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ABSTRACT

One of the first and most fundamental tasks in machine learning is to group obser-
vations within a dataset. Given a notion of similarity, finding those instances which
are outstandingly similar to each other has manifold applications. Recommender
systems and topic analysis in text data are examples which are most intuitive to
grasp. The interpretation of the groups, called clusters, is facilitated if the as-
signment of samples is definite. Especially in high-dimensional data, denoting a
degree to which an observation belongs to a specified cluster requires a subsequent
processing of the model to filter the most important information. We argue that a
good summary of the data provides hard decisions on the following question: how
many groups are there, and which observations belong to which clusters? In this
work, we contribute to the theoretical and practical background of clustering tasks,
addressing one or both aspects of this question. Our overview of state-of-the-art
clustering approaches details the challenges of our ambition to provide hard deci-
sions. Based on this overview, we develop new methodologies for two branches of
clustering: the one concerns the derivation of nonconvex clusters, known as spec-
tral clustering; the other addresses the identification of biclusters, a set of samples
together with similarity defining features, via Boolean matrix factorization. One of
the main challenges in both considered settings is the robustness to noise. Assum-
ing that the issue of robustness is controllable by means of theoretical insights, we
have a closer look at those aspects of established clustering methods which lack a
theoretical foundation. In the scope of Boolean matrix factorization, we propose a
versatile framework for the optimization of matrix factorizations subject to binary
constraints. Especially Boolean factorizations have been computed by intuitive
methods so far, implementing greedy heuristics which lack quality guarantees of
obtained solutions. In contrast, we propose to build upon recent advances in non-
convex optimization theory. This enables us to provide convergence guarantees to
local optima of a relaxed objective, requiring only approximately binary factor ma-
trices. By means of this new optimization scheme PAL-TILING, we propose two
approaches to automatically determine the number of clusters. The one is based
on information theory, employing the minimum description length principle, and
the other is a novel statistical approach, controlling the false discovery rate. The
flexibility of our framework PAL-TILING enables the optimization of novel fac-
torization schemes. In a different context, where every data point belongs to a
pre-defined class, a characterization of the classes may be obtained by Boolean fac-
torizations. However, there are cases where this traditional factorization scheme
is not sufficient. Therefore, we propose the integration of another factor matrix,
reflecting class-specific differences within a cluster. Our theoretical considerations
are complemented by empirical evaluations, showing how our methods combine
theoretical soundness with practical advantages.
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CHAPTER 1

Introduction

Making decisions is hard — generally in life, but for learning systems as well.
Finding the optimal (sequence of) choices leading to the best outcome offers in
most cases far too many possibilities. One may think of simple examples such
as computing the optimal move in a chess game, deciding over the winner in a
sports bet, or finding the optimal gift for a special someone. With respect to
machine learning, these examples are prototype applications of binary decision
making in the three main fields: chess for reinforcement learning; placing a bet
for supervised learning; and giving recommendations for unsupervised learning.
Across these fields, the requirement to make binary yes or no decisions is handled
differently. Famous applications of reinforcement learning exploit the possibility
to let a computer run simulations of its own, e.g., play a game against itself (Silver
et al., 2017). In this variant, the vast discrete search space is traversed during
idle times. A compressed model maintains the gained knowledge and is used to
swiftly make decisions during a game. The compressed model is often based on
a classification model. Classification is an instance of supervised learning. In
this branch of machine learning, determining if an object belongs to one class or
another is usually based on a relaxed model, e.g., reflecting the probabilities of
possible outcomes. With regard to our example, a bet should be made on the
side which is most likely to win. While reinforcement learning basically relies
on knowledge gained by self-made experience (finding out the best strategy in a
game by playing against itself again and again), clustering relies on the experience
gathered by others. For instance, given the shopping history of a huge collection
of costumers, a clustering model can be used to recommend a gift which is liked
by specific costumers having a similar shopping history. Of those three examples,
we focus on the latter in this work.

As the name suggests, what exactly we are aiming for is unclear in unsupervised
learning. It comprises tasks where the goal is to explore and to find characteristics



2 CHAPTER 1. INTRODUCTION

and recurring patterns, setting some instances apart from others. We denote a
set of observations which belongs together in some sense as a cluster. A set of
clusters, the clustering, is supposed to represent the key concepts found in the
data. Concept learning is an umbrella term for tasks which involve finding a set
of objects which can usefully be grouped together (Morik et al., 1993). Being
developed during the 1990s, concept learning has been formalized with respect to
what was a hot topic back then: inductive logic programming (Muggleton, 1992).
In this framework, a theory has been established around the what and how of
hypothesis selection. In particular, the possibilities to control the complexity of
learning representations have been explored (Kietz and Wrobel, 1992). What has
been valid then has become even more crucial now, and thus, we take up some of
the most important requirements for the definition of suitable clusterings.

COMPLETENESS AND NON-REDUCIBILITY Given a set of derived hypothe-
ses (a model), completeness requires that all necessary information provided by
the data is derivable from the model. Non-reducibility states that there is no
redundancy among these hypotheses: there is no smaller set of hypotheses sat-
isfying completeness. These requirements are similar to those defining the basis
of a vector space. Given a set of data points, the subspace spanned by those
data points has a set of vectors called the basis. Basis vectors are complete in
the sense that every data point lies in the span of the basis vectors. Thus, we
can reconstruct every data point as a linear combination of the basis vectors. A
basis is furthermore non-reducible due to the linear independence of its vectors.
The concept of linear independence implies that none of the basis vectors is a
linear combination of the others and thus, every point in the spanned space is
uniquely represented as a linear combination of basis vectors. We focus here on
cluster models which approximately implement the constraints of completeness and
non-reducibility. Completeness is not a strong requirement for cluster algorithms
because an aggregation of data to groups does not need to pertain all the informa-
tion provided in the data. Errors in measurements or, generally, noisy information
which is not relevant for the task at hand should be filtered out. Therefore, we
aim at finding a lower-dimensional subspace than the space spanned by all data
points, maintaining the most characteristic traits of the data. This mechanism is
incorporated by matrix factorizations, which we employ as a standard reference
framework. It approximates a given data matrix by the product of two matrices.
One matrix represents the basis vectors of the derived subspace and the other
matrix returns the coefficients of the linear combination, derived by a projection
of the data points onto the derived subspace. In that sense, matrix factorization



derives complete and non-reducible cluster models, as it finds a set of basis vec-
tors of a (low-dimensional) subspace, approximating the space spanned by all data
points.

INTERPRETABILITY Especially in explorative data mining, where the model
is supposed to provide insight into the data, we need to be able to interpret the
information encoded in the model. In inductive logic programming, interpretability
is achieved by means of concepts, which have some similarities with clusters as
they group terms according to a subsumption relation and relations between the
terms (Kietz and Morik, 1994). This addresses one aspect of interpretability,
which is the reason why we require that assignments of points to clusters are
binary. There are plausible reasons to consider fuzzy memberships or probabilistic
cluster assignments as well. The most prominent example of such methods is
probably latent Dirichlet allocation (Blei et al., 2003). However, understanding the
implications of such models typically requires a post-processing step and doesn’t
come naturally. As an example, how are we supposed to interpret a clustering
stating that a single instance belongs with probability 0.4 to cluster one and with
probability 0.6 to cluster two? Let us recall our gift recommendation example.
What could we learn from such an assignment? Should we buy a gift from cluster
one or cluster two? Would maybe none of the clusters provide suitable gifts or
both? We argue that a more helpful cluster indication provides the user with clear
information, recommending to buy a gift from one of the clusters, both or none:
we should be making hard decisions.

EXPLAINABILITY The inductive logic programming algorithm MYCIN is one
of the prototypes of ezplainable artificial intelligence methods (Fagan et al., 1980).
Given a set of hand-coded rules, this algorithm lays out its reasoning together
with the suggested diagnosis. The inductive logic programming system MOBAL
shows not only the derivation from rules and facts, but also the induction from
facts (Morik et al., 1993). The demand for the ability to provide explanations
for particular results acquired by an algorithm, gained momentum since the Eu-
ropean Union urged the disclosure of any automated decision-making, made on a
solely algorithmic basis since 2018 (cf. Doshi-Velez and Kim (2017) and references
therein). Explainability is related to and often also referred to as interpretability.
We explicitly distinguish between these terms here and refer with explainability
to the transparency of the method, whereas interpretability concerns the way in-
formation is presented to the practitioner. In short, while interpretability refers
to understanding what is returned by an algorithm, explainability refers to un-
derstanding why the result is derived. We distinguish two ways to address the
explainability of clustering models. The one is to provide characteristics of (local)
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optima of the objective function. Those characteristics could be necessary condi-
tions which are formulated in an understandable way, e.g., as a rule. The other
concerns a reasoning for the performed model selection. Model selection refers
here particularly to the derived number of clusters. If we can explain under what
circumstances the number of derived clusters is suitable, trust towards algorith-
mic based decisions can be established in an unsupervised setting where no direct
feedback is provided.

PREFERENCE BIAS Bias in inductive logic programming generally addresses
the influence a specific learning method has on the result. Preference bias more
specifically hints at the bias emerging from the way the search space is traversed: a
bias which occurs among other things when a method focuses on some hypotheses
more than others or when there are possibilities to prune some of the hypotheses.
This is a relevant aspect for clustering algorithms, since clustering objectives are
by and large nonconvex and have multiple local optima. Therefore, the applied
optimization procedure has a big impact on the result. This is a general issue in
optimization: there is a relatively new field emerging around the question how a
particular setting of learning parameters in gradient descent procedures influences
the probability to end up in local optima of a certain kind (Hennig and Kiefel,
2012; Hennig, 2015). Although these efforts pose only the beginning in creating a
characterization of results generated with numerical optimization methods, it also
points out a long-term advantage of algorithms which follow generic optimization
methods. Insights in optimization theory are transferable to particular instances
of the optimization methods, enabling the development of even more robust and
suitable algorithms by incorporating newer findings, e.g., adding noise to the gra-
dient (Jin et al., 2017; Hennig, 2013).

Another aspect of bias addresses the problem of approximation in hard clus-
tering tasks. Most of the popular clustering problems are not only NP-hard but
also NP-hard to approximate within a given factor. As a result, efficient methods
which are supposed to approximate solutions of the given problem return for some
example data sets solutions which diverge from actual optima of the objective
(unless NP=P). Since a guaranteed approximation of the objective is not possible
under the assumption that NP#P, the question is how to suitably relax the objec-
tive. Theoretical soundness and insight into solutions of the relaxing methods are
therefore relevant. Whenever possible, the search space of the relaxed objective
should be suitably restricted such that the learner is pointed towards directions
where suitable optima are more likely to be found.

An important factor determining the suitability of clustering models is the
number of expected clusters. We need to find a trade-off between the desired
low dimensionality of the subspace and its approximation to the space spanned
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by the data. If the model summarizes the data too coarsely, then only little if
any knowledge can be gained. On the other hand, if the model does not generalize
enough, then we run the risk of reflecting structure where there is none. A common
way around this problem is to let the user decide the number of clusters. However,
this stands in contrast to the explorative setting, where the user often knows
little about the key characteristics of the data, not to mention the number of
clusters. Therefore, finding ways to automatically determine the number of clusters
is important.

The requirements of completeness, non-reducibility and interpretability deter-
mine the overall framework of this thesis: matrix factorizations with binary con-
straints. Within this framework, we propose clustering methods which are ex-
plainable and for which we discuss and study the circumstances influencing the
preference bias. Popular instances of matrix factorization encompass Principal
Component Analysis (PCA), Singular Value Decomposition (SVD) and eigende-
composition. We will see that a whole branch of clustering, probably the most
widely known and used, has an objective related to either of the popular eigen-
decompositions subject to binary constraints. Furthermore, these objectives have
applications in fields which are not directly related to clustering, such as hash-
ing and combinatorial optimization problems (Ding et al., 2008; Mukherjee et al.,
2015). Not only in this respect, being able to make hard decisions in the stan-
dard framework of matrix factorizations and the standard method of optimization
has applications far outside the scope of clustering. We take a first step towards
creating a mathematical theory of making hard decisions.

11 Roadmap

BACKGROUND The background material is covered in Chapters 2 and 3. In
Chapter 2, we discuss the broad spectrum of clustering tasks where the approx-
imation error is minimized according to the Frobenius norm subject to binary
constraints. We unveil under which circumstances this optimization task defines
the objectives of k-means, spectral clustering and various subspace clustering ob-
jectives. A unified formalism of these objectives makes similarities and differences
between the tasks apparent, obtaining a taxonomy of hard clustering optimization
problems. In Chapter 3, we review existing optimization approaches, generic to
objective characteristics. Considering what approaches exist for the optimization
of discussed algorithms, we distinguish between the relaxations relying either on
singular value decomposition, eigendecomposition and orthonormal nonnegative
decompositions, and optimizations relying on a greedy approach, alternating min-
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imization and a nonbinary penalization. Each of these approaches corresponds to
one prototype clustering. We discuss in detail this particular clustering instance
and how this approach is applicable to related problems.

THE SPECTACL OF NONCONVEX CLUSTERING When it comes to cluster-
ing nonconvex shapes, two paradigms are used to find the most suitable clustering:
minimum cut and maximum density. The most popular algorithms incorporating
these paradigms are spectral clustering and DBSCAN. Both paradigms have their
pros and cons. While minimum cut clusterings are sensitive to noise, density-based
clusterings have trouble handling clusters with varying densities. Furthermore,
spectral clustering involves a peculiar discretization step based on k-means cluster-
ing, a choice which apparently works well in practice but which lacks a theoretical
or intuitive explanation. In contrast, DBSCAN is very sensitive to its parame-
ter setting and the related preference bias is not well understood. In Chapter 4,
we propose SPECTACL (Hess et al., 2019): a method combining the advantages
of both approaches, while solving the mentioned drawbacks. Therewith, we also
pose a step toward a unified (nonconvex) clustering formalism, contributing to the
discussion about similarities between DBSCAN and spectral clustering (Schubert
et al., 2018). Our method is easy to implement, similar to spectral clustering.
However, unlike spectral clustering, we demonstrate the fundamental soundness
of applying k-means for discretization in SPECTACL: we show that the applica-
tion of k-means in SPECTACL results in an optimization of an upper bound of
the objective function. Through experiments on synthetic and real-world data, we
demonstrate that our approach provides robust and reliable clusterings.

PROXIMAL ALTERNATING MINIMIZATION FOR BMF From Chapter 5 on,
we focus on the clustering of binary data by Boolean matrix factorization. Boolean
matrix factorization decomposes the data matrix into two binary factor matrices,
whose product is performed in Boolean algebra. The restriction to only binary
factor matrices enables the interpretation of cluster descriptions by binary vectors.
Choosing the matrix multiplication to be performed in Boolean algebra enables
a maximally free choice of cluster assignments. Since one plus one equals one in
Boolean algebra, the optimization with respect to Boolean operations enables the
derivation of nonexhaustive, overlapping clusters. However, the optimization of
Boolean matrix factorizations is particularly difficult due to the nonlinearity of
the matrix product and the explicit representation of overlapping clusters. To this
end, only heuristic and greedy approaches have been proposed, resulting in an
undesired preference bias where the first cluster is prone to cover most of the data
already. In Chapter 5 we propose a generic optimization procedure based on latest
results in nonconvex and nonsmooth optimization (Hess et al., 2017). Our main
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contribution is the derivation of a prox operator which embodies the penalization
of nonbinary factor matrices. We provide therewith a universal solution to the
matrix factorization problem with respect to binary constraints. Piatkowski (2018)
recently extended this optimization scheme from binary to integer constraints in
order to estimate integer exponential families.

RANK SELECTION BY MDL The parameter which influences the result most in
Boolean matrix factorization is the number of expected clusters. On toy datasets,
even the greedy approaches usually work sufficiently well if the number of clusters
is correctly set. In Chapter 6, we explore the direct minimization of description
lengths of the resulting factorization. This approach is well known for model selec-
tion and data compression, but not for finding suitable factorizations via numer-
ical optimization. We demonstrate the superior robustness of the new approach
in the presence of several kinds of noise and types of underlying structure. More-
over, our general framework can work with any cost measure having a suitable
real-valued relaxation. Thereby, no convexity assumptions have to be met. The
experimental results on synthetic data and image data show that the new method
identifies interpretable patterns which explain the data almost always better than
the competing algorithms. The work discussed in this chapter has been cited as
a unifying approach, bringing together the fields of low-rank models and pattern
mining (Pfahler et al., 2017; Ramirez, 2018; Holzinger et al., 2017).

RANK SELECTION BY FDR Model selection by means of the minimum descrip-
tion length is information-theoretically founded and can be used to deliver empir-
ically satisfactory results. Yet, there are no guarantees that any of the returned
clusters do not actually arise from noise, i.e., are false discoveries. In Chapter 7,
we propose and discuss the usage of the false discovery rate in the unsupervised
Boolean matrix factorization setting (Hess et al., 2018). We prove two bounds on
the probability that a found cluster is constituted of random Bernoulli-distributed
noise. Each bound exploits a specific property of the factorization which minimizes
the approximation error—yielding new insights on the minimizers of Boolean ma-
trix factorization. This does not only contribute to the explainability of Boolean
matrix factorization results, but also leads to improved algorithms by replacing
heuristic rank selection techniques with a theoretically well-based approach. Our
empirical demonstration shows that both bounds deliver excellent results in various
practical settings.

MINING CLASS-SPECIFIC ALTERATIONS IN BINARY DATA In Chapter 8,
we take a peek into applications of interpretable Boolean matrix factorizations in a
supervised setting. Given labeled data represented by a binary matrix, we consider
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the task to derive a Boolean matrix factorization which identifies commonalities
and specifications among the classes. While existing works focus on clusters which
are either specific to one or common over the classes, we propose the concept of
class-specific alterations (Hess and Morik, 2017). Therewith, we are able to derive
clusters which are common to all classes together with its class-related deviations.
Opposed to general classification methods, we are less interested in prediction than
in explainability of the results. The model is designed to derive the properties
which create the uniformity of a group and which discriminate among the classes
within a group. Therewith, we broaden the applicability of our proposed method
C-SALT to datasets whose class-dependencies have a more complex structure. On
the basis of synthetic and real-world datasets, we show on the one hand that our
method is able to filter structure which corresponds to our model assumption,
and on the other hand that our model assumption is justified in a real-world
application.

CONCLUSION We conclude our findings in Chapter 9 and discuss further di-
rections. We discuss recent advances in nonconvex optimization theory, having
applications within our proximal minimization framework for BMF. Furthermore,
we discuss how this optimization scheme is possibly applied to other matrix fac-
torizations subject to binary constraints. At least, we discuss possible adaptations
to automatically determine the rank, transferring our results from the Boolean to
the real-valued setting.



CHAPTER 2

Matrix Factorization
with Binary Constraints

Cholesky decomposition, principal component analysis and eigendecomposition —
those are famous examples involving matrix factorization, which most machine
learners and data miners have probably used at least once in their life. For practi-
cal applications, it is sufficient to know that these factorizations compute a certain
kind of embedding into a subspace where the information relevant to the task at
hand is maintained. There are built-in functions computing the required decompo-
sition in an efficient manner for all main programming languages. A little bit less
known are the general optimization problems whose solutions return the desired
decompositions. Even less known is the fact that these optimization problems are
transformed into the most widely used clustering objectives by a restriction to
binary values of one or more factor matrices.

21 Notation

A formal discussion of the state of clustering requires some notation. We visually
distinguish between sets, matrices and vectors by displaying sets in calligraphy
style X, ), Z, ..., matrices in uppercase mode X,Y, 7, ... and vectors and con-
stants as lowercase letters x,y, z, where we highlight vectors in bold if we want
to avoid confusion with constants. We use R and R, to denote the set of real
and nonnegative real values. Accordingly, N denotes the set of natural numbers.
Furthermore, we state the set of all n x m partition matrices as 1”*"™. That is,
A € 1™ if and only if A is a binary matrix and every row of A has exactly one
entry equal to one.
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We write 1, respectively 0, to represent a matrix having all elements equal to
1, respectively 0. The dimension of such a matrix can always be inferred from the
context. We denote with the matrix I the identity matrix. We often neglect stating
the range of indices if that is clear from the context. We strive for uniformity in
the use of indices, such that the range is usually deducible from the particular
index. As such, we usually have 1 <i<n,1<j<mand 1 <s<r.

We assume that our data is given by the matrix D € R™*". The data represents
m points D;. for 1 < j < m in the n-dimensional feature space. For every point,
we denote with N.(j) = {l|||D;. — D..|| < €} its e-neighborhood.

Throughout this work, we often employ the Heaviside step function 6; which
rounds real to binary values, i.e., 0;(x) = 1 for x >t and 6;(z) = 0 otherwise. We
abbreviate 0y 5 to 6 and denote with (X) = (6(X};));; the entrywise application of
0 to a matrix X. The operator o denotes the Hadamard product which multiplies
two matrices of same dimensionality elementwise. We denote matrix norms as
||| for the Frobenius norm and [-| for the entrywise 1-norm. These norms are
equivalent for binary matrices A in the sense that |A| = || A||?>. The Frobenius inner
product is defined for matrices X and Y as (X,Y)p = tr(X"Y). For nonnegative
matrices X and Y, the Frobenius inner product equates the entrywise 1-norm of
the (componentwise) Hadamard product (denoted by o), i.e., (X,Y)r =|X oY
Lastly, we remark that log denotes the natural logarithm.

2.2 Nonnegative Matrix Factorization

The objective of Nonnegative Matrix Factorization (NMF) makes only a slight
alteration to renowned factorizations known as Principal Component Analysis
(PCA) or truncated Singular Value Decomposition (SVD), by requiring that the
factor matrices are nonnegative. Unfortunately, this seemingly small modification
makes NMF an NP-hard problem (Vavasis, 2009), opposed to the polynomially
solvable SVD. NMF is originally introduced by Paatero and Tapper (1994) under
the name positive matrix factorization. It gained much attention since the publi-
cations from Lee and Seung, showing that the nonnegativity constraints and the
resulting parts-based explanation of the data empowers the interpretability of the
results. Since then, efficient computations of good approximations to the NMF
problem are studied.

