pseudo Natural Products (pseudo NPs). Fragments of interest (indicated in blue and 
red) are identified and subsequently synthetically recombined. 

 

Following the basic design guidelines introduced for pseudo NPs has the potential to increase 

likelihood for biological activity.[26] In this regard, NPs employed to derive the fragments 

should have diverse bioactivities. Fragments selected for recombination should be 

biosynthetically unrelated to incorporate distinct structural features for binding to molecular 

targets, and ideally contain complementary heteroatoms to ensure structural diversity. Since a 

three-dimensional scaffold is crucial for spatial binding in protein pockets[27], the recombination 

of fragments should also incorporate sufficient stereogenic centers.  

Table 1 illustrates six possible connection types for the design of pseudo NPs which are also 

observed in NPs.[28] The first entry represents a simple link between two fragments through a 

bond which can be regarded as a monopodal connection (Table 1, entry 1). An increase in 
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complexity can be achieved when two fragments share one atom and are therefore connected 

as a spiro compound (Table 1, entry 2). When sharing two atoms, the fragments are connected 

edge by edge (Table 1, entry 3). With three shared atoms, additional three-dimensional 

complexity is gained as a bridgehead is installed between the two fragments (Table 1, entry 4). 

A bipodal connection links the two fragments throughout four atoms of the molecule. Here, 

both attachment points can be connected through either one or multiple bonds (Table 1, entry 

5). With multiple bonds in place, the newly formed molecule must be analyzed carefully as a 

third fragment might have inevitably been incorporated, now connecting the other two 

fragments. Finally, a mixture of a bridged fusion and a bipodal connection represents the most 

complex way of attaching two fragments to each other (Table 1, entry 6). As is the case for 

bipodal connected fragments, multiple bonds installed between the two fragments inevitably 

lead to the incorporation of a third fragment. However, the actual connection type suitable for 

a new class of pseudo NPs will ultimately depend on the imbedded functionalities of chosen 

fragments and the synthetic feasibility to exploit these for fragment recombination.    
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Entry NP-

Fragments 

Connection 

Type 

Pseudo NP 

Products 

Natural Product 

Example 

1 

  

 

 

2 

 
 

 

 

3 

 
 

 

 

4 

 
 

 

 

5 

  

 

 

6 

  

 
 

Table 1. Frequent connection types for two fragments observed in NPs. 

 

The first example of pseudo NPs as a new guiding principle for small molecule drug discovery 

was demonstrated by the discovery of chromopynones as structurally novel glucose uptake 

inhibitors targeting glucose transporters GLUT-1 and -3 (Figure 6).[26] Using a multi-

component one-pot synthesis, oxygen-rich chromanes, a substructure widely occurring in a 
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variety of bioactive NPs, were combined with nitrogen-containing tetrahydropyrimidines, 

representing a core fragment of an antibiotic class. As this bridged fusion of the two fragments 

is not encountered in nature, cheminformatic analysis of atom connectivity patterns confirmed 

that chemical space occupied by chromopynones does not overlap with the space defined by 

NPs and BIOS compounds. Noticeably, the generated novel molecular framework restricted the 

glucose uptake ability of cancer cells by inhibition of GLUT-1 and -3, which denotes a novel 

biological effect not observed for chromane or tetrahydropyrimidine containing NPs. 

Furthermore, copper-catalyzed 3+2 cycloaddition reactions were employed to fuse the 

biosynthetically unrelated indole and tropane NP-fragments providing a stereogenically 

complex library of indotropanes.[29] From these, myokinasib was identified as a selective and 

isoform-specific inhibitor of MLCK1. 

 

Figure 6. Design of chromopynone Pseudo NPs from chromane and tetrahydropyrimidone fragments. 

 

Fragmentation of NPs and subsequent reconnection in alternative arrangements represents a 

pioneering strategy based on reconfiguration of privileged chemical matter to enable 

exploration of larger areas of biologically relevant chemical space not covered by nature. This 

introduces new nature-inspired molecular frameworks to small molecule drug and probe 

discovery bearing the potential to elicit interesting biological phenomena. Furthermore, the 

unexplored yet biological relevant chemical space as intentionally covered by pseudo NPs 

might spark the discovery of entirely novel biology and mechanisms of action. However, the 
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concept of pseudo NPs, their underlying design principles as well as their biological 

characterization still require further validation by different structural classes of de novo 

combined NP-fragments. The aim of this research was to provide additional affirmation of the 

pseudo NP concept by exploring the chemistry and biological relevance of a novel structure 

class of pseudo NPs.  

 

1.2. Phenotypic Assays in Drug and Probe Discovery 

The screening of small molecule libraries with the aim to investigate the functions of proteins 

and biological processes is referred to as chemical genetics.[30] This designation indicates the 

relatedness to classical genetics in which the identity of genes and their function in a specific 

pathway is evaluated by screening mutant libraries of an organism and investigating their 

phenotype. In contrast to reverse chemical genetics (RCG), which aims for the identification of 

a small molecule modulator of a protein of interest in target-based assays, forward chemical 

genetics (FCG) uses small molecules to identify proteins that regulate distinct cellular 

processes.[31-33] For FCG the lack of knowledge about the identity of a specific target or a 

hypothesis about its physiological role entails the necessity to observe the phenotypic effects 

of a compound minimally on cell-based level, if not tissue- or organism-based, ultimately 

leading to an increased translatability of disease relevant assays.[32, 34] Furthermore, recent 

technological advances in computation and high-throughput multiplex microscopy have 

provided an unbiased approach for the morphological profiling of chemically perturbed cells to 

support small molecule drug and probe discovery.[35-36]  

 

1.2.1. Phenotypic Screening 

The dominance of target-based screening in the pharmaceutical industry over the last three 

decades is in clear contrast to the success rate it delivered compared to phenotypic drug 

discovery as a paradigm changing analysis revealed. Out of 50 first-in-class new small-

molecular entities discovered between 1999 and 2008, 28 (56%) clinically approved drugs 

emerged from a phenotypic approach, while 17 (34%) were found in a target-based manner.[37] 

This result is taken into account as a revival of interest in phenotypic screening is witnessed 

throughout the drug discovery and chemical biology community.[33]  
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In fact, FCG offers three major advantages over target-based approaches. First, phenotypic 

approaches have the power to address poorly understood diseases for which a molecular target 

is not known because an appropriate assay is capable to abstract complex mechanistic 

interconnections to a simpler disease-relevant and traceable phenotype.[34] Secondly, the ability 

to capture a cohesive picture of investigated regulatory pathways merged with proceeding 

development of advanced cellular models including organoids, 3D cell culture and induced 

pluripotent stem cells, recapitulates human disease biology more realistically. This eventually 

increases the clinical potential of a phenotypic hit.[31] Finally, by sampling a larger volume of 

molecular target space, FCG has the ability to identify compounds that act through 

unprecedented mechanisms of action, potentially leading to the discovery of first-in-class 

drugs.[37]  

The complexity of FCG is reflected in the challenges and risks associated with it. Besides 

technical hurdles during assay development and a high false-positive hit rate, the establishment 

of a clear structure activity relationship (SAR) is not trivial and not always feasible due to the 

multi-factorial character of phenotypic data. Target identification carries another risk for 

failure, and it represents a major point of consideration during strategic discussions especially 

in the pharmaceutical industry. Although the knowledge of a target is not required for approval, 

the absence of a molecular target is likely to complicate safety assessment and medicinal 

chemistry efforts to overcome toxicological issues with a phenotypically derived compound.[31] 

However, constant progress in target identification technologies might lower the barrier of 

concern for FCG and actually ignite new RCG projects for previously unknown mechanisms 

of action originating from phenotypic approaches.[34] Hence, FCG and RCG should be regarded 

as complementary approaches, rather than competing research alternatives for the discovery 

and development of drugs and chemical probes with novel molecular mechanisms of action. 

While phenotypic screening is capable in capturing human disease relevance, it still restricts 

the covered biological target space by focusing on a distinct phenotype of interest. For the 

chemically driven discovery approach of pseudo NPs, in which novel chemical matter is 

generated without any hint towards a specific biological activity, phenotypic screening is 

inapplicable to cover a broad range of molecular mechanisms in a reasonable manner.  
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1.2.2. Morphological Profiling 

Technological advancements in microscopy and computation have enabled experimental 

methods that measure hundreds to thousands of distinct properties of a biological sample in an 

image-based single assay. Data generated from these multiplexed assays can be translated into 

specific morphological profiles allowing comparison and clustering among each other. 

Although technically related to phenotypic screening, morphological profiling aims at a 

different goal. Phenotypic screens focus on changes of a single process or cell function, whereas 

profiling measures a broad spectrum of features from each sample in an unbiased manner to 

reveal differences and similarities to other samples.[35]   

While other multiplexed assays such as measurement of gene expression, protein levels and 

metabolites tend to be low- to medium throughput,[38] microscopy image-based profiling which 

tracks the morphological changes of a biological sample (therefore also referred to as 

morphological profiling) is particularly suitable for high-throughput measurement. This is due 

to a highly automatable assay set-up (multi-well plates and pipetting robot) as well as the 

compatibility with various biological samples, for examples cells, tissues or organisms, and 

sophisticated computational methods. These algorithms extract meaningful information from a 

broad range of measured properties to enable the comparison among individual patterns. The 

crucial readout is typically not the identity of each measured feature but the discovered 

difference itself.[35] 

In a pioneering report[36], Gustafsdottir et al. introduced a multiplex morphological profiling 

assay to measure diverse cellular states upon chemical perturbation employing fluorescent 

markers for distinct cellular components (Figure 7).[39-40] In the so-called “cell painting assay”, 

altogether six stains with varying detection wavelengths were used for imaging in five channels 

to visualize six cellular components/organelles, namely nuclei, endoplasmic reticulum, 

nucleoli, actin, Golgi apparatus and mitochondria. Thereby subtle changes in hundreds of 

features including intensity, texture, form and localization, elicited upon compound treatment 

were captured by microscopy imaging with single-cell resolution.  Applying the open-source 

software CellProfiler[41], 824 morphological features per cell were extracted, reduced in 

dimension and the resulting morphological fingerprints were clustered to give several 

mechanistic or structurally related groups of compounds. Based on these morphological 

comparisons the authors proposed potential applications in drug discovery by identifying new 

mechanisms of action, scaffold hopping and library enrichment.[35-36] 
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Figure 7. General concept of morphological profiling using the high-content image-based cell painting assay. 

 

Indeed, in a follow up study multiplexed high-dimensional profiling was employed to determine 

and to enrich biological performance diversity of small-molecule libraries. Clemens et al. 

demonstrated that a compound collection selected due to their activity in the cell painting assay 

had an increased hit frequency in a panel of 96 cell-based high-throughput screening (HTS) 

projects. Furthermore, compound clustering and selection according to diversity in 

morphological fingerprints was shown to lead to overall higher HTS performance diversity 

compared to randomly selected compounds or structurally diverse compound collections. It was 

concluded that chemical structure diversity is not necessarily correlated to diverse biological 

performance and that libraries with diverse assay performance patterns should rather be 

designed according to a maximum in heterogeneity of morphological data. Finally, the authors 

pointed out that some bioactivities cannot be detected by the cell painting assay and that each 

identified profile type should have a few structurally similar compounds in the cluster to ensure 

the validity of the data.[42] 

In another report, stereoisomers of disubstituted azetidines were analyzed in the cell painting 

assay. It was shown that comparison of the multidimensional profiles of stereoisomers enables 

differentiation in biological activity and modes of action arising exclusively from alternative 

configurations of stereoisomeric azetidines.[43] Although this analysis highlights the power of 

morphological profiling as realized in the cell painting assay to detect structural nuances and 

their distinct effect on morphological changes, the full potential of this multiplexed assay was 

not yet entirely exploited as for example target identification efforts by means of cell painting 

data analysis and guidance remains an unaddressed challenge.  
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In the context of pseudo NPs, unbiased morphological profiling has the great potential to 

identify bioactivity in general and in “real-time”.[44] As novel compounds are synthesized with 

yet unknown biological activity an unbiased cell-based assay monitoring changes in cell 

morphology increases the chances to detect perturbing compounds which can then be prioritized 

for subsequent targeted assays. In addition, morphological profiles of pseudo NPs can be 

compared to reference compounds for mechanism-of-action hypothesis generation and 

compared among each other to assess biological performance diversity and general trends in 

structure-phenotype-relationship (SPR).  
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2. Aim of the Thesis 

NP-inspired compound collections derived from BIOS, CtD or NP-fragments are in general 

enriched with biological relevant chemical matter as they exploit nature´s privileged structures 

which were selected over millions of years through evolutionary pressure.[11-13] Although such 

NP-inspired compound collections deliver enhanced hit rates in forward chemical genetics 

screens, they are burdened with some limitations. To overcome these limitations, it was 

envisioned merging the concepts of BIOS with those of NP-fragments to define and validate a 

novel design principal for de novo small molecule probe and drug discovery termed pseudo 

NPs.    

With preliminary reports on the design and concept of pseudo NPs already published[26, 29], the 

aim of this thesis is to expand the strategy on different NP-fragment classes and to verify its 

applicability for the discovery of potential new tools in chemical biology and drug discovery.  

In a first step, suitable NP-fragments for recombination will be identified and the chemotypes 

composing the library will be designed according to accessible reactions. Next, the feasibility 

of synthetic routes will be evaluated and optimized to allow a highly modular synthesis of the 

pseudo NPs by fast and diverse combination of various NP-fragments. Subsequently, the 

synthesized pseudo NP library will be evaluated with cheminformatic tools to visualize the 

covered chemical space. 

As pseudo NPs aim for a privileged exploration of yet undefined NP-like chemical space, there 

is an inevitable need for an appropriate biological assay to capture a wide range of biological 

space. Hence, the synthesized pseudo NP library will be subjected for morphological profiling 

in a cell painting assay and subsequent investigation of the relation between molecular structure 

and phenotype should disclose potential biological activity as well as a hypothesis for mode of 

action. 

Insights from the morphological profiling will be translated to targeted cell-based assays for 

validation of the derived target hypothesis to ultimately verify pseudo NPs as a reliable and 

versatile design principle for the discovery of entirely novel tool compounds for chemical 

biology and drug discovery.  
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3. Results and Discussion 

3.1. Design of the Pyrano-Furo-Pyridone Library  

Following the guidelines for the design of pseudo NPs as described in 1.1.5., it was envisioned 

to combine 2-pyridones with dihydropyrans (DHPs). The 2-pyridone scaffold is part of 

numerous NP-structures with diverse biological activities including the pyridone alkaloid 

camptothecin which is a topoisomerase I targeting anti-cancer drug[45], and apiosporamide 

which is an antifungal NP[46]. DHPs represent a commonly found substructure of various classes 

of biologically relevant NPs such as the dihydropyranone-based flavonoid pinocembrin and the 

iridoid catalpol which are endowed with antioxidant[47] and neuritogenic activity[48], 

respectively (Scheme 1). Out of the six connection types described in Table 1 (see 1.1.5.), 2-

pyridone and DHP fragments can be combined theoretically in three different ways without 

changing oxidation states or introducing odd bond angles. These are simple connection through 

one bond, fragment fusion edge by edge or combination by a bipodal connection (Scheme 1). 

 

Scheme 1. NPs containing 2-pyridone or dihydropyran fragments and their potential synthetic recombination. 
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To assess if and which combinations of 2-pyridones and DHPs already exist in nature, all 

permutations of the combinations of N-methyl-2-pyridone with dihydropyrane (DHP) or 

tetrahydropyrane (THP) in a monopodal, bipodal or edge-on connection type were analyzed. 

Therefore, a substructure search for the respective combinations was carried out in the DNP[49] 

(Version 27.2, Scheme 2). Altogether 121 natural products containing examples for 

combinations between N-methyl-2-pyridone with DHPs and N-methyl-2-pyridone with THPs 

were found. The DNP Version 27.2 has approximately a total of 40 000 entries, giving a 

coverage of 0.3% of the reported NP chemical space by the shown combinations. This 

substructure search confirmed that combinations of 2-pyridones with DHPs or THPs in 

monopodal connection or edge fusion are rarely found in NPs while a bipodal connection of the 

two fragments is not observed in nature. 

 

Scheme 2. Combinations of N-methyl-2-pyridone with THP or DHP for which NP examples were found in DNP.  

 

A bipodal connection offers the opportunity to incorporate multiple stereocenters upon 

fragment fusion as well as a third NP-fragment. Systematic browsing of the Scifinder database 

for a suitable bipodal connection between a 2-pyridone and DHP fragment (see the 

Experimental Part 5.2.) revealed that Bartlett et al. reported molecules with general scaffold A 

from a combination of 2-pyrones (1) and a few 2-pyridones (2) with difunctionalized DHPs (3) 

(Scheme 3). With two stereocenters being generated through incorporation of a common 

dihydrofuran NP-subunit[50], scaffold A comprises all desired features for a bipodal connection. 

It was envisioned to employ this strategy for a variety of 2-pyridones terming this novel pseudo 

NP class eventually pyrano-furo-pyridones (PFPs).  
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Scheme 3. General scaffold A is accessible through a bipodal recombination strategy of 2-pyridones and DHPs.  

 

General scaffold A was selected as an initial model for the design of the PFP pseudo NP 

compound library. Further literature searches revealed that depending on the functionalization 

of the DHP building block and the applied catalyst two additional attachment point isomers (B 

and C) can be accessed in which the oxygen of the DHP subunit is shifted around the six-

membered pyran ring.[51] It was envisioned to synthesize a pseudo NP library of various 

derivatives of scaffolds A-C (Scheme 4). 

 

Scheme 4. Design of the pyrano-furo-pyridone (PFP) pseudo NP library from 2-pyridones and DHPs. 

 

3.2. Synthesis Strategy 

Besides the advantageous features of a bipodal connection, scaffolds A-C were also selected 

due to their shared or closely related building blocks, allowing a highly modular synthetic 

approach. Scaffold A is generated by a palladium-catalyzed allylic alkylation cascade (Pd-

AAC) from bis-nucleophilic 4-hydroxy-2-pyridones (2) and bis-electrophilic 3,6-dihydro-2H-
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pyrans (3, DHPs) carrying an allylic carbonate and an anomeric siloxy leaving group. This 

allows the regioselective and stereoconvergent preparation of cis-fused furo[3,2-c]pyridones 

(Scheme 5, general scaffold A).[50] The synthesis of B employs 4-hydroxy-2-pyridones as bis-

nucleophiles (2), as well. In contrast, the bis-electrophile here is a dihydropyranone (4, also 

abbreviated as DHP) equipped with an anomeric acetate leaving group and a Michael acceptor 

functionality. Under palladium-catalyzed conditions, a two-step reaction sequence occurs 

consisting of initial allylic alkylation and subsequent intramolecular oxa-Michael-cyclization 

to construct cis-fused furo[3,2-b]pyridones (Scheme 5, general scaffold B).[51] Using 

stoichiometric amounts of quinine instead of a palladium catalyst causes an inversion of 

reactivity and therefore a change in the reaction sequence. In this case initial diastereoselective 

Michael addition followed by an intramolecular transacetalization results in cis-fused furo[2,3-

b]pyridones (Scheme 5, general scaffold C).[51]  

 

Scheme 5. General synthetic strategy for the preparation of pyrano-furo-pyridone scaffolds A, B and C. 

 

All three reaction routes are based on the utilization of a 4-hydroxy-2-pyridone as a bis-

nucloephile and DHPs with varying functional groups as bis-electrophiles. Hence, by adjusting 

the appropriate catalytic system and/or conditions a small number of pyridones and DHPs can 

lead to various combinations of the two fragments allowing the expedient exploration of 

chemical space around scaffolds A, B and C.  
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3.3. Synthesis of Functionalized Precursors 

3.3.1. Synthesis of 2-Pyridones 

2-Pyrones are known to react with primary amines to give N-substituted 2-pyridones.[52] This 

well-established method was employed to rapidly introduce a high diversity of substituents on 

the pyridone fragment (2) by treatment of 4-hydroxy-6-methyl-pyrone (1a) with the respective 

primary amines (Scheme 6). N-substitution ranged from simple hydrogen (2a), methyl (2b) and 

isopentyl (2d) or (hetero)-alkyl rings (2c, 2e, 2f) to benzyl (2g), substituted benzyl groups (2h-

k) and heteroaryl groups (2l-p). In addition, variation of the linker length between pyridone and 

aryl- or heteroaryl groups was investigated by introduction of a second methylene group (2s, 

2t) or exclusion of a linker (2q, 2r). Furthermore, some NP-derived pyrones and pyridones 

were commercially available (1b and 2u-za). 4-Hydroxy-2-pyridones can be regarded as the 

enol form of cyclic 1,3-dicarbonyl bis-nucleophiles with a nucleophilic position at C3 and at 

the phenolic oxygen. 
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Scheme 6. Synthesis of various 4-hydroxy-2-pyridones (2). 
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3.3.2. Synthesis of Dihydropyrans 

The key reaction to build up the DHP core scaffold was discovered by Achmatowizc et al. and 

consists of treating furfuryl alcohol substrates with an appropriate oxidant.[53] For the synthesis 

of difunctionalized DHPs, an established protocol was used applying meta-

chloroperoxybenzoic acid (mCPBA) as an oxidant for the initial Achmatowizc rearrangement. 

Subsequent protection of the anomeric alcohol with tert-butyldimethylsilyl chloride (TBSCl), 

diastereoselective substrate-controlled Luche-reduction of the keto group and transformation to 

corresponding carbonates yielded bis-functionalized DHPs.[50] Following this route, C6-

unsubstituted difunctionalized bis-electrophilic DHP 3a and C6-methylated DHP 3b were 

synthesized on a multi gram scale with overall yields of 23% and 10%, respectively (Scheme 

7). The rather low yields can be attributed to the use of excessive amounts of mCPBA in the 

first step which generates meta-chlorobenzoic acid as a by-product. This and unreacted mCPBA 

was laborious to remove from the reaction mixture requiring multiple washing and 

chromatography steps even in subsequent reactions ultimately resulting in a high loss of desired 

products.  

 

Scheme 7. Synthesis of bis-funcitionalized DHPs 3a and 3b from furyl alcohols.  
[a] n.d.: product was used directly in next step without isolation. 

 

Alternative reaction conditions for the Achmatowicz rearrangement were recently published by 

Plutschack et al.[54]. The authors demonstrated that various furfuryl derivatives can be 

transformed to their corresponding dihydropyranones in a photo-redox catalyzed 

transformation employing only 0.1 mol% of Ru(bpy)3Cl2 • 6H2O as the photocatalyst and 
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almost equimolar amounts of Na2S2O8 as an oxidant for the excited state of the photocatalyst. 

The robustness of the reaction and good water solubility of formed by-products was 

encouraging to develop a batch photo reactor and to investigate the reported conditions.  

The transformation of (±)-1-(2-furyl)ethanol (5b) to 6-hydroxy-2-methyl-2H-pyran-3(6H)-one 

(6b) was chosen as a model reaction for the establishment of a batch photo reactor (Table 2). 

Results from the first-generation reactor (see the Experimental Part 5.1.1.) were promising 

(Table 2, entry 1) as the product could be isolated in 72% yield and with very high purity after 

aqueous work-up. Notably, temperature control between 20 and 25 °C was crucial to avoid 

formation of orange and black precipitants at the vessel walls and an associated decrease in 

yield (entry 2 and 3). With increasing scale, the photo reactor was slightly modified to the 

second generation (see the Experimental Part 5.1.1.) allowing a larger reaction volume and 

appropriate temperature maintenance around 24 °C by compressed air flow over an isopropanol 

bath (entry 4). Eventually, the reaction could be performed on a multigram scale giving the 

desired product in 67% yield after four hours and in high purity after aqueous work-up (entry 

5).    

 

Entry Scale, Conc. Temp., Time,  

Set-up 

Yield[a], Notes 

1 1.00 mmol, 0.25 M rt, 2 h,  

1st reactor 

72%, high purity after aqueous work-up 

2 5.00 mmol, 0.25 M 30 °C, 6 h,  

1st reactor 

39%, orange precipitate formed at vessel 

wall 

3 15.0 mmol, 0.5 M > 30 °C, 3 h,  

1st reactor 

37%, orange and black precipitate formed at 

vessel wall 

4 15.0 mmol, 0.25 M 24 °C, 4 h, 

2nd reactor 

49%, high purity after aqueous work-up 

5 44.6 mmol, 0.25 M 24 °C, 4 h, 

2nd reactor 

67%, high purity after aqueous work-up 

Table 2. Evaluation of a batch photo reactor for photo-catalyzed Achmatowicz rearrangement. 
[a] isolated yield 
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(±) 1-(2-Furyl)ethanol (5b) and 2-(furan-2-yl)propan-2-ol (5c) were transformed by photo-

catalyzed Achmatowicz reaction to the respective dihydropyranone derivatives 6b-c and 

subsequently functionalized according to the previously described reaction sequence (Scheme 

8). The high purity of Achmatowicz rearrangement products allowed following reactions 

without necessity for chromatographic purification, except after the last step in which 

diastereomers had to be separated chromatographically. Hence, the yield for C6-methylated 

DHP 3b could be increased from 10 to 44% over four steps and C6-dimethylated DHP 3c could 

be synthesized in 33% yield over five steps.  

 

Scheme 8. Synthesis of bis-functionalized DHPs 3b and 3c employing a photo-catalyzed Achmatowicz 
rearrangement. 

 

In analogy, bis-electrophilic DHPs 4 with an anomeric acetate group were synthesized (Scheme 

9). DHP 4a and 4b could be synthesized from readily available furyl alcohol derivatives in two 

steps with 36% and 60% overall yield, respectively. In a three-step synthesis, DHPs 4c and 4d 

were synthesized through photo-catalyzed Achmatowicz rearrangement of corresponding furyl 

alcohols and subsequent acetate protection of the anomeric alcohol in 28% and 74% overall 

yield, respectively.   

 

Scheme 9. Synthesis of acetylated DHPs 4. 
[a] Achmatowicz reaction was carried out with mCPBA. 
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3.4. Synthesis of Pyrano-Furo-Pyridones 

Within the concept of pseudo NPs, the de novo generated molecular architectures have no 

predecessors. Thus, a link between the absolute configuration of a pseudo NP and its potential 

biological activity is unknown. To cover more accessible configurational space, the pyrano-

furo-pyridone library was synthesized in racemic fashion.  

 

3.4.1. Synthesis of General Scaffold A Isomers 

Initially, literature known fusion of DHP 3a with 4-hydroxy-6-methyl-2-pyrone (1a) by Pd-

AAC was carried out as a  model reaction to furnish pyrano-furo-pyrone 9a as a representative 

structure of isomers A (Table 3, entry 1).[50] A significant point to evaluate was the scalability 

of Pd-AAC and its applicability with pyridones as bis-nucleophiles. Hence, the model reaction 

was scaled up by a factor of two leading to a decrease in yield from 55% to 18% (entry 2). 

Increased concentration, prolongation of reaction time, increase of catalyst loading to 10 mol% 

or addition of triethyl amine (NEt3) left the yield at rather low levels between 21% and 28% 

(entries 3-5). On a 0.70 mmol scale a satisfying yield of 81% could only be achieved with high 

catalyst loadings of 20 mol% in toluene at a compound concentration of 0.05 M (entry 6). 

Noteworthy, for entry 6 the procedure was slightly modified by adding the first 10 mol% of 

palladium catalyst in the beginning of the reaction and another 10 mol% after six hours reaction 

time. This indicated that Pd(PPh3)4 might degrade over the course of reaction and thereby 

leading to lower yields for entries 1-5 in Table 3.  

With the stability of the catalyst being crucial for high yields, in a following optimization cycle 

the focus was set on the screening of various catalysts and ligands (entries 7-13). 

Allylpaladium(II) chloride dimer in combination with 2-dicyclohexylphosphino-2′,4′,6′-

triisopropylbiphenyl (XPhos) gave 60% yield on 0.35 mmol scale but the yield dropped to 10% 

on a 0.70 mmol scale (entries 7 and 8). Second generation Xphos palladium precatalyst (Pd-

Xphos G2) and [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II) (Pd(dppf)Cl2) 

were also not suitable for the reaction (entries 9 and 10). Interestingly, with tris(tris(3,5-

bis(trifluoromethyl)phenyl)phosphine)palladium(0) (abbreviated as superstable Pd(0) 

catalyst[55]) the product could be obtained after 14 days at room temperature in THF with 95% 

yield (entry 11). The reaction time could be drastically reduced to one hour by irradiating the 

reaction mixture in the microwave (MW) at 100 °C without noticeable influence on the yield 

(entry 12). Furthermore, the superior catalytic activity of superstable Pd(0) was demonstrated 
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by giving similar results with a lower catalyst loading of 5 mol% and on increased scale (entry 

13). Noteworthy, the application of superstable Pd(0) in palladium catalyzed allylic alkylation 

reactions was not reported before in the literature.  

 

Entry Scale Conc. Solvent Additive Time, 

Temp. 

Cat. Yield[a] 

1 0.35 

mmol 

0.1 M Toluene,  

 

/ 24 h, rt Pd(PPh3)4  

(5 mol%) 

55% 

2 0.70 

mmol 

0.1 M Toluene / 24 h, rt Pd(PPh3)4  

(5 mol%) 

18% 

3 0.70 

mmol 

0.1 M Toluene,  

 

NEt3 

(1 eq.) 

48 h, rt 10 mol% 

Pd(PPh3)4 

25% 

4 0.70 

mmol 

0.5 M Toluene / 24 h, rt Pd(PPh3)4  

(5 mol%) 

28% 

5 0.70 

mmol 

0.5 M Toluene  

 

NEt3 

(1 eq.) 

24 h, rt Pd(PPh3)4  

(5 mol%))4 

21% 

6 0.70 

mmol 

0.05 M Toluene / 24 h, rt Pd(PPh3)4  

(20 mol%)[b] 

81% 

7 0.35 

mmol 

0.05 M Toluene Cs2CO3 

(1.1 eq.) 

24 h, rt [PdCl(allyl)]2  

(5 mol%), Xphos 

(15 mol%) 

60% 

8 0.70 

mmol 

0.05 M Toluene Cs2CO3 

(1.1 eq.) 

24 h, rt [PdCl(allyl)]2  

(5 mol%), Xphos 

(15 mol%) 

10% 

9 0.35 

mmol 

0.05 M Toluene CaCO3 

(1.1 eq.) 

24 h, rt Pd-Xphos G2  

(5 mol%) 

traces 

10 0.35 

mmol 

0.05 M Toluene CaCO3 

(1.1 eq.) 

24 h, rt Pd(dppf)Cl2  

(5 mol%) 

10% 

11 0.35 

mmol 

0.01 M THF / 14 d, rt Superstable Pd(0) 

(20 mol%) 

95% 
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12 0.35 

mmol 

0.01 M THF / 1 h,  

100 °C 

MW 

Superstable Pd(0) 

(20 mol%) 

94% 

13 0.70 

mmol 

0.01 M THF / 1 h,  

100 °C 

MW 

Superstable Pd(0) 

(5 mol%) 

86% 

Table 3. Optimization studies on Pd-AAC for the synthesis of 9a. 
[a] isolated yield 
[b] Pd-catalyst was added in two portions at two distinct time points 

 

The generated tricyclic scaffold 9a was found to be unstable under aqueous and/or acidic 

condition due to a Ferrier-rearrangement (Scheme 10).[56] The synthesized furo[3,4-c]pyran is 

a highly reactive glycal in which the 1,3-keto-enolate group of the pyrone substructure serves 

as a leaving group when treated with e.g. DMSO/H2O (4:1) or MeOH, thus leading to a ring 

opening of the dihydrofuran substructure. This hypothesis was further validated by NMR 

experiments in which 9a was dissolved in a mixture of deuterated DMSO/H2O or MeOH, 

respectively. After incubation for 24 hours at room temperature the obtained spectra for the 

treatment with deuterated DMSO/H2O (4:1) showed a distinct shift of peaks suggesting the 

structure of NMR-1 (see Supplemental Spectra S1).  For the deuterated MeOH mixture a 

spectrum with two signal sets was obtained for which all peaks could be assigned to their 

corresponding structure NMR-2a and NMR-2b (see Supplemental Spectra S2). 

 

Scheme 10. NMR-experiments with 9a validate a Ferrier-rearrangement occurring in deuterated DMSO/H2O (4:1) 
or MeOH. 

 

It was hypothesized that reduction of the glycal double bond would prevent Ferrier-

rearrangement. In fact, optimized conditions for a catalytic reduction of 9a with H2 over Pd/C 

in toluene (Table 4, entry 4) gave a ring-fused product 10a which was stable in aqueous 
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medium. As a side product of the reaction, compound 11a was identified by means of NMR 

analysis.   

 

Entry Solvent Time Ratio[a] (10a:11a:9a) 

1 THF 4.5 h 0:1:0 

2 THF 10 min 1.8:1:0 

3 DCM 24 h 3.3:1:4 

4 Toluene 7 h 3:1:0 

Table 4. Optimization of the catalytic heterogenous hydrogenation of 9a. 
[a] determined by analytical HPLC-MS. 
[b] Yield for entry four after preparative HPLC 

 

With the optimized catalytic system in hand, it was proceeded to evaluate 4-hydroxy 2-

pyridones (2) as bis-nucleophiles in Pd-AAC with DHPs. For that purpose, 4-hydroxy-1,6-

dimethylpyridin-2(1H)-one (2b) was reacted with DHP 3a in the presence of superstable Pd(0) 

on a one gram scale to provide the desired product 9c in 66% yield (Scheme 11). For better 

solubility of the 2-pyridone, the solvent was changed from THF to a THF/DMF 3:1 mixture. 

Encouraged by this result, the optimized reaction conditions were then successfully applied for 

diverse Pd-AAC ring-fusions of various 2-pyridones with DHP 3a (Scheme 11). Due to the 

instability of the glycal substructure of pyridone-furo[3,2-c]pyrans, the majority of Pd-AAC 

products 9 were quickly purified by flash chromatography and directly subjected to 

heterogenous hydrogenation giving in total a subset of 16 PFP pseudo NPs 10 and two 2-pyrone 

derivatives (10a and 10b) with general scaffold A. The scope of N-substitution ranged from 

hydrogen, methyl and (hetero)carbocycles to benzyl, substituted benzyl groups and various 

heteroaryl-substituents. Furthermore, tetracyclic PFPs 10b and 10r-t could be synthesized as 

well. Notably, the reduction step for 9n and 9q was not successful and additional Pd-AAC 

products 9 were isolated for 9a, 9c-e and 9g-i.  



3. Results and Discussion 

 

- 32 - 

 

 

Scheme 11. Synthesis of general scaffold A derivatives by Pd-AAC employing various pyridones 2 and DHP 3a. 
1) Yield for the Pd-AAC step. 
2) Yield after the heterogenous reduction over two steps. 
[a] Pd(Ph3)4 was used as a catalyst. 

      

Due to steric and electronic incompatibility of C6-substituted DHP 3b-trans and superstable 

Pd(0) (see 3.4.2.), the catalyst had to be replaced by Pd(Ph3)4 in the Pd-AAC of DHP 3b-trans 
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with various pyridones (2). The resulting eleven examples of PFP pseudo NPs 12 and 13 were 

shown to have a cis-fused bipodal connection with the newly installed methyl group having 

relative trans-relation to the furo-pyrone ring in example 12a by means of a 2D-NOESY 

experiment (Scheme 12, see Supplemental Spectra S3, cross-peaks detected for H12/H10 and 

H10/H9). Notably, when pyridones 2h and 2k were used, cyclic acetal isomers of 12f and 13g 

could be isolated as side products (see also 3.4.2.). In addition, unreduced Pd-AAC products 12 

were isolated for examples 12a and 12d-f. 

 

Scheme 12. Synthesis of general scaffold A derivatives by Pd-AAC employing various pyridones 2 and DHP 3b-
trans. 
1) Yield for the Pd-AAC step. 
2) Yield after the heterogenous reduction over two steps.        

 

The ring-opened isomers 11 and 14 (Scheme 13) represent a monopodal connection between 

2-pyridones and tetrahydropyrans (THPs). Therefore, the side products from heterogenous 

reductions were also isolated, characterized and used in biological testing. The tendency for the 

phenolic ether to be cleaved during heterogenous reduction seems to be more pronounced for 

the C6-methylated DHP derivatives 14, as in total eight compounds could be isolated compared 

to three molecules for the C6-unsubstituted DHP derivatives 11 (Scheme 13).   
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Scheme 13. Isolated monopodal connected side products 11 and 14 after heterogenous reduction of Pd-AAC 
products. Yields are given over two steps. 

 

3.4.2. Allylic Alkylation Cascade vs. Tsuji-Trost-Transacetalization Cascade 

Employing superstable Pd(0) as the catalyst in an attempted Pd-AAC of pyridone 2b and C6-

methylated DHP 3b-trans resulted in a new regioisomeric product 15a incorporating a cyclic 

acetal with cis relation of the methyl group and the cis-fused furo-pyridone residue, as 

determined by 1D- and 2D-NMR (Scheme 14, see Supplemental Spectra S4, cross-peaks 

detected for H12/H8). 
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Scheme 14. Synthesis of an unexpected cyclic acetal isomer 15a from pyridone 2b and DHP 3b-trans employing 
superstable Pd(0). 

 

An explanation for the formation of the observed cyclic acetal regio-isomer is proposed in 

Scheme 15. Initially, a π-allyl palladium complex M4 is formed from superstable Pd(0) and 

DHP 3b-trans. Due to steric repulsion between the large tris(3,5-

bis(trifluoromethyl)phenyl)phosphine ligands on palladium and the C6 methyl of DHP 3b-

trans, combined with the electron withdrawing character of the phosphine ligands, a 

nucleophilic displacement on the opposite site of the π-allyl palladium complex by another 

Pd(0) species is facilitated to generate the isomeric π-allyl palladium complex M5. Such 

displacements have been observed and discussed in the literature before.[57] In the formed M5 

isomer, steric repulsion between the phosphine ligands and the OTBS group is very likely and 

therefore a fast equilibrium between both π-allyl palladium complexes M4 and M5 is suggested. 

However, attack of the soft nucleophilic[58] pyridone 2 at the C3 position of M5 anti to 

palladium and OTBS, is less sterically demanding than attack anti to palladium and next to 

methyl at C5. Therefore, the C3-allylated pyridone intermediate M6 is formed, and an 

irreversible 5-exo-trig oxa-acetalization yields the final Tsuji-Trost transacetalization cascade 

product 15.       
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Scheme 15. Proposed mechanism for the formation of cyclic acetal isomer 15 by a Tsuji-Trost transacetalization 
cascade. 

 

This unexpected reactivity was exploited to generate eight examples of regio-isomeric cyclic 

acetals 15 and five examples of subsequently reduced derivatives 16 (Scheme 16). The core 

scaffold of this substance class resembles general scaffold C in which the methylene-carbonyl 

moiety is replaced by a C-C double bond. Pyridone N-substituents ranged from hydrogen, 

methyl, cyclobutyl to various substituted benzyl groups. Additionally, one tetracyclic example 

15h could be isolated in very low yield as well.  

Notably, for ortho-chloro-benzyl pyridone 2i and thiophenyl substituted pyridone 2l mixtures 

of Pd-AAC products and Tsuji-Trost transacetalization products were formed (Scheme 16, 12i 

+ 15i; 12j + 15j) which were separated by preparative HPLC. Furthermore, pyridones 

containing hetero-atoms in the N-substituents with distinct distance to the pyridone ring gave 

only Pd-AAC products (Scheme 16, 12k-m) in low yields. Hence, the nature of the pyridone 

nucleophile has also an impact on the suggested mechanism for the formation of Tsuji-Trost 

transacetalization products which requires additional investigation.  
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Scheme 16. Synthesis of PFP cyclic acetal isomers 15 and 16 through a superstable Pd(0) catalyzed Tsuji-Trost 
transacetalization cascade. 
1) Yield for the Tsuji-Trost transacetalization cascade step. 
2) Yield after the heterogenous reduction over two steps. 
[a] Pd(Ph3)4 was used as a catalyst.  

 

To further evaluate the effects influencing the outcome of palladium catalyzed fusion of DHP 

3b-trans with bis-nucleophilic pyridones 2 the reaction between DHP 3b-trans and pyridone 

2k was investigated in more detail. Employing superstable Pd(0) as a catalyst, formation of a 

Tsuji-Trost transacetalization product was observed (Table 5, entry 2). In contrast, employing 

Pd(Ph3)4 resulted in the formation of a mixture of Pd-AAC and Tsuji-Trost transacetalization 
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product (entry 1). Hence, bidentate catalysts were screened for the selective formation of the 

Pd-AAC product as it was hypothesized that these could stabilize the initially formed π-allyl 

palladium complex. With bis[1,2-bis(diphenylphosphino)ethane]palladium(0) (Pd(dppe)2) as 

the catalyst only starting material was recovered (entry 3). Nevertheless, employing 2.5 mol% 

allylpalladium(II) chloride dimer ([PdCl(allyl)]2) and 7.5 mol% 

Xantphos in the presence of triethylamine afforded the desired Pd-AAC product 12d in 61% 

yield as the sole product (entry 4).  

 

Entry Solvent Catalyst Additive Time / 

Temp. 

Yield 

12d:15f 

1 Toluene/DMF 

(3:1) 

Pd(PPh3)4  

(15 mol%) 

/ 24 h, rt 13% : 14% 

2 THF/DMF 

(3:1) 

Superstable Pd(0)  

(5 mol%) 

/ 1 h, 100 °C 

MW 

0% : 36% 

3 THF/DMF 

(3:1) 

Pd(dppe)2  

(5 mol%) 

NEt3 (2 eq.) 24 h, rt starting 

material 

4 THF/DMF 

(3:1) 

[PdCl(allyl)]2  

(2.5 mol%) 

Xantphos (7.5 mol%) 

NEt3 (2 eq.) 24 h, rt 61% : 0% 

Table 5. Screening of catalysts and conditions for the selective synthesis of Pd-AAC product 12d.  

 

It is hypothesized that Xanthphos-Pd(0) steers the reaction selectively towards a Pd-AAC[50] 

because of its ability to stabilize the first π-allyl palladium complex M7 and suppress a 

nucleophilic displacement by another Pd(0) species (Scheme 17). Regioselective attack of the 

soft pyridone nucleophile 2 from top[58] at C5 of M7 (opposite to palladium) is then sterically 

and electronically[59] favored, leading to the formation of an allyl-pyridone intermediate M1 

which can undergo a second Tsuji-Trost reaction in a 5-exo-trig cyclization to give 12. 

Noteworthy, attempted Pd-AAC with DHP 3b-cis and C6-dimethylated DHP 3c failed to give 

any product probably due to steric hindrance at C5 (neighbouring methyl-group) and C3 

(neighbouring OTBS-group) in the respective first π-allyl palladium complexes.          
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Scheme 17. Proposed mechanism for the Pd-AAC with DHP 3b-trans and 2-pyridones 2 employing Xanthos-Pd(0). 

 

3.4.3. Derivatization of Isomers A 

The inherent reactivity of the glycal double bond in isomer A was exploited as a chemical 

handle to further explore the area of chemical space occupied by the new pseudo NP class and 

the influence of substituents on the stability. For instance, compound 9a was treated with N-

bromosuccinimide (NBS) and silver nitrate (AgNO3) to brominate the glycal double bond 

regioselectively at C3.[60] Subsequent Suzuki-Miyaura coupling with aryl-boronic acids gave 

the C3 arylated analouges 17b-d (Scheme 18). Reaction of 9a with tert-butyl acrylate in a mild 

palladium-catalyzed oxidative cross coupling[61] yielded exclusively the E-isomer of 17e 

(Scheme 18).  
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Scheme 18. Functionalization of 9a at C3 of the glycal moiety.  

 

Alternatively, compound 9c and 9k were subjected to a Pd(II) catalyzed Heck-type C-

glycosidation with various arylboronic acids (Scheme 19).[62-63] Notably, an isomerization of 

the glycal double bond into the dihydrofuran system was observed. This double bond could 

selectively be reduced with Pd(OH)2 as exemplified for 18a to give product 18h. 

 

Scheme 19. Pd(II) catalyzed Heck-type C-glycosidation of 9c and 9k with arylboronic acids. 
[a] Product after heterogenous reduction with 10 wt% Pd(OH)2. 
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For this reaction a proposed mechanism is shown in Scheme 20. In the initial step, a 

transmetalation between Pd(OAc)2 and the arylboronic acid occurs to generate an aryl-PdII-

OAc species. This undergoes a syn-insertion (carbopalladation) into the glycal double bond to 

give the σ-complex I M8 from which a subsequent β-hydride elimination occurs to afford vinyl 

ether M9. A β-heteroatom elimination side reaction as described by Ramnauth et al.[63] was not 

observed under these conditions. M9 is likely to coordinate to a H-PdII-OAc species and then 

undergo a 1,2 migratory insertion to form the second σ-complex II M11. Finally, a second β-

hydride elimination yields the observed C-glycosidation product 18 with the double bond 

isomerized into the furan ring system. It is proposed that the last step is the driving force of the 

reaction as it leads to aromatization of the dihydrofuran to a furan moiety. The liberated H-PdII-

OAc species is likely to undergo reductive elimination to form acetic acid and uncoordinated 

Pd(0), thereby aborting a catalytic cycle. Furthermore, the necessity of a high palladium loading 

of 0.5 to 1 equivalent indicated rather a stochiometric consumption of palladium acetate than a 

catalytic activity. 

 

Scheme 20. Proposed mechanism for the Pd(II) catalyzed Heck-type C-glycosidation of glycal PFPs and 
isomerization of the double bond. 
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To prove this hypothesis and close the catalytic cycle, the C-glycosidation of 9c and 

phenylboronic acid was performed under oxidative conditions employing an excess of 

Cu(OAc)2 and oxygen as reported by Xiong et al. (Scheme 21).[62] This allowed a reduction of 

the palladium acetate loading to 10 mol%, since under oxidative conditions and in the presence 

of Cu(OAc)2 the PdII(OAc)2 is regenerated from Pd(0) and thereby the catalytic cycle is closed 

(Scheme 20, indicated in grey).  

 

Scheme 21. Pd(II) catalyzed C-glycosidation of glycal PFPs under oxidative conditions.  

 

Another functionalization of isomer A transforming the tricyclic 6-5-6 to a 6-5-5 ring 

arrangement was reported by Bartlett et al. for the corresponding pyrones.[50] First a 

hydrobromination of the glycal double bond was carried out followed by a reductive ring 

contraction initiated by sodium borohydride reduction of the acetal carbon for a total of seven 

examples (Scheme 22). The scope included literature known pyrone example 20a, N-

methylated and variously N-arylated pyridones (20b-f) and one tetracyclic example 20g. The 

resulting primary alcohol methylene moiety was determined to be trans to the cis-fused furo-

pyridone residue by means of 2D-NOESY (Scheme 22, see Supplemental Spectra S5, cross-

peaks detected for H12/H8).  
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Scheme 22. Synthesis of 6-5-5 ring arrangement isomers of general scaffold A. Yields are given over two steps. 

 

3.4.4. Synthesis of General Scaffold B Isomers 

The synthesis of isomers of general scaffold B was carried out by a Tsuji-Trost oxa-Michael 

cascade reaction of pyridones 2 and DHPs 4. Mechanistically, this reaction was proposed to 

proceed through an initial oxidative addition of palladium to the allylic acetate moiety of 4 to 

generate the π-allyl-Pd-complex M12. Subsequent SN2-like substitution at C2 of M12 with a 

soft 1,3-dicarbonyl nucleophile[58] 2 and a final 5-exo-trig oxa-Michael cyclization of 

intermediate M2 affords the Tsuji-Trost oxa-Michael products 20-24 (Scheme 23).[51]  
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Scheme 23. Proposed mechanism for the formation of Tsuji-Trost oxa-Michael cascade products 20-24. 

 

According to a literature procedure[51] for pyrones as bis-nucleophiles (Scheme 24, example 

22k), the synthesis of PFP isomers B was achieved in a Tsuji-Trost oxa-Michael cascade for a 

total of 27 examples by reaction of various 4-hydroxy-2-pyridones (2) with acetylated DHPs 

4a-c at room temperature and under palladium catalysis in a THF/DMF 3:1 mixture and one 

equivalent of triethyl amine as an additive (Scheme 24). All three DHP substrates 4a-c could 

be fused with pyridones carrying various N-substituents and functional groups demonstrating 

the high robustness of this cascade reaction. For instance, methoxy and halogen substituents in 

various positions on benzyl- or heteroaryl-substituents could be installed. On average, 

employing DHP 4a in the Tsuji-Trost oxa-Michael cascade with various pyridones resulted in 

higher yields compared to its C6-substituted derivates 4b and 4c.    
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Scheme 24. Synthesis of derivatives of general scaffold B by Tsuji-Trost oxa-Michael cascade employing various 
pyridones 2 and DHPs 4a-c. 
[a] Allyl-Pd(II)-chloride dimer + Xanthphos was used as a catalyst. 
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Employing DHP 4d in the Tsuji-Trost oxa-Michael cascade, a total of ten tetra- and penta-

cyclic examples for spiro-N-Boc-piperidine PFPs could be synthesized (Scheme 25). For the 

selective removal of the Boc protecting group, the pseudo NPs were treated with a mixture of 

trimethylsilyl trifluoromethanesulfonate (TMSOTf) and 2,6-lutidine in DCM to avoid a ring-

opening side reaction.[64] In general, the deprotected secondary amines were purified by 

preparative HPLC applying acetonitrile/water mixtures with 0.1% trifluoroacetic acid (TFA) as 

an additive and therefore the products were isolated as the corresponding TFA salts. 

 

Scheme 25. Synthesis of Tsuji-Trost oxa-Michael cascade products employing various pyridones 2 and DHP 4d. 
1) Yield for the Tsuji-Trost oxa-Michael cascade step. 
2) Yield after the Boc-deprotection over two steps. 

 

When using HCl for removal of the Boc-group, a side reaction occured in which the phenolic 

ether is cleaved and a new glycal moiety is installed in the pyranone substructure. As the 

resulting connection-type represents a monopodal link between the pyridone and the DHP 
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fragments, ten ring-opened products were also isolated, characterized and used in biological 

testing (Scheme 26). 

 

Scheme 26. Isolated monopodal connected side products after treatment with HCl of Tsuji-Trost oxa-Michael 
products. Yields are given over two steps. 
[a] Products were isolated as TFA salts when purified by prep. HPLC. 

 

3.4.5. Synthesis of General Scaffold C Isomers 

A Michael-transacetalization cascade reaction between pyridones 2 and DHPs 4 was employed 

to synthesize isomers of general scaffold C. The mechanism is suggested to commence with an 

initial diastereoselective Michael addition of 2 opposite to the acetoxy group of 4, followed by 

a 5-exo-tet intramolecular SN2-like transacetalization of M3 to afford the final cascade products 

26-30. According to the literature, quinine was speculated to mediate both steps in a dual 

activation mode through double hydrogen bonding interactions with the tertiary amine 

abstracting a proton from the phenolic nucleophile of M3 and with the secondary alcohol 

activating the Michael acceptor in 4 as well as the acetate leaving group of M3, respectively 

(Scheme 27).[51] Noteworthy, although quinine is chiral, asymmetric induction was not reported 

by the inventors of this cascade reaction.[51]  
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Scheme 27. Proposed mechanism for the formation of Michael transacetalization cascade products 26-30. 

 

According to the literature protocol[51] for pyrones as bis-nucleophiles, the synthesis of PFP 

isomers C was achieved in a Michael transacetalization cascade for a total of twelve examples 

by reaction of various pyridones 2 with acetylated DHPs 4a, 4b and 4c at 60 °C in the presence 

of stoichiometric amounts of quinine (Scheme 28). This allowed the installation of methyl, 

benzyl and substituted benzyl N-substituents on the pyridone subunit when employing DHP 4a 

and 4c. C6-monosubstituted DHP 4b was employed in only one example because the tertiary 

amine of quinine can act as an organic base. Under reflux conditions this might lead to base-

catalyzed epimerization of the α-carbon next to the acetal in the dihydropyranone moiety of the 

ring fused products which was observed for 27a and reported by Yu et al. for other examples.[51] 

Hence, the use of C6-monosubstituted DHP 4b was avoided in further reactions of this kind.  

Additionally, one pyrone derivative 26e was synthesized from 1a and DHP 4a. 
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Scheme 28. Synthesis of derivatives of general scaffold C by Michael-transacetalization cascade employing 
various pyridones 2 and DHPs 4a-c. 
[a] Observed by NMR. 

  

Employing the N-Boc protected spiro-piperidine DHP 4d, the fused tetra- and penta-cyclic 

pseudo NPs of general structure C were treated with TFA or HCl to remove the Boc protecting 

group as demonstrated for 15 examples (Scheme 29). For these regioisomers, no acid-mediated 

ring-opening was observed. The resulting free amines could be easily isolated through basic 

aqueous work-up and the majority of products did not require any further chromatographic 

purification. 
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Scheme 29. Synthesis of Michael-transacetalization cascade products employing various pyridones 2 and DHP 
4d. 
1) Yield for the Michael-transacetalization cascade step. 
2) Yield after the Boc-deprotection over two steps. 
[a] Isolated as TFA-salt after purification with prep. HPLC. 

 

3.4.6. Summary of the PFP Synthesis 

The synthesis of the PFP pseudo NP library commenced with 4-hydroxy-6-methyl-2-pyridones 

(2), which were obtained from 4-hydroxy-6-methyl-2-pyrone (1a) by treatment with various 

primary amines[65]. Furyl alcohols were subjected to an Achmatowicz rearrangement[53] to 

establish the six-membered 3,6-dihydro-2H-pyran core scaffolds of functionalized DHPs 3 and 
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4. Bis-functionalized DHP substrates 3 were derived from subsequent protection of anomeric 

alcohols with TBSCl, diastereoselective substrate-controlled Luche-reduction of the keto group 

and protection of the resulting secondary alcohols as carbonates. Alternatively, O-acetylation 

at the anomeric oxygen of Achmatowicz rearrangement products without reduction of the 

remaining ketone afforded mono-functionalized DHPs 4.  

As summarized in Scheme 30, a palladium-catalyzed allylic alkylation cascade (Pd-AAC) was 

employed fusing bis-electrophilic difunctionalized DHPs 3a and 3b with bis-nucleophilic 4-

hydroxy-2-pyridones 2 to obtain PFPs 9 and 12 with general scaffold A. Due to a Ferrier-like 

rearrangement of the glycal moiety instability for some examples of Pd-AAC products was 

observed. The instability was suppressed by heterogenous reduction of the glycal double bond 

(Scheme 30, 10 and 13) for which ring-opened monopodal side products were observed 

(Scheme 30, 11 and 14). In addition, direct Heck-type coupling with tert-butyl acrylate or 

regioselective bromination of the glycal double-bond at C3 and subsequent Suzuki-Miyaura 

coupling with phenylboronic acids was performed (Scheme 30, 17). Alternatively, direct Pd(II) 

catalyzed C-glycosidation of Pd-AAC products with aryl boronic acids and subsequent 

isomerization of the pyran double bond into the dihydrofuran ring yielded compounds 18. In 

addition, hydrobromination of the glycal moiety and subsequent reductive ring contraction 

transformed the 6-5-6 ring arrangement into a 6-5-5 system (Scheme 30, 19). An unprecedented 

Tsuji-Trost transacetalization cascade was observed employing C6-methylated DHP 3b as a 

bis-electrophile when superstable Pd(0) was used as a catalyst. The formed cyclic acetals 15 

with general scaffold C could be further reduced to increase the sp3-fraction in the molecules 

(Scheme 30, 16). 
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Scheme 30. Synthesis summary for the recombination of 4-Hydroxy-2-pyridones 2 (blue) with DHPs 3a and 3b 
(red) and subsequent reactions. 

 

Additional PFPs with general scaffold C (Scheme 31, 26-30) were synthesized by a quinine-

mediated Michael addition transacetalization cascade reaction employing bis-nucleophilic 4-

hydroxy-2-pyridones 2 and acetylated DHP bis-electrophiles 4a-d. The corresponding regio-

isomeric general scaffold B (Scheme 31, 20-24) with inversed attachment points between the 
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pyran fragment and the furopyridone fragment was synthesized by a Tsuji-Trost oxa-Michael 

cascade. Monopodal connection isomers of B were isolated when strong acidic conditions were 

applied for the Boc deprotection in some examples (Scheme 31, 25).  

 

Scheme 31. Synthesis summary for the recombination of 4-Hydroxy-2-pyridones 2 (blue) with DHPs 4a-d (red). 

 

In total, a library of 162 (+/-)-PFPs with 54 examples for general scaffold A (light blue), 42 

examples for general scaffold B (dark blue), 44 examples for general scaffold C (green) and 22 

examples for monopodal isomers (grey) was synthesized and subjected for biological testing 

(Figure 8). In the majority of the cases the yields for the transformations were in the 

preparatively viable range. All compounds were purified chromatographically if required 

before they were subjected to biological investigations. 
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Figure 8. Summary of the library consisting of in total 162 PFP pseudo NPs with general scaffolds A, B, C or 
monopodal connection type. 

 

3.5. Cheminformatic Analysis 

The synthesized PFP pseudo NP compound collection was subjected for cheminformatic 

analysis to evaluate and visualize the covered chemical space. Therefore, analysis of the 

distribution of Natural-Product-likeness (NP-likeness) scores, plotting of molecular weight 

against hydrophobicity and evaluation of molecular shape diversity was carried out.  

 

3.5.1. Natural Product Likeness Scores 

The calculation of the Natural Product Likeness Scores was performed by Dr. Axel Pahl 

Introduced by Ertl et al., the NP-likeness score is an overall similarity comparison of an 

analyzed compound collection with the currently known NP structural space.[66] The algorithm 

deconstructs the molecular structure of a compound of interest into its underlying fragments 

and summarizes the occurrence of these fragments in NPs compared to their occurrence in 

commercially available small molecules.  The score ranges from -3 to 5, with a higher score 

indicating higher NP-likeness.  
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Figure 9. NP-likeness score of PFPs (blue) compared to molecules from Drugbank (orange) and NPs represented 
in ChEMBL (green curve). 

 

The NP-likeness score of bipodal fused PFPs was evaluated to analyze and compare the 

occupied chemical space to NP-scores calculated for molecules listed in DrugBank, which 

represent marketed and experimental drugs[67], and the NP set in the ChEMBL database (Figure 

9). The PFP NP-likeness scores range in an area of the graph which is only sparsely covered by 

NPs. Although this seems counter intuitive on the first glance, this comparison reflects that the 

novel fragment combinations realized in these scaffolds do not exist in NPs. In contrast, the 

majority of the PFP NP-likeness scores show substantial overlap with NP-scores calculated for 

drugs and closely related molecules, indicating that these compounds may be endowed with 

favorable physicochemical properties endorsing their potential application in drug discovery 

programs. 

 

3.5.2. Analysis According to Lipinski 

Lipinski et al. evaluated a compound data set registered for clinical phase II for molecular 

properties enabling good solubility and cell permeability of an orally active drug.[68] In a 

statistical analysis four parameters were identified as crucial and it was stated that absorption 

and permeation are more likely to be poor if the molecule has more than five H-bond donors, 

the molecular weight (MW) is over 500, the calculated octanol/water partition coefficient (clog 

P) is over 5 or if there are more than 10 H-bond acceptors present. As the analyzed data set had 

the least violation of this so-called rule of 5 in the combination of log P and MW (~1%), the 

assessment of these parameters in a scatter plot has become a rule of thumb to rapidly visualize 

drug likeness and to evaluate compound collections for drug and probe discovery.   
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Figure 10. Estimated hydrophobicity (ALogP) vs molecular weight (MW) scatter plot of PFPs.  