A formal task definition of NMF is given as follows: let D € RT™" be the
nonnegative data matrix and let r be a specified integer, we refer to as rank. The
task of NMF is then to recover nonnegative factors X € R*" and Y € R7"™" such
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that Y X T approximates D. The quality of the approximation is usually measured
by means of the Frobenius norm:

min F(X,Y) = —HD YXT|* st X e RP7Y € R (NMF)

We refer in the following to the function F/(X,Y) HD YX TH also as the
Residual Sum of Squares (RSS). Another popular measurement of the approxima-
tion error is the Kullback-Leibler divergence. While the former approach (employ-
ing the Frobenius norm) is inherently related to clustering using the Euclidean
distance of points, the latter is related to topic models such as probabilitistic la-
tent semantic indexing (Gaussier and Goutte, 2005; Ding et al., 2006a). We will
later discuss the particular relationships of approximations with respect to the
Frobenius norm and related clustering objectives.

2.21 NMF and Clustering

Although initially the difference between NMF and clustering was emphasized (Lee
and Seung, 1999), further research affirms inherent clustering properties (Li and
Ding, 2006). In this context, columns of X equate cluster centroids and cor-
responding columns of Y indicate cluster membership tendencies. This view is
supported by the interpretation of a factorization as a decomposition into basis
vectors and their coefficients. The approximation of data point 7 is given by

DY X" =) VX[,

a linear combination of the column vectors of X, whose coefficients are given by Y;..
The interpretation of this decomposition generally depends on the basis vectors,
and their meaning is more easy to grasp if they reflect an archetype of the induced
latent space. In this respect, constraining the rows of the coefficient matrix to
probabilistic vectors (|Y}.| = 1) has proven valuable. This constraint implies that
every data point is a convex combination of the basis vectors, which in turn induces
a preference bias on the basis vectors to extreme data points instead of holistic
representations (Thurau et al., 2012).

Another important aspect of NMF, which is important in the scope of cluster
applications, is the near orthogonality of solutions. That is, the columns of the
factor matrices Y and X are approximately orthogonal, implying, e.g., for Y,
that the inner product (Y, Y,) is close to zero for s # t. The reason why NMF
produces near orthogonal factor matrices is due to its objective function. Every
matrix product Y X of rank 7 is computable as the sum of 7 outer products or
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rank-1 matrices Y., X [. Thereby, the approximation error returned by the function
F' is transformable into the sum

HD - XT:Y.SX_I
s=1
= [DJ? = 2(D, > VXD + (Vx> vxD)

—|D|? -2 Z<D, Y.SX,I> + ST+ Z<YXT Y.tX,I>.
s s s#t

Here, (-,-) denotes the Frobenius inner product. We add (r — 1)||D||* to the
equation above, which does not affect the solution of the minimization with respect
to X and Y, and obtain therewith a minimization problem which is equivalent

to (NMF)

2

s=1

min (HD—Y.SX_IHQ+Z<Y.SX_§,Y.tXI>>. (2.1)

Y, X
t#s

This formulation of the NMF objective shows that suitable factorizations are
the sum of outer products which approximate the data matrix well while hav-
ing as little overlap as possible with other outer products. The rightmost term
(V. X4, Y X)) = (X]X,)(Y]Y,) vanishes if X, is orthogonal to X ; or Y to Y.
Due to the nonnegativity of the matrices, this is the case if nonzero entries from
two distinct columns of a factor matrix do not overlap.

The two properties to obtain convex combinations and orthogonality are sat-
isfied when the coefficient matrix Y € 1™*" is a partitioning matrix. This is a
central constraint for most clustering applications.

2.2.2  Algorithms for NMF

There are numerous approaches to solve the optimization problem of NMF in its
various versions, employing regularizations and constraints. Here, we focus on
three methods, which are particularly suited to incorporate binary on some of the
factor matrices. For a more thorough overview and discussion of optimization
aspects, we refer the reader to Cichocki et al. (2009) and Kim et al. (2014).

ALTERNATING MINIMIZATION The function F' in objective (NMF) is non-
convex, but convex in either X or Y, if the other argument is fixed. This property
ensures that the Gauss-Seidel scheme, also known as block-coordinate descent, an
alternating minimization along one of the matrices while the other one is fixed,
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returns a stationary point upon convergence. Grippo and Sciandrone (2000) have
shown that the nonnegativity constraint ensures the convergence of the sequence
(X, Yy) generated by the update rule

Xk41 € argmin F(X,Yy) (2.2)
X

Yjy1 € argmin F(Xj44,Y). (2.3)
Y

Decisive for the applicability of this method is the computational effort required
to solve the subproblems in every iteration. Since there is no analytical solution
known for problem (NMF) when one of the factor matrices is fixed, solving one
of the subproblems breaks down to finding a solution by numerical optimization
in every iteration. Hence, practical applications of the Gauss-Seidel scheme only
approximate the solution to Egs. (2.2) and (2.3) (Wang and Zhang, 2013). Often,
the minimization step is replaced by a single gradient descent update. In that
respect, the optimization procedures, which we discuss in the following, are all
lazy implementations of the alternating minimization.

MULTIPLICATIVE UPDATES NMF received much attention since the publica-
tion of the easily implementable multiplicative update algorithm by Lee and Seung
(2001). The update rules are defined as elementwise multiplications, given by

DY,
Xis Xjg—tr— 2.4
XYY, (2.4)

D. X
Y ys#_ 25
J — J Y}XTXS ( )

The nonnegativity of the factor matrices is ensured during the optimization proce-
dure since only nonnegative elements are multiplied. Yet, the above update rules
are also transformable into gradient descent steps, where the stepsize is always
small enough such that the nonnegativity of the factor matrices is preserved.

One of the major advantages of multiplicative updates is that the integration
of some constraints, such as nonnegativity or orthogonality of factor matrices, is
straightforward in this scheme. The convergence to local extremal points of the
objective is in most cases easy to derive from the Karush-Kuhn-Tucker conditions.
Unsurprisingly, there are many proposals to solve matrix factorizations with binary
constraints by multiplicative updates.
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The major drawback of multiplicative updates is the conservative choice of the
stepsize, which has to be small enough such that a step into a descent direction
does not leave the feasible set. This results in a very slow convergence rate and
makes the approach suitable only for smaller datasets. In addition, from Eqs. (2.4)
and (2.5) follows that every entry in the factor matrices becoming zero is going to
stay zero until the end of the optimization. This inflexibility of the optimization
scheme makes solutions likely to converge to less optimal minima, since mistakes
can not be corrected.

PROXIMALMINIMIZATION AND PROJECTED GRADIENT Instead of restrict-
ing the stepsize to persistently satisfy the nonnegativity constraint, larger stepsizes
can be employed and possibly negative entries can be projected to the positive or-
thant. Using larger stepsizes improves the convergence rate, but the stepsize should
not be too large, otherwise the iterates might be zig-zagging around the optimum.
We can always fall back upon using linesearch such as the Armijo rule (Lin, 2007),
but having the possibility to calculate suitable stepsizes according to a specified
strategy is desirable in practice.

Assuming that we have a good strategy to efficiently determine the stepsizes
ay and [, the projected gradient procedure for nonnegative matrix factorization
performs the following updates:

Xpr1 — X — o Vx F (X3, Yy)
Xiy1 ¢ 0o(Xpr1) 0 Xppa

Yig1 < Y — B Vy F(Xpq1, Y2))
Yir1 ¢ 00(Yiq1) 0 Yiyr.

We employ here the Heaviside step function to perform the projection step, the
operation 0y(X) o X sets all nonnegative entries to zero. Projected gradient pro-
cedures work well in practice, the crucial aspect is however the determination of
the stepsize in order to ensure convergence. There has been little theory for this
optimization scheme until proximal methods have been researched for nonconvex
problems Bolte et al. (2014). We will discuss this theory of proximal methods in
detail in Chapter 5.

2.3 One-Sided Clustering

In a nutshell, hard clustering aims at grouping data points according to a notion
of similarity. A fundamental concept of clustering is to find a trade-off between
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TABLE 2.1: The matrix factorization objectives of one-sided clustering.

Minimize HA — ZZT”2 or maximize tr(ZTAZ), subject to Y € 1™*" and

—-1/2

A=DDT
A=K

k-Means Z=Y(YY)

Kernel k-Means Z =Y (YY) ™"/

Normalized Cut  Z = LY (YTIyY) ™2 A= —L,or A= I,'*Wr,'"
Ratio Cut Z=Y(YTYy) /2 A=W Iy =—1Ly

intra-cluster similarity and inter-cluster distance; to minimize distances of points
within a cluster while maximizing distances of points from distinct clusters. The
definition of the term distance is deciding for the resulting clustering task.

231 k-Means

If there is one algorithm which comes to mind when thinking about clustering, it is
likely the k-means algorithm (Lloyd, 1982). The objective of k-means is founded in
the intuitive notion of clusters by the within-cluster point scatter, minimizing the
intra-cluster similarity. Suppose we are given a partition of m points reflected by
clusters J1,...,J,. A cluster is here the set J; C {1,...,m} of its point indices.
The sum of average distances of points within a cluster is then given as

Z,js D 1D = Dulf” = ZUS (ZHD 217, = 3 (D, Dl.>).

jl€j€ ]ejs jle\je

D MINED SISy

s=1 j€;7s jEJs: lEJ

We define the matrix X € R™*" by setting the columns X ., = ﬁ Zlejs D;. to the
centroid of all points in cluster J,. Therewith, we continue the transformation to

Z IJS DD =DulP =3 > (1D = 24Dy, Xo) + IX4]P)  (2.6)

] lEJ s=1 je\.7s

=> > D~ X1

s=1 jEJs
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The equation above is the starting point from which various relationships between
clustering and matrix factorization under binary constraints follows. The left term
in Eq. (2.6) is the mentioned within cluster point scatter and it is easy to show
that a minimization of this term goes along with the maximization of the average
distance of points from distinct clusters (Friedman et al., 2001).

We now introduce the binary matrix Y € 1™*" to indicate the cluster partition
given by the sets J;. That is, Y;; = 1 if point j € J, and Y}, = 0 otherwise. The
objective of k-means is then to find the partition matrix ¥ minimizing

miny Y Vi[|D; - XIF st Yermr X, = v |YTD (KM)
s=1 j=1

Problem (KM) is transferrable into a constrained nonnegative matrix factorization
problem and is likewise NP-hard (Aloise et al., 2009). Since there is for every point
J exactly one cluster s such that Y, = 1, we can pull the outer sum into the norm,
that is

HRALES SIS LB WA

s=1 j=1

=> |p — v xT|°
j=1

= HD — YXT H .
The cluster centers are in matrix notation given by X = DTY (YTY)A. The
matrix Y'Y = diag(|Ya],...,|Y.|) is diagonal, since Y has orthogonal columns.
Its inverse is easily computed by inverting the elements on the diagonal. Note,
that the matrix (YTY)_1 YT = YT is the Moore-Penrose inverse of the matrix Y.
The clustering of k-means has multiple equivalent formulations, which we sum-
marize in the following theorem, whose formal proof is provided in Appendix A.

THEOREM 2.1. The following optimization problems are equivalent to objec-

tive (KM)
min D - Y X[’ s Y e1™ X =Dy (YY) (2.7)
min D - YYD st Y 1™ (2.8)
min |[D - Y X | st Y € 1™, X € R (2.9)
Y, X
max tr (2 DD Z) st Z=Y (YY) P yermr (210

min [DDT - YY1’ st Y 1™ (2.11)
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The various formulations of the objective of k-means give rise to multiple opti-
mization approaches. The equivalence of Eqs. (2.7) and (2.9) establishes an alter-
nating minimization scheme, since the optimal cluster center matrix is provided in
closed from, given the cluster assignment matrix. We will discuss this procedure,
known als Lloyds’ minimization, more in detail in Section 2.2.2. Since Y is or-
thogonal and nonnegative, Eq. (2.9) is approximable by an orthogonal relaxation
(cf. Section 3.3). The objective in Eq. (2.10) resembles the optimization task to
find the largest eigenvectors of a symmetric real-valued matrix such as DD (cf.
Section 3.4). This relation founds the application of a spectral relaxation (Zha
et al., 2002). Eqgs. (2.10) and (2.11) show that k-means can be formulated in sole
dependence of the similarity between points, measured by the inner product which
equates the cosine similarity between points when the data points are normalized.
This is a stepping stone to the application of kernel methods, discussed in the
following section.

The restriction not only to a binary but a partition matrix Y in k-means
clustering has many favorable outcomes concerning its optimization. An efficient
alternating minimization scheme for the more general case where Y is a binary
matrix is not known. However, some applications require more flexible cluster
models, allowing for overlap between clusters and outlier detection. Examples for
such areas are text mining and gene analysis. A single gene is typically involved
in multiple functions of an organism and hence, it should be assignable to multi-
ple clusters. A similar argument holds for documents, addressing more than one
topic. Whang et al. (2018) propose a semidefinite program to allow for a specified
amount of overlap and a specified amound of outliers. Unfortunately, the result-
ing semidefinite program has a large amount of constraints and its optimization is
quite slow. Slawski et al. (2013) study properties of exact decompositions of the
form D = YXT where Y € {0,1}™" and X € R™". Based on the observation
that at most 2" binary vectors lie in the subspace spanned by the columns of D, a
combinatorial algorithm is proposed whose complexity is exponential in the rank.
This algorithm is extended to find approximate factorizations D ~ Y X, yet the
results display a high variance.

2.3.2 Kernel k-Means

The formulation of the k-means objective in sole dependence on the similarities
of data points, expressed by the inner product, enables the application of kernel
methods and the derivation of nonconvex clusters. One of the drawbacks of k-
means clustering is that it computes a Voronoi tesselation which determines the
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cluster membership. That is, the allocated regions of adjacent clusters are sep-
arated by a line. This entails that clusters which are returned by k-means are
always convex.

If the cluster regions are not linearly separable, then a transformation into a
suitable, usually higher-dimensional space enables a correct identification of clus-
ters by k-means. Let ® : R” — H be such a transformation from the feature space
to a (possibly infinite-dimensional) Hilbert space with inner product (-,-)s;. The
similarities between two points, which are reflected by the symmetric matrix DD T
in Egs. (2.10) and (2.11) are given in the transformed space by the kernel matrix
K € R™™ where

Kj=(®(D;),®(D[)),,- (2.12)

Since the features are only transformed within the inner product, we can employ
the kernel trick by computing the inner product in the transformed space directly.
This application has been proposed by Scholkopf et al. (1998) in the more general
scope of truncated SVD or PCA. Ding et al. (2005) discuss the application of ker-
nels in the scope of k-means. We conclude the following more generally formulated
corollary from Theorem 2.1, stated for symmetric matrices.

COROLLARY 2.2. Let K € R™™ be a symmetric matriz and let K = UU' be
a symmetric decomposition of K with U € R™*™. The following optimization
problems are equivalent:

—-1/2

max tr (Z'KZ) st. Z=Y (YY) "y e1™” (2.13)
myin | K — YYTH2 s.t. Y e 1™ (2.14)
min [|U - v XxT||* st Y € 1™ X e R™ (2.15)
Y, X

We note that Eq. (2.15) states the k-means objective on the matrix U. This
follows directly from substituting K with a symmetric decomposition UU T =
K in Eq. (2.13) and Theorem 2.1. The existence of such a decomposition is
guaranteed because K is a symmetric and real-valued matrix. This type of matrix
is decomposable into a symmetric product of real-valued matrices by Cholesky
factorization, where U is an upper triangular matrix, or by eigendecomposition,
where the columns of U return scaled eigenvectors of K.

2.3.3 Graph Cuts and Factorizing Graph Laplacians

The objective of kernel k-means in sole dependence of similarities between points
introduces another data representation by means of a graph. The symmetric, real-
valued kernel matrix has also an interpretation as a weighted adjacency matrix W
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to a graph G = (V,€). Every data point D;. corresponds thereby to a node and
the edges {j,l} € & are defined by those entries where W;; is larger than zero.
The larger the weight of an edge, the stronger the connection between its nodes.
Now, let us transfer the notion of clusters based on maximizing the inter-cluster
similarity to graphs. A cluster is then a set of nodes having weak connections
to nodes outside of the cluster. In other words, if we imagine to cut the edges
connecting every cluster to its outside, then we strive to cut as few (strong) edges
as possible. However, this formulation entails that single nodes, which are not
connected, are optimal cluster candidates. In order to favor larger clusters, Hagen
and Kahng (1992) propose to normalize the cut weights with the cluster size,
introducing the ratio cut objective

Y WA -Y)

s.t. Y e 1™,
Vs

min RCut(Y; W) = 2
The numerator Y./ W (1 — Y.,) returns the cut from the nodes inside to the nodes
outside of the cluster s. Shi and Malik (2000) incorporate the edge weights into
the normalization term. This modification allows for larger cut weights of strongly
connected clusters. The objective is called normalized cut, given as

YW@ -v,
min NCut(Y; W) = E o WA ) s.t. Y e 1™*".
Y

We write short Iy, = diag(W1) for the diagonal matrix, denoting the sum of
weights to all neighbors of node 7 on the j-th diagonal entry. Both objectives,
ratio and normalized cut, are transferable into a form which is similar to the
kernel k-means objective. We transform the cut value of cluster s to

Y, w Z (IWy] = WiYe) = Y YWy Ve = WiY)
j=1

Using this transformation, the objective cut functions correspond to a trace opti-
mization problem of the form

T _
mlnz Y, W(1-Y,) — i (YT(IW _ W)y(YTJY)_l) st. Y e 1™,

where J is a diagonal matrix. If we set J = I then the objective function above is
equal to ratio cut and J = Iy corresponds to normalized cut. We observe that the
trace optimization problem is similar to the kernel k-means objective (2.13) from
Theorem 2.2. Correspondingly, we derive the following equivalence of optimization
problems.
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TABLE 2.2: Popular graph Laplacians and corresponding eigenproblems, returning the
same set of eigenvectors v and eigenvectors .

Graph Laplacian Equivalent eigenproblems
Difference Laplacian Li=Ly—W Lyv =Mv
Symmetric Laplacian L, = I — I, *WI,})*  L.I}[*v =\,
Random Walk Laplacian L, = I — I,;)W Lo =Myl

COROLLARY 2.3. Let W € R™ ™ be a symmetric, real valued matriz and let
J € {I, Iy} be an m xm diagonal matriz. The matriz L = J Iy, — J~/2W J~1/2
is positive semidefinite. Let X\ > 0 such that the matriz \I — L = UU" has a
symmetric decomposition. The following optimization problems are then equivalent:

min 3~ T st Y €17 (2.16)
min tr(27LZ), st Z=J"Y(YTIY) Py e, (217)
min||~L — 227", st Z=T"y(YTIY) Py e, (2.18)
min|[U0T - 227 st Z=JPY(YTIY) Py e, (2.19)

The name spectral clustering derives from its optimization scheme using a
spectral relaxation (cf. Section 3.4), based on Eq. (2.17). The matrix L from
Corollary 2.3 for J € {I, Iy} is called graph Laplacian (Mohar et al., 1991; Chung,
1997). There are three popular definitions of a graph Laplacian, which we summa-
rize in Table 2.2 together with the relations between their spectra. The spectrum
of graph Laplacians is interesting because the multiplicity of their smallest eigen-
value, which is zero, is equal to the number of connected components in the graph.
Furthermore, the eigenvectors to the eigenvalue zero indicate precisely the con-
nected components. This property is easily understood, considering that suitably
reordering the columns and rows of W results in a block-diagonal form of W. Let
us consider a single connected component C C V), encompassing |C| = ¢ nodes. If
W is arranged such that the nodes in the connected component are represented
by the first ¢ columns and rows, then we have W;; = 0 for every j € C (j < ¢) and
[ ¢ C (I > ¢); otherwise [ would belong to the connected component. The resulting
matrix W has a block diagonal form. Let v € {0, 1}™ be the vector indicating the



2.4. TWO-SIDED CLUSTERING 21

set C, having the first ¢ entries equal to one and all other entries equal zero. Then
v satisfies the following relation:

Wi ... Wi ! ! | W |

Wo = : :,0 = : = Iyv
,‘_/I{C_l _______ ‘_/I{C_C__:__, L | We |
o W o

Subtracting Iy v in the equation above yields that v is an eigenvector of the differ-
ence Laplacian with eigenvalue zero. Similarly, multiplying with I;;! from the left,
yields that v is an eigenvector of the random walk Laplacian and multiplying with
[;Vl/ ? from the left shows that I‘%Qv is an eigenvector of the symmetric Laplacian
with eigenvalue zero (cf. Table 2.2).

Usually, the graph representation W is determined in a preprocessing step as a
Gauss kernel matrix or the (weighted) adjacency matrix of the e-neighborhood or
k-nearest neighbor graph. Since the resulting edge weights depend on the graph
type and parameter setting of this preprocessing step, we can generally not assume
that the graph exhibits perfect clustering properties. Therefore, newer approaches
of spectral clustering aim at learning the graph representation together with the
resulting clustering (Bojchevski et al., 2017; Kang et al., 2018).

24 Two-Sided Clustering

In some application areas, such as collaborative filtering and gene expression anal-
ysis, we can not expect that clusters are identifiable based on the similarity of data
points on the whole feature space. As an example, we cite the clustering of users
according to movie preferences. Given a user times movie database, where each
entry reflects the given rating, we most likely will not be able to find a set of users
which give similar ratings on all movies. This effect can be seen as a manifestation
of the curse of dimensionality, broadly stating that points in a high dimensional
data set are likely to be approximately equidistant (Aggarwal et al., 2001; Beyer
et al., 1999). A possible solution to this problem is to identify a group of users
together with a small subset of the provided movies where the ratings are similar.
This introduces the task of subspace clustering, the identification of the subspaces
in which data points exhibit a clear cluster structure (Kriegel et al., 2009).
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FIGURE 2.1: Variants of row- and column-partitioning biclusters: checkerboard model
(left), plaid model (middle) and block-diagonal model (right). Best viewed in color.

TABLE 2.3: Overview of objective functions proposed for two-sided clustering.

Objective

. T112
Checkerboard )Encuxlf”D - Yex H
st. X €1 Y € 1™ O € R
min||D - YY'D - DXX' 4 YOXT|*
st. X e1™v Y e 1™ O = YiDX
. 2
Diagonal )E%%/”D B YCXTH
st. X el™ Y e 1™ C =diag(Cyy,...,Ch)
min[|D - Y X’
XY
st. X €{0,1}" Y € {0, 1}mx
min|D -Y o X7’
XY

st. X € {0,117y € {0, 1}

Plaid

Binary

Boolean

Assuming that the cluster subspaces are spanned by a subset of the features,
matrix factorizations for subspace clustering require not one but two binary ma-
trices; one on the left to indicate the clustering of the data points and one on the
right to indicate the feature space in which the data points cluster. A third middle
matrix can be employed to scale the indicated clusters. In this case, we speak of
a tri-factorization. We summarize the discussed factorizations of this section in
Table 2.3. The discussed models are also known as two-mode clusters (Mechelen
et al., 2004; Rosmalen et al., 2009) or biclusters (Busygin et al., 2008).

241  Checkerboard Clustering

The model of checkerboard clustering assumes that the data matrix is partitioned
into a set of row clusters Ji,...,J, C {1,...,m} and a set of column clusters
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Zi,...,Z, € {1,...,n} such that every combination of a row- with a column-
cluster creates a bicluster (Z;, Js). Note, that the numbers of row and column
clusters are potentially different. We denote here with the bicluster set B the
collection of all possible combinations of row- and column-clusters. The elements
of the data matrix belonging to a bicluster are approximated with the mean value
in the bicluster. Hence, the task of checkerboard clustering is to find an optimal
partition of rows and columns such that every data entry does not differ much
from the average data value in the bicluster. More formally, the objective is as
follows:

2

mgnzz Dj; — > w(Dgz) | . (2.20)

i=1 j=1 (T, D)eB: (ji)eT XTI

We employ the function p(A) to denote the average value of all entries in the matrix
A. This objective is transferable into a matrix factorization problem, involving a
tri-factorization as outlined by the following theorem.

THEOREM 2.4. The following optimization problems are equivalent to the objec-
tive from Eq. (2.20) subject to

Be {{L,...,Iu}x{jl,...,jr} UtIt:{l,...,n}, Usjsz{l,...,m}},

that is the set of biclusters is given as the cartesian product of a partition of the
rows and the columns.

min ||D - YCXT|” st X €1 Y e 1™, C e R (2.21)
X,CY
min [D-YCXT|* st Xe1™, verr,o=yDxt (222)

max tr (DTYCXT) st X 1™, ¥V e1™".C = YiDxtT  (2.23)

The proof follows the techniques of expanding the Frobenius inner product into
a sum and employing the convexity of matrix factorization objectives when all but
one matrix is fixed. We do not explicitly state the proof of this theorem here, but
it is easily adapted from the proof of Theorem 2.1.
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Since the columns in Y and X are orthogonal, there is a permutation of rows
and columns such that every bicluster appears as a coherent block in the factor-
ization matrix. This is where the name checkerboard clustering comes from, the
visualization by the left matrix in Figure 2.1 shows that the partition of the data
matrix by biclusters results in a checkerboard pattern. There are two row clusters
and three column clusters. Each intersection of row cluster s and column cluster
t reflects one bicluster, which is approximated by the constant C. Such an ap-
proximation with constant biclusters goes back to Hartigan (1972), who proposes
said approximation for a tree partitioning model.

The equivalence of the objectives from Egs. (2.21) and (2.22) is attributable
to Gaul and Schader (1996) and allows for an alternating minimization with respect
to one matrix, while fixing the other two (Maurizio, 2001; Wang et al., 2011; Cho
et al., 2004). This procedure adapts Lloyd’s algorithm from k-means clustering (cf.
Section 3.2). Furthermore, the orthogonal nonnegative relaxation (cf. Section 3.3)
is also adapted for the optimization of tri-factorizations (Ding et al., 2006b; Yoo
and Choi, 2010). The relationship between checkerboard and k-means clustering
becomes apparent when determining that every feature belongs to its own cluster,
that is setting X = [, in Eq. (2.22). This modification transfers the two-sided
clustering of the checkerboard model into the one-sided clustering of k-means.
The matrix C' represents the cluster centroids in this scenario.

2.4.2 Plaid Model

The plaid model originates from a bioinformatics application in microarray data
analysis. Microarrays are used to measure and reflect the gene expressions of
patients. Let us say, the number of patients is m and the number of genes is n.
Among a set of patients, some genes may co-regulate. That is, the genes exhibit
similar expression patterns among the set of patients. Such a set of patients
together with the co-regulating genes identifies a bicluster. In this case, saying
that every bicluster approximates the corresponding part of the data matrix by
a single aggregated value, as known from checkerboard clustering, is not enough.
Some genes have generally higher or lower expression levels than other genes and
the same holds for patients. Therefore, the plaid model introduces bias terms
for each patient p(D;z) and gene p(Dy;) to model deviations from the average
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bicluster value. Denoting again with B the set of all possible biclusterings, we
state the objective of plaid clustering as

2

mBinZZ Dji— > w(Dgz)— > wDig)+ Y, wDgz)| - (2.24)

=1 j=1 (TJ,)eB: (Z)eB: (J,I2)eB:
jeJ i€l (4,8)eTxT
The objective combines one-sided clusterings of the data matrix and its transposed,
resulting in a plaid structure as depicted on the middle of Figure 2.1. Adding the
last term in Eq. (2.24) is required as a result of the inclusion-exclusion principle,
since the approximation of the data in the intersecting area is subtracted twice,
once for row- and once for column-clusters.

Genes are not expected to take part in only one biological process. Hence,
the biclusters are for biological applications generally not restricted to partitions
of rows and columns. The algorithms proposed by Cheng and Church (2000);
Lazzeroni and Owen (2002) and Turner et al. (2005) sequentially optimize the
biclusters one-by-one. We call this the greedy approach, which is discussed in
Section 3.1. However, assuming the set of biclusters to be restricted to row- and
column partitions enables the adaptation of k-means optimization procedures. We
state here the plaid optimization task with respect to partitioning biclusters in
matrix factorization form.

THEOREM 2.5. The following optimization problems are equivalent to the plaid
optimization problem from Eq. (2.24) subject to

UtIt:{l,...,n}, Usjsz{l,...,m}},

when the search space of the row- and column-cluster indicating matrices is re-
stricted to partition matrices X € 1™*" and Y € 1™*":

B e {{Il,...7IU}X{$,---7jr}

min||D = YYD - DXX! +y x| st. C=YDXT"  (2.25)
min [|A - YYTA|] st. A=D—DXX'  (2.26)
XY

min [|4 - Ax x|’ st. A=D-YY'D  (227)

Cho et al. (2004) propose the alternating optimization based on the equality
of Egs. (2.25), (2.26) and (2.27). We observe that the last two objectives are
equivalent to the k-means clustering given in Eq. (2.8) if the matrix A is fixed.
Correspondingly, an optimization performing alternating updates with respect to
Y based on Eq. (2.26) and with respect to X based on Eq. (2.27) converges to
local minima of the plaid optimization problem.
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24.3 Block Diagonal Model and Bipartite Graph Cuts

The models discussed so far allow for varying numbers of row- and column-clusters,
being arbitrarily combined to create a bicluster. However, a special interpreta-
tion is given for tri-factorizations approximating the data matrix as known from
checkerboard clustering (cf. Eq. (2.21)) when biclusters represent a one-to-one
relationship of row- and column-clusters. This task is also known under the name
of constant biclustering (Madeira and Oliveira, 2004). The corresponding matrix
factorizations follow from the equivalences of checkerboard objectives in Theo-
rem 2.4 and the observation that a one-to-one correspondence between row- and
column-clusters implies that the middle scaling matrix C' is diagonal.

COROLLARY 2.6. Let the set of possible biclusters be given as

USZSZ{17"'7n}7 Usjs:{l,,m}}

and denote with the matriz W the symmetric (m +n) x (m +n) matriz defined as

0 D
W= ( o O) |
The following optimization problems are equivalent to the objective of Eq. (2.20),

where B is defined as above, if the search space of X € 1™*" is restricted to
partitioning matrices:

B {(L,m),...,(L,m

min [D-yoxT|’ st Y € 1™ C = diag(c),c € R" (2.28)
T
: T2 mxr R o Ys DXS
max tr (D'YCXT) s.t. Y € 1™ C = diag(c),c € R" (2.30)

max tr (2"TWZ) s.t. Z=YCWV? Yy e 107 ¢ = diag(c),c € R" (2.31)

The tri-factorization YCX T from Eq. (2.28) boils down to the sum of r outer
products Y., X, which are scaled by the diagonal entry C,s. We call the corre-
sponding tasks from Corollary 2.6 block-diagonal clustering for the reason that a
suitable reordering of rows and columns displays a block-diagonal factorization, as
shown on the right in Figure 2.1.

Based on the equivalence of Eq. (2.28) and (2.29) which goes back to Mirkin
et al. (1995), Han et al. (2017) propose an alternating minimization for block-
diagonal clustering. Other optimization schemes emerge from the interpretation
of block-diagonal models as bipartite graph cuts. In this view, the data matrix
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indicates a bipartite graph G = (V, £) having |V| = n + m nodes corresponding to
the union of features and samples, where edge weights are given via the weighted
adjacency matrix W. If W is defined as in Corollary 2.6, then the eigenvalues and
eigenvectors of W correspond to the singular values and vectors of D. To see that,
assume that (y,x) € R™™ is an eigenvector of W with eigenvalue X; it holds that

0 DY\ (y\_, (v _ T, _
(DT O) (m)_)\(x> SDr=Xy N D y=X\x

& DDy =X NyAD"y= Az

The equation above yields that eigenvalues of W correspond to the singular values
of D. The eigenvector (y,z) of W is composed of the left- and right-singular
vectors y and x of D. Note, that this relationship still holds if the weight matrix is
normalized as known from spectral clustering. Therefore, the eigenvectors of the
(n 4+ m) X (n + m) similarity matrix W are efficiently computed by the singular
vectors of the m x n matrix D.

The computation of W’s eigenvectors is relevant for a spectral relaxation, as
originally proposed by Zha et al. (2001) and Dhillon (2001). Newer methods
minimizing bipartite graph cuts discuss how to learn the graph representation of
W, respectively D, together with the optimal clustering (Nie et al., 2017). This
trend has also been observed with respect to spectral clustering (cf. Section 2.3.3).
The spectral relaxation emerges from the fact that the trace maximization in
Eq. (2.31) yields the eigenvectors to the largest eigenvalues of W if the matrix Z
is only required to be real-valued and orthonormal. We discuss this relationship
more in Section 3.4. Here, the eigenvectors are given by the singular vectors of
D, thus we could also speak of a singular value relaxation. The relationship of
block-diagonal clustering and SVD becomes also apparent when we regard the
tri-factorization in Eq. (2.28). Relaxing the partitioning constraints of X and
Y to orthogonality constraints for real-valued matrices X and Y results in the
optimization problem of truncated SVD. In this case, the singular values having
the largest absolute values are denoted on the diagonal of matrix C.

244  Binary Matrix Factorization

A somewhat special case of biclustering arises if the data matrix is binary. This
affects applications of collaborative filtering (a movie either is watched or not),
text analysis (word occurrences are binary) or genome data analysis (considering,
e.g. mutations). In this situation, a decomposition into binary matrices befits the



28 CHAPTER 2. MATRIX FACTORIZATION WITH BINARY CONSTRAINTS

interpretability of the result. We state the optimization problem of binary matrix
factorization in its general form as

min || D — YXT|? st. X € {0,137 Y € {0, 1} (BiMF)

The requirement that both factor matrices have orthogonal columns as known from
block-diagonal clustering is too strict for most of the relevant applications. A movie
might be watched by multiple user groups and correspondingly, groups of words
and documents or mutations and patients do not follow a one-to-one relationship.
Li (2005) shows that alternating minimization is possible nevertheless, if one of the
matrices indicates a partition. We summarize the objectives equivalent to (BiMF)
for the partially orthogonal case in the following theorem. We introduce here the
set ©(A) as the set of all binary matrices which result from thresholding a real-
valued matrix A at one half, where the binary value to which one half is rounded,
is undetermined.

THEOREM 2.7. Define ©(A) as the set
@(A) == {B|.B]Z == 9(14]2) f07” Aji 7é 1/2,BJZ € {0, ].} fOT Aji = ]./2}

The following optimization problems are equivalent:

min|| D - yxT|? st X € {01} Y € 1™ (2.32)
min|[ D — VX st. Xeo(Dy(yTy) ) yerr (233
max tr (Y'(2D — 1)X) s.t. X €{0, 1} Y e 1™ (2.34)

Koyutiirk and Grama (2003) propose the subsequent optimization of clusters,
aiming for the optimization of the objective in Eq. (2.33), where row-clusters do
not overlap. Therefore, the algorithm PROXIMUS is proposed, optimizing a rank-
one factorization of the general objective (BiMF) via alternating minimization. We
will discuss this greedy approach more in detail in Section 3.1. Shen et al. (2009)
remark that the results of PROXIMUS are highly sensitive to the initialization.
They propose an initialization based on a relaxation of Eq. (2.34), allowing binary
matrices to have entries between zero and one.

Zhang et al. (2007, 2010) aim at solving the general problem (BiMF). They
discuss a relaxation of binary to nonnegative matrices and derive an optimization
scheme to determine suitable thresholds to discretize NMF solutions. In addition,
they propose a multiplicative update algorithm for the optimization of (NMF)
with an integrated penalization term for nonbinary values. A follow-up paper dis-
cusses the application of these multiplicative updates for symmetric binary matrix
factorizations (Zhang et al., 2013). We discuss this penalization approach more in
detail in Section 3.5.
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245 Boolean Matrix Factorization

The attempt to allow for more overlap between clusters of binary data is is natu-
rally incorporated if the factorization is computed in Boolean algebra.

DEFINITION 2.8 (BOOLEAN ALGEBRA). Let A be a set, let & and © be two bi-
nary relations and - an unary relation on the set A. The structure (4, ®,®, - )
is called a Boolean algebra if the following requirements hold

1. (A, ®,®) is a commutative semiring:

(a) (A, ®) is a commutative monoid with identity element 0
(b) (A, ®) is a commutative monoid with identity element 1

(c¢) multiplication distributes over addition:
a®b®dc)=(a®b)®(a®ec) for a,b,c € A
(d) multiplication with 0 annihilates: a ©0 =0 for a € A

2. Addition distributes over multiplication:

a®boc)=(adb)® (adc) for a,b,c € A

3. Complementary elements exist: a @ a =0 and a® a =1 for a € A.

We are in this section interested in the two-element algebra ({0,1},®,®,7),
where we define the Boolean complement as @ = 1 — a. Note, that the only devia-
tion of the arithmetic in two-element Boolean algebra to traditional operations is
that 1 @ 1 = 1. From the definition of the Boolean algebra follows that the struc-
ture ({0,1}, ®, ®) is a semiring, notably the element 1 has no additive inverse. On
this structure we can define vector operations such as addition, scalar multiplica-
tion and an inner product similarly to the Euclidean vector space. Then, the linear
mappings from the n-dimensional to the m-dimensional Boolean space are given
by the Boolean product of an m x n binary matrix with an n-dimensional binary
vector (Gudder and Latrémoliere, 2009). Given Y € {0,1}™*" and X € {0, 1}™*",
the Boolean matrix product is either defined elementwise as the Boolean inner
product of row and column vectors or as the sum of outer product matrices

Yox'), =YuXa®...0Y,X,, YoX' =Y,Xjo.. 0Y,X,
Other definitions of algebraic structures in the binary space are also thinkable as
discussed in Miettinen (2015), yet these extensions are out of the scope of this
work. The space defined via the Boolean operations has similar properties like the
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nonnegative space, which also lacks additive inverses. Like the nonnegative space,
the Boolean space is closed under its matrix product which is contrasted by the
binary matrix product, returning possibly nonbinary matrices. We now define the
Boolean matrix factorization objective as

min [D-Y© X7 st. X €{0,1}™", Y € {0,1}™". (BMF)

We express the Boolean product in elementary algebra via the Heaviside step
function in order to avoid confusion of Boolean and numerical vector operations. In
this manner we denote equivalent formulations of the Boolean matrix factorization
problem.

THEOREM 2.9. The following optimization problems are equivalent to the one

of (BMF):
min |0 —6(YXT)]” s.t. X €{0,1}" Yy € {0, 1} (2.35)
X,Y
min |ID-6(YX")] s.t. X €{0,1}™" Y € {0,1}m*" (2.36)
max tr (2D -1)0(XY ")) s.t. X €{0,1}™" Y € {0,1}m*" (2.37)

The most popular method to approximate problem (BMF) is the greedy ap-
proach Asso (Miettinen et al., 2008). Outer products are subsequently computed,
determining a feature cluster X g first and optimizing its cluster assignment Y.
afterwards, such that the approximization error is minimized.

Boolean matrix factorization has a noteworthy relationship to frequent pattern
mining (Aggarwal and Han, 2014) and discussing BMF using the terminology of
pattern mining often comes more natural. To this end, we shortly introduce the
denotation of pattern mining. In this respect, the binary data matrix represents
a transactional database of m transactions and n items. Every transaction cor-
responds to a row of the data matrix, indicating the items which are contained
in the transaction. A set of items is called a pattern and we say a transaction
supports a pattern if the pattern is a subset of the transaction. The support of a
pattern is then the number of supporting transactions in the database. Regarding
the factorization of problem (BMF), every outer product indicates a pattern X s
and its assigned transactions Y. A special case arises if the factor matrix Y in
problem (BMF) is restricted to the supporting sets of X. This introduces the
constraint (D,0(Y X ")) = |§(YXT)| which enforces that all ones in the Boolean
product matrix are covered by the data matrix.
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COROLLARY 2.10. The following optimization problems are equivalent if the
search space is restricted to binary matrices X € {0, 1}, Y € {0, 1}

min [|D - 6(yXT) I’ st (DO(YXT)) = |o(YXT)]| (2.38)
max [0(VX")| st. (DO(YXT))=[0(YX")] (2.39)

Geerts et al. (2004) introduce the task of tiling to maximize the number of
ones in the Boolean product according to Eq. (2.39). The term tile for the outer
product Y, X! reflects its visualization as a single block matrix for suitably ar-
ranged columns and rows. The task to determine the constrained Boolean matrix
factorization in Eq. (2.38) is also known as dominated Boolean matrix factoriza-
tion (Miettinen, 2010). Belohlavek and Vychodil (2010); Belohlavek and Trnecka
(2015) propose a greedy approach for dominant matrix factorizations based on an
approximation algorithm of the set cover problem. Kontonasios and De Bie (2010)
and Xiang et al. (2011) argue that lifting the restriction to the support sets enables
more succinct descriptions and enhances robustness to noise; every flip of a single
bit in the interior of a tile breaks it into two. The proposed algorithms handle the
extension from the supporting set only in a post-processing step and provide no
mechanisms to directly approximate a solution to Eq. (2.38).
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CHAPTER 3

Optimizing Subject to Binary Constraints

So far, we have only roughly discussed which optimization schemes are used for
the considered optimization problems. The attentive reader might have noticed
that some approaches recur over various optimization tasks. In this section, we
discuss the most important optimization paradigms: each approach is presented
by means of a popular application. The chosen example often illustrates how
and why the optimization scheme is suitable for the task at hand. The transfer to
related problems is then trivial in most cases. Note that a mixture of the discussed
approaches is often applied.

3.1 Greedy Approach

We call the greedy approach a successive calculation of the clusters. The word
greedy refers to the optimization of the current cluster regardless of the possibility
to improve the approximation by subsequent clusters. This approach is theoreti-
cally founded for the computation of truncated singular value decompositions. We
recall that the SVD of a matrix D = VXU also provides the optimal approxi-
mation of rank r: let S = {1,...,r} denote the set of all indices up to r, then we
have

(VsSss,Us) € argmin||D — YXT||* st. X e R™7Y e R™". (3.1
XY

The derivation of this property and a more general discussion of SVD related
optimization problems and their optimization can be found in (Udell et al., 2016).
Due to the one-to-one relationship between the singular value decomposition of
a matrix and its low-rank approximation, the calculation of the optimal rank-r
factorization is reducible to calculating an optimal rank-one factorization, given

33
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ALGORITHM 1 Computing a solution to the binary matrix factorization problem
in Eq. (2.32) via the greedy approach.

1: FUNCTION Proximus(D,r)

2: FORse {1,...,r} DO

(X,,Y,)  argmin||D — ya" ||’ st € {0,1}",y € {0,1}"
T,y

w

4 D « diag (V) D
5. END FOR

6:  RETURNY

7. END FUNCTION

the optimal rank-(r — 1) factorization. Denoting with 7 = {1,...,r—1} the outer
product indices of a rank-(r — 1) factorization, then from Eq. (3.1) follows that

D — VsSssUS|" = min| (D - Vir Sy UT) —ya || stz € R"y € R™
z,Y

= (V% U,) € arg minH(D — VTZTTU,TT) — waH2 st. x e R",y € R™.
Y

This relationship motivates a greedy approach. Computing the factor matrices
outer product by outer product leads to the optimal solution. This property does
not hold if nonnegativity or binary constraints are introduced. Still, the greedy
optimization scheme might lead to satisfying solutions if the optimal rank-one
factorization is much more easily computed than the factorization of a higher
rank. The drawback of the greedy approach is the lack of quality guarantees,
where comparable numerical optimization methods assure the convergence to a
local minimum of the objective at least.