 

Using the open-source software “Lead-likeness and Molecular Analysis” (LLAMA), the 

estimated hydrophobicity (ALogP) was mapped against the respective MW (Figure 10).[69] 158 

out of 162 PFP pseudo NPs (98%) fall into the Lipinski’s Rule-of-Five space[68] exhibiting an 

ALogP < 5 and MW < 500 Da. Noteworthy, 61% of the compounds (99 out of 162 PFPs) also 

fall into lead-like space which is defined as a preferable fraction of chemical space where 

ALogP < 3 and MW < 350 Da.[70] The low lipophilicity and molecular weight is beneficial in a 

small molecule drug discovery project as potential hits tend to increase in these values during 

lead optimization thus running into violations of Lipink´s rule of 5 and potentially poor ADME 

behavior in later stages of a project.[68, 70] 

 

3.5.3. Assessment of Molecular Shape Diversity 

Principal moments of inertia (PMI) plots[27] are based on a computational method for molecular 

shape assessment using normalized ratios of principal moments of inertia plotted into two-

dimensional triangular graphs. The LLAMA algorithm[69] used for the generation of the PMI 

coordinates randomly determines several 3D conformers of a given compound and minimizes 

their energy. For the lowest-energy conformer the moments of inertia are calculated in the x, y 

and z axes and subsequently the PMI plot coordinates I1 are determined by dividing inertia(x) 

by inertia(z). The I2 coordinates are calculated by dividing inertia(y) by inertia(z). The data is 

projected in the form of a triangular plot in which the vertices are defined by rod, disk and 

spherical shapes. Highly three-dimensional molecules will be represented in the upper right 

corner ([I1, I2] = [1, 1]) while disc-like shapes are found at [0.5, 0.5] and rod-like shapes will 
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be projected near [0, 1]. Hence, PMI plots allow a rapid assessment and visualization of 

molecular shape diversity associated with a given compound set 

 
Figure 11. Principal moments of inertia (PMI) plot for PFPs. 

 

Analysis of the three-dimensional character of the PFP compound collection and visualization 

of the shape distribution in a PMI plot revealed a shift from the linear – disc-like axis towards 

spherical shape (Figure 11). This indicates an increase in three-dimensional character compared 

to commercially available compound collections[27, 69] ultimately reflecting that the molecular 

diversity and high sp3-content of NPs is conserved in the fragment recombination process of 

pseudo NPs. 

 

3.5.4. Summary of the Cheminformatic Analysis 

 

Collectively, these data suggest that the analyzed novel PFP pseudo NPs are endowed with 

advantageous physicochemical properties, increased molecular shape diversity and NP-score 

distributions not represented by NPs. This observation is consistent with the design principle 

behind pseudo NPs. PFPs are not accessible by biosynthesis representing a distinct area of 

chemical space and chemotype which is more than merely the sum of its NP-fragments. For 

other classes of pseudo NPs a similar trend has previously been observed and reported.[26, 29] 
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3.6. Morphological Profiling and Biological Evaluation 

Morphological Profiling by means of the cell painting assay was performed by the Compound 

Management and Screening Center Dortmund (COMAS) 

Pseudo NPs might be endowed with novel or unexpected bioactivities due to the unprecedented 

structural assembly of complementary NP-fragments, and they may differ significantly from 

activities observed for the guiding NPs. Hence, the biological relevance of pseudo NPs should 

be investigated in a similar manner to newly discovered NPs. To cover a broad spectrum of 

biological target space, pseudo NPs could either be subjected to multiple individual bioassays 

or more readily be characterized by target-agnostic phenotypic profiling approaches. Such high-

content technologies capture a large number of phenotypic descriptors in a single experiment, 

thereby allowing an unbiased evaluation of characteristic morphological changes induced by 

chemical perturbation and eventually simultaneous sampling of various biological 

phenomena.[35, 71]  

In accordance with this concept, the biological relevance of the synthesized PFP pseudo NP 

library was assessed in a cell painting assay established by the Compound Management and 

Screening Center Dortmund (COMAS) in a similar manner as introduced and developed by the 

Carpenter group[35-36, 39-40, 42] (see the Experimental Part 5.3.1.). In this multiplexed assay 

different cellular compartments are selectively stained by small molecule dyes in the presence 

of compounds under investigation or reference compounds with annotated biological activity, 

mode of action or specific targets. Upon compound treatment cells are imaged in high-content 

fashion and subsequent automated image analysis extracts and quantifies 579 morphological 

features. These are displayed in a unique fingerprint pattern for each compound and characterize 

its bioactivity. Similarities between morphological fingerprints are calculated as one minus the 

correlation distances between two distinct profiles (see the Experimental Part 5.3.1.) and 

defined as biological similarity (“BioSim”). Comparing the morphological fingerprints of PFPs 

measured at 10, 30 and 50 µM with those derived from approximately 3500 reference 

compounds (mostly measured at 10 µM) enabled then mode of action hypothesis generation 

and inspired further experimental target identification and validation efforts. Subsequently, the 

cell painting data guided establishment of a qualitative structure-phenotype relationship.[35, 71]  
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3.6.1. Identification of Bioactivity 

In a first step, biological activity per se had to be defined. Therefore, the term induction given 

in [%] was introduced which equals the number of parameters that underwent a significant 

change in median absolute deviation value upon compound treatment of +/- three-fold of the 

median determined for the DMSO controls, divided by the total number of 579 measured 

parameters (see the Experimental Part 5.3.1.). 

Applying the induction value as a filter criterion, all PFPs screened at 10 µM with an induction 

of at least 10% and not more than 80% were considered to potentially elicit most interesting 

bioactivity. The choice of cut-offs reflects the presumption that compounds with an induction 

less than 10% will most likely be only low in bioactivity while compounds exceeding 80% 

induction might have multiple targets or pleiotropic activity.  Filtering according to these cut-

offs for induction values resulted in five initial hits all of which had a fingerprint profile 

similarity of higher than 70% to at least one reference compound, hence allowing potential 

delineation of biological mode of action. To identify compounds with highest potency, the 

obtained hits were clustered according to induction and biological similarity within the list itself 

(Table 6; see the Experimental Part 5.3.2.). Two-membered cluster 1 contained the highest 

inducing PFP pseudo NPs 29k and 30k for which a high biological similarity of 84% was 

determined and which are structurally similar to each other (Tanimoto coefficient, “ChemSim”: 

0.72) as 30k is the Boc deprotected version of 29k (Table 6, entries 1 and 2). These compounds 

were characterized further since the relatively high biological and chemical similarity suggested 

similar modes of action. Noteworthy, this and the following analysis allowed only the 

identification of inducing compounds. Some compounds might have mechanisms of action that 

are not linked to detectable morphological changes as demonstrated by only 841 out of 3492 

references with annotated biological activity exerting an induction of > 10%.  
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Entry Compound 

Nr. 

 

Structure Induction 

[%]  

at 10 µM 

Cluster 

 

BioSim 

[%] 

ChemSim 

 

1 29k  

 

29 1 - - 

2 30k 

 

23 1 84 0.72 

3 4d  

 

27 2 - - 

4 28f  

 

17 3 - - 

5 4b 

 

14 4 - - 

Table 6. Filtering the PFP data set measured at 10 µM in the cell painting assay by induction (> 10%; < 80%) and 
clustering according to highest induction resulted in five hits. Biological similarity (BioSim) calculated to entry 1. 
ChemSim = chemical similarity. 

 

3.6.2. Concentration-Induction-Phenotype Dependency 

The relation between phenotype, induction and applied concentration was determined to 

validate the choice of induction as a bioactivity indicator. Therefore, the fingerprints of 29k and 

30k as representative members of the PFP pseudo NPs were compared for each of the two 

compounds at 10, 30 and 50 µM (Figure 12, see the Experimental Part 5.3.2.).  

For compound 29k, an increase from 29% to 36% induction was observed when the 

concentration was increased from 10 to 30 µM and the induction remained at 35% when the 

concentration was further increased to 50 µM. Notably, the biological similarity remained high 

(> 80%) at all concentrations. For 30k, the induction increased almost linearly with the 

concentration as a rise from 23 to 69 to 80% induction was observed when increasing the 

concentration from 10 to 30 to 50 µM, while the biological similarity remained at an average 

of 66%.  
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In addition, weakly active compounds like 29f with an induction of 4% at 10 µM were active 

at higher concentrations as an increase to 27% induction at 30 µM and to 40% induction at  

50 µM was observed (Figure 12). Although the profile similarities are still above 50%, these 

values must be regarded with care. This is because the profile of 29f at 4% induction has 

substantially less altered parameters than the profiles at 27 or 40% induction and hence a 

comparison between rich and sparse profiles would inevitable give lower profile similarities 

and should therefore be avoided in general. However, for the concentration-induction-

phenotype analysis of 29f, an experimental calculation was carried out in which only the 

parameters of the profile of 10 µM were considered for the similarity calculations to the higher 

concentration profiles. This resulted in a profile similarity of 89% (between 10 and 30 µM) and 

94% (between 10 and 50 µM). Thus, the fingerprint of 29f at 10 µM is a subset of the 

fingerprints at 30 and 50 µM, and the initial bioactivity is conserved at higher concentrations. 

Finally, compounds being truly inactive in the cell painting assay were identified as well, 

represented by compound 29i (Figure 12). For compound 29i the induction remained under the 

5% threshold for activity throughout all measured concentrations (10-50 µM). Noteworthy, low 

or no activity in the cell painting assay does not represent in general biological irrelevance of a 

compound as it might exert its activity through a mechanism that is not correlated to a 

phenotypic change in the given cell line and therefore not detectable by the cell painting assay.  

Nevertheless, as in general induction increased with concentration while the shapes of the 

related fingerprints remained comparable, the choice of induction as a measure for compound 

bioactivity was justified. Conclusively, this defined compound 29k and 30k as the most potent 

PFPs as they exerted their biological activity (i.e. high induction) already at a low concentration. 
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Figure 12. Concentration-induction-phenotype dependency determined for 29k, 30k, 29f and 29i. The top line in 
each panel is set as reference fingerprint (100% BioSim) to which subjacent fingerprints are compared, 
respectively; blue indicates a decreased value of a specific parameter compared to the DMSO control; red 
indicates an increased value of a specific parameter compared to the DMSO control. Cmpd = compound, Conc = 
concentration, Ind = induction, BioSim = biological similarity. *) Only the changed parameters of the lower 
inducing profile were considered for BioSim calculation. 

 

3.6.3. Target Hypothesis Generation 

To derive a target or mode of action hypothesis, for 29k common references found at 10, 30 

and 50 µM were determined in a first step. Therefore, only references that were found in the 

data sets of at least two of the measured concentrations were considered for further analysis 

(see the Experimental Part 5.3.2.). Next, a cross correlation analysis for the set of profiles of 

common references with profiles of 29k and 30k at all measured concentrations was performed 

and a cross-correlation matrix was generated (Table 7, see the Experimental Part 5.3.2.). 

For 29k and 30k at 30 and 50 µM, high biosimilarities (> 83%) were found to reference 

compounds which inhibit mitochondrial respiration, autophagy, glucose uptake, Wnt- and 

Hedgehog pathway signaling.[26, 72-75] According to the initially stated hypothesis that similar 

morphological fingerprints correspond to a similar biological activity, 29k and 30k were 

subsequently investigated by COMAS in cell-based assays monitoring activity in autophagy, 

glucose uptake and Hedgehog signaling. These pathways could be excluded as potential modes 

of action because 29k and 30k were not or only weakly active in the respective assays.   
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BioSim 

Aumitin[75]  

(10 µM) 

 

 
 

Chromo-

pynone 1[26]  

(50 µM) 

  

Lipoxy- 

genin[72] 

(50 µM) 

 

 

Pipinib[74] 

(30 µM) 

 

 

GW- 

2974[73] 

(10 µM) 

 

29k   

(10 µM) 

78% 81% 85% 81% 87% 

29k  

(30 µM) 

88% 89% 94% 91% 87% 

29k  

(50 µM) 

87% 88% 94% 89% 84% 

30k  

(10 µM) 

63% 61% 63% 65% 75% 

30k  

(30 µM) 

90% 85% 84% 94% 85% 

30k  

(50 µM) 

92% 89% 86% 93% 88% 

Annotated 

bioactivity 

Autophagy 

inhibition 

Glucose uptake 

(GLUT) 

inhibition 

Wnt 

inhibition 

Hedgehog 

(Hh) 

inhibition 

ErbB 

inhibitor 

Target Mitochondrial 

complex I 

GLUT-1/3 5-LO (PI4KIIIβ) ErbB 1/2 

In-house 

observed 

pathway 

bioactivity 

ROS, GLUT, 

Wnt, Hh 

Autophagy, 

Wnt, Hh 

Autophagy, 

Hh 

Autophagy, 

Wnt 

ROS 

Table 7. Cross-correlation analysis. Fingerprints of entries in the y-axis were individually compared to fingerprints 
of annotated reference compounds on the x-axis. Reference compounds targeting GPCRs were excluded from 
the analysis as they were found to occur ubiquitous in the whole data set for yet unresolved reasons. BioSim = 
biological similarity. 

 

However, it was recognized that the regulation of reactive oxygen species (ROS) formation is 

connected to these developmental and metabolic networks.[76-80] Furthermore, the fingerprints 

determined for PFP 29k and 30k at 30 µM showed 88 and 90% similarity respectively to the 

fingerprint determined for aumitin at 10 µM, which inhibits mitochondrial respiration by 

targeting mitochondrial complex I.[75] Inhibition of mitochondrial complexes I and III was 

reported to induce formation of mitochondrial superoxide which is a specific reactive oxygen 
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species.[81-82] Thus, PFPs 29k and 30k were hypothesized to modulate mitochondrial function 

by targeting mitochondrial complex I and/or III.    

 

3.6.4. Influence on Mitochondrial Respiration 

The Mito Stress Test was performed by Aylin Binici and Julian Wilke 

The mode of action hypothesis derived from the cell painting data analysis suggested pseudo 

NP 29k to be a modulator of mitochondrial function (see 3.6.3.). Thus, the effect of 29k on 

mitochondrial respiration was investigated in a Mito Stress Test employing the Seahorse XF 

analyzer.[83] With this device the metabolic performance of live cells can be monitored by two 

distinct fluorophores indicating changes in oxygen concentration and fluctuations in 

extracellular pH, respectively. This in turn allows the individual observation of oxygen 

consumption rate (OCR) and extracellular acidification rate (ECAR) in a time- and dose-

dependent manner. Whereas OCR reflects the rate of mitochondrial respiration consuming 

oxygen, ECAR is an indicator of glycolysis since glycolysis-derived lactate is exported together 

with a proton thereby decreasing the pH. Addition of a mitochondrial respiration inhibitor 

should cause a decrease of the OCR and, depending on the employed cells, an increase in 

ECAR, as cells try to compensate the decreased respiration by upregulating glycolysis.       

The Mito Stress Test consists of five distinct phases. Initially, the basal respiration of the cells 

is determined representing glycolysis and respiration under normal conditions (Figure 13[84] 

and 14). In case of a mitochondrial respiration inhibitor, subsequent compound addition should 

cause a decrease in OCR, which is counterbalanced by a switch to glycolysis indicated by an 

increase in ECAR. In a third phase, injection of oligomycin as a mitochondrial ATP synthase 

inhibitor (complex V) allows the determination of basal respiration required for cellular ATP 

production. Next, disruption of the proton gradient by addition of trifluoromethoxy 

carbonylcyanide phenylhydrazone (FCCP) results in an increase of mitochondrial respiration 

to maximal capacity representing cell respiration under stress. The spare capacity of the cells 

to respond to an increased energetic demand is the difference of the OCR determined between 

the basal and maximal respiration. In the final phase, addition of a mixture of the complex I 

inhibitor rotenone and the complex III inhibitor antimycin A defines the lowest possible OCR 

related to mitochondrial respiration. The remaining oxygen consumption is caused by 

mitochondria unrelated processes.  
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Figure 13. Representative scheme of mitochondrial respiration and inhibitors (red) of respective complexes. 
Complex I (NADH-CoQ reductase) oxidizes NADH to NAD+ and complex II FADH2 to FAD+. Both, complex I and 
complex II, transfer electrons to coenzyme Q (CoQ). From CoQ the electrons are passed on to complex IV via 
complex III and cytochrome C (CytC). Complex IV reduces molecular oxygen to water under consumption of 
protons. Protons are translocated into the mitochondrial matrix by complex V (ATP synthase). Complex V utilizes 
the proton gradient between mitochondrial matrix and intermembrane space to generate ATP from ADP and 
phosphate. Trifluoromethoxy carbonylcyanide phenylhydrazone (FCCP, yellow) acts as a disrupter of the proton 
gradient. 

 

Following the protocol for the Mito Stress Test (see the Experimental Part 5.3.4.), HeLa cells 

were treated with 3, 10 and 30 µM of compound 29k inducing a rapid decrease in OCR and 

simultaneously an increase in ECAR at 10 and 30 µM compared to the DMSO control (Figure 

14). Compared to a full inhibition of mitochondrial respiration by rotenone and antimycin A, 

PFP 29k rapidly and dose-dependently induced partial inhibition upon compound treatment as 

the OCR was not reduced to the OCR level observed for rotenone and antimycin A. 

Nevertheless, these results indicated the first validation of the mode of action hypothesized for 

29k acting as a modulator of mitochondrial respiration. 
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Figure 14. Influence of PFP 29k on mitochondrial respiration. HeLa cells were treated with compound (3, 10 and 
30 µM) or DMSO and the oxygen consumption rate (OCR, Figure 14A) and extracellular acidification rate (ECAR, 
Figure 14B) were measured with a Seahorse XF analyzer. Control inhibitors were added successively to the 
samples. Data are mean values ± SD, n=3. 

 

3.6.5. Influence on Mitochondrial Complexes I-IV 

The Semi-Intact Assay for Mitochondrial Respiration was performed by Aylin Binici and 

Julian Wilke 

To further validate the hypothesis of complex I or III inhibition by pseudo NP 29k, a semi-

intact assay for mitochondrial respiration was carried out.[85] With this assay, complex I-, II-, 

III-, or IV-mediated respiratory activity can be studied in detail by plasma membrane 

permeabilization and addition of distinct substrates required for the activity of the respective 

complexes (Figure 15). Hence, adjusting the buffer system with the specific substrates required 

for the corresponding mitochondrial complexes, the effect of 29k on each separate complex 

compared to known specific inhibitors was investigated in the Seahorse XF analyzer (see the 

Experimental Part 5.3.5.). 

When malate/pyruvate were added to permeabilized cells to explore complex I, the OCR 

decreased upon compound treatment with 29k at 30 µM, indicating an inhibition of complex I 

activity as compared to a full inhibition by the known complex I inhibitor rotenone[86] at  

1 µM, 29k partially suppressed complex I (Figure 15A). When succinate or duroquinol were 
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added to study complex II or IV, respectively, no activity of 29k was observed (Figure 15B and 

D). For the investigation of complex III, tetramethylphenylenediamine (TMPD)/ascorbate were 

provided and a slight decrease in OCR compared to the DMSO control was observed upon 

addition of 29k at 30 µM (Figure 15C). This validated the hypothesis of modulation of 

mitochondrial respiration by PFP pseudo NP 29k and mitochondrial complex I can be 

considered as a molecular target. Collectively these results demonstrate that the cell painting 

assay may be used as a tool for target agnostic multiparametric phenotypic profiling to 

determine the mode of action of pseudo NPs and other bioactive small molecules.[87-89]  

 

Figure 15. Influence of 29k on mitochondrial complex I-IV. HeLa cells were permeabilized by Seahorse XF plasma 
membrane permeabilizer and treated with compound and the respective substrates of the individual complexes. 
A: Effect of PFP 29k on complex I with malate/pyruvate as substrates and rotenone (1 μM) as control inhibitor. 
B: Effect of PFP 29k on complex II with succinate as substrate and malonate (2 mM) as control inhibitor. C: Effect 
of PFP 29k on complex III with duroquinol as substrate and antimycin A (30 μM) as control inhibitor. D: Effect of 
PFP 29k on complex IV with tetramethylphenylenediamine (TMPD)/ascorbate as substrates and potassium 
cyanide (20 mM) as control inhibitor. Data are mean values ± SD, n=3. 

 

3.6.6. Comparison to Reported Mitochondrial Complex I and III Inhibitors 

Small molecules exhibiting dual inhibitory activity on mitochondrial complex I and III were 

already described in the literature[90]. However, structural characteristics of PFP 29k (Table 8, 

entry 1) do not resemble any of the three major classes of complex I inhibitors[91-93] (entries 2-

5) or reported complex III inhibitors[94-95] (entries 6-8). Hence, 29k represents a truly novel 

chemotype for mitochondrial complex I inhibition. Essentially, inhibition of complex I leads to 

electron accumulation within the mitochondrial matrix because electron transfer from the iron-
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sulfur centers in complex I to ubiquinone is blocked.[86] This causes an incomplete reduction of 

cellular oxygen (O2) to superoxide (•O2
-), a reactive oxygen species (ROS) which damages 

components of mitochondria including mitochondrial DNA and eventually lead to apoptosis.[82, 

96] This oxidative stress can be neutralized by antioxidant defense mechanisms but an imbalance 

between ROS production and antioxidant defense towards increased levels of ROS is linked to 

aging and pathogenesis of several diseases.[97] However, recent studies suggest that the altered 

redox status in cancer cells can be exploited for therapeutic benefits employing ROS inducing 

agents and thereby selectively triggering cancer-cell toxicity.[98]   

Entry Structure Name Annotated Activity 

1 

 

PFP 29k Complex I inhibitor 

2 

 

Aumitin Type A 

(Pyrimidines) 

Complex I inhibitor 

3 

 

Piericidin A Type A 

(4-pyridones) 

Complex I inhibitor 

4 

 

Rotenone Type B 

Complex I inhibitor 

5 

 

Capsaicinoid 

CC44 

Type C 

Complex I inhibitor 

6 

 

Antimycin A Complex III inhibitor 

7 

 

Mahanine Complex III inhibitor 

8 

 

Myxothiazol Complex III inhibitor 
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Table 8. Representative mitochondrial complex I and III inhibitors. 

Interestingly, a comparison of the morphological fingerprint of 29k to the profiles of some in-

house available complex I and III inhibitors listed in Table 8 revealed that a high biosimilarity 

of 87% is found between 29k and aumitin (Figure 16). Even more important, comparing the 

profile of 29k to the profiles of complex III inhibitors antimycin A and myxothiazol did not 

afford any biosimilarity at all. This analysis indicates that 29k exerts a phenotype that is more 

similar to phenotypes of known complex I inhibitors than of complex III inhibitors, which is 

consistent with the results from the semi-intact assay for mitochondrial respiration (see 3.6.5.). 

Moreover, this analysis demonstrates that the cell painting assay is able to differentiate between 

closely related mechanisms of action as inhibitors of complex I qualitatively define a distinct 

phenotype cluster compared to complex III inhibitors.  

 

Figure 16. Fingerprint comparison between 29k and known complex I and III inhibitors; The top line is set as 
reference fingerprint (100% BioSim) to which subjacent fingerprints are compared, respectively; blue indicates a 
decreased value of a specific parameter compared to the DMSO control; red indicates an increased value of a 
specific parameter compared to the DMSO control. Cmpd = compound, Conc = concentration, Ind = induction, 
BioSim = biological similarity. 

 

3.6.7. General Activity Trends 

To evaluate the distribution of compounds exhibiting activity in the cell painting assay 

according to their core scaffold, a structure-induction relationship analysis was performed. 

Therefore, the whole cell painting data set for 162 PFPs was filtered for induction between 5 

and 85%. Structural analysis of all active compounds at 10, 30 and 50 µM revealed that general 

scaffold C seems to be privileged in terms of ability to induce phenotypic changes since at  

50 µM significantly more active compounds of substructure class C were found compared to 

general scaffolds A and B (Figure 17). Noteworthy, for monopodal connected isomers no 

activity was observed even at the highest screened concentration of 50 µM.          
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Figure 17. Structure-induction relationship. Number of compounds per general scaffold with induction > 5% and 
< 85%. () indicates the number of compounds per general scaffold submitted for biological testing in the cell 
painting assay. 

 

Interestingly, the most potent compounds in the cell painting assay 29k and 30k (see 3.6.1. and 

3.6.2), for which also a target hypothesis was derived and validated (see 3.6.3.; 3.6.4.; 3.6.5.) 

belong obviously to substructure class C. Hence, it was speculated if substructure class C is not 

only privileged in terms of general activity in the cell painting assay but if the found compounds 

are also structurally related and if they induce similar morphological fingerprints. Therefore, 

all PFP pseudo NPs of general scaffold C with induction > 5 % and < 85% at all concentrations 

(10, 30 and 50 µM) were clustered (see the Experimental Part 5.3.2.) yielding a 16-membered 

cluster of structurally related compounds with biosimilarities > 82% (Table 9). With the active 

compounds of substructure class C being chemically related while eliciting similar phenotypic 

changes, a structure phenotype relationship analysis was performed as described in chapter 

3.6.8.  
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Entry Compound 

Nr. 

Structure Induction 

[%] 

Cluster 

 

BioSim

[%] 

Chem

Sim 

1 30k 

 

80  

(at 50 µM) 

1 - - 

2 30k  

 

69  

(at 30 µM) 

1 98 1.00 

3 29d  

 

28  

(at 50 µM) 

1 93 0.44 

4 29f  

 

40  

(at 50 µM) 

1 93 0.49 

5 29e  

 

34  

(at 50 µM) 

1 92 0.45 

6 29g  

 

47  

(at 50 µM) 

1 90 0.43 

7 29f  

 

27  

(at 30 µM) 

1 89 0.49 

8 29e  

 

17  

(at 30 µM) 

1 89 0.45 

9 29k  

 

36  

(at 30 µM) 

1 88 0.72 

10 29c 

 

39  

(at 50 µM) 

1 87 0.42 

11 29k 

 

35  

(at 50 µM) 

1 86 0.72 

12 29l 

 

25  

(at 50 µM) 

1 85 0.36 
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13 29g 

 

34  

(at 30 µM) 

1 85 0.43 

14 29d 

 

16  

(at 30 µM) 

1 85 0.44 

15 29k  

 

29  

(at 10 µM) 

1 84 0.72 

16 28f 

 

29  

(at 50 µM) 

1 82 0.48 

Table 9. Cluster of all active compounds belonging to general scaffold C. Induction cut-off filter < 5%, > 85% for 
PFPs with general structure C measured at 10, 30 and 50 µM. Only compounds belonging to cluster 1 are listed. 
Biological similarity (BioSim) was compared to entry 1. ChemSim = chemical similarity. 

 

3.6.8. Comparison of SPR to SAR 

The MitoSOX Red assay was performed by Aylin Binici and Julian Wilke 

To assess whether the multiparametric cell painting assay may guide identification of 

qualitative trends in structure phenotype relationship (SPR), all fingerprints of the obtained 16-

membered cluster (see. 3.6.7.) and profiles of structurally related compounds were analyzed 

and the derived trends in SPR were compared to trends of the structure-activity relationship 

(SAR) determined by means of a MitoSOX Red assay (see the Experimental Part 5.3.6.). This 

live-cell fluorescence-based assay monitors the production of mitochondrial superoxide upon 

inhibition of the mitochondrial respiratory system.[75] Given the fact that inhibition of 

mitochondrial complexes I and III induces formation of superoxide[81-82], concentration 

dependent formation of mitochondrial superoxide employing the fluorogenic indicator 

MitoSOX Red[99] was assayed.  

Since 29k displayed the highest induction at 10 µM and it was a member of the substructure 

class C cluster (see. 3.6.7., Table 9, entry 15), its morphological profile at 10 µM was set as a 

reference phenotype to which all other cluster profiles and fingerprints of structurally related 

compounds were compared (Table 10). The comparison was preferably performed in an 

induction range of 20-40% to avoid that the similarity calculations are negatively affected by 

larger differences in fingerprint richness. In analogy to SAR-studies, only structural changes on 

specific parts of the molecule while keeping the structure otherwise constant were investigated 
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in terms of changes in induction values as a measure for bioactivity, and changes in profile 

similarity to the reference fingerprint.       

 

Entry Nr. R1 = R2 = Induction  

[%] 

BioSim  

[%] 

EC50  

[µM] 

1 29b  

 

2  

(50 µM)  

n.c. >30 

2 29c 
 

 

39  

(50 µM) 

92 >30 

3 29k 

  

29 

(30 µM) 

100 3.7 

± 0.9 

4 29d 
 

 

28  

(50 µM) 

87 9.2 

± 2.4 

5 29f 

 
 

 

27 

(30 µM) 

85 6.8 

± 0.7 

6 29e 

 

 

34 

(50 µM) 

87 15.7 

± 6.6 

7 29g 
 

 

34 

(30 µM) 

90 13.4 

± 2.6 

8 29i 

 

 

3  

(50 µM) 

n.c. >30 

9 29h 

 

 

10 

(50 µM) 

n.c. 25.3 

± 6.2 

10 29j 

 

 

24 

(50 µM) 

90 9.7 

± 1.8 

11 29n 

  

3 

(50 µM) 

n.c. >30 
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12 29l 

  

25 

(50 µM) 

90 13.5 

± 1.2 

13 30k 

  

23 

(10 µM) 

84 10.7 

± 3.6 

14 20h 

 
 

15 

(50 µM) 

37 >30 

15 25k 

 

 

3 

(50 µM) 

n.c. >30 

16 28f 

 

 

28 

(30 µM) 

62[a] >30 

17 26d 

 

 

6 

(50 µM)  

n.c. >30 

18 22e 

 
 

3 

(50 µM)  

n.c. >30 

19 26a  

 

1 

(50 µM) 

n.c. >30 

Table 10. Establishment of a structure-phenotype relationship (SPR) for the PFPs by means of the induction 
delineated from the cell painting assay, and comparison with the activity in the MitoSOX Red assay; EC50 
determined in HeLa cells (n = 3); Biosimilarity (BioSim) was compared to 29k if not indicated differently; n.c. = 
biosimilarity was not calculated because induction was out of 20-40% comparison window.  
[a] Biosimilarty was compared to 29f. 

 

For the investigation of pyridone N-substituents of 29k (Table 10, R1), the right-hand side 

(Table 10, R2) was kept unchanged. Substitution of the indolyl moiety in 29k by a small methyl 

group was not tolerated with respect to induction (compare entry 1 with 3) while isopentyl, 

benzyl, substituted benzyl groups and thiophenyl as R1 led to high induction at comparable 

profile similarities (compare entry 3 with entries 2 and 4-7). Replacement of the methoxy-

indolyl by basic 4- and 2-pyridinyl was detrimental for induction (compare entry 3 with entries 

8 and 9). Bioactivity and biosimilarity were reestablished by introduction of a chlorine next to 

the basic nitrogen of the 4-pyridinyl substituent, thereby reducing the basicity (entry 10). 

Furthermore, when the whole N-substituted pyridone was replaced by an aromatic bicycle, a 

quinolinone was preferred over a coumarine subscaffold to ensure induction and high profile 
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similarity to 29k (compare entry 3 with entries 11 and 12). Collectively, these observations 

indicate that variation of the pyridone N-substituent while remaining high induction values at 

retained bioactivity is possible if the substituent is not too small or too polar. Therefore, for R1 

a lipophilic residue at a distance to the fused ring system appears to be advantageous, and a 

quinolinone as the pyridone unit is preferred over a coumarine subscaffold.  

The left-hand side of 29k (Table 10, R1) remained unchanged to study the influence on 

induction and biosimilarity of structural changes to the right-hand side and the core (Table 10, 

R2). Removal of the Boc group in 29k slightly decreased the induction while the profile shape 

was conserved (compare entry 3 with 13).  When the R2 substituent was further minimized to a 

dimethyl derivative induction remained high but the profile similarity declined to 62% (entry 

16). Further simplification to a R2-unsubstituted derivative (entry 17) and other structural 

changes on the cyclic acetal core unit (entries 15 and 18) were not tolerated with 20h (entry 14) 

representing a borderline case in which the 15% induction value is close to the 20% cut-off for 

comparison. Consequently, for R2 a bipodal-fused and ,-disubstituted ketone substructure 

with the quaternary carbon next to the cyclic acetal is beneficial for induction at high biological 

similarity to 29k.  

Compounds representing the general trends in SPR were then subjected to dose-response 

analysis (EC50 determination) in a MitoSOX Red assay (see the Experimental Part 5.3.6.). 

Altogether, the EC50 values reflected qualitatively the trends observed for the SPR analysis as 

described above with some exceptions. Consistent with the trends in the SPR, compound 29k 

was identified as the most potent PFP pseudo NP with an EC50 value of 3.7 ± 0.9 µM (Table 

10, entry 3). The majority of the compounds with induction >20% and profile similarity >80% 

to 29k induced mitochondrial superoxide formation (entries 3-7, 10, 12, 13). In fact, only a few 

exceptions (entries 2, 14 and 16) were notable indicating that the SPR-SAR correlation cannot 

be regarded as entirely parallel. Indeed, compound 29c deviated from the SPR-SAR correlation 

as it exhibited activity in the cell painting assay and a high profile similarity to 29k but for 

which no activity could be observed in the MitoSOX Red assay (entry 2).  Compound 20h and 

28f must also be regarded as exceptions from the general trends as they both elicited induction 

but no MitoSOX Red signal (entries 14 and 16). However, for both compounds decreased 

profile similarities of 37 and 62% were observed, respectively, indicating that the 

morphological changes might be induced through different modes of action. Noteworthy, 

although the central cyclic acetal scaffold was observed to be privileged for activity in the cell 

painting assay (see 3.6.6.), the scaffold on its own was not sufficient to establish the observed 
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kind of bioactivity (entry 19) indicating that both, R1 and R2 have a significant impact on the 

overall bioactivity and that they must be decorated as outlined above simultaneously.  

Another point to evaluate concerned the biological activity of fragments that PFPs consist of. 

By comparing the profile similarity of PFP 29k to its building blocks respectively as well as 

the activity of the fragments in the MitoSOX Red assay, it was analyzed if the identified activity 

of pseudo NP 29k as a mitochondrial superoxide inducer can be attributed to one or both of the 

fragments.   

In the cell painting assay, fragments of 29k were either not active at the highest measured 

concentration (Table 11, entries 1 and 3) or had low biological similarity to 29k (entry 2). 

Consistent with the SPR analysis outlined above, fragments of 29k that were not active in the 

cell painting assay did also not elicit a MitoSOX Red signal. Noteworthy, although fragment 

4d has a profile similarity of only 9% to 29k it was also determined to be active in the MitoSOX 

Red assay with an EC50 of 3.4 ± 0.1 µM (Table 11, entry 2). However, this compound decreased 

the cell count to 50% at 10 µM. Toxicity further increased at higher concentrations (cell count 

= 37% at 30 µM and 7% at 50 µM; see Appendix 8.2., Figures 24-26). Thus, the activity of 4d 

in the MitoSOX Red assay must be caused by a different mode of action since 29k was non-

toxic at all measured concentrations (see Appendix 8.2., Figures 21-23).  

Entry Compound 

Nr. 

Fragment Induction  

[%] 

BioSim  

[%] 

EC50  

[µM] 

1 2s 

 

2 

(50 µM) 

n.c. >30 

2 4d 

 

27 

(10 µM) 

9 3.4 

± 0.1 

3 4e[a] 

 

1 

(50 µM) 

n.c. >30 

Table 11.  Biological evaluation of fragments of PFP 29k by means of the induction delineated from the cell 
painting assay, and comparison with the activity in the MitoSOX Red assay; EC50 determined in HeLa cells (n = 3); 
Biosimilarity (BioSim) was compared to 29k if not indicated differently; n.c. = biosimilarity was  
not calculated because induction was out of 20-40% comparison window.   
[a] Synthesis is described in the Experimental Part. 
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In summary, for the PFP pseudo NP library general scaffold C as a privileged structural subclass 

was identified, for which general trends in the SPR correlated with the SAR studies in the 

MitoSOX Red assay with only a few exceptions. It was determined that R1 should be a bulky 

aromatic residue which is not too polar while for R2, removal of the Boc group, no substituent 

on the cyclic acetal core, and a regio-isomeric connection pattern was detrimental for activity. 

Further consistent with the SPR, the fragments of 29k were not active in the MitoSox assay. 

Altogether, target-agnostic qualitative SPR analysis based on morphological profiling has the 

potential to inform hit expansion efforts through synthesis of additional compounds or predict 

suitable linker attachment sites for target identification efforts e.g. by affinity-based proteomics. 

Nevertheless, PFPs represent unoptimized hits that may have multiple targets which even may 

differ among the library members and still, different modes of action can result in a similar 

phenotype. Although data obtained from such phenotypic analysis should be viewed with 

caution to avoid over-interpretation, general trends pointing towards a distinct biological 

activity and qualitative structure-phenotype relationship, as is the case for the herein discussed 

PFPs, should be investigated in more detail.  

 

3.6.9. Additivity of Morphological Fingerprints 

Finally, the question of profile additivity was addressed and if it is possible to predict the profile 

of a pseudo NP from the fingerprint combination of its consisting fragments. Therefore, the 

morphological profiles of fragments 2p and 4d were determined and added mathematically to 

generate an artificial profile 29j-art. representing the in silico combination of the two fragments 

(Figure 18). Comparison of the artificial profile with the profile of the synthesized PFP pseudo 

NP 29j showed only 4% similarity, demonstrating that the synthetic combination of NP-

fragments to pseudo NPs generates novel scaffolds endowed with specific properties that are 

more than merely the sum of topologic characteristics of the individual fragments. However, 

this analysis should be regarded with caution because on the one hand fragment 2p is very low 

inducing (6%) so that the artificial profile is dominated by the contributions of fragment 4d. To 

balance this, an example would be needed in which the pyridone fragment itself is sufficiently 

inducing morphological changes. Unfortunately, 2p is already the highest inducing fragment 

synthesized and tested in the cell painting assay during this project. On the other hand, 

fragments 2p and 4d are the building blocks for PFP 29j and not the actual fragments thereof. 

Hence, the analysis as outlined above would have to be repeated with the actual fragments 

which would be, for example, the phenol methylated derivative of 2p and an anomeric O-
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methylated instead of O-acetylated 4d fragment. In summary, the prediction of pseudo NP 

profiles by mathematical addition of fragment profiles was not successful for the analyzed 

example.     

 

Figure 18. Evaluation of additivity of profiles. The top line is set as reference fingerprint (100% BioSim) to which 
subjacent fingerprints are compared, respectively; blue indicates a decreased value of a specific parameter 
compared to the DMSO control; red indicates an increased value of a specific parameter compared to the DMSO 
control. Cmpd = compound, Conc = concentration, Ind = induction, BioSim = biological similarity. 

 

3.6.10. Summary of Cell Painting Data Analysis and Biological Results 

While the cell painting assay was previously applied as a general indicator for biological 

activity[36] and as a tool for compound prioritization and library design[42], this thesis extends 

its application and marks the first demonstration of the cell painting assay as a tool for target 

hypothesis generation and structure-phenotype relationship determination. Hence, exemplified 

on the data analysis performed for this project, a suggested general work-flow model is depicted 

in Figure 19.    
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Figure 19. Summary of cell painting data analysis and suggestion for a generalized work-flow model. BioSim = 
biological similarity, Conc. = concentration, Refs. = references with annotated biological activity, Cmpds = 
compounds, SPR = structure-phenotype relationship.  

 

Before starting with the actual analysis, sufficient amount of meaningful data needs to be 

generated by measuring all compounds of interest in at least three different concentrations in 

the cell painting assay. For the PFP pseudo NP library the screening of compounds commenced 

at 10 µM resulting in only few compounds with induction > 10%. Therefore, additional testing 

at 30 and 50 µM were carried out to increase the number of compounds exhibiting an induction 

value of > 10%. For highly active compounds that tend to elicit an over activation (induction > 

85%) at 10 µM, additional assays should be carried out at lower concentrations. With sufficient 

data suitable for analysis at hand, the analysis workflow can be divided into three major steps 

as outlined for the analysis of the PFP library (Figure 19, orange, blue, red). 

Step 1: The generated data set was filtered applying an induction cut-off of < 10% and > 80% 

and a biosimilarity threshold of 70% to any of the reference compounds to identify all “inliers” 

(Figure 19, orange). In case of PFPs, initially the data set of the 10 µM screen was filtered and 

clustered to identify 29k and 30k as the most active compounds. For these compounds a 

concentration-induction-phenotype dependency was verified by either using the full profiles or 

only parameters from the lowest inducing profile for comparison. This step is crucial because 

the kind of biological activity i.e. the shape of the fingerprint should not change drastically with 

changes in concentration and induction. All active compounds that are below the biosimilarity 

threshold of 70% are termed “outliers” (Figure 19, grey), as these compounds elicit 

morphological profiles that are not similar to any of the fingerprints of the reference compounds 
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with annotated bioactivity. Outliers could potentially lead to compounds with entirely novel 

modes of action. However, for the PFP library no outliers were observed. 

Step 2: For the most active compounds, i.e. the highest inducing compounds, common 

references occurring at all measured concentrations were identified and analyzed to generate a 

mode-of-action hypothesis. For the PFP pseudo NPs 29k and 30k, a potential activity as 

modulators of mitochondrial respiration was deduced (Figure 19, blue). This hypothesis was 

subsequently validated by demonstrating an inhibitory effect of 29k on mitochondrial 

respiration and activity was traced to inhibition of mitochondrial complex I as at least one 

responsible molecular target. 

Step 3: An activity analysis of all substructure classes revealed PFP general structure C as a 

privileged scaffold (Figure 19, red). Clustering of all active compounds of substructure class C 

indicated structural and fingerprint relatedness to PFP 29k. Hence, a structure-phenotype-

relationship (SPR) analysis was carried out setting the fingerprint of 29k as a reference 

phenotype. The derived trends in SPR were then compared to structure-activity-relationship 

(SAR) trends employing a MitoSOX Red assay for determination of EC50 values. In general, 

trends in SPR correlated in parallel to trends in SAR identifying 29k as the most active PFP 

pseudo NP with an EC50 value of 3.7± 0.9 µM. 
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4. Summary of the Thesis 

Rarely related natural product (NP) fragments 2-pyridones and dihydropyrans were synthesized 

and functionalized for combination to pyrano-furo-pyridones (PFPs) defining a new class of 

pseudo natural products (pseudo NPs). The fusion of the two fragments was carried out in three 

different regioisomeric arrangements of a bipodal connection employing a palladium-catalyzed 

allylic alkylation cascade (Tsuji-Trost cascade) to derive general scaffold A, a Tsuji-Trost oxa-

Michael addition cascade to derive general scaffold B and a quinine mediated Michael 

transacetalization cascade to derive general scaffold C (Figure 20). Monopodal connection 

isomers could be isolated in some examples from the corresponding reaction mixtures as well. 

Cheminformatic analyses disclosed that PFPs exhibit favorable drug-like features and their 

unprecedented scaffolds reside in an area of NP-like chemical space which is not covered by 

NPs reflecting that pseudo NPs are not accessible by biosynthesis. 

Comparison of morphological fingerprints generated for pyrano-furo-pyridones to those 

determined for references with annotated biological activity pointed towards activity as 

modulators of mitochondrial respiration. This hypothesis could be verified in further 

experiments demonstrating an inhibitory effect of PFP 29k on mitochondrial respiration. 

Eventually, the activity could be traced to inhibition of mitochondrial complex I, thereby 

causing induction of reactive oxygen species (Figure 20). In addition, the cell painting data 

indicated a correlation of molecular architecture and biological phenotype which was 

subsequently validated in structure-activity relationship studies employing the formation of 

mitochondrial superoxide as a readout. Hence, PFP 29k was identified as the most potent 

compound investigated with an EC50 value of 3.7± 0.9 µM.  

These results provide a proof-of-principle for the validity of the pseudo NP concept for the de 

novo design and synthesis of novel biologically relevant compound classes. In addition, they 

demonstrate that target agnostic morphological profiling has the potential to determine 

bioactivity, provide mode of action hypothesis and provide qualitative information about 

structure-phenotype relation even in the absence of a proven target. These insights might inspire 

further hit expansion or determine suitable attachment points for reporter groups and linkers, 

which will enable subsequent target identification. Established methods for target identification 

frequently fail if the target protein is expressed only on a very low level or if it is a membrane 

protein. In such cases information derived from morphological profiling will be particularly 

valuable to guide mode-of-action hypothesis generation and subsequent targeted assays. 
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Figure 20. Summary of the thesis. 
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5. Experimental 

5.1. Chemistry 

5.1.1 General Remarks 

All reactions were performed in oven dried glassware and under inert Argon atmosphere if not 

indicated differently. Dry solvents were purchased from Fischer Scientific and/or Acros and 

used without further treatment. Oxygen and/or moisture sensitive solutions were transferred 

using syringes and cannulas.  

Thin layer chromatography was performed on silica coated aluminium plates (Merck 60 F254) 

and visualization was achieved under UV irradiation (254 nm), potassium permanganate stain 

(1.5 g KMnO4, 10 g K2CO3, 1.25 mL of 10% aqueous NaOH solution and 200 mL of water) or 

p-anisaldehyde stain (0.7 mL p-anisaldehyde, 9.5 mL conc. H2SO4, 2.7 mL of acetic acid and 

250 mL of EtOH).  

Analytical UHPLC-MS and LC-MS was performed on an Agilent 1290 Infinity system 

equipped with a mass detector (column: Zorbax Eclipse C18 Rapid Resolution 2.1x50 mm 

1.8µm) and on a Thermo Scientific fleet station (column: Nuleodur C18 gravity EC 50/3, 1.8 

µm). Appropriate gradient systems were applied by mixing water (+ 0.1% TFA) and acetonitrile 

(+ 0.1%). 

Purification of crude products was achieved through flash column chromatography (FC, silica 

gel 60, 0.035-0.070 mm) or automated medium pressure liquid chromatography (MPLC, Grace 

Reveleris X2) using the indicated solvents. Challenging separations were carried out on an 

Agilent 1100 preparative HPLC system equipped with a mass detector (columns: Nuleodur C18 

gravity VP 125/10 5 µm, Nucleodur C18 gravity VP 125/21 5 µm, Nucleodur C4 gravity VP 

125/10 5 µm). Appropriate gradient systems were applied by mixing water (+ 0.1% TFA) and 

acetonitrile (+ 0.1%). 

NMR spectra were recorded on Bruker AV 400 Avance III HD (NanoBay), Agilent 

Technologies DD2, Bruker AV 500 Avance III HD (Prodigy), Bruker AV 600 Avance III HD 

(CryoProbe) or Bruker AV 700 Avance III HD (CryoProbe) spectrometers. Data is reported in 

ppm with reference to the used deuterated solvent (CDCl3: 7.26 ppm, 77.16 ppm; DMSO-d6: 

2.50 ppm, 39.52 ppm; CD2Cl2: 5.32 ppm, 53.84 ppm; MeOH-d4: 3.31 ppm, 49.00 ppm; 

Acetone-d6: 2.05 ppm, 29.84 ppm, 206.26 ppm).[100] Signals were assigned to their 
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corresponding Hydrogens or Carbons based on 2D NMR correlations (1H/1H COSY, 1H/1H 

NOESY, 1H/13C HSQC, 1H/13C HMBC).  

High-resolution mass spectrometry (HRMS) was performed on a LTQ Orbitrap mass 

spectrometer coupled to an Accela HPLC-System (HPLC column: Hypersyl GOLD, 50 mm x 

1 mm, particle size 1.9 μm, ionization method: electron spray ionization (ESI)). 

Microwave reactions were carried out in a CEM Discover SP Activent machine. 

First generation photoreactor consisted of an 8 mL tube vial, magnetic 

stirrer and 34W blue LEDs (Kessil H150-Blue LED Lamp). Ventilation 

was achieved by a cooling fan.  

 

 

 

 

 

 

 

Second generation photoreactor consisted of a 250 mL or 500 mL 

schlenck flask, magnetic stirrer and two 34W blue LEDs (Kessil H150-

Blue LED Lamp). The schlenck flask was placed in a dewar vessel of 

appropriate size. The dewar vessel was filled with iso-propanol and a 

constant flow of compressed air over the iso-propanol surface was 

adjusted. This cooling system maintained a bath temperature between 23-

26 °C while irradiating the schlenck flask with two blue LEDs in a 45 °C 

angle.[54] 
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5.1.2. Synthesis of 2-Pyridones 

General procedure 1:[65] 

 

4-Hydroxy-6-mehtyl-pyrone (1) (1.00 g, 7.93 mmol) was suspended in H2O (0.5 M) and amine 

(1 equiv) was added at room temperature. The mixture was stirred in a sealed vial at 100 °C 

overnight. Upon cooling to 0 °C a white precipitate formed which was filtered off and washed 

with cold H2O. The remaining filter residue was triturated with EtOH and drying in vacuo 

afforded the corresponding pyridones as white to off-white solids. 

4-hydroxy-6-methylpyridin-2(1H)-one (2a)[101] 

0.54 g, 54%. 1H-NMR (400 MHz, DMSO-d6): δ 10.89 (s, 1H), 10.29 (s, 1H), 

5.58 (dd, J = 2.2 Hz, 0.8 Hz, 1H), 5.32 (d, 2.2 Hz 1H), 2.07 (s, 3H). LCMS-ESI 

(m/z): 125.97 [M + H]+. 

4-hydroxy-1,6-dimethylpyridin-2(1H)-one (2b)[102] 

0.67 g, 61%. 1H-NMR (400 MHz, DMSO-d6): δ 10.28 (s, 1H), 5.75 (dd, J = 2.2 

Hz, 0.6 Hz, 1H), 5.48 (d, J = 2.2 Hz 1H), 3.29 (s, 3H), 2.26 (s, 3H). LCMS-ESI 

(m/z): 140.03 [M + H]+. 

cyclobutyl-4-hydroxy-6-methylpyridin-2(1H)-one (2c) 

0.62 g, 56%. 1H-NMR (700 MHz, DMSO-d6): 10.26 (s, 1H), 5.66 (d, J = 

2.5 Hz, 1H), 5.40 (d, J = 2.5 Hz, 1H), 4.68 (p, J = 8.8 Hz, 1H), 3.12 (m, 2H), 

2.26 (s, 3H), 2.13-2.07 (m, 2H), 1.77 (q, J = 10.3 Hz, 1H), 1.64 (dq, J = 

18.4, 9.4 Hz, 1H). 13C-NMR (176 MHz, DMSO-d6) δ 165.4, 165.1, 147.05, 100.5, 97.5, 51.2, 

26.91, 20.9, 14.1. HRMS-ESI (m/z): [M + H]+ calculated for C10H14O2N
+, 180.1019; found, 

180.1018.  
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4-hydroxy-1-isopentyl-6-methylpyridin-2(1H)-one (2d)[103]  

0.76 g, 50%. 1H-NMR (700 MHz, DMSO-d6): δ 5.73 (dd, J = 2.7, 1.0 

Hz, 1H), 5.46 (d, J = 2.7 Hz, 1H), 3.84-3.81 (m, 2H), 2.29 (s, 3H), 1.60 

(dt, J = 13.3, 6.7 Hz, 1H), 1.37 (dt, J = 9.6, 6.8 Hz, 2H), 0.91 (d, J = 6.7 

Hz, 6H). 13C-NMR (176 MHz, DMSO-d6): δ 165.6, 163.7, 146.9, 100.4, 96.0, 41.4, 37.1, 26.0, 

22.3, 19.7. HRMS-ESI (m/z): [M + H]+ calculated for C11H18NO2
+, 196.1332; found, 196.1330. 

4-hydroxy-6-methyl-1-((tetrahydrofuran-2-yl)methyl)pyridin-2(1H)-one (2e)[104]  

1.29 g, 80%. 1H-NMR (700 MHz, DMSO-d6): δ 10.36 (s, 1H), 5.72 (s, 

1H), 5.48 (s, 1H), 4.08 (dd, J = 13.9, 3.2 Hz, 1H ), 4.05-4.01 (m, 1H), 

3.75 (ddd, J = 8.3, 7.2, 6.2 Hz, 1H), 3.67 (dd, J = 13.9, 8.3 Hz, 1H), 3.59 

(td, J = 7.8, 6.1 Hz, 1H), 2.31 (s, 3H), 1.93 (dddd, J = 12.2, 8.5, 6.9, 5.2 Hz, 1H), 1.85 (dddd, J 

= 18.6, 8.7, 7.1, 5.7 Hz, 1H), 1.78 (ddtd, J = 12.0, 8.5, 7.3, 6.2 Hz, 1H), 1.55 (ddt, J = 12.2, 8.7, 

7.1 Hz, 1H). 13C-NMR (176 MHz, DMSO-d6): δ 166.1, 164.3, 148.5, 100.5, 96.3, 77.2, 67.6, 

47.6, 29.2, 25.6, 21.0. HRMS-ESI (m/z): [M + H]+ calculated for C11H16NO3+, 210.1125; 

found, 210.1121. 

4-hydroxy-6-methyl-1-(tetrahydro-2H-pyran-4-yl)pyridin-2(1H)-one (2f) 

0.35 g, 22%. 1H-NMR (700 MHz, DMSO-d6): δ 10.26 (s, 1H), 5.70 (bd, 

J = 1.6 Hz, 1H), 5.40 (s, 1H), 3.89 (dd, J = 11.5, 4.2 Hz, 2H), 3.35 (d, J = 

11.5 Hz, 2H), 2.95-2.85 (bm, 2H), 2.32 (s, 3H), 1.44 (d, J = 11.5 Hz, 1H). 

13C-NMR (176 MHz, DMSO-d6): δ 165.2, 164.6, 147.2, 100.8, 97.9, 67.0, 52.0, 28.2, 21.0. 

HRMS-ESI (m/z): [M + H]+ calculated for C11H16O3N
+, 210.1125; found, 210.1126. 

1-benzyl-4-hydroxy-6-methylpyridin-2(1H)-one (2g)[101] 

0.35 g, 62%. 1H-NMR (500 MHz, DMSO-d6): δ 10.47 (s, 1H), 7.32 (t, 

J = 7.4 Hz, 2H), 7.24 (t, J = 7.4 Hz, 1H), 7.08 (d, J = 7.4 Hz, 2H), 5.79 

(dd, 2.2 Hz, 1H), 5.59 (d, 2.2 Hz 1H), 5.18 (bs, 2H), 2.16 (s, 3H). 

HRMS-ESI (m/z): [M + H]+ calculated for C13H14O2N
+, 216.1019; found, 216.1017. 
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1-(4-fluorobenzyl)-4-hydroxy-6-methylpyridin-2(1H)-one (2h)[105]   

0.50 g, 28%. 1H-NMR (600 MHz, DMSO-d6): δ 10.51 (s, 1H), 7.15 

(d, J = 7.3 Hz, 4H), 5.79 (d, J = 2.3Hz, 1H), 5.59 (d, J = 2.3 Hz, 1H), 

5.16 Hz (s, 2H), 2.17 (s, 3H). 13C-NMR (151 MHz, DMSO-d6): δ 

165.9, 164.0, 162.0, 160.3, 147.5, 133.9, 128.3, 128.2, 115.4, 115.3, 100.5, 95.9, 44.7, 19.9. 

HRMS-ESI (m/z): [M + H]+ calculated for C13H13O2NF+, 234.0925; found, 234.0920. 

1-(2-chlorobenzyl)-4-hydroxy-6-methylpyridin-2(1H)-one (2i)[104]  

0.47 g, 24%. 1H-NMR (500 MHz, DMSO-d6): δ 10.60 (s, 1H), 7.50 (dd, 

J = 7.2, 2.0 Hz, 1H), 7.32-7.26 (m, 2H), 6.59 (dd, J = 7.1, 2.2 Hz, 1H), 

5.88 (d, J = 2.6 Hz, 1H), 5.60 (d, J = 2.6 Hz, 1H), 5.17 (s, 2H), 2.13 (s, 

3H). 13C-NMR (126MHz, DMSO-d6): δ 166.2, 163.7, 147.5, 134.7, 131.3, 129.4, 128.7, 127.7, 

125.9, 100.8, 95.8, 43.8, 19.8. HRMS-ESI (m/z): [M + H]+ calculated for C13H13O2NCl+, 

250.0629; found, 250.0631. 

1-(3,5-dimethylbenzyl)-4-hydroxy-6-methylpyridin-2(1H)-one (2j)  

0.18 g, 10%. 1H-NMR (500 MHz, MeOH-d₄-d4): δ 6.90 (s, 1H), 6.70 

(s, 2H), 5.97 (d, J = 6.3 Hz, 1H), 5.82 (d, J = 2.6 Hz, 1H), 5.25 (s, 

2H), 2.25 (s, 6H), 2.24 (s, 3H). HRMS-ESI (m/z): [M + H]+ 

calculated for C15H18O2N
+, 244.1332; found, 244.1331. 

4-hydroxy-1-(4-methoxybenzyl)-6-methylpyridin-2(1H)-one (2k)[101] 

Using 500.0 mg (3.89 mmol) 4-Hydroxy-6-mehtyl-pyrone. 

Purification by MPLC (DCM/MeOH 1:0 to 4:1) afforded the 

desired product as a white solid (0.38 g, 40%). 1H-NMR (700 

MHz, DMSO-d6): δ 10.50 (s, 1H), 7.05 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 5.77 (d, 

2.2 Hz, 1H), 5.59 (d, 2.2 Hz 1H), 5.11 (bs, 2H, CH2), 3.71 (s, 1H), 2.17 (s, 3H). 13C-NMR (176 

MHz, DMSO-d6): δ 165.8, 164.1, 158.3, 147.6, 129.7, 127.6, 114.0, 100.4, 96.0, 55.1, 44.7, 

20.0. HRMS-ESI (m/z): [M + H]+ calculated for C14H16O3N
+, 246.1125; found, 246.1123. 
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4-hydroxy-6-methyl-1-(thiophen-2-ylmethyl)pyridin-2(1H)-one (2l) 

1.00 g, 60%. 1H-NMR (500 MHz, DMSO-d6): δ 10.52 (s, 1H), 7.39 (dd, 

J = 5.1, 1.0 Hz, 1H), 7.03 (d, J = 3.1 Hz, 1H), 6.94 (dd, J = 5.1, 3.1 Hz, 

1H), 5.76 (s, 1H), 5.56 (s, 1H), 5.26 (s, 2H), 2.32 (s, 3H). 13C-NMR (126 

MHz, DMSO-d6): δ 166.0, 163.6, 148.0, 140.0, 126.5, 126.5, 126.0, 100.5, 95.9, 41.2, 19.9. 

HRMS-ESI (m/z): [M + H]+ calculated for C11H12O2NS+, 222.0583; found, 222.0582. 

4-hydroxy-6-methyl-1-(pyridin-2-ylmethyl)pyridin-2(1H)-one) (2m)[106] 

1.09 g, 64%. 1H-NMR (600 MHz, DMSO-d6): δ 10.46 (s, 1H),  8.48 

(ddd, J = 4.9, 1.9, 0.9 Hz, 1H), 7.74 (td, J = 7.8, 7.6, 1.9 Hz, 1H), 7.26 

(ddd, J = 7.6, 4.9, 1.2 Hz, 1H), 7.10 (d, J = 7.8 Hz, 1H), 5.81 (dd, J = 

2.6, 1.0 Hz, 1H), 5.53 (d, J = 2.6 Hz, 1H), 3.34 (s, 2H), 2.23 (s, 3H). 13C-NMR (151 MHz, 

DMSO-d6): δ 165.9, 163.8, 156.9, 149.0, 147.9, 136.9, 122.3, 120.9, 100.3, 95.8, 47.4, 39.9, 

39.8, 39.7, 39.5, 39.4, 39.2, 39.1, 20.2. HRMS-ESI (m/z): [M + H]+ calculated for C12H13O2N2
+, 

217.0972; found, 217.0972. 

4-hydroxy-6-methyl-1-(pyridin-4-ylmethyl)pyridin-2(1H)-one (2n)[106] 

1.34 g, 80%. 1H-NMR (500 MHz, DMSO-d6): δ 10.49 (bs, 1H), 8.49 

(d, J = 6.0 Hz, 2H), 7.05 (d, J = 6.0 Hz, 2H), 5.84 (d, J = 2.3 Hz, 1H), 

5.59 (d, J = 2.3 Hz, 1H), 5.20 (s, 2H), 2.14 (s, 3H). 13C-NMR (126 

MHz, DMSO-d6): δ 166.2, 163.9, 149.9, 147.4, 146.9, 121.2, 100.7, 95.8, 44.7, 19.9. HRMS-

ESI (m/z): [M + H]+ calculated for C12H13O2N2
+, 217.0972; found, 217.0970. 

4-hydroxy-6-methyl-1-((3-methylpyridin-4-yl)methyl)pyridin-2(1H)-one (2o)  

0.73 g, 41%. 1H-NMR (700 MHz, DMSO-d6): δ 10.6 (s, 1H), 8.37 (s, 

1H), 8.29 (d, J = 5.0 Hz, 1H), 6.42 (d, J = 5.0 Hz, 1H), 5.88 (d, J = 2.6 

Hz, 1H), 5.60 (d, J = 2.6 Hz, 1H), 5.13 (s, 2H), 2.33 (s, 3H), 2.11 (s, 

3H). 13C-NMR (176 MHz, DMSO-d6): δ 166.1, 163.7, 150.1, 147.7, 147.4, 144.8, 130.4, 118.4, 

100.7, 95.8, 43.0, 19.6, 15.3. HRMS-ESI (m/z): [M + H]+ calculated for C13H15O2N2
+, 

231.1128; found, 231.1124. 
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1-((2-chloropyridin-4-yl)methyl)-4-hydroxy-6-methylpyridin-2(1H)-one (2p)  

0.90 g, 50%. 1H-NMR (500 MHz, DMSO-d6): δ 10.65 (s, 1H), 8.34 

(d, J = 5.1 Hz, 1H), 7.17 (s, 1H), 7.07 (d, J = 5.1 Hz, 1H), 5.86 (d, 

J = 2.2 Hz, 1H), 5.59 (d, J = 2.2 Hz, 1H), 5.20 (s, 2H), 2.16 (s, 3H). 

13C-NMR (126 MHz, DMSO-d6): δ 166.3, 163.8, 151.2, 150.6, 150.3, 147.4, 121.5, 120.7, 

100.9, 95.8, 44.6, 20.0. HRMS-ESI (m/z): [M + H]+ calculated for C112H12O2N2Cl+, 251.0582; 

found, 251.0581. 

4-hydroxy-1-(4-methoxyphenyl)-6-methylpyridin-2(1H)-one (2q)[107] 

0.62 g, 35%. 1H-NMR (700 MHz, DMSO-d6): δ 10.51 (s, 1H), 7.08 

(d, J = 8.6 Hz, 2H), 7.01 (d, J = 8.6 Hz, 2H), 5.85 (s, 1H), 5.52 (s, 

1H), 3.79 (s, 3H), 1.83 (s, 3H). 13C-NMR (176 MHz, DMSO-d6): δ 

166.3, 164.2, 158.7, 147.4, 131.5, 129.6, 114.3, 99.8, 96.0, 55.3, 20.8. 

HRMS-ESI (m/z): [M + H]+ calculated for C13H14O3N
+, 232.0895; found, 232.0969. 

4-hydroxy-6-methyl-1-(4-morpholinophenyl)pyridin-2(1H)-one (2r) 

Using 500.0 mg (3.89 mmol) 4-Hydroxy-6-mehtyl-pyrone. 0.50 

g, 45%. 1H-NMR (700 MHz, DMSO-d6): δ 10.48 (s, 1H), 7.00 (s, 

4H), 5.84 (d, J = 2.1 Hz, 1H), 5.52 (d, J = 2.1 Hz, 1H), 3.76-3.73 

(m, 4H), 3.16-3.14 (m, 4H), 1.84 (s, 3H). 13C-NMR (176 MHz, 

DMSO-d6): δ 166.6, 164.79, 150.9, 148.0, 130.4, 129.4, 115.6, 100.2, 96.5, 66.6, 48.6, 21.7. 

HRMS-ESI (m/z): [M + H]+ calculated for C16H19O3N2
+, 287.1390; found, 287.1393. 

4-hydroxy-1-(2-(5-methoxy-1H-indol-3-yl)ethyl)-6-methylpyridin-2(1H)-one (2s)  

Using 500.0 mg (3.89 mmol) 4-Hydroxy-6-mehtyl-pyrone. 0.41 g, 

36%. 1H-NMR (400 MHz, DMSO-d6): δ 10.69 (s, 1H), 10.33 (s, 

1H), 7.22 (d, J = 8.7 Hz, 1H), 7.10 (dd, J = 5.8, 2.5 Hz, 2H), 6.70 

(dd, J = 8.7, 2.5 Hz, 1H), 5.68 (d, J = 2.6 Hz, 1H), 5.56 (d, J = 2.6 

Hz, 1H), 4.10-4.02 (m, 2H), 3.74 (s, 3H), 2.94-2.89 (m, 2H), 2.16 

(s, 3H). 13C-NMR (100 MHz, DMSO-d6): δ 165.5, 163.8, 153.0, 147.3, 131.3, 127.6, 123.6, 

112.0, 111.2, 111.0, 100.1. 99.9, 96.1, 55.2, 44.0, 24.1, 19.8. HRMS-ESI (m/z): [M + H]+ 

calculated for C17H19O3N2
+, 299.1390; found, 299.1389. 
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1-(2-(1H-imidazol-4-yl)ethyl)-4-hydroxy-6-methylpyridin-2(1H)-one (2t)[105]  

Using 500.0 mg (3.89 mmol) 4-Hydroxy-6-mehtyl-pyrone. 0.56 g, 

66%. 1H-NMR (400 MHz, DMSO-d6): δ 11.85 (s, 1H), 10.39 (s, 

1H), 7.55 (s, 1H), 6.78 (s, 1H), 5.69 (d, J = 2.6 Hz, 1H), 5.50 (d , J 

= 2.6 Hz, 1H), 4.01 (dd, J = 8.25, 7.0 Hz, 2H), 2.74 (dd, J = 8.25, 7.0 Hz, 2H), 2.17 (s, 3H). 

13C-NMR (100 MHz, DMSO-d6): δ 165.6, 163.6, 147.3, 135.1, 134.9, 134.2, 100.0, 96.0, 43.3, 

26.0, 19.8. HRMS-ESI (m/z): [M + H]+ calculated for C11H14O2N3
+, 220.1081; found, 

220.1076. 

7-hydroxy-5-oxo-1,2,3,5-tetrahydroindolizine-8-carboxylic acid (2zb)[108]  

To a solution of methyl 7-hydroxy-5-oxo-1,2,3,5-tetrahydroindolizine-8-

carboxylate (2za) (0.16 g, 0.76 mmol) in MeOH/THF/H2O (3:2:2) was added 

LiOH (91.6 mg, 3.82 mmol) and the mixture was stirred at room temperature 

overnight. The mixture was then concentrated, and the residual mixture was 

diluted with water and acidified to pH 5. The precipitated solid was filtered off, washed with 

cold H2O and dried in vacuo to afford the product as a white solid (0.12 g, 82%). 1H-NMR 

(500 MHz, DMSO-d6): δ 5.55 (s, 1H), 3.96 (t, J = 7.5 Hz, 1H), 3.43 (t, J = 7.8 Hz, 1H), 2.08 

(p, J = 7.8 Hz, 1H). 13C-NMR (126 MHz, DMSO-d6): δ 171.4, 169.0, 161.5, 160.7, 96.4, 96.1, 

49.3, 35.3, 20.2. HRMS-ESI (m/z): [M + H]+ calculated for C9H10O4N
+, 196.0604; found, 

196.0601.  

 

5.1.3. Synthesis of Dihydropyrans 

(±) 6-hydroxy-2H-pyran-3(6H)-one (6a)[50] 

To a solution of furfuryl alcohol (5a) (5.00 g, 50.97 mmol) in dichloromethane (100 

mL) at 0 °C was added mCPBA (13.19 g, 76.45 mmol, 1.5 equiv) in 3 portions over 

45 minutes. The reaction mixture was allowed to slowly warm to ambient temperature 

and stirring was continued for 3 h. The reaction was then cooled to -20 °C and stirred 

for 15 minutes before removal of insoluble m-chlorobenzoic acid (white precipitate) by 

filtration. The filtrate was concentrated in vacuo and purified by flash column chromatography 

(EtOAc/Pet. Ether 1:3 to 2:3 to 1:1). The compound was isolated as a white crystalline solid 

(2.82 g, 48%). 1H-NMR (400 MHz, CDCl3): δ 6.95 (dd, J = 10.4 Hz, 2.9 Hz, 1H), 6.17 (d, J = 
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10.4 Hz, 1H), 5.64 (d, J = 2.9 Hz, 1H), 4.58 (d, J = 16.9 Hz, 1H), 4.14 (d, J = 16.9 Hz, 1H), 

3.00 (s, 1H). 

(±) 6-((tert-butyldimethylsilyl)oxy)-2H-pyran-3(6H)-one (7a)[50] 

To a solution of 6a (2.80 g, 24.50 mmol) in THF (25 mL) was added AgNO3 

(5.00 g, 29.41 mmol, 1.2 equiv) and pyridine (8.78 mL, 0.11 mol, 4.44 equiv). 

The suspension was stirred for 20 minutes to allow the dissolution of any large 

lumps of solid. TBSCl (4.80 g, 31.86 mmol, 1.3 equiv) was added at 0 °C and 

precipitation of a white solid resulted. The reaction was stirred overnight at room 

temperature, after which the reaction mixture was filtered through celite and concentrated in 

vacuo. The resulting crude product was subjected to flash column chromatography (5% 

EtOAc/Pet. Ether) to afford the desired product as a white crystalline solid (5.33 g, 95%). 1H-

NMR (400 MHz, CDCl3): δ 6.86 (dd, J = 10.3 Hz, 3.1 Hz, 1H), 6.08 (d, J = 10.3 Hz, 1H), 5.53 

(d, J = 3.1 Hz, 1H), 4.50 (d, J = 16.8 Hz, 1H), 4.07 (d, J = 16.8 Hz, 1H), 0.92 (s, 9H), 0.17 (s, 

6H). 

(±) Cis 6-((tert-butyldimethylsilyl)oxy)-3,6-dihydro-2H-pyran-3-ol (8a)[50]  

To a cooled (- 20 °C) solution of 7a (8.20 g, 35.91 mmol) in methanol (34 mL) 

was added CeCl3 x 7H2O (16.05 g, 43.09 mmol, 1.2 equiv). The reaction mixture 

was kept at -20 °C and sodium borohydride (1.63 g, 43.09 mmol, 1.2 equiv) was 

added portionwise over 45 minutes. The reaction was stirred at -20 °C for 3 h 

before quenching with 35 mL of acetone. The reaction mixture was warmed to 

room temperature, filtered through celite and concentrated in vacuo. The crude was diluted with 

water (150 mL) and dichloromethane (150 mL) and filtered through celite. The filtrate was then 

extracted with dichloromethane (3 x 100 mL) and the combined organic phases were washed 

with brine (200 mL), dried over MgSO₄, filtered and concentrated in vacuo. The crude product 

was purified by flash column chromatography (Pet. Ether/EtOAc 95:5 to 9:1 to 4:1). The 

product was isolated as a racemic mixture of the cis-isomer as a clear colourless oil (5.074 g, 

61%). A mixed fraction of racemic cis- and trans isomer was isolated as well (cis:trans = 0.5:1, 

36.7 mg, 0.5%). Overall dr cis:trans = 1:0.005. 1H-NMR cis-isomer (400 MHz, CDCl3): δ 5.94 

(dd, J = 10.3 Hz, 2.7 Hz, 1H), 5.75 (ddd, J = 10.3 Hz, 2.3 Hz, 1.7 Hz, 1H), 5.25 (m, 1H), 4.13 

(m, 1H), 3.77 (m, 2H), 1.57 (bs, 1H), 0.91 (s, 9H), 0.13 (s, 6H). 
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(±) Cis 6-((tert-butyldimethylsilyl)oxy)-3,6-dihydro-2H-pyran-3-yl methyl carbonate 

(3a)[50] 

To a solution of 8a (4.179 g, 18.14 mmol) in degassed DCM (40 mL) was 

added DMAP (2.770 g, 22.67 mmol, 1.25 equiv), followed by methyl 

chloroformate (1.750 mL, 22.67 mmol, 1.25 equiv). The reaction was stirred 

for 1 d at room temperature before concentrating in vacuo and purification 

by flash column chromatography (5% EtOAc/Pet. Ether). The desired 

product was isolated as a clear colourless oil (4.191 g, 82% yield). 1H-NMR 

(600 MHz, CDCl3): δ 5.91 (dd, J = 10.3 Hz, 2.2 Hz, 1H), 5.84 (dt, J = 10.3 Hz, 2.0 Hz, 1H), 

5.27 (bs, 1H), 5.14-5.09 (m, 1H), 3.92-3.85 (m, 2H), 3.79 (s, 3H), 0.90 (s, 9H), 0.13 (s, 3H), 

0.12 (s, 3H). 13C-NMR (151 MHz, CDCl3): δ 155.4, 132.3, 126.5, 89.3, 68.5, 60.2, 55.0, 25.8, 

-3.5, -4.3, -5.1.     

(±) 6-hydroxy-2-methyl-2H-pyran-3(6H)-one (6b)[53] 

A 250 mL schlenck-flask was evacuated and backfilled with argon. 

Na2S2O8 (11.1 g, 46.82 mmol) and Ru(bpy)3Cl2 x 6 H2O (66.8 mg, 

0.2 mol%) were added and dissolved in water (85 mL), followed by 

(±) 1-(2-furyl)-ethanol (5b) (5.00 g, 44.59 mmol, 1.0 equiv) in 

acetonitrile/DMSO (85 mL, 1:1). The reaction mixture was kept in 

the dark while argon was bubbled through it for 15 minutes. Then the reaction mixture was 

irradiated in the batch photoreactor with rapid stirring for 4 hours at 25 °C. After completion of 

reaction the mixture was diluted with brine (60 mL) and extracted with EtOAc (3 x 200 mL). 

The combined organic phases were dried over MgSO₄, filtered and concentrated in vacuo. The 

crude product was plugged through a short pad of silica and dried in vacuo to afford the product 

as a mixture of trans/cis isomer (1:0.5, 3.85 g, 67%). 1H-NMR trans-isomer (600 MHz, 

CDCl3): δ 6.89 (dd, J = 10.2 Hz, 3.3 Hz, 1H), 6.11 (d, J = 10.2 Hz, 1H), 5.63 (d, J = 3.3 Hz, 

1H), 4.71 (q, J = 6.8 Hz, 6.8 Hz, 6.8 Hz, 1H), 3.00 (bs, 1H), 1.39 (d, J = 6.8 Hz, 3H). 13C-NMR 

trans-isomer (151 MHz, CDCl3): δ 196.9, 144.4, 127.3, 87.7, 70.4, 15.3. 1H-NMR cis-isomer 

(600 MHz, CDCl3): δ 6.94 (dd, J = 10.3 Hz, 1.3 Hz, 1H), 6.15 (dd, J = 10.3 Hz, 1.5 Hz, 1H), 

5.68 (bd, J = 1.3 Hz, 1H), 4.23 (qd, J = 6.8 Hz, 6.8 Hz, 6.8 Hz, 1.1 Hz, 1H), 1.65 (bs, 1H), 1.46 

(d, J = 6.8 Hz, 3H). 13C-NMR cis-isomer (151 MHz, CDCl3): δ 196.4, 148.0, 128.6, 91.0, 75.3, 

16.3. 
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(±) 6-((Tert-butyldimethylsilyl)oxy)-2-methyl-3,6-dihydro-2H-pyran-3-yl methyl 

carbonate (3b)  

 

To a solution of 6b (3.85 g, 30.0 mmol) in THF (140 mL) was added AgNO3 (7.65 g, 45.0 

mmol, 1.5 equiv) and pyridine (10.8 mL, 133.2 mmol, 4.44 equiv). The suspension was stirred 

for 20 minutes to allow the dissolution of any large lumps of solid. TBSCl (6.79 g, 45.0 mmol, 

1.5 equiv) was added at 0 °C and precipitation of a white solid resulted. The reaction was stirred 

overnight and filtered through celite. After dilution with with EtOAc (150 mL) the mixture was 

washed with saturated NaHCO₃ solution (200 mL) and the aqueous phase was extracted with 

EtOAc (3 x 100 mL). The combined organic phases were washed with brine (200 mL), dried 

over MgSO₄ and concentrated in vacuo. The resulting crude product was plugged through a 

short pad of silica and the pad was flushed with DCM. Solvents were removed under reduced 

pressure and the crude was dried under high vacuum overnight to afford the desired product. 

The crude was dissolved in anhydrous DCM (200 mL) and CeCl3 x 7 H2O (2.45 g, 6.58 mmol, 

0.22 equiv) in MeOH (12 mL) was added at -78 °C, followed by addition of NaBH4 (1.36 g, 

35.89 mmol, 1.3 equiv). The reaction was stirred for 4 hours at-78 °C after which it was 

quenched by addition of Acetone (2.1 mL) and saturated NaHCO₃ solution (200 mL). The 

layers were separated and the aqueous phase was extracted with DCM (3 x 100 mL). The 

combined organic phases were washed with brine (200 mL), dried over MgSO₄ and 

concentrated in vacuo. The crude was dissolved in anhydrous DCM (200 mL) and cooled to 0 

°C. DMAP (0.36 g, 2.99 mmol, 0.1 equiv), pyridine (14.5 mL, 179.21 mmol, 6 equiv) and 

methyl chloroformate (13.9 mL, 179.21 mmol, 6 equiv) was added and the reaction was allowed 

to stir overnight at room temperature. The reaction mixture was quenched with saturated 

NaHCO₃ solution (200 mL), extracted with DCM (5 x 50 mL), dried over MgSO₄ and 

concentrated in vacuo. The crude was purified by flash chromatography (Pet. Ether/Tol 9:1 + 

1% NEt3) to afford the desired trans-product as a colorless oil (5.86 g, 65%). The cis-isomer 

was isolated in a separated fraction (2.93 g, 32%). 1H-NMR trans-isomer (400 MHz, CDCl3): 

δ 5.83 (bd, J = 10.3 Hz, 1H), 5.78 (ddd, J = 10.3 Hz, 2.7 Hz, 1.9 Hz 1H), 5.31 (d, J = 1.9 Hz, 

1H), 4.85 (ddd, J = 9.2 Hz, 2.7 Hz, 1.6 Hz, 1H), 4.04 (dd, J = 9.2 Hz, 6.3 Hz, 1H), 3.81 (s, 3H), 
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1.25 (d, J = 6.3 Hz, 1H), 0.90 (s, 9H), 0.12 (s, 6H). 13C-NMR trans-isomer (100 MHz, CDCl3): 

δ 155.2, 130.8, 127.3, 89.2, 74.9, 64.4, 55.1, 25.8, 18.2, 18.1, -5.2. 1H-NMR cis-isomer (400 

MHz, CDCl3): δ 6.01-5.94 (m, 2H), 5.31 (bs, 1H), 4.80-4.78 (m, 1H), 3.85 (ddd, J = 6.5 Hz, 

6.5 Hz, 2.8 Hz, 1H), 3.78 (s, 3H), 1.27 (d, J = 6.5 Hz, 1H), 0.90 (s, 9H), 0.12 (s, 6H). 13C-NMR 

cis-isomer (100 MHz, CDCl3): δ 155.9, 136.3, 124.2, 92.8, 69.8, 69.6, 55.0, 25.9, 18.3, 16.5, -

3.7, -4.5. 

(±) 6-hydroxy-2,2-dimethyl-2H-pyran-3(6H)-one (6c)[109]  

 

An oven dried flask was evacuated and filled with argon three times. To this flask was added 

dry THF (160 mL), followed by freshly distilled furan (8.70 mL, 120 mmol, 1.5 equiv). The 

solution was stirred and cooled to 0° C, and then n-BuLi (38.4 mL, 1.2 equiv, 2.5 M solution 

in hexanes) was added slowly. The reaction mixture was allowed to stir at 0° C for 1 hour at 

which point the reaction mixture was cooled to -78° C. Freshly distilled acetone (5.88 mml, 

80.0 mmol) was added slowly and the reaction mixture was allowed to stir and warm to room 

temperature over 18 hours. The resulting reaction mixture was quenched under inert atmosphere 

via slow addition of saturated saturated NH4Cl (50 mL) followed by brine (50 mL). The aqueous 

phase was extracted with EtOAc (3 x 100 mL). The combined organic phases were dried over 

MgSO₄ and concentrated via rotary evaporator. The resulting crude product was dissolved in 

acetonitrile/DMSO (160 mL, 1:1) and loaded into a 500 mL oven dried schlenck- flask under 

argon. Na2S2O8 (20.0 g, 84.00 mmol, 1.05 equiv) and Ru(bpy)3Cl2 x 6 H2O (149.7 mg, 0.2 

mol%) dissolved in water (160 mL) were added to the mixture and argon was bubbled through 

it for 15 minutes in the dark. Then the reaction mixture was irradiated in the batch photoreactor 

with rapid stirring for 5 hours at 25 °C. After completion of reaction the mixture was diluted 

with brine (100 mL) and extracted with EtOAc (3 x 200 mL). The combined organic phases 

were dried over MgSO₄, filtered and concentrated in vacuo. The crude product was plugged 

through a short pad of silica and dried in vacuo to afford the product as colorless oil (5.69 g, 

50%).  1H-NMR (400 MHz, CDCl3): δ 6.87 (dd, J = 10.3, 2.1 Hz, 1H), 6.03 (dd, J = 10.3, 1.4 

Hz, 1H), 5.70 (dd, J = 2.1, 1.4 Hz, 1H), 4.63 (d, J = 5.9 Hz, 1H), 1.47 (s, 3H), 1.38 (s, 3H). 
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(±) 6-((tert-butyldimethylsilyl)oxy)-2,2-dimethyl-2H-pyran-3(6H)-one (7c) 

To a solution of 6c (2.84 g, 20.0 mmol) in THF (200 mL) was added AgNO3 

(4.08 g, 24.0 mmol, 1.2 equiv) and pyridine (7.2 mL, 88.8 mmol, 4.44 equiv). 

The suspension was stirred for 20 minutes to allow the dissolution of any large 

lumps of solid. TBSCl (6.03 g, 40.0 mmol, 2 equiv) was added at 0 °C and 

precipitation of a white solid resulted. The reaction was stirred overnight and 

filtered through celite. After dilution with with EtOAc (150 mL) the mixture was washed with 

saturated NaHCO₃ solution (200 mL) and the aqueous phase was extracted with EtOAc (3 x 

100 mL). The combined organic phases were washed with brine (200 mL), dried over MgSO₄ 

and concentrated in vacuo. The resulting crude product was plugged through a short pad of 

silica and the pad was flushed with DCM. Solvents were removed under reduced pressure to 

give the product as a colorless oil (5.08 g, 99%). 1H-NMR (500 MHz, CDCl3): δ δ 6.77 (dd, J 

= 10.3, 2.4 Hz, 1H), 5.99 (dd, J = 10.3, 1.2 Hz, 1H), 5.64 (dd, J = 2.4, 1.2 Hz, 1H), 1.47 (s, 3H), 

1.37 (s, 3H), 0.92 (s, 9H), 0.17 (s, 6H). 13C-NMR (126 MHz, CDCl3): δ 199.7, 147.4, 125.3, 

88.2, 79.3, 27.1, 25.8, 24.1, 18.1, -3.8, -5.0. 

(±) 6-((tert-butyldimethylsilyl)oxy)-2,2-dimethyl-3,6-dihydro-2H-pyran-3-yl methyl 

carbonate (3c) 

 

7c (5.05 g, 19.69 mmol) was dissolved in anhydrous DCM (200 mL) and CeCl3 x 7 H2O (1.61 

g, 4.33 mmol, 0.22 equiv) in MeOH (8.5 mL) was added at -78 °C, followed by addition of 

NaBH4 (0.89 g, 23.63 mmol, 1.2 equiv). The reaction was stirred for 4 hours at-78 °C after 

which it was quenched by addition of Acetone (10 mL) and saturated NaHCO₃ solution (100 

mL). The layers were separated and the aqueous phase was extracted with DCM (5 x 50 mL). 

The combined organic phases were washed with brine (200 mL), dried over MgSO₄ and 

concentrated in vacuo. The crude was dissolved in anhydrous DCM (200 mL) and cooled to 0 

°C. DMAP (0.24 g, 1.97 mmol, 0.1 equiv), pyridine (9.5 mL, 118.14 mmol, 6 equiv) and methyl 
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chloroformate (9.2 mL, 118.14 mmol, 6 equiv) was added and the reaction was allowed to stir 

overnight at room temperature. The reaction mixture was quenched with saturated NaHCO₃ 

solution (200 mL), extracted with DCM (5 x 50 mL), dried over MgSO₄ and concentrated in 

vacuo. The crude was purified by flash chromatography (Pet. Ether/Tol 9:1 + 1% NEt3) to give 

the desired trans-product as a white oil (4.20 g, 67%). 1H-NMR (500 MHz, CDCl3): δ 5.78-

5.77 (m, 2H), 5.36-5.34 (m, 1H), 4.94-4.92 (m, 1H), 3.81 (s, 3H), 1.26 (s, 6H), 0.90 (s, 9H), 

0.13 (s, 3H), 0.12 (s, 3H). 13C-NMR (126 MHz, CDCl3): δ 155.8, 131.2, 125.4, 89.0, 75.9, 71.7, 

55.1, 26.9, 25.9, 22.4, 18.2, -3.8, -5.0. 

(±) 5-oxo-5,6-dihydro-2H-pyran-2-yl acetate (4a)[110]  

To 6a (1.75 g, 15.31 mmol) in DCM (150 mL) was added pyridine (1.85 mL, 22.97 

mmol, 1.5 equiv) and acetic anhydride (2.17 mL, 22.97 mmol, 1.5 equiv) at 0 °C. 

The mixture was allowed to warm to room temperature and kept stirring for 2 days. 

The reaction was quenched by addition of saturated NaHCO₃ solution (50 mL) and 

the layers were separated. The aqueous layer was extracted with EtOAc (3 x 50 mL). 

The combined organic layers were washed with brine (150 mL), dried over MgSO₄ and 

concentrated in vacuo. Flash chromatography (Pet. Ether/EtOAc 9:1 + 1% NEt3) afforded the 

product as a colorless oil (1.77 g, 74%). 1H-NMR (400 MHz, CDCl3): δ 6.92 (dd, J = 10.4, 3.6 

Hz, 1H), 6.49 (dd, J = 3.6, 0.8 Hz, 1H), 6.27 (d, J = 10.4 Hz, 1H), 4.51 (d, J = 17.0 Hz, 1H), 

4.23 (dd, J = 17.0, 0.5 Hz, 1H), 2.14 (s, 3H). 13C-NMR (100 MHz, CDCl3): δ 193.5, 169.7, 

142.4, 128.9, 86.8, 67.5, 21.1. 

(±) Trans-6-methyl-5-oxo-5,6-dihydro-2H-pyran-2-yl acetate (4b)[111]  

To 6b (500 mg, 3.90 mmol) in DCM (40 mL) was added pyridine 

(0.38 mL, 4.68 mmol, 1.2 equiv) and acetic anhydride (0.44 mL, 4.68 

mmol, 1.2 equiv) at 0 °C. The mixture was allowed to warm to room 

temperature and kept stirring for 2 days. The reaction was quenched 

by addition of saturated NaHCO₃ solution (50 mL) and the layers 

were separated. The aqueous layer was extracted with EtOAc (3 x 50 

mL). The combined organic layers were washed with brine (150 mL), dried over MgSO₄ and 

concentrated in vacuo. Flash chromatography (Pet. Ether/EtOAc 1:0 to 4:1) afforded two 

separated fractions of the racemic cis- and desired trans isomer (0.3: 1, 595 mg, 90%). 1H-

NMR trans-isomer (700 MHz, CDCl3): δ 6.87 (dd, J = 10.2 Hz, 3.6 Hz, 1H), 6.48 (d, J = 3.6 

Hz, 1H), 6.21 (d, J = 10.2 Hz, 1H), 4.60 (q, J = 6.7 Hz, 6.7 Hz, 6.7 Hz, 1H), 2.14 (s, 3H), 1.41 
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(d, J = 6.7 Hz, 3H). 13C-NMR trans-isomer (176 MHz, CDCl3): δ 196.0, 169.6, 141.8, 128.4, 

87.1, 72.5, 21.0, 15.4. 1H-NMR cis-isomer (700 MHz, CDCl3): δ 6.87 (dd, J = 10.3 Hz, 3.6 Hz, 

1H), 6.55 (bs, 1H), 6.22 (d, J = 10.3 Hz, 1H), 4.37 (q, J = 7.0 Hz, 7.0 Hz, 7.0 Hz, 1H), 2.15 (s, 

3H), 1.49 (d, J = 7.0 Hz, 3H). 13C-NMR cis-isomer (176 MHz, CDCl3): δ 195.7, 169.2, 143.7, 

128.5, 88.0, 76.0, 21.2, 18.3. 

(±) 6,6-dimethyl-5-oxo-5,6-dihydro-2H-pyran-2-yl acetate (4c)[112] 

To 6c (2.84 g, 20.0 mmol) in DCM (200 mL) was added pyridine (4.03 mL, 50.0 

mmol, 2.5 equiv) and acetic anhydride (3.77 mL, 40.0 mmol, 2 equiv) at 0 °C. The 

mixture was allowed to warm to room temperature and kept stirring overnight. The 

reaction was quenched by addition of saturated NaHCO₃ solution (100 mL) and the 

layers were separated. The aqueous layer was extracted with DCM (3 x 100 mL). 

The combined organic layers were washed with brine (250 mL), dried over MgSO₄ and 

concentrated in vacuo. Flash chromatography (Pet. Ether/EtOAc 1:0 to 4:1) provided the 

desired product as a yellow oil (2.06 g, 56%). 1H-NMR (700 MHz, CDCl3): δ 6.82 (dd, J = 

10.3, 3.2 Hz, 1H), 6.56 (dd, J = 3.2, 1.1 Hz, 1H), 6.16 (dd, J = 10.3, 1.1 Hz, 1H), 2.12 (s, 3H), 

1.49 (s, 3H), 1.42 (s, 3H). 13C-NMR (176 MHz, CDCl3): δ 198.4, 169.7, 141.7, 127.1, 86.9, 

80.2, 27.2, 21.4. 

(±) Tert-butyl 2-acetoxy-5-oxo-1-oxa-9-azaspiro[5.5]undec-3-ene-9-carboxylate (4d) 

 

An oven dried flask was evacuated and filled with argon three times. To this flask was added 

dry THF (125 mL), followed by freshly distilled furan (2.91 mL, 40.15 mmol, 1.6 equiv). The 

solution was stirred and cooled to 0° C, and then n-BuLi (16.5 mL, 1.05 equiv, 1.6 M solution 

in hexanes) was added slowly. The reaction mixture was allowed to stir at 0° C for 1 hour at 

which point the reaction mixture was cooled to -78° C. Tert-butyl 4-oxopiperidine-1-

carboxylate (5.00 g, 25.09 mmol) was added slowly and the reaction mixture was allowed to 

stir and warm to room temperature over 18 hours. The resulting reaction mixture was quenched 

under inert atmosphere via slow addition of saturated NH4Cl (50 mL) followed by brine (50 
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mL). The aqueous phase was extracted with EtOAc (3 x 100 mL). The combined organic phases 

were dried over MgSO₄ and concentrated via rotary evaporator. The resulting crude product 

was dissolved in acetonitrile/DMSO (50 mL, 1:1) and loaded into a 250 mL oven dried 

schlenck- flask under argon. Na2S2O8 (6.27 g, 26.3 mmol, 1.05 equiv) and Ru(bpy)3Cl2 x 6 H2O 

(37.6 mg, 0.2 mol%) dissolved in water (50 mL) were added to the mixture and argon was 

bubbled through it for 15 minutes in the dark. Then the reaction mixture was irradiated in the 

batch photoreactor with rapid stirring for 5 hours at 25 °C. After completion of reaction the 

mixture was diluted with brine (100 mL) and extracted with EtOAc (3 x 200 mL). The combined 

organic phases were dried over MgSO₄, filtered and concentrated in vacuo. The crude product 

was plugged through a short pad of silica and dried in vacuo to afford the product as colorless 

oil (5.90 g, 83%). This was dissolved in DCM (200 mL). Pyridine (4.19 mL, 52.1 mmol, 2.5 

equiv) and acetic anhydride (2.36 mL, 25.0 mmol, 1.2 equiv) were then added at 0 °C. The 

mixture was allowed to warm to room temperature and kept stirring overnight. The reaction 

was quenched by addition of saturated NaHCO₃ solution (100 mL) and the layers were 

separated. The aqueous layer was extracted with DCM (3 x 100 mL). The combined organic 

layers were washed with brine (250 mL), dried over MgSO₄ and concentrated in vacuo. Flash 

chromatography (Pet. Ether/EtOAc 1:0 to 9:1) provided the desired product as a yellow solid 

(6.00 g, 89%). 1H-NMR (500 MHz, CDCl3): δ 6.83 (dd, J = 10.3, 3.2 Hz, 1H), 6.61 (dd, J = 

3.2, 1.1 Hz, 1H), 6.19 (dd, J = 10.3, 1.1 Hz, 1H), 4.07-3.86 (m, 2H), 3.20-2.98 (m, 2H), 2.12 

(s, 3H), 2.05-1.99 (m, 2H), 1.76 (td, J = 13.1, 4.7 Hz, 1H)1.68-1.61 (m, 1H), 1.46 (s, 9H). 13C-

NMR (126 MHz, CDCl3): δ 196.9, 169.6, 147.0, 141.3, 127.3, 86.7, 79.9, 79.2, 38.1, 31.6, 28,6, 

21.2. HRMS-ESI (m/z): [M + H]+ calculated for C16H24NO6
+, 326.1598; found, 326.1600. 

(±) 2-hydroxy-1-oxa-9-azaspiro[5.5]undec-3-en-5-one (4e) 

4d (22.0 mg, 0.07 mmol) was treated with HCl in dioaxen (4 M, 1 mL) at 

room temperature overnight. Diethyl ether (10 mL) and 1 M aqueous HCl 

(10 mL) were added and the phases were separated. The aqueous phase was 

concentrated and triturated with diethyl ether. The white precipitate was 

filtered off and dried in vacuo to afford the desired product (14.7 mg, 99%). 1H-NMR (500 

MHz, DMSO-d6): δ 8.24 (d, J = 5.6 Hz, 1H), 6.47 (d, J = 5.6 Hz, 1H), 3.21-3.11 (m, 5H), 3.07-

2.97 (m, 1H), 2.73 (dt, J = 11.8, 6.0 Hz, 4H). 13C-NMR (126 MHz, DMSO-d6): δ 169.6, 145.1, 

141.7, 120.9, 119.4, 43.5, 42.9, 24.4, 24.3. 
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5.1.4. Synthesis of Pyrano-Furo-Pyridones 

General procedure 2 (GP2): An oven-dried microwave vial was loaded with 5 mol% superstable 

Pd(0) catalyst[55] (Pd[P[3,5-(CF3)2C6H3]3]3) and the bis-electrophile under Argon atmosphere. 

THF (0.2 M) was added and the vial was sealed. After stirring for 10 minutes the bis-

nucleophile was added (for pyridones: DMF was added subsequently to afford a 3:1 mixture of 

THF/DMF with a final concentration of 0.1 M). The sealed vial was then subjected for 

microwave irradiation (200 W, 100 to 110 °C, 30 to 60 minutes). The reaction mixture was 

concentrated in vacuo, immobilized on isolute and purified by FC or MPLC.  

General procedure 3 (GP3):[50] An oven-dried schlenck-tube was filled with Argon, charged 

with 10 mol% Pd(Ph3)4, evacuated and then back-filled with Argon. The bis-electrophile was 

dissolved in toluene (0.1 M) in a separate vessel under Argon atmosphere and then added to the 

Pd-catalyst and allowed to stir for 20 min before the bis-nucleophile was added (for pyridones: 

DMF was added subsequently to afford a 3:1 mixture of toluene/DMF with a final concentration 

of 0.05 M). After stirring for 3-6 h at room temperature, additional 10 mol% Pd-catalyst were 

added to the reaction mixture. The mixture was then allowed to stir at room temperature 

overnight, filtered through celite and concentrated in vacuo. The crude was immobilized on 

isolute and purified by FC or MPLC. 

General procedure 4 (GP4): The glycal substrate was dissolved in DMF (0.1 M) and Pd(OAc)2 

together with boronic acid were added. The mixture was stirred overnight, filtered through a 

short pad of silica and concentrated under reduced pressure. The crude was purified by MPLC. 

General procedure 5 (GP5): The glycal substrate was dissolved in acetonitrile/H2O (1:1, 0.075 

M) and NBS (1.5 eq.) was added at room temperature. The mixture was stirred overnight before 

being quenched by the addition of saturated NaHCO3 and diluted with EtOAc. The layers were 

separated and the aqueous phase was extracted with EtOAc three times. The combined organic 

layers were washed with brine, dried over MgSO4 and concentrated in vacuo. The crude was 

immobilized on isolute and purified by FC or MPLC. The hydrobromination product was 

dissolved in MeOH (0.1 M) and cooled to 0 °C. NaBH4 (1.2 eq) was added and the reaction 

mixture was stirred at 0 °C for 30 minutes. The reaction was quenched by addition of acetone 

(1 mL) and the solvents were removed in vacuo. The crude was immobilized on isolute and 

purified by MPLC or prep. HPLC. 

General procedure 6 (GP6):[112] An oven-dried schlenck-tube was filled with Argon, charged 

with 5 mol% Pd(Ph3)4, evacuated and then back-filled with Argon. The bis-electrophile was 
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dissolved in THF (0.15 M) in a separate vessel under Argon atmosphere and then added to the 

Pd-catalyst and allowed to stir for 20 min before the bis-nucleophile was added as a solution in 

DMF (0.4 M) and triethylamine (1 equiv). The mixture was then allowed to stir at room 

temperature overnight, before being quenched by addition of saturated NaHCO₃ solution. The 

mixture was diluted with EtOAc, the phases were separated, and the aqueous phase was 

extracted with EtOAc three times. The combined organic layers were washed with brine, dried 

over MgSO₄ and concentrated in vacuo. The crude was immobilized on isolute and purified by 

FC or MPLC. 

General procedure 7 (GP7):[112] To a stirred solution of the bis-electrophile in dry DCM (0.075 

M) was added the bis-nucleophile and quinine (1 equiv). After stirring at 60 °C in a sealed vial 

for 18 h, the solvent was removed under reduced pressure and the crude was purified by MPLC.  

 

5.1.4.1. Synthesis of General Scaffold A Isomers 

(±) 3-methyl-5a,9a-dihydro-1H,9H-furo[3,2-c:4,5-c']dipyran-1-one (9a)[50] 

According to GP2, 3a (200.0 mg, 0.69 mmol) was reacted with 4-hydroxy-

6-methyl-pyrone (1a) (86.9 mg, 0.69 mmol) at 100 °C for 1 hour. 

Purification by MPLC (cyclohexane/EtOAc) afforded the product as a white 

solid (122.4 mg, 86%). 1H-NMR (600 MHz, DMSO-d6): δ 6.86 (d, J = 6.2 Hz, 1H,), 6.31 (s, 

1H,), 5.24 (dd, J = 8.3 Hz, 4.3 Hz, 1H), 5.18 (dd, 6.2 Hz, 4.3 Hz, 1H), 4.14 (dd, 10.9 Hz, 4.7 

Hz, 1H), 3.55 (dd 10.9 Hz, 9.0 Hz, 1H), 3.44 (td, 9.0 Hz, 8.3 Hz, 4.7 Hz, 1H), 2.22 (s, 3H). 

HRMS-ESI (m/z): [M + H]+ calculated for C11H11O4
+, 207.0652; found, 207.0653.  

(±) 3-methyl-5a,6,9,9a-tetrahydro-1H,7H-furo[3,2-c:4,5-c']dipyran-1-one (10a); (±) 4-

hydroxy-6-methyl-3-(tetrahydro-2H-pyran-3-yl)-2H-pyran-2-one (11a); 

A suspension of 9a (13.5 mg, 0.07 mmol) and Pd/C (1.3 

mg, 10 wt%) in toluene (0.7 mL) was hydrogenated at 20 

°C for 7 hours using a H2-balloon. The catalyst was 

filtered off and the solvent removed in vacuo. The crude 

was purified by prep. HPLC to afford the product 11a (5.0 

mg, 37%) and 10a (7.6 mg, 55%) in separated fractions. 1H-NMR product 10a (700 MHz, 

CDCl3): δ 5.96 (s, 1H), 4.99-4.95 (bm, 1H), 4.05 (dd, J = 11.8 Hz, 5.7 Hz, 1H), 3.81 (m, 1H), 

3.65 (dd, J = 10.9 Hz, 10.9 Hz 1H), 3.54 (dd, J = 11.8 Hz, 7.4 Hz, 1H), 3.35 (dd, J = 13.4 Hz, 
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6.7 Hz, 1H), 2.27 (s, 3H) 2.21-2.09 (m, 2H).13C-NMR  product 10a (176 MHz, CDCl3): δ 

172.5, 166.0, 162.1, 102.4, 96.1, 82.9, 66.6, 62.7, 37.1, 26.7, 20.6. HRMS-ESI (m/z) product 

10a: [M + H]+ calculated for C11H13O4
+, 209.0808; found, 209.0807. 1H-NMR product 11a 

(600 MHz, CDCl3): δ 11.50 (s, 1H), 5.83 (s, 1H), 4.16 (bdd, J = 11.9 Hz, 4.3 Hz, 1H), 4.09 (bd, 

J = 12.3 Hz, 1H), 3.89 (dd, J = 12.3 Hz, 3.3 Hz, 1H), 3.64 (td, J = 12.7 Hz, 11.9 Hz, 2.4 Hz, 

1H), 3.24 (m, 1H), 2.19 (s, 3H) 1.95 (bd, J = 13.9 Hz, 1H), 1.85 (tt, J = 13.9 Hz, 13.7 Hz, 4.4 

Hz, 4.3 Hz, 1H), 1.69 (ddt, J = 20.3 Hz, 12.7 Hz, 4.3 Hz, 4.3 Hz, 1H), 1.56 (bd, J = 20.3 Hz, 

1H). 13C-NMR product 11a (151 MHz, CDCl3): δ 166.5, 166.2, 159.7, 102.8, 102.2, 70.2, 69.7, 

33.0, 28.2, 23.0, 19.7. HRMS-ESI (m/z) product 11a: [M + H]+ calculated for C11H15O4
+, 

211.0965; found, 211.0965.  

(±) 6b,9,10,10a-tetrahydro-6H,7H-pyrano[3',4':4,5]furo[3,2-c]chromen-6-one (10b); (±) 

4-hydroxy-3-(tetrahydro-2H-pyran-3-yl)-2H-chromen-2-one (11b) 

According to GP3, 3a (50.0 mg, 0.17 mmol) was 

reacted with 1b (28.1 mg, 0.17 mmol). Purification 

by MPLC (cyclohexane/EtOAc 1:0 to 0:1) afforded 

the product (22.4 mg, 53%). The product was directly 

suspended with Pd/C (2.5 mg, 10 wt%) in toluene (1.5 mL) and was hydrogenated at 20 °C for 

4 hours using a H2-balloon. The catalyst was filtered off and the solvent removed in vacuo. The 

crude was purified by prep. HPLC to afford the product 10b (7.5 mg, 33%) and 11b (5.4 mg, 

28%) in separated fractions. 1H-NMR product 10b (700 MHz, CDCl3): δ 7.68 (dd, J = 7.9 Hz, 

1.5 Hz, 1H) 7.58 (ddd, J = 8.5 Hz, 7.7 Hz, 1.5 Hz, 1H), 7.39 (d, J = 8.5 Hz, 1H), 7.30 (dd, J = 

7.9 Hz, 7.7 Hz, 1H), 5.17 (dt, J = 10.9 Hz, 4.3 Hz, 4.3 Hz, 1H), 4.13 (dd, J = 12.1 Hz, 5.9 Hz, 

1H), 3.87 (ddd, J = 11.3 Hz, 5.5 Hz, 4.0 Hz, 1H), 3.72 (ddd, J = 11.3 Hz, 10.4 Hz, 4.3 Hz, 1H), 

3.65 (dd, J = 12.1 Hz,  7.4 Hz, 1H) 3.51 (dd,  J = 10.9 Hz, 7.4 Hz, 1H), 2.30-2.21 (m, 2H). 13C-

NMR product 10b (176 MHz, CD2Cl2): 167.9, 160.7, 155.2, 132.8, 124.2, 122.9, 117.3, 112.8, 

105.2, 83.6, 66.5, 62.7, 38.2, 26.7. HRMS-ESI (m/z) product 10b: [M + H]+ calculated for 

C14H13O4
+, 245.0814; found, 245.0808. 1H-NMR  product 11b (700 MHz, CDCl3): δ 12.14 (s, 

1H), 7.95 (dd,  J = 7.9 Hz, 1.3 Hz, 1H) 7.52 (dd, J = 8.5 Hz, 8.5 Hz, 1H), 7.32-7.28 (m, 2H), 

4.25 (dd, J = 11.6 Hz, 4.2 Hz, 1H), 4.22 (d, J = 12.5 Hz, 1H), 3.98 (d, J = 12.5 Hz, 3.2 Hz, 1H), 

3.74-3.69 (m, 1H), 3.44-3.40 (m, 1H), 2.03 (d, J = 14.1 Hz, 1H), 1.98-1.92 (m, 1H), 1.77 (ddd, 

J = 14 Hz, 4.2 Hz, 4.2 Hz, 1H), 1.61 (bd, J = 14.0 Hz, 1H). 13C-NMR product 11b (176 MHz, 

CD2Cl2): 167.8, 161.8, 152.4, 131.8, 124.0, 123.9, 117.2, 116.3, 105.2, 70.2, 69.8, 33.5, 28.3, 

22.9. HRMS-ESI (m/z) product 11b: [M + H]+ calculated for C14H15O4
+, 247.0965; found, 

247.0967. 
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(±) 7,8-dimethyl-8,9b-dihydro-1H-pyrano[3',4':4,5]furo[3,2-c]pyridin-9(4aH)-one (9c) 

According to GP2, 3a (1.00 g, 3.47 mmol) was reacted with 2b (0.48 g, 3.47 

mmol) at 110 °C for 1 hour. Purification by MPLC (DCM/MeOH 1:0 to 

95:5) afforded the product (0.50 g, 66%). 1H-NMR (700 MHz, DMSO-d6): 

δ 6.81 (d, J = 6.2 Hz, 1H), 6.00 (s, 1H), 5.16 (dd, J = 6.2 Hz, 4.3 Hz, 1H), 5.04 (dd, J = 7.7 Hz, 

4.3 Hz, 1H), 4.16 (dd, J = 10.7 Hz, 4.8 Hz, 1H), 3.47 (dd, J = 10.2 Hz, 10.2 Hz, 1H), 3.39-3.32 

(m, 4H), 2.32 (s, 3H). 13C-NMR (176 MHz, DMSO-d6): δ 166.4, 160.7, 150.0, 149.5, 105.1, 

99.7, 94.3, 76.2, 64.2, 37.5, 29.8, 20.7. LCMS-ESI (m/z): 220.16 [M + H]+. 

(±) 7,8-dimethyl-4,4a,8,9b-tetrahydro-1H-pyrano[3',4':4,5]furo[3,2-c]pyridin-9(3H)-one 

(10c) 

According to GP2, 3a (50.0 mg, 0.17 mmol) was reacted with 2b (24.1 mg, 

0.17 mmol) at 110 °C for 1 hour. After filtration over celite the crude product 

was directly suspended with Pd/C (5 mg, 10 wt%) in toluene (1.5 mL) and 

was hydrogenated at 20 °C for 6 hours using a H2-balloon. The catalyst was filtered off and the 

filtrate was diluted with EtOAc (10 mL) and washed with saturated Na₂CO₃ solution (15 mL). 

The aqueous phase was extracted with EtOAc (3 x 10 mL) and the combined organic layers 

were washed with brine (50 mL), dried over MgSO₄ and concentrated in vacuo. The crude was 

purified by MPLC (DCM/MeOH 1:0 to 95:5) to afford the product (8.3 mg, 21%). 1H-NMR 

(700 MHz, CDCl3): δ 5.88 (s. 1H), 4.87-4.83 (m, 1H), 4.13 (dd, J = 11.4, 6.0 Hz, 1H), 3.84-

3.80 (m, 1H), 3.63 (td, J = 11.4, 3.6 Hz, 1H), 3.50-3.44 (m, 4H), 3.41 (dd, J = 14.2, 7.2 Hz, 

1H), 2.33 (s, 3H), 2.15 (ddd, J = 20.7, 10.6, 5.2 Hz, 1H), 2.08 (dq, J = 15.0, 3.3 Hz, 1H). 13C-

NMR (176 MHz, CDCl3): δ 167.5, 161.9, 148.5, 109.1, 95.7, 81.6, 67.4, 62.9, 38.2, 30.7, 27.0, 

21.8. HRMS-ESI (m/z): [M + H]+ calculated for C12H16NO3
+, 222.1125; found, 222.1124. 

(±) 7-methyl-8,9b-dihydro-1H-pyrano[3',4':4,5]furo[3,2-c]pyridin-9(4aH)-one (9d) 

According to GP2, 3a (20.0 mg, 0.07 mmol) was reacted with 2a (8.68 mg, 

0.07 mmol) at 110 °C for 1 hour. Purification by FC (DCM/MeOH 1:0 to 

9:1) afforded the product (15.2 mg, 98%). 1H-NMR (700 MHz, CD2Cl2): δ 

6.77 (d, J = 6.2 Hz, 1H), 5.95 (s, 1H), 5.33 (s, 1H), 5.20 (dd, J = 6.2 Hz, 4.4 Hz, 1H), 5.01 (dd, 

J = 7.0 Hz, 4.4 Hz, 1H), 4.32 (dd, J = 10.4 Hz, 4.5 Hz, 1H), 3.55 (dd, J = 10.3 Hz, 10.3 Hz, 

1H), 3.52-3.49 (m, 1H), 2.31 (s, 3H). 13C-NMR (176 MHz, CD2Cl2): δ 171.5, 162.1, 150.5, 

149.0, 106.9, 99.3, 96.8, 78.3, 65.0, 37.5, 19.6. HRMS-ESI (m/z): [M + H]+ calculated for 

C11H12O3N
+, 206.0812; found, 206.0821.  
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(±) 7-methyl-4,4a,8,9b-tetrahydro-1H-pyrano[3',4':4,5]furo[3,2-c]pyridin-9(3H)-one 

(10d) 

According to GP2, 3a (50.0 mg, 0.17 mmol) was reacted with 2a (22.0 mg, 

0.17 mmol) at 110 °C for 1 hour. After filtration over celite the crude was 

purified by FC (EtOAc/MeOH 1:0 to 9:1) and the product was directly 

suspended with Pd/C (5 mg, 10 wt%) in toluene (2 mL) and was hydrogenated at 20 °C for 6 

hours using a H2-balloon. The catalyst was filtered off and the solvent removed in vacuo. The 

crude was purified by MPLC (EtOAc/MeOH 1:0 to 9:1) to afford the product (3.6 mg, 10%). 

1H-NMR (700 MHz, CD2Cl2): δ 11.80 (s, 1H), 5.82 (s, 1H), 4.89-4.85 (m, 1H), 4.01 (dd, J = 

11.8, 6.0 Hz, 1H), 3.77-3.73 (m, 1H), 3.61 (td, J = 10.9, 3.8 Hz, 1H), 3.52 (dd, J = 11.8, 7.5 Hz, 

1H), 3.34 (dd, J = 13.8, 7.5 Hz, 1H), 2.27 (s, 3H), 2.12 (ddt, J = 15.2, 10.3, 5.2 Hz, 1H), 2.04 

(dq, J = 14.9, 3.8 Hz, 1H). 13C-NMR (176 MHz, CD2Cl2): δ 170.7, 163.5, 148.2, 109.0, 95.0, 

82.0, 67.2, 63.2, 38.0, 27.5, 19.5. HRMS-ESI (m/z): [M + H]+ calculated for C11H14NO3
+, 

208.0968; found, 208.0970. 

(±) 8-cyclobutyl-7-methyl-8,9b-dihydro-1H-pyrano[3',4':4,5]furo[3,2-c]pyridin-9(4aH)-

one (9e) 

According to GP2, 3a (50.0 mg, 0.17 mmol) was reacted with 2c (31.1 

mg, 0.17 mmol) at 110 °C for 30 minutes. Purification by MPLC (Pet. 

Ether/EtOAc 1:0 to 0:1) afforded the product (33.4 mg, 74%). 1H-NMR 

(700 MHz, CD2Cl2): δ 6.75 (d, J = 6.2 Hz, 1H),5.74 (s, 1H),  5.17 (dd, J = 6.2, 4.5 Hz, 1H), 

4.96 (dd, J = 7.5, 4.5 Hz, 1H), 4.72 (p, J = 8.8 Hz, 1H), 4.34 (dd, J = 10.6, 5.0 Hz, 1H), 3.51 (t, 

J = 10.6 Hz, 1H), 3.45-3.40 (m, 1H), 3.26-3.19 (m, 2H), 2.28-2.18 1.73 (m, 2H), 1.96-1.90 (m, 

1H), 1.73 (dq, J = 18.3, 9.2 Hz, 1H). 13C-NMR (176 MHz, CD2Cl2): δ 167.2, 163.5, 150.2, 

149.1, 108.2, 99.7, 96.1, 77.2, 65.4, 53.2, 38.6, 28.4, 28.1, 22.5, 15.1. LC-MS-ESI (m/z): 

260.16 [M + H]+. 

(±) 8-cyclobutyl-7-methyl-4,4a,8,9b-tetrahydro-1H-pyrano[3',4':4,5]furo[3,2-c]pyridin-

9(3H)-one (10e) 

A suspension of 9e (10.0 mg, 0.04 mmol) and Pd/C (1.0 mg, 10 wt%) in 

toluene (0.5 mL) was hydrogenated at 20 °C for 6 hours using a H2-

balloon. The catalyst was filtered off and the solvent removed in vacuo. 

The crude was purified by prep. HPLC to afford product (2.3 mg, 23%). 1H-NMR A (700 MHz, 

CDCl3): δ 6.01 (s, 1H), 4.93 (s,10H), 4.81-4.76 (m, 1H), 4.15 (dd, J = 11.9, 6.0 Hz, 1H), 3.89-
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3.84 (m, 1H), 3.67-3.60 (m, 2H), 3.43 (dd, J = 11.9, 7.8 Hz, 1H), 3.20 (dp, J = 14.8, 9.9 Hz, 

2H), 2.40 (s, 3H), 2.37-2.27 (m, 4H), 2.18 (ddd, J = 15.8, 10.5, 5.0 Hz, 1H), 2.11 (dd, J = 15.2, 

2.6 Hz, 1H), 2.01 (q, J = 11.1 Hz, 1H), 1.76 (dt, J = 19.2, 9.4 Hz, 2H). HRMS-ESI (m/z): [M 

+ H]+ calculated for C15H20NO3
+, 262.1438; found, 262.1439. 

(±) 7-methyl-8-(tetrahydro-2H-pyran-4-yl)-4,4a,8,9b-tetrahydro-1H-

pyrano[3',4':4,5]furo[3,2-c]pyridin-9(3H)-one (10f) 

According to GP2, 3a (75.0 mg, 0.26 mmol) was reacted with 2f (40.8 

mg, 0.20 mmol) at 100 °C for 1 hour. After purification by FC 

(Hep/EtOAc 1:0 to 1:1) the product was directly suspended with Pd/C 

(5 mg, 10 wt%) in THF (1.5 mL) and was hydrogenated at 20 °C for 2 hours using a H2-balloon. 

The catalyst was filtered off and the solvent removed in vacuo. The crude was purified by FC 

(EtOAc/MeOH 1:0 to 9:1) to afford the product (7.4 mg, 10%). 1H-NMR (700 MHz, CD2Cl2): 

δ 5.81 (s, 1H), 4.84-4.81 (m, 1H), 4.03 (dd, J = 11.5, 4.6 Hz, 2H), 3.99 (dd, J = 11.8, 5.9 Hz, 

1H), 3.75-3.71 (m, 1H), 3.61 (td, J = 10.5, 3.8 Hz, 1H), 3.54 (dd, J = 11.8, 7.5 Hz, 1H), 3.42-

3.37 (m, 2H), 3.31 (dd, J = 13.7, 7.5 Hz, 1H), 2.37 (s, 3H), 2.10 (ddt, J = 15.2, 10.5, 5.2 Hz, 

1H), 2.06.1.99 (m, 2H), 1.54-1.45 (m, 2H), 1.34-1.25 (m, 2H). 13C-NMR (176 MHz, CD2Cl2): 

δ 167.2, 162.8, 148.3, 96.7, 81.8, 68.4, 67.1, 63.1, 39.0, 29.4, 27.5, 22.6. HRMS-ESI (m/z): [M 

+ H]+ calculated for C16H22NO4
+, 292.1543; found, 292.1547. 

(±) 7-methyl-8-(4-morpholinophenyl)-8,9b-dihydro-1H-pyrano[3',4':4,5]furo[3,2-

c]pyridin-9(4aH)-one (9g) 

According to GP2, 3a (50.0 mg, 0.17 mmol) was reacted with 

2r (49.6 mg, 0.17 mmol) at 110 °C for 30 minutes. 

Purification by FC (Pet. Ether/EtOAc 1:0 to 95:5 + 1% NEt3) 

afforded the product (21.0 mg, 33%). 1H-NMR (700 MHz, 

CD2Cl2): δ 7.07-6.97 (m, 4H), 6.78 (d, J = 6.2 Hz, 1H), 5.91 (s, 1H), 5.21 (dd, J = 6.2, 4.5 Hz, 

1H), 5.04 (dd, J = 7.6, 4.5 Hz, 1H), 4.33 (dd, J = 10.8, 4.9 Hz, 1H), 3.86-3.82 (m, 4H), 3.55 (t, 

J = 10.8 Hz, 1H), 3.47 (ddd, J = 10.8, 7.6, 5.1 Hz, 1H), 3.22-3.19 (m, 4H), 1.94 (s, 1H). 13C-

NMR (176 MHz, CD2Cl2): δ 168.2, 162.5, 151.7, 150.3, 150.2, 130.8, 129.3, 129.2, 116.1, 

106.9, 99.6, 95.5, 77.5, 67.2, 65.4, 49.3, 38.5, 22.5. HRMS-ESI (m/z): [M + H]+ calculated for 

C21H23N2O4
+, 367.1652; found, 367.1649. 
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(±) 7-methyl-8-(4-morpholinophenyl)-4,4a,8,9b-tetrahydro-1H-pyrano[3',4':4,5]furo[3,2-

c]pyridin-9(3H)-one (10g) 

According to GP2, 3a (50.0 mg, 0.17 mmol) was reacted with 

2r (49.6 mg, 0.17 mmol) at 110 °C for 1 hour. After filtration 

over celite the crude was purified by FC (Hep/EtOAc 1:0 to 

0:1) and the product was directly suspended with Pd/C (5 mg, 

10 wt%) in toluene (2 mL) and was hydrogenated at 20 °C for 6 hours using a H2-balloon. The 

catalyst was filtered off and the filtrate was diluted with EtOAc (10 mL) and washed with 

saturated Na₂CO₃ solution (15 mL). The aqueous phase was extracted with EtOAc (3 x 10 mL) 

and the combined organic layers were washed with brine (50 mL), dried over MgSO₄ and 

concentrated in vacuo. The crude was purified by MPLC (EtOAc/MeOH 1:0 to 9:1 + 0.1% 

DIPEA) to afford the product (2.0 mg, 3%). 1H-NMR (700 MHz, CD2Cl2): δ 7.07-6.97 (m 4H), 

5.93 (s, 1H), 4.92-4.89 (m, 1H), 4.00 (dd, J = 11.8, 5.9 Hz, 1H), 3.86-3.82 (m, 4H), 3.78-3.74 

(m, 1H), 3.66 (td, J = 10.8, 3.9 Hz, 1H), 3.58 (dd, J = 11.8, 7.4 Hz, 1H), 3.35 (dd, J = 13.6, 7.4 

Hz, 1H), 3.21-3.19 (m, 4H), 2.17-2.11 (m, 1H), 2.06 (dq, J = 14.9, 3.9 Hz, 1H), 1.94 (s, 1H). 

13C-NMR (176 MHz, CD2Cl2): δ 168.4, 162.6, 151.6, 149.8, 131.0, 129.4, 129.2, 116.1, 116.1, 

109.2, 95.4, 82.0, 67.2, 67.1, 63.2, 49.3, 38.8, 27.5, 22.5. HRMS-ESI (m/z): [M + H]+ 

calculated for C21H25N2O4
+, 369.1809; found, 369.1816. 