We exemplify the application of the greedy approach by means of the algo-
rithm PrRoxiMus depicted in Algorithm 1 (Koyutiirk and Grama, 2003). Every
bicluster (X, Y) is determined as a solution to the rank-one problem BiMF in
step 3 and the data matrix is reduced in step 4; the rows which are assigned to the
current cluster are set to zero. Here, the optimization of the rank-one factoriza-
tion is achieved by alternating optimization, based on the results in Theorem 2.7.
BiMF factorizations of rank one trivially have orthogonal columns. Hence the op-
timal binary vector x minimizing the optimization problem in step 3 is given as
x € ©(D"y/|y|) when y is fixed. Similarly, is the optimal y is determined while
fixing x. In a similar fashion are other two-sided clustering algorithms designed,
computing plaid (Cheng and Church, 2000; Lazzeroni and Owen, 2002; Turner
et al., 2005) and Boolean matrix factorizations (Miettinen et al., 2008; Geerts
et al., 2004). The greedy optimization scheme is yet less suited for one-sided clus-
tering. Imagine that the cluster center x in step 3 is allowed to have nonnegative
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ALGORITHM 2 Lloyd’s Alternating Minimization for k-means

1: FUNCTION KMEANS(D, 1)
2: FOR ke {1,...,K} DO

3: X« DY (YY) €argmin|[D - YXT||" s.t. X € RV
X
4: FOR j e {1,...,m} DO
: s<—argminHDj. —X_IH2
te{l,...,r}
6: Y + e/} > e, is the s-th standard basis vector
7: END FOR
8 END FOR

9: RETURN Y
10: END FUNCTION

values. Then the optimal rank-one factorization where y is restricted to binary
values always assigns the whole dataset to one cluster and x reflects the centroid
of the dataset. Optimizing the interplay between multiple clusters is particularly
crucial for one-sided clusterings.

3.2 A|temating Minimization

Probably the best known clustering procedure is the k-means algorithm, also called
Lloyd’s algorithm (Lloyd, 1982). This method is often visually portrayed as the
repetitive assignment of points to the nearest cluster followed by an update of
the cluster centers, but it also performs a theoretically well-founded alternating
minimization of the within point scatter (KM). The theoretical aspects such as
convergence are studied in the wider scope of alternating minimization.

We outline Lloyds’ minimization in Algorithm 2. In every iteration, every
factor matrix is updated with the optimal solution of the objective when the other
factor matrix is fixed. The optimum with respect to X is given by the equivalence
of Egs. (2.9) and (2.7). Likewise, the optimal partition matrix minimizing the
approximation error of problem (KM) is easily computed: we set in every row
exactly that entry to one, which corresponds to the closest cluster center as stated
in steps 5 and 6.

The ability to denote the solution of objective (KM) when one matrix is fixed
in closed form makes alternating optimization very appealing. The generally hard
combinatorial problem to find the best cluster partition is disassembled into the it-
erative solution of easier problems. This optimization scheme is also easily adapted
for tri-factorizations (cf. Section 2.4). Cruicial is here that the binary cluster in-
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dicator matrix reflects a partition. Finding an optimal binary matrix minimizing
the optimization error when the other matrix is fixed is itself a hard combinatorial
problem for which no closed-form solution is known. There are some attempts to
transfer the elegant alternating minimization to non-partitioning clusters (Chawla
and Gionis, 2013; Whang et al., 2018). However, these methods require the speci-
fication of additional parameters which are difficult to set in advance, such as the
amount of overlap or the number outliers in the data.

The drawback of alternating minimization is the tendency to get stuck in lo-
cal, less desirable minima. Therefore, a suitable initialization of the matrices is
particularly important. We refer the reader to Celebi et al. (2013) for an overview
of initialization techniques.

3.3  Orthogonal Nonnegative Relaxation

We have mentioned in Section 2.2.1 that the relation of nonnegative matrix factor-
ization to clustering stems from the near-orthogonality of factor matrices solving
objective (NMF). If we further constrain the feasible set to nonnegative and or-
thogonal matrices, then we obtain a new learning task called Orthogonal NMF
(ONMF). Various authors emphasize the relationship of orthogonal NMF and k-
means, some even erroneously claim equivalence (Ding et al., 2005, 2006b; Li and
Ding, 2006). Let us have a closer look at this relationship and revisit the k-means
objectives from Theorem 2.1. The orthogonal relaxation is to disregard the special
structure of the matrix Y as a binary partition matrix, and to require only that
Y is an orthogonal nonnegative matrix. Using this relaxation, solutions to the
k-means objective from Eq. (2.9) are approximated by solutions to the orthogonal
nonnegative matrix factorization given as

min || D - ZXT|* st. Z'Z =1, ZeRP™, X € RV (3.2)

Orthogonal nonnegative matrix factorization is an NP-hard problem, yet approx-
imable in polynomial time (Asteris et al., 2015). Requiring that the columns of
Z are orthogonal and nonnegative implicates that every row of Z has at most
one nonzero entry. Thus, the relaxed matrix Z also indicates a nonoverlapping
clustering by its support: by its nonzero entries. The indicated clustering does
however not necessarily yield a partition of the data points since some rows of Z
could be entirely zero. Hence, not all points are necessarily assigned to a cluster
via orthogonal nonnegative matrix factorization.
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ALGORITHM 3 Clustering via orthogonal nonnegative matrix factorization
1: FUNCTION ONMEF(D,r,e€) >e>0
2 (Z.X) < agmin|D - ZXT||*st. ZTZ =1, Z € R7", X € RY
Z,X

3: Y «+ 0.(2)
4: RETURN Y
5: END FUNCTION

Pompili et al. (2014) show that clusterings obtained via the orthogonal relax-
ation are related, albeit not equivalent to spherical k-means. Their evaluation
shows that clusterings based on ONMF are determined by a Voronoi tesselation,
where each cell is a covex cone. That is, the clusters are assigned according to
the directions of the datapoints only. Opposed to spherical k-means, the norm
of data points have here an influence on the found cluster directions: data points
which have a larger distance to the origin have a larger influence on the found
clusters. We summarize the method associated with the orthogonal relaxation of
the k-means problem in Algorithm 3. The calculation of the orthonormal factor-
ization in step 2 is left open and requires a survey on its own. We refer the reader
here to the penalty methods using multiplicative updates (Ding et al., 2006b; Li
and Ding, 2006), the optimization on the Stiefel manifold (Yoo and Choi, 2010)
and the alternating minimization and augmented Lagrangian approaches (Pompili
et al., 2014). The thresholding to binary cluster assignments in step 3 employs
the parameter € to set all values smaller than zero to zero, countering numerical
instabilities of the returned solution Z.

34  Spectral Relaxation

The constraint to nonnegative factor matrices in ONMF morphs the polynomially
solvable problem of SVD to an NP-hard problem. Thus, being able to derive
a suitable clustering from an orthogonal, not necessarily nonnegative relaxation
would speed up the computation. An orthogonal relaxation of discussed one-
sided cluster objectives results in an eigendecomposition, as stated by the Ky Fan
theorem (Fan, 1949). Let us have a look at the trace maximization objectives
summarized for one-sided clustering objectives in Table 2.1. All these objectives
have an orthogonal relaxation of the form

k
> A =max tr(ZTWZ) st. 2'Z=1, Z e R™ (KyFan)
s=1
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ALGORITHM 4 The orthogonal relaxation of spectral clustering.

1: FUNCTION SC(L,7) > L: graph Laplacian
2: Z < argmin tr (ZTLZ) st. Z'Z=1,7 ¢ R™*" > eigenvectors
z
3: (X,Y) < argmin||Z — YXTH2 st. Y e 1™ X € R™" > k-means
XY

4: RETURN Y
5. END FUNCTION

where W € R™*™ is a symmetric matrix. The Ky Fan theorem says that the
minimizer of the trace maximization above is given by the eigenvectors to the r
largest eigenvalues of W. The maximum value is attained at the sum of the r
largest eigenvalues.

The application of this relaxation is mainly known from the pipeline of meth-
ods called spectral clustering, which originates from the orthogonal relaxation of
the minimum cut objective (Luxburg, 2007). Note however, that there are some
examples of graphs where the minimum rational cut and the solution obtained by
spectral clustering diverge (Guattery and Miller, 1998). We summarize the steps
of Spectral Clustering (SC) in Algorithm 4. The algorithm is specified with respect
to the input graph Laplacian L (cf. Table 2.2) and the number of clusters r. We
assume here that L is a symmetric matrix (unlike the random walk Laplacian)
which implies that the eigenvectors of L are the solutions to problem (KyFan).
Usually L is defined as the symmetric normalized Laplacian. In this setting, the
smallest eigenvalues of the Laplacian are correspond to the largest eigenvalues of
the normalized adjacency matrix, say W = ]1;/1/ "WI V_Vl/ ?. The employed weighted
adjacency matrix reflects local similarities of points and is to be computed in a pre-
processing step. There are multiple options to do so. Usually, W is defined via the
k-nearest neighbour graph. Denoting with A the adjacency matrix to the asym-
metric k-nearest neighbor graph, the matrix W is then defined as W = %(A—I—AT).
Another possibility is to define adjacency via the e-radius neighborhood graph. In
this variant, we have W; = 1 if point | € N,(j) is in the e-neighborhood of point
J and Wj = 0 otherwise. This is a symmetric relationship. Per definition, we set
the diagonal elements of W to zero; the indicated graph is supposed to have no
self-loops.

Given the graph Laplacian and the number of expected clusters r, the eigen-
vectors to the r smallest eigenvalues are computed in step 2. The eigenvectors
are then discretized to a binary cluster indicator matrix. Although there are more
simple ways to do this, a k-means clustering is here performed as the prevailing
standard. According to Corollary 2.3, the application of k-means is theoretically
justified, but this relation seems to be unknown.
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ALGORITHM 5§ Binary Penalty Algorithm

1: FUNCTION BP(D,r, ¢) > ¢ has its minimum at binary matrices
2 (X,Y) < argmin|[D — YXT||* + ¢(X) + o(Y) st. ¥ € R, X € RY
XY

3 (X)Y) « (0(X),0(Y))
1 RETURN (X,Y)
5. END FUNCTION

The specification of the eigendecomposition’s rank is not thoroughly discussed.
Dhillon (2001) initially propose to employ the log,(r) first eigenvectors to deter-
mine r clusters according to the spectral relaxation of bipartite graph cut. For
implementations of spectral clustering, choosing the number of employed eigen-
vectors equal to the number of derived clusters r has prevailed.

3.5 Nonnegative Relaxation
with Nonbinary Penalization

Among other things, we observe from the orthogonal relaxation, that the relax-
ation of binary to nonnegative values with a following discretization step may result
in clusterings having differing properties than solutions of the original objective.
A flexible approach to address optimization problems with binary constraints is
adding a penalty term to the relaxed objective, pointing the optimal solutions to
binary values. According to this scheme, Lazzeroni and Owen (2002) propose a
heuristic, where nonnegative matrix are shifted into the direction of binary num-
bers. In detail, a constant which is increasing with the number of iterations is
added to entries larger than 0.5 and subtracted from smaller entries. The draw-
back of this method is its sensitivity to the shifting constant. If the constant is
rapidly increasing then the solution might get stuck in a local optimum, satisfying
the binary constraint but approximating the data less well. Otherwise, if the size is
slowly increasing then the convergence to approximately binary values is not given
in a specified time limit (Turner et al., 2005). We discuss theoretical advances of
this scheme in Chapter 5.

We state Algorithm 5 to schematize the optimization of a binary matrix factor-
ization by means of nonbinary penalizers. The function ¢,, is here the penalizing
function, obtaining its minima at binary matrices. Zhang et al. (2010, 2013) pro-
pose the Mexican hat function to penalize nonbinary entries, which is given as

ou(X) = [X o X = X|P =" (X2 - X))

1,8
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FIGURE 3.1: Plot of the Mexican hat function used as a penalizing function for nonbinary
values.

The plot of this function is depicted in Figure 3.1. The Mexican hat function is
smooth and thus the optimization in step 2 of Algorithm 5 can be accomplished
by gradient descent. Zhang et al. (2010, 2013) propose multiplying updates for
this purpose.



CHAPTER 4

A Spectral Approach
to Density Based Clustering

Despite being one of the core tasks of data mining, and despite having been around
since the 1930s (Driver and Kroeber, 1932; Klimek, 1935; Tryon, 1939), the ques-
tion of clustering has not yet been answered in a manner that doesn’t come with
innate deficits. Equally, we will not be able to provide such an answer. Sev-
eral advanced solutions to the clustering problem have become quite famous, and
justly so, for delivering insight in data where the clusters do not offer themselves
up easily. We have seen how spectral clustering employs distances defined by a
weighted graph to identify the clusters which minimize the cut between them. DB-
SCAN (Ester et al., 1996) is a density-based clustering algorithm which has won
the SIGKDD test of time award in 2014. Both spectral clustering and DBSCAN
can find nonlinearly separable clusters, which trips up naive clustering approaches;
these algorithms deliver good results. In this chapter, we propose a new clustering
model which encompasses the strengths of both spectral clustering and DBSCAN;
the combination can overcome some of the innate disadvantages of both individual
methods.

For all their strengths, even the most advanced clustering methods nowadays
still can be tripped up by some pathological cases: datasets where the human
observer immediately sees what is going on, but which prove to remain tricky
for all state-of-the-art clustering algorithms. One such example is the dataset
illustrated in Figure 4.1: we will refer to it as the two circles dataset. It consists
of two noisily! separated concentric circles, each encompassing the same number

lthe scikit-learn clustering documentation (cf. https://scikit-learn.org/stable/
modules/clustering.html) shows how SC and DBSCAN can succeed on this dataset, but
that version contains barely any noise (scikit’s noise parameter set to 0.05, instead of our still
benign 0.1).

41
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SC DBSCAN DBSCAN SPECTACL

FIGURE 4.1: Performance of spectral clustering, DBSCAN, and SPECTACL on two
concentric circles. Best viewed in color.

of observations. As the leftmost plot in Figure 4.1 shows, spectral clustering does
not at all uncover the innate structure of the data: two clusters are discovered,
but both incorporate about half of each circle. It is well-known that spectral
clustering is highly sensitive to noise (Bojchevski et al., 2017, Figure 1); if two
densely connected clusters are additionally connected to each other via a narrow
bridge of only a few observations, spectral clustering runs the risk of reporting
these clusters plus the bridge as a single cluster, whereas two clusters plus a few
noise observations (outliers) would be the desired outcome. The middle plots in
Figure 4.1 shows how DBSCAN (with minpts set to 25 and 26, respectively) fails
to realize that there are two clusters. This is hardly surprising, since DBSCAN
is known to struggle with several clusters of varying density, and that is exactly
what we are dealing with here: since both circles consist of the same number of
observations, the inner circle is substantially more dense than the outer circle. The
rightmost plot in Figure 4.1 displays the result of the new clustering method that
we introduce in this chapter, SPECTACL (Spectral Averagely-dense Clustering): it
accurately delivers the clustering that represents the underlying phenomena in the
dataset. Our main contributions are:

e we propose a new clustering method SPECTACL, combining the benefits
of spectral clustering and DBSCAN, while alleviating some of the innate
disadvantages of each individual method,

o unlike spectral clustering, the discretization step applying k-means to the
spectral embedding is theoretically sound in SPECTACL: from SPECTACL’s
objective function we derive an upper bound by means of the eigenvector
decomposition and derive that the optimization of our upper bound is equal
to k-means on the eigenvectors,

o we show that pursuing a spectral relaxation for a density-based approach
yields interpretable eigenvectors, displaying the relevant parts of clusters.
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41 Spectral Clustering and the Robustness Issue

Beyond theoretical concerns, an often reported issue with spectral clustering results
is the noise sensitivity. This might be attributed to its relation with the minimum
cut paradigm, where few edges suffice to let two clusters appear as one.

The state-of-the-art advances in spectral clustering follow two approaches aim-
ing at increased robustness towards noise. The one is to incorporate ideas from
density-based clustering, such as requiring that every node in a cluster has a min-
imal node degree (Bojchevski et al., 2017). Minimizing the cut subject to the min-
imum degree constraint resembles finding a connected component of core points,
as performed by DBSCAN. The drawback of this approach is that it introduces a
new parameter to spectral clustering, which is (comparably to the minPts param-
eter in DBSCAN) influencing the quality of the result. The other is to learn the
graph representation simultaneously with the clustering (Bojchevski et al., 2017;
Kang et al., 2018; Nie et al., 2017). This is generally achieved by alternating up-
dates of the clustering and the graph representation, requiring the computation
of a truncated eigendecomposition in every iteration step. This results in higher
computational costs. Of these newer methods, we compare our method against
the robust spectral clustering algorithm by Bojchevski et al. (2017), since it incor-
porates both the notion of density and the learning of the graph representation.

4.2 Spectral Averagely-Dense Clustering

We propose a cluster definition based on the average density (i.e., node degree)
in the subgraph induced by the cluster. This graph-based clustering objective is
equal to the objective of kernel k-means (cf. Section 2.3.2) where the kernel matrix
is the weighted adjacency matrix W. We assume for now that W is the adjacency
matrix to the e-neighborhood graph. We strive to solve the following problem,
maximizing the average cluster density:

yermxr

max tr (YTwy(YTy)*) - iR(Y.S,W). (4.1)

The objective function returns the sum of average node degrees R(Y.;, W) in the
subgraph induced by cluster s, i.e.:

YIwy 1
Y, W)= == : = Y. 4.2
R( W) HYSHQ |Ys| j:YZ:1 W] ( )
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The last term W;.Y.; computes the degree of node j if only connections within
cluster s count. Finding the clustering which maximizes the density, i.e., the
node degree, in each cluster corresponds to the definition of clusters in DBSCAN.
However, Eq. (4.1) also provides a connection to the minimum ratio cut objective
if the matrix W is normalized. In this case, the Laplacian is given as L = I — W,
and subtracting the identity matrix from Eq. (4.1) does not change the objective.

We discuss a new spectral relaxation of Eq. (4.1) as foreshadowed in our dis-
cussion about symmetric decompositions of kernel matrices and graph Laplacians
(cf. Theorem 2.2 and 2.3). Therefore, we analyze the application of k-means to
the (truncated) eigendecomposition.

421 Dense Clusters and Projected Eigenvectors

The function R from Eq. (4.2) is also known as the Rayleigh quotient. The values
of the Rayleigh quotient depend on spectral properties of the applied matrix.
As such, the density R(y,W) € [Am, A1] is bounded by the smallest and largest
eigenvalues of the matrix W (Collatz, 1978). The extremal densities are attained
at the corresponding eigenvectors. The eigenvectors Vy,..., V., to the d-largest
eigenvalues span a space whose points y have a minimum density of

Riy, W) = y' Wy (CeaVi) W (o) 3o, af M| Vil > A
’ [y[[? 135 Vil SoparllVill? —
Here, we employ the fact that any point y in the span of the first eigenvectors
has a representation as linear combination of these eigenvectors and we employ
the orthogonality of the eigenvectors. As a result, the projection of W onto the
subspace spanned by the first eigenvectors reduces the dimensionality of the space
in which we have to search for optimal clusters, having a minimum density of A\,.

This insight suggests a naive approach, where we approximate W by its trun-
cated eigendecomposition. We restate in this case the optimization problem to
find averagely dense clusters from Eq. (4.1) as

YIVAVTY
s T TS 4.3
I 2T (4.3)

A comparison with the k-means objective from Eq. (2.10) shows that the objective
above is a trace maximization problem which is equivalent to k-means clustering
on the data matrix U = VA2
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Unfortunately, applying k-means to the spectral embedding U does not yield
acceptable clusterings. The objective of k-means is nonconvex, having multiple
local solutions. The dimensionality of the search space increases with every eigen-
vector which we include in the (truncated) eigendecomposition from W, due to the
orthogonality of eigenvectors. As a result, even sophisticated initialization meth-
ods can not prevent that k-means returns clusterings whose objective function
value approximates the global minimum, but which reflect seemingly haphazard
groupings of the data points.

The eigenvectors are not only orthogonal, but also real-valued, having positive
as well as negative values. The first eigenvectors have a high value of the density
function R, but the mixture of signs in its entries makes an interpretation as cluster
indicators difficult. Nonnegative eigenvectors would have an interpretation as fuzzy
cluster indicators, where the magnitude of the entry Vj, indicates the degree to
which point j is assigned to the fuzzy cluster k. Applying k-means to a set of
fuzzy cluster indicators would furthermore reduce the space in which we search for
possible cluster centers to the positive quadrant. One possibility is to approximate
the matrix W by a symmetric nonnegative matrix factorization, but this replaces
the polynomially solvable eigendecomposition with an NP-hard problem (Vavasis,
2009). We conduct another approach, showing that fuzzy cluster indicators are
derivable from the eigenvalues by a simple projection.

OBSERVATION 4.1. Let W be a symmetric real-valued matriz, and let v be an
eigenvector to the eigenvalue X\. Let v = v™ — v, with v*,v= € R} be the
decomposition of v into its positive and negative parts. The nonnegative vector
u=v"+v" has a density

R(u) > [Al.

Proof. An application of the triangle inequality shows that the entries of an eigen-
vector having a high absolute value, play an important role for achieving a high
Rayleigh quotient. Let v be an eigenvector to the eigenvalue A of W, then:

Z Wi
!

Since u; = |vj|, from the inequality above follows that Wu > |A|u. Multiplying
the vector u' from the left and dividing by ||u||? yields the stated result. O

[Allvj| = [Wi.v] =

<3 Wiluil. (4.4)
l

We refer to the eigenvectors, whose entries are replaced with their absolute
values, i.e., u; = |v;| for 1 < j < m, as projected eigenvectors. The projected
eigenvectors have locally similar values, resulting in the gradually changing shapes,
illustrated on the two circles dataset in Figure 4.2. We visualize how projected
eigenvectors provide fuzzy cluster indicators: a strongly indicated dense part of one
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FIGURE 4.2: Visualization of every fifth eigenvector for the two circles dataset. The
size of each point is proportional to the absolute value of the corresponding entry in the
eigenvector.

ALGORITHM 6 Spectral Averagely Dense Clustering

1: FUNCTION SPECTACL(W, ) > W: adjacency matrix
2 (V,A) < argmin|W — VAVT||* sit. V € R™ A = diag()\), A € R?
VA

3: Ui, < ViV | k| > projected embedding
4 (X,Y) ¢ argmin||U - VX |* st YV € 17, X € R > k-means
XY

5: RETURN Y
6: END FUNCTION

of the two clusters fades out along the circle trajectory. Furthermore, we see that
the projected eigenvectors are not orthogonal, since some regions are repeatedly
indicated over multiple eigenvectors. These varying views on possible dense and
fuzzy clusters are beneficial in order to robustly identify the clustering structure.