(±) 8-benzyl-7-methyl-8,9b-dihydro-1H-pyrano[3',4':4,5]furo[3,2-c]pyridin-9(4aH)-one 

(9h)[50] 

According to GP3, 3a (50.0 mg, 0.17 mmol) was reacted with 2g 

(37.3 mg, 0.17 mmol) in THF (2 mL + 24 µL NEt3) for 2 days at 

room temperature. Purification by FC (Hep/EtOAc 4:1 to 1:1 + 1% 

NEt3) afforded the product (24.1 mg, 48%). 1H-NMR (600 MHz, DMSO-d6): δ 7.33 (t, J = 7.5 

Hz, 2H), 7.25 (t, J = 7.5 Hz, 1H), 7.10 (d, J = 7.5 Hz, 2H), 6.84 (d, J = 6.2 Hz, 1H), 6.05 (s, 

1H), 5.37 (d, J = 15.8 Hz, 1H), 5.19 (dd, J = 6.2 Hz, 4.3 Hz, 1H), 5.12 (d, J = 15.8 Hz, 1H), 

5.10 (dd, J = 7.5 Hz, 4.3 Hz, 1H), 4.20 (dd, J = 10.5 Hz, 4.7 Hz, 1H), 3.52 (dd, J = 10.2 Hz, 

10.2 Hz, 1H), 3.47-3.42 (m, 1H), 2.22 (s, 3H). 13C-NMR (151 MHz, DMSO-d6): δ 166.8, 160.9, 

149.8, 149.7, 137.4, 128.7, 127.0, 126.1, 105.3, 99.7, 95.2, 76.4, 64.2, 45.6, 37.6, 20.4. LCMS-

ESI (m/z): 296.23 [M + H]+. 
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(±) 8-benzyl-7-methyl-4,4a,8,9b-tetrahydro-1H-pyrano[3',4':4,5]furo[3,2-c]pyridin-

9(3H)-one (10h) 

A suspension of 9h (75.2 mg, 0.25 mmol) and Pd/C (7.5 mg, 10 

wt%) in toluene (2 mL) was hydrogenated at 20 °C for 6 hours using 

a H2-balloon. The catalyst was filtered off and the solvent removed 

in vacuo. The crude was purified by prep. HPLC to afford the product (37.0 mg, 49%). 1H-

NMR (700 MHz, CD2Cl2): δ 7.33 (t, J = 7.5 Hz, 2H), 7.28 (t, J = 7.5 Hz, 1H), 7.11 (d, J = 7.5 

Hz, 2H), 6.10 (s, 1H), 5.45 (d, J = 15.6 Hz, 1H), 5.25 (d, J = 15.6 Hz, 1H), 4.96 (dt, J = 7.3, 3.8 

Hz, 1H), 4.09 (dd, J = 11.5, 5.8 Hz, 1H), 3.83 (ddd, J = 11.0, 5.6, 2.9 Hz, 1H), 3.63 (td, J = 

11.0, 3.8 Hz, 1H), 3.47 (dd, J = 13.9, 7.3 Hz, 1H), 3.43 (dd, J = 11.5, 8.1 Hz, 1H), 2.31 (s, 3H), 

2.18 (ddd, J = 21.1, 10.6, 5.2 Hz, 1H), 2.11 (dq, J = 15.1, 3.1 Hz, 1H). 13C-NMR (176 MHz, 

CD2Cl2): δ 169.7, 162.4, 150.3, 136.6, 129.2, 127.9, 126.6, 110.2, 98.4, 83.0, 67.1, 63.0, 47.8, 

38.3, 26.9, 21.5. HRMS-ESI (m/z): [M + H]+ calculated for C18H20NO3
+, 298.1438; found, 

298.1430. 

(±) 8-(4-methoxybenzyl)-7-methyl-8,9b-dihydro-1H-pyrano[3',4':4,5]furo[3,2-c]pyridin-

9(4aH)-one (9i) 

According to GP2, 3a (28.0 mg, 0.10 mmol) was reacted with 

2k (23.8 mg, 0.10 mmol) at 100 °C for 1 hour. Purification by 

FC (Hep/EtOAc 1:0 to 1:1) afforded the product (24.3 mg, 

77%). 1H-NMR (700 MHz, CD2Cl2): δ 7.07 (d, J = 8.7 Hz, 2H), 6.85 (d, J = 8.7 Hz, 2H), 6.79 

(d, J = 6.2 Hz, 1H), 5.97 (s, 1H), 5.34 (d, J = 16.4 Hz, 1H), 5.22 (dd, J = 6.2 Hz, 4.3 Hz, 1H), 

5.14 (d, J = 16.4 Hz, 1H), 5.06 (dd, J = 7.1 Hz, 4.3 Hz, 1H), 4.39 (dd, J = 9.9 Hz, 4.3 Hz, 1H), 

3.55-3.47 (m, 2H), 2.29 (s, 3H). 13C-NMR (176 MHz, CD2Cl2): δ 168.7, 162.3, 159.4, 150.5, 

150.2, 128.9, 128.1, 114.5, 107.5, 99.2, 97.5, 78.0, 65.2, 55.7, 46.9, 38.2, 21.5. HRMS-ESI 

(m/z): [M + H]+ calculated for C19H20O4N
+, 326.1387; found, 326.1387. 

(±) 8-(4-methoxybenzyl)-7-methyl-4,4a,8,9b-tetrahydro-1H-pyrano[3',4':4,5]furo[3,2-

c]pyridin-9(3H)-one (10i) 

According to GP2, 3a (50.0 mg, 0.17 mmol) was reacted with 

2k (42.5 mg, 0.17 mmol) at 110 °C for 1 hour. After filtration 

over celite the crude was suspended with Pd/C (5 mg, 10 wt%) 

in toluene (1.7 mL) and was hydrogenated at 20 °C for 6 hours using a H2-balloon. The catalyst 

was filtered off and the filtrate was diluted with EtOAc (10 mL) and washed with saturated 
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Na₂CO₃ solution (15 mL). The aqueous phase was extracted with EtOAc (3 x 10 mL) and the 

combined organic layers were washed with brine (50 mL), dried over MgSO₄ and concentrated 

in vacuo. The crude was purified by MPLC (cyclohexane/EtOAc 1:0 to 0:1) to afford the 

product (7.2 mg, 13%). 1H-NMR (600 MHz, CD2Cl2): δ 7.07 (d, J = 8.7 Hz, 2H), 6.84 (d, J = 

8.7 Hz, 2H), 5.86 (s, 1H), 5.29 (d, J = 15.4 Hz, 1H), 5.07 (d, J = 15.4 Hz, 1H), 4.91-4.87 (m, 

1H), 4.05 (dd, J = 11.7, 5.9 Hz, 1H), 3.79-3.75 (m, 4H), 3.63 (td, J = 10.9, 3.7 Hz, 1H), 3.54 

(dd, J = 11.7, 7.5 Hz, 1H), 3.39 (dd, J = 13.7, 7.5 Hz, 1H), 2.25 (s, 3H), 2.17-2.11 (m, 1H), 

2.08-2.02 (m, 1H). 13C-NMR (151 MHz, CD2Cl2): δ 170.0, 162.1, 159.2, 149.3, 129.6, 128.1, 

114.4, 109.2, 96.1, 82.0, 67.3, 63.1, 55.6, 46.3, 38.7, 27.5, 21.5. HRMS-ESI (m/z): [M + H]+ 

calculated for C19H22NO4
+, 328.1543; found, 328.1544. 

(±) 8-(4-fluorobenzyl)-7-methyl-4,4a,8,9b-tetrahydro-1H-pyrano[3',4':4,5]furo[3,2-

c]pyridin-9(3H)-one (10j) 

According to GP2, 3a (75.9 mg, 0.26 mmol) was reacted with 2h 

(45.0 mg, 0.20 mmol) at 100 °C for 1 hour. After filtration over 

celite the crude was purified by FC (Hep/EtOAc 1:0 to 1:1) and 

the product was directly suspended with Pd/C (5 mg, 10 wt%) in toluene (2 mL) and was 

hydrogenated at 20 °C for 9 hours using a H2-balloon. The catalyst was filtered off and the 

solvent removed in vacuo. The crude was purified by MPLC (EtOAc/MeOH 1:0 to 9:1 + 0.1% 

DIPEA) to afford the product (24.7 mg, 40%). 1H-NMR (600 MHz, CD2Cl2): δ 7.13 (dd, J = 

8.7, 5.4 Hz, 2H), 7.01 (t, J = 8.7 Hz, 2H), 5.88 (s, 1H), 5.35 (d, J = 15.4 Hz, 1H), 5.11 (d, J = 

15.4 Hz, 1H), 4.92-4.88 (m, 1H), 4.04 (dd, J = 11.7, 5.9 Hz, 1H), 3.79-3.74 (m, 1H), 3.63 (td, 

J = 10.8, 3.8 Hz, 1H), 3.56 (dd, J = 11.7, 7.5 Hz, 1H), 3.39 (dd, J = 13.7, 7.5 Hz, 1H), 2.24 (s, 

3H), 2.14 (ddd, J = 20.5, 10.3, 5.2 Hz, 1H), 2.05 (dq, J = 15.0, 3.8 Hz, 1H). 13C-NMR (151 

MHz, CD2Cl2): δ 168.1, 163.2, 161.5, 161.9, 149.1, 133.6, 128.6, 128.5, 115.9, 115.8, 109.3, 

96.3, 82.0, 67.2, 63.1, 46.1, 38.8, 27.4, 21.4. HRMS-ESI (m/z): [M + H]+ calculated for 

C18H19FNO3
+, 316.1344; found, 316.1348. 

(±) 7-methyl-8-(thiophen-2-ylmethyl)-4,4a,8,9b-tetrahydro-1H-pyrano[3',4':4,5]furo[3,2-

c]pyridin-9(3H)-one (10k) 

According to GP2, 3a (50.0 mg, 0.17 mmol) was reacted with 2l 

(43.2 mg, 0.17 mmol) at 100 °C for 1 hour. After filtration over 

celite the crude was purified by FC (Hep/EtOAc 1:0 to 1:1) and the 

product was directly suspended with Pd/C (5 mg, 10 wt%) in toluene (2 mL) and was 
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hydrogenated at 20 °C for 14 hours using a H2-balloon. The catalyst was filtered off and the 

solvent removed in vacuo. The crude was purified by MPLC (cyclohexane/EtOAc 1:0 to 0:1) 

to afford the product (9.7 mg, 16%). 1H-NMR (700 MHz, CD2Cl2): δ 7.22 (dd, J = 5.1, 1.0 Hz, 

1H), 6.97 (dd, J = 3.4, 1.0 Hz, 1H), 6.93 (dd, J = 5.1, 3.4 Hz, 1H), 5.85 (s, 1H), 5.43 (d, J = 

15.4 Hz, 1H), 5.24 (d, J = 15.4 Hz, 1H), 4.89-4.85 (m, 1H), 4.04 (dd, J = 11.8, 5.9 Hz, 1H), 

3.78-3.73 (m, 1H), 3.61 (td, J = 10.6, 3.8 Hz, 1H), 3.55 (dd, J = 11.8, 7.5 Hz, 1H), 3.38 (dd, J 

= 13.7, 7.5 Hz, 1H), 2.40 (s, 3H), 2.12 (ddt, J = 15.2, 10.6, 5.2 Hz, 1H), 2.05-2.00 (m, 1H). 13C-

NMR (176 MHz, CD2Cl2): δ 168.3, 161.7, 148.7, 140.2, 126.9, 126.6, 125.8, 109.3, 96.2, 82.0, 

67.1, 63.1, 42.5, 38.7, 27.4, 21.2. HRMS-ESI (m/z): [M + H]+ calculated for C16H18NO3S
+, 

304.1002; found, 304.1003. 

(±) 7-methyl-8-(pyridin-2-ylmethyl)-4,4a,8,9b-tetrahydro-1H-pyrano[3',4':4,5]furo[3,2-

c]pyridin-9(3H)-one (10l) 

According to GP2, 3a (63.5 mg, 0.22 mmol) was reacted with 2m 

(43.2 mg, 0.20 mmol) at 100 °C for 18 hours. After filtration over 

celite the crude was purified by MPLC (cyclohexane/EtOAc 1:0 to 

0:1 + 0.1% NEt3) and an aliquot of the product (10 mg, 0.03 mmol) was directly suspended 

with Pd/C (5 mg, 10 wt%) in toluene (2 mL) and was hydrogenated at 20 °C for 24 hours using 

a H2-balloon. The catalyst was filtered off and the solvent removed in vacuo and the crude was 

purified by prep. HPLC to afford the product (3.8 mg, 38%). 1H-NMR (600 MHz, CDCl3): δ 

8.73 (dt, J = 5.5, 1.6 Hz, 1H), 8.05 (td, J = 7.8, 1.6 Hz, 1H), 7.57 (ddd, J = 7.8, 5.5, 1.2 Hz, 1H), 

7.44 (d, J = 7.8 Hz, 1H), 6.06 (s, 1H), 5.70 (d, J = 16.7 Hz, 1H), 5.60 (d, J = 16.7 Hz, 1H), 4.97 

(dt, J = 7.5, 3.8 Hz, 1H), 4.11 (dd, J = 11.3, 5.4 Hz, 1H), 3.86 (ddd, J = 11.3, 5.8, 3.2 Hz, 1H), 

3.67 (td, J = 11.3, 3.8 Hz, 1H), 3.54-3.45 (m, 2H), 2.36 (s, 3H), 2.20 (dddd, J = 15.2, 10.5, 5.8, 

4.5 Hz, 1H), 2.13 (dq, J = 15.2, 3.8 Hz, 1H). 13C-NMR (151 MHz, CDCl3): δ 169.5, 161.9, 

154.3, 149.2, 145.0, 142.4, 124.5, 123.9, 109.8, 98.2, 82.5, 66.7, 62.7, 46.4, 38.0, 26.7, 21.6. 

HRMS-ESI (m/z): [M + H]+ calculated for C17H19N2O3
+, 299.1390; found, 299.1392. 
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(±) 7-methyl-8-(pyridin-4-ylmethyl)-4,4a,8,9b-tetrahydro-1H-pyrano[3',4':4,5]furo[3,2-

c]pyridin-9(3H)-one and (±) 4-hydroxy-6-methyl-1-(pyridin-4-ylmethyl)-3-(tetrahydro-

2H-pyran-3-yl)pyridin-2(1H)-one (10ma+10mab) 

According to GP2, 3a (50.0 mg, 0.17 

mmol) was reacted with 2n (37.5 mg, 

0.17 mmol) at 110 °C for 1 hour. After 

filtration over celite the crude was 

purified by FC (Hep/EtOAc 1:0 to 1:1) and the product was directly suspended with Pd/C (5 

mg, 10 wt%) in toluene (2 mL) and was hydrogenated at 20 °C for 12 hours using a H2-balloon. 

The catalyst was filtered off and the solvent removed in vacuo. The crude was purified by 

MPLC (EtOAc/MeOH 1:0 to 4:1 + 0.1% DIPEA) to afford an inseparable mixture of products 

a and b (ratio of 2:1 by NMR, 15.0 mg, 30%). 1H-NMR product 10ma (500 MHz, CDCl3): δ 

8.51 (d, J = 6.0 Hz, 2H), 7.06 (d, J = 6.0 Hz, 2H), 6.13 (s, 1H), 5.35 (d, J = 17.0 Hz, 1H), 5.17 

(d, J = 17.0 Hz, 2H), 4.99-4.95 (m, 1H), 3.85 (dd, J = 11.5, 5.6 Hz, 1H), 3.67 (dt, J = 10.1, 4.9 

Hz, 1H), 3.53 (dd, J = 11.5, 6.6 Hz, 1H), 3.51-3.48 (m, 1H), 3.30 (dd, J = 13.6, 6.6 Hz, 1H), 

2.21 (s, 3H), 2.09-2.05 (m, 1H), 1.92 (dq, J = 12.8, 4.1 Hz, 1H). 13C-NMR product 10ma (126 

MHz, CDCl3): δ 167.3, 160.7, 149.8, 149.2, 146.7, 121.2, 107.7, 95.6, 81.0, 65.5, 62.0, 44.9, 

37.9, 26.5, 20.5. HRMS-ESI (m/z) product 10ma: [M + H]+ calculated for C17H19N2O3
+, 

299.1390, found, 299.1391. 1H-NMR product 10mb (500 MHz, CDCl3): δ 10.35 (s, 1H), 8.50-

8.48 (m, 2H), 7.03 (d, J = 6.0 Hz, 2H), 5.86 (s, 1H), 5.20-5.16 (m, 2H), 3.91 (d, J = 10.8 Hz, 

1H), 3.82-3.77 (m, 1H), 3.56-3.49 (m, 1H), 3.29-3.24 (m, 1H), 3.22-3.15 (m, 1H), 2.34-2.27 

(m, 1H), 2.10 (s, 3H), 1.57-1.50 (m, 3H). UHPCL-MS-ESI (m/z) product 10mb: 301.0 [M + 

H]+. 

(±) 7-methyl-8-((3-methylpyridin-4-yl)methyl)-8,9b-dihydro-1H-

pyrano[3',4':4,5]furo[3,2-c]pyridin-9(4aH)-one (9n) 

According to GP2, 3a (95.2 mg, 0.33 mmol) was reacted with 2o 

(69.1 mg, 0.30 mmol) at 100 °C for 18 hours. Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product (68.6 mg, 

74%). 1H-NMR (600 MHz, CD2Cl2): δ 8.38 (s, 1H), 8.30 (d, J = 5.1 Hz, 1H), 6.78 (d, J = 5.8 

Hz, 1H), 6.51 (d, J = 5.1 Hz, 1H), 5.94 (s, 1H), 5.29 (d, J = 17.3 Hz, 1H), 5.22 (dd, J = 5.8, 4.3 

Hz, 1H), 5.09-5.04 (m, 2H), 4.34 (dd, J = 10.4, 4.7 Hz, 1H), 3.57 (t, J = 10.4 Hz, 1H), 3.53-

3.50 (m, 1H), 2.36 (s, 3H), 2.16 (s, 3H). 13C-NMR (151 MHz, CD2Cl2): δ 167.8, 161.4, 150.8, 
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150.1, 148.3, 148.2, 144.3, 130.5, 118.8, 106.6, 99.3, 96.3, 77.4, 65.0, 43.7, 38.2, 20.9, 15.8. 

HRMS-ESI (m/z): [M + H]+ calculated for C18H19O3N2, 311.1390; found, 311.1390. 

(±) 8-(2-(5-methoxy-1H-indol-3-yl)ethyl)-7-methyl-4,4a,8,9b-tetrahydro-1H-

pyrano[3',4':4,5]furo[3,2-c]pyridin-9(3H)-one (10o) 

According to GP2, 3a (63.5 mg, 0.22 mmol) was reacted with 

2s (59.7 mg, 0.20 mmol) at 110 °C for 1 hour. After filtration 

over celite the crude was purified by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1 + 0.1% NEt3) and the product 

was directly suspended with Pd/C (5 mg, 10 wt%) in toluene (2 

mL) and was hydrogenated at 20 °C for 24 hours using a H2-balloon. The catalyst was filtered 

off and the solvent removed in vacuo and the crude was purified by prep. HPLC to afford the 

product (17.4 mg, 23%). 1H-NMR (500 MHz, CDCl3): δ 8.02 (s, 1H), 7.24 (d, J = 8.7, 1H), 

7.08 (d, J = 2.4 Hz, 1H), 6.98 (d, J = 2.3 Hz, 1H), 6.86 (dd, J = 8.7, 2.4 Hz, 1H), 5.96 (s, 1H), 

4.92 (dt, J = 7.6, 3.6 Hz, 1H), 4.35 (dt, J = 14.6, 7.5 Hz, 1H), 4.21 (dd, J = 14.6, 6.7 Hz, 1H), 

4.16 (dd, J = 11.8, 5.9 Hz, 1H), 3.64 (td, J = 11.2, 3.9 Hz, 1H), 3.52 (td, J = 7.6, 5.9 Hz, 1H), 

3.44 (dd, J = 11.8, 8.1 Hz, 1H), 3.13 (t, J = 7.5 Hz, 2H), 2.23 (s, 3H), 2.21-2.15 (m, 1H), 2.12 

(dq, J = 15.0, 3.6 Hz, 1H). 13C-NMR (126 MHz, CDCl3): δ 168.9, 161.9, 154.3, 149.0, 131.4, 

127.8, 123.2, 112.6, 112.1, 110.3, 100.4, 97.8, 82.4, 67.1, 62.7, 56.0, 46.0, 37.9, 26.7. HRMS-

ESI (m/z): [M + H]+ calculated for C22H25N2O4
+, 381.1809; found, 381.1807. 

(±) 1,2,3,4,5b,8,9,9a-octahydro-5H,6H-cyclopenta[b]pyrano[3',4':4,5]furo[2,3-d]pyridin-

5-one (10p) 

According to GP2, 3a (67.5 mg, 0.23 mmol) was reacted with 2x (29.5 mg, 

0.20 mmol) at 110 °C for 1 hour. After filtration over celite the crude was 

purified by FC (cyclohexane/EtOAc 1:0 to 0:1) and the product was directly 

suspended with Pd/C (5 mg, 10 wt%) in toluene (2 mL) and was 

hydrogenated at 20 °C for 12 hours using a H2-balloon. The catalyst was filtered off and the 

solvent removed in vacuo. The crude was purified by MPLC (EtOAc/MeOH 1:0 to 9:1) to 

afford the product (15.5 mg, 32%). 1H-NMR (600 MHz, CDCl3): δ 5.00-4.96 (m, 1H), 4.13-

4.07 (m, 1H), 3.85 (ddd, J = 11.3, 5.7, 3.4 Hz, 1H), 3.66 (td, J = 11.3, 4.0 Hz, 1H), 3.49-3.44 

(m, 2H), 2.93 (t, J = 7.7 Hz, 2H), 2.80-2.76 (m, 2H), 2.23-2.12 (m, 4H). 13C-NMR (151 MHz, 

CDCl3): δ 169.0, 161.5, 153.9, 111.3, 109.0, 83.0, 62.8, 37.1, 31.3, 26.7, 26.7, 23.2. HRMS-

ESI (m/z): [M + H]+ calculated for C13H16NO3
+, 234.1125; found, 234.1127. 
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(±) 11-oxo-4a,7,8,9,11,11b-hexahydro-1H-pyrano[3',4':4,5]furo[3,2-f]indolizine-6-

carboxylic acid (9q) 

According to GP2, 3a (63.5 mg, 0.22 mmol) was reacted with 2zb (39.0 

mg, 0.20 mmol) at 110 °C for 1 hour. After filtration over celite the crude 

was purified by FC (cyclohexane/EtOAc 1:0 to 0:1 + 0.1% acetic acid) 

and repurified by prep. HPLC to afford the product (4.0 mg, 7%). 1H-

NMR (700 MHz, Acetone): δ 9.59 (d, J = 8.0 Hz, 1H), 7.87 (dd, J = 15.4, 11.4 Hz, 1H), 7.41 

(ddd, J = 15.0, 11.4, 0.8 Hz, 1H), 7.34 (d, J = 15.4 Hz, 1H), 6.13 (dd, J = 15.0, 8.0 Hz, 1H), 

4.17-4.12 (m, 2H), 3.64 (t, J = 7.9 Hz, 2H), 2.24 (p, J = 7.9 Hz, 2H), 2.07-2.06 (m, 2H). 13C-

NMR (176 MHz, Acetone): δ 193.7, 172.5, 160.9, 160.9, 156.4, 135.0, 130.3, 127.6, 105.6, 

95.9, 95.9, 50.4, 36.3, 20.5. HRMS-ESI (m/z): [M + H]+ calculated for C14H14NO5
+, 276.0867; 

found, 276.0874. 

(±) 6b,9,10,10a-tetrahydro-7H-pyrano[3',4':4,5]furo[3,2-c]quinolin-6(5H)-one (10r) 

According to GP2, 3a (75.9 mg, 0.26 mmol) was reacted with 2u (31.4 mg, 

0.20 mmol) at 100 °C for 1 hour. After filtration over celite the crude was 

purified by FC (cyclohexane/EtOAc 1:0 to 1:1) and the product was directly 

suspended with Pd/C (5 mg, 10 wt%) in toluene (2 mL) and was 

hydrogenated at 20 °C for 48 hours using a H2-balloon. The catalyst was filtered off and the 

solvent removed in vacuo. The crude was purified by MPLC (EtOAc/MeOH 1:0 to 95:5) to 

afford the product (4.5 mg, 10%). 1H-NMR (500 MHz, CD2Cl2): δ 11.30 (s, 1H), 7.72 (dd, J = 

8.3, 1.0 Hz, 1H), 7.53 (ddd, J = 8.3, 7.7, 1.4 Hz, 1H), 7.36 (d, J = 8.3 Hz, 1H), 7.22 (dd, J = 

8.3, 7.7 Hz, 1H), 5.13-5.09 (m, 1H), 4.14 (dd, J = 11.7, 5.9 Hz, 1H), 3.86-3.80 (m, 1H), 3.69 

(ddd, J = 11.7, 10.1, 4.5 Hz, 1H), 3.64 (dd, J = 11.7, 7.7 Hz, 1H), 3.55 (dd, J = 13.6, 7.7 Hz, 

1H), 2.28-2.15 (m, 2H). 13C-NMR (126 MHz, CD2Cl2): δ 165.8, 163.1, 140.0, 131.4, 122.7, 

122.4, 116.3, 112.3, 111.4, 82.9, 67.3, 63.2, 38.8, 27.4. HRMS-ESI (m/z): [M + H]+ calculated 

for C14H14NO3
+, 244.0968; found, 244.0970. 

(±) 5-methyl-6b,9,10,10a-tetrahydro-7H-pyrano[3',4':4,5]furo[3,2-c]quinolin-6(5H)-one 

(10s) 

According to GP2, 3a (75.9 mg, 0.26 mmol) was reacted with 2w (34.2 mg, 

0.20 mmol) at 100 °C for 1 hour. After filtration over celite the crude was 

purified by FC (cyclohexane/EtOAc 1:0 to 1:1) and the product was directly 

suspended with Pd/C (5 mg, 10 wt%) in toluene (2 mL) and was 
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hydrogenated at 20 °C for 6 hours using a H2-balloon. The catalyst was filtered off and the 

solvent removed in vacuo. The crude was purified by MPLC (cyclohexane/EtOAc 1:0 to 0:1) 

to afford the product (26.1 mg, 52%). 1H-NMR (500 MHz, CDCl3): δ 7.78 (dd, J = 7.5, 1.4 Hz, 

1H), 7.60 (ddd, J = 8.7, 7.3, 1.4 Hz, 1H), 7.38 (d, J = 8.7 Hz, 1H), 7.25 (dd, J = 7.5, 7.3 Hz, 

2H), 5.07-5.03 (m, 1H), 4.25-4.17 (m, 1H), 3.88 (dt, J = 11.4, 4.5 Hz, 1H), 3.72-3.66 (m, 4H), 

3.60-3.53 (m, 2H), 2.27-2.20 (m, 2H). 13C-NMR (126 MHz, CDCl3): δ 163.6, 161.3, 140.9, 

131.4, 123.3, 121.8, 114.7, 112.9, 111.3, 82.2, 67.5, 63.0, 39.0, 29.2, 27.1. HRMS-ESI (m/z): 

[M + H]+ calculated for C15H16NO3
+, 258.1125; found, 258.1125. 

(±) 1,3,4,5,6b,9,10,10a-octahydro-7H-pyrano[3',4':4,5]furo[3,2-c]quinolin-6(2H)-one 

(10t); (±) 4-hydroxy-3-(tetrahydro-2H-pyran-3-yl)-5,6,7,8-tetrahydroquinolin-2(1H)-one 

(11c) 

According to GP2, 3a (73.3 mg, 0.25 mmol) was 

reacted with 2v (35.0 mg, 0.21 mmol) at 110 °C for 1 

hour. After filtration over celite the crude was purified 

by MPLC (cyclohexane/EtOAc 1:0 to 0:1) and the 

product was directly suspended with Pd/C (5 mg, 10 wt%) in toluene (2 mL) and was 

hydrogenated at 20 °C for 12 hours using a H2-balloon. The catalyst was filtered off and the 

solvent removed in vacuo. The crude was purified by MPLC (EtOAc/MeOH 1:0 to 9:1 + 0.1% 

DIPEA) to afford a mixture of products a and b. The product mixture was subjected for 

separation by prep. HPLC to afford pure product 10t (2.3 mg, 4%) and 11c (1.1 mg, 2%). 1H-

NMR product 10t (700 MHz, CD2Cl2): δ 14.5 (bs, 1H), 5.07 (dt, J = 7.7, 4.3 Hz, 1H), 4.02 (dd, 

J = 11.3, 5.1 Hz, 1H), 3.79 (ddd, J = 11.5, 5.7, 3.8 Hz, 1H), 3.65 (ddd, J = 11.5, 10.3, 4.0 Hz, 

1H), 3.56-3.49 (m, 2H), 2.75 (t, J = 6.3 Hz, 2H), 2.51 (t, J = 6.4 Hz, 2H), 2.22-2.17 (m, 1H), 

2.13-2.09 (m, 1H), 1.87-1.83 (m, 2H), 1.81-1.77 (m, 2H). 13C-NMR product 10t (176 MHz, 

CD2Cl2): δ 172.8, 164.9, 158.8, 148.0, 108.7, 83.8, 66.0, 62.5, 37.2, 26.6, 26.6, 21.2, 21.2, 20.7. 

HRMS-ESI (m/z) product 10t: [M + H]+ calculated for C14H18NO3
+, 248.1281; found, 

248.1282. 1H-NMR product 11c (700 MHz, CD2Cl2): δ 14.5 (bs, 1H), 12.2 (s, 1H), 4.21 (dd, J 

= 11.6, 4.5 Hz, 1H), 4.14 (d, J = 12.8 Hz, 1H), 3.96 (dd, J = 12.8, 3.4 Hz, 1H), 3.70 (ddd, J = 

12.6, 11.6, 2.5 Hz, 1H), 3.43-3.40 (m, 1H), 2.73 (t, J = 6.2 Hz, 2H), 2.54 (t, J = 6.4 Hz, 1H), 

2.00-1.90 (m, 2H), 1.84-1.77 (m, 4H), 1.70-1.57 (m, 2H). UPHLC-MS-ESI (m/z) product 11c: 

250.0 [M + H]+. 
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(±) (5aR,9S,9aS)-3,9-dimethyl-5a,9a-dihydro-1H,9H-furo[3,2-c:4,5-c']dipyran-1-one 

(12a) 

A reaction vessel was charged with 4-Hydroxy-6-methyl-2-pyron (1a) (27.1 

mg, 0.21 mmol, 1.0 eq), evacuated and back-filled with argon. Toluene (1.5 

mL) and Triethylamine (30.0 µL, 0.21 mmol, 1.0 equiv) were added to the 

reaction vessel. A separate reaction vessel was charged with Pd(PPh3)4 (5 mol%), evacuated 

and back-filled with argon, then charged with toluene (0.5 mL) followed by 3b-trans (65.0 mg, 

0.17 mmol, 1.0 equiv) The contents of this flask were stirred for approximately 20 min. before 

being added via syringe to the bis-nucleophile solution. The reaction was stirred for one day at 

room temperature before being concentrated in vacuo and purified by flash column 

chromatography (Heptane/EtOAc 9:1 to 4:1 to 7:3 + 1% NEt3) to afford the product (69% 

yield). 1H-NMR (500 MHz, DMSO-d6): δ 6.88 (d, J = 6.2 Hz, 1H), 6.31 (s, 1H), 5.29 (dd, J = 

6.2 Hz, 4.7 Hz, 1H), 5.11 (ddd, J = 7.2 Hz, 4.7 Hz, 1.0 Hz, 1H), 3.39 (dd, J = 10.8 Hz, 6.2 Hz, 

1H), 2.92 (dd, J =  10.8 Hz, 7.2 Hz, 1H), 2.22 (s, 3H), 1.35 (d, J = 6.2 Hz, 3H). 13C-NMR (126 

MHz, DMSO-d6): δ 172.2, 166.5, 161.2, 149.8, 99.7, 97.9, 95.8, 79.5, 72.5, 41.7, 20.0, 19.1. 

HRMS-ESI (m/z): [M + H]+ calculated for C12H13O4
+, 221.0808; found, 221.0807.  

(±) 3,9-dimethyl-5a,6,9,9a-tetrahydro-1H,7H-furo[3,2-c:4,5-c']dipyran-1-one (13a); (±) 

4-hydroxy-6-methyl-3-(2-methyltetrahydro-2H-pyran-3-yl)-2H-pyran-2-one (14a) 

A suspension of 12a (16.3 mg, 0.07 mmol) and Pd/C 

(1.6 mg, 10 wt%) in toluene (0.7 mL) was hydrogenated 

at 20 °C for 20 hours using a H2-balloon. The catalyst 

was filtered off and the solvent removed in vacuo. The 

crude was purified by prep. HPLC to afford product 13a (3.7 mg, 22%) and 14a (5.4 mg, 33%) 

in separated fractions. 1H-NMR product 13a (500 MHz, CDCl3): δ 5.97 (s, 1H), 4.88-4.81 (m, 

1H), 3.97-3.92 (m, 1H), 3.58 (td, J = 11.6, 4.0 Hz, 1H), 3.17 (dq, J = 9.9, 6.1 Hz, 1H), 2.83 (dd, 

J = 9.8, 6.5 Hz, 1H), 2.27 (s, 3H), 2.12-2.07 (m, 2H), 1.41 (d, J = 6.2 Hz, 3H). 13C-NMR 

product 13a (126 MHz, CDCl3): δ 166.4, 162.3, 147.0, 103.6, 96.2, 84.8, 63.1, 43.1, 23.8, 21.4, 

20.7. HRMS-ESI (m/z) product 13a: [M + H]+ calculated for C12H15O4
+, 223.0965; found, 

223.0964. 1H-NMR product 14b (500 MHz, CDCl3): δ 11.86 (s, 1H), 5.86 (s, 1H), 4.37-4.26 

(m, 1H), 3.93 (td, J = 11.3, 10.8, 3.1 Hz, 1H), 3.88-3.76 (m, 1H), 2.19 (s, 3H), 2.12-2.00 (m, 

1H), 1.78-1.61 (m, 2H), 1.57-1.43 (m, 2H). HRMS-ESI (m/z) product 14b: [M + H]+ calculated 

for C12H17O4
+, 225.1121; found, 225.1120. 
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(±) 5,7-dimethyl-6b,9,10,10a-tetrahydro-7H-pyrano[3',4':4,5]furo[3,2-c]quinolin-6(5H)-

one (13b); (±) 4-hydroxy-1-methyl-3-(2-methyltetrahydro-2H-pyran-3-yl)quinolin-

2(1H)-one (14b) 

According to GP3, 3b-trans (66.5 mg, 0.22 mmol) was 

reacted with 2w (35.0 mg, 0.20 mmol). After 

purification by MPLC (cyclohexane/EtOAc 1:0 to 0:1), 

the product was directly suspended with Pd/C (5 mg, 10 

wt%) in toluene (2 mL) and was hydrogenated at 20 °C 

for 48 hours using a H2-balloon. The catalyst was filtered off and the solvent removed in vacuo. 

The crude was purified by prep. HPLC to afford product 13b (3.6 mg, 7%) and 14b (3.6 mg, 

7%) in separated fractions. 1H-NMR product 13b (500 MHz, CD2Cl2): δ 7.80 (dd, J = 8.0, 1.6 

Hz, 1H), 7.63 (ddd, J = 8.7, 7.6, 1.6 Hz, 1H), 7.43 (d, J = 8.7 Hz, 1H), 7.27 (dd,  J = 8.0, 7.6 

Hz, 1H), 4.93 (m, 1H), 3.94 (ddt, J = 12.0, 5.9, 1.3 Hz, 1H), 3.69 (s, 3H), 3.64 (td, J = 12.0, 2.7 

Hz, 1H), 3.21 (dq, J = 9.9, 6.1 Hz, 1H), 3.00 (dd, J = 9.9, 6.4 Hz, 1H), 2.27 (dq, J = 15.4, 2.2 

Hz, 1H), 2.16 (dddd, J = 15.4, 12.8, 5.9, 4.3 Hz, 1H), 1.39 (d, J = 6.1 Hz, 3H). 13C-NMR 

product 13b (126 MHz, CD2Cl2): δ 164.6, 161.5, 141.0, 131.8, 123.4, 122.1, 115.1, 113.1, 

112.6, 84.7, 77.3, 63.3, 45.3, 29.6, 27.4, 21.6. HRMS-ESI (m/z) product 13b: [M + H]+ 

calculated for C16H18NO3
+, 272.1261; found, 272.1278. 1H-NMR product 14b (500 MHz, 

MeOH-d₄): δ 8.07-7.06 (m, 1H), 7.65-7.58 (m, 1H), 7.57-7.48 (m, 1H), 7.34-7.26 (m, 1H), 

4.54-4.38 (m, 1H), 4.02-3.95 (m, 1H), 3.72-3.62 (m, 4H), 3.07-2.93 (m 1H), 2.53-2.39 (m, 1H), 

1.86-1.58 (m, 3H), 1.01 (bs, 3H). 13C-NMR product 14b (126 MHz, MeOH-d₄): δ 159.5, 159.4, 

140.0, 131.9, 124.7, 123.1, 118.0, 115.4, 113.5, 76.4, 69.4, 43.1, 29.7, 27.8, 27.7, 20.2. HRMS-

ESI (m/z) product 14b: [M + H]+ calculated for C16H20NO3
+, 274.1438; found, 274.1445. 

(±) 1-methyl-4,4a,6,7,8,9b-hexahydro-1H-pyrano[3',4':4,5]furo[3,2-c]pyridin-9(3H)-one 

(13c) 

According to GP3, 3b-trans (66.5 mg, 0.22 mmol) was reacted with 2y (22.6 

mg, 0.20 mmol). After purification by MPLC (cyclohexane/EtOAc 1:0 to 

0:1), the product was directly suspended with Pd/C (5 mg, 10 wt%) in 

toluene (2 mL) and was hydrogenated at 20 °C for 48 hours using a H2-balloon. The catalyst 

was filtered off and the solvent removed in vacuo. The crude was purified by prep. HPLC to 

afford the product (8.8 mg, 21%). 1H-NMR (600 MHz, CD2Cl2): δ 5.72 (s, 1H), 4.74-4.71 (m, 

1H), 3.90-3.85 (m, 1H), 3.55 (td, J = 11.5, 4.2 Hz, 1H), 3.52-3.42 (m, 2H), 3.13 (dt, J = 12.3, 

6.1 Hz, 1H), 2.62-2.59 (m, 1H), 2.58-2.54 (m, 1H), 2.49 (dt, J = 17.3, 6.4 Hz, 1H), 2.08-2.03 
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(m, 1H), 1.28 (d, J = 6.1 Hz, 3H). 13C-NMR (151 MHz, CD2Cl2): δ 171.9, 168.3, 110.0, 84.7, 

78.0, 63.2, 43.9, 39.7, 27.4, 23.8, 21.1. HRMS-ESI (m/z): [M + H]+ calculated for C11H16NO3
+, 

210.1125; found, 210.1122. 

(±) 1,7,8-trimethyl-8,9b-dihydro-1H-pyrano[3',4':4,5]furo[3,2-c]pyridin-9(4aH)-one 

(12d) 

According to GP3, 3b-trans (100.0 mg, 0.33 mmol) was reacted with 2b 

(46.0 mg, 0.33 mmol). Purification by FC (Hep/EtOAc 7:3 to 1:1 + 1% 

NEt3) afforded the product (37 mg, 48%). 1H-NMR (700 MHz DMSO-d6): 

δ 6.82 (d, J = 6.1 Hz, 1H) 6.01 (s, 1H), 5.24 (dd, J =  6.1 Hz, 5.0 Hz, 1H), 4.92 (dd, J = 6.7 Hz, 

5.0 Hz, 1H), 3.37 (s, 3H), 3.34 (dd, J = 10.7 Hz, 6.2 Hz, 1H), 2.88 (dd, J = 10.7 Hz, 6.7 Hz, 

1H), 2.32 (s, 3H), 1.37 (d, J = 6.2 Hz, 3H). 13C-NMR (176 MHz, DMSO-d6): δ 167.3, 161.3, 

150.7, 149.5, 106.3, 99.0, 94.7, 78.2, 73.4, 43.5, 30.6, 21.5, 19.9. HRMS-ESI (m/z): [M + H]+ 

calculated for C13H16O3N
+, 234.1125; found, 234.1124. 

(±) 1,7,8-trimethyl-4,4a,8,9b-tetrahydro-1H-pyrano[3',4':4,5]furo[3,2-c]pyridin-9(3H)-

one (13d); (±) 4-hydroxy-1,6-dimethyl-3-(2-methyltetrahydro-2H-pyran-3-yl)pyridin-

2(1H)-one (14d) 

According to GP3, 3b-trans (69.6 mg, 0.23 mmol) 

was reacted with 2b (27.8 mg, 0.20 mmol). After 

purification by MPLC (cyclohexane/EtOAc 1:0 to 

0:1), the product was directly suspended with Pd/C (5 

mg, 10 wt%) in toluene (2 mL) and was hydrogenated at 20 °C for 48 hours using a H2-balloon. 

The catalyst was filtered off and the solvent removed in vacuo. The crude was purified by prep. 

HPLC to afford product 13d (3.8 mg, 8%) and 14d (16.0 mg, 34%) in separated fractions. 1H-

NMR product 13d (500 MHz, CDCl3): δ 6.01 (s, 1H), 4.75 (dt, J = 6.2, 3.3 Hz, 1H), 3.96-3.91 

(m, 1H), 3.61 (td, J = 11.2, 4.9 Hz, 1H), 3.54 (s, 3H), 3.15 (dq, J = 9.9, 6.2 Hz, 1H), 2.95 (dd, 

J = 9.9, 6.2 Hz, 1H), 2.38 (s, 3H), 2.12 (ddd, J = 11.2, 5.4, 3.3 Hz, 2H), 1.41 (d, J = 6.2 Hz, 

3H). 13C-NMR product 13d (126 MHz, CDCl3): δ 168.8, 162.1, 149.0, 110.9, 97.2, 83.9, 77.0, 

63.1, 44.1, 31.6, 27.0, 22.0, 21.5. HRMS-ESI (m/z) product 13d: [M + H]+ calculated for 

C13H18NO3
+, 236.1281; found, 236.1286. 1H-NMR product 14d (500 MHz, CD2Cl2): δ 5.90 (s, 

1H), 4.34-4.21 (m, 1H), 3.97-3.89 (m, 1H), 3.75-3.68 (m, 1H), 3.19-3.11 (m, 1H), 2.32 (s, 3H), 

1.97-1.88 (m, 1H), 1.85-1.76 (m, 1H), 1.67-1.57 (m, 2H), 1.33-1.29 (bs, 3H). 13C-NMR product 

14d (126 MHz, CD2Cl2): δ 165.4, 164.2, 144.9, 111.0, 103.6, 73.3, 63.8, 38.5, 32.2, 24.6, 24.4, 
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20.9, 18.0. HRMS-ESI (m/z) product 14d: [M + H]+ calculated for C13H20NO3
+, 238.1438; 

found, 238.1443. 

(±) 8-benzyl-1,7-dimethyl-8,9b-dihydro-1H-pyrano[3',4':4,5]furo[3,2-c]pyridin-9(4aH)-

one (12e) 

According to GP3, 3b-trans (100.0 mg, 0.33 mmol) was reacted 

with 2g (71.2 mg, 0.33 mmol). Purification by FC (Hep/EtOAc 7:3 

to 1:1 + 1% NEt3) afforded the product (36 mg, 35%). 1H-NMR 

(700 MHz DMSO-d6): δ 7.33 (dd, J = 7.5 Hz, 7.4 Hz, 2H), 7.25 (dd, J = 7.4 Hz, 7.4 Hz, 1H), 

7.10 (d, J = 7.5 Hz, 2H), 6.85 (d, J = 6.2 Hz, 1H) 6.07 (s, 1H), 5.37 (d, J = 15.2 Hz, 1H), 5.27 

(dd, J = 6.2 Hz, 4.8 Hz, 1H), 5.16 (d, J = 15.2 Hz, 1H), 5.00 (m, 1H), 3.44-3.39 (m, 1H), 2.94 

(dd, J = 10.7 Hz, 7.0 Hz, 1H), 2.23 (s, 3H), 1.39 (d, J = 6.3 Hz, 3H). 13C-NMR (176 MHz, 

DMSO-d6): δ 167.7, 161.5, 150.5, 149.7, 137.9, 129.1, 127.5, 126.6, 106.8, 99.0, 95.6, 78.5, 

73.5, 46.2, 43.4, 21.0, 19.9. LCMS-ESI (m/z): 310.28 [M + H]+. 

(±) 8-benzyl-1,7-dimethyl-4,4a,8,9b-tetrahydro-1H-pyrano[3',4':4,5]furo[3,2-c]pyridin-

9(3H)-one (13e); (±) 1-benzyl-4-hydroxy-6-methyl-3-(2-methyltetrahydro-2H-pyran-3-

yl)pyridin-2(1H)-one (14f) 

A suspension of 12e (13.9 mg, 0.04 mmol) 

and Pd/C (1.4 mg, 10 wt%) in toluene (0.5 

mL) was hydrogenated at 20 °C for 24 

hours using a H2-balloon. The catalyst 

was filtered off and the solvent removed in vacuo. The crude was purified by prep. HPLC to 

afford product 13e (5.0 mg, 36%) and 14f (5 mg, 36%) in separated fractions. 1H-NMR product 

13e (600 MHz, CDCl3): δ 7.34-7.21 (m, 3H), 7.13 (d, J = 7.0 Hz, 2H), 5.92 (s, 1H), 5.46 (d, J 

= 16.0 Hz, 1H), 5.19 (d, J = 16.0 Hz, 1H), 4.80-4.76 (m, 1H), 3.97-3.92 (m, 1H), 3.63 (td, J = 

11.2, 4.9 Hz, 1H), 3.26-3.19 (m, 1H), 2.97 (dd, J = 9.8, 6.3 Hz, 1H), 2.28 (s, 3H), 2.16-2.09 (m, 

2H), 1.46 (d, J = 6.2 Hz, 3H). HRMS-ESI (m/z) product 13e: [M + H]+ calculated for 

C19H22NO3
+, 312.1594; found, 312.1599. 1H-NMR product 14f (600 MHz, CDCl3): δ 11.03 (s, 

1H), 7.29 (t, J = 7.5 Hz, 2H), 7.23 (t, J = 7.5 Hz, 1H), 7.11 (d, J = 7.5 Hz, 2H), 5.86 (s, 1H), 

5.38 (d, J = 16.1 Hz, 1H), 5.21 (d, J = 16.1 Hz, 1H), 4.42-4.34 (m, 1H), 3.93 (t, J = 11.7 Hz, 

1H), 3.86-3.80 (m, 1H), 3.36-3.30 (m, 1H), 2.22 (s, 3H), 2.13-2.06 (m, 1H), 1.79-1.67 (m, 2H), 

1.58-1.50 (m, 1H), 1.47 (d, J = 6.5 Hz, 3H). 13C-NMR product 14f (151 MHz, CDCl3): δ 165.2, 

163.4, 144.0, 137.2, 129.9, 127.3, 126.4, 110.8, 103.4, 72.4, 61.9, 47.7, 36.9, 23.5, 23.2, 20.4, 
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17.2. HRMS-ESI (m/z) product 14f: [M + H]+ calculated for C19H24NO3
+, 314.1751; found, 

314.1751.   

(±) 8-(4-methoxybenzyl)-1,7-dimethyl-8,9b-dihydro-1H-pyrano[3',4':4,5]furo[3,2-

c]pyridin-9(4aH)-one (12f); (±) 6-(4-methoxybenzyl)-2,7-dimethyl-4a,9a-dihydro-2H-

pyrano[3',2':4,5]furo[3,2-c]pyridin-5(6H)-one (15f) 

According to GP3, 3b-trans 

(50.0 mg, 0.17 mmol) was 

reacted with 2k (35.0 mg, 

0.15 mmol). Purification by 

FC (Hep/EtOAc 7:3 to 1:1 + 1% NEt3) afforded the product 12f (7.5 mg, 13%) and product 15f 

(8.1 mg, 14%) in separated fractions. 1H-NMR product 12f (500 MHz, CD2Cl2): δ 7.08 (d, J = 

8.6 Hz, 2H), 6.84 (d, J = 8.6 Hz, 2H), 6.78 (d, J = 6.2 Hz, 1H), 5.84 (s, 1H), 5.28 (d, J = 15.7 

Hz, 1H), 5.24 (dd, J = 6.2, 4.7 Hz, 1H), 5.13 (d, J = 15.7 Hz, 1H), 4.95 (ddd, J = 6.9, 4.7, 1.1 

Hz, 1H), 3.76 (s, 3H), 3.51 (dq, J = 11.5, 6.3 Hz, 1H), 3.01 (dd, J = 11.5, 6.9 Hz, 1H), 2.25 (s, 

3H), 1.48 (d, J = 6.3 Hz, 3H). 13C-NMR product 12f (126 MHz, CD2Cl2): δ 168.1, 162.1, 159.2, 

149.9, 149.7, 129.6, 128.1, 114.4, 107.6, 98.6, 95.4, 79.2, 74.0, 55.6, 46.4, 44.0, 21.5, 19.8. 

UHPCL-MS-ESI product 12f (m/z): 340.0 [M + H]+. 1H-NMR product 15f (700 MHz, 

CD2Cl2): δ 7.07 (d, J = 8.7 Hz, 2H), 6.84 (d, J = 8.7 Hz, 2H), 6.26 (ddd, J = 10.3, 3.9, 2.0 Hz, 

1H), 6.13 (d, J = 6.6 Hz, 1H), 5.92 (s, 1H), 5.88 (ddd, J = 10.3, 2.6, 1.9 Hz, 1H), 5.33 (m, 1H), 

5.08 (d, J = 15.9 Hz, 1H), 4.36 (qq, J = 6.9, 2.6 Hz, 1H), 3.77-3.75 (m, 4H), 2.27 (s, 3H), 1.28 

(d, J = 6.9 Hz, 1H). 13C-NMR product 15f (176 MHz, CD2Cl2): δ 165.5, 161.8, 159.3, 149.6, 

130.5, 129.3, 128.1, 122.1, 114.4, 109.0, 105.8, 96.4, 68.2, 55.6, 46.5, 38.4, 22.2, 21.5. HRMS-

ESI (m/z) product 15f: [M + H]+ calculated for C20H22NO4
+, 340.1543; found, 340.1545. 

A reaction vessel was evacuated and back-filled with argon. 

Allyl-Pd-Cl dimer (1.37 mg, 2.5 mol%) and Xantphos (6.51 

mg, 7.5 mol%) was loaded into the vessel and dissolved in THF 

(0.5 mL). After 5 min, 3b-trans (50.0 mg, 0.17 mmol) dissolved in THF (0.65 mL) was added. 

A mixture of 2k (35.0 mg, 0.15 mmol, 1 equiv) and NEt3 (41 microL, 2 equiv) in DMF (0.35 

mL) was added and the mixture was stirred at room temperature overnight. The mixture was 

diluted with EtOAc and concentrated in vacuo. The crude was dissolved in DCM and 

immobilized on isolute for purification by MPLC (cyclohexane/EtOAc 1:0 to 3:7 + 0.1% NEt3) 

to afford the product (30.9 mg, 61%).  
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(±) 8-(4-methoxybenzyl)-1,7-dimethyl-4,4a,8,9b-tetrahydro-1H-

pyrano[3',4':4,5]furo[3,2-c]pyridin-9(3H)-one (13f); (±) 4-hydroxy-1-(4-methoxybenzyl)-

6-methyl-3-(2-methyltetrahydro-2H-pyran-3-yl)pyridin-2(1H)-one (14g) 

 12f (22.5 mg, 0.07 mmol) was 

suspended with Pd/C (2.5 mg, 10 

wt%) in toluene (1 mL) and 

hydrogenated at 20 °C for 48 

hours using a H2-balloon. The catalyst was filtered off and the solvent removed in vacuo. The 

crude was purified by prep. HPLC to afford the product 13f (7.6 mg, 34%) and 14g (9.0 mg, 

40%) in separated fractions. 1H-NMR product 13f (500 MHz, CD2Cl2): δ 7.07 (d, J = 8.5 Hz, 

2H), 6.85 (d, J = 8.5 Hz, 2H), 6.02 (s, 1H), 5.34 (d, , J = 15.6 Hz, 1H), 5.18 (d, J = 15.6 Hz, 

1H), 4.79 (dt, J = 6.0, 2.9 Hz, 1H), 3.92-3.88 (m, 1H), 3.59 (td, J = 11.4, 4.4 Hz, 1H), 3.19-3.13 

(m, 1H), 2.93 (dd, J = 9.8, 6.0 Hz, 1H), 2.31 (s, 3H), 2.15-2.08 (m, 2H), 1.36 (d, J = 6.2 Hz, 

1H). 13C-NMR product 13f (126 MHz, CD2Cl2): δ 169.5, 162.3, 159.4, 150.0, 128.9, 128.1, 

114.5, 111.1, 97.8, 84.4, 77.2, 63.3, 55.6, 47.1, 44.5, 27.2, 21.6, 21.5. HRMS-ESI (m/z) product 

13f: [M + H]+ calculated for  C20H24NO4
+, 342.1700; found, 342.1698. 1H-NMR product 14g 

(400 MHz, MeOH-d₄): δ 7.01 (d, J = 8.6 Hz, 2H), 6.86 (d, J = 8.6 Hz, 2H), 5.86 (s, 1H), 5.31-

5.21 (m, 2H), 4.36-4.18 (m, 1H), 3.93 (dd, J = 11.3, 4.3 Hz, 1H), 3.76 (bs, 4H), 3.56 (t, J = 11.3 

Hz, 1H), 2.16 (s, 3H), 1.79-1.52 (m, 4H), 1.02 (d, J = 6.2 Hz, 3H). 13C-NMR product 14g (126 

MHz, MeOH-d₄): δ 164.8, 160.4, 160.3, 146.7, 130.3, 128.4, 115.2, 111.4, 101.0, 76.5 69.4, 

55.7, 47.3, 40.1, 28.2, 28.1, 20.4. HRMS-ESI (m/z) product 14g: [M + H]+ calculated for 

C20H26NO4
+, 344.1856; found, 344.1865. 

(±) 8-(4-fluorobenzyl)-1,7-dimethyl-4,4a,8,9b-tetrahydro-1H-pyrano[3',4':4,5]furo[3,2-

c]pyridin-9(3H)-one (13g); (±) 1-(4-fluorobenzyl)-4-hydroxy-6-methyl-3-(2-

methyltetrahydro-2H-pyran-3-yl)pyridin-2(1H)-one (14h); (±) 6-(4-fluorobenzyl)-2,7-

dimethyl-3,4,4a,9a-tetrahydro-2H-pyrano[3',2':4,5]furo[3,2-c]pyridin-5(6H)-one (16g);  

 

According to GP3, 3b-trans (69.6 mg, 0.23 mmol) was reacted with 2h (46.6 mg, 0.20 mmol). 

After purification by MPLC (cyclohexane/EtOAc 1:0 to 0:1), the product was directly 

suspended with Pd/C (5 mg, 10 wt%) in toluene (2 mL) and was hydrogenated at 20 °C for 48 
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hours using a H2-balloon. The catalyst was filtered off and the solvent removed in vacuo. The 

crude was purified by prep. HPLC to afford product 13g (4.5 mg, 7%), 14h (4.9 mg, 7%) and 

16g (3.0 mg, 5%) in separated fractions. 1H-NMR product 13g (500 MHz, CD2Cl2): δ 7.13 (dd, 

J = 8.6, 5.4 Hz, 2H), 7.01 (t, J = 8.6 Hz, 2H), 5.91 (s, 1H), 5.36 (d, J = 14.4 Hz, 1H) 5.15 (d, J 

= 14.4 Hz, 1H), 4.76 (dt, J = 6.3, 3.0 Hz, 1H), 3.91-3.87 (m, 1H), 3.58 (td, J = 11.4, 4.2 Hz, 

1H), 3.16 (dq, J = 9.8, 6.2 Hz, 1H), 2.87 (dd, J = 9.8, 6.3 Hz, 1H), 2.25 (s, 1H), 2.12-2.07 (m, 

2H), 1.37 (d, J = 6.2 Hz, 3H). 13C-NMR product 13g (126 MHz, CD2Cl2): δ 168.4, 162.9, 161.0, 

161.6, 148.9, 133.1, 128.1, 115.5, 110.3, 96.3, 83.6, 77.0, 62.9, 46.1, 44.3, 27.0, 21.3, 21.2. 

HRMS-ESI (m/z) product 13g: [M + H]+ calculated for C19H21FNO3
+, 330.1500; found, 

330.1505. 1H-NMR product 14h (600 MHz, CD2Cl2): δ 7.14-6.96 (m, 4H), 5.91 (s, 1H), 5.31-

5.16 (m, 2H), 4.34-4.25 (m, 1H), 3.96-3.89 (m, 1H), 3.79-3.69 (m, 1H), 3.24-3.14 (m, 1H), 2.19 

(s, 3H), 2.04-1.94 (m, 1H), 1.80-1.52 (m, 3H), 1.37 (bs, 3H). 13C-NMR product 14h (151 MHz, 

CD2Cl2): δ 165.4, 164.1, 163.2, 161.6, 144.5, 133.3, 128.4, 115.9, 111.1, 103.8, 73.1, 63.3, 47.4, 

38.1, 24.4, 24.1, 20.4, 17.8. HRMS-ESI (m/z) product 14h: [M + H]+ calculated for 

C19H23FNO3
+, 332.1657; found, 332.1660. 1H-NMR product 16g (500 MHz, CD2Cl2): δ 7.12 

(dd, J = 8.6, 5.5 Hz, 2H), 7.01 (t, J = 8.6 Hz, 2H), 5.70 (s, 1H), 5.41 (d, J = 5.0 Hz, 1H), 5.27 

(d, J = 15.8 Hz, 1H), 5.18 (d, J = 15.8 Hz, 1H), 4.46 (q, J = 6.6 Hz, 1H), 3.22-3.19 (s, 1H), 

2.22-1.92 (m, 7H), 1.35 (d, J = 6.6 Hz, 3H). 13C-NMR product 16g (126 MHz, CD2Cl2): δ 

164.0, 163.4, 163.3, 144.9, 133.3, 128.4, 115.9, 114.3, 102.5, 98.1, 77.4, 47.1, 34.3, 28.2, 21.3, 

20.6, 20.5. HRMS-ESI (m/z) product 16g: [M + H]+ calculated for C19H21FNO3
+, 330.1500; 

found, 330.1506.  

(±) 4-hydroxy-3-(2-methyltetrahydro-2H-pyran-3-yl)-5,6,7,8-tetrahydroquinolin-2(1H)-

one (14c) 

According to GP3, 3b-trans (66.5 mg, 0.22 mmol) was reacted with 2v (33.0 

mg, 0.20 mmol). After purification by MPLC (cyclohexane/EtOAc 1:0 to 

0:1), the product was directly suspended with Pd/C (5 mg, 10 wt%) in toluene 

(2 mL) and was hydrogenated at 20 °C for 48 hours using a H2-balloon. The 

catalyst was filtered off and the solvent removed in vacuo. The crude was purified by prep. 

HPLC to afford the product (3.1 mg, 6%). 1H-NMR (600 MHz, CD2Cl2): δ 14.65 (s, 1H), 12.42 

(s, 1H), 4.38 (q, J = 7.0 Hz, 1H), 3.97 (td, J = 12.2, 2.6 Hz, 1H), 3.89 (dd, J = 12.2, 4.5 Hz, 1H), 

3.27-3.21 (m, 1H), 2.74 (t, J = 6.1 Hz, 2H), 2.53 (t, J = 5.9 Hz, 3H), 2.21-2.14 (m, 1H), 1.86-

1.77 (m, 4H), 1.72 (bd, J = 14.3 Hz, 1H), 1.68-1.61 (m, 1H), 1.58-1.53 (m, 1H), 1.52 (d, J = 7.0 

Hz, 3H). 13C-NMR (151 MHz, CD2Cl2): δ 167.9, 159.9, 143.5, 116.0, 109.2, 71.4, 61.4, 35.1, 
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26.3, 23.1, 22.3, 21.6, 21.4, 21.2, 16.5. HRMS-ESI (m/z): [M + H]+ calculated for C15H22NO3
+, 

264.1594; found, 264.1597. 

(±) 1-cyclobutyl-4-hydroxy-6-methyl-3-(2-methyltetrahydro-2H-pyran-3-yl)pyridin-

2(1H)-one (14e) 

According to GP3, 3b-trans (66.5 mg, 0.22 mmol) was reacted with 2c 

(35.8 mg, 0.20 mmol). After purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1), the product was directly suspended 

with Pd/C (5 mg, 10 wt%) in toluene (2 mL) and was hydrogenated at 20 °C for 48 hours using 

a H2-balloon. The catalyst was filtered off and the solvent removed in vacuo. The crude was 

purified by prep. HPLC to afford the product (6.9 mg, 12%). 1H-NMR (500 MHz, MeOH-d₄): 

δ 5.68 (s, 1H), 4.81 (q, J = 8.7 Hz, 1H), 4.38-4.14 (m, 1H), 3.94-3.90 (m, 1H), 3.61-3.48 (m, 

1H), 3.18-3.08 (m, 2H), 2.32-2.22 (m, 6H) 1.93 (qt, J = 10.4, 2.9 Hz, 1H), 1.82-1.74 (m, 1H), 

1.72-1.59 (m, 2H), 0.98 (d, J = 6.2 Hz, 3H). 13C-NMR (126 MHz, MeOH-d₄): δ HRMS-ESI 

(m/z): [M + H]+ calculated for C16H24NO3
+, 278.1751; found, 278.1755. 