Applying k-means to the first d projected eigenvectors yields a set of r binary
basis vectors, which indicate clusters in the subspace of points with an average
density larger than A\;. We summarize the resulting method SPECTACL (Spectral
Averagely-dense Clustering) in Algorithm 6. The algorithm performs a minimiza-
tion of an upper bound on the average cluster density function with respect to
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W if d = m. In the general case d < m, we optimize an approximation of the
objective function, replacing W with the nonnegative product UU". Certainly, a
similar argument could be made for the pipeline of spectral clustering, considering
the approximate objective (4.3) for d = r. However, the difference is that the
result of spectral clustering deteriorates with an increasing accuracy of the eigen-
decomposition approximation (d — m) due to orthogonality and negative entries
in the eigenvectors as outlined above. We show in our experimental evaluation
that the result of our method does in average not deteriorate with an increasing
dimension of the embedding.

In the default setting of SPECTACL, we determine W as adjacency matrix
to the e-neighborhood graph. However, our method is in principle applicable to
any provided (weighted) adjacency matrix. We recall that the average density
objective is equivalent to the ratio cut objective if we normalize the matrix W.
We refer to this version as normalized SPECTACL. In the normalized case, we
compute the adjacency matrix according to the k-nearest neighbor graph, which
is suggested for applications of spectral clustering.

Hence, our method only depends on the parameters r and ¢, respectively k.
How to determine the number of clusters, which is a general problem for clustering
tasks, is beyond scope of this work. We do provide a heuristic to determine € and
we evaluate the sensitivity to the parameters € and k.

4.3  Experiments

We conduct experiments on a series of synthetic datasets, exploring the ability
to detect the ground truth clustering in the presence of noise. On real-world
data, we compare the Normalized Mutual Information (NMI) of obtained mod-
els with respect to provided classes. A small qualitative evaluation is given by
means of a handwriting dataset, illustrating the clusters obtained by SPECTACL.
Our Python implementation, and the data generating and evaluation script, are
publicly available?.

431 Experiments on Synthetic Data

We generate benchmark datasets, using the renowned scikit library. For each
shape —moons, circles, and blobs— and noise specification we generate m = 1500
data points. The noise is Gaussian, as provided by the scikit noise parameter;
cf. http://scikit-learn.org. Our experiments pit five competitors against
each other: two new ones presented in this chapter, and three baselines. We

’https://sfb876.tu-dortmund.de/spectacl
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compare our method SPECTACL, using the e-neighborhood graph represented
by W (denoted SPECTACL) and the symmetrically normalized adjacency ma-
trix diag(Winnl) Y2 Wi, diag(Winn1) /2 where Wiy, is the adjacency matrix
to the k-nearest neighbor graph (denoted SPECTACL (Normalized), or (N) as
shorthand). The parameter € is determined as the smallest radius such that 99%
of the points have at least ten neighbors and the number of nearest neighbors
is set to £ = 10. We compare against the scikit implementations of DBSCAN
(denoted DBSCAN) and symmetrically normalized spectral clustering (denoted
SC). For DBSCAN, we use the same € as for SPECTACL and set the param-
eter minPts = 10, which delivered the best performance on average. We also
compare against the provided Python implementation of robust spectral cluster-
ing (Bojchevski et al., 2017) (denoted RSC), where default values apply. Unless
mentioned otherwise, our setting for the embedding dimensionality is d = 50.

EVALUATION We assess the quality of computed clusterings by means of the
ground truth. Given a clustering Y € {0,1}"*" and the ground truth model
Y* € {0,1}™*", we evaluate the clustering by means of an adaptation of the micro-
averaged F-measure, known from multi-class classification tasks. We compute
a bijection of matching clusters o with the Hungarian algorithm (Kuhn, 1955),
maximizing F = ) _F(s, o(s)), where

pre(s, t) rec(s, t)
pre(s,t) + rec(s,t)’

YTy: YIv:
2L and rec(s,t) = -t
Vsl Y]

These functions denote precision and recall, respectively. Based on the perfect
matching o, we calculate precision and recall for the obtained factorization by

DoslYio Yo Y oY)

F(s,t) =2

pre(s,t) =

pre = - _
Zs:l‘ysy ‘Y‘

rec = 2| Y5 0 Yoo — [Y* o Yo
> | Y] [Y|

The micro F-measure is then defined in terms of precision and recall as above.
This is equivalent to a convex combination of the F(s, o (s))-measurements:

, Pre-rec Y| + ’Y )|
F= F .
pre+rec Z Y|+ Y| (5,0(5))

The F-measure takes values in [0, 1]; the closer to one, the more similar are the
computed clusterings to the ground truth.
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FIGURE 4.3: Variation of noise, comparison of F-measures (the higher the better) for
the two moons (left), the two circles (middle) and three blobs (right) datasets.

NOISE SENSITIVITY In this series of experiments, we evaluate the robustness
of considered algorithms against noise. For every noise and shape specification,
we generate five datasets. A visualization of the clusterings for three generated
datasets is given in Figure 4.4, setting the noise parameter to 0.1. Note that the
depicted plot of the three blobs dataset shows a rare but interesting case, where
two of the clusters are overlapping. In Figure 4.3 we plot for every considered
algorithm the averaged F-measures against the noise.

From Figure 4.3 we observe that SPECTACL typically attains the highest F-
value, showing also a very low variance in the results. The sole exception is the
case of the two moons dataset when no noise is added (leftmost figure). A closer
inspection of the embedding in this case shows that SPECTACL is tripped up by
the absolute symmetry in the synthetic data. Since this is unlikely to occur in the
real world, we do not further elaborate on this special case. The normalized version
of SPECTACL does not exhibit the artifact of symmetry, yet its results are less
accurate when the noise is high (> 0.1). Particularly interesting is the comparison
of normalized SPECTACL with SC, since both methods employ the same weighted
adjacency matrix. We observe that both methods have a similar F-measure for the
two moons as well as the three blobs data when the noise is at most 0.15. For
the three blobs data and a higher noise level, normalized SPECTACL has a lower
F-value than SC. However, remarkable is the difference at the two circles dataset,
where normalized SPECTACL attains notably higher F-values than SC. Figure 4.4
illustrates that normalized SPECTACL detects the trajectory of the two circles
while SC cuts both circles in half.

Comparing these results with Robust Spectral Clustering (RSC), we conclude
that learning the graph structure together with the spectral clustering does not
drastically affect the result. Given the two moons or the two circles dataset, the
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FIGURE 4.4: Cluster visualizations of regarded algorithms and synthetic datasets. Best
viewed in color.

F-measure of RSC is close to that of SC. The example clusterings in the top row of
Figure 4.4 show that RSC is able to correct the vanilla spectral clustering, where
a chunk from the wrong moon is added to the blue cluster. Yet, in the case of
the two circles with different densities, both methods fail to recognize the circles
(cf. Figure 4.4, middle row). Surprisingly, on the easiest-to-cluster dataset of the
three blobs, RSC attains notably lower F-measures than spectral clustering.

The plots for DBSCAN present the difficulty to determine a suitable setting of
parameters € and minpts. The method to determine these parameters is suitable
if the noise is low. However, beyond a threshold, DBSCAN decides to pack all
points into one cluster. We also adapted the heuristic for the parameter selection,
determining € as the minimum radius such that 70 — 90% of all points have at
least minPts = 10 neighbors. This does not fundamentally solve the problem: it
merely relocates it to another noise threshold.

PARAMETER SENSITIVITY We present effects of the parameter settings for
SPECTACL, namely the embedding dimension d, the neighborhood radius € and
the number of nearest neighbors k. We summarize the depiction of these experi-
ments in Figure 4.5. The plots on the top row show that the results of SPECTACL



4.3. EXPERIMENTS 51

SprECTACL (Normalized)
1 —_— lt¢o7r7mm—m
e /
0.5 1 0.5 |
0 1 1 1 1 > 0 1 1 1 1 :
0.2 0.4 0.6 0.8 1 20 40 60 80 100
€ k
1 ”/ — 1 T j—-\H/r
L J
0.5 1 0.5 ++
0 ‘ 1 1 0 1 1 ;
0 50 100 150 0 50 100 150
d d
moons —m— circles blobs

FIGURE 4.5: Variation of latent parameters used for SPECTACL. The neighborhood
radius € (top left) and the number of nearest neighbors k (top right) determine the
adjacency matrix for SPECTACL and its normalized version. The parameter d (bottom
left and right) specifies the number of projected eigenvectors. We plot the F-measure
(the higher the better) against the variation of the parameter.

are robust to the parameters determining the adjacency matrix. The fluctuations
of the F-measure when € > 0.6 are understandable, since the coordinates of points
are limited to [0, 3]. That is, € = 0.6 roughly equates the diameter of the smaller
blob on the top left in Figure 4.4 and is quite large. The plots on the bottom
of Figure 4.5 indicate that SPECTACL in the unnormalized and normalized ver-
sion generally only require the dimension of the embedding to be large enough.
In this case, setting d > 25 is favorable. The only exception is the two circles
dataset when using normalized SPECTACL, where the F-measure starts to fluc-
tuate if d > 75. A possible explanation for this behavior is that eigenvalues in
the normalized case lie between zero and one. When we inspect the first 50 pro-
jected eigenvectors of the normalized adjacency matrix, then we see that the last
19 eigenvectors do not reflect any sensible cluster structure, having eigenvalues in
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m

Data m n v 14 (M>

Pulsar 17898 9 2 0.11£0.08
Sloan 10000 16 3 0.09=+0.07
MNIST 60000 784 10 0.05=+0.06
SNAP 1005 - 42 0.05+0.06

TABLE 4.1: Real-world dataset characteristics; number of samples m, features n, clusters
(classes) r and relative average number of neighbors in the e-neighborhood graph p.

Algorithm Pulsar  Sloan MNIST SNAP

SPECTACL 0.151 0.224 0.339 0.232
SPECTACL(N)  0.005 0.071 0.766 0.104

DBSCAN 0.001 0.320 0.005 -
SC 0.025  0.098 0.753 0.240
RSC 0.026  0.027 0.740 -

TABLE 4.2: Normalized Mutual Information (NMI) score (the higher the better) for
real-world datasets.

[0.4,0.54]. In unnormalized SPECTACL, the unhelpful eigenvectors have a very
low density and thus also a very low eigenvalue, being barely taken into account
during the optimization.

4.3.2 Real-World Data Experiments

We conduct experiments on selected real-world datasets, whose characteristics are
summarized in Table 4.1. The Pulsar dataset® contains samples of Pulsar candi-
dates, where the positive class of real Pulsar examples poses a minority against
noise effects. The Sloan dataset? comprises measurements of the Sloan Digital Sky
Survey, where every observation belongs either to a star, a galaxy or a quasar. The
MNIST dataset (LeCun et al., 1998) is a well-known collection of handwritten ci-
phers. The SNAP dataset refers to the Email EU core network data (Leskovec
and Krevl, 2014), which consists of an adjacency matrix (hence this dataset has no
features in the traditional sense). For this dataset, we only compare the two ver-
sions of SPECTACL and spectral clustering, since robust spectral clustering and
DBSCAN do not support a direct specification of the adjacency matrix. Table 4.2

3https://www.kaggle.com/pavanraj159/predicting-pulsar-star-in-the-universe
‘https://www.kaggle.com/lucidlenn/sloan-digital-sky-survey
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FIGURE 4.6: SPECTACL clusters individual handwriting styles instead of cipher shapes.
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summarizes the normalized mutual information between the found clustering and
the clustering which is defined by the classification. We observe that the unnor-
malized version of SPECTACL obtains the highest NMI on the pulsar dataset, the
second-highest on the Sloan dataset, a significantly lower NMI than RSC, SC and
the normalized version on the MNIST sample and a similar NMI on the SNAP
dataset. The Sloan and MNIST datasets pose interesting cases. The notoriously
underperforming DBSCAN obtains the highest NMI at the Sloan dataset while
obtaining the lowest F-measure of 0.09, where SPECTACL obtains the highest
F-measure of 0.52 (equating the class assignments with the ground truth). The
datasets Pulsar and Sloan are clustered in accordance with the classes when using
the density-based approach, yet the MNIST clustering corresponds more with the
clustering when using the minimum-cut associated approaches.

To understand why SPECTACL fails to return clusters in accordance with the
MNIST classes, we display some exemplary points for three SPECTACL clusters
in Figure 4.6. On the one hand, some identified clusters indeed contain only one
cipher, e.g., there are clusters for zeros, ones and sixes exclusively. On the other
hand, the clusters depicted in the figure contain a mixture of digits, where the digits
are written in a cursive style or rather straight. Hence, instead of identifying the
numbers, SPECTACL identifies clusters of handwriting style, which is interesting
information discovered from the dataset, albeit not the information the MNIST
task asks for. To be fair, it is far from impossible that a similar rationale can be
given for the clusters SPECTACL’s competitors find on the Pulsar or Sloan dataset;
we lack the astrophysical knowledge required to similarly assess those results.
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44  Discussion

We introduce SPECTACL (Spectral Averagely-dense Clustering): a new cluster-
ing method that combines benefits from spectral clustering and the density-based
DBSCAN algorithm, while avoiding some of their drawbacks.

By computing the spectrum of the weighted adjacency matrix, SPECTACL
automatically determines the appropriate density for each cluster. This eliminates
the specification of the minpts parameter which is required in DBSCAN, and as
we have seen in Figure 4.1, this specification is a serious hurdle for a DBSCAN
user to overcome. On two concentric circles with the same number of observations
(and hence with different densities), a DBSCAN run with minpts = 25 lumps
all observations into one big cluster. When increasing minpts by one, DBSCAN
jumps to four clusters, none of which are appropriate. SPECTACL, conversely, can
natively handle these nonconvex clusters with varying densities.

In both spectral clustering and SPECTACL, the final step is to postprocess
intermediate results with k-means. Whether this choice is appropriate for spec-
tral clustering remains open to speculation. However, from the objective function
of SPECTACL, we derive an upper bound through the eigenvector decomposi-
tion, whose optimization we show to be equal to k-means optimization. Hence,
for SPECTACL, we demonstrate that this choice for k-means postprocessing is
mathematically fundamentally sound.

In comparative experiments, competing with DBSCAN, spectral clustering,
and robust spectral clustering, we find on synthetic data that the unnormalized
version of SPECTACL is the most robust to noise (cf. Figure 4.3), which identifies
the appropriate cluster structure in three scenarios while the competitors all fail
to do so at least once (cf. Figure 4.4). On real-life data, SPECTACL outperforms
the competition on the inherently noisy Pulsar dataset and the Sloan dataset, it
performs similarly to spectral clustering on the SNAP dataset, and it is defeated
by both spectral clustering and robust spectral clustering on the MNIST dataset
(cf. Table 4.2). The latter observation is explained when looking at the result-
ing clusters: as Figure 4.6 illustrates, SPECTACL focuses on clusters representing
handwriting style rather than clusters representing ciphers, which is not unrea-
sonable behavior for an unsupervised method such as clustering; this uncovered
information is merely not reflected in the NMI scores displayed in the table.

Figure 4.5 provides evidence that SPECTACL is robust with respect to its
parameter settings. Hence, in addition to its solid foundation in theory and good
empirical performance on data, SPECTACL provides a clustering method that
is easy to use in practice. Thus, SPECTACL is an ideal candidate for outreach
beyond data mining experts.



CHAPTER S

Proximal thimization
for Boolean Matrix Factorization

In a large range of exploratory data mining tasks such as Market Basket Analysis,
Text Mining, Collaborative Filtering or DNA Expression Analysis, the data is
represented by a binary matrix. In this case, a binary representation of the cluster
centers is desirable to reflect the binary nature of features. Methods which provide
interpretable models in that sense are discussed from the viewpoint of binary
matrix factorization, pattern mining, tiling and Boolean matrix factorization (Tatti
and Vreeken, 2012; Zimek and Vreeken, 2015). Of those fields, Boolean matrix
factorization is the most flexible one. Boolean factorizations are not required to
model partitioning cluster assignments, such as binary matrix factorization and it
does not restrict the cluster assignment to the support of a pattern, as is the case
in tiling and pattern mining.

Therefore, providing a generic optimization method, solving the problem of
BMF, has a possible impact on the optimization of all the regarded cluster ob-
jectives in Chapter 2. We have seen that the optimization of non-partitioning
clusters is by and large an unsolved problem. Approaches tackling this issue re-
quire detailed specifications of parameters which are unknown in advance, such as
the amount of overlap and outliers (Whang and Dhillon, 2017). In contrast, we
aim at formalizing an optimization scheme which is able to derive the true model,
regardless of the characteristics of that model; may it be overlapping or not, may
it have a large amount of overlap or not.

Unfortunately, present BMF optimizations employ a greedy heuristic, which
can not provide guarantees as known from numerical optimization methods, such
as convergence to a local optimum. We make use of an example to show the innate
disadvantage, emerging from a strong preference bias of the greedy approach in
Figure 5.1. Here, a picture is transformed into a binary data matrix via its binary

25



56 CHAPTER 5. PROXIMAL OPTIMIZATION FOR BMF

FIGURE 5.1: Results of a Boolean decomposition of rank three on a picture dataset,
depicted on the left. On the top row, the picture is approximated by a greedy approach,
on the bottom we display the result of the proposed proximal optimization scheme for
BMF. Best viewed in color.

representation in RGB888 pixel format. On the top row, you see the decomposi-
tion obtained by the greedy approach PANDA+ (Lucchese et al., 2014) and on the
bottom the approximation derived by the new method which we introduce in this
chapter. FEach of the three rightmost pictures visualizes an outer product, also
called tile in the context of binary factorization. The difference between both re-
sults is striking, in particular because the color information gets completely lost in
the greedy approximation. We observe that the greedy representation in black and
white is attributed to the first outer product being overloaded with the informa-
tion about shape. Since the color white has a binary representation as a constant
one vector, any white pixel in one outer product picture also appears white in
the resulting approximation. Accordingly, the greedy approach is very sensitive
to making mistakes in the first derived tiles and is therewith also susceptible to
noise.

In contrast, we propose a simultaneous optimization of the clusters based on a
nonnegative relaxation with binary penalization. This approach is similar to the
binary factorization by Zhang et al. (2007), employing the mexican hat function
for the penalization of nonbinary values (cf. Section 3.5). However, our method
follows latest results in nonconvex optimization theory and provides a general
framework for the efficient optimization of matrix factorization under binary con-
straints. The main contribution of this chapter is the derivation of the proximal
mapping, which implements the nonbinary penalization. This proximal mapping is
usable as a building block to incorporate binary restrictions on one of the matrices
in factorization objectives. Known proximal mappings involving other constraints
such as nonnegativity, sparseness or the restriction to the probability simplex can
then be integrated within the larger optimization framework.
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FIGURE 5.2: Approximation of a binary matrix D with two overlapping tiles (top)
applying NMF (second from above) and the factorizations resulting from thresholding
the factor matrices to binary matrices in elementary algebra (second from below) and
Boolean algebra (below). Tiles are highlighted.

5.1 Approximating the Boolean Product
in Elementary Algebra

A possible reason for the prevailing usage of heuristics in Boolean matrix factor-
ization is the reasonable belief that relaxations to nonnegative or other continuous
values are not apt to approximate a product in Boolean arithmetic. Contrary
to this belief, we argue for the opposite; a nonnegative relaxation is particularly
suited to derive overlapping clusterings and is therefore also suited to approximate
Boolean matrix factorizations, whose main characteristic is to allow for overlap
between the clusters. Now we need to be a bit careful with the word approzimate.
The BMF problem is NP-hard and NP-hard to aproximate within a constant fac-
tor (Miettinen et al., 2008). Hence, we will not be able to produce an efficient
algorithm which comes arbitrarily close to the optimal Boolean solution (unless
NP=P). Yet we are able to simulate some of the required characteristics of Boolean
solutions in a relaxed space.
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To make our case, we inspect how nonnegative and Boolean matrix factoriza-
tions deal with overlapping clusters. An example binary data matrix consisting of
two overlapping tiles and its approximation by a nonnegative matrix factorization
is shown in the top two equations of Figure 5.2. We see that the factors contain
values smaller than one at entries which are involved in overlapping parts. With
this, overlapping sections are equally well approximated as non-overlapping com-
ponents. The matrices D4 and Dp in Figure 5.2 show the resulting binary and
Boolean approximations, thresholding the nonnegative factor matrices at one half.
We find that the reconstruction error is largest when the thresholded matrices are
multiplied in elementary algebra, as it is the case in binary matrix factorization.
In contrast, the fuzzy cluster indication by NMF is suited to indicate a definite
clustering with respect to the Boolean algebra. This seems at first contradictory
to the discussed near-orthogonality of NMF solutions in Section 2.2.1. However,
although NMF has an in-built penalization of nonorthogonal factor matrices (cf.
Eq. (2.1)), the approximation error is the dominating value of the objective func-
tion. Accordingly, the better the factorization approximates the data, implying
the higher the rank, the more become solutions of NMF orthogonal. Conversely,
we conclude that overlap between clusters is mirrored by a nonnegative approxi-
mation if the rank is low.

5.2 Proximal Altemating Linearized Minimization

Standard gradient descent-based optimization schemes for NMF problems are ei-
ther multiplicative updates or projected gradient methods. The crucial aspect of
both optimization schemes is the determination of the stepsize. The optimization
with multiplicative updates is slow due to the conservative choice of the stepsize,
ensuring that factor matrices are nonnegative. Projected gradient methods often
employ a linesearch procedure to determine the optimal stepsize, but calculating
the optimal stepsize in every step is also costly.

Bolte et al. (2014) extend optimization results known for convex optimization
to the nonconvex case with the Proxzimal Alternating Linearized Minimization
(PALM). This technique focuses on objectives breaking down into a smooth part
F and a possibly nonsmooth component ¢

min F(X,Y)+ ¢1(X) + ¢2(Y) st. X e R Y e R™*. (5.1)

The function F' reflects here the objective function or its smooth relaxation. We
assume for now that F(X,|Y) = HD -YX TH2 returns the approximation error
in the Frobenius norm. The nonsmooth part ¢ may return oo, which can be
used to model restrictions of the search space, e.g., the nonnegativity constraint of
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NMF. PALM performes an alternating minimization on the linearized objective,
substituting F' with its first order Taylor approximation. This is achieved by
alternating prozximal mappings from the gradient descent update with respect to
F i.e., the following steps are repeated for 1 < k < K:

Xk+1 = pI‘OXoékd)1 (Xk — OékVXF(Xk, Yk)),

Yiy1 = proxg, 4, (Vi — Bk Vy F'(Xey1, Y)).