(±) 1,7-dimethyl-8-(4-morpholinophenyl)-8,9b-dihydro-1H-pyrano[3',4':4,5]furo[3,2-

c]pyridin-9(4aH)-one (12k) 

According to GP2, 3b-trans (66.5 mg, 0.22 mmol) was 

reacted with 2r (57.3 mg, 0.20 mmol) at 110 °C for 2 hours. 

The catalyst was filtered off and the filtrate was diluted with 

DCM (10 mL) and washed with saturated NaHCO₃ solution 

(15 mL). The aqueous phase was extracted with DCM (3 x 10 mL) and the combined organic 

layers were washed with brine (50 mL), dried over MgSO₄ and concentrated in vacuo. The 

crude was purified by MPLC (EtOAc/MeOH 1:0 to 9:1) to afford the product (3.3 mg, 4%). 

1H-NMR (600 MHz, CD2Cl2): δ 7.06-6.97 (m 4H), 6.78 (d, J = 6.1 Hz, 1H), 5.92 (s, 1H), 5.25 

(dd, J = 6.1, 4.9 Hz, 1H), 4.96 (dd, J = 6.7, 4.9 Hz, 1H), 3.86-3.83 (m, 5H), 3.55-3.50 (m, 1H), 

3.21-3.19 (m, 4H), 2.99 (dd, J = 10.7, 6.7 Hz, 1H), 1.95 (s, 3H), 1.44 (d, J = 6.2 Hz, 3H). 13C-

NMR (151 MHz, CD2Cl2): δ 168.6, 162.6, 151.6, 150.2, 149.9, 131.0, 129.3, 129.3, 116.1, 

116.1, 107.6, 98.6, 95.3, 79.2, 74.0, 67.2, 54.2, 54.0, 53.8, 53.7, 53.5, 49.3, 44.0, 22.5, 19.8. 

HRMS-ESI (m/z): [M + H]+ calculated for C22H25N2O4
+, 381.1809; found, 381.1810. 
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(±) 1,7-dimethyl-8-(tetrahydro-2H-pyran-4-yl)-8,9b-dihydro-1H-

pyrano[3',4':4,5]furo[3,2-c]pyridin-9(4aH)-one (12l) 

According to GP2, 3b-trans (39.7 mg, 0.13 mmol) was reacted with 

2f (25.0 mg, 0.12 mmol) at 110 °C for 1 hour. The catalyst was filtered 

off and the filtrate was diluted with DCM (10 mL) and washed with 

saturated NaHCO₃ solution (15 mL). The aqueous phase was extracted with DCM (3 x 10 mL) 

and the combined organic layers were washed with brine (50 mL), dried over MgSO₄ and 

concentrated in vacuo. The crude was purified by MPLC (cyclohexane/EtOAc 1:0 to 1:1) to 

afford the product (9.6 mg, 27%). 1H-NMR (600 MHz, CD2Cl2): δ 6.76 (d, J = 6.2 Hz, 1H), 

5.80 (s, 1H), 5.21 (dd, J = 6.2, 4.7 Hz, 1H), 4.89 (ddd, J = 6.9, 4.7, 1.1 Hz, 1H), 4.20-4.09 (bm, 

1H), 4.04 (ddd, J = 11.7, 5.1, 1.5 Hz, 2H), 3.45 (dq, J = 10.7, 6.3 Hz, 1H), 3.42-3.36 (bm, 2H), 

3.24-3.08 (bm, 2H), 2.94 (dd, J = 10.7, 6.9 Hz, 1H), 2.36 (s, 3H), 1.55-1.48 (bm, 2H), 1.45 (d, 

J = 6.3 Hz, 3H). 13C-NMR (151 MHz, CD2Cl2): δ 167.5, 162.7, 149.9, 148.8, 109.4, 98.6, 96.5, 

79.2, 74.0, 68.3, 57.6, 44.0, 28.9, 22.7. 19.8. HRMS-ESI (m/z): [M + H]+ calculated for 

C17H22NO4
+, 304.1543; found, 304.1544. 

(±) 1,7-dimethyl-8-(pyridin-4-ylmethyl)-8,9b-dihydro-1H-pyrano[3',4':4,5]furo[3,2-

c]pyridin-9(4aH)-one (12m) 

According to GP2, 3b-trans (66.5 mg, 0.22 mmol) was reacted with 

2n (43.3 mg, 0.20 mmol) at 110 °C for 2 hours. The catalyst was 

filtered off and the filtrate was diluted with DCM (10 mL) and 

washed with saturated NaHCO₃ solution (15 mL). The aqueous phase was extracted with DCM 

(3 x 10 mL) and the combined organic layers were washed with brine (50 mL), dried over 

MgSO₄ and concentrated in vacuo. The crude was purified by MPLC (EtOAc/MeOH 1:0 to 

9:1) to afford the product (2.9 mg, 5%). 1H-NMR (600 MHz, CD2Cl2): δ 8.75 (d, J = 6.5 Hz, 

2H), 7.53 (d, J = 6.5 Hz, 2H), 6.80 (d, J = 6.1 Hz, 1H), 6.01 (s, 1H), 5.55 (d, J = 17.2 Hz, 1H), 

5.34 (d, J = 17.2 Hz, 1H), 5.26 (dd, J = 6.1, 5.0 Hz, 1H), 5.02 (dd, J = 6.7, 5.0 Hz, 1H), 3.55-

3.50 (m, 1H), 3.03 (dd, J = 10.7, 6.7 Hz, 1H), 2.25 (s, 3H), 1.43 (d, J = 6.3 Hz, 2H). 13C-NMR 

(151 MHz, CD2Cl2): δ 169.1, 161.7, 156.0, 150.2, 148.7, 143.6, 124.2, 108.0, 98.3, 97.5, 79.8, 

73.7, 46.8, 43.9, 21.6, 19.7. HRMS-ESI (m/z): [M + H]+ calculated for C18H19N2O3
+, 311.1317; 

found, 311.1390. 

  



5. Experimental 

 

- 122 - 

 

(±) 6-bromo-3-methyl-5a,9a-dihydro-1H,9H-furo[3,2-c:4,5-c']dipyran-1-one (17a) 

To a stirred solution of 9a (70 mg, 0.34 mmol) in dry acetonitrile (3 mL) 

was added NBS (66.5 mg, 0.37 mmol, 1.1 equiv) and AgNO3 (115.3 mg, 

0.68 mmol, 2 equiv) successively. The reaction tube was sealed and the 

mixture was stirred for 2 h at 80 °C. The reaction mixture was filtered and the filtrate was 

evaporated to afford a crude product which was purified by silica gel column chromatography 

(Pet. Ether/EtOAc 4:1). The product was obtained as an off-white powder (56.5 mg, 58%). 1H-

NMR (700 MHz, CDCl3): δ 7.01 (s, 1H), 6.01 (s, 1H), 5.15 (d, J = 7.4 Hz, 1H), 4.42-4.37 (m, 

1H), 3.65-3.56 (m, 2H), 2.28 (s, 3H). 13C-NMR (176 MHz, CDCl3): δ 171.8, 166.7, 161.6, 

149.8, 99.7, 96.2, 96.1, 82.3, 65.0, 38.6, 20.7. HRMS-ESI (m/z): [M + H]+ calculated for 

C11H10O4
79Br+, 284.9757; found, 284.9760; calculated for C11H10O4

81Br+, 286.9737; found, 

286.9734. 

(±) 3-methyl-6-phenyl-5a,9a-dihydro-1H,9H-furo[3,2-c:4,5-c']dipyran-1-one (17b) 

A microwave vial was flushed with Argon and loaded with 17a (24.5 

mg, 0.09 mmol), phenylboronic acid (21.0 mg, 0.17 mmol, 2 equiv), 

NaOtBu (16.5 mg, 0.17 mmol, 2 equiv), Pd(OAc)2 (1.0 mg, 5 mol%), 

Xphos (4.1 mg, 10 mol%) and toluene (0.04 M). The mixture was 

irradiated at 100 °C for 5 minutes. After cooling back to room temperature the mixture was 

directly loaded on a silica column and eluted with Pet. Ether/EtOAc (9:1 to 7:3) to give the 

product (9.1 mg, 92%). 1H-NMR (700 MHz, CDCl3): δ 7.41 (d, J = 7.6 Hz, 2H), 7.37 (t, J = 

7.6 Hz, 2H), 7.28 (t, J = 7.6 Hz, 1H), 7.17 (s, 1H), 5.94 (s, 1H), 5.61 (d, J = 7.6 Hz, 1H), 4.46 

(dd, J = 10.7, 4.9 Hz, 1H), 3.61-3.55 (m, 1H), 3.51 (t, J = 10.7 Hz, 1H), 2.26 (s, 3H). 13C-NMR 

(176 MHz, CDCl3): δ 172.1, 166.2, 161.8, 147.7, 136.0, 128.9, 127.1, 125.1, 112.1, 99.8, 96.0, 

79.9, 65.0, 36.8, 20.6. UHPLC-MS-ESI (m/z): 283.2 [M + H]+.  

(±) 6-(4-methoxyphenyl)-3-methyl-5a,9a-dihydro-1H,9H-furo[3,2-c:4,5-c']dipyran-1-one 

(17c) 

A microwave vial was flushed with Argon and loaded with 17a (10.0 

mg, 0.04 mmol), (4-methoxyphenyl)boronic acid (10.7 mg, 0.07 

mmol, 2 equiv), NaOtBu (6.7 mg, 0.07 mmol, 2 equiv), Pd(OAc)2 

(0.4 mg, 5 mol%), Xphos (1.7 mg, 10 mol%) and toluene (0.04 M). 

The mixture was irradiated at 100 °C for 10 minutes. After cooling 

back to room temperature the mixture was directly loaded on a silica column and eluted with 
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Pet. Ether/EtOAc (9:1 to 7:3) to give the product (3.9 mg, 36%). The product decomposed 

quickly in acetonitrile/H2O or DMSO/H2O mixtures. UHPLC-MS-ESI (m/z): 313.3 [M + H]+. 

(±) 3-methyl-6-(4-(trifluoromethyl)phenyl)-5a,9a-dihydro-1H,9H-furo[3,2-c:4,5-

c']dipyran-1-one (17d) 

A microwave vial was flushed with Argon and loaded with 17a 

(10.0 mg, 0.04 mmol), (4-(trifluoromethyl)phenyl)boronic acid 

(13.3 mg, 0.07 mmol, 2 equiv), NaOtBu (6.7 mg, 0.07 mmol, 2 

equiv), Pd(OAc)2 (0.4 mg, 5 mol%), Xphos (1.7 mg, 10 mol%) and 

toluene (0.04 M). The mixture was irradiated at 130 °C for 40 

minutes. After cooling back to room temperature the mixture was directly loaded on a silica 

column and eluted with Pet. Ether/EtOAc (9:1 to 7:3) and repurified by prep. HPLC to afford 

the product (6.1 mg, 50%). 1H-NMR (700 MHz DMSO-d6): δ 7.73-7.70 (m, 4H), 7.63 (s, 1H), 

6.33 (s, 1H), 5.93 (d, J = 7.5 Hz, 1H), 4.31 (dd, J = 10.2 Hz, 4.3 Hz, 1H), 3.62-3.58 (m, 1H), 

3.56 (dd, J = 10.4 Hz, 10.2 Hz, 1H), 2.23 (s, 3H). 13C-NMR (176 MHz, DMSO-d6): δ 172.1, 

167.0, 161.1, 150.2, 140.9, 127.4, 125.9, 125.6, 124.1, 111.4, 99.4, 96.1, 79.0, 64.8, 36.4, 20.4. 

UHPLC-MS-ESI (m/z): 351.0 [M + H]+. 

(±) Tert-butyl (E)-3-(7-methyl-9-oxo-4a,9b-dihydro-1H,9H-furo[3,2-c:4,5-c']dipyran-4-

yl)acrylate (17e)  

To a solution of 9a (100 mg, 0.48 mmol) palladium diacetate 

(10.9 mg, 0.05 mmol) and copper trifluoromethanesulfonate 

(175.4 mg, 0.48 mmol) in dimethylacetamide (1 mL) and 

acetic acid (1 mL) underair bubbling at 70 °C, ethyl acrylate 

(0.14 ml, 0.97 mmol) was added dropwise. The mixture was allowed to stir at 70 °C for 3 hours. 

Then the mixture was diluted with ethyl acetate (20 mL), filtered, washed with water (20 mL) 

and brine (20 mL). The organic layer was dried over MgSO₄, evaporated and the residue was 

purified by flash column chromatography (Pet. Ether/EtOAc = 7/3) to afford the product as 

colorless oil (33.6 mg, 21%). 1H-NMR (700 MHz DMSO-d6): δ 7.53 (s, 1H), 7.23 (d, 15.7 Hz, 

1H) 6.39 (s, 1H), 5.84 (d, 15.7 Hz, 1H), 5.53 (d, 7.9 Hz, 1H), 4.25 (dd, 10.7 Hz, 4.7 Hz, 1H), 

3.68 (dd, 10.7 Hz, 10.3 Hz, 1H), 3.57-3.52 (m, 1H),  2.23 (s, 3H), 1.44 (s, 9H). 13C-NMR (176 

MHz, DMSO-d6): δ 172.2, 167.0, 161.1, 166.1, 157.1, 141.4, 116.1, 111.5, 99.1, 96.1, 79.9, 

77.5, 65.0, 35.8, 28.4, 20.1.  



5. Experimental 

 

- 124 - 

 

(±) 7,8-dimethyl-3-phenyl-4,8-dihydro-1H-pyrano[3',4':4,5]furo[3,2-c]pyridin-9(3H)-one 

(18a) 

According to GP4, 9c (40.0 mg, 0.18 mmol) was reacted with 

phenylboronic acid (44.5 mg, 0.36 mmol, 2 equiv) and Pd(OAc)2 

(20.5 mg, 0.09 mmol, 0.5 equiv) at room temperature for 18 hours. 

The crude was purified by MPLC (cyclohexane/EtOAc 1:0 to 0:1) to afford the product (35.0 

mg, 64%). 1H-NMR (700 MHz DMSO-d6): δ 7.47 (d, J = 7.4 Hz, 2H), 7.39 (t, J = 7.4 Hz, 2H), 

7.32 (t, J = 7.4 Hz, 1H), 6.63 (d, J = 0.6 Hz, 1H), 4.96 (dd, J = 14.7, 1.8 Hz, 1H), 4.89 (dt, J = 

14.7, 2.8 Hz, 1H), 4.79 (dd, J = 10.3, 3.5 Hz, 1H), 3.47 (s, 3H), 3.10-3.05 (m, 1H), 2.88 (ddt, J 

= 15.8, 10.3, 2.6 Hz, 1H), 2.43 (s, 3H). 13C-NMR (176 MHz, DMSO-d6): δ 158.9, 158.1, 148.2, 

143.6, 141.3, 128.3, 127.7, 126.0, 113.6, 110.4, 94.9, 75.3, 63.0, 31.2, 30.1, 20.9. HRMS-ESI 

(m/z): [M + H]+ calculated for C18H18NO3
+, 296.1281; found, 296.1291. 

9c (30.0 mg, 0.14 mmol), phenylboronic acid (33.4 mg, 0.27 mmol), Pd(OAc)2 (10 mol%), and 

Cu(OAc)2 (49.7 mg, 0.27 mmol) were dissolved in DMF (3 mL) and stirred under O2 

atmosphere for 20 hours at room temperature. The reaction was quenched by addition of H2O 

(20 mL) and extracted with a 1:1 mixture of methyl-tert-butyl ether and EtOAc (5 x 20 mL). 

The combined organic phases were washed with brine (100 mL), dried over MgSO₄ and 

concentrated in vacuo. The crude was purified by MPLC (cyclohexane/EtOAc 1:0 to 0:1) to 

afford the product (17.3 mg, 43%). 

(±) 3-(4-methoxyphenyl)-7,8-dimethyl-4,8-dihydro-1H-pyrano[3',4':4,5]furo[3,2-

c]pyridin-9(3H)-one (18b) 

According to GP4, 9c (40.0 mg, 0.18 mmol) was reacted with 

(4-methoxyphenyl)boronic acid (55.5 mg, 0.36 mmol, 2 

equiv) and Pd(OAc)2 (20.5 mg, 0.09 mmol, 0.5 equiv) at room 

temperature for 18 hours. The crude was purified by MPLC (cyclohexane/EtOAc 1:0 to 0:1) 

and repurified by prep. HPLC to afford the product (24.9 mg, 42%). 1H-NMR (700 MHz, 

CDCl3): δ 7.37 (d, J = 8.5 Hz, 2H), 6.92 (d, J = 8.7 Hz, 2H), 6.41 (s, 1H), 5.18 (dd, J = 14.9, 

2.0 Hz, 1H), 5.00 (dt, J = 14.9, 2.9 Hz, 1H), 4.70 (dd, J = 9.8, 3.8 Hz, 1H), 3.82 (s, 3H), 3.59 

(s, 3H), 3.03-2.97 (m, 1H), 2.96-2.92 (m, 1H), 2.44 (s, 2H). 13C-NMR (176 MHz, CDCl3): δ 

160.4, 158.9, 159.5, 150.0, 142.1, 133.4, 127.6, 114.5, 114.1, 112.1, 96.6, 76.0, 64.0, 55.5, 31.9, 

31.0, 21.8. HRMS-ESI (m/z): [M + H]+ calculated for C19H20NO4
+, 326.1387; found, 326.1397. 
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(±) 7,8-dimethyl-3-(4-(trifluoromethyl)phenyl)-4,8-dihydro-1H-pyrano[3',4':4,5]furo[3,2-

c]pyridin-9(3H)-one (18c) 

According to GP4, 9c (20.0 mg, 0.09 mmol) was reacted with 

(4-(trifluoromethyl)phenyl)boronic acid (34.7 mg, 0.18 

mmol, 2 equiv) and Pd(OAc)2 (10.2 mg, 0.05 mmol, 0.5 

equiv) at room temperature for 18 hours. The crude was purified by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) and repurified by prep. HPLC to afford the product (12.9 mg, 

39%). 1H-NMR (500 MHz, CDCl3): δ 7.65 (d, J = 8.2 Hz, 2H), 7.58 (d, J = 8.2 Hz, 2H), 6.39 

(s, 1H), 5.25 (dd, J = 15.1, 2.0 Hz, 1H), 5.03 (dt, J = 15.1, 2.8 Hz, 1H), 4.81 (dd, J = 10.0, 3.8 

Hz, 1H), 3.58 (s, 3H), 3.06-2.98 (m, 1H), 2.93 (ddt, J = 16.0, 10.0, 2.7 Hz, 1H), 2.44 (s, 3H). 

13C-NMR (126 MHz, CDCl3): δ 160.3, 158.9, 148.0, 145.3, 142.3, 130.4, 126.3, 125.7, 123.1, 

114.6, 111.9, 96.2, 75.6, 64.2, 32.1, 30.8, 21.9. HRMS-ESI (m/z): [M + H]+ calculated for 

C19H17F3NO3
+, 364.1155; found, 364.1155. 

(±) 2-(7,8-dimethyl-9-oxo-3,4,8,9-tetrahydro-1H-pyrano[3',4':4,5]furo[3,2-c]pyridin-3-

yl)benzonitrile (18d) 

According to GP4, 9c (25.0 mg, 0.11 mmol) was reacted with (2-

cyanophenyl)boronic acid (33.5 mg, 0.23 mmol, 2 equiv) and 

Pd(OAc)2 (12.8 mg, 0.06 mmol, 0.5 equiv) at 50 °C for 18 hours. 

The crude was purified by MPLC (cyclohexane/EtOAc 1:0 to 0:1) and repurified by prep. 

HPLC to afford the product (28.7 mg, 79%). 1H-NMR (700 MHz, CDCl3): δ 7.77 (d, J = 8.0 

Hz, 1H), 7.70-7.65 (m, 2H), 7.43 (td, J = 7.6, 1.2 Hz, 1H), 6.43 (s, 1H), 5.27 (dd, J = 15.0, 2.0 

Hz, 1H), 5.10 (dd, J = 10.4, 3.6 Hz, 1H), 5.07 (ddd, J = 15.0, 3.3, 2.4 Hz, 1H), 3.60 (s, 3H), 

3.16 (dt, J = 16.1, 3.0 Hz, 1H), 2.88 (dddt, J = 13.3, 10.4, 5.5, 2.3 Hz, 1H), 2.46 (s, 3H). 13C-

NMR (176 MHz, CDCl3): δ 160.4, 159.1, 147.9, 145.2, 142.4, 133.6, 132.9, 128.5, 126.7, 

117.4, 114.4, 112.0, 110.3, 96.7, 74.1, 64.3, 31.7, 31.0, 21.8. HRMS-ESI (m/z): [M + H]+ 

calculated for C19H17N2O3
+, 321.1234; found, 321.1235. 

(±) 3-(1H-indol-5-yl)-7,8-dimethyl-4,8-dihydro-1H-pyrano[3',4':4,5]furo[3,2-c]pyridin-

9(3H)-one (18e) 

According to GP4, 9c (25.0 mg, 0.11 mmol) was reacted with 

(1H-indol-5-yl)boronic acid (36.7 mg, 0.23 mmol, 2 equiv) 

and Pd(OAc)2 (12.8 mg, 0.06 mmol, 0.5 equiv) at 50 °C for 

18 hours. The crude was purified by MPLC (cyclohexane/EtOAc 1:0 to 0:1) and repurified by 
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prep. HPLC to afford the product (18.9 mg, 50%). 1H-NMR (500 MHz, CDCl3): δ 8.23 (s, 

1H),7.68 (s, 1H), 7.41 (d, J = 8.5 Hz, 1H), 7.30 (dd, J = 8.5, 1.7 Hz, 1H), 7.25-7.20 (m, 1H), 

6.57-6.54 (m, 1H), 6.36 (s, 1H), 5.24 (dd, J = 15.0, 2.0 Hz, 1H), 5.06 (dt, J = 15.0, 2.8 Hz, 1H), 

4.84 (dd, J = 10.0, 3.6 Hz, 1H), 3.54 (s, 3H), 3.16-3.08 (m, 1H), 3.00 (dt, J = 16.4, 3.1 Hz, 1H), 

2.40 (s, 3H). 13C-NMR (126 MHz, CDCl3): δ 160.4, 158.7, 149.1, 141.9, 135.7, 132.7, 128.0, 

125.0, 120.6, 118.6, 114.6, 112.0, 111.3, 102.9, 96.3, 64.1, 32.4, 30.8, 21.8. HRMS-ESI (m/z): 

[M + H]+ calculated for C20H19N2O3
+, 335.1390; found, 335.1391. 

(±) 3-(6-fluoropyridin-3-yl)-7,8-dimethyl-4,8-dihydro-1H-pyrano[3',4':4,5]furo[3,2-

c]pyridin-9(3H)-one (18f) 

According to GP4, 9c (40.0 mg, 0.18 mmol) was reacted with 

(6-fluoropyridin-3-yl)boronic acid (51.4 mg, 0.36 mmol, 2 

equiv) and Pd(OAc)2 (20.5 mg, 0.09 mmol, 0.5 equiv) at room 

temperature for 18 hours. The crude was purified by MPLC (cyclohexane/EtOAc 1:0 to 0:1) to 

afford the product (9.4 mg, 17%). 1H-NMR (500 MHz, CDCl3): δ 8.27 (d, J = 2.5 Hz, 1H), 

7.92 (td, J = 8.3, 2.5 Hz, 1H), 6.97 (dd, J = 8.3, 2.9 Hz, 1H), 6.39 (s, 1H), 5.22 (dd, J = 15.1, 

1.9 Hz, 1H), 5.03 (dt, J = 15.1, 2.8 Hz, 1H), 4.80 (dd, J = 9.8, 4.1 Hz, 1H), 3.55 (s, 3H), 3.04-

2.91 (m, 2H), 2.44 (s, 3H). 13C-NMR (126 MHz, CDCl3): δ 164.3, 162.4, 160.1, 158.8, 147.4, 

145.4, 142.3, 139.2, 135.4, 114.5, 111.7, 109.5, 95.1, 73.3, 31.9, 30.7, 21.7. HRMS-ESI (m/z): 

[M + H]+ calculated for C17H16FN2O3
+, 315.1140; found, 315.1145. 

(±) 7,8-dimethyl-3-(thiophen-3-yl)-4,8-dihydro-1H-pyrano[3',4':4,5]furo[3,2-c]pyridin-

9(3H)-one (18g) 

According to GP4, 9c (35.0 mg, 0.16 mmol) was reacted with 

thiophen-3-ylboronic acid (40.9 mg, 0.32 mmol, 2 equiv) and 

Pd(OAc)2 (17.9 mg, 0.08 mmol, 0.5 equiv) at room temperature for 

18 hours. The crude was purified by MPLC (cyclohexane/EtOAc 1:0 to 0:1) to afford the 

product (2.6 mg, 5%). 1H-NMR (700 MHz, CDCl3): δ 7.35 (dd, J = 5.0, 3.0 Hz, 1H), 7.34-7.30 

(m, 1H), 7.17 (dd, J = 5.0, 1.3 Hz, 1H), 6.38 (s, 1H), 5.17 (dt, J = 14.9, 1.3 Hz, 1H), 5.02 (dt, J 

= 14.9, 2.8 Hz, 1H), 4.87 (dd, J = 8.7, 4.7 Hz, 1H), 3.57 (s, 3H), 3.08-3.01 (m, 2H), 2.43 (s, 

3H). HRMS-ESI (m/z): [M + H]+ calculated for C16H16NO3S
+, 302.0845; found, 302.0847. 
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(±) 7,8-dimethyl-3-phenyl-4,4a,8,9b-tetrahydro-1H-pyrano[3',4':4,5]furo[3,2-c]pyridin-

9(3H)-one (18h) 

18a (16.0 mg, 0.05 mmol) was dissolved in EtOH (1 mL) and 

Pd(OH)2 (1.6 mg, 20% on carbon) was added. The mixture was 

stirred under H2 atmosphere at room temperature for 40 hours. The 

catalyst was filtered off and the solvent removed under reduced pressure. The crude was 

purified by prep. HPLC to afford the product (4.0 mg, 25%). 1H-NMR (700 MHz, CDCl3): δ 

7.31-7.29 (m, 4H), 7.25-7.22 (m, 1H), 5.90 (s, 1H), 5.20 (td, J = 8.8, 6.5 Hz, 1H), 4.81 (dd, J = 

12.2, 3.3 Hz, 1H), 4.50 (dd, J = 10.5, 3.5 Hz, 1H), 4.00 (dd, J = 12.2, 4.6 Hz, 1H), 3.61 (dt, J = 

8.8, 4.0 Hz, 1H), 3.52 (s, 3H), 2.37-2.31 (m, 4H), 1.93 (ddd, J = 14.0, 10.5, 8.9 Hz, 1H). 13C-

NMR (176 MHz, CDCl3): δ 167.5, 162.5, 148.8, 142.5, 128.5, 127.6, 125.9, 107.1, 96.5, 81.7, 

74.9, 64.1, 39.7, 35.2, 30.9, 21.9. HRMS-ESI (m/z): [M + H]+ calculated for C18H20NO3
+, 

298.1438; found, 298.1450. 

(±) 3-(4-methoxyphenyl)-7-methyl-8-(thiophen-2-ylmethyl)-4,8-dihydro-1H-

pyrano[3',4':4,5]furo[3,2-c]pyridin-9(3H)-one (18i) 

According to GP2, 3a (100.0 mg, 0.35 mmol) was 

reacted with 2l (70.0 mg, 0.32 mmol) at 100 °C for 1 

hour. After filtration over celite the crude was purified 

by FC (Hep/EtOAc 1:0 to 1:1) and an aliquot of the product (35.0 mg, 0.12 mmol) was directly 

reacted according to GP4, (35.0 mg, 0.12 mmol) with (4-methoxyphenyl)boronic acid (35.3 

mg, 0.23 mmol, 2 equiv), Pd(OAc)2 (5.2 mg, 20 mol%) and Cu(OAc)2 (42.2 mg, 0.23 mmol, 2 

equiv) at 50 °C for 18 hours under O2 atmosphere. The crude was purified by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) and repurified by prep. HPLC to afford the product (5.7 mg, 

12%). 1H-NMR (700 MHz, CDCl3): δ 7.38 (d, J = 8.5 Hz, 2H), 7.21 (d, J = 5.0 Hz, 1H), 7.00 

(d, J = 3.1 Hz, 1H), 6.97-6.95 (m, 1H), 6.93 (d, J = 8.5 Hz, 2H), 6.33 (s, 1H), 5.52-5.40 (m, 

2H), 3.80 (s, 3H), 5.22 (d, J = 15.0 Hz, 1H), 5.05-5.02 (m, 1H), 4.70 (dd, J = 9.8, 3.8 Hz, 1H), 

3.03-2.98 (m, 1H), 2.96-2.93 (m, 1H), 2.50 (s, 3H). 13C-NMR (176 MHz, CDCl3): δ 160.0, 

159.5, 159.0, 148.9, 141.6, 139.5, 133.4, 127.6, 126.8, 126.5, 125.6, 114.4, 114.1, 112.4, 96.9, 

76.0, 64.4, 55.5, 42.9, 32.2, 21.3. HRMS-ESI (m/z): [M + H]+ calculated for C23H22NO4S
+, 

408.1191; found, 408.1264. 
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(±) 3-(hydroxymethyl)-6-methyl-1,3,3a,8b-tetrahydro-8H-furo[3',4':4,5]furo[3,2-

c]pyran-8-one (19a) 

9a (50.0 mg, 0.24 mmol) was reacted according to GP5 and purified 

by MPLC (DCM/MeOH 1:0 to 9:1) to give the product (14.7 mg, 70% 

over two steps). 1H-NMR (700 MHz, CDCl3): 5.94 (s, 1H), 5.30 (dd, 

J = 8.6, 2.7 Hz, 1H), 4.20 (dd, J = 9.0, 6.6 Hz, 1H), 4.17 (ddd, J = 6.7, 4.3, 2.7 Hz, 1H), 4.01-

3.96 (m, 2H), 3.80-3.73 (m, 2H), 2.26 (s, 3H). 13C-NMR (176 MHz, CDCl3): δ 171.3, 166.1, 

162.0, 101.6, 95.8, 91.3, 85.3, 72.6, 61.6, 45.0, 20.6. HRMS-ESI (m/z): [M + H]+ calculated 

for C11H13O5
+, 225.0758; found, 225.0760. 

(±) 3-(hydroxymethyl)-6,7-dimethyl-3,3a,7,8b-tetrahydrofuro[3',4':4,5]furo[3,2-

c]pyridin-8(1H)-one (19b) 

9c (70.0 mg, 0.32 mmol) was reacted according to GP5 and purified 

by MPLC (DCM/MeOH 1:0 to 9:1) to give the product (16.9 mg, 29% 

over two steps). 1H-NMR (700 MHz, MeOH-d₄): δ 6.08 (s, 1H), 5.31 

(dd, J = 8.9, 2.1 Hz, 1H), 4.18 (dd, J = 9.0, 6.9 Hz, 1H), 4.10 (td, J = 5.6, 2.1 Hz, 1H), 4.00 

(ddd, J = 8.9, 6.9, 3.1 Hz, 1H), 3.89 (dd, J = 9.0, 3.1 Hz, 1H), 3.69-3.62 (m, 2H), 3.51 (s, 3H), 

2.41 (s, 3H). 13C-NMR (176 MHz, MeOH-d₄): δ 169.1, 163.5, 151.5, 109.5, 96.9, 92.2, 87.2, 

73.5, 62.1, 47.0, 31.3, 21.4. HRMS-ESI (m/z): [M + H]+ calculated for C12H16NO4
+, 238.1074; 

found, 238.1072. 

(±) 7-(4-fluorobenzyl)-3-(hydroxymethyl)-6-methyl-3,3a,7,8b-

tetrahydrofuro[3',4':4,5]furo[3,2-c]pyridin-8(1H)-one (19c) 

According to GP2, 3a (47.6 mg, 0.17 mmol) was reacted 

with 2h (35.0 mg, 0.15 mmol) at 100 °C for 18 hours. 

Purification by MPLC (cyclohexane/EtOAc 1:0 to 0:1) 

afforded the corresponding glycal (25.6 mg, 55%), which was directly reacted according to GP5 

and purified by prep. HPLC to give the product (7.2 mg, 28% over two steps). 1H-NMR (700 

MHz, CDCl3): δ 7.13 (dd, J = 8.4, 5.2 Hz, 2H), 7.01 (td, J = 8.4, 1.3 Hz, 2H), 5.95 (s, 1H), 5.35 

(d, J = 15.3 Hz, 1H), 5.26 (dd, J = 8.9, 2.8 Hz, 1H), 5.22 (d, J = 15.3 Hz, 1H), 4.28-4.25 (m, 

1H), 4.20-4.17 (m, 1H), 4.13-4.09 (m, 1H), 4.04 (dd, J = 9.2, 3.7 Hz, 1H), 3.82-3.74 (m, 2H), 

2.29 (s, 3H). 13C-NMR (176 MHz, CDCl3): δ 167.7, 163.0, 162.0, 149.2, 132.3, 128.4, 116.0, 

108.8, 96.9, 90.4, 85.5, 72.8, 61.6, 46.6, 46.1, 21.4. HRMS-ESI (m/z): [M + H]+ calculated for 

C18H19FNO4
+, 332.1293; found, 332.1295. 
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(±) 7-((2-chloropyridin-4-yl)methyl)-3-(hydroxymethyl)-6-methyl-3,3a,7,8b-

tetrahydrofuro[3',4':4,5]furo[3,2-c]pyridin-8(1H)-one (19d) 

According to GP2, 3a (95.2 mg, 0.33 mmol) was reacted 

with 2p (75.2 mg, 0.30 mmol) at 100 °C for 18 hours. 

Purification by MPLC (cyclohexane/EtOAc 1:0 to 0:1) 

afforded the corresponding glycal (25.0 mg, 25%), which was directly reacted according to GP5 

and purified by prep. HPLC to give the product (2.5 mg, 10% over two steps). 1H-NMR (700 

MHz, CDCl3): δ 8.33 (d, J = 5.2 Hz, 1H), 7.07 (s, 1H), 6.99 (d, J = 5.2 Hz, 1H), 5.94 (s, 1H), 

5.27-5.25 (m, 1H), 4.29-4.26 (m, 1H), 4.21-4.17 (m, 1H), 4.12-4.08 (m, 1H), 4.05-4.01 (m, 1H), 

3.83-3.75 (m, 2H), 2.25 (s, 3H). HRMS-ESI (m/z): [M + H]+ calculated for C17H18ClN2O4
+, 

349.0950; found, 349.0952. 

(±) 3-(hydroxymethyl)-6-methyl-7-(pyridin-2-ylmethyl)-3,3a,7,8b-tetrahydrofuro[3,4-

b]benzofuran-8(1H)-one (19e) 

According to GP2, 3a (63.5 mg, 0.22 mmol) was reacted with 

2m (43.3 mg, 0.20 mmol) at 100 °C for 18 hours. Purification 

by MPLC (cyclohexane/EtOAc 1:0 to 0:1) afforded the 

corresponding glycal (43.0 mg, 75%), which was directly reacted according to GP5 and purified 

by prep. HPLC to give the product (7.1 mg, 11% over two steps). 1H-NMR (700 MHz, CDCl3): 

δ 8.78-8.66 (m, 1H), 8.06-7.97 (m, 1H), 7.58-7.50 (m, 1H), 7.44-7.36 (m 1H), 6.04-5.94 (s, 

1H), 5.72-5.56 (m, 2H), 5.31-5.26 (m, 1H), 4.30-4.18 (m, 2H), 4.15-3.99 (m, 2H), 3.84-3.75 

(m, 2H),2.37 (s, 1H). HRMS-ESI (m/z): [M + H]+ calculated for C17H19O4N2
+, 315.1339; 

found, 315.1342. 

(±) 3-(hydroxymethyl)-6-methyl-7-(thiophen-2-ylmethyl)-3,3a,7,8b-

tetrahydrofuro[3',4':4,5]furo[3,2-c]pyridin-8(1H)-one (19f) 

According to GP2, 3a (100.0 mg, 0.35 mmol) was reacted with 

2l (70.0 mg, 0.32 mmol) at 100 °C for 18 hours. Purification 

by MPLC (cyclohexane/EtOAc 1:0 to 0:1) afforded the 

corresponding glycal (35.0 mg, 38%) which was directly reacted according to GP5 and purified 

by MPLC (DCM/MeOH 1:0 to 4:1) to give the product (8.0 mg, 17% over two steps). 1H-NMR 

(600 MHz, CDCl3): δ 7.22 (dd, J = 5.1, 1.2 Hz, 1H), 7.01 (dd, J = 3.5, 1.2 Hz, 1H), 6.93 (dd, J 

= 5.1, 3.5 Hz, 1H), 5.90 (s, 1H), 5.46 (d, J = 15.4 Hz, 1H), 5.32 (d, J = 15.4 Hz, 1H), 5.22 (dd, 

J = 9.5, 2.9 Hz, 1H), 4.27 (dd, J = 9.2, 7.0 Hz, 1H), 4.15 (ddd, J = 6.8, 4.1, 2.9 Hz, 1H), 4.10 
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(ddd, J = 9.5, 7.0, 3.8 Hz, 1H), 4.02 (dd, J = 9.2, 3.8 Hz, 1H), 3.82-3.73 (m, 2H), 2.46 (s, 3H). 

13C-NMR (151 MHz, CDCl3): δ 167.5, 161.6, 148.6, 138.8, 126.9, 126.7, 125.9, 108.8, 96.7, 

90.3, 85.5, 72.8, 61.5, 46.0, 42.7, 21.4. HRMS-ESI (m/z): [M + H]+ calculated for 

C16H18NSO4
+, 320.0951; found, 320.0948. 

(±) 9-(hydroxymethyl)-5-methyl-6b,7,9,9a-tetrahydrofuro[3',4':4,5]furo[3,2-c]quinolin-

6(5H)-one (19g) 

According to GP2, 3a (75.9 mg, 0.26 mmol) was reacted with 2w 

(34.2 mg, 0.20 mmol) at 100 °C for 1 hour. Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the corresponding glycal 

(31.9 mg, 60%), which was directly reacted according to GP5 and 

purified by prep. HPLC to give the product (2.9 mg, 9% over two steps). 1H-NMR (700 MHz, 

CDCl3): δ 7.75 (d, J = 7.9 Hz, 1H), 7.61 (dd, J = 8.7, 7.1 Hz, 1H), 7.40 (d, J = 8.7 Hz, 1H), 7.27 

(dd, J = 7.9, 7.1 Hz, 1H), 5.55 (dd, J = 8.1, 4.1, 1H), 4.32 (d, J = 9.5 Hz, 1H), 4.25 (ddd, J = 

8.1, 6.3, 1.5 Hz, 1H), 4.07 (ddd, J = 11.8, 4.6, 1.3 Hz, 1H), 4.00 (ddd, J = 11.8, 7.0, 1.3 Hz, 

1H), 3.97-3.94 (m, 1H), 3.86 (ddd, J = 9.5, 6.3, 1.3 Hz, 1H), 3.71 (s, 3H). 13C-NMR (176 MHz, 

CDCl3): δ 163.3, 161.2, 140.9, 131.6, 123.3, 122.2, 114.9, 112.2, 109.6, 89.7, 84.3, 72.0, 61.3, 

47.6, 29.3. HRMS-ESI (m/z): [M + H]+ calculated for C15H16NO4
+, 274.1074; found, 274.1073. 

 

5.1.4.2. Synthesis of General Scaffold B Isomers 

(±) 7,8-dimethyl-4,4a,8,9b-tetrahydro-2H-pyrano[2',3':4,5]furo[3,2-c]pyridine-3,9-dione 

(20a) 

According to GP6, 4a (50.0 mg, 0.32 mmol) was reacted with 2b (44.5 

mg, 0.32 mmol) employing allylpalladium(II) chloride dimer (2.5 

mol%) and Xantphos (7.5 mol%) as catalyst. Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product (49.5 mg, 66%). 1H NMR (700 MHz, 

CDCl3): δ 5.85 (s, 1H), 5.60 (d, J = 7.4 Hz, 1H), 5.20 (dt, J = 7.4, 3.9 Hz, 1H), 4.02 (d, J = 18.4 

Hz, 1H), 3.71 (d, J = 18.4 Hz, 1H), 3.51 (s, 3H), 3.07 (dd, J = 16.1, 3.9 Hz, 1H), 2.96 (dd, J = 

16.1, 3.9 Hz, 1H), 2.37 (s, 3H). 13C NMR (176 MHz, CDCl3): δ 207.7, 169.2, 161.7, 151.6, 

102.8, 94.6, 82.0, 74.8, 68.9, 39.7, 30.8, 22.1. HRMS-ESI (m/z): [M + H]+ calculated for 

C12H14O4N
+,236.09173; found, 236.09173. 
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(±) 8-benzyl-7-methyl-4,4a,8,9b-tetrahydro-2H-pyrano[2',3':4,5]furo[3,2-c]pyridine-3,9-

dione (20b) 

According to GP6, 4a (50.0 mg, 0.32 mmol) was reacted with 

2g (68.9 mg, 0.32 mmol) employing allylpalladium(II) chloride 

dimer (2.5 mol%) and Xantphos (7.5 mol%) as catalyst. 

Purification by MPLC (cyclohexane/EtOAc 1:0 to 0:1) afforded the product (73.0 mg, 73%). 

1H NMR (600 MHz, CDCl3): δ 7.32 (t, J = 7.4 Hz, 2H), 7.28 (d, J = 7.4 Hz, 1H), 7.14 (d, J = 

7.4 Hz, 2H), 5.96 (s, 1H), 5.68 (d, J = 7.4 Hz, 1H, 5.49 (d, J = 15.7 Hz, 1H), 5.28 (dt, J = 7.4, 

3.9 Hz, 1H), 5.24 (d, J = 15.7 Hz, 1H), 4.05 (d, J = 18.4 Hz, 1H), 3.75 (d, J = 18.4 Hz, 1H), 

3.10 (dd, J = 16.1, 3.9 Hz, 1H), 3.00 (dd, J = 16.1, 3.9 Hz, 1H), 2.33 (s, 1H). 13C NMR (151 

MHz, CDCl3): δ 207.2, 169.8, 162.1, 152.1, 135.9, 128.9, 127.6, 126.3, 103.3, 96.2, 82.4, 74.3, 

68.8, 47.1, 39.5, 21.5. HRMS-ESI (m/z): [M + H]+ calculated for C18H18O4N
+,312.12303; 

found, 312.12330. 

(±) 8-(4-fluorobenzyl)-7-methyl-4,4a,8,9b-tetrahydro-2H-pyrano[2',3':4,5]furo[3,2-

c]pyridine-3,9-dione (20c) 

According to GP6, 4a (50.0 mg, 0.32 mmol) was reacted with 

2h (74.7 mg, 0.32 mmol) employing allylpalladium(II) 

chloride dimer (2.5 mol%) and Xantphos (7.5 mol%) as 

catalyst. Purification by MPLC (cyclohexane/EtOAc 1:0 to 0:1) afforded the product (72.5 mg, 

69%). 1H NMR (500 MHz, Chloroform-d): δ 7.16 (m, 2H), 7.00 (m, 2H), 5.86 (d, J = 1.1 Hz, 

1H), 5.64 (d, J = 7.4 Hz, 1H), 5.42 (d, J = 15.7 Hz, 1H), 5.25 (dt, J = 7.4, 3.9 Hz, 1H), 5.15 (d, 

J = 15.7 Hz, 1H), 4.07 (d, J = 18.3 Hz, 1H), 3.76 (d, J = 18.3 Hz, 1H), 3.10 (dd, J = 16.1, 3.9 

Hz, 1H), 2.99 (dd, J = 16.1, 3.9 Hz, 1H), 2.30 (s, 3H). 13C NMR (126 MHz, CDCl3): δ 207.7, 

169.5, 163. 2, 161. 7, 151.8, 132.4, 116.0, 115.8, 103.1, 95.4, 82.2, 74.8, 69.0, 46.2, 39.7, 21.7. 

HRMS-ESI (m/z): [M + H]+ calculated for C18H17O4NF+,330.11361; found, 330.11400. 

(±) 8-(2-chlorobenzyl)-7-methyl-4,4a,8,9b-tetrahydro-2H-pyrano[2',3':4,5]furo[3,2-

c]pyridine-3,9-dione (20d) 

According to GP6, 4a (50.0 mg, 0.32 mmol) was reacted with 2i 

(79.9 mg, 0.32 mmol) employing allylpalladium(II) chloride 

dimer (2.5 mol%) and Xantphos (7.5 mol%) as catalyst. 

Purification by MPLC (cyclohexane/EtOAc 1:0 to 0:1) afforded the product (96.8 mg, 87%). 

1H NMR (500 MHz, CDCl3): δ 7.39 (dd, J = 7.6, 1.6 Hz, 1H), 7.19 (dtd, J = 16.7, 7.6, 1.6 Hz, 
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2H), 6.78 (dd, J = 7.6, 1.6 Hz, 1H), 5.90 (s, 1H), 5.66 (d, J = 7.4 Hz, 1H), 5.51 (d, J = 17.3 Hz, 

1H), 5.31 (d, J = 17.3 Hz, 1H), 5.27 (m, 1H), 4.08 (d, J = 18.3 Hz, 1H), 3.78 (d, J = 18.3 Hz, 

1H), 3.11 (dd, J = 16.1, 3.9 Hz, 1H), 3.01 (dd, J = 16.1, 3.9 Hz, 1H), 2.24 (s, 3H). 13C NMR 

(126 MHz, CDCl3): δ 207.7, 169.7, 161.6, 151.9, 133.9, 132.5, 129.7, 128.7, 127.6, 126.5, 

102.9, 95.5, 82.3, 74.8, 69.0, 44.4, 39.8, 21.4. HRMS-ESI (m/z): [M + H]+ calculated for 

C18H17O4NCl+,346.08406; found, 346.08453. 

(±) 7-methyl-8-(pyridin-2-ylmethyl)-4,4a,8,9b-tetrahydro-2H-pyrano[2',3':4,5]furo[3,2-

c]pyridine-3,9-dione (20e) 

According to GP6, 4a (50.0 mg, 0.32 mmol) was reacted with 

2m (69.2 mg, 0.32 mmol) employing allylpalladium(II) chloride 

dimer (2.5 mol%) and Xantphos (7.5 mol%) as catalyst. 

Purification by MPLC (cyclohexane/EtOAc 1:0 to 0:1) afforded the product (71.6 mg, 72%). 

1H NMR (700 MHz, CDCl3): δ 8.51 (d, J = 4.1 Hz, 1H), 7.63 (td, J = 7.6, 1.5 Hz, 1H), 7.27 (d, 

J = 4.8 Hz, 1H), 7.18 (ddd, J = 7.6, 4.8, 1.5 Hz, 1H), 5.88 (s, 1H), 5.61 (d, J = 7.4 Hz, 1H), 5.49 

(d, J = 16.0 Hz, 1H), 5.28 (d, J = 16.0 Hz, 1H), 5.23 (dt, J = 7.4, 3.9 Hz, 1H), 4.03 (d, J = 18.3 

Hz, 1H), 3.75 (d, J = 18.3 Hz, 1H), 3.07 (dd, J = 16.1, 3.9 Hz, 1H), 2.97 (dd, J = 16.1, 3.9 Hz, 

1H), 2.43 (s, 3H). 13C NMR (176 MHz, CDCl3) δ 207.6, 169.6, 161.5, 156.3, 152.5, 149.4, 

137.1, 122.7, 122.2, 102.8, 95.2, 82.1, 77.3, 77.2, 76.9, 74.7, 68.9, 60.5, 48.7, 39.7, 22.1, 14.3. 

HRMS-ESI (m/z): [M + H]+ calculated for C17H17O4N2
+,313.11828; found, 313.11845. 

(±) 8-((2-chloropyridin-4-yl)methyl)-7-methyl-4,4a,8,9b-tetrahydro-2H-

pyrano[2',3':4,5]furo[3,2-c]pyridine-3,9-dione (20f) 

According to GP6, 4a (50.0 mg, 0.32 mmol) was reacted with 

2p (80.3 mg, 0.32 mmol) employing allylpalladium(II) chloride 

dimer (2.5 mol%) and Xantphos (7.5 mol%) as catalyst. 

Purification by MPLC (cyclohexane/EtOAc 1:0 to 0:1) 

afforded the product (81.2 mg, 73%). 1H NMR (600 MHz, CDCl3): δ 8.37 (d, J = 5.2 Hz, 1H), 

7.09 (s, 1H), 7.04 (d, J = 5.2 Hz, 1H), 6.02 (s, 1H), 5.64 (d, J = 7.4 Hz, 1H), 5.50 (d, J = 15.9 

Hz, 1H), 5.30 (dt, J = 7.4, 4.0 Hz, 1H), 5.15 (d, J = 15.9 Hz, 1H), 4.04 (d, J = 18.3 Hz, 1H), 

3.73 (d, J = 18.3 Hz, 1H), 3.10 (dd, J = 16.1, 4.0 Hz, 1H), 3.01 (dd, J = 16.1, 4.0 Hz, 1H), 2.31 

(s, 3H). 13C NMR (151 MHz, CDCl3): δ 207.0, 170.3, 161.8, 152.2, 151.3, 150.0, 149.4, 122.1, 

120.4, 103.7, 97.0, 82.8, 74.4, 69.1, 46.0, 39.6, 21.7. HRMS-ESI (m/z): [M + H]+ calculated 

for C17H16O4N2Cl+,347.07931; found, 347.07978. 
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(±) 7-methyl-8-((3-methylpyridin-4-yl)methyl)-4,4a,8,9b-tetrahydro-2H-

pyrano[2',3':4,5]furo[3,2-c]pyridine-3,9-dione (20g) 

According to GP6, 4a (50.0 mg, 0.32 mmol) was reacted with 

2o (104.3 mg, 0.32 mmol) employing allylpalladium(II) 

chloride dimer (2.5 mol%) and Xantphos (7.5 mol%) as 

catalyst. Purification by MPLC (cyclohexane/EtOAc 1:0 to 0:1) afforded the product (58.0 mg, 

56%). 1H NMR (500 MHz, CDCl3): δ 8.69 (s, 1H), 8.53 (d, J = 5.8 Hz, 1H), 7.02 (d, J = 5.8 

Hz, 1H), 6.04 (s, 1H), 5.61 (d, J = 7.6 Hz, 1H), 5.52 (d, J = 17.7 Hz, 1H), 5.31 (dt, J = 7.6, 4.0 

Hz, 1H), 5.16 (d, J = 17.7 Hz, 1H), 4.07 (d, J = 18.3 Hz, 1H), 3.76 (d, J = 18.3 Hz, 1H), 3.12 

(dd, J = 16.1, 4.0 Hz, 1H), 3.03 (dd, J = 16.1, 4.0 Hz, 1H), 2.58 (s, 3H), 2.28 (s, 3H). 13C NMR 

(176 MHz, CDCl3): δ 207.1, 170.0, 161.1, 152.8, 150.2, 143.7, 142.1, 134.2, 121.7, 96.26, 

82.63, 74.62, 69.15, 41.14, 39.67, 31.08, 21.49, 14.27. HRMS-ESI (m/z): [M + H]+ calculated 

for C18H19O4N2
+,327.13393; found, 327.13412. 

(±) 8-(2-(5-methoxy-1H-indol-3-yl)ethyl)-7-methyl-4,4a,8,9b-tetrahydro-2H-

pyrano[2',3':4,5]furo[3,2-c]pyridine-3,9-dione (20h) 

According to GP6, 4a (12.5 mg, 0.08 mmol) was reacted 

with 2s (23.8 mg, 0.08 mmol) employing allylpalladium(II) 

chloride dimer (2.5 mol%) and Xantphos (7.5 mol%) as 

catalyst. Purification by MPLC (cyclohexane/EtOAc 1:0 to 

0:1) afforded the product (23.7 mg, 75%). 1H NMR (700 

MHz, CDCl3): δ 8.15 (s, 1H), 7.25 (s, 1H), 7.12 (d, J = 2.4 Hz, 1H), 6.97 (d, J = 2.4 Hz, 1H), 

6.85 (dd, J = 8.8, 2.4 Hz, 1H), 5.76 (s, 1H), 5.64 (d, J = 7.4 Hz, 1H), 5.21 (dt, J = 7.4, 3.9 Hz, 

1H), 4.26 (ddt, J = 28.7, 13.8, 6.9 Hz, 2H), 4.05 (d, J = 18.4 Hz, 1H), 3.86 (s, 3H), 3.75 (d, J = 

18.4 Hz, 1H), 3.14 (t, J = 7.6 Hz, 2H), 3.08 (dd, J = 16.2, 4.0 Hz, 1H), 2.98 (dd, J = 16.2, 4.0 

Hz, 1H), 2.19 (s, 3H). 13C NMR (176 MHz, CDCl3) δ 207.7, 169.3, 161.6, 154.3, 151.6, 131.6, 

127.9, 123.2, 112.5, 112.3, 112.1, 103.2, 100.8, 94.8, 82.1, 74.8, 69.0, 56.1, 45.4, 39.7, 24.6, 

21.6. HRMS-ESI (m/z): [M + H]+ calculated for C22H23O5N2
+ ,395.16015; found, 395.15963. 

(±) 2,7-dimethyl-4,4a,8,9b-tetrahydro-2H-pyrano[2',3':4,5]furo[3,2-c]pyridine-3,9-dione 

(21a) 

According to GP6, 4b (25.5 mg, 0.15 mmol) was reacted with 2a (18.8 

mg, 0.15 mmol). Purification by MPLC (cyclohexane/EtOAc 1:0 to 0:1) 

afforded the product (19.7 mg, 56%). 1H-NMR (700 MHz, CD2Cl2): δ 
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11.83 (s, 1H), 5.81 (s, 1H), 5.55 (d, J = 7.2 Hz, 1H), 5.24 (dt, J = 7.2, 3.2 Hz, 1H), 3.64 (q, J = 

6.8 Hz, 1H), 3.05 (dd, J = 16.5, 3.4 Hz, 1H), 2.89 (dd, J = 16.5, 3.1 Hz, 1H), 2.33 (s, 3H), 1.25 

(d, J = 6.8 Hz, 3H). 13C-NMR (176 MHz, CD2Cl2): δ 209.6, 172.3, 163.4, 151.1, 103.5, 94.1, 

83.1, 73.9, 73.5, 39.1, 19.8, 15.9. HRMS-ESI (m/z): [M + H]+ calculated for C12H14NO4
+, 

236.0917; found, 236.0916.  

(±) 2,7,8-trimethyl-4,4a,8,9b-tetrahydro-2H-pyrano[2',3':4,5]furo[3,2-c]pyridine-3,9-

dione (21b) 

According to GP6, 4b (24.0 mg, 0.14 mmol) was reacted with 2b (19.6 

mg, 0.14 mmol). Purification by MPLC (cyclohexane/EtOAc 1:0 to 0:1) 

afforded the product (19.3 mg, 55%). 1H-NMR (700 MHz, CD2Cl2): δ 

5.82 (s, 1H), 5.53 (d, J = 7.4 Hz, 1H), 5.20 (dt, J = 7.4, 3.2 Hz, 1H), 3.60 (q, J = 6.8 Hz, 1H), 

3.45 (s, 3H), 3.04 (ddd, J = 16.3, 3.2, 0.6 Hz, 1H), 2.85 (ddd, J = 16.3, 3.2, 0.6 Hz, 1H), 2.33 

(s, 3H), 1.24 (d, J = 6.8 Hz, 3H). 13C-NMR (176 MHz, CD2Cl2): δ 209.9, 169.4, 161.7, 152.1, 

103.2, 94.4, 82.9, 74.8, 73.5, 39.2, 30.8, 22.1, 15.9. HRMS-ESI (m/z): [M + H]+ calculated for 

C13H16NO4
+, 250.1074; found, 250.1071.  

(±) 8-cyclobutyl-2,7-dimethyl-4,4a,8,9b-tetrahydro-2H-pyrano[2',3':4,5]furo[3,2-

c]pyridine-3,9-dione (21c) 

According to GP6, 4b (25.5 mg, 0.15 mmol) was reacted with 2c 

(26.8 mg, 0.15 mmol). Purification by MPLC (cyclohexane/EtOAc 

1:0 to 0:1) afforded the product (19.0 mg, 44%). 1H-NMR (700 

MHz, CD2Cl2): δ 5.84 (s, 1H), 5.57 (d, J = 7.5 Hz, 1H), 5.22 (dt, J = 7.5, 3.3 Hz, 1H), 4.77 (p, 

J = 9.3 Hz, 1H), 3.60 (q, J = 6.9 Hz, 1H), 3.27-3.14 (m, 2H), 3.04 (dd, J = 16.4, 3.5 Hz, 1H), 

2.86 (dd, J = 16.4, 3.1 Hz, 1H), 2.36 (s, 3H), 2.33-2.25 (m, 2H), 2.00-1.94 (m, 1H), 1.80-1.73 

(m, 1H), 1.24 (d, J = 6.9 Hz, 3H). 13C-NMR (176 MHz, CD2Cl2): δ 209.8, 169.6, 163.8, 152.3, 

105.2, 96.3, 83.3, 74.5, 73.6, 53.8, 39.1, 28.5, 22.8, 15.8, 15.1. HRMS-ESI (m/z): [M + H]+ 

calculated for C16H20NO4
+, 290.1387; found, 290.1386.  
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(±) 8-methyl-1,2,3,4,5,6b,10,10a-octahydro-6H-pyrano[2',3':4,5]furo[3,2-c]quinoline-

6,9(8H)-dione (21d) 

According to GP6, 4b (25.5 mg, 0.15 mmol) was reacted with 2v (24.8 

mg, 0.15 mmol). Purification by MPLC (cyclohexane/EtOAc 1:0 to 0:1) 

afforded the product (13.0 mg, 31%). 1H-NMR (700 MHz, CD2Cl2): δ 

11.76, 5.55 (d, J = 7.2 Hz, 1H), 5.23 (dt, J = 7.2, 3.2 Hz, 1H), 3.65 (q, J 

= 6.8 Hz, 1H), 3.05 (dd, J = 16.5, 3.4 Hz, 1H), 2.91 (dd, J = 16.5, 3.1 Hz, 1H), 2.63 (t, J = 6.4 

Hz, 2H), 2.34 (t, J = 6.3 Hz, 2H), 1.79 (p, J = 5.9 Hz, 2H), 1.74-1.69 (m, 2H), 1.25 (d, J = 6.8 

Hz, 3H). 13C-NMR (176 MHz, CD2Cl2): δ 209.8, 171.0, 162.6, 148.2, 103.5, 103.1, 82.9, 74.3, 

73.4, 39.2, 27.3, 22.1, 22.0, 20.9, 15.8. HRMS-ESI (m/z): [M + H]+ calculated for C15H18NO4
+, 

276.1230; found. 276.1233. 

(±) 8-(4-fluorobenzyl)-2,7-dimethyl-4,4a,8,9b-tetrahydro-2H-pyrano[2',3':4,5]furo[3,2-

c]pyridine-3,9-dione (21e) 

According to GP6, 4b (25.5 mg, 0.15 mmol) was reacted 

with 2h (35.0 mg, 0.15 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product (56.1 

mg, 90%). 1H-NMR (700 MHz, CD2Cl2): δ 7.14 (dd, J = 8.6, 

5.4 Hz, 2H), 7.02 (t, J = 8.6 Hz, 2H), 5.85 (s, 1H), 5.59 (d, J = 7.5 Hz, 1H), 5.43 (d, J = 15.7 

Hz, 1H), 5.26 (dt, J = 7.5, 3.2 Hz, 1H), 5.08 (d, J = 15.7 Hz, 1H), 3.66 (q, J = 6.9 Hz, 1H), 3.07 

(dd, J = 16.3, 3.4 Hz, 1H), 2.88 (dd, J = 16.3, 3.1 Hz, 1H), 2.26 (s, 3H), 1.27 (d, J = 6.9 Hz, 

3H). 13C-NMR (176 MHz, CD2Cl2): δ 209.8, 169.7, 163.1, 161.7, 161.6, 152.2, 133.2, 128.6, 

116.0, 103.6, 95.2, 83.1, 74.8, 73.6, 46.2, 39.1, 21.7, 15.9. HRMS-ESI (m/z): [M + H]+ 

calculated for C19H19FNO4
+, 344.1293; found, 344.1293. 