The proximal mapping of a function ¢, is a function which returns a matrix sat-
isfying the following minimization criterion:

prox,(X) € argmin {%HX — X*|2 + qb(X*)} : (5.4)
v

Loosely speaking, the proximal mapping gives its argument a little push into a
direction which minimizes ¢. For a detailed discussion, see, e.g., (Parikh et al.,
2014). As we can see in Egs. (5.2) and (5.3), the evaluation of this operator is a
base operation. Similarly to the alternating minimization in Egs. (2.2) and (2.3),
finding the minimum of the proximal mapping in every iteration by numerical
methods is infeasible in practice. Thus, the trick is to use only simple functions ¢
for which the proximal mapping can be calculated in a closed form.

5.21 Convergence Results

We state here the main convergence result for PALM in a specified version, requir-
ing that the differentiable part of the objective is smooth and not only continu-
ously differentiable, summarizing the discussion with respect to smooth functions
in (Bolte et al., 2014). Yet first, we need to introduce some definitions.

DEFINITION 5.1 (PROPER. SEMI-CONTINUOUS FUNCTION). Let f : R" —
(—00, 00] be an extended real-valued function. We say f is proper if there exists
at least one z € R"™ such that f(z) < co. The function f is called lower semi-
continuous if for all xy € R™ the

liminf f(x) > f(xo).

T—T0
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FIGURE 5.3: A lower semi-continuous function.

The convergence analysis of PALM requires that the nonsmooth part ¢ is
a proper, lower semi-continuous function. In practice, this is not a demanding
requirement. We display an example of a lower semi-continuous function in Fig-
ure 5.3. Let us exercise what is stated in the definition by this example. The
function f has a point of discontinuity at x = 1. Any limit point of function val-
ues f(xy) for a sequence converging to the point of discontinuity (zj — 1) is either
equal to one or to three. Thus, we have {1,3} > liminf,,; f(z) > f(1) = 1. In
other words, lower semi-continuous functions always attain the lowest limit point
of function values. The restriction to lower semi-continuous functions ¢ ensures
inter alia that the prox-operator is well-defined (cf. Eq. (5.4)).

DEFINITION 5.2 (KURDYKA-LOJASIEWICZ FUNCTIONS). Let f : R" —
R U {oo} be a proper lower semi-continuous function and z, € R", such that!
Of(zo) # 0. Define a subset of real-valued, continuous functions as

K={k:[0,t) >R, |t € (0,00],k(0) =0,k € C(0,t),x € C°[0,1)}.

The function f is said to have the Kurdyka-fojasiewicz property at point x if there
exists a concave and strictly increasing function x € K and an € > 0 such that
for all z € N (xo) satisfying f(xg) < f(x) < f(xo) + t the Kurdyka-FLojasiewicz
inequality holds for all vectors g € 0f(z), that is

& (f(x) = f(xo)) [lgll > 1.

A function f is called Kurdyka-t.ojasiewicz function if the Kurdyka-t.ojasiewicz
property is satisfied at any point zq where () £ O f.

The impact that a requirement of the Kurdyka-fojasiewicz property has is not
easy to understand. Here, it is only important to know which class of functions
satisfy this property and how we can derive for specified functions if they satisfy the
Kurdyka-fojasiewicz property. For this reason, we state some of the general rules
from which we can conclude the Kurdyka-t.ojasiewicz property for a given function
in the following section. The following theorem states the main convergence result

for PALM.
19 denotes here the Fréchet subdifferential
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THEOREM §5.3. (Bolte et al., 2014) Let F' : R™" x R™*" — R4 be a smooth
function and let ¢1 : R™" — [0, 00| and ¢ : R™*" — [0, 00| be proper and lower
semi-continuous functions. Denote with (X;)) C R™ " x R™*" the feasible set,
defined as

X ={XeR" | (X)) <oo} and Y={Y e R™" | §(Y) < o0},
Assume that the following conditions hold:

1. the partial gradients of I are Lipschitz-continuous, satisfying the following
inequality for real-valued functions My, p(Y) and My, r(X)

IVyF(X,Y) = Vy F(X, V)| < My, r(X)[IY = V|| VY V}CY, XeX

2. the Lipschitz-moduli are bounded on the feasible set; there exists a constant
M > 0 such that My,p(Y) < M and My, r(X) < M for all X € X and
Ye,

3. the function UV(X,Y) = F(X,Y) 4+ ¢1(X) + ¢2(Y) satisfies the Kurdyka-
Lojasiewicz property,

then the sequence (Xy,Yy) generated by the update rules in Egs. (5.2) and (5.3),
where the stepsizes are given as

ar = My r(Ye)™",  Br = Myyr(Xpi1)

converges to a critical point of the function V.

5.2.2 Kurdyka —l’_ojasiewicz Property

Deriving the Kurdyka-t.ojasiewicz property on the basis of its definition is hard.
Fortunately, there are some classes of functions, which allow for a more easy deriva-
tion of the Kurdyka-t.ojasiewicz property. We introduce here the semi-algebraic
and definable functions.

DEFINITION 5.4 (SEMI-ALGEBRAICSETS AND FUNCTIONS). Aset X CR"
is called semi-algebraic if it is equal to a finite union X = &} U ... U X}, of sets

X ={z e R" | pi(r) = 0,¢i(x) <0,1 <i < d},

where p; and ¢; are polynomials. A function f : R" — (—o00,00] is called semi-
algebraic if its graph {(z, f(z)) | z € R} is a semi-algebraic set.
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Determining whether a function is semi-algebraic or not does in most cases not
require a derivation of the properties according to the definition. Instead, many
semi-algebraic functions are composed according to the following rules.

EXAMPLE (SEMI-ALGEBRAIC SETS AND FUNCTIONS). The following func-

tions are semi-algebraic:

1. polynomial functions p(z) = > e anz™ - ... 2™ where a, # 0 for only
finitely many n € N*,

2. the sum af(x) + Bg(x), product f(z)g(z), division f(z)/g(x) for g(x) # 0
and composition f(g(x)) of semi-algebraic functions f and g,

3. the function f(z) = ||z||, for x € R™ and p > 0,
4. indicator functions of semi-algebraic sets.

Although the class of semi-algebraic functions is large, there are still some very
common functions which do not belong to that class, such as the exponential func-
tion and the logarithm. For this purpose, we introduce another class of functions,
covering the semi-algebraic functions.

DEFINITION 5.5 (DEFINABLE SETS AND FUNCTIONS). The family O =
{0, }ien of collections of subsets O,, C P(R™) is called an o-minimal structure
over R if it satisfies the following axioms:

1. (0,,U,N, %) is a Boolean algebra (cf. Definition 2.8),

2. AXxRRx A € Opyq and {(x1,...,2,1) | (21,...,2,) € A} € O, for
AeO,,

3. Oy =71U...UZL, where Z; € {(a,b), [a,b], (a,b],[a,b)}, a,b€ [—o0,00],m €
N and {(x1,79) € R? | 11 < 22} € Oy,

4. {(l‘l, . ,{L‘n_l,ﬂfl) € Rn} € Q0,.

Given an o-minimal structure O, we call a set A C R"™ definable if A € O,,.
A function f : R" — (—o00,00] is called definable if its graph is a definable set

{(z, f(z)) |z € R"} € Onpa.

Similarly like semi-algebraic function, the set of definable functions is closed
under most basic operations.

EXAMPLE (DEFINABLE SETS AND FUNCTIONS). The following functions are
definable (van den Dries, 1998):
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FIGURE 5.4: The function A penalizing nonbinary values.

1. semi-algebraic functions,

2. the sum af(x) + Bg(x), product f(z)g(z), division f(z)/g(x) for g(x) # 0
and composition f(g(x)) of definable functions f and g,

3. exp and log.

Most importantly, semi-algebraic functions are a subset of definable functions,
which are again a subset of the Kurdyka-t.ojasiewicz functions.

THEOREM 5.6. (Attouch et al., 2010) Let f : R" — (—o0,00] be a proper lower
semi-continuous function. If f is definable in an o-minimal structure then it is a
Kurdyka-tojasiewicz function.

5.3 Nonbinary Penalization within PALM

PALM states no convexity requirements for convergence in Theorem 5.3 and is
thus suitable for the optimization of a broad class of objective functions. First,
we discuss the minimization of the BMF problem in the framework of PALM,
minimizing the approximation error of a Boolean factorization. The overall strat-
egy is to derive a relaxed factorization of approximately binary matrices and to
threshold these matrices to binary matrices in the end. Here, we discuss how the
approximately binary factorization is derived.

5.31 A Binary Proximal /\/\apping

While the Mexican hat function (cf. Figure 3.1) can be seen as an ¢2 regulariza-
tion equivalent penalizer for binary values, here, we choose an ¢1-equivalent form.
Specifically, we choose ¢p(X) =3, i A(X;;), which employs the one-dimensional
function
Az) = {—|1 —2z|+1 z¢€ [0,'1]
00 otherwise
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to restrict matrix entries to the interval [0,1] and to penalize nonbinary values.
As discussed by Zhang et al. (2010), restricting the entries of factor matrices
between zero and one prevents an imbalance between the factor matrices in which
one matrix is very sparse and the other very dense. The curve of A is depicted
in Figure 5.4. We derive with the following proposition a closed form for the
computation of the exact minimum as assigned by the proximal mapping with
respect to ¢p.

THEOREMS.7. Leta > 0 and ¢p(X) = >, ; A(Xy) for X € R™™. The prozimal
operator of agp maps the matriz X to the matriz prox,,, (X) = A € [0,1]™"
defined by Aj; = prox,,(Xj;), where for x € R it holds that

max{0,z —2a} <05

. 2.5
min{l,z +2a} z>05 (5:5)

prox,,(x) = {

Proof. Let a > 0, X € R™™ for some m,n € N and A = prox,,, (X). The
function ¢p is fully separable across all matrix entries. In this case, the proximal
operator can be applied entrywise to the composing scalar functions (Parikh et al.,
2014), ie., Aj; = prox,,(Xj;). It remains to derive the proximal mapping of A
(Eq. (5.5)).

The proximal operator reduces to FEuclidean projection if the argument lies
outside of the function’s domain (Parikh et al., 2014) and it follows that

prox,a(z) =1 if 2 > 1 and prox,,(z) =0 if z < 0.

For z € [0,1] we have A(z) = —|1 — 22| + 1 and per definition of the proximal
operator follows

1
prox,, () = arg min {§(x — %) —all — 22%| + 1a}
z*eR

= argmin { (z — 2)? — 2|l — 22%| + (20)* } |

r*eR ~~
=g(z*;z,a)

where the last step follows from a multiplication and addition of constants. The
minimum of the function g is easily derived by completing the square

(2" 7, 0) = (x —2%)? = 2a(1 — 22%) + (2a)* 2* < 0.5
S = (r —2%)? 4+ 2a(1 — 22%) + (2a)? 2* > 0.5
)
)

@ = (z—2a))* +2a(1 —2x) 2* <05
)@ = (z+2a)? —2a(1l —2z) 2*>05
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The function g is a continuous piecewise quadratic function which attains its global
minimum at the minimum of one of the two quadratic functions, i.e.,

argming(z*;z,a) € {x — 2o | x <054 20} U{z +2a | 2 > 0.5 — 2a}.
z*€R

A function value comparison in the intersecting domain = € (0.5 — 2a, 0.5 + 2a/
yields that

g(x —2a52,0) = —20(1 — 22) < g(z + 2052, 0) = 2a(1 — 22) < 2 < 0.5
[

The regularization with ¢ meets the requirements of the nonsmooth part in
an optimization by PALM.

LEMMAS.8. The function ¢p(X) = >, , A(Xis) is proper, lower semi-continuous
and semi-algebraic function.

Proof. The function ¢pg is lower semi-continuous, because the function A is lower
semi-continuous. At points of discontinuity of A we have
liminfA(z) = liminf A(x) = 0 = A(0) = A(1).
z—0 z—1

Similarly, the semi-algebraic property of ¢z, being a finite sum of function values of
A, follows from the semi-algebraic property of A(z). We write A(z) = 6o 1(x)[1 —
(1—2x)|, where 6jp 1() is the indicator function, returning infinity if « is outside of
the interval [0, 1] and one otherwise. The function |1 — (1 —2x)] is semi-algebraic as
a composition of a polynomial function and the one-norm. The indicator function
d0,1) () is semi-algebraic if the interval [0, 1] is a semi-algebraic set. This is indeed
the case according to the definition of semi-algebraic sets, since the interval [0, 1] =
{z | p(z) < 0} U{x | p(x = 0)} for the polynomial function p(z) = (z — 0.5)* —
0.25. O

5.3.2 The Proposed BMF Framework: PAL—TiIing

We sketch our method, the general optimization scheme for Boolean matrix fac-
torizations, called Proximal Alternating Linearized Tiling (PAL-TILING) in Al-
gorithm 7. Given an objective function L(X,Y) having a suitable nonbinary re-
laxation F'(X,Y), which satisfies the convergence requirements of PALM concern-
ing the smooth part of the objective, PAL-TILING computes a Boolean matrix
factorization via the nonbinary penalty approach. Our method is suitable to au-
tomatically determine the rank of the factorization. We will discuss this feature
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ALGORITHM 7 The proposed general optimization scheme PAL-TILING for
Boolean matrix factorizations. The implementation of the function To0SS, used
in the function ROUND, specifies which tiles are kept. the specification of this
method determines the rank selection strategy.

1: FUNCTION PAL-TILING(D; A, = 10)
2: (XK, YK) <— (@, @)
3: FOR r € {A,,2A,,3A,,...} DO

4: (Xo,Yo) < INCREASERANK (XK, Yk, A,) > Append A, random
columns

5: FOR k=0,1,... DO > Select stopping criterion

6: Oé;l — MVXF(Yk)

7 Xpy1 ¢ prox,, 4, (Xp — axVx F (X}, Y2))

8: Be' ¢ My, p(Xita)

9: Yiy1 < proxg 4. (Ye — B Vy F(Xpi1, Y2))

10: END FOR

11: (X,Y) < RounND(L, Xy, Yr) > Specify Function T0ss

12: IF RANKGAP(X,Y,r) THEN RETURN (X,Y) END IF

13: END FOR
14: END FUNCTION

15: FUNCTION RoUND(L, X}, Vi, D)
16: (X*,Y* L*) < (0,0,00)
17: FOR t,,t, € {0,0.05,0.1,...1} DO

18: (X,Y) « (00, (Xk), 00, (Ya))

19: FOR s e {l,...,r} DO

20: IF Toss(X., Ys, D) THEN (X4, Y,) < (0,0) END IF

21: END FOR

22: IF L(X,Y) < L* THEN (X*,Y* L") «+ (X,Y,L(X,Y)) END IF

23 END FOR
24:  RETURN (X*,Y*)
25: END FUNCTION

thoroughly in the following two sections. Here, we state the general scheme, having
only the data matrix D and the rank increment A, as input parameters. The rank
determination proceeds as follows: increase the rank until the returned factoriza-
tion uses fewer tiles than allowed under the provided rank. Decisive for the success
or failure of this method is the specification which tiles are used. This depends
on the objective function L(X,Y) and the implementation of the function To0ss
which is invoked in line 20.
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Let us now go through the algorithm step by step. The factor matrices are ini-
tialized as empty matrices (having rank zero). At every rank increase, A, columns
of random values between zero and one are appended to the current matrices
(Xk,Yk) in line 4. In lines 5 and 11, the Boolean factorization of rank r is cal-
culated. The function ¢p is the nonbinary penalization function, which has been
defined in the previous Section. After the numerical minimization of the relaxed
objective F'(X,Y’), the matrices Xk and Y, having entries between zero and one,
are rounded to binary matrices X and Y with respect to the Boolean factorization
objective L(X,Y’). If the rounding procedure returns binary matrices having a
rank smaller than r, then the current factorization is returned (line 12). Other-
wise, we increase the rank and add A, random columns to the relaxed solution of
the former iteration (Xg, Yx). Note that our method is not greedy as only the
initialization of the factor matrices is based on the result of the former iteration.
During the optimization of the relaxed objective, the results of former iterations,
employing a smaller rank, might very well be changed.

Regarding the optimization, we propose as stopping criterion to check whether
the average function decrease of the last 500 iterations is small enough. That is, at
iteration k we check whether = Zf:k_mo(F(Xt—la Yi 1) — F(X,Y:)) < e. How to
set the parameter € is typically easily inferred from observing the function decrease
during the first 10,000 iterations. For most datasets, a maximum number of ten
thousand iterations is appropriate. However, tracing the average function decrease
helps to decide when to abort the optimization reasonably early. Throughout this
work, we employ a stopping criterion of maximal 50,000 optimization iterations or
a minimum average function decrease of € = 1074,

We also outline the rounding function in Algorithm 7. This function basically
computes the thresholding parameters t, and t, with which the relaxed factor
matrices are rounded to binary matrices, such that the objective function L is
minimized. Some tiles of the binary factorization are tossed according to a specified
criterion. Therefore, particular instances of the PAL-TILING algorithm specify
the objective function L(X,Y"), its smooth relaxation F/(X,Y) together with the
corresponding gradients and the Lipschitz moduli My, r(Y) and My, r(x) as well
as the function ToOsS.

The default objective in Boolean matrix factorization is the minimization of
the residual sum of squares as stated in problem (BMF). We state the function,
gradients and Lipschitz constants, required for the minimization via PAL-TILING
if the rank of the factorization is provided in the following algorithm specification.
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ALGORITHM SPECIFICATION 1 (VANILLA PAL-TILING). Apply Algorithm 7
PAL-TiLING, with the following specification of the objective function L, its
smooth part F' and their partial gradients:

The Lipschitz moduli of the partial gradients are given by

Mg, p(Y) > ||YYT

: My, p(X) > [|[XXT|.
The derivation of the Lipschitz moduli follows from the triangle inequality:

|VxF(X,Y)=VyFUY)||=||vYXT-D)'Y — (YU - D)'Y||
— XYy —oyTY| < X - U]y 7Y

The function F(X,Y) = . (D;; — Y;.X.;)? is obviously smooth, because it is a
polynomial function. For that reason, F' is also a semi-algebraic function.

COROLLARY 5.9. The function F(X,Y) = ||D — Y X |? is smooth and a semi-

algebraic function.

The implementation of the vanilla PAL-TILING could be used to optimize a
Boolean factorization of a fixed rank. However, we are particularly interested in
an automatic determination of the rank of the factorization. Therefore, we discuss
approaches to do so in the following sections, where we evaluate our method in
comparison to state-of-the-art Boolean matrix factorization algorithms.

54 Discussion

We propose an optimization scheme for the problem of Boolean matrix factor-
ization, based on latest numerical optimization results for nonconvex, objective
functions. To this end, we derive a closed form of the proximal mapping with
respect to a function which penalizes nonbinary values. A thresholding to binary
values according to the actual objective function, involving the Boolean product,
enables the derivation of factorizations which reflect overlapping clusterings, as
desired by Boolean matrix factorization.
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The proposed approach has applications to the general problem of matrix fac-
torizations under binary constraints. This class of optimization problems com-
prises the learning of binary hash codes as well. In this scope, Shen et al. (2016)
similarly propose to find optimal hashing codes via PALM. However, in this ap-
proach the binary factor matrix denoting the hash codes is strictly constrained
to binary values during PALM’s optimization. This is achieved by employing the
regularizing function ¢p(X), returning zero if the matrix X is binary and return-
ing infinity otherwise. The proximal mapping of the function ¢y maps therefore
a matrix to its closest binary matrix. Although the resulting optimization with
respect to unrelaxed, binary matrices seems desirable at first, we argue that such a
procedure is likely to get stuck in local optima which reflect less suitable solutions.
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CHAPTER 5. PROXIMAL OPTIMIZATION FOR BMF



CHAPTER 6

BMF Rank Selection
by the Minimum Description Length

The possibility to derive a Boolean factorization by means of numerical optimiza-
tion methods is a promising theoretically founded alternative to the predominantly
used greedy heuristic (cf. Section 3.1). Yet, we also wish to provide a solution to
the well researched topic of model selection in Boolean matrix factorization by
virtue of PAL-TILING. However, this objective is difficult to delineate: where to
draw the line between structure and noise? One possibility is to apply the Mini-
mum Description Length (MDL) principle as proposed by Miettinen and Vreeken
(2014) to reduce the considerations into one: exploit just as many regularities as
serves the compression of the data. Here, regularities indicate the structural part,
the similarities between observations which establish a cluster. The description
length counterbalances the complexity of the model (the amount of derived clus-
ters) with the fit to the data, measured by the size of the encoded data using the
model. Decisive for the feasibility of extracted components is the definition of the
encoding.

Miettinen and Vreeken (2014) evaluate several encodings with respect to their
ability to filter a planted structure from noise. Candidate clusters are created by
the Boolean matrix factorization method Asso and are afterwards selected such
that a specified description length is minimized. Another framework proposed by
Lucchese et al. (2014) greedily selects the clusters which directly minimize the
description length. Most recently, Karaev et al. (2015) propose another greedy
scheme with focus on a setting where noise effects more likely flip ones to zeros
than the other way round. All these methods are capable to identify the underlying
clusters in respectively examined settings. By and large, the experiments indicate
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however that the quality considerably varies depending on the distribution of noise
and characteristics of the dataset (Miettinen and Vreeken, 2014; Karaev et al.,
2015). Our main contributions are:

« we facilitate the application of the framework PAL-Tiling to optimize a de-
scription length having an approximation which is suitable for the optimiza-
tion via PALM,

o we algorithmically integrate the built-in regularization of the model com-
plexity by MDL in order to derive factorizations which do not use more tiles
than necessary,

» we propose two algorithms as specifications of PAL-TILING: one applying
¢1-regularization on the matrix factorization (PANPAL) and one employing
an encoding by code tables as proposed by Siebes et al. (2006) (PRIMP).

6.1  MDL Principle

MDL is introduced by Rissanen (1978) as an applicable version of Kolmogorov
complexity (Li and Vitanyi, 2008; Grinwald, 2007). The learning task to find the
best model according to the MDL principle is given by the following minimization
problem

min L(M) = LP(M) + LM (M) st. M € M.

The function L denotes the description length, which is composed of the compres-
sion size of the database in bits LP(M) (using model M for the encoding) and
description size in bits of the model M itself LM (M). Specifications of this task
differ in the definition of the encoding which defines in turn the set of considered
models M.

6.11 MDL for Pattern Mining

The minimum description length is suitable to tackle the problem of pattern ex-
plosion, arising in practical applications of pattern mining. The output of frequent
pattern mining algorithms is sensitive to the minimum support threshold, defining
the meaning of the word frequent. If this threshold is set too high, then only a
few patterns are returned, reflecting nothing but common knowledge. A small de-
crease in the minimum support can result however in the output of a vast amount
of patterns, whereby most of them are redundant as well. The minimum descrip-
tion length is applicable to select a set of patterns, giving a succinct description
of all frequent patterns.
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An encoding which is successfully applied in this respect uses code tables as
proposed by Siebes et al. (2006). The two-columned code table assigns optimal
prefix-free codes to a set of patterns: itemsets are listed on the left and assigned
codes on the right. Such a dictionary from itemsets to code words can be applied to
databases similarly as code words to natural language texts. However, the usage of
codes for patterns in a transaction is not as naturally defined as for words in a text.
Patterns are not nicely separated by blanks and the possibilities to disassemble a
transaction into patterns are numerous. Therefore, we require for every transaction
the indication of those patterns which are used for the transaction’s encoding. This
is modeled by the function cover, which partitions the items in a transaction into
patterns of the code table.

Let CT = {(X;,C5)|1 < s < r} represent a code table of r patterns X; C
{1,...,n} and codes Cs. Theorem 5.4.1 in Cover and Thomas (2012) states that
for any distribution P over a finite set €2, an optimal set of prefix-free codes exists
such that the number of required bits for the code of x € () is approximately

codelength(z) ~ —log(P(x)).

Desiring that frequently used codes are shorter in size, Siebes et al. (2006) intro-
duce the function usage that maps a pattern to the number of transactions which
use it for their cover,

usage(Xs) = {7 € {1,...,m} | Xs € cover(CT, D,.)}|.
The probability mass function over all itemsets X in the code table is defined as

B usage(Xs)
Z1§t§r usage(X;)

This implies that codelength(X;) = —log P(X;). The data matrix is encoded by
a transactionwise concatenation of codes, denoted by the cover, i.e., transaction
D;. is encoded by a concatenation of codes C with X, € cover(CT, D;.). Code Cj
occurs usage(Xs) times in the encoded dataset. The size of the data description
is then computed as

P(X,) (6.1)

L2(CT) = = 3 usage(X,) -log(P(X,)).

The description of the model, the code table, requires the declaration of codes
Cs and corresponding patterns X;. Code Cy has a bitlength of —log (P(&5)) and
a pattern X, is described by concatenated standard codes of contained items.
Standard codes arise from the code table consisting of singleton patterns only,
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where the usage of singleton {i} for i € {1,...,n} is equal to its support |D.|. In
conclusion, the description size of the model is computed as

LE(OT) = — Z (10g (P(X;)) + Z log <||lz)l||)> .

1<s<r 1€Xs
usage(Xs)>0

Note that an efficient computation of the description length employs the possi-
bility to calculate code lengths without realizations of actual codes. We further
remark that the function Lct originally uses the logarithm with base two. Here,
we implicitly reformulate this description length by substituting with the natural
logarithm. This is equivalent to multiplying the function by a constant which is
negligible during minimization. In return, using the natural logarithm will shorten
the derivations in Section 6.2.2.

Siebes et al. (2006) use a heuristic cover function in the algorithm KriMP which
employs a specified, static order on patterns. For every transaction, the cover
function returns a partition of the transaction by the following routine: iterating
through all patterns of the code table in the given order, add a pattern to the
transactions’ cover whenever the transaction supports the pattern. Remove the
items belonging to a selected pattern from the transaction and continue the pattern
traversion. This way, the usage of a pattern is smaller than or equal to its support.
The determination of patterns contained in the code table is performed by another
greedy procedure in KRIMP. An input set of frequent patterns — the code table
candidate set — is traversed in another static order, adding a candidate pattern to
the code table whenever that improves the compression size. Additionally, pruning
methods are proposed to correct the selection of patterns in the code table.

SLIM (Smets and Vreeken, 2012) differs in its candidate generation, which is
dynamically implemented according to an estimated compression gain and depen-
dent on the current code table. This strategy typically improves the compression
size, but mainly reduces the amount of returned patterns. Both approaches con-
sider a vast amount of candidates until the best set of patterns is determined.
Time consumption is dominated by computing the usage for each evaluated candi-
date. SHRIMP (Hess et al., 2014) exploits the indexing nature of trees in order to
efficiently identify those parts of the database which are affected by an extension
of the code table. Siebes and Kersten (2011) restrict with the algorithm GROEI
the code table to a constant number of patterns. They resort to a heuristic beam
search algorithm, but only for tiny datasets, the beam width parameter can be set
to a level allowing a reasonably wide enough exploration of the search space, or
else the run time explodes.

All these algorithms follow the heuristic cover definition of KRIMP which re-
stricts the usage of a pattern to supporting transactions and prohibits a cover
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by overlapping patterns. As discussed in the context of tiling (cf. Section 2.4.5),
these restrictions result in less succinct descriptions of the dataset, being suscep-
tible to noise. Correspondingly, there are methods adapting the model selection
by minimum description length for Boolean matrix factorization.

6.1.2 MDL for BMF

The scheme to employ MDL for rank selection is easily adopted from the one
used for pattern mining. In every iteration, the description length of the current
factorization is compared with the description length from the former iteration,
having a lower rank. If the current factorization achieves a lower description length,
then another factorization with an increased rank is computed and the procedure
repeats itself. Otherwise, the factorization of the former iteration is returned. The
performance of this method depends on the algorithm computing the factorization
of a given rank and on the encoding which determines the description length.

Lucchese et al. (2010) propose an encoding reflecting sparse data represen-
tations; describing matrices only by their positions of ones. Consequently, the
model is described with L} (X,Y) = | X|+ Y] bits and the data with L5 (X,Y) =
|D — (Y XT)]| bits, up to a multiplicative constant. We denote the resulting de-
scription length with Ly (X,Y) = |[D—0(Y X 7)|+|X|+|Y|. The algorithm PANDA
uses a factorization method which adds a tile (outer product) to the current fac-
torization in a two stage heuristic.

Miettinen and Vreeken (2014) argue that the encoding used in PANDA is too
coarse. They investigate multiple encodings, applying ASSO as Boolean factoriza-
tion method. Their best-performing encoding is called Typed XOR DtM encoding.
This is based upon the description of n-dimensional binary vectors by number and
distribution of ones. We refer to the Typed XOR DtM description length as Ltxp
and to the corresponding algorithm as MDL4BMF. The experimental evaluation
suggests that MDL4BMF’s rank estimation is accurate in a setting with moderate
noise, i.e., less than 15%, and moderate number of planted tiles, i.e., less than
15. It seems to have a tendency to underfit, as opposed to PANDA, which returns
on some synthetically generated datasets a rank ten times higher than the actual
rank.

On the other hand, the heuristic optimization of PANDA is applicaple to any
objective function. Lucchese et al. (2014) enhance the algorithm PANDA to a
faster version PANDA+ and empirically evaluate the ability to detect the true
clustering via various description lengths and optimization algorithms. In the
evaluation with respect to synthetically generated datasets, having less than 10%
equally distributed noise, PANDA+ using the Typed XOR description length Ltx
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is outperforming any other choice. The performance is explained with the direct
minimization of the description length in PANDA+, opposed to ASSO, minimizing
only the residual sum of squares.

Another algorithm which tries to incorporate the direct optimization of the
MDL-cost measure is NASSAU (Karaev et al., 2015). Remarking that the formerly
proposed algorithms do not reconsider which clusters have been mined at previous
iterations, NASSAU refines the whole factorization every few steps, employing AsSso
for the BMF optimization. The experiments focus on a setting where noise effects
which flip a one to a zero are prevalent. In this case, differences to MDL4BMF are
often hard to capture while NASSAU typically outperforms PANDA+-.

6.2  Minimizing the Description Length
in PAL-Tiling

We wish to derive Boolean factorizations minimizing the description length, hoping
that the regularization of the model complexity by the MDL principle is suitable
to yield factorizations of an appropriate rank. However, most of the proposed
description lengths are not continuous, let alone smooth. Therefore, we need to
derive a smooth relaxation of the description lengths we wish to apply in PAL-
TiLiNG. We assume that there exists a factor ;4 > 0 and a regularizing function
G such that the smooth relaxation of the description length has the form

FOLY) =S D-YXT|"+ %G(X, Y). (6.2)

Here, the multiplication with one half refers to the traditional formulation of the
residual sum of squares in problem (NMF), which shortens the formulation of
gradients. In order to meet the convergence criteria of PALM, we require the
regularizing function G to be a smooth definable function, having partial gradients
which are Lipschitz-continuous with moduli My, ¢(X) and My, ¢(Y), such that

IVxG(X,Y) = VyGUY)| < Mya(Y)|X = U],

and similarly for VyG. From the triangle inequality follows that the Lipschitz
moduli of the partial gradients of F' are then given as

1

My p(Y) = pl[y YT + 5 Mo ya(Y)
1

My, p(X) = p|| XX || + 5 My (X)),

We specify the function To0ss in Algorithm 8, which we employ in the framework
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ALGORITHM 8 The tossing function for the application of PAL-TILING imple-
menting the determination of the rank via the minimum description length.

1: FUNCTION Toss(z,y, D)
2. RETURN |2/ <10R Jy| < 1
3. END FUNCTION

of PAL-TILING to determine the rank via the minimum description length prin-
ciple. Since the regularization of the model complexity by MDL is supposed to
yield factorizations which penalizes tiles reflecting noise effects, we employ a very
simplistic function T0sS. The function solely decides that singleton tiles, consist-
ing of one row or column, are to be disregarded in the factorization. Therewith,
we only need a specification of the description lengths and their relaxed objective
for the optimization in PAL-TILING.

6.2.1 Panpal

The cost measure Ly (as applied by PANDA) is easily integrated into PAL-TILING.
Since the proximal operator ensures that the factor matrices in all steps are non-
negative, the ¢1-norm of the factor matrices equates a simple summation over all
matrix entries. Thus, the ¢1-norm is a smooth function on the nonnegative do-
main of the factor matrices and can be used as regularizing function. We call
the resulting algorithm PANPAL as it employs the cost measure of PANDA in the
minimization technique PAL-TILING:

ALGORITHM SPECIFICATION 2 (PANPAL). Apply PAL-TILING with the func-
tion To0ss from Algorithm 8. We employ the following objective L and its smooth
part F"

LIX,Y)=La(X,Y)=|D—-0(YX")| + |X|+|V]
1 1
F(XY)=|D - YXT|* + (XY

The partial gradients and the corresponding Lipschitz moduli are given as follows:
VxF(X,Y,D)= (YXT —=D)'Y +05-1
VyF(X,Y,D)= (YXT - D)X +05"1
My, r(Y) > |[YY T, My, p(X) > || XX ||

The smooth relaxation F' in PANPAL is a polynomial function and thus semi-
algebraic. Therefore, the optimization of the relaxed objective of PANPAL via
PALM converges to a local minimum.
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6.2.2 Primp

So far, the cost measure of KRIMP has been disregarded in the context of Boolean
matrix factorization. Since the traditionally employed cover function is incompat-
ible with overlapping patterns or patterns which cover more items than persistent
in the transaction, the task to find the best encoding by code tables is associated
with the sub-domain of pattern mining (Miettinen and Vreeken, 2014; Lucchese
et al., 2014; Karaev et al., 2015). The definition of the long-established cover func-
tion is heuristically determined under the assumption that there is one globally
valid cover function which is applicable on all datasets if a suitable code table is
found. Although this approach might be favorable in sub-domains like classifica-
tion or detection of changes in a data stream (Vreeken et al., 2011; Leeuwen and
Siebes, 2008), there is generally no reason why the cover function should not be
data-dependent. Thus, we break away from the conventional view on the cover
function as a predefined instance and regard it as an extrapolation of the mapping
from patterns to transactions which is defined by the matrix Y. Thereby, we in-
tend to learn a suitable pair of code table and cover function, which is tailored to
the dataset. This is motivated by the following observation.

LEMMA 6.1. Let D be a data matriz. For any code table C'T' and its cover
function there exists a Boolean matriz factorization D = Q(YX T) + N such that
non-singleton patterns in CT are mirrored in X and the cover function is reflected
by Y. The description lengths correspond to each other, such that

Ler(CT) = Ler(X,Y) = Lep(X,Y) + Ler (X, Y),
where the functions returning the model and the data description size are given as
LEr(X,Y) = =) |Vl -log(ps) = Y _|Nal - log(pr+:) = L&r(CT)
s=1 i=1
LEX,Y)= Y (Xle—logp.))+ Y (ci—log(pri)) =L&(CT).
s:|Y.s|>0 2| N.;|>0

The probabilities ps and p,.; indicate the relational usage of non-singleton patterns
X5 and singletons {i},

ol N
EaR Y[+ N

We denote with ¢ € R’} the vector of standard code lengths for each item, i.e.,

c,=—1lo |D-i
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The proof of Lemma 6.1 can be found in Appendix B. The transfer from a
code table encoding to a Boolean matrix factorization provides another view on the
objective of KrRiMP-related algorithms. While the focus of matrix factorizations
lies on the extraction of a given ground truth, the originally formulated task aims
at the derivation of subjectively interesting patterns — equating interestingness
with the ability to compress. The non-reducibility requirement in Boolean matrix
factorization, returning linearly independent columns of factor matrices and the
bound on the rank (r < min{m,n}) is in alignment with the interpretation of
interestingness with compressing abilities.

Considering, in reverse, the transfer from a matrix factorization to an encoding
by code tables, we naturally receive access to the treatment of negative noise. The
term negative noise refers to the decomposition of the data into a factorization
and a noise matrix D = Q(YX T) + N. If patterns are not restricted to their
support, then the noise matrix N € {—1,0,1}"*" may take negative values. We
can calculate the description size Lct(X,Y) for arbitrary factor matrices, even if
the usage of patterns is not restricted to their support. Yet, the question arises
if this also has a suitable interpretation with regard to the encoding. In fact, the
interpretation is simple: the items in a transaction having a negative noise entry
can be transmitted just as the items with positive noise entries; their singleton
codes are appended to the belonging transaction. If the item is not contained
in any other pattern used in this transaction, then it corresponds to a positive
and otherwise to a negative noise entry. The resulting cover function maps a
transaction D;. to the patterns X, where Y, = 1 and the singletons 7 having
Ny # 0.

The compression size Lct(X,Y) is not continuous. There are points of dis-
continuity at factorizations where one of the columns of Y or N are zero, that is
when a pattern in X or a singleton code is not used at all. We employ a simple
hack to fix this issue and assume that each pattern in X is used at least once.
For singletons, we do not wish to make such an assumption; usages of singletons
indicate errors in the approximation, which we want to keep as small as possible.
Therefore, we bound the description length of singleton codes by the approxima-
tion error. Then, we obtain a smooth function which meets the requirements of
PAL-TiruiNG. This is specified by the following theorem whose proof can be found
in Appendix B.

THEOREM 6.2. Given binary matrices X andY and p = 1+1log(n), it holds that

: Yl +1
L2, Y) < 0 - YT = v+ oo (D vl 63)
s=1

The description length of the data is bounded by the smooth function on the
right of Eq. (6.3). The description length of the model is discontinuous at points
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where one of the patterns is not used at all. The description size of one side of the
code table, representing the patterns by singleton codes ¢, has an upper bound of

T

Y o Xle<) Xle=|XTcl,

5:]Y.5|>0 s=1

which is easily integrated into the smooth approximation. The product X c re-
turns a nonnegative vector, and thus the the /1-norm of this vector boils down to a
simple sum over all entries. The remaining terms which compose the model com-
plexity are limited upwards by a constant, due to the fixation of the rank during
the minimization of the relaxed objective. Thus, we minimize the relaxed function
as denoted in the box below. The required Lipschitz constants are computed in
Appendix B. We refer to this algorithm as PRIMP, as it performs PAL-TILING
with the objective of KRIMP.

ALGORITHM SPECIFICATION 3 (PRIMP). Apply PAL-TILING with the func-
tion Toss from Algorithm 8. We employ the following constants, objective L and
its smooth part F':

|D~i|>

ci:—log( ., u=1+log(n)
D]

L(X,Y) = Lcr(X,Y)

FOLY)=S[D-yXT|"+ %G(X, Y)

: Y|l +1
G(X,Y) = — Z(\Y.s] +1)log (||Y||+ . ) + | X Te| + Y.

s=1

The partial gradients are given as follows:

]_T
VAF(XY) = u(YX" = D)V + -
1 Y, +1
FIX.V)=u(YXT —D)X — = (1 s —1) .
VrFGY) = x5 (e (5157 )

Further, we specify the employed Lipschitz moduli:

My, p(Y) > pl[Y Y

: My, p(X) > p|| XX || + m.

The smooth relaxation of PRIMP is a definable function, because it is a com-
position of polynomials, division by functions which are not zero and the definable
logarithmic function. Therefore, the iterates in the relaxed optimization converge
to a local minimum of the relaxed objective.
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6.3 Experiments

We conduct experiments on a series of synthetic data matrices, exploring the abil-
ity to detect the planted factorization, i.e., to recover generated matrices X* and
Y™ in presence of various noise structures. In real-world data experiments we com-
pare the description lengths of obtained models. Also, we perform a qualitative
evaluation of the factor methods, visualizing the algorithms’ understanding of tiles
and noise on the basis of images. We compare the PAL-TILING instances PAN-
PAL and PRIMP with the available implementations of PANDA4!, MDL4BMF?
and NASsAU?. For PANDA+ we choose the TypedXOR measure and use 20 ran-
domization rounds and correlating items as suggested in the literature (Lucchese
et al., 2014). Apart from that, the default settings apply.

We exclude SLIM from our experiments as it can not be fairly compared to
Boolean matrix factorization algorithms. To illustrate, SLIM returns far more
patterns (500 to 3000 monotonically increasing with noise) than planted (25) in
our synthetic datasets. Hence, a depiction of this algorithm’s rank would distort
the rank charts.

For synthetic and real-world experiments, we set the rank increment A, = 10;
sensitivity to this parameter is explored in Section 6.3.1. For our image evaluation,
we set (if possible) a maximum number of 10 returned tiles and depict the four
most informative tiles. Here, we set A, = 1, to consistently allow for multiple
factorization rounds.

A separate run time comparison of the aforementioned algorithms is not con-
ducted. This is because we can not guarantee that the underlying data struc-
tures and platform specific optimizations are equally well tuned, especially for the
approaches for which we make use of the reference implementation (PANDA+,
MbDL4BMF and NASSAU). Note, however, that due to the formulation of PAL-
TILING in terms of linear algebra, a highly parallel implementation on Graph-
ics Processing Units (GPU) is straightforward. Therefore, experiments regarding
PANPAL and PRIMP are executed on a GPU with 2688 arithmetic cores and 6GiB
GDDRS5 memory. The run time of the GPU based algorithms is about 50 times
lower, compared to the ordinary implementations, e.g., a task that is finished by
PRIMP in a few seconds, requires 30 minutes by MDL4BMF. We provide the source
code of our algorithms together with the data generating script?.

"http://hpc.isti.cnr.it/~claudio/web/archives/20131113/index.html
2http://people.mpi-inf.mpg.de/~skaraev/
3http://sfb876.tu-dortmund.de/primp
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ALGORITHM 9 Generation of synthetic datasets for Boolean matrix factorizations.
1: FUNCTION GENERATENOISYBMEF (n,m, 7%, &z, P2, DY)
2: X* UNIFORMRAND({X € {0,1}710.01 < % < gmm})

0.01 < Xl <. })

Y* UNIFORMRAND({Y e {0,1}mxr

D« Y oXx'
FOR1<57<m,1<i<nDO
ELSE Dj; < 1 with probability p*

END FOR
9:  RETURN (X*,Y*, D)
10. END FUNCTION

6.31 Experiments on Synthetic Data

We generate data matrices according to the scheme established by Miettinen and
Vrecken (2014); Karaev et al. (2015) and Lucchese et al. (2014). Yet, we constrain
the set of generated factor matrices to contain at least one percent of uniquely
assigned ones to ensure linear independence of column vectors. This ensures that
for 7* < m,m and generated matrices X* € {0,1}"*" and Y* € {0,1}™*"", the
matrix D = Y*X*' indeed has rank r*. We describe the data generation process
as a function from dimensions n and m, rank r*, density parameter &,,,, and
noise probabilities p% and p* as stated in Algorithm 9. We generate datasets for
distinct settings with dimensions (n,m) € {(500,1600), (1600, 500), (800, 1000),
(1000,800)}, r € [5,25], &naer € [0.1,0.3] and pi € [0,0.25]. Table 6.1 summarizes
the basic statistics of the generated datasets.

EVALUATION We quantify how well a computed clustering (X,Y’) matches the
planted clustering (X*,Y™*) by the F-measure, as introduced in Section 4.3.1. We
assume w.l.o.g. that X, X* € {0,1}"" and Y, Y™ € {0, 1}, otherwise we attach
zero columns to the matrices such that the dimensions match. We require the
following substitutions of precision and recall, in order to take the selection of
features in a tile into account:

[(YioY,)(XfhoXy)T
Y. X[ |

|(YioY,)(X5hoXy)T|
Vx5

pre(s,t) = rec(s,t) =
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Variation pi%) pr(%] 1" &mes Density (%] Overlap [%)]
Uniform Noise 0 0 25 0.1 6.6 £ 0.8 23+0.3
25 25 25 0.1 283+04 2.3+0.3
25 3 25 0.1 30.6 £0.4 3.0+04

Pos/Neg Noise 3 25 25 0.1 85404 29405

10 10 5 0.1 11.3+£0.4 0.3+£0.2
10 10 45 0.1 18.6 £ 0.9 8.7+ 1.0

10 10 25 0.1 15.3£0.6 23+£0.3
10 10 25 0.3 40.6 £4.3 26.9%6.1

Rank

Tile Size

TABLE 6.1: Characteristics of generated datasets.  The values are aggregated
over eight generated datasets, four for each combination of dimensions (n,m) €
{(500, 1600), (800, 1000)}. Overlap denotes the percentage of overlapping entries in re-
lation to the region covered by all tiles together and density is the region covered by all
tiles together in relation to nm.