(±) 8-(2-chlorobenzyl)-2,7-dimethyl-4,4a,8,9b-tetrahydro-2H-pyrano[2',3':4,5]furo[3,2-

c]pyridine-3,9-dione (21f) 

According to GP6, 4b (25.5 mg, 0.15 mmol) was reacted with 2i 

(37.5 mg, 0.15 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product (27.5 mg, 

51%). 1H-NMR (700 MHz, CD2Cl2): δ 7.43 (dd, J = 7.9, 1.4 Hz, 1H), 7.26-7.23 (m, 1H), 7.20 

(td, J = 7.6, 1.4 Hz, 1H), 6.72 (dd, J = 7.6, 1.7 Hz, 1H), 5.91 (s, 1H), 5.62 (d, J = 7.5 Hz, 1H), 

5.50 (d, J = 16.1 Hz, 1H), 5.29 (dt, J = 7.5, 3.2 Hz, 1H), 5.21 (d, J = 16.9 Hz, 1H), 3.68 (q, J = 

6.8 Hz, 1H), 3.08 (dd, J = 16.3, 3.4 Hz, 1H), 2.90 (dd, J = 16.3, 3.1 Hz, 1H), 2.21 (s, 3H), 1.28 
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(d, J = 6.8 Hz, 3H). 13C-NMR (176 MHz, CD2Cl2): δ 209.8, 169.9, 161.7, 152.2, 134.4, 132.7, 

130.0, 129.0, 127.7, 126.5, 103.6, 95.3, 83.2, 74.7, 73.6, 44.7. 39.1, 21.4, 15.9. HRMS-ESI 

(m/z): [M + H]+ calculated for C19H19ClNO4
+, 360.0997; found, 360.0999. 

(±) 8-(4-methoxybenzyl)-2,7-dimethyl-4,4a,8,9b-tetrahydro-2H-pyrano[2',3':4,5]furo[3,2-

c]pyridine-3,9-dione (21g) 

According to GP6, 4b (50.0 mg, 0.29 mmol) was reacted 

with 2k (72.1 mg, 0.29 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product (44.0 

mg, 42%). 1H-NMR (500 MHz, CD2Cl2): δ 7.08 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 

5.95 (s, 1H), 5.64 (d, J = 7.6 Hz, 1H), 5.45 (d, J = 15.7 Hz, 1H), 5.29 (dt, J = 7.6, 3.4 Hz, 1H), 

5.08 (d, J = 15.7 Hz, 1H), 3.77 (s, 3H), 3.63 (q, J = 6.8 Hz, 1H), 3.08 (dd, J = 16.4, 3.4 Hz, 1H), 

2.89 (dd, J = 16.4, 3.1 Hz, 1H), 2.32 (s, 3H), 1.26 (d, J = 6.8 Hz, 3H). 13C-NMR (126 MHz, 

CD2Cl2): δ 209.6, 170.1, 162.4, 159.4, 152.7, 128.6, 128.1, 114.5, 104.0, 96.4, 83.4, 74.4, 73.6, 

55.6, 46.9, 39.1, 21.8, 15.8. HRMS-ESI (m/z): [M + H]+ calculated for C20H22NO4
+, 356.1493; 

found, 356.1498. 

(±) 2,7-dimethyl-8-(pyridin-4-ylmethyl)-4,4a,8,9b-tetrahydro-2H-

pyrano[2',3':4,5]furo[3,2-c]pyridine-3,9-dione (21h) 

According to GP6, 4b (25.5 mg, 0.15 mmol) was reacted with 

2n (32.4 mg, 0.15 mmol). Purification by MPLC 

(EtOAc/MeOH 1:0 to 4:1) afforded the product (18.7 mg, 

32%). 1H-NMR (700 MHz, CDCl3): δ 8.57 (m, 2H), 7.07 (d, J = 5.0 Hz, 2H), 5.89 (s, 1H), 5.67 

(d, J = 7.1 Hz, 1H), 5.54 (d, J = 16.0 Hz, 1H), 5.28 (dt, J = 7.1, 3.2 Hz, 1H), 5.11 (d, J = 16.0 

Hz, 1H), 3.69 (q, J = 6.7 Hz, 1H), 3.08 (dd, J = 16.2, 3.4 Hz, 1H), 2.94 (dd, J = 16.2, 3.1 Hz, 

1H), 2.26 (s, 1H), 1.33 (d, J = 6.7 Hz, 3H). 13C-NMR (176 MHz, CDCl3): δ 209.7, 169.6, 161.4, 

151.2, 150.1, 146.3, 121.6, 103.6, 95.7, 82.9, 74.4, 73.6, 45.9, 38.9, 21.6, 16.0. HRMS-ESI 

(m/z): [M + H]+ calculated for C18H19N2O4
+, 327.1339; found, 327.1339. 

(±) 8-((2-chloropyridin-4-yl)methyl)-2,7-dimethyl-4,4a,8,9b-tetrahydro-2H-

pyrano[2',3':4,5]furo[3,2-c]pyridine-3,9-dione (21i) 

According to GP6, 4b (25.5 mg, 0.15 mmol) was reacted 

with 2p (37.6 mg, 0.15 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product (17.3 
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mg, 32%). 1H-NMR (700 MHz, CD2Cl2): δ 8.31 (d, J = 5.2 Hz, 1H), 7.04 (s, 1H), 7.02 (dd, J 

= 5.2, 1.5 Hz, 1H), 5.90 (s, 1H), 5.59 (d, J = 7.5 Hz, 1H), 5.49-5.46 (m, 1H), 5.29 (dt, J = 7.5, 

3.2 Hz, 1H), 5.07 (d, J = 16.4 Hz, 1H), 3.65 (q, J = 6.8 Hz, 1H), 3.08 (dd, J = 16.3, 3.4 Hz, 1H), 

2.90 (dd, J = 16.3, 3.1 Hz, 1H), 2.23 (s, 3H), 1.28 (d, J = 6.8 Hz, 3H). 13C-NMR (176 MHz, 

CD2Cl2): δ 209.6, 170.0, 161.3, 152.5, 151.6, 150.5, 149.9, 122.0, 120.7, 103.7, 95.8, 83.3, 74.7, 

73.6, 45.7, 39.1, 21.7, 15.9. HRMS-ESI (m/z): [M + H]+ calculated for C18H18ClN2O4
+, 

361.0945; found, 361.0951. 

(±) 2,2,7,8-tetramethyl-4,4a,8,9b-tetrahydro-2H-pyrano[2',3':4,5]furo[3,2-c]pyridine-3,9-

dione (22a) 

According to GP6, 4c (27.6 mg, 0.15 mmol) was reacted with 2b (20.9 

mg, 0.15 mmol). Purification by MPLC (cyclohexane/EtOAc 1:0 to 0:1) 

afforded the product (6.3 mg, 16%). 1H-NMR (700 MHz, CD2Cl2): δ 

5.99 (s, 1H), 5.37 (d, J = 6.6 Hz, 1H), 5.01 (dt, J = 7.7, 6.6 Hz, 1H), 3.51 (s, 3H), 3.06 (dd, J = 

13.8, 7.7 Hz, 1H), 2.98 (dd, J = 13.8, 6.9 Hz, 1H), 2.38 (s, 3H), 1.38 (s, 3H), 1.24 (s, 3H). 13C-

NMR (176 MHz, CD2Cl2): δ 212.4, 169.3, 162.1, 152.2, 106.4, 96.2, 84.3, 81.7, 71.6, 40.0, 

31.4, 25.6, 22.1, 21.5. HRMS-ESI (m/z): [M + H]+ calculated for C14H18NO4
+, 264.1230; 

found, 264.1230. 

(±) 8-benzyl-2,2,7-trimethyl-4,4a,8,9b-tetrahydro-2H-pyrano[2',3':4,5]furo[3,2-

c]pyridine-3,9-dione (22b) 

According to GP6, 4c (50.0 mg, 0.32 mmol) was reacted with 2g 

(58.4 mg, 0.32 mmol) employing allylpalladium(II) chloride 

dimer (2.5 mol%) and Xantphos (7.5 mol%) as catalyst. 

Purification by MPLC (cyclohexane/EtOAc 1:0 to 0:1) afforded 

the product (48.0 mg 52%). 1H NMR (500 MHz, CDCl3): δ 7.31 (m, 2H), 7.16 (d, J = 6.7 Hz, 

2H), 5.96 (s, 1H), 5.55 (d, J = 15.7 Hz, 1H), 5.44 (d, J = 6.7 Hz, 1H), 5.14 (d, J = 15.7 Hz, 1H), 

5.03 (dt, J = 7.9, 6.7 Hz, 1H), 3.14 (dd, J = 13.7, 7.3 Hz, 1H), 3.02 (dd, J = 13.7, 7.3 Hz, 1H), 

2.32 (s, 1H), 1.43 (s, 3H), 1.31 (s, 3H). 13C NMR (126 MHz, CDCl3): δ 212.7, 169.1, 161.9, 

151.6, 136.2, 128.9, 127.5, 126.6, 106.4, 96.4, 83.9, 81.5, 71.3, 47.1, 39.7, 25.5, 21.6, 21.2. 

HRMS-ESI (m/z): [M + H]+ calculated for C20H22O4N
+,340.15433; found, 340.15470. 
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(±) 8-(4-fluorobenzyl)-2,2,7-trimethyl-4,4a,8,9b-tetrahydro-2H-pyrano[2',3':4,5]furo[3,2-

c]pyridine-3,9-dione (22c) 

According to GP6, 4c (50.0 mg, 0.27 mmol) was reacted with 

2h (63.3 mg, 0.27 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product (23.7 

mg, 24%). 1H-NMR (600 MHz, CDCl3): δ δ 7.18-7.15 (m, 

2H), 7.01 (dd, J = 10.6, 6.0 Hz, 2H), 5.97 (s, 1H), 5.48 (d, J = 16.0 Hz, 1H), 5.44 (d, J = 6.3 

Hz, 1H), 5.14-5.10 (m, 1H), 5.05-5.00 (m, 1H), 3.13 (dd, J = 13.7, 7.2 Hz, 1H), 3.02 (dd, J = 

13.7, 6.0 Hz, 1H), 2.33 (s, 3H), 1.43 (s, 3H), 1.31 (s, 3H).  13C-NMR (151 MHz, CDCl3): δ 

212.6, 169.3, 163.1, 161.5, 162.0, 151.5, 132.1, 128.6, 115.9, 106.6, 96.8, 84.2, 81.7, 71.4, 46.8, 

39.8, 25.6, 21.8, 21.4. HRMS-ESI (m/z): [M + H]+ calculated for C20H21NO4F
+, 358.1449; 

found, 358.1466. 

(±) 8-(2-chlorobenzyl)-2,2,7-trimethyl-4,4a,8,9b-tetrahydro-2H-pyrano[2',3':4,5]furo[3,2-

c]pyridine-3,9-dione (22d) 

According to GP6, 4c (50.0 mg, 0.27 mmol) was reacted with 2i 

(67.8 mg, 0.27 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product (5.8 mg, 

6%). 1H-NMR (600 MHz, CD2Cl2): δ 7.43 (dd, J = 7.7, 1.4 Hz, 1H), 7.24 (td, J = 7.7, 1.7 Hz, 

1H), 7.20 (td, J = 7.7, 1.4 Hz, 1H), 6.75 (dd, J = 7.7, 1.7 Hz, 1H), 5.99 (s, 1H), 5.44 (d, J = 16.9 

Hz, 1H), 5.41 (d, J = 6.6 Hz, 1H), 5.29 (d, J = 16.9 Hz, 1H), 5.11-5.04 (m, 1H), 3.10 (dd, J = 

13.8, 7.5 Hz, 1H), 3.02 (dd, J = 13.8, 6.7 Hz, 1H), 2.23 (s, 3H), 1.40 (s, 3H), 1.28 (s, 3H). 13C-

NMR (151 MHz, CD2Cl2): δ 212.5, 169.5, 161.8, 152.0, 134.3, 132.7, 130.0, 129.0, 127.7, 

126.6, 106.5, 96.4, 84.4, 81.7, 71.8, 44.9, 40.0, 25.5, 22.0. 21.4. HRMS-ESI (m/z): [M + H]+ 

calculated for C20H21NO4Cl+, 374.1154; found, 374.1167. 

(±) 8-(4-methoxybenzyl)-2,2,7-trimethyl-4,4a,8,9b-tetrahydro-2H-

pyrano[2',3':4,5]furo[3,2-c]pyridine-3,9-dione (22e) 

According to GP6, 4c (27.7 mg, 0.15 mmol) was reacted 

with 2k (55.2 mg, 0.15 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product (10.1 

mg, 18%). 1H-NMR (600 MHz, CDCl3): δ 7.10 (d, J = 8.8 

Hz, 2H), 6.81 (d, J = 8.8 Hz, 2H), 5.88 (s, 1H), 5.42 (d, J = 15.4 Hz, 1H), 5.40 (d, J = 6.6 Hz, 

1H), 5.03 (d, J = 15.4 Hz, 1H), 4.98 (dt, J = 7.9, 6.6 Hz, 1H), 3.74 (s, 3H), 3.10 (dd, J = 13.6, 
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7.9 Hz, 1H), 2.98 (dd, J = 13.6, 6.9 Hz, 1H), 2.29 (s, 3H), 1.40 (s, 3H), 1.28 (s, 3H). 13C-NMR 

(151 MHz, CDCl3): δ 212.9, 169.0, 161.9, 159.1, 151.6, 128.6, 128.2, 114.3, 106.4, 96.1, 84.0, 

81.6, 71.6, 55.4, 46.6, 39.8, 21.7, 21.5. HRMS-ESI (m/z): [M + H]+ calculated for C21H24NO5
+, 

370.1649; found, 370.1637. 

(±) 2,2,7-trimethyl-8-(pyridin-4-ylmethyl)-4,4a,8,9b-tetrahydro-2H-

pyrano[2',3':4,5]furo[3,2-c]pyridine-3,9-dione (22f) 

According to GP6, 4c (27.7 mg, 0.15 mmol) was reacted with 

2n (32.2 mg, 0.15 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1 then EtOAc/MeOH 1:0 to 9:1) 

afforded the product (11.5 mg, 23%). 1H-NMR (700 MHz, CD2Cl2): δ 8.53-8.51 (m, 2H), 7.05-

7.04 (m, 2H), 5.93 (s, 1H), 5.38 (d, J = 6.7 Hz, 1H), 5.37 (d, J = 16.0 Hz, 1H), 5.16 (d, J = 16.0 

Hz, 1H), 5.05 (dt, J = 7.5, 6.7 Hz, 1H), 3.09 (dd, J = 13.8, 7.5 Hz, 1H), 3.01 (dd, J = 13.8, 6.7 

Hz, 1H), 2.24 (s, 3H), 1.40 (s, 3H), 1.28 (s, 3H). 13C-NMR (176 MHz, CD2Cl2): δ 212.6, 169.2, 

161.3, 151.5, 150.5, 146.5, 121.6, 106.4, 95.8, 84.3, 81.6, 72.0, 46.1, 40.0, 25.4, 22.1, 21.7. 

HRMS-ESI (m/z): [M + H]+ calculated for C19H21N2O4
+, 341.1496; found, 341.1493. 

(±) 8-((2-chloropyridin-4-yl)methyl)-2,2,7-trimethyl-4,4a,8,9b-tetrahydro-2H-

pyrano[2',3':4,5]furo[3,2-c]pyridine-3,9-dione (22g) 

According to GP6, 4c (50.0 mg, 0.32 mmol) was reacted with 

2m (58.7 mg, 0.32 mmol) employing allylpalladium(II) chloride 

dimer (2.5 mol%) and Xantphos (7.5 mol%) as catalyst. 

Purification by MPLC (cyclohexane/EtOAc 1:0 to 0:1) afforded the product (17.8 mg, 19%). 

1H NMR (700 MHz, CDCl3): δ 8.70 (d, J = 4.5 Hz, 1H), 7.99 (td, J = 7.9, 1.7 Hz, 1H), 7.52 (m, 

1H), 7.49 (d, J = 7.9 Hz, 1H), 6.04 (s, 1H), 5.69 (d, J = 16.5 Hz, 1H), 5.55 (d, J = 16.5 Hz, 1H), 

5.40 (d, J = 6.5 Hz, 1H), 5.03 (m, 1H), 3.13 (dd, J = 13.7, 7.5 Hz, 1H), 3.02 (dd, J = 13.7, 7.5 

Hz, 1H), 2.41 (s, 3H), 1.42 (s, 3H), 1.30 (s, 3H). 13C NMR (176 MHz, CDCl3): δ 212.3, 169.8, 

161.8, 154.4, 151.7, 145.6, 141.6, 124.3, 123.9, 106.5, 97.3, 84.2, 81.7, 71.2, 46.8, 39.7, 25.6, 

21.9, 21.2. HRMS-ESI (m/z): [M + H]+ calculated for C19H21O4N2
+,341.14958; found, 

341.14984 
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(±) 8-((2-chloropyridin-4-yl)methyl)-2,2,7-trimethyl-4,4a,8,9b-tetrahydro-2H-

pyrano[2',3':4,5]furo[3,2-c]pyridine-3,9-dione (22h) 

According to GP6, 4c (27.7 mg, 0.15 mmol) was reacted with 

2p (37.3 mg, 0.15 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product (35.2 mg, 

63%). 1H-NMR (700 MHz, CD2Cl2): δ 8.31 (dd, J = 5.1, 0.8 

Hz, 1H), 7.06 (dd, J = 1.6, 0.8 Hz, 1H), 7.03-7.02 (m, 1H), 5.94 (s, 1H), 5.38 (d, J = 6.7 Hz, 

1H), 5.37 (d, J = 15.2 Hz, 1H), 5.13 (d, J = 15.2 Hz, 1H), 5.07 (dt, J = 7.5, 6.7 Hz, 1H), 3.09 

(dd, J = 13.8, 7.5 Hz, 1H), 3.02 (dd, J = 13.8, 6.7 Hz, 1H), 2.24 (s, 3H), 1.39 (s, 3H), 1.28 (s, 

3H). 13C-NMR (176 MHz, CD2Cl2): δ 212.4, 169.3, 161.2, 152.5, 151.2, 150.4, 150.0, 122.0, 

120.7, 106.4, 96.1, 84.4, 81.6, 71.9, 45.8, 39.9, 25.5, 22.2, 21.7. HRMS-ESI (m/z): [M + H]+ 

calculated for C19H20ClN2O4
+, 375.1106; found, 375.1105. 

(±) 2,2,7-trimethyl-8-((3-methylpyridin-4-yl)methyl)-4,4a,8,9b-tetrahydro-2H-

pyrano[2',3':4,5]furo[3,2-c]pyridine-3,9-dione (22i) 

According to GP6, 4c (50.0 mg, 0.32 mmol) was reacted with 

2o (35.4 mg, 0.32 mmol) employing Allylpalladium(II) 

chloride dimer (2.5 mol%) and Xantphos (7.5 mol%) as 

catalyst. Purification by MPLC (cyclohexane/EtOAc 1:0 to 0:1) afforded the product (4.7 mg, 

5%). 1H NMR (700 MHz, CDCl3): δ 8.71 (s, 1H), 8.57 (d, J = 5.7 Hz, 1H), 7.10 (d, J = 5.7 Hz, 

1H), 6.11 (s, 1H), 5.48 (d, J = 17.6 Hz, 1H), 5.38 (d, J = 6.7 Hz, 1H), 5.23 (d, J = 17.6 Hz, 1H), 

5.06 (dt, J = 8.1, 6.7 Hz, 1H), 3.15 (dd, J = 13.7, 7.6 Hz, 1H), 3.05 (dd, J = 13.7, 7.6 Hz, 1H), 

2.60 (s, 3H), 2.30 (s, 3H), 1.41 (s, 3H), 1.31 (s, 3H). 13C NMR (176 MHz, CDCl3): δ 212.1, 

169.8, 161.2, 154.0, 150.0, 142.8, 140.9, 134.9, 121.8, 106.9, 97.5, 84.4, 81.8, 77.3, 77.2, 77.0, 

71.1, 44.8, 39.7, 25.7, 21.5, 21.2, 16.6. HRMS-ESI (m/z): [M + H]+ calculated for 

C20H23O4N2
+,355.16523; found, 355.16537. 

(±) 5,8,8-trimethyl-5,6b,10,10a-tetrahydro-6H-pyrano[2',3':4,5]furo[3,2-c]quinoline-

6,9(8H)-dione (22j) 

According to GP6, 4c (27.7 mg, 0.15 mmol) was reacted with 2w (26.3 

mg, 0.15 mmol). Purification by MPLC (cyclohexane/EtOAc 1:0 to 0:1) 

and repurification by prep. HPLC afforded the product (2.1 mg, 5%). 

1H-NMR (500 MHz, CDCl3): δ 7.82 (dd, J = 8.0, 1.7 Hz, 1H), 7.68 (ddd, 

J = 8.7, 7.2, 1.7 Hz, 1H), 7.43 (d, J = 8.7 Hz, 1H), 7.30 (ddd, J = 8.0, 7.2, 0.9 Hz, 1H), 5.54 (d, 
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J = 6.7 Hz, 1H), 5.18 (dt, J = 8.0, 6.7 Hz, 1H), 3.74 (s, 3H), 3.24 (dd, J = 13.7, 8.0 Hz, 1H), 

3.12 (dd, J = 13.7, 7.0 Hz, 1H), 1.48 (s, 3H), 1.32 (s, 3H). 13C-NMR (126 MHz, CDCl3): δ 

212.5, 161.1, 158.4, 141.7, 132.8, 124.0, 122.4, 115.1, 112.2, 107.7, 84.3, 81.9, 72.0, 39.8, 29.5, 

25.5. 21.3. HRMS-ESI (m/z): [M + H]+ calculated for C17H18NO4
+, 300.1230; found, 300.1234. 

(±) 2,2,7-trimethyl-4a,9b-dihydro-2H,9H-furo[3,2-b:4,5-c']dipyran-3,9(4H)-dione 

(22k)[112] 

According to GP6, 4c (27.6 mg, 0.15 mmol) was reacted with 4-

hydroxy-6-methyl-2H-pyran-2-one (1a) (18.9 mg, 0.15 mmol). 

Purification by MPLC (cyclohexane/EtOAc 1:0 to 0:1) afforded the 

product (1.4 mg, 4%). 1H-NMR (700 MHz, CD2Cl2): δ  5.98 (s, 1H), 5.28 (d, J = 6.7 Hz, 1H), 

5.07 (dt, J = 7.8, 6.7 Hz, 1H), 3.08 (dd, J = 13.8, 7.8 Hz, 1H), 3.01 (dd, J = 13.8, 6.8 Hz, 1H), 

2.27 (s, 3H), 1.39 (s, 3H), 1.29 (s, 3H). ). HRMS-ESI (m/z): [M + H]+ calculated for C13H15O5
+, 

251.0914; found, 251.0915. 

(±) Tert-butyl-7',8'-dimethyl-3',9'-dioxo-3',4',4a',8',9',9b'-hexahydrospiro[piperidine-

4,2'-pyrano[2',3':4,5]furo[3,2-c]pyridine]-1-carboxylate (23a) 

According to GP6, 4d (50.0 mg, 0.15 mmol) was reacted with 2b (21.4 

mg, 0.15 mmol). Purification by MPLC (cyclohexane/EtOAc 1:0 to 

0:1) afforded the product (56.1 mg, 90%). 1H-NMR (700 MHz, 

CD2Cl2): δ 5.85 (s, 1H), 5.35 (d, J = 6.7 Hz, 1H), 5.03 (q, J = 6.7 Hz, 

1H), 3.98-3.73 (m 2H), 3.45 (s, 3H), 3.26-2.98 (m, 4H), 2.34 (s, 3H), 

1.88 (d, J = 14.1 Hz, 1H), 1.72 (ddd, J = 13.8, 12.1, 4.5 Hz, 1H), 1.65-

1.59 (m, 1H), 1.53-1.48 (m, 1H), 1.47 (m, 9H). 13C-NMR (176 MHz, CD2Cl2): δ 211.5; 168.6, 

161.4, 154.8, 152.1, 105.7, 94.6, 83.9, 81.0, 79.5, 71.1, 40.1, 39.5, 38.6, 33.1, 30.7, 29.6, 28.5. 

HRMS-ESI (m/z): [M + H]+ calculated for C21H29N2O6
+, 405.2020; found, 405.2015. 

(±) 7',8'-dimethyl-3',9'-dioxo-3',4',4a',8',9',9b'-hexahydrospiro[piperidine-4,2'-

pyrano[2',3':4,5]furo[3,2-c]pyridin]-1-ium triflate (24a) 

23a (35.0 mg, 0.09 mmol) was dissolved in DCM (1 mL) and 

cooled to 0 °C. A mixture of TMSOTf (0.16 mL, 10 equiv) and 

2,6-lutidine (0.15 mL, 15 equiv) in DCM (0.1 mL) was added 

slowly and the mixture was stirred at 0 °C for 1 hour and at room 

temperature for 30 min. The reaction was quenched by slow 
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addition of saturated Na₂CO₃ solution at 0 °C and dilution with EtOAc (10 mL). The layers 

were separated and the aqueous phase was extracted with EtOAc (3 x 10 mL). The combined 

organic layers were washed with brine (20 mL), dried over MgSO₄ and concentrated in vacuo. 

Purification by prep. HPLC afforded the product (8.2 mg, 31%). 1H-NMR (500 MHz, DMSO): 

δ 8.56 (d, J = 11.2 Hz, 1H), 8.42 (d, J = 13.7 Hz, 1H), 6.07 (s, 1H), 5.33 (d, J = 6.5 Hz, 1H), 

5.18 (q, J = 6.5 Hz, 1H), 3.34 (s, 3H), 3.21-2.91 (m, 6H), 2.36 (s, 3H), 1.87-1.57 (m, 4H). 13C-

NMR (126 MHz, DMSO): δ 210.9, 168.2, 160.8, 153.2, 104.7, 94.1, 83.6, 77.7, 71.6, 40.5, 

39.2, 30.4, 29.6, 26.5, 21.6. HRMS-ESI (m/z): [M + H]+ calculated for C16H21N2O4
+, 305.1496; 

found, 305.1487. 

(±) Tert-butyl 8'-cyclobutyl-7'-methyl-3',9'-dioxo-3',4',4a',8',9',9b'-

hexahydrospiro[piperidine-4,2'-pyrano[2',3':4,5]furo[3,2-c]pyridine]-1-carboxylate 

(23b) 

According to GP6, 4d (48.8 mg, 0.15 mmol) was reacted with 

2c (26.9 mg, 0.15 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product (47.7 

mg, 72%). 1H-NMR (500 MHz, CD2Cl2): δ 5.76 (s, 1H), 5.36 

(d, J = 6.8 Hz, 1H), 5.03 (q, J = 6.8 Hz, 1H), 4.72 (p, J = 8.9 

Hz, 1H), 3.99-3.71 (m, 2H), 3.29-2.99 (m, 6H), 2.33 (s, 3H), 2.23 (ddd, J = 11.4, 7.9, 2.9 Hz, 

2H), 1.99-1.47 (m, 6H), 1.42 (s, 9H). 13C-NMR (126 MHz, CD2Cl2): δ 211.6, 168.2, 162.9, 

154.8, 151.7, 107.2, 95.3, 83.9, 81.0, 79.5, 72.1, 53.3, 40.2, 38.6, 38.5, 32.9, 30.1, 28.5, 28.1, 

22.7, 15.0. HRMS-ESI (m/z): [M + H]+ calculated for C24H33N2O6
+

, 445.2333; found, 

445.2328. 

(±) 8'-benzyl-7'-methyl-3',9'-dioxo-3',4',4a',8',9',9b'-hexahydrospiro[piperidine-4,2'-

pyrano[2',3':4,5]furo[3,2-c]pyridin]-1-ium triflate (24c) 

According to GP6, 4d (39.0 mg, 0.12 mmol) was reacted 

with 2g (25.8 mg, 0.12 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product 

which was directly dissolved in DCM (1 mL) and cooled 

to 0 °C. A mixture of TMSOTf (0.21 mL, 10 equiv) and 

2,6-lutidine (0.21 mL, 15 equiv) in DCM (0.1 mL) was added slowly and the mixture was stirred 

at 0 °C for 30 min. The reaction was quenched by slow addition of saturated Na₂CO₃ solution 

at 0 °C and dilution with EtOAc (10 mL). The layers were separated and the aqueous phase was 
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extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with brine (20 

mL), dried over MgSO₄ and concentrated in vacuo. Purification by prep. HPLC afforded the 

product (7.3 mg, 17% over two steps). 1H-NMR (700 MHz, DMSO): δ 8.56 (s, 1H), 8.45 (s, 

1H), 7.37-7.32 (m, 2H), 7.27 (t, J = 7.4 Hz, 1H), 7.10 (d, J = 7.7 Hz, 2H), 6.13 (s, 1H), 5.42 (d, 

J = 6.7 Hz, 1H), 5.32 (d, J = 16.0 Hz, 1H), 5.28 (q, J = 6.4 Hz, 1H), 5.22 (d, J = 13.8 Hz, 1H), 

3.29-3.23 (m, 1H), 3.18-3.14 (m, 1H), 3.10-3.00 (m, 3H), 2.97-2.93 (m, 1H), 2.28 (s, 3H), 1.86-

1.78 (m, 2H), 1.73-1.68 (m, 1H), 1.66-1.61 (m, 1H). 13C-NMR (176 MHz, DMSO): δ 

210.5,168.1, 160.1, 152.4, 137.7, 129.2, 127.6, 126.5, 104.9, 94.9, 83.9, 77.5, 71.4, 45.6, 38.8, 

28.4, 26.7, 24.4, 20.7. HRMS-ESI (m/z): [M + H]+ calculated for C22H25N2O4
+, 381.1809; 

found, 381.1810. 

(±) Tert-butyl-8'-(4-fluorobenzyl)-7'-methyl-3',9'-dioxo-3',4',4a',8',9',9b'-

hexahydrospiro[piperidine-4,2'-pyrano[2',3':4,5]furo[3,2-c]pyridine]-1-carboxylate 

(23d) 

According to GP6, 4d (48.8 mg, 0.15 mmol) was reacted 

with 2h (35.0 mg, 0.15 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product (55.2 

mg, 74%). 1H-NMR (700 MHz, CD2Cl2): δ 7.15 (dd, J = 

8.6, 5.3 Hz, 2H), 7.03 (t, J = 8.6 Hz, 2H), 5.88 (s, 1H), 

5.47-5.38 (m, 1H), 5.27-5.07 (m, 3H), 3.99-3.70 (m, 2H), 

3.25-3.05 (m, 4H), 2.28 (s, 3H), 1.87 (dq, J = 13.9, 2.9 Hz, 1H), 1.76-1.63 (m, 2H), 1.55-1.49 

(m, 1H), 1.42 (s, 9H). 13C-NMR (176 MHz, CD2Cl2): δ 211.3, 168.9, 163.2, 161.8, 161.5, 

154.8, 152.1, 133.2, 128.6, 116.0, 106.2, 95.5, 84.3, 81.2, 79.6, 72.1, 46.3, 40.0, 39.6, 38.6, 

32.9, 30.1, 28.5, 21.8. HRMS-ESI (m/z): [M + H]+ calculated for C27H32FN2O6
+, 499.2239; 

found, 499.2230.    

(±) 8'-(4-fluorobenzyl)-7'-methyl-3',9'-dioxo-3',4',4a',8',9',9b'-

hexahydrospiro[piperidine-4,2'-pyrano[2',3':4,5]furo[3,2-c]pyridin]-1-ium triflate (24d) 

According to GP6, 4d (97.6 mg, 0.30 mmol) was 

reacted with 2h (70.0 mg, 0.30 mmol). Purification by 

MPLC (cyclohexane/EtOAc 1:0 to 0:1) afforded the 

product which was directly dissolved in DCM (1 mL) 

and cooled to 0 °C. A mixture of TMSOTf (0.13 mL, 

10 equiv) and 2,6-lutidine (0.13 mL, 15 equiv) in DCM (0.1 mL) was added slowly and the 
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mixture was stirred at 0 °C for 1 hour and at room temperature overnight. The reaction was 

quenched by slow addition of saturated Na₂CO₃ solution at 0 °C and dilution with EtOAc (10 

mL). The layers were separated and the aqueous phase was extracted with EtOAc (3 x 10 mL). 

The combined organic layers were washed with brine (20 mL), dried over MgSO₄ and 

concentrated in vacuo. Purification by prep. HPLC afforded the product (3.8 mg, 3% over two 

steps). 1H-NMR (700 MHz, DMSO): δ 8.51 (s, 1H), 8.43 (s, 1H), 7.24-7.13 (m, 4H), 6.13 (s, 

1H), 5.41 (d, J = 6.7 Hz, 1H), 5.31-5.24 (m, 2H), 5.20 (d, , J = 12.7 Hz, 1H), 3.28-3.24 (m, 1H), 

3.16 (dd, J = 14.4, 6.4 Hz, 1H), 3.11-3.07 (m, 1H), 3.03-3.00 (m, 1H), 2.96-2.92 (m, 1H), 3.05 

(dd, J = 14.4, 6.2 Hz, 1H), 2.30 (s, 3H), 2.23-2.20 (m, 1H), 1.86-1.76 (m, 2H), 1.72-1.68 (m, 

1H). 13C-NMR (176 MHz, DMSO): δ 210.3, 168.1, 161.9, 160.6, 160.4, 152.4, 133.4, 128.2, 

115.4, 104.8, 94.6, 83.5, 77.4, 71.2, 45.0, 40.0, 38.8, 28.9, 26.7, 20.7. HRMS-ESI (m/z): [M + 

H]+ calculated for C22H24FN2O4
+, 399.1715; found, 399.1713.   

(±) 8'-(4-methoxybenzyl)-7'-methyl-3',9'-dioxo-3',4',4a',8',9',9b'-

hexahydrospiro[piperidine-4,2'-pyrano[2',3':4,5]furo[3,2-c]pyridin]-1-ium triflate (24e) 

According to GP6, 4d (97.6 mg, 0.30 mmol) was 

reacted with 2k (76.6 mg, 0.30 mmol). Purification by 

MPLC (cyclohexane/EtOAc 1:0 to 0:1) afforded the 

product which was directly dissolved in DCM (1 mL) 

and cooled to 0 °C. A mixture of TMSOTf (0.20 mL, 

10 equiv) and 2,6-lutidine (0.20 mL, 15 equiv) in DCM (0.1 mL) was added slowly and the 

mixture was stirred at 0 °C for 1 hour and at room temperature for 30 min. The reaction was 

quenched by slow addition of saturated Na₂CO₃ solution at 0 °C and dilution with EtOAc (10 

mL). The layers were separated and the aqueous phase was extracted with EtOAc (3 x 10 mL). 

The combined organic layers were washed with brine (20 mL), dried over MgSO₄ and 

concentrated in vacuo. Purification by prep. HPLC afforded the product (5.2 mg, 4% over two 

steps). 1H-NMR (700 MHz, DMSO): δ 8.54 (s, 1H), 8.43 (s, 1H), 7.06 (d, J = 8.5 Hz, 2H), 6.90 

(d, J = 8.5 Hz, 2H), 6.10 (s, 1H), 5.41 (d, J = 6.5 Hz, 1H), 5.27 (q, J = 6.5 Hz, 1H), 5.24-5.11 

(m, 2H), 3.72 (s, 3H), 3.29-3.24 (m, 1H), 3.15 (dd, J = 14.4, 6.5 Hz, 1H), 3.11-3.07 (m, 1H), 

3.06-3.01 (m, 2H), 2.99-2.93 (m, 1H), 2.29 (s, 3H), 2.24-2.20 (m, 1H), 1.86-1.77 (m, 2H), 1.72-

1.66 (m, 1H). 13C-NMR (176 MHz, DMSO): δ 210.4, 168.0, 160.5, 1588.3, 152.5, 129.1, 127.6, 

114.1, 104.8, 94.5, 83.4, 77.4, 71.3, 55.1, 45.1, 40.0, 38.8, 28.9, 26.7, 20.7. HRMS-ESI (m/z): 

[M + H]+ calculated for C23H27N2O5
+, 411.1915; found, 411.1908.   
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(±) 7'-methyl-3',9'-dioxo-8'-(thiophen-2-ylmethyl)-3',4',4a',8',9',9b'-

hexahydrospiro[piperidine-4,2'-pyrano[2',3':4,5]furo[3,2-c]pyridin]-1-ium triflate (24f) 

According to GP6, 4d (48.8 mg, 0.15 mmol) was reacted 

with 2l (33.2 mg, 0.15 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product which 

was directly dissolved in DCM (1 mL) and cooled to 0 °C. 

A mixture of TMSOTf (0.21 mL, 10 equiv) and 2,6-lutidine (0.20 mL, 15 equiv) in DCM (0.1 

mL) was added slowly and the mixture was stirred at 0 °C for 30 min. The reaction was 

quenched by slow addition of saturated Na₂CO₃ solution at 0 °C and dilution with EtOAc (10 

mL). The layers were separated and the aqueous phase was extracted with EtOAc (3 x 10 mL). 

The combined organic layers were washed with brine (20 mL), dried over MgSO₄ and 

concentrated in vacuo. Purification by prep. HPLC afforded the product (3.6 mg, 6% over two 

steps). 1H-NMR (700 MHz, DMSO): δ 8.50 (s, 1H), 8.34 (s, 1H), 7.42 (d, J = 5.1 Hz, 1H), 7.07 

(d, J = 3.7 Hz, 1H), 6.98 (dd, J = 5.1, 3.7 Hz, 1H), 6.09 (s, 1H), 5.42 (d, J = 6.6 Hz, 1H), 5.38 

(d, J = 15.5 Hz, 1H), 5.33 (d, J = 15.5 Hz, 1H), 5.26 (q, J = 6.6 Hz, 1H), 3.17-2.99 (m, 6H), 

2.44 (s, 3H), 2.25-2.21 (m, 1H), 1.85-1.75 (m, 2H), 1.69-1.65 (m, 1H). 13C-NMR (176 MHz, 

DMSO): δ 210.5, 168.1, 160.1, 152.0, 139.5, 126.7, 126.6, 126.1, 104.8, 94.6, 83.6, 77.4, 71.3, 

41.5, 38.9, 38.8, 28.8, 26.8, 20.7. HRMS-ESI (m/z): [M + H]+ calculated for C20H23N2O4S
+, 

387.1373; found, 387.1374. 

(±) Tert-butyl-7'-methyl-3',9'-dioxo-8'-(pyridin-4-ylmethyl)-3',4',4a',8',9',9b'-

hexahydrospiro[piperidine-4,2'-pyrano[2',3':4,5]furo[3,2-c]pyridine]-1-carboxylate 

(23g) 

According to GP6, 4d (48.8 mg, 0.15 mmol) was reacted with 

2n (32.4 mg, 0.15 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1 then EtOAc/MeOH 1:0 to 

9:1) afforded the product (43.9 mg, 61%). 1H-NMR (700 

MHz, CDCl3): δ 8.53 (d, J = 6.1 Hz, 2H), 7.04 (d, J = 6.1 Hz, 

2H), 5.93 (s, 1H), 5.53-5.31 (m, 2H), 5.22-4.99 (m, 2H), 4.01-

3.71 (m, 2H), 3.27-3.01 (m, 2H), 2.26 (s, 3H), 1.91-1.51 (m, 4H), 1.41 (s, 9H). 13C-NMR (176 

MHz, CDCl3): δ 211.2, 173.7, 171.2, 161.2, 151.1, 150.2, 146.0, 121.3, 106.0, 96.0, 83.9, 79.6, 

71.2, 60.5, 45.9, 39.8, 39.2, 38.2, 33.2, 33.0, 28.5, 21.6. HRMS-ESI (m/z): [M + H]+ calculated 

for C26H32N3O6
+, 482.2286; found, 482.2279.  
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(±) 7'-methyl-3',9'-dioxo-8'-(pyridin-2-ylmethyl)-3',4',4a',8',9',9b'-

hexahydrospiro[piperidine-4,2'-pyrano[2',3':4,5]furo[3,2-c]pyridin]-1-ium triflate (24h) 

According to GP6, 4d (48.8 mg, 0.15 mmol) was reacted 

with 2m (32.4 mg, 0.15 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product 

which was directly dissolved in DCM (1 mL) and cooled 

to 0 °C. A mixture of TMSOTf (0.12 mL, 10 equiv) and 

2,6-lutidine (0.12 mL, 15 equiv) in DCM (0.1 mL) was added slowly and the mixture was stirred 

at 0 °C for 30 min. The reaction was quenched by slow addition of saturated Na₂CO₃ solution 

at 0 °C and dilution with EtOAc (10 mL). The layers were separated and the aqueous phase was 

extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with brine (20 

mL), dried over MgSO₄ and concentrated in vacuo. Purification by prep. HPLC afforded the 

product (1.0 mg, 1% over two steps). 1H-NMR (700 MHz, DMSO): δ 8.47 (d, J = 5.2 Hz, 2H), 

8.40 (s, 1H), 8.27 (s, 1H), 7.79-7.77 (m, 1H), 7.29 (dd, J = 7.8, 4.9 Hz, 1H), 7.23 (d, J = 7.8 Hz, 

1H), 6.13 (s, 1H), 5.40 (d, J = 6.9 Hz, 1H), 5.33-5.27 (m, 3H), 3.27-3.22 (m, 1H), 3.17 (dd, J = 

14.4, 6.2 Hz, 1H), 3.01 (dd, J = 14.4, 5.9 Hz, 1H), 2.99-2.94 (m, 2H), 2.92-2.87 (m, 1H), 2.33 

(s, 1H), 2.19-2.15 (m, 1H), 1.82-1.75 (m, 2H), 1.69-1.65 (m, 1H). 13C-NMR (176 MHz, 

DMSO): δ 210.4, 168.1, 160.3, 158.1, 157.9, 149.1, 137.0, 122.5, 121.3, 104.5, 94.2, 83.4, 77.4, 

71.4, 47.4, 39.2, 38.8, 28.6, 27.1, 21.1. HRMS-ESI (m/z): [M + H]+ calculated for C21H24N3O4
+, 

382.1761; found, 382.1763. 

(±) Tert-butyl-8'-((2-chloropyridin-4-yl)methyl)-7'-methyl-3',9'-dioxo-3',4',4a',8',9',9b'-

hexahydrospiro[piperidine-4,2'-pyrano[2',3':4,5]furo[3,2-c]pyridine]-1-carboxylate (23i) 

According to GP6, 4d (48.8 mg, 0.15 mmol) was 

reacted with 2p (37.6 mg, 0.15 mmol). Purification by 

MPLC (cyclohexane/EtOAc 1:0 to 0:1) afforded the 

product (54.1 mg, 70%). 1H-NMR (500 MHz, 

CD2Cl2): δ 8.31 (d, J = 5.2 Hz, 1H), 7.05 (s, 1H), 7.02 

(dd, J = 5.2, 1.5 Hz, 1H), 5.95 (s, 1H), 5.46-5.46 (m, 2H), 5.22-5.09 (m, 2H), 3.94-3.73 (m, 

2H), 3.23-3.00 (m, 4H), 2.25 (s, 3H), 1.91-1.85 (m, 1H), 1.69 (dtd, J = 30.4, 12.2, 4.5 Hz, 2H), 

1.54 (dt, J = 15.1, 4.7 Hz, 1H), 1.41 (s, 9H). 13C-NMR (126 MHz, CD2Cl2): δ 211.2, 169.3, 

161.2, 154.8, 152.4, 151.5, 150.4, 149.9, 121.9, 120.6, 106.3, 96.2, 84.4, 81.1, 79.6, 71.8, 45.8, 

40.0, 39.5, 38.6, 33.1, 28.5, 21.7. HRMS-ESI (m/z): [M + H]+ calculated for C26H31ClN3O6
+, 

516.1896; found, 516.1892. 
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(±) 8'-((2-chloropyridin-4-yl)methyl)-7'-methyl-3',9'-dioxo-3',4',4a',8',9',9b'-

hexahydrospiro[piperidine-4,2'-pyrano[2',3':4,5]furo[3,2-c]pyridin]-1-ium triflate (24i) 

23h (42.1 mg, 0.08 mmol) was dissolved in DCM (1 

mL) and cooled to 0 °C. A mixture of TMSOTf (0.15 

mL, 10 equiv) and 2,6-lutidine (0.14 mL, 15 equiv) in 

DCM (0.1 mL) was added slowly and the mixture was 

stirred at 0 °C for 1 hour and at room temperature for 30 

min. The reaction was quenched by slow addition of saturated Na₂CO₃ solution at 0 °C and 

dilution with EtOAc (10 mL). The layers were separated and the aqueous phase was extracted 

with EtOAc (3 x 10 mL). The combined organic layers were washed with brine (20 mL), dried 

over MgSO₄ and concentrated in vacuo. Purification by prep. HPLC afforded the product (3.5 

mg, 10%). 1H-NMR (700 MHz, DMSO): δ 8.47 (s, 1H), 8.41-8.32 (m, 2H), 7.21 (s, 1H), 7.09 

(d, J = 5.2 Hz, 1H), 6.20 (s, 1H), 5.42 (d, J = 6.8 Hz, 1H), 5.33-5.23 (m, 3H), 3.27-3.14 (m, 

2H), 3.10-3.04 (m, 2H), 3.01-2.96 (m, 1H), 2.94-2.87 (m, 1H), 2.28 (s, 3H), 2.23-2.19 (m, 1H), 

1.85-1.78 (m, 2H), 1.71 (dd, J = 14.4, 3.1 Hz, 1H). 13C-NMR (176 MHz, DMSO): δ 210.6, 

168.9, 160.7, 152.8, 151.2, 151.1, 150.1, 122.0, 121.0, 105.3, 95.5, 84.1, 77.9, 71.5, 45.4, 39.4, 

39.3, 29.4, 27.1, 21.4. HRMS-ESI (m/z): [M + H]+ calculated for C21H23ClN3O4
+, 416.1372; 

found, 416.1369.       

(±) 6',9'-dioxo-5',6',6b',9',10',10a'-hexahydrospiro[piperidine-4,8'-

pyrano[2',3':4,5]furo[3,2-c]quinolin]-1-ium triflate (24j) 

According to GP6, 4d (50.0 mg, 0.15 mmol) was reacted with 2u 

(24.8 mg, 0.15 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product which was 

directly dissolved in HCl/dioxane (0.5 mL, 4M) at 0 °C and stirred 

at room temperature for 90 min. The reaction mixture was diluted 

by addition of DCM (10 mL) and 1 M HCl (10 mL). The layers 

were separated and the organic phase was extracted with 1 M HCl (3 x 10 mL). The combined 

aqueous layers were concentrated in vacuo and purified by prep. HPLC to afford the product 

(2.6 mg, 4% over two steps). 1H-NMR (500 MHz, MeOH-d₄): δ 7.80 (dd, J = 8.1, 1.4 Hz, 1H), 

7.66 (ddd, J = 8.5, 8.1, 1.4 Hz, 1H), 7.43 (d, J = 8.5 Hz, 1H), 7.31 (t, J = 8.1 Hz, 1H), 5.61 (d, 

J = 6.8 Hz, 1H), 5.43 (qd, J = 6.8, 2.5 Hz, 1H), 3.43 (td, J = 13.0, 3.2 Hz, 1H), 3.37-3.31 (m, 

2H), 3.28-3.18 (m, 3H), 2.37 (dq, J = 15.2, 3.1 Hz, 1H), 2.04 (ddd, J = 15.2, 13.0, 4.5 Hz, 1H), 

1.94 (ddd, J = 14.8, 12.9, 4.5 Hz, 1H), 1.84 (dq, J = 14.8, 3.2 Hz, 1H). 13C-NMR (126 MHz, 
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MeOH-d₄): δ 210.3, 168.3, 163.5, 141.9, 133.9, 124.1, 124.0, 117.2, 112.3, 108.7, 86.0, 79.3, 

72.9, 40.5, 40.4, 40.1, 31.0, 27.4. HRMS-ESI (m/z): [M + H]+ calculated for C18H19N2O4
+, 

327.1339; found, 327.1342. 

(±) 5'-methyl-6',9'-dioxo-5',6',6b',9',10',10a'-hexahydrospiro[piperidine-4,8'-

pyrano[2',3':4,5]furo[3,2-c]quinolin]-1-ium triflate (24k) 

According to GP6, 4d (97.6 mg, 0.30 mmol) was reacted with 2w 

(52.6 mg, 0.30 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product which was 

directly dissolved in DCM (1 mL) and cooled to 0 °C. A mixture 

of TMSOTf (0.34 mL, 10 equiv) and 2,6-lutidine (0.32 mL, 15 

equiv) in DCM (0.1 mL) was added slowly and the mixture was 

stirred at 0 °C for 30 min. The reaction was quenched by slow addition of saturated Na₂CO₃ 

solution at 0 °C and dilution with EtOAc (10 mL). The layers were separated and the aqueous 

phase was extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with 

brine (20 mL), dried over MgSO₄ and concentrated in vacuo. Purification by prep. HPLC 

afforded the product (2.6 mg, 3% over two steps). 1H-NMR (700 MHz, DMSO): δ 8.52 (s, 1H), 

8.39 (s, 1H), 7.76 (m, 2H), 7.63 (d, J = 8.9 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H), 5.50 (d, J = 6.7 

Hz, 1H), 5.43 (q, J = 6.7 Hz, 1H), 3.62 (s, 3H), 3.32-3.29 (m, 1H), 3.22 (d, J = 6.7 Hz, 2H), 

3.15 (d, J = 12.6 Hz, 1H), 3.10-3.03 (m, 1H), 2.99-2.92 (m, 1H), 2.32 (dd, J = 14.9, 3.0 Hz, 

1H), 1.90-1.85 (m, 1H), 1.81-1.72 (m, 2H). 13C-NMR (176 MHz, DMSO): δ 210.0, 163.9, 

159.5, 141.3, 132.8, 123.1, 122.1, 115.6, 110.9, 107.1, 84.1, 77.6, 71.5, 40.0, 38.9, 38.8, 29.3, 

28.7, 25.8. HRMS-ESI (m/z): [M + H]+ calculated for C19H21N2O4
+, 341.1496; found, 

341.1500.  

2-(4-hydroxy-1,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)-5-oxo-1-oxa-9-

azaspiro[5.5]undec-2-en-9-ium triflate (25a) 

23a (30.0 mg, 0.07 mmol) was dissolved in dioxane (0.5 mL) and 

cooled to 0 °C. HCl in dioxane (0.18 mL, 4 M, 10 equiv) was added 

slowly and the mixture was stirred at 0 °C for 1 hour and at room 

temperature for 30 min. The reaction was quenched by slow addition 

of saturated Na₂CO₃ solution at 0 °C and diluted with EtOAc (10 mL). 

The layers were seperated and the aqueous phase was extracted with EtOAc (3 x 10 mL). The 

combined organic layers were washed with brine (20 mL), dried over MgSO₄ and concentrated 
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in vacuo. The crude was purified by prep. HPLC to afford the product (2.7 mg, 11%). 1H-NMR 

(700 MHz, DMSO): δ 8.77 (s, 1H), 8.51 (s, 1H), 6.65 (s, 1H), 6.58 (s, 1H), 4.25 (bs, 2H), 3.47 

(s, 3H), 2.41 (s, 3H), 3.21 (dt, J = 12.7, 3.4 Hz, 1H), 3.12-3.06 (m, 1H), 1.92 (td, J = 13.6, 4.4 

Hz, 1H), 1.80-1.76 (m, 1H). 13C-NMR (176 MHz, DMSO): δ 209.3, 158.9, 158.6, 149.6, 143.5, 

113.2, 105.4, 94.6, 73.8, 39.0, 35.6, 30.3, 29.5, 20.9. HRMS-ESI (m/z): [M + H]+ calculated 

for C16H21O4N2
+, 305.1496; found, 305.1491.  

2-(1-cyclobutyl-4-hydroxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)-5-oxo-1-oxa-9-

azaspiro[5.5]undec-2-en-9-ium triflate (25b) 

23b (46.0 mg, 0.10 mmol) was dissolved in dioxane (1 mL) and 

cooled to 0 °C. HCl in dioxane (0.26 mL, 4 M, 10 equiv) was added 

slowly and the mixture was stirred at 0 °C for 1 hour and at room 

temperature for 30 min. The reaction was evaporated to dryness and 

treated with Et2O. The precipitate was filtered off and dried in 

vacuo. The crude was purified by prep. HPLC to afford the product (39.4 mg, 83%). 1H-NMR 

(700 MHz, DMSO): δ 8.76 (s, 1H), 8.48 (s, 1H), 6.61 (s, 1H), 6.50 (s, 1H), 4.86 (p, J = 8.8 Hz, 

1H), 4.25 (bs, 2H), 3.24-3.14 (m, 4H), 3.10 (p, J = 12.3, 11.1 Hz, 2H), 2.41 (s, 3H), 2.19 (qt, J 

= 8.6, 2.6 Hz, 2H), 1.92 (td, J = 13.9, 4.1 Hz, 2H), 1.88-1.82 (m, 1H), 1.78 (d, J = 13.7 Hz, 2H), 

1.74-1.68 (m, 1H). 13C-NMR (176 MHz, DMSO): δ 209.3, 160.3, 158.3, 149.6, 142.9, 115.1, 

105.4, 95.4, 73.7, 51.9, 39.0, 35.5, 29.5, 26.9, 21.5, 14.1. HRMS-ESI (m/z): [M + H]+ 

calculated for  C19H25N2O4
+, 345.1801; found, 345.1808. 

2-(1-benzyl-4-hydroxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)-5-oxo-1-oxa-9-

azaspiro[5.5]undec-2-en-9-ium (25c) 

According to GP6, 4d (50.0 mg, 0.15 mmol) was reacted with 2g 

(33.1 mg, 0.15 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product which was 

directly dissolved in HCl/dioxane (0.5 mL, 4M) at 0 °C and 

stirred at room temperature for 90 min. The reaction mixture was 

diluted by addition of DCM (10 mL) and 1 M HCl (10 mL). The layers were separated and the 

organic phase was extracted with 1 M HCl (3 x 10 mL). The combined aqueous layers were 

concentrated in vacuo to afford the product (22.0 mg, 35% over two steps). 1H-NMR (400 

MHz, MeOH-d₄): δ 7.31 (t, J = 7.5 Hz, 2H), 7.25 (d, J = 7.5 Hz, 1H), 7.10 (d, J = 7.5 Hz, 2H), 

6.80 (s, 1H), 6.67 (s, 1H), 5.48 (s, 2H), 4.30-4.28 (m, 2H), 3.36-3.29 (m, 4H), 2.40 (s, 3H), 
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2.20-2.09 (m, 2H), 1.98-1.90 (m, 2H). 13C-NMR (400 MHz, MeOH-d₄): δ 210.0, 161.9, 161.4, 

152.2, 145.0, 138.0, 129.9, 128.4, 127.1, 115.5, 106.3, 98.5, 75.3, 48.2, 40.8, 36.7, 31.1, 21.1. 

HRMS-ESI (m/z): [M + H]+ calculated for C22H25N2O4
+, 381.1809; found, 381.1810. 

2-(1-(4-fluorobenzyl)-4-hydroxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)-5-oxo-1-oxa-9-

azaspiro[5.5]undec-2-en-9-ium triflate (25d) 

23d (40.0 mg, 0.08 mmol) was dissolved in dioxane (1 mL) 

and cooled to 0 °C. HCl in dioxane (0.20 mL, 4 M, 10 equiv) 

was added slowly and the mixture was stirred at 0 °C for 1 

hour and at room temperature for 30 min. The reaction was 

quenched by slow addition of saturated Na₂CO₃ solution at 

0 °C and diluted with EtOAc (10 mL). The layers were seperated and the aqueous phase was 

extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with brine (20 

mL), dried over MgSO₄ and concentrated in vacuo. The crude was purified by prep. HPLC to 

afford the product (11.1 mg, 35%). 1H-NMR (700 MHz, MeOH-d₄): δ 7.15 (dd, J = 8.6, 5.4 

Hz, 2H), 7.05 (t, J = 8.6 Hz, 2H), 6.77 (s, 1H), 6.64 (s, 1H), 5.45 (bs, 2H), 4.28 (bs, 2H), 3.35-

3.32 (m, 4H), 2.41 (s, 3H), 2.14-2.08 (m, 2H), 1.95-1.90 (m, 2H). 13C-NMR (126 MHz, 

CD2Cl2): δ 210.0, 164.1, 162.7, 162.1, 161.3, 151.9, 144.7, 134.2, 129.2, 116.5, 115.6, 106.4, 

98.2, 75.2, 47.4, 40.8, 36.6, 31.1, 21.1. HRMS-ESI (m/z): [M + H]+ calculated for 

C22H24N2O4F
+, 399.1715; found, 399.1705. 

2-(4-hydroxy-1-(4-methoxybenzyl)-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)-5-oxo-1-

oxa-9-azaspiro[5.5]undec-2-en-9-ium triflate (25e) 

According to GP6, 4d (50.0 mg, 0.15 mmol) was reacted 

with 2k (37.7 mg, 0.15 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product which 

was directly dissolved in HCl/dioxane (0.5 mL, 4M) at 0 

°C and stirred at room temperature for 90 min. The reaction 

mixture was diluted by addition of DCM (10 mL) and 1 M HCl (10 mL). The layers were 

separated and the organic phase was extracted with 1 M HCl (3 x 10 mL). The combined 

aqueous layers were concentrated in vacuo and purified by prep. HPLC to afford the product 

(7.7 mg, 10% over two steps). 1H-NMR (700 MHz, MeOH-d₄): δ 7.06 (d, J = 8.8 Hz, 2H), 6.87 

(d, J = 8.8 Hz, 2H), 6.77 (s, 1H), 6.61 (s, 1H), 5.43-5.38 (m, 2H), 4.28 (s, 2H), 3.76 (s, 3H), 

3.33 (dd, J = 7.4, 2.9 Hz, 4H), 2.41 (s, 3H), 2.11 (dt, J = 14.3, 8.7 Hz, 2H), 1.92 (dq, J = 15.0, 
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2.8 Hz, 2H). 13C-NMR (176 MHz, MeOH-d₄): δ 210.0, 162.1, 161.3, 160.5, 151.7, 144.9, 

130.1, 128.6, 115.6, 115.2, 106.4, 98.0, 75.2, 55.7, 47.5, 40.8, 36.6, 31.2, 21.1. HRMS-ESI 

(m/z): [M + H]+ calculated for C23H27N2O5
+, 411.1915; found, 411.1933.  

2-(4-hydroxy-6-methyl-2-oxo-1-(thiophen-2-ylmethyl)-1,2-dihydropyridin-3-yl)-5-oxo-1-

oxa-9-azaspiro[5.5]undec-2-en-9-ium chloride (25f) 

According to GP6, 4d (50.0 mg, 0.15 mmol) was reacted with 2l 

(34.0 mg, 0.15 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product which was 

directly dissolved in HCl/dioxane (0.5 mL, 4M) at 0 °C and stirred 

at room temperature for 90 min. The reaction mixture was diluted 

by addition of DCM (10 mL) and 1 M HCl (10 mL). The layers were separated and the organic 

phase was extracted with 1 M HCl (3 x 10 mL). The combined aqueous layers were 

concentrated in vacuo to afford the product (10.1 mg, 16% over two steps). 1H-NMR (500 

MHz, MeOH-d₄): δ 7.31 (d, J = 5.2 Hz, 1H), 7.05 (d, J = 3.6 Hz, 1H), 6.95 (dd, J = 5.2, 3.6 Hz, 

1H), 6.78 (s, 1H), 6.62 (s, 1H), 4.30-4.28 (m, 2H), 3.36-3.30 (m, 4H), 2.56 (s, 3H), 2.16-2.08 

(m, 2H), 1.95-1.89 (m, 2H). 13C-NMR (126 MHz, MeOH-d₄): δ 210.0, 161.6, 161.4, 152.0, 

144.4, 140.5, 127.7, 127.6, 126.7, 115.5, 106.3, 98.4, 75.2, 43.9, 40.8, 36.7, 31.1, 21.0. HRMS-

ESI (m/z): [M + H]+ calculated for C20H23N2O4S
+, 387.1373; found, 387.1371.   

(±) 7'-methyl-3',9'-dioxo-8'-(pyridin-4-ylmethyl)-3',4',4a',8',9',9b'-

hexahydrospiro[piperidine-4,2'-pyrano[2',3':4,5]furo[3,2-c]pyridin]-1-ium chloride (25g) 

23g (37.3 mg, 0.08 mmol) was dissolved in dioxane (1 mL) and 

cooled to 0 °C. HCl in dioxane (0.19 mL, 4 M, 10 equiv) was 

added slowly and the mixture was stirred at 0 °C for 1 hour and 

at room temperature for 30 min. The reaction was evaporated to 

dryness and treated with Et2O. The precipitate was filtered off 

and dried in vacuo to afford the product (29.5 mg, quant.). 1H-

NMR (500 MHz, MeOH-d₄): δ 8.78 (bs, 2H), 7.81 (bs, 2H), 6.77 (bs, 2H), 5.69 (bs, 2H), 4.28 

(bs, 2H), 3.61 (bs, 1H), 3.31-3.25 (m, 4H), 2.40 (s, 3H), 2.15-2.07 (m, 2H), 1.94-1.86 (m, 2H). 

13C-NMR (126 MHz, MeOH-d₄): δ 210, 161.6, 161.0, 152.6, 144.1, 142.9, 125.9, 115.6, 109.0, 

106.4, 98.8. 75.3, 68.1, 49.5, 40.8, 31.0. HRMS-ESI (m/z): [M + H]+ calculated for 

C21H24N3O4
+, 382.1761; found, 382.1760. 
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2-(4-hydroxy-6-methyl-2-oxo-1-(pyridin-2-ylmethyl)-1,2-dihydropyridin-3-yl)-5-oxo-1-

oxa-9-azaspiro[5.5]undec-2-en-9-ium chloride (25h) 

According to GP6, 4d (50.0 mg, 0.23 mmol) was reacted with 2m 

(33.2 mg, 0.23 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product which was 

directly dissolved in HCl/dioxane (0.5 mL, 4M) at 0 °C and stirred 

at room temperature for 90 min. The reaction mixture was diluted 

by addition of DCM (10 mL) and 1 M HCl (10 mL). The layers were separated and the organic 

phase was extracted with 1 M HCl (3 x 10 mL). The combined aqueous layers were 

concentrated in vacuo and freeze-dried to afford the product (19.7 mg, 20 % over two steps).1H 

NMR (500 MHz, MeOH-d₄): δ 8.79 (d, J = 5.7 Hz, 1H), 8.52 (t, J = 7.9 Hz, 1H), 7.97 (t, J = 

6.6 Hz, 1H), 7.70 (d, J = 7.9 Hz, 1H), 6.74 (s, 1H), 6.68 (s, 1H), 5.68 (s, 1H), 4.25 (s, 1H), 3.28 

(dd, J = 7.2, 3.4 Hz, 2H), 2.52 (s, 2H), 2.08 (ddd, J = 14.6, 10.7, 6.6 Hz, 1H), 1.87 (d, J = 14.6 

Hz, 1H). 13C NMR (126 MHz, MeOH-d₄): δ 210.0, 161.8, 154.1, 152.5, 148.8, 144.1, 142.8, 

127.2, 126.2, 115.6, 106.2, 99.0, 75.3, 49.5, 49.3, 49.2, 49.0, 48.8, 48.7, 48.5, 46.9, 40.8, 36.7, 

31.0, 21.4. HRMS-ESI (m/z): [M + H]+ calculated for C21H24O4N3
+,382.17613; found, 

382.17593. 

2-(4-hydroxy-6-methyl-1-((3-methylpyridin-4-yl)methyl)-2-oxo-1,2-dihydropyridin-3-yl)-

5-oxo-1-oxa-9-azaspiro[5.5]undec-2-en-9-ium chloride (25i) 

According to GP6, 4d (50.0 mg, 0.23 mmol) was reacted with 2o 

(62.5 mg, 0.23 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product which was 

directly dissolved in HCl/dioxane (0.5 mL, 4M) at 0 °C and 

stirred at room temperature for 90 min. The reaction mixture was 

diluted by addition of DCM (10 mL) and 1 M HCl (10 mL). The layers were separated and the 

organic phase was extracted with 1 M HCl (3 x 10 mL). The combined aqueous layers were 

concentrated in vacuo and freeze-dried to afford the product (13.1 mg, 13% over two steps). 1H 

NMR (500 MHz, Methanol-d4): δ 8.74 (s, 1H), 8.54 (d, J = 5.5 Hz, 1H), 7.17 (d, J = 5.4 Hz, 

1H), 6.77 (s, 1H), 6.73 (s, 1H), 5.60 (s, 2H), 4.29 (s, 2H), 3.30 (s, 4H), 2.65 (s, 2H), 2.41 (s, 

2H), 2.11 (m, 2H), 1.90 (d, J = 14.4 Hz, 2H). 13C NMR (126 MHz, MeOH-d₄): δ 208.6, 160.3, 

157.5, 151.1, 142.8, 140.8, 139.4, 136.6, 122.1, 114.2, 105.0, 98.0, 74.0, 48.1, 48.0, 48.0, 47.6, 

47.5, 47.3, 47.1, 45.5, 39.4, 35.3, 29.7, 19.8, 15.0. HRMS-ESI (m/z): [M + H]+ calculated for 

C22H26O4N3
+,396.19178; found, 396.19155. 
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2-(1-((2-chloropyridin-1-ium-4-yl)methyl)-4-hydroxy-6-methyl-2-oxo-1,2-

dihydropyridin-3-yl)-5-oxo-1-oxa-9-azaspiro[5.5]undecan-9-ium chloride (25j) 

23i (33.2 mg, 0.06 mmol) was dissolved in dioxane (1 mL) and 

cooled to 0 °C. HCl in dioxane (0.16 mL, 4 M, 10 equiv) was 

added slowly and the mixture was stirred at 0 °C for 1 hour and 

at room temperature for 30 min. The reaction was evaporated to 

dryness and treated with Et2O. The precipitate was filtered off 

and dried in vacuo to afford the product (29.1 mg, 99%). 1H-

NMR (700 MHz, DMSO): δ 9.06 (s, 1H), 8.84 (s, 1H), 8.34 (d, J = 5.0 Hz, 1H), 7.21 (s, 1H), 

7.06 (d, J = 5.0 Hz, 1H), 6.71 (bs, 2H), 5.38 (bs, 2H), 4.31 (bs, 2H), 3.21-3.15 (m, 2H), 3.10-

3.04 (m, 2H), 2.31 (s, 3H), 2.01-1.95 (m, 2H), 1.84-1.79 (m 2H). 13C-NMR (176 MHz, DMSO): 

δ 209.3, 158.9, 158.8, 150.9, 150.6, 150.4, 150.3, 142.8, 121.5, 120.6, 113.5, 105.5, 95.8, 73.8, 

45.1, 38.8, 35.6, 29.3, 20.5. HRMS-ESI (m/z): [M + H]+ calculated for C21H23ClN3O4
+, 

416.1372; found, 416.1362. 

2-(4-hydroxy-1-(2-(5-methoxy-1H-indol-3-yl)ethyl)-6-methyl-2-oxo-1,2-dihydropyridin-

3-yl)-5-oxo-1-oxa-9-azaspiro[5.5]undec-2-en-9-ium triflate (25k) 

According to GP6, 4d (50.0 mg, 0.15 mmol) was reacted 

with 2s (45.8 mg, 0.15 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product which 

was directly dissolved in HCl/dioxane (0.5 mL, 4M) at 0 °C 

and stirred at room temperature for 90 min. The reaction 

mixture was diluted by addition of DCM (10 mL) and 1 M HCl (10 mL). The layers were 

separated and the organic phase was extracted with 1 M HCl (3 x 10 mL). The combined 

aqueous layers were concentrated in vacuo and purified by prep. HPLC to afford the product 

(3.2 mg, 4% over two steps). 1H-NMR (500 MHz, MeOH-d₄): δ 7.20 (d, J = 9.0 Hz, 1H), 7.03 

(s, 1H), 6.88 (d, J = 2.4 Hz, 1H), 6.80 (d, J = 0.8 Hz, 1H), 6.70 (dd, J = 9.0, 2.4 Hz, 1H), 6.43 

(s, 1H), 4.39 (t, J = 7.1 Hz, 2H), 4.27 (s, 2H), 3.65 (s, 3H), 3.34 (dd, J = 7.1, 2.9 Hz, 4H), 3.17 

(t, J = 7.1 Hz, 2H), 2.18 (s, 3H), 2.11 (ddd, J = 14.7, 9.7, 7.6 Hz, 2H), 1.95-1.89 (m, 2H). 13C-

NMR (126 MHz, MeOH-d₄): δ 210.0, 161.9, 161.3, 155.1, 151.5, 144.9, 133.2, 129.1, 124.5, 

115.7, 113.1, 113.0, 112.7, 106.3, 100.6, 97.6, 75.2, 56.1, 47.4, 40.8, 36.6, 31.1, 25.3, 21.1. 

HRMS-ESI (m/z): [M + H]+ calculated for C26H30N3O5
+, 464.2180; found, 464.2177. 
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5.1.4.3. Synthesis of General Scaffold C Isomers 

(±) 2,6,7-trimethyl-4a,9a-dihydro-2H-pyrano[3',2':4,5]furo[3,2-c]pyridin-5(6H)-one 

(15a) 

According to GP2, 3b-trans (50.8 mg, 0.17 mmol) was reacted with 2b 

(19.5 mg, 0.14 mmol) at 100 °C for 1 hour. After filtration over celite the 

crude was purified by FC (cyclohexane/EtOAc 1:0 to 0:1) to afford the 

product (19.4 mg, 59%). 1H-NMR (700 MHz, DMSO): δ δ 6.14 (d, J = 6.6 Hz, 1H), 6.10 (ddd, 

J = 10.3, 3.9, 2.0 Hz, 1H), 6.03 (s, 1H), 5.87 (ddd, J = 10.3, 2.8, 1.8 Hz, 1H), 4.34-4.30 (m, 

1H), 3.66-3.63 (m, 1H), 2.32 (s, 3H), 1.16 (d, J = 6.8 Hz, 3H). 13C-NMR (176 MHz, DMSO): 

δ 163.9, 160.3, 149.8, 130.1, 121.6, 107.2, 104.5, 94.2, 66.9, 37.1, 29.9, 21.8, 20.9. HRMS-

ESI (m/z): [M + H]+ calculated for C13H16NO3 
+, 234.1125; found, 234.1124. 

(±) 2,6,7-trimethyl-3,4,4a,9a-tetrahydro-2H-pyrano[3',2':4,5]furo[3,2-c]pyridin-5(6H)-

one (16a) 

15a (19.4 mg, 0.08 mmol) was suspended with Pd/C (5 mg, 10 wt%) in 

toluene (2 mL) and was hydrogenated at 20 °C for 18 hours using a H2-

balloon. The catalyst was filtered off and the solvent removed in vacuo. 

The crude was purified by MPLC (EtOAc/MeOH 1:0 to 9:1 + 0.1% DIPEA) to afford the 

product (11.7 mg, 62%). 1H-NMR (700 MHz, CD2Cl2): δ 5.92 (d, J = 6.5 Hz, 1H), 5.32 (s, 1H), 

3.82-3.77 (m, 1H), 3.43 (s, 3H), 3.34 (ddd, J = 8.0, 6.5, 2.3 Hz, 1H), 2.39 (dddd, J = 13.7, 4.5, 

3.5, 2.3 Hz, 1H), 2.32 (s, 3H), 1.78 (dddd, J = 13.7, 13.0, 6.3, 3.7 Hz, 1H), 1.63-1.58 (m, 1H), 

1.24-1.21 (m, 1H), 1.17 (d, J = 6.3 Hz, 3H). 13C-NMR (176 MHz, CD2Cl2): δ 165.9, 161.9, 

149.1, 106.9, 106.5, 95.2, 70.8, 38.7, 30.6, 27.7, 23.2, 21.9, 20.3. HRMS-ESI (m/z): [M + H]+ 

calculated for C13H18NO3
+, 236.1281; found, 236.1284.  

(±) 2,7-dimethyl-3,4,4a,9a-tetrahydro-2H-pyrano[3',2':4,5]furo[3,2-c]pyridin-5(6H)-one 

(16b) 

According to GP2, 3b-trans (50.8 mg, 0.17 mmol) was reacted with 2a 

(19.5 mg, 0.14 mmol) at 100 °C for 1 hour. After filtration over celite the 

crude was purified by FC (EtOAc/MeOH 1:0 to 9:1) and the product was 

directly suspended with Pd/C (5 mg, 10 wt%) in toluene (2 mL) and was hydrogenated at 20 

°C for 18 hours using a H2-balloon. The catalyst was filtered off and the solvent removed in 

vacuo. The crude was purified by MPLC (EtOAc/MeOH 1:0 to 9:1 + 0.1% DIPEA) to afford 
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the product (8.00 mg, 18%). 1H-NMR (600 MHz, CD2Cl2): δ 11.52 (s, 1H), 5.95 (d, J = 6.5 

Hz, 1H), 5.84 (s, 1H), 3.81 (ttd, J = 10.5, 6.7, 6.2, 3.5 Hz, 1H), 3.35 (td, J = 6.5, 2.9 Hz, 1H), 

2.39 (ddd, J = 13.6, 6.3, 2.9 Hz, 1H), 2.27 (s, 3H), 1.80 (tdd, J = 13.6, 6.3, 3.7 Hz, 1H), 1.65-

1.60 (m, 1H), 1.28-1.24 (m, 1H), 1.17 (d, J = 6.3 Hz, 3H). 13C-NMR (151 MHz, CD2Cl2): δ 

168.8, 163.3, 147.9, 107.2, 106.6, 94.7, 70.8, 37.9, 27.6, 23.2, 20.5, 19.6. HRMS-ESI (m/z): 

[M + H]+ calculated for C12H16NO3
+, 222.1125; found, 222.1130.  

(±) 6-cyclobutyl-2,7-dimethyl-4a,9a-dihydro-2H-pyrano[3',2':4,5]furo[3,2-c]pyridin-

5(6H)-one (15c) 

According to GP2, 3b-trans (33.4 mg, 0.11 mmol) was reacted with 

2c (18.0 mg, 0.10 mmol) at 110 °C for 1 hour. The catalyst was 

filtered off and the filtrate was diluted with DCM (10 mL) and 

washed with saturated NaHCO₃ solution (15 mL). The aqueous phase was extracted with DCM 

(3 x 10 mL) and the combined organic layers were washed with brine (50 mL), dried over 

MgSO₄ and concentrated in vacuo. The crude was purified by MPLC (cyclohexane/EtOAc 1:0 

to 1:1) to afford the product (3.4 mg, 12%). 1H-NMR (600 MHz, CD2Cl2): δ 6.26 (ddd, J = 

10.3, 4.0, 2.0 Hz, 1H), 6.04 (d, J = 6.5 Hz, 1H), 5.84 (dt, J = 10.3, 2.4 Hz, 1H), 5.77 (s, 1H), 

4.71 (p, J = 8.8 Hz, 1H), 4.31 (qq, J = 6.9, 2.4 Hz, 1H), 3.70-3.63 (m, 1H), 3.28-3.19 (m, 2H), 

2.30 (s, 3H), 2.24-2.16 (m, 2H), 1.97-1.88 (m, 1H), 1.72 (dddd, J = 18.0, 11.0, 9.6, 8.5 Hz, 1H), 

1.25 (d, J = 6.9 Hz, 3H). 13C-NMR (151 MHz, CD2Cl2): δ 164.6, 163.1, 148.9, 130.4, 122.5, 

110.0, 105.4, 95.9, 68.0, 53.2, 38.8, 28.1, 22.5, 22.1, 15.1. HRMS-ESI (m/z): [M + H]+ 

calculated for C16H10NO3
+, 274.1438; found, 274.1439. 

(±) 6-benzyl-2,7-dimethyl-3,4,4a,9a-tetrahydro-2H-pyrano[3',2':4,5]furo[3,2-c]pyridin-

5(6H)-one (16d) 

According to GP2, 3b-trans (69.4 mg, 0.23 mmol) was reacted 

with 2k (38.0 mg, 0.18 mmol) at 100 °C for 1 hour. After filtration 

over celite the crude was purified by FC (Hep/EtOAc 1:0 to 1:1) 

and the product was directly suspended with Pd/C (5 mg, 10 wt%) in toluene (2 mL) and was 

hydrogenated at 20 °C for 18 hours using a H2-balloon. The catalyst was filtered off and the 

solvent removed in vacuo. The crude was purified by MPLC (EtOAc/MeOH 1:0 to 9:1 + 0.1% 

DIPEA) to afford the product (18.9 mg, 34%). 1H-NMR (500 MHz, CDCl3): δ 7.30 (t, J = 7.4 

Hz, 2H), 7.23 (t, J = 7.4 Hz, 1H), 7.13 (d, J = 7.4 Hz, 2H), 6.00 (d, J = 6.7 Hz, 1H), 5.93 (s, 

1H), 5.46 (d, J = 15.9 Hz, 1H), 5.17 (d, J = 15.9 Hz, 1H), 3.87-3.79 (m, 1H), 3.47 (td, J = 6.7, 
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2.4 Hz, 1H), 2.54 (ddd, J = 13.6, 7.8, 2.4 Hz, 1H), 2.26 (s, 3H), 1.84 (tdd, J = 13.6, 6.2, 3.7 Hz, 

1H), 1.64 (dq, J = 13.8, 3.7 Hz, 1H), 1.35 (tdd, J = 13.8, 10.4, 3.6 Hz, 1H), 1.23 (d, J = 6.3 Hz, 

3H). 13C-NMR (126 MHz, CDCl3): δ 166.2, 162.0, 148.8, 137.0, 128.9, 127.4, 126.5, 107.2, 

106.2, 96.3, 70.6, 46.6, 38.5, 27.6, 23.1, 21.5, 20.1. HRMS-ESI (m/z): [M + H]+ calculated for 

C19H22NO3
+, 312.1594; found, 312.1592. 

(±) 6-(3,5-dimethylbenzyl)-2,7-dimethyl-4a,9a-dihydro-2H-pyrano[3',2':4,5]furo[3,2-

c]pyridin-5(6H)-one (15e) 

According to GP2, 3b-trans (61.1 mg, 0.22 mmol) was 

reacted with 2j (27.0 mg, 0.11 mmol) at 110 °C for 1 hour. 

The catalyst was filtered off and the filtrate was diluted with 

DCM (10 mL) and washed with saturated NaHCO₃ solution 

(15 mL). The aqueous phase was extracted with DCM (3 x 10 mL) and the combined organic 

layers were washed with brine (50 mL), dried over MgSO₄ and concentrated in vacuo. The 

crude was purified by prep. HPLC to afford the product (1.1 mg, 3%). 1H-NMR (600 MHz, 

CD2Cl2): δ 6.88 (s, 1H), 6.70 (s, 2H), 6.28 (ddd, J = 10.3, 3.9, 2.0 Hz, 1H), 6.12 (d, J = 6.5 Hz, 

1H), 5.89 (s, 1H), 5.87 (dt, J = 10.3, 2.3 Hz, 1H), 5.36 (d, J = 15.9 Hz, 1H), 5.00 (d, J = 15.9 

Hz, 1H), 4.35 (qq, J = 6.9, 2.3 Hz, 1H), 3.77-3.73 (bm, 1H), 2.26 (s, 6H), 2.24 (s, 3H), 1.28 (d, 

J = 6.9 Hz, 1H). 13C-NMR (151 MHz, CD2Cl2): δ 164.8, 161.2, 149.1, 138.3, 137.2, 130.0, 

128.7, 123.8, 121.9, 108.4, 105.2, 95.5, 67.7, 46.3, 38.2, 21.7, 21.1. HRMS-ESI (m/z): [M + 

H]+ calculated for C21H24NO3
+, 338.1751; found, 338.1753. 

(±) 6-(4-methoxybenzyl)-2,7-dimethyl-4a,9a-dihydro-2H-pyrano[3',2':4,5]furo[3,2-

c]pyridin-5(6H)-one (15f) 

According to GP2, 3b-trans (74.7 mg, 0.25 mmol) was 

reacted with 2k (46.6 mg, 0.19 mmol) at 110 °C for 1 hour. 

After filtration over celite the crude was purified by FC 

(cyclohexane/EtOAc 1:0 to 1:1) to afford the product (23.2 mg, 36%). 1H-NMR (700 MHz, 

CD2Cl2): δ 7.07 (d, J = 8.7 Hz, 2H), 6.84 (d, J = 8.7 Hz, 2H), 6.26 (ddd, J = 10.3, 3.9, 2.0 Hz, 

1H), 6.13 (d, J = 6.6 Hz, 1H), 5.92 (s, 1H), 5.88 (ddd, J = 10.3, 2.6, 1.9 Hz, 1H), 5.33 (m, 1H), 

5.08 (d, J = 15.9 Hz, 1H), 4.36 (qq, J = 6.9, 2.6 Hz, 1H), 3.77-3.75 (m, 4H), 2.27 (s, 3H), 1.28 

(d, J = 6.9 Hz, 1H). 13C-NMR (176 MHz, CD2Cl2): δ 165.5, 161.8, 159.3, 149.6, 130.5, 129.3, 

128.1, 122.1, 114.4, 109.0, 105.8, 96.4, 68.2, 55.6, 46.5, 38.4, 22.2, 21.5. HRMS-ESI (m/z): 

[M + H]+ calculated for C20H22NO4
+, 340.1543; found, 340.1545. 
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(±) 6-(4-methoxybenzyl)-2,7-dimethyl-3,4,4a,9a-tetrahydro-2H-pyrano[3',2':4,5]furo[3,2-

c]pyridin-5(6H)-one (16f); (±) 4-hydroxy-1-(4-methoxybenzyl)-6-methyl-3-(2-

methyltetrahydro-2H-pyran-3-yl)pyridin-2(1H)-one (14g) 

According to GP3, 3b-trans 

(69.6 mg, 0.23 mmol) was 

reacted with 2k (49.1 mg, 0.20 

mmol). After purification by 

MPLC (cyclohexane/EtOAc 1:0 to 0:1), the product was directly suspended with Pd/C (5 mg, 

10 wt%) in toluene (2 mL) and was hydrogenated at 20 °C for 48 hours using a H2-balloon. The 

catalyst was filtered off and the solvent removed in vacuo. The crude was purified by prep. 

HPLC to afford product 16f (5.9 mg, 9%) and 14g (9.5 mg, 14%) in separated fractions. 1H-

NMR product 16f (600 MHz, CD2Cl2): δ 7.07 (d, J = 8.7 Hz, 2H), 6.84 (d, J = 8.7 Hz, 2H), 

5.82 (s, 1H), 5.42 (d, J = 5.1 Hz, 1H), 5.26 (d, J = 15.5 Hz, 1H), 5.17 (d, J = 15.5 Hz, 1H), 4.46 

(q, J = 6.5 Hz, 1H), 3.76 (s, 3H), 3.21 (bs, 1H), 2.24 (s, 3H), 2.21-2.10 (m, 3H), 1.99-1.94 (m, 

1H), 1.35 (d, J = 6.5 Hz, 3H). 13C-NMR product 16f (151 MHz, CD2Cl2): δ 164.1, 163.8, 159.3, 

145.3, 129.2, 128.0, 114.5, 114.4, 103.0, 98.3, 77.4, 55.6, 47.5, 34.4, 28.3, 21.3, 20.7, 20.6. 

HRMS-ESI (m/z) product 16f: [M + H]+ calculated for C20H24NO4
+, 342.1670; found, 

342.1707. 1H-NMR product 14g (400 MHz, MeOH-d₄): δ 7.01 (d, J = 8.6 Hz, 2H), 6.86 (d, J 

= 8.6 Hz, 2H), 5.86 (s, 1H), 5.31-5.21 (m, 2H), 4.36-4.18 (m, 1H), 3.93 (dd, J = 11.3, 4.3 Hz, 

1H), 3.76 (bs, 4H), 3.56 (t, J = 11.3 Hz, 1H), 2.16 (s, 3H), 1.79-1.52 (m, 4H), 1.02 (d, J = 6.2 

Hz, 3H). 13C-NMR product 14g (126 MHz, MeOH-d₄): δ 164.8, 160.4, 160.3, 146.7, 130.3, 

128.4, 115.2, 111.4, 101.0, 76.5 69.4, 55.7, 47.3, 40.1, 28.2, 28.1, 20.4. HRMS-ESI (m/z) 

product 14g: [M + H]+ calculated for C20H26NO4
+, 344.1856; found, 344.1865. 

(±) 6-(4-fluorobenzyl)-2,7-dimethyl-4a,9a-dihydro-2H-pyrano[3',2':4,5]furo[3,2-

c]pyridin-5(6H)-one (15g) 

According to GP2, 3b-trans (75.9 mg, 0.25 mmol) was 

reacted with 2h (45.0 mg, 0.19 mmol) at 100 °C for 1 hour. 

After filtration over celite the crude was purified by FC 

(cyclohexane/EtOAc 1:0 to 1:1) to afford the product (15.9 mg, 25%). 1H-NMR (700 MHz, 

CD2Cl2): δ 7.13 (dd, J = 8.6, 5.4 Hz, 2H), 7.02 (t, J = 8.6 Hz, 2H), 6.23 (ddd, J = 10.4, 3.9, 2.3 

Hz, 1H), 6.16 (d, J = 6.2 Hz, 1H), 5.99 (s, 1H), 5.89 (ddd, J = 10.4, 2.7, 1.8 Hz, 1H), 5.37 (d, J 

= 16.1 Hz, 1H), 5.15 (d, J = 16.1 Hz, 1H), 4.37 (qq, J = 6.9, 2.7 Hz, 1H), 3.77 (dq, J = 6.2, 2.3 

Hz, 1H), 2.30 (s, 3H), 1.29 (d, J = 6.9 Hz, 3H). 13C-NMR (176 MHz, CD2Cl2): δ 166.0, 163.1, 



5. Experimental 

 

- 158 - 

 

161.7, 161.9, 149.6, 133.0, 130.1, 128.6, 121.7, 115.9, 109.4, 106.1, 97.1, 68.2, 46.7, 38.1, 22.2, 

21.5. HRMS-ESI (m/z): [M + H]+ calculated for C19H19FNO3
+, 328.1344; found, 328.1343. 

(±) 8-methyl-1,2,3,4,5b,9a-hexahydro-5H,8H-cyclopenta[b]pyrano[3',2':4,5]furo[2,3-

d]pyridin-5-one (15h) 

According to GP2, 3b-trans (50.0 mg, 0.17 mmol) was reacted with 2x 

(25.0 mg, 0.17 mmol) at 110 °C for 1 hour. The catalyst was filtered off 

and the filtrate was diluted with EtOAc (10 mL) and washed with water 

(15 mL). The aqueous phase was extracted with EtOAc (3 x 10 mL) and 

the combined organic layers were washed with brine (50 mL), dried over MgSO₄ and 

concentrated in vacuo. The crude was purified by prep. HPLC to afford the product (0.80 mg, 

2%). 1H-NMR (700 MHz, CD2Cl2): δ 6.22-6.17 (m, 2H), 5.88 (dt, J = 10.4, 2.4 Hz, 1H), 4.37 

(dq, J = 6.9, 2.4 Hz, 1H), 3.75-3.72 (m, 1H), 2.86 (t, J = 7.5 Hz, 2H), 2.80-2.70 (m, 2H), 2.16 

(p, J = 7.3 Hz, 2H), 1.27 (d, J = 6.9 Hz, 1H). HRMS-ESI (m/z): [M + H]+ calculated for 

C14H16NO3
+, 246.1125; found, 246.1127. 

(±) 6-(2-chlorobenzyl)-2,7-dimethyl-4a,9a-dihydro-2H-pyrano[3',2':4,5]furo[3,2-

c]pyridin-5(6H)-one (15i); (±) 8-(2-chlorobenzyl)-1,7-dimethyl-8,9b-dihydro-1H-

pyrano[3',4':4,5]furo[3,2-c]pyridin-9(4aH)-one (12i) 

According to GP2, 3b-trans (67.8 mg, 

0.22 mmol) was reacted with 2i (28.0 

mg, 0.11 mmol) at 110 °C for 1 hour. 

The catalyst was filtered off and the 

filtrate was diluted with DCM (10 mL) and washed with saturated NaHCO₃ solution (15 mL). 

The aqueous phase was extracted with DCM (3 x 10 mL) and the combined organic layers were 

washed with brine (50 mL), dried over MgSO₄ and concentrated in vacuo. The crude was 

purified by prep. HPLC to afford product 15i (7.7 mg, 20%) and 12i (1.0 mg, 3%) in separated 

fractions. 1H-NMR product 15i (600 MHz, CD2Cl2): δ 7.41 (dd, J = 7.7, 1.5 Hz, 1H), 7.23 (td, 

J = 7.7, 1.8 Hz, 1H), 7.19 (td, J = 7.9, 1.5 Hz, 1H), 6.72 (d, J = 7.9 Hz, 1H), 6.26 (ddd, J = 10.3, 

3.9, 2.0 Hz, 1H), 6.14 (d, J = 6.5 Hz, 1H), 5.95 (s, 1H), 5.88 (ddd, J = 10.3, 2.6, 1.8 Hz, 1H), 

5.41 (d, J = 16.9 Hz, 1H), 5.23 (d, J = 16.9 Hz, 1H), 4.36 (qq, J = 6.9, 2.6 Hz, 1H), 3.80-3.73 

(m, 1H), 2.19 (s, 3H), 1.29 (d, J = 6.9 Hz, 1H). 13C-NMR product 15i (151 MHz, CD2Cl2): δ 

165.5, 161.5, 149.3, 134.8, 132.7, 130.5, 129.9, 128.8, 128.7, 126.7, 122.1, 108.8, 105.7, 96.3, 

68.1, 44.6, 38.5, 22.1, 21.2. HRMS-ESI (m/z) product 15i: [M + H]+ calculated for 
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C19H19ClNO3
+, 344.1048; found, 344.1050. 1H-NMR product 12i (600 MHz, CD2Cl2): δ 7.41 

(dd, J = 7.7, 1.5 Hz, 1H), 7.23 (td, J = 7.7, 1.9 Hz, 1H), 7.19 (td, J = 7.5, 1.5 Hz, 1H), 6.79 (d, 

J = 6.2 Hz, 1H), 6.71 (dd, J = 7.5, 1.9 Hz, 1H), 5.92 (s, 1H), 5.40 (d, J = 16.9 Hz, 1H), 5.28 (d, 

J = 16.9 Hz, 1H), 5.26 (dd, J = 6.2, 4.7 Hz, 1H), 4.98 (ddd, J = 7.0, 4.7, 1.1 Hz, 1H), 3.53 (dq, 

J = 10.7, 6.3 Hz, 1H), 3.03 (dd, J = 10.7, 7.0 Hz, 1H), 2.19 (s, 3H), 1.46 (d, J = 6.3 Hz, 3H). 

13C-NMR product 12i (151 MHz, CD2Cl2): δ 168.4, 161.9, 150.0, 149.5, 134.9, 132.7, 129.9, 

128.8, 127.7. 126.5, 107.6, 98.5, 96.3, 79.4, 74.0, 44.8, 44.0, 21.2, 19.8. HRMS-ESI (m/z) 

product 12i: [M + H]+ calculated for C19H19ClNO3
+, 344.1048; found, 344.1045. 

(±) 2,7-dimethyl-6-(thiophen-2-ylmethyl)-4a,9a-dihydro-2H-pyrano[3',2':4,5]furo[3,2-

c]pyridin-5(6H)-one (15j); (±) 1,7-dimethyl-8-(thiophen-2-ylmethyl)-8,9b-dihydro-1H-

pyrano[3',4':4,5]furo[3,2-c]pyridin-9(4aH)-one (12j) 

 

According to GP2, 3b-trans (66.5 mg, 

0.22 mmol) was reacted 2l (44.3 mg, 

0.20 mmol) at 110 °C for 1 hour. After 

filtration over celite the crude was 

purified by MPLC (cyclohexane/EtOAc 1:0 to 0:1) to afford a mixture of products a and b. The 

product mixture was subjected for separation by prep. HPLC to afford pure product 15j (9.8 

mg, 16%) and 12j (3.4 mg, 5%). 1H-NMR product 15j (700 MHz, CD2Cl2): δ 7.24 (dd, J = 5.1, 

1.2 Hz, 1H), 7.00 (dd, J = 3.5, 1.2 Hz, 1H), 6.94 (dd, J = 5.1, 3.5 Hz, 1H), 6.23 (ddd, J = 10.4, 

3.8, 2.0 Hz, 1H), 6.15 (d, J = 6.6 Hz, 1H), 5.89 (ddd, J = 10.4, 2.7, 1.8 Hz, 1H), 5.97 (s, 1H), 

5.47 (d, J = 15.5 Hz, 1H), 5.28 (d, J = 15.5 Hz, 1H), 4.37 (qq, J = 6.9, 2.7 Hz, 1H), 3.79-3.75 

(m, 1H), 2.44 (s, 1H), 1.27 (d, J = 6.9 Hz, 3H). 13C-NMR product 15j (176 MHz, CD2Cl2): δ 

166.1, 161.5, 149.2, 139.4, 130.7, 127.0, 126.9, 126.1, 121.6, 109.4, 106.2, 97.3, 68.2, 43.0, 

37.9, 22.3, 21.4. HRMS-ESI (m/z) product 15j: [M + H]+ calculated for C17H18NO3S
+, 

316.1002; found, 316.1016. 1H-NMR product 12j (700 MHz, CD2Cl2): δ 7.24 (dd, J = 5.1, 1.2 

Hz, 1H), 7.02 (dd, J = 3.5, 1.2 Hz, 1H), 6.95 (dd, J = 5.1, 3.5 Hz, 1H), 6.78 (d, J = 6.2 Hz, 1H), 

5.94 (s, 1H), 5.42-5.37 (bs, 2H), 5.24 (dd, J = 6.2, 4.7 Hz, 1H), 4.96 (ddd, J = 6.8, 4.7, 1.1 Hz, 

1H), 3.47 (dq, J = 10.8, 6.3 Hz, 1H), 3.05 (dd, J = 10.8, 6.8 Hz, 1H), 2.45 (s, 3H), 1.48 (d, J = 

6.3 Hz, 3H). 13C-NMR product 12j (176 MHz, CD2Cl2): δ 168.9, 161.9, 150.2, 149.5, 139.6, 

127.0, 126.8, 126.2, 108.2, 98.3, 97.2, 79.7, 73.9, 43.7, 43.1, 21.5, 19.6. HRMS-ESI (m/z) 

product 12j: [M + H]+ calculated for C17H18NO3S
+, 316.1002; found, 316.1004. 
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(±) 6,7-dimethyl-4a,9a-dihydro-2H-pyrano[3',2':4,5]furo[3,2-c]pyridine-3,5(4H,6H)-

dione (26a) 

According to GP7, 4a (50.0 mg, 0.32 mmol) was reacted with 2b (44.6 mg, 

0.32 mmol). Purification by MPLC (cyclohexane/EtOAc 1:0 to 0:1) 

afforded the product (4.9 mg, 7%). 1H-NMR (700 MHz, CDCl3): δ 5.91 (s, 

1H), 5.86 (bs, 1H), 3.87 (d, J = 11.7 Hz, 1H), 3.73 (dd, J = 11.7, 3.0 Hz, 

1H), 3.55-3.45 (m, 4H), 2.56 (dd, J = 12.7, 3.0 Hz, 1H), 2.33 (s, 3H), 1.80 (dt, J = 12.7, 3.3 Hz, 

1H). 13C-NMR (176 MHz, CDCl3): δ 208.5, 163.6, 163.0, 146.3, 103.9, 101.0, 90.6, 69.5, 32.9, 

31.5, 28.3, 21.2. HRMS-ESI (m/z): [M + H]+ calculated for C12H14NO4
+, 236.0917; found, 

236.0917. 

(±) 6-benzyl-7-methyl-4a,9a-dihydro-2H-pyrano[3',2':4,5]furo[3,2-c]pyridine-

3,5(4H,6H)-dione (26b) 

According to GP7, 4a (100.0 mg, 0.64 mmol) was reacted with 2g 

(137.9 mg, 0.64 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product (56.0 mg, 

30%). 1H-NMR (500 MHz, CDCl3): δ 7.33-7.28 (m, 3H), 7.12-7.09 

(m, 2H), 5.93 (s, 1H), 5.88 (bs, 1H), 5.33-5.29 (m, 2H),   3.89 (d, J = 11.6 Hz, 1H), 3.76 (dd, J 

= 11.6, 3.0 Hz, 1H), 3.55-3.52 (m, 1H), 2.59 (dd, J = 12.7, 3.0 Hz, 1H), 2.26 (s, 3H), 1.85 (dt, 

J = 12.7, 3.2 Hz, 1H). 13C-NMR (126 MHz, CDCl3): δ 169.5, 164.1, 163.1, 146.8, 136.2, 129.0, 

127.7, 126.5, 104.1, 101.8, 90.6, 69.4, 47.7, 32.9, 28.2, 20.8. HRMS-ESI (m/z): [M + H]+ 

calculated for C18H18NO4
+, 312.1230; found, 312.1234. 

(±) 6-(4-fluorobenzyl)-7-methyl-4a,9a-dihydro-2H-pyrano[3',2':4,5]furo[3,2-c]pyridine-

3,5(4H,6H)-dione (26c) 

According to GP7, 4a (50.0 mg, 0.32 mmol) was reacted with 2h 

(74.7 mg, 0.32 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product (24.5 mg, 

23%). 1H-NMR (700 MHz, CDCl3): δ 7.11 (dd, J = 8.6, 5.2 Hz, 

2H), 7.00 (t, J = 8.6 Hz, 2H), 5.90-5.87 (m, 2H), 5.25 (bs, 2H), 3.88 (d, J = 11.6 Hz, 1H), 3.75 

(dd, J = 11.6, 3.0 Hz, 1H), 3.52 (d, J = 2.5 Hz 1H), 2.57 (dd, J = 12.8, 3.0 Hz, 1H), 2.25 (s, 3H), 

1.83 (dt, J = 12.8, 3.2 Hz, 1H). 13C-NMR (176 MHz, CDCl3): δ 207.5, 169.4, 164.0, 163.0, 

161.6, 146.4, 132.2, 128.4, 115.9, 104.1, 101.6, 90.7, 69.5, 46.9, 32.9, 28.2, 20.8. HRMS-ESI 

(m/z): [M + H]+ calculated for C18H17FNO4
+, 330.1136; found, 330.1141. 



5. Experimental 

 

- 161 - 

 

(±) 6-(4-methoxybenzyl)-7-methyl-4a,9a-dihydro-2H-pyrano[3',2':4,5]furo[3,2-

c]pyridine-3,5(4H,6H)-dione (26d) 

According to GP7, 4a (50.0 mg, 0.32 mmol) was reacted with 

2k (78.5 mg, 0.32 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product (33.3 mg, 

30%). 1H-NMR (700 MHz, CDCl3): δ 7.08 (d, J = 8.5 Hz, 2H), 

6.83 (d, J = 8.5 Hz, 2H), 5.89-5.88 (m, 1H), 5.83 (s, 1H), 5.24-5.17 (m, 2H), 3.87 (d, J = 11.6 

Hz, 1H), 3.77 (s, 3H), 3.74 (dd, J = 11.6, 3.0 Hz, 1H), 3.52 (q, J = 2.8 Hz, 1H), 2.56 (dd, J = 

12.7, 3.0 Hz, 1H), 2.25 (s, 3H), 1.82 (dt, J = 12.7, 3.2 Hz, 1H). 13C-NMR (176 MHz, CDCl3): 

δ 207.2, 163.5, 162.8, 158.9, 146.3, 128.5, 128.0, 114.2, 103.8, 100.9, 90.6. 69.4, 55.3, 46.8, 

32.8, 28.2, 20.7. HRMS-ESI (m/z): [M + H]+ calculated for C19H20NO5
+, 342.1336; found, 

342.1340. 

(±) 7-methyl-4a,9a-dihydro-2H,5H-furo[2,3-b:4,5-c']dipyran-3,5(4H)-dione (26e) 

According to GP7, 4a (50.0 mg, 0.32 mmol) was reacted with 4-hydroxy-

6-methyl-2H-pyran-2-one (1a) (40.4 mg, 0.32 mmol). Purification by 

MPLC (cyclohexane/EtOAc 1:0 to 0:1) afforded the product (65.1 mg, 

91%). 1H-NMR (500 MHz, CDCl3): δ 6.38 (d, J = 8.3 Hz, 1H), 5.99 (s, 

1H), 4.11 (d, J = 18.3 Hz, 1H), 4.04-3.97 (m, 1H), 3.90 (d, J = 18.3 Hz, 1H), 3.15 (dd, J = 16.1, 

2.0 Hz, 1H), 2.80 (dd, J = 16.1, 6.3 Hz, 1H), 2.26 (s, 3H). 13C-NMR (126 MHz, CDCl3): δ 

207.1, 170.5, 167.4, 160.6, 105.4, 99.3, 94.8, 67.4, 36.5, 35.2, 20.7. HRMS-ESI (m/z): [M + 

H]+ calculated for C11H11O5
+, 223.0601; found, 223.0600. 

(±) 2,6,7-trimethyl-4a,9a-dihydro-2H-pyrano[3',2':4,5]furo[3,2-c]pyridine-3,5(4H,6H)-

dione (27a)  

According to GP7, 4b (53.0 mg, 0.31 mmol) was reacted with 2b (43.3 

mg, 0.31 mmol). Purification by MPLC (cyclohexane/EtOAc 1:0 to 0:1) 

afforded the product (66.9 mg, 86%). 1H-NMR (500 MHz, CD2Cl2): δ 

6.15 (d, J = 7.8 Hz, 1H), 5.87 (s, 1H), 4.21 (q, J = 7.3 Hz, 1H), 3.90 (q, J 

= 6.7 Hz, 1H), 3.44 (s, 3H), 2.97 (dd, J = 14.7, 5.4 Hz, 1H), 2.89 (dd, J = 14.7, 6.7 Hz, 1H), 

2.31 (s, 3H), 1.28 (d, J = 7.3 Hz, 3H).13C-NMR  (126 MHz, CD2Cl2): δ 211.1, 164.9, 161.8, 

150.3, 106.5, 105.2, 94.6, 77.7, 39.8, 36.6, 30.6, 22.0, 17.7. HRMS-ESI (m/z): [M + H]+ 

calculated for C13H16NO4
+, 250.1074; found, 250.1073. 
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(±) 2,2,7-trimethyl-4a,9a-dihydro-2H-pyrano[3',2':4,5]furo[3,2-c]pyridine-3,5(4H,6H)-

dione (28a) 

According to GP7, 4c (50.0 mg, 0.27 mmol) was reacted with 2a (34.0 

mg, 0.27 mmol). Purification by MPLC (cyclohexane/EtOAc 1:0 to 0:1) 

afforded the product (3.5 mg, 5%). 1H-NMR (700 MHz, CDCl3): δ 6.36 

(d, J = 8.3 Hz, 1H), 5.93 (s, 1H), 4.10-4.06 (m, 1H), 3.08 (dt, J = 14.4, 2.5 

Hz, 1H), 2.93 (dd, J = 14.4, 6.8 Hz, 1H), 2.34 (s, 3H), 1.36 (s, 3H), 1.27 (s, 3H). 13C-NMR 

(176 MHz, CDCl3): δ 207.1, 186.6, 161.7, 149.3, 106.4, 105.4, 95.6, 82.4, 39.2, 34.6, 27.2, 

25.6, 19.7. HRMS-ESI (m/z): [M + H]+ calculated for C13H16NO4
+, 250.1001; found, 250.1070. 

(±) 2,2,6,7-tetramethyl-4a,9a-dihydro-2H-pyrano[3',2':4,5]furo[3,2-c]pyridine-

3,5(4H,6H)-dione (28b) 

According to GP7, 4c (50.0 mg, 0.27 mmol) was reacted with 2b (37.7 

mg, 0.27 mmol). Purification by MPLC (cyclohexane/EtOAc 1:0 to 0:1) 

afforded the product (18.2 mg, 25%). 1H-NMR (700 MHz, CDCl3): δ 6.32 

(d, J = 8.3 Hz, 1H), 5.94 (s, 1H), 4.12-4.08 (m, 1H), 3.50 (s, 3H), 3.06 

(dd, J = 14.3, 2.9 Hz, 1H), 2.92 (dd, J = 14.3, 7.0 Hz, 1H), 2.35 (s, 3H), 1.34 (s, 3H), 1.26 (s, 

3H). 13C-NMR (176 MHz, CDCl3): δ 212.2, 165.7, 161.3, 150.1, 106.9, 105.2, 96.0, 82.3, 40.1, 

34.5, 31.2, 27.2, 25.1, 21.9. HRMS-ESI (m/z): [M + H]+ calculated for C14H18NO4
+, 264.1230; 

found, 264.1235.  

(±) 6-benzyl-2,2,7-trimethyl-4a,9a-dihydro-2H-pyrano[3',2':4,5]furo[3,2-c]pyridine-

3,5(4H,6H)-dione (28c) 

According to GP7, 4c (50.0 mg, 0.27 mmol) was reacted with 2g 

(58.4 mg, 0.27 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product (31.2 mg, 

34%). 1H-NMR (700 MHz, CDCl3): δ 7.31 (t, J = 7.4 Hz, 2H), 

7.24 (t, J = 7.4 Hz, 1H), 7.07 (d, J = 7.4 Hz, 2H), 6.36 (d, J = 8.3 Hz, 1H), 5.94 (s, 1H), 5.44 

(d, J = 15.9 Hz, 1H), 5.19 (d, J = 15.9 Hz, 1H), 4.19-4.13 (m, 1H), 3.12 (dd, J = 14.2, 3.0 Hz, 

1H), 2.95 (dd, J = 14.2, 6.9 Hz, 1H), 2.27 (s, 3H), 1.37 (s, 3H), 1.30 (s, 3H). 13C-NMR (176 

MHz, CDCl3): δ 212.2, 165.9, 161.3, 150.5, 136.2, 129.0, 127.6, 126.4, 107.0, 105.4, 96.5, 82.3, 

47.2, 40.2, 34.4, 27.1, 25.0, 21.5. HRMS-ESI (m/z): [M + H]+ calculated for C20H22NO4
+, 

340.1543; found, 340.1546. 
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(±) 6-(2-chlorobenzyl)-2,2,7-trimethyl-4a,9a-dihydro-2H-pyrano[3',2':4,5]furo[3,2-

c]pyridine-3,5(4H,6H)-dione (28d) 

According to GP7, 4c (50.0 mg, 0.27 mmol) was reacted with 2i 

(67.8 mg, 0.27 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product (19.9 mg, 

20%). 1H-NMR (700 MHz, CDCl3): δ 7.40-7.36 (m, 1H), 7.22-

7.18 (m, 2H), 6.63 (dd, J = 7.0, 2.3 Hz, 1H), 6.38 (d, J = 8.3 Hz, 1H), 5.99 (s, 1H), 5.45 (d, J = 

16.8 Hz, 1H), 5.33 (d, J = 16.8 Hz, 1H), 4.19-4.15 (m, 1H), 3.10 (dd, J = 14.2, 2.9 Hz, 1H), 

2.96 (dd, J = 14.2, 6.9 Hz, 1H), 2.22 (s, 3H), 1.37 (s, 3H), 1.31 (s, 3H). 13C-NMR (176 MHz, 

CDCl3): δ 212.2, 166.1, 161.3, 150.3, 133.5, 132.4, 129.7, 128.8, 127.7, 126.4, 107.0, 105.5, 

96.7, 82.4, 44.8, 40.2, 34.4, 27.2, 25.0, 21.2. HRMS-ESI (m/z): [M + H]+ calculated for 

C20H21NO4Cl+, 374.1154; found, 374.1156. 

(±) 6-(4-fluorobenzyl)-2,2,7-trimethyl-4a,9a-dihydro-2H-pyrano[3',2':4,5]furo[3,2-

c]pyridine-3,5(4H,6H)-dione (28e) 

According to GP7, 4c (50.0 mg, 0.27 mmol) was reacted with 

2h (63.3 mg, 0.27 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product (15.6 mg, 

16%). 1H-NMR (700 MHz, CDCl3): δ 7.08 (dd, J = 8.7, 5.3 

Hz, 2H), 7.00 (t, J = 8.7 Hz, 2H), 6.35 (d, J = 8.3 Hz, 1H), 5.92 (s, 1H), 5.37 (d, J = 15.7 Hz, 

1H), 5.15 (d, J = 15.7 Hz, 1H), 4.17-4.12 (m, 1H), 3.12 (dd, J = 14.1, 2.9 Hz, 1H), 2.95 (dd, J 

= 14.1, 6.8 Hz, 1H), 2.27 (s, 3H), 1.37 (s, 3H), 1.29 (s, 3H). 13C-NMR (176 MHz, CDCl3): δ 

212.2, 165.8, 163.0, 161.6, 161.2, 150.1, 132.1, 128.3, 116.0, 106.9, 105.3, 96.3, 82.4, 46.5, 

40.3, 34.4, 27.2, 24.8, 21.5. (700 MHz, CDCl3): δ HRMS-ESI (m/z): [M + H]+ calculated for 

C20H21NO4F
+, 358.1449; found, 358.1453. 

(±) 6-(4-methoxybenzyl)-2,2,7-trimethyl-4a,9a-dihydro-2H-pyrano[3',2':4,5]furo[3,2-

c]pyridine-3,5(4H,6H)-dione (28f) 

According to GP7, 4c (50.0 mg, 0.27 mmol) was reacted 

with 2k (66.6 mg, 0.27 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product (9.3 

mg, 9%). 1H-NMR (700 MHz, CDCl3): δ 7.04 (d, J = 8.8 

Hz, 2H), 6.85 (d, J = 8.8 Hz, 2H), 6.36 (d, J = 8.3 Hz, 1H), 5.94 (s, 1H), 5.36 (d, J = 15.7 Hz, 

1H), 5.14 (d, J = 15.7 Hz, 1H), 4.19-4.14 (m, 1H), 3.77 (s, 3H), 3.11 (dd, J = 14.2, 2.9 Hz, 1H), 
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2.96 (dd, J = 14.2, 6.9 Hz, 1H), 2.30 (s, 3H), 1.37 (s, 3H), 1.29 (s, 3H). 13C-NMR (176 MHz, 

CDCl3): δ 212.2, 166.0, 161.4, 159.2, 150.5, 128.1, 128.0, 114.5, 107.1, 105.4, 96.7, 82.4, 55.4, 

46.8, 34.5, 27.2, 25.1, 21.6. (700 MHz, CDCl3): δ HRMS-ESI (m/z): [M + H]+ calculated for 

C21H23NO5Na+, 392.1468; found, 392.1457. 

(±) Tert-butyl-7'-methyl-3',5'-dioxo-3',4',4a',5',6',9a'-hexahydrospiro[piperidine-4,2'-

pyrano[3',2':4,5]furo[3,2-c]pyridine]-1-carboxylate (29a) 

According to GP7, 4d (97.6 mg, 0.30 mmol) was reacted with 

2a (37.5 mg, 0.30 mmol). Purification by prep. HPLC afforded 

the product (17.4 mg, 15%). 1H-NMR (700 MHz, CDCl3): δ 

6.47 (d, J = 8.4 Hz, 1H), 6.06 (s, 1H), 4.14 (td, J = 8.4, 7.3, 2.6 

Hz, 1H), 4.00-3.81 (m, 2H), 3.25-3.13 (m, 2H), 3.07 (dd, J = 14.5, 2.6 Hz, 1H), 2.93 (dd, J = 

14.5, 7.3 Hz, 1H), 2.40 (s, 3H), 1.81-1.63 (m, 3H), 1.46-1.42 (m, 10H). 13C-NMR (176 MHz, 

CDCl3): δ 210.0, 169.4, 161.5, 154.8, 150.4, 106.5, 105.7, 97.0, 82.0, 80.0, 39.2, 38.8, 38.2, 

34.6, 31.8, 28.6, 19.6. HRMS-ESI (m/z): [M + H]+ calculated for C20H27N2O6
+, 391.1864; 

found, 391.1866. 

(±) 7'-methyl-3',5'-dioxo-3',4',4a',5',6',9a'-hexahydrospiro[piperidine-4,2'-

pyrano[3',2':4,5]furo[3,2-c]pyridin]-1-ium triflate (30a) 

29a (17.4 mg, 0.04 mmol) was dissolved in DCM (3 mL) and 

cooled to 0 °C. HCl in dioxane (0.03 mL, 4 M, 10 equiv) was 

added slowly and the mixture was stirred at 0 °C for 1 hour 

and at room temperature for 30 min. The reaction was 

quenched by slow addition of saturated Na₂CO₃ solution at 0 °C and dilution with EtOAc (10 

mL). The layers were separated and the aqueous phase was extracted with EtOAc (3 x 10 mL). 

The combined organic layers were washed with brine (20 mL), dried over MgSO₄ and 

concentrated in vacuo. Purification by prep. HPLC afforded the product (2.4 mg, 18%). 1H-

NMR (700 MHz, DMSO): δ 11.34 (s, 1H), 8.72 (s, 1H), 8.34 (s, 1H), 6.45 (d, J = 8.3 Hz, 1H), 

5.84 (s, 1H), 4.09-4.06 (m, 1H), 3.27-3.19 (m, 2H), 3.11-3.03 (m, 3H), 2.90 (dd, J = 14.4, 2.7 

Hz, 1H), 2.14 (s, 3H), 2.01-1.97 (m, 1H), 1.93-1.87 (m, 1H), 1.78-1.73 (m, 1H), 1.55-1.51 (m, 

1H). 13C-NMR (176 MHz, DMSO): δ 210.8, 165.9, 160.3, 149.1, 105.1, 103.9, 92.1, 78.0, 38.9, 

38.7, 38.2, 34.4, 30.8, 28.2, 18.8. HRMS-ESI (m/z): [M + H]+ calculated for C15H19N2O4
+, 

291.1339; found, 291.1342. 



5. Experimental 

 

- 165 - 

 

(±) Tert-butyl-6',7'-dimethyl-3',5'-dioxo-3',4',4a',5',6',9a'-hexahydrospiro[piperidine-

4,2'-pyrano[3',2':4,5]furo[3,2-c]pyridine]-1-carboxylate (29b) 

According to GP7, 4d (116.9 mg, 0.36 mmol) was reacted with 

2b (50.0 mg, 0.36 mmol). Purification by MPLC 

(EtOAc/MeOH 1:0 to 9:1) afforded the product (39.8 mg, 

27%). 1H-NMR (700 MHz, CD2Cl2): δ 6.35 (d, J = 8.6 Hz, 1H), 

5.80 (s, 1H), 4.06 (ddd, J = 8.6, 6.8, 2.7 Hz, 1H), 3.90-3.88 (m, 2H), 3.41 (s, 3H), 3.22-3.10 (m, 

2H), 3.08 (dd, J = 14.4, 2.7 Hz, 1H), 2.88 (dd, J = 14.4, 6.8 Hz, 1H), 2.30 (s, 3H), 1.71-1.64 

(m, 2H), 1.59 (ddd,  J = 13.4, 11.9, 4.7 Hz, 1H), 1.49-1.44 (m, 1H), 1.41 (s, 9H). 13C-NMR 

(176 MHz, CD2Cl2): δ 211.6, 165.1, 161.0, 154.8, 150.7, 105.8, 105.0, 94.4, 81.8, 79.6, 40.2, 

39.6, 38.6, 35.1, 34.9, 31.9, 30.6, 28.5, 21.9. HRMS-ESI (m/z): [M + H]+ calculated for 

C21H29N2O6
+, 405.2020; found, 405.2016.  

(±) 6',7'-dimethyl-4a',9a'-dihydrospiro[piperidine-4,2'-pyrano[3',2':4,5]furo[3,2-

c]pyridine]-3',5'(4'H,6'H)-dione (30b) 

29b (19.5 mg, 0.05 mmol) was dissolved in dioxane (0.5 mL) and 

cooled to 0 °C. HCl in dioxane (0.12 mL, 4 M, 10 equiv) was added 

slowly and the mixture was stirred at 0 °C for 1 hour and at room 

temperature for 30 min. The reaction was quenched by slow 

addition of saturated Na₂CO₃ solution at 0 °C and diluted with EtOAc (10 mL). The layers 

were seperated and the aqueous phase was extracted with EtOAc (3 x 10 mL). The combined 

organic layers were washed with brine (20 mL), dried over MgSO₄ and concentrated in vacuo 

to afford the product (6.6 mg, 45%). 1H-NMR (700 MHz, MeOH-d₄): δ 6.46 (d, J = 8.3 Hz, 

1H), 6.05 (s, 1H), 4.11-4.09 (m, 1H), 3.54- 3.47 (m, 4H), 3.21-3.11 (m, 1H), 3.04-2.98 (m, 2H), 

2.87 (tt, J = 12.8, 4.0 Hz, 2H), 2.40 (s, 3H), 1.79-1.73 (m, 2H), 1.63 (ddd, J = 13.5, 11.9, 4.4 

Hz, 1H), 1.52-1.45 (m, 1H). 13C-NMR (176 MHz, MeOH-d₄): δ 212.7, 167.1, 162.7, 152.7, 

107.3, 106.5, 96.3, 82.4, 41.6, 41.4, 40.8, 35.8, 32.8, 31.2, 30.7, 21.5. HRMS-ESI (m/z): [M + 

H]+ calculated for C16H20N2O4
+, 305.1496; found, 305.1501. 
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(±) Tert-butyl-6'-isopentyl-7'-methyl-3',5'-dioxo-3',4',4a',5',6',9a'-

hexahydrospiro[piperidine-4,2'-pyrano[3',2':4,5]furo[3,2-c]pyridine]-1-carboxylate (29c) 

According to GP7, 4d (97.6 mg, 0.30 mmol) was reacted 

with 2d (58.6 mg, 0.30 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product 

(100.0 mg, 72%). 1H-NMR (700 MHz, CD2Cl2): δ 6.34 

(d, J = 8.4 Hz, 1H), 5.77 (s, 1H), 4.09-4.02 (m, 2H), 3.91-3.77 (m, 3H), 3.23-3.10 (m, 2H), 3.08 

(dd, J = 14.3, 2.7 Hz, 1H), 2.87 (dd, J = 14.4, 6.7 Hz, 1H), 2.33 (s, 3H), 1.71-1.64 (m, 2H), 

1.62-1.56 (m, 2H), 1.54-1.43 (m 3H), 1.42 (s, 9H), 0.97 (dd, J = 6.6, 1.6 Hz, 6H). 13C-NMR 

(176 MHz, CD2Cl2): δ 211.6, 165.0, 160.6, 154.8, 149.9, 106.1, 105.0, 94.6, 81.8, 79.6, 42.9, 

40.3, 39.6, 38.6, 37.8, 35.0, 34.8, 32.0, 28.5, 27.0, 22.6, 21.3. HRMS-ESI (m/z): [M + H]+ 

calculated for C25H37N2O6
+, 461.2646; found, 461.2638. 

(±) 6'-isopentyl-7'-methyl-4a',9a'-dihydrospiro[piperidine-4,2'-pyrano[3',2':4,5]furo[3,2-

c]pyridine]-3',5'(4'H,6'H)-dione (30c) 

29c (90.0 mg, 0.20 mmol) was dissolved in DCM (3 mL) 

and cooled to 0 °C. TFA (0.15 mL, 10 equiv) was added 

slowly and the mixture was stirred at 0 °C for 1 hour and at 

room temperature for 30 min. The reaction was quenched by 

slow addition of saturated Na₂CO₃ solution at 0 °C and dilution with EtOAc (10 mL). The 

layers were separated and the aqueous phase was extracted with EtOAc (3 x 10 mL). The 

combined organic layers were washed with brine (20 mL), dried over MgSO₄ and concentrated 

in vacuo to afford the product (61.0 mg, 87%). 1H-NMR (700 MHz, CD2Cl2): δ 6.33 (d, J = 

8.3 Hz, 1H), 5.76 (s, 1H), 4.09-3.99 (m, 2H),  3.83-3.78 (m, 1H), 3.03 (dd, J = 14.2, 2.9 Hz, 

1H), 3.01-2.95 (m, 2H), 2.89-2.83 (m, 2H), 2.33 (s, 3H), 1.72-1.65 (m, 3H), 1.59 (ddd, J = 13.4, 

11.5, 4.5 Hz, 1H), 1.53-1.40 (m, 3H), 0.97 (dd, J = 6.6, 1.6 Hz, 6H). 13C-NMR (176 MHz, 

CD2Cl2): δ 211.7, 165.1, 160.7, 149.8, 106.3, 105.4, 94.7, 82.4, 42.9. 41.6, 41.4, 40.4, 37.8, 

35.9, 34.8, 32.9, 27.0, 22.6, 21.3. HRMS-ESI (m/z): [M + H]+ calculated for C20H29N2O4
+, 

361.2122; found, 361.2119. 
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(±) Tert-butyl 6'-benzyl-7'-methyl-3',5'-dioxo-3',4',4a',5',6',9a'-

hexahydrospiro[piperidine-4,2'-pyrano[3',2':4,5]furo[3,2-c]pyridine]-1-carboxylate 

(29d) 

According to GP7, 4d (97.6 mg, 0.30 mmol) was reacted 

with 2g (64.6 mg, 0.30 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product 

(94.7 mg, 66%). 1H-NMR (500 MHz, CD2Cl2): δ 7.35-

7.20 (m, 3H), 7.10-7.02 (m, 2H), 6.40 (d, J = 8.3 Hz, 1H), 5.84 (s, 1H), 5.40 (d, J = 16.1 Hz, 

1H), 5.10 (d, J = 16.1 Hz, 1H), 4.16-4.10 (m, 1H), 3.94-3.77 (m, 2H), 3.26-3.08 (m, 3H). 2.92 

(dd, J = 14.5, 6.5 Hz, 1H), 2.22 (s, 3H), 1.93-1.55 (m, 4H), 1.42 (s, 9H). 13C-NMR (126 MHz, 

CD2Cl2): δ 211.5, 165.5, 160.1, 154.8, 150.8, 137.2, 129.1, 127.6, 126.5, 106.2, 105.2, 95.2, 

81.9, 79.6, 46.7, 40.3, 39.5, 38.7, 35.0, 34.8, 31.8, 28.5, 21.6. HRMS-ESI (m/z): [M + H]+ 

calculated for C27H33N2O6
+; 481.2333; found, 481.2328. 

(±) 6'-benzyl-7'-methyl-4a',9a'-dihydrospiro[piperidine-4,2'-pyrano[3',2':4,5]furo[3,2-

c]pyridine]-3',5'(4'H,6'H)-dione (30d) 

29d (90.2 mg, 0.19 mmol) was dissolved in DCM (3 mL) 

and cooled to 0 °C. TFA (0.14 mL, 10 equiv) was added 

slowly and the mixture was stirred at 0 °C for 1 hour and at 

room temperature for 30 min. The reaction was quenched by 

slow addition of saturated Na₂CO₃ solution at 0 °C and dilution with EtOAc (10 mL). The 

layers were separated and the aqueous phase was extracted with EtOAc (3 x 10 mL). The 

combined organic layers were washed with brine (20 mL), dried over MgSO₄ and concentrated 

in vacuo to afford the product (60.1 mg, 84%). 1H-NMR (700 MHz, DMSO): δ 7.32 (t, J = 7.5 

Hz, 2H), 7.25 (t, J = 7.5 Hz, 1H), 7.04 (d, J = 7.5 Hz, 2H), 6.48 (d, J = 8.3 Hz, 0H), 6.06 (s, 

1H), 5.32 (d, J = 15.9 Hz, 1H), 5.16 (d, J = 15.9 Hz, 1H), 4.12-4.08 (m, 1H), 2.99 (dd, J = 14.1, 

6.7 Hz, 1H), 2.86 (dd, J = 14.1, 2.7 Hz, 1H), 2.83-2.71 (m, 4H), 2.21 (s, 3H9, 1.67 (dd, J = 13.1, 

2.9 Hz, 1H), 1.61 (ddd, J = 14.0, 11.4, 4.4 Hz, 1H), 1.45 (td, J = 12.4, 4.5 Hz, 1H), 1.38-1.33 

(m, 1H). 13C-NMR (176 MHz, DMSO): δ 212.0, 165.0, 160.4, 160.0, 151.0, 137.7, 129.1, 

127.5, 126.5, 105.9, 105.0, 94.8, 82.0, 45.9, 41.2, 40.9, 39.5, 35.2, 34.6, 32.3, 21.0. HRMS-

ESI (m/z): [M + H]+ calculated for C22H25N2O4
+, 381.1809; found, 381.1809. 
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(±) Tert-butyl-6'-(4-fluorobenzyl)-7'-methyl-3',5'-dioxo-3',4',4a',5',6',9a'-

hexahydrospiro[piperidine-4,2'-pyrano[3',2':4,5]furo[3,2-c]pyridine]-1-carboxylate (29e) 

According to GP7, 4d (97.6 mg, 0.30 mmol) was 

reacted with 2h (70.0 mg, 0.30 mmol). Purification 

by MPLC (cyclohexane/EtOAc 1:0 to 0:1) afforded 

the product (119.8 mg, 80%). 1H-NMR (500 MHz, 

CD2Cl2): δ 7.10-6.99 (m, 4H), 6.40 (d, J = 8.0 Hz, 1H), 5.83 (s, 1H), 5.36 (d, J = 15.5 Hz, 1H), 

5.07 (d, J = 15.5 Hz, 1H), 4.12 (ddd, J = 8.0, 6.5, 2.7 Hz, 1H), 3.95-3.79 (m, 2H), 3.25-3.13 (m, 

2H), 3.12 (dd, J = 14.2, 2.7 Hz, 1H), 2.92 (dd, J = 14.2, 6.5 Hz, 1H), 2.23 (s, 3H), 1.77-1.57 

(m, 3H), 1.51-1.46 (m, 1H), 1.42 (s, 9H). 13C-NMR (126 MHz, CD2Cl2): δ 211.2, 165.3, 163.1, 

160.7, 154.4, 150.4, 132.9, 128.2, 115.6, 106.0, 105.0, 95.0, 81.7, 79.3, 45.9, 40.1, 38.7, 34.9, 

34.5, 31.8, 28.2, 21.3. HRMS-ESI (m/z): [M + H]+ calculated for C27H32FN2O6
+, 499.2239; 

found, 499.2236. 

(±) 6'-(4-fluorobenzyl)-7'-methyl-4a',9a'-dihydrospiro[piperidine-4,2'-

pyrano[3',2':4,5]furo[3,2-c]pyridine]-3',5'(4'H,6'H)-dione (30e) 

29e (119.8 mg, 0.24 mmol) was dissolved in DCM (3 

mL) and cooled to 0 °C. TFA (0.19 mL, 10 equiv) was 

added slowly and the mixture was stirred at 0 °C for 1 

hour and at room temperature for 30 min. The reaction 

was quenched by slow addition of saturated Na₂CO₃ solution at 0 °C and dilution with EtOAc 

(10 mL). The layers were separated and the aqueous phase was extracted with EtOAc (3 x 10 

mL). The combined organic layers were washed with brine (20 mL), dried over MgSO₄ and 

concentrated in vacuo to afford the product (57.8 mg, 60%). 1H-NMR (500 MHz, DMSO): δ 

7.18-7.08 (m, 4H), 6.47 (d, J = 8.7 Hz, 1H), 6.07 (s, 1H), 5.31 (d, J = 15.9 Hz, 1H), 5.11 (d, J 

= 15.9 Hz, 1H), 4.10 (ddd, J = 8.7, 6.8, 2.7 Hz, 1H), 3.00 (dd, J = 14.1, 6.8 Hz, 1H), 2.89-2.71 

(m, 5H), 2.22 (s, 3H), 1.67 (dq, J = 13.3, 2.9 Hz, 1H), 1.61 (ddd, J = 13.6, 11.2, 4.7 Hz, 1H), 

1.44 (ddd, J = 13.2, 11.4, 4.7 Hz, 1H), 1.35 (dq, J = 13.5, 2.9 Hz, 1H). 13C-NMR (126 MHz, 

DMSO): δ 211.6, 164.6, 162.2, 160.2, 160.0, 150.5, 133.4, 128.2, 115.5, 105.5, 104.5, 94.5, 

81.5, 44.8, 40.7, 40.5, 39.0, 34.7,  34.2, 31.8. 20.5. HRMS-ESI (m/z): [M + H]+ calculated for 

C22H24FN2O4
+, 399.1715; found, 399.1706. 
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(±) Tert-butyl-6'-(4-methoxybenzyl)-7'-methyl-3',5'-dioxo-3',4',4a',5',6',9a'-

hexahydrospiro[piperidine-4,2'-pyrano[3',2':4,5]furo[3,2-c]pyridine]-1-carboxylate (29f) 

According to GP7, 4d (97.6 mg, 0.30 mmol) was 

reacted with 2k (73.6 mg, 0.30 mmol). Purification 

by MPLC (cyclohexane/EtOAc 1:0 to 0:1) 

afforded the product (65.0 mg, 42%). 1H-NMR 

(500 MHz, CD2Cl2): δ 7.01 (d, J = 8. Hz, 2H), 6.84 (d, J = 8.7 Hz, 2H), 6.39 (d, J = 8.4 Hz, 

1H), 5.81 (s, 1H), 5.31 (d, J = 15.2 Hz, 1H),  5.03 (d, J = 15.2 Hz, 1H), 4.12 (ddd, J = 8.4, 6.6, 

2.67Hz, 1H), 3.94-3.80 (m, 2H), 3.76 (s, 3H), 3.25-3.14 (m, 2H), 3.13 (dd, J = 14.2, 2.7 Hz, 

1H), 2.91 (dd, J = 14.2, 6.6 Hz, 1H), 2.24 (s, 3H), 1.77-1.57 (m, 3H), 1.52-1.45 (m, 1H), 1.42 

(s, 9H). 13C-NMR (126 MHz, CD2Cl2): δ 211.5, 165.4, 161.0, 159.3, 154.8, 150.8, 129.2, 128.0, 

114.4, 106.1, 105.1, 95.1, 81.9, 79.6, 55.6, 46.2, 40.3, 39.1, 34.8, 31.8, 28.5, 21.6. HRMS-ESI 

(m/z): [M + H]+ calculated for C28H35N2O7
+, 511.2439; found, 511.2436. 

(±) 6'-(4-methoxybenzyl)-7'-methyl-4a',9a'-dihydrospiro[piperidine-4,2'-

pyrano[3',2':4,5]furo[3,2-c]pyridine]-3',5'(4'H,6'H)-dione (30f) 

29f (55.0 mg, 0.11 mmol) was dissolved in DCM (3 

mL) and cooled to 0 °C. TFA (0.08 mL, 10 equiv) was 

added slowly and the mixture was stirred at 0 °C for 1 

hour and at room temperature for 30 min. The reaction 

was quenched by slow addition of saturated Na₂CO₃ solution at 0 °C and dilution with EtOAc 

(10 mL). The layers were separated and the aqueous phase was extracted with EtOAc (3 x 10 

mL). The combined organic layers were washed with brine (20 mL), dried over MgSO₄ and 

concentrated in vacuo to afford the product (21.0 mg, 48%). 1H-NMR (500 MHz, DMSO): δ 

7.01 (d, J = 8.8 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 6.49 (d, J = 8.7 Hz, 1H), 6.04 (s, 1H), 5.25 

(d, J = 15.5 Hz, 1H), 5.08 (d, J = 15.5 Hz, 1H), 4.13 (ddd, J = 8.7, 6.9, 2.7 Hz, 1H), 3.72 (s, 

3H), 3.05 (dd, J = 14.2, 6.9 Hz, 1H), 3.01-2.88 (m, 5H), 2.23 (s, 3H), 1.87-1.72 (m, 2H), 1.64-

1.57 (m, 1H), 1.47-1.41 (m, 1H). 13C-NMR (126 MHz, DMSO): δ 211.6, 164.8, 160.4, 158.8, 

151.2, 129.6, 128.1, 114.6, 105.9, 104.9, 94.7, 80.3, 55.5, 45.4, 40.5, 39.5, 34.6, 33.5, 30.4, 
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(±) Tert-butyl-7'-methyl-3',5'-dioxo-6'-(thiophen-2-ylmethyl)-3',4',4a',5',6',9a'-

hexahydrospiro[piperidine-4,2'-pyrano[3',2':4,5]furo[3,2-c]pyridine]-1-carboxylate 

(29g) 

According to GP7, 4d (97.6 mg, 0.30 mmol) was reacted 

with 2l (66.4 mg, 0.30 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product 

(92.5 mg, 64%). 1H-NMR (500 MHz, CD2Cl2): δ 7.25-

7.20 (m, 1H), 6.95-6.92 (m, 2H), 6.37 (d, J = 8.4 Hz, 1H), 5.80 (s, 1H), 5.47 (d, J = 15.5 Hz, 

1H), 5.18 (d, J = 15.5 Hz, 1H), 4.11 (ddd, J = 8.4, 6.7, 2.6 Hz, 1H), 3.95-3.78 (m, 2H), 3.24-

3.14 (m, 2H), 3.13 (dd, J = 14.3, 2.6 Hz, 1H), 2.91 (dd, J = 14.3, 6.7 Hz, 1H), 2.38 (s, 3H), 

1.75-1.65 (m, 2H), 1.63-1.59 (m 2H), 1.42 (s, 9H). 13C-NMR (126 MHz, CD2Cl2): δ 211.4, 

165.5, 160.6, 154.8, 150.2, 139.8, 126.9, 126.6, 125.9, 106.2, 105.2, 95.2, 81.9, 79.6, 42.5, 40.2, 

39.5, 35.0, 34.8, 31.9, 28.5, 21.4. HRMS-ESI (m/z): [M + H]+ calculated for C25H31N2O6S
+, 

487.1897; found, 487.1894. 

(±) 7'-methyl-6'-(thiophen-2-ylmethyl)-4a',9a'-dihydrospiro[piperidine-4,2'-

pyrano[3',2':4,5]furo[3,2-c]pyridine]-3',5'(4'H,6'H)-dione (30g) 

29g (80.0 mg, 0.16 mmol) was dissolved in DCM (3 mL) 

and cooled to 0 °C. TFA (0.13 mL, 10 equiv) was added 

slowly and the mixture was stirred at 0 °C for 1 hour and at 

room temperature for 30 min. The reaction was quenched by 

slow addition of saturated Na₂CO₃ solution at 0 °C and dilution with EtOAc (10 mL). The 

layers were separated and the aqueous phase was extracted with EtOAc (3 x 10 mL). The 

combined organic layers were washed with brine (20 mL), dried over MgSO₄ and concentrated 

in vacuo to afford the product (51.0 mg, 80%). 1H-NMR (600 MHz, DMSO): δ 8.74 (s, 1H), 

8.48 (s, 1H), 7.43 (dd, J = 5.1, 1.2 Hz, 1H), 7.02 (dd, J = 3.5, 1.2 Hz, 1H), 6.97 (dd, J = 5.1, 3.5 

Hz, 1H), 6.50 (d, J = 8.3 Hz, 1H), 6.05 (s, 1H), 5.40 (d, J = 15.6 Hz, 1H), 5.27 (d, J = 15.6 Hz, 

1H), 4.20-4.14 (m, 1H), 3.28-3.19 (m, 2H), 3.16-3.01 (m, 3H), 2.95 (dd, J = 14.4, 2.7 Hz, 1H), 

2.39 (s, 3H), 2.01 (dq, J = 14.4, 3.1 Hz, 1H), 1.90 (ddd, J = 14.6, 12.5, 4.2 Hz, 1H), 1.76 (ddd, 

J = 14.2, 12.4, 4.5 Hz, 1H), 1.53 (dq, J = 14.7, 3.0 Hz, 1H). 13C-NMR (151 MHz, DMSO): δ 

210.9, 164.8, 160.0, 150.9, 139.9, 127.1, 127.0, 126.6, 105.8, 104.7, 94.7, 78.6, 41.9, 39.3, 39.1, 

34.8, 31.3, 28.8, 20.9. HRMS-ESI (m/z): [M + H]+ calculated for C20H23N2O4S
+, 387.1373; 

found, 387.1375. 
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(±) Tert-butyl-7'-methyl-3',5'-dioxo-6'-(pyridin-2-ylmethyl)-3',4',4a',5',6',9a'-

hexahydrospiro[piperidine-4,2'-pyrano[3',2':4,5]furo[3,2-c]pyridine]-1-carboxylate 

(29h) 

According to GP7, 4d (97.6 mg, 0.30 mmol) was reacted 

with 2m (64.9 mg, 0.30 mmol). Purification by MPLC 

(cyclohexane/EtOAc 4:1 to 0:1) afforded the product 

(79.2 mg, 55%). 1H-NMR (700 MHz, CD2Cl2): δ 8.48 

(dd, J = 4.9, 1.8 Hz, 1H), 7.65 (td, J = 7.7, 1.8 Hz, 1H), 7.18 (dd, J = 7.7, 4.9 Hz, 1H), 7.10 (d, 

J = 7.7 Hz, 1H), 6.38 (d, J = 8.6 Hz, 1H), 5.85 (s, 1H), 5.47 (d, J = 16.0 Hz, 1H), 5.15 (d, J = 

16.0 Hz, 1H), 4.09 (ddd, J = 8.6, 6.7, 2.7 Hz, 1H), 3.94-3.77 (m, 2H), 3.25-3.10 (m, 2H), 3.09 

(dd, J = 14.3, 2.7 Hz, 1H), 2.89 (dd, J = 14.3, 6.7 Hz, 1H), 2.32 (s, 3H), 1.77-1.57 (m, 3H), 

1.53-1.48 (m, 1H), 1.42 (s, 9H). 13C-NMR (176 MHz, CD2Cl2): δ 211.5, 165.6, 160.8, 157.0, 

154.8, 151.2, 149.7, 137.2, 122.8, 121.8, 106.0, 105.2, 95.0, 81.9, 79.6, 48.8, 40.3, 39.7, 38.7, 

35.0, 34.8, 31.9, 28.5, 21.9. HRMS-ESI (m/z): [M + H]+ calculated for C26H32N3O6
+, 482.2286; 

found, 482.2278. 

(±) 7'-methyl-3',5'-dioxo-6'-(pyridin-2-ylmethyl)-3',4',4a',5',6',9a'-

hexahydrospiro[piperidine-4,2'-pyrano[3',2':4,5]furo[3,2-c]pyridin]-1-ium triflate (30h) 

29h (79.4 mg, 0.14 mmol) was dissolved in DCM (3 

mL) and cooled to 0 °C. HCl in dioxane (0.13 mL, 4 

M, 10 equiv) was added slowly and the mixture was 

stirred at 0 °C for 1 hour and at room temperature for 

30 min. The reaction was quenched by slow addition of saturated Na₂CO₃ solution at 0 °C and 

dilution with EtOAc (10 mL). The layers were separated and the aqueous phase was extracted 

with EtOAc (3 x 10 mL). The combined organic layers were washed with brine (20 mL), dried 

over MgSO₄ and concentrated in vacuo. Purification by prep. HPLC afforded the product (41.8 

mg, 66%). 1H-NMR (700 MHz, DMSO): δ 8.72 (s, 1H), 8.53 (s, 1H), 8.48 (d, J = 4.9 Hz, 1H), 

7.77 (td, J = 7.7, 1.9 Hz, 1H), 7.30 (dd, J = 7.7, 4.9 Hz, 1H), 7.13 (d, J = 7.7 Hz, 1H), 6.49 (d, 

J = 8.3 Hz, 1H), 6.09 (s, 1H), 5.42 (d, J = 16.3 Hz, 1H), 5.16 (d, J = 16.3 Hz, 1H), 4.14-4.11 

(m, 1H), 3.28-3.19 (m, 2H), 3.13-3.04 (m, 3H), 2.88 (dd, J = 14.4, 2.8 Hz, 1H), 2.30 (s, 3H), 

2.00 (dq, J = 14.6, 3.3 Hz, 1H), 1.93 (ddd, J = 16.7, 13.4, 3.7 Hz, 1H), 1.77 (ddd, J = 16.5, 12.9, 

4.2 Hz, 1H), 1.59-1.55 (m, 1H). 13C-NMR (176 MHz, DMSO): δ 210.6, 164.4, 159.7, 156.1, 

151.3, 148.9, 137.2, 122.5, 121.2, 105.1, 104.2, 94.0, 78.1, 47.5, 40.0, 38.8, 38.6, 34.3, 30.7, 
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28.4, 20.9. HRMS-ESI (m/z): [M + H]+ calculated for C21H24N3O4
+, 382.1761; found, 

382.1762. 

(±) Tert-butyl-7'-methyl-3',5'-dioxo-6'-(pyridin-4-ylmethyl)-3',4',4a',5',6',9a'-

hexahydrospiro[piperidine-4,2'-pyrano[3',2':4,5]furo[3,2-c]pyridine]-1-carboxylate (29i) 

According to GP7, 4d (97.6 mg, 0.30 mmol) was 

reacted with 2n (64.8 mg, 0.30 mmol). Purification by 

MPLC (cyclohexane/EtOAc 1:0 to 0:1) afforded the 

product (95.0 mg, 66%). 1H-NMR (700 MHz, CD2Cl2): 

δ 8.74 (d, J = 6.4 Hz, 2H), 7.45 (d, J = 6.4 Hz, 2H), 6.45 (d, J = 8.2 Hz, 1H), 5.52 (d, J = 17.2 

Hz, 1H), 5.30 (d, J = 17.2 Hz, 1H), 4.15 (ddd, J = 8.2, 6.6, 2.6 Hz, 1H), 3.93-3.81 (m, 2H), 

3.25-3.13 (m, 2H), 3.06 (dd, J = 14.2, 2.6 Hz, 1H), 2.94 (dd, J = 14.2, 6.6 Hz, 1H), 2.22 (s, 3H), 

1.77 (ddd, J = 14.1, 11.9, 4.5 Hz, 1H), 1.72 (d, J = 13.2 Hz, 1H), 1.60 (ddd, J = 13.4, 11.8, 4.7 

Hz, 1H), 1.51-1.47 (m, 1H), 1.43 (s, 9H). 13C-NMR (176 MHz, CD2Cl2): δ 210.8, 165.8, 160.2, 

154.7, 154.4, 149.3, 143.5, 123.7, 106.2, 105.2, 96.1, 81.7, 79.3, 46.0, 39.9, 38.4, 34.7, 34.3, 

31.5, 28.1, 21.2. HRMS-ESI (m/z): [M + H]+ calculated for C26H32N3O6
+, 482.2286; found, 

482.2274. 

(±) 7'-methyl-6'-(pyridin-4-ylmethyl)-4a',9a'-dihydrospiro[piperidine-4,2'-

pyrano[3',2':4,5]furo[3,2-c]pyridine]-3',5'(4'H,6'H)-dione (30i) 

29i (87.1 mg, 0.18 mmol) was dissolved in DCM (2 mL) and 

cooled to 0 °C. TFA (0.14 mL, 10 equiv) was added slowly 

and the mixture was stirred at 0 °C for 1 hour and at room 

temperature for 30 min. The reaction was quenched by slow 

addition of saturated Na₂CO₃ solution at 0 °C and dilution with EtOAc (10 mL). The layers 

were separated and the aqueous phase was extracted with EtOAc (3 x 10 mL). The combined 

organic layers were washed with brine (20 mL), dried over MgSO₄ and concentrated in vacuo 

to afford the product (50.0 mg, 72%). 1H-NMR (500 MHz, DMSO): δ 8.51-8.49 (m, 2H), 7.02-

6.99 (m, 2H), 6.49 (d, J = 8.6 Hz, 1H), 6.12 (s, 1H), 5.34 (d, J = 16.9 Hz, 1H), 5.17 (d, J = 17.0 

Hz, 1H), 4.11 (ddd, J = 8.6, 7.0, 2.7 Hz, 1H), 2.99 (dd, J = 14.0, 6.7 Hz, 1H), 2.86-2.70 (m, 

5H), 2.20 (s, 3H), 1.70-1.58 (m, 2H), 1.44 (td, J = 12.8, 12.3, 4.6 Hz, 1H), 1.38-1.32 (m, 1H). 

13C-NMR (126 MHz, DMSO): δ 211.6, 164.8, 159.8, 150.4, 149.9, 146.4, 121.1, 105.5, 104.6, 

94.6, 81.6, 44.8, 40.8, 40.5, 39.0, 34.8, 34.2, 31.9, 20.5. HRMS-ESI (m/z): [M + H]+ calculated 

for C21H24N3O4
+, 382.1761; found, 382.1761. 
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(±) Tert-butyl-6'-((2-chloropyridin-4-yl)methyl)-7'-methyl-3',5'-dioxo-3',4',4a',5',6',9a'-

hexahydrospiro[piperidine-4,2'-pyrano[3',2':4,5]furo[3,2-c]pyridine]-1-carboxylate (29j) 

According to GP7, 4d (97.6 mg, 0.30 mmol) was reacted 

with 2p (75.2 mg, 0.30 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product 

(94.7 mg, 66%). 1H-NMR (500 MHz, CD2Cl2): δ 8.28 (d, 

J = 5.2 Hz, 1H), 6.99 (s, 1H), 6.94 (dd, J = 5.2, 1.6 Hz, 1H), 6.42 (d, J = 8.7 Hz, 1H), 5.89 (s, 

1H), 5.38 (d, J = 16.4 Hz, 1H), 5.07 (d, J = 16.4 Hz, 1H), 4.13 (ddd, J = 8.7, 6.6, 2.6 Hz, 1H), 

3.94-3.80 (m, 2H), 3.26-3.09 (m, 2H), 3.08 (dd, J = 14.2, 2.6 Hz, 1H), 2.92 (dd, J = 14.2, 6.6 

Hz, 1H), 2.19 (s, 3H), 1.78-1.66 (m, 2H), 1.63-1.56 (m, 1H), 1.51-1.45 (m, 1H), 1.41 (s, 9H). 

13C-NMR (126 MHz, CD2Cl2): δ 211.3, 165.8, 160.6, 154.7, 152.4, 150.4, 150.1, 149.9, 121.9, 

120.5, 106.3, 105.3, 95.8, 81.9, 79.6, 45.5, 40.2, 39.3, 38.6, 34.9, 34.7, 31.8, 28.4, 21.5. HRMS-

ESI (m/z): [M + H]+ calculated for C26H31ClN3O6
+, 516.1896; found, 516.1882. 

(±) 6'-((2-chloropyridin-4-yl)methyl)-7'-methyl-4a',9a'-dihydrospiro[piperidine-4,2'-

pyrano[3',2':4,5]furo[3,2-c]pyridine]-3',5'(4'H,6'H)-dione (30j) 

29j (92.1 mg, 0.18 mmol) was dissolved in DCM (3 mL) and 

cooled to 0 °C. TFA (0.14 mL, 10 equiv) was added slowly 

and the mixture was stirred at 0 °C for 1 hour and at room 

temperature for 30 min. The reaction was quenched by slow 

addition of saturated Na₂CO₃ solution at 0 °C and dilution with EtOAc (10 mL). The layers 

were separated and the aqueous phase was extracted with EtOAc (3 x 10 mL). The combined 

organic layers were washed with brine (20 mL), dried over MgSO₄ and concentrated in vacuo 

to afford the product (58.7 mg, 79%). 1H-NMR (700 MHz, DMSO): δ 8.35 (d, J = 5.2 Hz, 1H), 

7.08 (s, 1H), 7.04 (d, J = 5.2 Hz, 1H), 6.49 (d, J = 8.3 Hz, 1H), 6.14 (s, 1H), 5.31 (d, J = 17.1 

Hz, 1H), 5.22 (d, J = 17.1 Hz, 1H), 4.14-4.11 (m, 1H), 3.01 (dd, J = 14.1, 6.7 Hz, 1H), 2.88-

2.80 (m, 5H), 2.21 (s, 1H), 1.75-1.65 (m, 2H), 1.53-1.48 (m, 1H), 1.41-1.37 (m, 1H). 13C-NMR 

(176 MHz, DMSO): δ 211.3, 164.9, 160.0, 150.7, 150.6, 150.1, 121.4, 120.6, 105.4, 104.6, 

94.8, 81.0, 44.6, 40.4, 40.2, 39.0, 34.1, 34.0, 31.2, 20.5. HRMS-ESI (m/z): [M + H]+ calculated 

for C21H23ClN3O4
+, 416.1372; found, 416.1367. 
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(±) Tert-butyl-6'-(2-(5-methoxy-1H-indol-3-yl)ethyl)-7'-methyl-3',5'-dioxo-

3',4',4a',5',6',9a'-hexahydrospiro[piperidine-4,2'-pyrano[3',2':4,5]furo[3,2-c]pyridine]-1-

carboxylate (29k) 

According to GP7, 4d (97.6 mg, 0.30 mmol) was 

reacted with 2s (98.5 mg, 0.30 mmol). Purification 

by MPLC (cyclohexane/EtOAc 1:0 to 0:1) afforded 

the product (89.0 mg, 52%). 1H-NMR (700 MHz, 

CD2Cl2): δ 8.18 (s, 1H), 7.26 (d, J = 8.7 Hz, 1H), 

7.12 (d, J = 2.5 Hz, 1H), 6.91 (s, 1H), 6.82 (dd, J = 8.7, 2.5 Hz, 1H), 6.37 (d, J = 8.3 Hz, 1H), 

5.71 (s, 1H), 4.32-4.25 (m, 1H), 4.14-4.08 (m, 2H), 3.93-3.80 (m, 5H), 3.24-3.08 (m, 4H), 3.05-

3.00 (m, 1H), 2.92 (dd, J = 14.3, 6.7 Hz, 1H), 2.11 (s, 3H), 1.77-1.67 (m, 2H), 1.64-1.59 (m, 

1H), 1.52-1.47 (m, 1H), 1.43 (s, 9H). 13C-NMR (176 MHz, CD2Cl2): δ 211.7, 165.2, 160.8, 

154.9, 154.6, 150.4, 131.8, 128.2, 123.6, 112.4, 112.3, 106.3, 105.1, 100.9, 94.6, 81.8, 79.6, 

56.1, 45.1, 40.4, 39.7, 38.8, 35.0, 34.9, 31.9, 28.5, 24.6, 21.5. HRMS-ESI (m/z): [M + H]+ 

calculated for C31H38N3O7
+, 564.2704; found, 564.2700. 

(±) 6'-(2-(5-methoxy-1H-indol-3-yl)ethyl)-7'-methyl-4a',9a'-dihydrospiro[piperidine-4,2'-

pyrano[3',2':4,5]furo[3,2-c]pyridine]-3',5'(4'H,6'H)-dione (30k) 

29k (80.0 mg, 0.14 mmol) was dissolved in DCM (3 

mL) and cooled to 0 °C. TFA (0.11 mL, 10 equiv) was 

added slowly and the mixture was stirred at 0 °C for 1 

hour and at room temperature for 30 min. The reaction 

was quenched by slow addition of saturated Na₂CO₃ 

solution at 0 °C and dilution with EtOAc (10 mL). The layers were separated and the aqueous 

phase was extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with 

brine (20 mL), dried over MgSO₄ and concentrated in vacuo to afford the product (40.0 mg, 

61%). 1H-NMR (700 MHz, DMSO): δ 10.73 (s, 1H), 7.24 (dd, J = 9.0, 3.5 Hz, 1H), 7.12 (s, 

1H), 7.02 (s, 1H), 6.73 (dt, J = 9.0, 2.0 Hz, 1H), 6.45 (d, J = 8.2 Hz, 1H), 5.94 (s, 1H), 4.24-

4.16 (m, 1H), 4.13-4.07 (m, 1H), 4.06-3.98 (m, 1H), 3.76 (s, 1H), 3.01 (dd, J = 14.2, 6.7 Hz, 

1H), 2.97-2.79 (m, 7H), 2.18 (s, 3H), 1.74-1.65 (m, 2H), 1.57-1.48 (m, 1H), 1.42-1.36 (m, 1H). 

13C-NMR (176 MHz, DMSO): δ 212.1, 164.7, 160.2, 153.6, 150.8, 131.8, 127.9, 124.2, 112.5, 

111.6, 111.0, 105.9, 104.7, 100.7, 94.2, 81.4, 55.8, 44.7, 40.8, 40.6, 39.5, 34.7, 34.4, 31.7, 24.3, 

20.8. HRMS-ESI (m/z): [M + H]+ calculated for C26H30N3O5
+, 464.2180; found, 464.2172. 
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(±) Tert-butyl-6',8'-dioxo-5',6',6b',7',8',10a'-hexahydrospiro[piperidine-4,9'-

pyrano[3',2':4,5]furo[3,2-c]quinoline]-1-carboxylate (29l) 

According to GP7, 4d (97.6 mg, 0.30 mmol) was reacted with 2u 

(48.3 mg, 0.30 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product (24.5 mg, 

20%). 1H-NMR (500 MHz, CD2Cl2): δ 11.75 (s, 1H), 7.68 (dd, 

J = 7.8, 1.5 Hz, 1H), 7.57 (ddd, J = 8.3, 7.2, 1.5 Hz, 1H), 7.41 (d, 

J = 8.3 Hz, 1H), 7.24 (td, J = 7.8, 7.2, 1.0 Hz, 1H), 6.61 (d, J = 8.7 Hz, 1H), 4.29 (ddd, J = 8.7, 

6.9, 2.7 Hz, 1H), 3.99-3.75 (m, 2H), 3.31-3.17 (m, 3H), 3.04 (dd, J = 14.6, 6.9 Hz, 1H), 1.78-

1.59 (m, 4H), 1.40 (s, 9H). 13C-NMR (126 MHz, CD2Cl2): δ 210.6, 162.7, 161.9, 154.4, 139.9, 

131.8, 122.5, 122.4, 116.2, 110.8, 108.2, 105.3, 81.8, 79.3, 40.0, 39.1, 38.2, 34.8, 34.5, 31.7, 

28.1. HRMS-ESI (m/z): [M + H]+ calculated for C23H27N2O6
+, 427.1864; found, 427.1863. 

(±) 6b',10a'-dihydrospiro[piperidine-4,9'-pyrano[3',2':4,5]furo[3,2-c]quinoline]-

6',8'(5'H,7'H)-dione (30l) 

29l (22.0 mg, 0.05 mmol) was dissolved in DCM (3 mL) and cooled 

to 0 °C. HCl in dioxane (0.13 mL, 4 M, 10 equiv) was added slowly 

and the mixture was stirred at 0 °C for 1 hour and at room 

temperature for 30 min. The reaction was quenched by slow 

addition of saturated Na₂CO₃ solution at 0 °C and dilution with 

EtOAc (10 mL). The layers were separated and the aqueous phase was extracted with EtOAc 

(3 x 10 mL). The combined organic layers were washed with brine (20 mL), dried over MgSO₄ 

and concentrated in vacuo to afford the product (12.3 mg, 73%). 1H-NMR (500 MHz, DMSO): 

δ 11.55 (s, 1H), 7.60-7.53 (m, 2H), 7.35 (d, J = 8.3 Hz, 1H), 7.23-7.19 (m, 1H), 6.66 (d, J = 8.5 

Hz, 1H), 4.23 (ddd, J = 8.5, 6.9, 2.8 Hz, 1H), 3.10 (dd, J = 14.3, 6.9 Hz, 1H), 2.96-2.78 (m, 

5H), 1.81-1.76 (m, 1H), 1.65-1.50 (m, 2H), 1.30-1.25 (m, 1H). 13C-NMR (126 MHz, DMSO): 

δ 211.3, 160.9, 159.9, 139.9, 131.6, 122.0, 121.9, 115.7, 110.0, 108.6, 104.8, 80.9, 40.1, 39.6, 

34.5, 33.6. 31.0. HRMS-ESI (m/z): [M + H]+ calculated for C18H19N2O4
+, 327.1339; found, 

327.1343. 
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(±) 5'-methyl-6',8'-dioxo-5',6',6b',7',8',10a'-hexahydrospiro[piperidine-4,9'-

pyrano[3',2':4,5]furo[3,2-c]quinolin]-1-ium triflate (30m) 

According to GP7, 4d (97.6 mg, 0.30 mmol) was reacted with 

2w (66.4 mg, 0.30 mmol). Purification by MPLC 

(cyclohexane/EtOAc 1:0 to 0:1) afforded the product which 

was directly dissolved in DCM (3 mL) and cooled to 0 °C. 

TFA (0.23 mL, 10 equiv) was added slowly and the mixture 

was stirred at 0 °C for 1 hour and at room temperature for 30 min. The reaction was quenched 

by slow addition of saturated Na₂CO₃ solution at 0 °C and dilution with EtOAc (10 mL). The 

layers were separated and the aqueous phase was extracted with EtOAc (3 x 10 mL). The 

combined organic layers were washed with brine (20 mL), dried over MgSO₄ and concentrated 

in vacuo. The crude was purified by MPLC (cyclohexane/EtOAc 1:0 to 0:1) and repurified by 

prep. HPLC to afford the product (22.1 mg, 17% over two steps). 1H-NMR (600 MHz, DMSO): 

δ 8.78 (s, 1H), 8.48 (s, 1H), 7.74-7.68 (m, 2H), 7.59 (d, J = 8.6 Hz, 1H), 7.33 (t, J = 7.5 Hz, 

1H), 6.71 (d, J = 8.5 Hz, 1H), 4.32 (ddd, J = 8.5, 7.1, 2.8 Hz, 1H), 3.59 (s, 3H), 3.27-3.11 (m, 

5H), 2.99 (dd, J = 14.6, 2.8 Hz, 1H), 2.04 (dq, J = 14.3, 3.1 Hz, 1H), 1.85 (ddd, J = 14.6, 12.1, 

4.5 Hz, 1H), 1.78 (ddd, J = 14.2, 12.3, 4.4 Hz, 1H), 1.44 (dq, J = 14.7, 3.2 Hz, 1H). 13C-NMR 

(151 MHz, DMSO): δ 210.5, 159.6, 159.0, 140.5, 132.2, 122.5, 122.3, 115.6, 110.6, 108.0, 

104.7, 78.4, 40.1, 38.9, 38.6, 34.6, 30.8, 28.7, 28.5. HRMS-ESI (m/z): [M + H]+ calculated for 

C19H21N2O4
+, 341.1496; found, 341.1494. 

(±) Tert-butyl-6',8'-dioxo-6b',7',8',10a'-tetrahydro-6'H-spiro[piperidine-4,9'-

pyrano[3',2':4,5]furo[3,2-c]chromene]-1-carboxylate (29n) 

According to GP7, 4d (116.9 mg, 0.36 mmol) was reacted with 

4-hydroxy-2H-chromen-2-one (1H)-one (1b) (58.3 mg, 0.36 

mmol). Purification by MPLC (cyclohexane/EtOAc 1:0 to 0:1) 

afforded the product (134.3 mg, 87%). 1H-NMR (500 MHz, 

CD2Cl2): δ 7.66-7.63 (m, 1H), 7.63-7.61 (m, 1H), 7.38 (d, J = 8.4 

Hz, 1H), 7.33 (td, J = 7.6, 1.0 Hz, 1H), 6.65 (d, J = 8.7 Hz, 1H), 4.20 (ddd, J = 8.7, 6.6, 2.7 Hz, 

1H), 3.95-3.76 (m, 2H), 3.30-3.14 (m, 2H), 3.08-2.94 (m, 2H), 1.77-1.61 (m, 3H), 1.41 (s, 9H), 

1.39-1.36 (m, 1H). 13C-NMR (126 MHz, CD2Cl2): δ 210.0, 165.3, 159.1, 155.6, 154.7, 133.7, 

124.8, 123.2, 117.5, 112.0, 106.5, 103.1, 82.6, 79.7, 39.9, 38.6, 34.9, 32.1, 28.5. HRMS-ESI 

(m/z): [M + H]+ calculated for C23H26NO7
+, 428.1704; found, 428.1703.   
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(±) 6b',10a'-dihydro-6'H-spiro[piperidine-4,9'-pyrano[3',2':4,5]furo[3,2-c]chromene]-

6',8'(7'H)-dione (30n) 

29n (130.0 mg, 0.30 mmol) was dissolved in DCM (3 mL) and 

cooled to 0 °C. TFA (0.23 mL, 10 equiv) was added slowly and the 

mixture was stirred at 0 °C for 1 hour and at room temperature for 

30 min. The reaction was quenched by slow addition of saturated 

Na₂CO₃ solution at 0 °C and dilution with EtOAc (10 mL). The 

layers were separated and the aqueous phase was extracted with EtOAc (3 x 10 mL). The 

combined organic layers were washed with brine (20 mL), dried over MgSO₄ and concentrated 

in vacuo to afford the product (74.5 mg, 75%). 1H-NMR (700 MHz, DMSO): δ 7.72 (ddd, J = 

8.6, 7.5, 1.7 Hz, 1H), 7.67 (dd, J = 7.5, 1.7 Hz, 1H), 7.48 (dd, J = 8.6, 1.0 Hz, 1H), 7.41 (td, J 

= 7.5, 1.0 Hz, 1H), 6.78 (d, J = 8.4 Hz, 1H), 4.26 (ddd, J = 8.4, 6.9, 2.9 Hz, 1H), 3.14 (dd, J = 

14.5, 6.9 Hz, 1H), 2.85 (tt, J = 11.9, 3.4 Hz, 2H), 2.80-2.75 (m, 2H), 2.72 (dt, J = 12.6, 4.0 Hz, 

1H), 1.74 (dq, J = 13.3, 2.9 Hz, 1H), 1.60 (ddd, J = 13.7, 11.5, 4.3 Hz, 1H), 1.51 (ddd, J = 13.2, 

11.4, 4.5 Hz, 1H), 1.23 (dd, J = 13.8, 2.8 Hz, 1H). 13C-NMR (176 MHz, DMSO): δ 210.6, 

164.2, 158.2, 154.4, 133.6, 124.8, 122.7, 116.9, 111.2, 106.2, 102.8, 82.1, 40.5, 40.2, 38.6, 34.4, 

34.2, 31.8. HRMS-ESI (m/z): [M + H]+ calculated for C18H18NO5
+, 328.1180; found, 328.1180.  

(±) Tert-butyl 7-methyl-3,5-dioxo-3,4,4a,9a-tetrahydro-5H-spiro[furo[2,3-b:4,5-

c']dipyran-2,4'-piperidine]-1'-carboxylate (29o) 

According to GP7, 4d (116.9 mg, 0.36 mmol) was reacted with 

4-hydroxy-6-methyl-2H-pyran-2-one (1H)-one (1a) (45.3 mg, 

0.36 mmol). Purification by MPLC (cyclohexane/EtOAc 1:0 to 

0:1) afforded the product (118.9 mg, 85%). 1H-NMR (500 MHz, 

CD2Cl2): δ δ 6.44 (d, J = 8.5 Hz, 1H), 5.92 (s, 1H), 4.04-4.00 (m, 1H), 3.93-3.80 (m, 2H), 3.23-

3.08 (m, 2H), 2.96-2.88 (m, 2H), 2.24 (s, 3H), 1.76 (ddd, J = 14.2, 11.9, 4.5 Hz, 1H), 1.72-1.66 

(m, 1H), 1.62 (ddd, J = 13.5, 11.6, 4.7 Hz, 1H), 1.46-1.43 (m, 1H), 1.42 (s, 9H). 13C-NMR (126 

MHz, CD2Cl2): δ 210.3, 169.9, 167.8, 160.6, 154.7, 106.0, 99.9, 95.3, 82.3, 79.7, 39.5, 38.8, 

35.0, 34.8, 31.9, 28.5, 20.8. HRMS-ESI (m/z): [M + H]+ calculated for C20H26NO7
+, 392.1704; 

found, 392.1704. 
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(±) 7-methyl-4a,9a-dihydro-5H-spiro[furo[2,3-b:4,5-c']dipyran-2,4'-piperidine]-3,5(4H)-

dione (30o) 

29o (110.0 mg, 0.28 mmol) was dissolved in DCM (3 mL) and 

cooled to 0 °C. TFA (0.21 mL, 10 equiv) was added slowly and the 

mixture was stirred at 0 °C for 1 hour and at room temperature for 

30 min. The reaction was quenched by slow addition of saturated 

Na₂CO₃ solution at 0 °C and dilution with EtOAc (10 mL). The layers were separated and the 

aqueous phase was extracted with EtOAc (3 x 10 mL). The combined organic layers were 

washed with brine (20 mL), dried over MgSO₄ and concentrated in vacuo to afford the product 

(62.3 mg, 76%). 1H-NMR (700 MHz, DMSO): δ 6.56 (d, J = 8.4 Hz, 1H), 6.34 (s, 1H), 4.08-

4.05 (m, 1H), 3.05 (dd, J = 14.4, 6.8 Hz, 1H), 2.85-2.75 (m, 4H), 2.66 (dd, J = 14.4, 2.7 Hz, 

1H), 2.22 (s, 3H), 1.71 (dq, J = 13.5, 3.0 Hz, 1H), 1.66 (ddd, J = 13.8, 8.8, 7.1 Hz, 1H), 1.49 

(ddd, J = 13.3, 11.2, 4.8 Hz, 1H), 1.30 (dq, J = 13.7, 3.0 Hz, 1H). 13C-NMR (176 MHz, DMSO): 

δ 210.7, 169.2, 167.2, 159.7, 105.5, 99.3, 95.0, 81.6, 40.5, 40.2, 37.5, 34.3, 34.2, 31.4, 19.9. 

HRMS-ESI (m/z): [M + H]+ calculated for C15H18NO5 
+, 292.1180; found, 292.1178.    

 

5.2. Cheminformatics 

Similarity search for bipodal connections in Scifinder: 

The Scifinder database was systematically browsed for chemical similarity to following 

structure queries: 

 

Scheme 32. Bipodal queries for combination of 2-pyrone or 2-pyridone and DHP or THP assessed in a Scifinder 
search.  

 

Query S3 resulted in a list of 20 molecules out of which entry 15 (structure S4) incorporated all 

desired features for a bipodal connection between pyr(id)ones and DHPs and for which a 

feasible synthesis was reported.[50] Furthermore, it was reported that the pyrone moiety can be 

exchanged to a pyridone (structure S5).[50] The other queries resulted in no hits.  

  



5. Experimental 

 

- 179 - 

 

Natural-Product-Likeness scores[66] were calculated and provided by Dr. Axel Pahl. 

MW vs AlogP scatter plots and PMI-Plots were calculated and displayed with the open source 

software LLAMA[69]: 

https://llama.leeds.ac.uk/ 

 

5.3. Biology 

5.3.1. Cell Painting Assay 

Morphological Profiling by means of the cell painting assay was performed by the Compound 

Management and Screening Center Dortmund (COMAS) 

The described assay follows closely the method described by Bray et al.[39] and was performed 

by the Compound Management and Screening Center (COMAS). Initially, 5 µl U2OS medium 

were added to each well of a 384-well plate (PerkinElmer CellCarrier-384 Ultra). Subsequently, 

U2OS cells were seeded with a density of 1600 cells per well in 20 µl medium. The plate was 

incubated for 5 min at the ambient temperature, followed by an additional 4 h incubation  

(37 °C, 5% CO2). Compound treatment was performed with the Echo 520 acoustic dispenser 

(Labcyte) at final concentrations of 50, 30, 10, 3 or 1 µM for 20 h (37 °C, 5% CO2). 

Subsequently, mitochondria were stained with Mito Tracker Deep Red (Thermo Fisher 

Scientific, Cat. No. M22426). The MitoTracker Deep Red stock solution (1 mM) was diluted 

to a final concentration of 100 nM in prewarmed medium. The medium was removed from the 

plate leaving 10 µl residual volume and 25 µl of the Mito Tracker solution were added to each 

well. The plate was incubated for 30 min in the dark (37 °C, 5% CO2). To fix the cells 7 µl of 

18.5 % formaldehyde in PBS were added, resulting in a final formaldehyde concentration of 

3.7 %. Subsequently, the plate was incubated for another 20 min in the dark (37 °C, 5% CO2) 

and washed three times with 70 µl of PBS using the Biotek Washer Elx405. Cells were 

permeabilized by addition of 25 µl 0.1% Triton X-100 to each well, followed by 15 min 

incubation (37 °C, 5% CO2) in the dark. The cells were washed three times with PBS leaving 

a final volume of 70 µl. To each well 25 µl of a staining solution were added, which contains 

1% BSA, 50 µl phalloidin (Thermo Fisher Scientific, A12381), 25 µg/ml concanavalin A 

(Thermo Fisher Scientific, Cat. No. C11252), 50 µl/ml Hoechst 33342 (Sigma, Cat. No. B2261-

25mg), 15 µl/ml WGA-Alexa594 conjugate (Thermo Fisher Scientific, Cat. No. W11262) and 

0.3 µl/ml SYTO 14 solution (Thermo Fisher Scientific, Cat. No. S7576). The plate was 

incubated for 30 min (37 °C, 5% CO2) in the dark and washed three times with 70 µl PBS. After 
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the final washing step, the PBS was not aspirated. The plates were sealed and centrifuged for  

1 min at 500 rpm.  

The plates were prepared in triplicates with shifted layouts to reduce plate effects and imaged 

using a Micro XL High-Content Screening System (Molecular Devices, 5 channels, 9 sites per 

well, 20x magnification, binning 2). 

The generated images were processed with the CellProfiler package (https://cellprofiler.org/) 

on a computing cluster of the Max Planck Society to extract 1716 cell features (parameters). 

Further analysis was performed with custom Python (https://www.python.org/) scripts using 

the Pandas (https://pandas.pydata.org/) and Dask (https://dask.org/) data processing libraries 

(separate publication to follow). 

In a first step, the data was aggregated as overall medians per well. A subset of highly 

reproducible parameters was determined using the procedure described by Woehrmann et 

al.[113] in the following way: Two biological replicates of one plate containing reference 

compounds were analyzed. For every parameter, its full profile over each whole plate was 

calculated. If the profiles from the two repeats showed a similarity >= 0.8 (see below), the 

parameter was added to the set. This was carried out once and resulted in a set of 579 parameters 

that was used for all further analyses. 

Z-scores were then calculated for each parameter as how many times the MAD of the controls 

the measured value deviates from the median of the controls: 

The phenotypic compound profile is then the list of z-scores of all parameters for one 

compound. 

In addition to the phenotypic profile, an induction value was determined for each compound as 

the fraction of significantly changed parameters, in percent: 

𝐼𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 [%] =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑤𝑖𝑡ℎ 𝑎𝑏𝑠.    𝑣𝑎𝑙𝑢𝑒𝑠 >  3

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠
 

Similarities of phenotypic profiles (BioSim) were calculated from the correlation distances 

between two profiles 

(https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.correlation.html; 

Similarity = 1 - Correlation Distance) and the compounds with the most similar profiles were 
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determined from a set of approximately 3500 reference compounds that was also measured in 

the assay. 

 

5.3.2. Cell Painting Data Analysis 

Data Analysis was carried out employing various tools on the Datavis server: 

http://datavis.mpi-dortmund.mpg.de/ 

Clustering of compounds was performed on the Datavis server employing the “cluster 

compounds” application. The compounds were sorted by descending induction and therefore 

the highest inducing compound was put into the first cluster. Compounds exhibiting a 

fingerprint similarity above 80% to that first compound would be added to this cluster. When 

no more compounds could be added, a new analysis of the remaining compounds was started. 

The procedure was repeated until all compounds were distributed into clusters.  

Biological similarity and chemical similarity calculations as well as heatmap visualizations 

were performed on the Datavis server employing the “heat maps” application. For the 

calculation of biological similarity all parameters were used. The top line in the heatmap is set 

as a reference fingerprint (100% BioSim) to which subjacent fingerprints are compared, 

respectively; blue indicates a decreased value of a specific parameter compared to the DMSO 

control; red indicates an increased value of a specific parameter compared to the DMSO control. 

Common references for a given data set of profiles were searched on the Datavis server 

employing the “common references” application. Only references that were found by at least 

two compounds and only compounds that share at least one reference with another compound 

are displayed. References targeting GPCRs were excluded for the analysis as they were found 

to occur ubiquitous in the whole data set for yet unresolved reasons. 

Cross similarity was displayed employing the “compound cross similarity” application on the 

Datavis server. The tool generates a N x N cross table with biological similarities displayed 

between each of the N entered compounds.  
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5.3.3. Cell Culture 

HeLa (ACC 57) cells were purchased from DSMZ GmbH (Germany) and cultured in DMEM 

with 10% FBS, sodium pyruvate, non-essential amino acids, penicillin and streptomycin. Cells 

were incubated at 37°C, 5% CO2 in a humidified atmosphere. During regular testing for 

mycoplasma infections, cells were found negative. 

5.3.4. Mito Stress Test  

The Mito Stress Test was performed by Aylin Binici and Julian Wilke 

The influence of test compounds on mitochondrial respiration was assessed using the Seahorse 

XFp analyzer (Agilent, USA) in combination with the Cell Mito Stress Test kit (Agilent, USA) 

according to the manufacturer’s protocol. 20,000 HeLa cells per well were seeded into XFp cell 

culture plates (Agilent, USA) and incubated at 37°C, 5% CO2 overnight. XFp cartridges were 

hydrated using XF Calibrant and incubated overnight at 37°C. Seeding medium was exchanged 

for pH 7.4 DMEM-based assay medium (Agilent, USA) containing 2 mM GlutaMAX 

(ThermoFisher), 1 mM sodium pyruvate (PAN Biotech, Germany) and 25 mM glucose (Sigma-

Aldrich, Germany). Oxygen consumption rate (OCR) and extracellular acidification rate 

(ECAR) were measured in intervals of 6 min. After five measurement intervals of baseline 

recording, the test compounds were injected, followed by ten measurement intervals. 

Subsequently, Oligomycin, FCCP and Rotenone/Antimycin A were injected, followed by three 

measurement intervals after each injection. Data was background-subtracted and normalized to 

the last baseline measurement (=100%), using the Wave software (Agilent, USA). 

 

5.3.5. Inhibition of mitochondrial complexes I-IV 

The Semi-Intact Assay for Mitochondrial Respiration was performed by Aylin Binici and 

Julian Wilke 

Inhibition of mitochondrial complexes I-IV was tested using the Seahorse XFp analyzer. 

Seeding of 10,000 HeLa cells per well and hydration of XFp cartridges were performed as 

described for the Cell Mito Stress Test. The assay was performed using MAS buffer (220 mM 

mannitol, 70 mM sucrose, 10 mM KH2PO4, 5 mM MgCl2, 2 mM HEPES, 1 mM EGTA, pH 

7.4). The buffer was supplemented with 0.5% (w/v) fatty acid free BSA for complex I-III. 

Oxygen consumption rate (OCR) was measured in intervals of 8 min. After three baseline 

measurement intervals, the test compound, 1 nM of Seahorse XF Plasma membrane 
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permeabilizer (Agilent) and 1 mM ADP were injected together with 10 mM pyruvate / 1 mM 

malate for complex I, 10 mM succinate / 1 µM rotenone for complex II, 0.2 mM duroquinol for 

complex III or 0.5 mM tetramethylphenylenediamine (TMPD) / 2 mM ascorbate for complex 

IV, followed by three measurement intervals. Subsequently, first 1 µM Oligomycin, then 1 µM 

antimycin A (complex I and II) or 20 mM sodium azide (complex III and IV) were injected, 

followed by three measurement intervals each. Data analysis was performed as described for 

the Cell Mito Stress Test. 

 

5.3.6. MitoSOX Red Assay 

The MitoSOX Red assay was performed by Aylin Binici and Julian Wilke 

Mitochondrial superoxide levels were determined using the indicator dye MitoSOX Red[99] 

(ThermoFisher, USA). 15,000 Hela cells were seeded per well into black 96 well plates with 

clear flat bottom and incubated at 37°C, 5% CO2 overnight. Seeding medium was exchanged 

for staining medium comprising DMEM without additives containing 5 µM MitoSOX Red and 

5 µg/µL Hoechst-33342 (ThermoFisher, USA). Cells were incubated for 30 min at 37°C, 5% 

CO2. Subsequently, the medium was exchanged for DMEM with additives containing test 

compounds, followed by 60 min of incubation at 37°C, 5% CO2. Cells were fixed in PBS 

containing 0.5% paraformaldehyde for 10 min at room temperature and washed three times 

with PBS. Cells were imaged using an Axiovert 200M automated microscope (Carl Zeiss, 

Germany) at 10x magnification. MetaMorph 7.7.8.0 (Visitron, Germany) was used to quantify 

the integrated fluorescence intensity of MitoSOX Red per cell. The data was normalized to 

control cells treated with either DMSO (=0%) or 10 µM CDNB (=100%). Non-linear regression 

via four-parameter fit was performed using Prism 7 (GraphPad Software, USA) and EC50 values 

were obtained by interpolating X values for 50% staining intensity. 
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6. List of Abbreviations  

Abbreviation Meaning 

ADME Absorption/administration, distribution, metabolism, excretion 

ADP Adenosine diphosphate 

AlogP Estimated hydrophobicity 

ATP Adenosine triphosphate 

BIOS Biology-oriented synthesis 

BioSim Biological similarity = morphological profile similarity 

bpy 2,2’-Bipyridine 

BSA Bovine serum albumin 

CDNB 1-Chloro-2,4-dinitrobenzene 

ChEMBL Chemical database of bioactive molecules of the European Molecular 

Biology Labaratory 

ChemSim Chemical similarity = Tanimoto similarity 

Cmpd Compound 

COMAS Compound management and screening center 

Conc. Concentration 

CtD Complexity-to-diversity 

DCM Dichloromethane 

DHP Dihydropyran 

DMA Dimethylacetamide 

DMAP 4-(Dimethylamino)pyridine 

DMEM Dulbecco´s modified eagle medium 

DMF Dimethylformamide 

DMSO Dimethyl sulfoxide 

DNP Dictionary of natural products 

dppf 1,1′-Ferrocenediyl-bis(diphenylphosphine) 

ECAR Extracellular acidification rate 

EGTA Ethylene glycol-bis(β-aminoethyl ether)-N,N,N‘,N‘-tetraacetic acid 

ESI Electrospray ionization 

EtOAc Ethyl acetate 
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FBS Fetal bovine serum 

FBDD Fragment-based drug design 

FCG Forward chemical genetics 

FDA Food and Drug Administration 

PFP Pyrano-furo-pyridones 

GLUT Glucosetransporter 

GPCR G-protein coupled receptor 

HEPES 4-(2-Hydroxyethyl)-1-peperazineethanesulfonic acid 

(U)HPLC (Ultra)-high pressure liquid chromatography 

HRMS High-resolution mass spectrometry 

HTS High throughput screening 

Ind. Induction 

LCMS Liquid chromatography mass spectrometry 

LLAMA Lead-likeness and molecular analysis 

MAD Mean absolute deviation 

MAP kinase Mitogen-activated protein kinase 

mCPBA Meta-chloroperoxybenzoic acid 

MeCN Acetonitrile 

MPLC Medium pressure liquid chromatography 

MLCK1 Myosin light chain kinase 1 

MW Microwave 

NBS N-bromosuccinimide 

NOESY Nuclear Overhauser effect spectroscopy 

NMR Nuclear magnetic resonance spectroscopy 

OAc Acetoxy group 

OCR Oxygen consumption rate 

OTf Triflate group 

Pd-AAC Palladium catalyzed allylic alkylation cascade 

PBS Phosphate-buffered saline 

PMI Principal moments of inertia 

NP Natural product 
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RCG Reverse chemical genetics 

SAR Structure-activity relationship 

SCONP Structural classification of natural products 

SPR Structure-phenotype relationship 

TBSCl Tert-butyldimethylsilyl chloride 

TFA Trifluoroacetic acid 

THF Tetrahydrofuran 

THP Tetrahydropyran 

TMPD Tetramethylphenylenediamine 

TMSOTf Trimethylsilyl trifluoromethanesulfonate 

XPhos 2-Dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl 
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8. Appendix 

8.1. Supplemental Spectra 
 

 

Supplemental Spectra S1. Top: 1H-NMR of 9a in DMSO-d6, recorded immediately after dissolving the compound. 
Bottom: 1H-NMR of 9a in DMSO-d6/D2O (4:1), recorded 24 hours after dissolving the compound and storing it at 
room temperature in the NMR tube. 
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Supplemental Spectra S2. 1H-NMR of 9a in MeOH-d4, recorded 24 hours after dissolving the compound and 
storing it at room temperature in the NMR tube. 

 

 
Supplemental Spectra S3. 2D-NOESY spectrum of 12a in DMSO-d6. 
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Supplemental Spectra S4. 2D-NOESY spectrum of 15a in DMSO-d6. 

 
Supplemental Spectra S5. 2D-NOESY spectrum of 19b in MeOH-d4. 
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8.2. Representative Cell Painting Images 

 

Figure 21. Microscopy images recorded for 29k at 10 µM; cell-count = 90% 

 

 

Figure 22. Microscopy images recorded for 29k at 30 µM; cell-count = 96% 
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Figure 23. Microscopy images recorded for 29k at 50 µM; cell-count = 93% 

 

 

Figure 24. Microscopy images recorded for 4d at 10 µM; cell-count = 50% 
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Figure 25.  Microscopy images recorded for 4d at 30 µM; cell-count = 34% 

 

 

Figure 26. Microscopy images recorded for 4d at 50 µM; cell-count = 7% 
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