Given the tile-matching function o, the calculation of precision and recall for the
whole factorization is accordingly specified by

sre = 2=t (Y5 0 Vi) (X5 0 X)) T (Y7 0 ¥o)) (X" 0 Xogy) ]

> [V X Y XT|
| (Y o V) (X 0 X)) | [(Y7 0 Vo)) (X 0 X)) ]|
rec = =
S| VEXLT [yex-!

The plots which display the F-measure indicate its average value with error bars
having the length of twice the standard deviation. We furthermore express the
values of involved cost measures in relation to the empty model

F(X,Y)

%F(X,Y) = Fo.0

- 100.

MAKE SOME NOISE In the following series of experiments, varying the noise,
we plot the F-measure and the rank of the returned Boolean factorization against
the percentage of noise which is added. The planted factorization has a rank of
r* = 25 and density parameter &,,,, = 0.1. The noise level varies from 0% to 25%
as displayed on the z-axis.
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FIGURE 6.1: Variation of uniform noise for 800 x 1000- and 1000 x 800-dimensional
data. Comparison of F-measures (the higher the better) and the estimated rank of the
calculated Boolean factorization (the closer to 25 the better) for varying levels of noise,

i.e., pf = p* is indicated on the x-axis (best viewed in color).

First, we compare the effects of the matrix dimensions and aggregate results
over 10 generated matrices with dimensions 800x 1000 and 500 x 1600 together with
their transpose, as depicted in Figures 6.1 and 6.2. Comparing the results for a data
matrix and its transpose is particularly interesting for the algorithm PRIMP. Since
the description length of code table encoding applies different regularizations on X
and Y, we want to asses how transposition affects PRIMP’s results in practice. The
remaining algorithms minimize an objective which is invariant to a transposition
of the input matrix. Desirably, this is also reflected in practice.

We observe from Figures 6.1 and 6.2 that the algorithms likely return fewer
tiles with increasing noise. This culminates in the replication of almost none of the
clusters at highest noise level for the algorithms PANDA+ and NASSAU. NASSAU
particularly strongly underestimates the rank if the data matrix is transposed.
That is, if the input matrix is more wide than tall then NASSAU returns only a few
tiles, if any, even if the noise is low. PANDA+ yields correct rank estimations up
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FIGURE 6.2: Variation of uniform noise for 500 x 1600- and 1600 x 500-dimensional
data. Comparison of F-measures (the higher the better) and the estimated rank of the
calculated Boolean factorization (the closer to 25 the better) for varying levels of noise,

i.e., pf = p* is indicated on the x-axis (best viewed in color).

to a noise of 15%, but its fluctuating F-measure indicates that planted tiles are not
correctly recovered after all. In particular, its F-values differ from the untransposed
to the transposed case even if the rank estimations are approximately correct.
MDL4BMF shows a robust behavior towards a transposition of the input matrix.
Its suitable rank estimations up to a noise of 15% are mirrored in a high F-measure.
PANPAL consistently underestimates the rank, yet achieves comparatively high F-
measures. The results exhibit minor deviations from the untransposed to the
transposed case, which become more recognizable when n and m deviate further
from each other (Figure 6.2) and the noise level is low. Under these circumstances,
PANPAL yields higher rank estimations if the matrix is transposed. We note, that
the code of PAL-TILING and therewith also the code of PANPAL inhibits only
one distinction between X and Y, which is the order in which gradient descent
steps are invoked. Apparently, this influences the sparseness of the resulting factor
matrices. We propose a thorough examination of this effect for future work. PRIMP
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FIGURE 6.3: Variation of uniform, positive and negative noise. Comparison of F-
measures (the higher the better) and the estimated rank of the calculated Boolean
factorization (the closer to 25 the better) for varying levels of noise, i.e., p% and p*
are indicated on the x-axis (best viewed in color).

is characterized by overall high values in the F-measure. It has a tendency to
estimate the rank higher in the untransposed case, that is if the input matrix
is more tall than wide. This is particularly notable if the matrices are almost
square (Figure 6.1). That aside, the overall high F-measure shows that additionally
modeled clusters cover only a small area in comparison to planted ones.

In Figure 6.3 we contrast varying distributions of positive and negative noise
(p% and p* ). From here on, we aggregate results over eight matrices, two matrices
are generated for each of the considered matrix dimensionalities. However, we
make an exception for NASSAU and transpose the input matrix if n > m, as
NASSAU tends to return far too few tiles in this case. On the left of Figure 6.3, we
show the aggregated results when varying uniform noise, as discussed for individual
dimensions before. All algorithms except for PRIMP tend to return fewer tiles with
increasing noise. Notably, PRIMP’s rank estimations are correct in the mean, yet
the variance increases with the noise. Despite correct rank estimations, PANDA+
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FIGURE 6.4: Variation of the rank r* € {5,...,45} of the generated factorization. Com-
parison of F-measures (the higher the better) and estimated rank (the closer to the
identity function the better) of calculated Boolean matrix factorizations for uniform
noise of p% = p* = 10% (best viewed in color).

displays volatile F-measure values. The middle plot depicts variations of negative
noise while positive noise is fixed to 3%. In this setting, the algorithms PRIMP,
MDL4BMF and NASSAU are capable of identifying the generated factorization for
all noise levels. The suitability of NASSAU in the prevalence of negative noise
corresponds to the experimental evaluation by Karaev et al. (2015). MDL4BMF and
PRriMP yield equally appropriate results in this experiment. The approximations of
PANDA+ and PANPAL are less accurate. Although PANDA+ correctly estimates
the rank around 25 and PANPAL’s estimations lie between 10 and 20, PANPAL
achieves higher F-measures than PANDA+-.

The plots on the right of Figure 6.3 show the impact of variations on the
positive noise, fixing the negative noise to 3%. Here, NASSAU, MDL4BMF and
PANPAL tend to underestimate the rank the more the noise increases, similarly to
but not as drastic as in experiments with uniformly distributed noise. PANDA+
shows a poor recovery of the factorization at 0% positive noise, but its F-value
peculiarly increases with increasing positive noise. PRIMP robustly identifies the
factorization for all levels of noise, yet inhibits a high variance in rank estimations.

SENSITIVITY TO GENERATING PARAMETERS We present effects on varia-
tions from the rank in Figure 6.4 whereby the default parameters of 10% uniform
noise and maximum tile width and length &,,,. = 0.1 apply. We observe a hi-
erarchy of algorithms in the tendency to underestimate the rank throughout all
values of r*. By far the lowest rank estimations are returned by PANPAL, followed
by NAassAU, MDL4BMF, PANDA+ and PRIMP. PANDA+ and PRIMP consistently
return accurate rank estimations. In this respect, it is remarkable that for ranks
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FIGURE 6.5: Variation of density and overlap influencing parameter &4, € [0.1,...,0.3].
Comparison of F-measures (the higher the better) and the estimated rank of the
calculated Boolean factorization (the closer to 25 the better) for uniform noise of
ph = p- =10% (best viewed in color).

higher than 30, PANPAL obtains higher F-values than PANDA+ despite of modeling
only a fraction of the planted tiles. PRIMP provides a steadily accurate recovery
of the factorization.

In Figure 6.5 we vary the density and overlap influencing parameter &,,,,., which
determines the maximum ratio of ones in a column vector of X and Y. We observe
two classes of algorithms. The first class, consisting of PRiMP, PANDA+ and
MDL4BMF decreases in the F-measure with increasing &,,.,. In this class, PRIMP
always retrieves highest F-values. In return, the F-values from the second class
of PANPAL and NASSAU increase with &,,,.. Here, PANPAL bounds the F-values
of NASSAU from above. Correspondingly, PRIMP and PANPAL have a break-even-
point at &4 = 0.2. From this value on, PRIMP starts to considerably overestimate
the rank while PANPAL’s tendency to underestimate the rank decreases. For &4, >
0.2, PANPAL estimates the rank close to 20 in average. That is, five planted tiles
are not modeled in average. Still, the F-measure indicates that for the denser and
more overlapping datasets, PANPAL most accurately discovers the clusters.

SENSITIVITY TO THE RANK INCREMENT In the default setting of our syn-
thetic experiments, the PAL-TILING algorithms PRIMP and PANPAL have to in-
crease the rank two times by A, = 10 to estimate the rank r* = 25 correctly. In
the experiments varying the rank, we have seen that PRIMP is able to find the
correct rank if twice as many decisions correctly have to be made. Here, we want
to assess how robust the performance of PAL-TILING algorithms to the parameter
A, is. What happens if, e.g., A, = 2 and correspondingly 23 rank increments have
to be administered correctly?
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FIGURE 6.6: Variation of rank increment A, € {2,5,10,20}. Comparison of F-measures
(the higher the better) and the estimated rank of the calculated Boolean factorization
(the closer to 25 the better) for uniform noise of p = p* indicated by the z-axis (best

viewed in color).

Figure 6.6 shows F-measurements and estimated ranks of the algorithms PRIMP
and PANPAL, invoked with diverse rank increments A, € {2,5,10,20} on datasets
with varying uniform noise. It is noticeable that the rank estimations of PANPAL
rapidly diverge with increasing noise while the plots of PRIMP stay comparatively
close. PANPAL’s tendency to underestimate the rank grows for smaller rank incre-
ments. In return, the rank estimations of PANPAL can be improved by choosing
a large rank increment, i.e. A, ~ r*. However, since we do not know the rank in
real-world applications, different increment values have to be tried and compared,
contradicting our goal to automatically determine this parameter. Still, PANPAL
yields potentially useful lower bounds on the actual rank.

The average rank estimations of PRIMP have a maximum aberration of five
from the actual rank throughout all noise variations. The graphical display of the
estimated rank for A, = 20 has a peak at 5% uniform noise but is close to r*
otherwise. For rank increments smaller than 10, the estimations do not distinctly
decrease until the noise exceeds 20%. Here, a rank increment of A, = 5 yields the
most accurate rank estimations, having also lowest standard deviations from the
mean. Particularly, PRIMP’s tendency to overestimate the rank in specific settings
can be corrected by choosing smaller rank increments. Nonetheless, all these rank
deviations barely effect the F-measure, which demonstrates the robust and well
fitted recovery of the underlying model regardless of the choice of rank increment.

COMPARISON OF DESCRIPTION LENGTHS We have seen how well the com-
peting algorithms perform with regard to the F-measure. Then again, assessing
the performance on real data requires other measurements. Possible candidates
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Algorithm  F-measure %RSS %Lct %Ln % Ltxp
Planted 1.0+£00 8837+124 89884125 89514125 96.5+ 0.61

X Privp 0.94+0.05 89.58+1.71  91.0+1.54 90.65+1.59 97.0+0.62
N PANPAL 0.35+0.2 9717 +£1.62 97.56 & 1.46  97.47 + 1.49 99.16 & 0.56
“H MDL4BMF 0.46 & 0.08  96.6 £ 0.86 97.25 & 0.76  97.11 £ 0.77  99.2 &+ 0.25
R PanDA 0.14 £ 0.11  99.14 £ 0.77  99.28 & 0.62  99.24 4+ 0.66 99.75 & 0.19
NASSAU 0.1+ 0.05 100.5+0.29  100.7 & 0.3 100.69 & 0.31 99.75 & 0.15
Planted 1.0+ 0.0 50274125 54.67+1.29 5329+ 129 69.77 + 0.96

~ PrivP 1.040.0 50.32+1.23 54.74+1.27 53.35+1.27 69.85+0.93
T Panpar 0.67+£0.1  73.0+£6.04 75.04+556 74294571 84.66 % 3.78
o MprdBmE 08 +0.04 6267+ 141  66.72 4+ 153 6548 + 1.46  79.21 + 1.03
PANDA 0.53 £ 0.02 89.02+ 1.76 92.34 &+ 2.16 92.76 £ 2.09  86.0 £+ 0.7
NASSAU  0.74 & 0.21 64.43 & 10.08 68.27 + 10.24 67.28 + 10.43 77.47 & 4.87
Planted 1.0+£00 2494+274 27844278 2711 +27 51.97+ 1.04

®  Prvp 0.74 0.1 27.04+2.46 31.23+2.33 30.33+2.25 57.52 + 2.03
| PANPAL  0.9240.11 2945 +3.17 31.98+£3.06 31.31 £3.1 57.09 & 3.86
5 MDL4BMF 0.59 £ 0.04 45.08 &= 2.14 4853 & 2.01 47.88 + 1.96 73.81 + 1.49
& PANDA 051 £ 0.05 54.12+89 57.07 =883 56.74 + 8.86 75.88 & 2.32
NASSAU 094009 29114519 3207452 3142452 56.79+4.2

TABLE 6.2: Average values of objective functions of computed and planted models,
denoted in relation to the objective function of the empty model. For each setting
(variation of one data generation parameter while the others are set to default values
7 = 25, &mae = 0.1 and pi = 10%) the average value is computed over all considered
dimension variations.

are the optimized description lengths. Subsequently, we relate selected costs of
computed and planted models to the F-measure and discuss whether we can de-
duce a suitable extraction of the underlying model from a low cost measure; is
lower always better?

Table 6.2 displays average costs of the returned factorization, measured by the
functions RSS, the residual sum of squares, Lct, the compression size obtained by
code tables, L;i, the f1-regularized residual sum of squares and Ltxp, the Typed
XOR DtM (TXD) measure. All these measurements are listed in relation to the
empty model. We examine three parameter settings, one for the highest value in
each variation of the data generation parameters r*, &4, and p%. Thereby, default
settings of 1* = 25, &4 = 0.1, pi = 10% apply. The costs of the planted model
are shaded out while the highest F-measure and lowest mean costs of computed
models are highlighted.

We trace that a high F-measure often corresponds to lower costs, regardless
of the cost function. This effect is immediately perceivable at rows where PRIMP
attains highest F-values and all of its costs are highlighted as well. Yet, the exper-
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Dataset D m n  Density [%)]
Abstracts 859 4977 1.02
Mushroom 8124 120 19.33
MovieLensbM 29980 9044 1.81
MovieLensb00K 3329 3015 4.99
Chess 3196 75 49.33

TABLE 6.3: Characteristics of considered datasets: Number of rows m, number of
columns n and density |D|/(nm) in percent.

iments for &, = 0.3 display a more diverse ranking among the measurements. In
this setting, PRIMP decidedly overestimates the rank but still obtains lowest costs
in all but the Ltxp measure. PANPAL attains the highest F-value, closely followed
by NASSAU. Both algorithms reach second or third lowest cost measurements by
the functions RSS, Lcr and Ly, The TXD description length reflects here the
order of F-values more suitably but still not accurately; NASSAU obtains lowest
costs, closely followed by PANPAL and PRiMP. All in all, none of the description
lengths reflects the ranking of the F-measure in this particular case. If the F-
measure would be unknown, then a possible clue would be given by the estimated
rank, showing that slight improvements in the costs of PRIMP are achieved by a
disproportionate increase of the rank.

While the TXD costs appear suitable to reflect an appropriate extraction of tiles
for &nar = 0.3, in the setting of pi. = 25% we observe another facet. Here, we see
that NASSAU reaches the same average TXD measurement as PANDA+ although
NASSAU increases the residual sum of squares in comparison to the empty model.
This is indicated by relative costs larger than 100% in all measurements but TXD.
Still, the ranking with respect to TXD matches the ranking of the F-measure, but
the example shows that a compression with respect to the TXD description length
is achievable without adaptation to the data.

6.3.2 Real-World Data Experiments

We conduct experiments on five datasets, whose characteristics are summarized in
Table 6.3. Chess and Mushroom are discretized benchmark UCI datasets having
a comparatively high density and around 50 times more rows than columns. The
Abstracts dataset indicates the presence of stemmed words, excluding stop-words,
in all ICDM paper abstracts until 2007 (De Bie, 2011). It is a sparse dataset with
around 5 times as many columns (words) as rows (documents). Finally, the Movie-
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Lens5M and MowieLens500K are binarized versions of the MovieLens10M* and
MovieLens1M?® datasets, where rows correspond to users and columns to movies.
We set Dj; = 1iff user j recommends movie ¢ with more than three out of five stars.
After selecting only those users which recommend more than 50 movies and those
movies which receive more than five recommendations, we obtain two datasets with
a balanced number of of rows and columns. The MovieLLens5M dataset, containing
5 million ones, and the MovieLens500K dataset, having 500 thousand ones, have
a (as one would expect, due to the dataset domain) high amount of negative noise
due to missing values. Originally, we intended to consider only the MovieLensbM
dataset, but NASSAU and MDL4BMF could not terminate in reasonable time — we
aborted the calculations after one month. Therefore, we also prepared the smaller
MovieLens500K dataset. (For comparison: While PRIMP, PANPAL and PANDA+
require around ten minutes to compute the result for MovieLens500K, MDL4BMF
and NASSAU need more than five days.) Furthermore, we note that we transpose
the Abstracts dataset for NASSAU, as it returns a rank of zero otherwise.

We state the estimated rank and the attained costs, relative to the costs of the
empty model for every considered dataset and algorithm in Table 6.4. The lowest
costs are highlighted for each measure and dataset. We observe, similarly to the
evaluation of description lengths in Section 6.3.1, a tendency toward compliance
among the rankings of all measures, except for the TXD description length. As
such, PRIMP mostly obtains minimal costs in all datasets but Mushroom, where
MDL4BMF reaches the lowest overall cost measures. The models of PANDA+
exhibit for sparse datasets low TXD measurements although the fit to the data is
low (%RSS > 100%). The discrepancy between the TXD compression size and
the other measurements is most remarkably for the MovieLens datasets. Here, the
ranking with respect to TXD is almost inverse to the ranking with respect to other
measurements.

This leads to the question which measurement indicates the suitable factoriza-
tion in such situations? Luckily, we have for the MovieLens data the possibility to
assess how many recommendations would fail by the submitted bad reviews, which
are not reflected in the input data. We state the relative amount of recommen-
dations which correspond to bad reviews, IP-0(YX")l/|p_| where D_ is the matrix
having Dj; = 1 iff user j rates movie ¢ with less than 2.5 of five stars, in Table 6.5.
We observe that the lower the TXD description length is, the higher is the rate of
recommendation failures, regardless of the estimated rank. Therefore, we expect
PRIMP to discover the most liable grouping of users and movies, having the lowest

‘http://grouplens.org/datasets/movielens/10m/
Shttp://grouplens.org/datasets/movielens/1m/
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Data Algorlthm Rank %RSS %LCT %Lfl %LTXD
PriMP 46 93.0 98.6 946.33 96.12
PANPAL 1 998 99.96 99.89  99.74
Abstracts MDLABMF 24 95.84 100.68 10049  97.05
NASSAU 3 9981 101.76 103.05 96.84
PANDA+ 133 113.34 125.27 14049 88.19
PRIMP 18 24.61 31.3 29.32  62.8
PANPAL 6 4076 46.71 45.67  78.92
Chess MDLABMF 3 3591 3934 3951  68.88
NASSAU 10  31.92 39.03 3894  65.78
PANDA+ 27 25.76 3658 3574  65.01
PRIMP 78 88.59 93.29 91.4 8937
500K PANPAL 15 94.05 9592 9487  92.26
Moviel, MDLABMF 56 89.65 94.97 93.43  88.72
ovieL.ens NASSAU 29 111.15 11847 12058  85.89
PANDA 120 160.93 165.61 168.58 79.49
PRIMP 209 89.31 93.14 91.2  88.16
5M  PANPAL 38 93.68 9572 9439  88.73
PANDA+ 1919 181.42 202.87 201.45 72.23
PRIMP 14 3575 4089 4025  56.09
PANPAL 7 4403 5123 4852  63.75
Mushroom MDLABMF 87 23.39 36.6 32.47 50.37
NASSAU 65 40.60 58.77 54.93  50.62
PANDA+ 40 100.30 117.34 112.80  66.98

TABLE 6.4: Comparison of cost measures for real-world datasets.

approximation error and a very low ration of traceable wrong recommendations.
Similarly, it is questionable if low TXD costs indicate suitable models in specific

cases where the approximation error diverges such as for the Abstracts dataset.

6.3.3 Qualitative Inspection of Mined Tiles

The F-measure gives a hint at the kind of factorization we can expect from the
algorithms. PANPAL returns a coarse view, modeling only a few tiles which match
actually persistent ones. The quality of the results of PANDA+ substantially varies
and MDL4BMF and particularly PRIMP are most often able to identify the persis-
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MovieLens PRrRIMP PANPAL MDL4BMF NASSAU PANDA--

500K 2.38 2.23 3.68 10.33 18.78
5M 2.08 2.78 - - 23.14

TABLE 6.5: Percentage of traceable wrong recommendations of computed models for
the MovieLens datasets, i.e., the relative amount of user-movie recommendations which
correspond to bad reviews (< 2.5 stars out of five).

tent interrelations. Yet how do the algorithms relate in their actual cognition of
structure and noise, how does the optimization influence the computed decompo-
sition?

Image data allows us to visually inspect the resulting factorizations without
the need to specify a numeric measure. We can intuitively assess the attempts
to capture relevant sub-structures. However, some preprocessing is required in
order to feed w x h images to the mining algorithms. We employ a standard
representation of images: the RGB888 pixel format. Fach of the w - h pixels is
represented by 24 bits, using 8 bits per color (red, green and blue). In order to
convert an image into a set of transactions, we divide it into blocks (patches)
of 4 - 4 pixels, resulting in a total of 7 - % transactions per image. We adopt
this representation from computer vision, where image patches are a standard
preprocessing step for raw pixel data (Jarrett et al., 2009). Within each block, let
(r,9,b)1x denote the pixel at row | and column k, where r,¢,b € {0,1}® are the
8-bit binary representation of its red, green and blue color values. We model the
concatenation of all 16 pixels within one block as one transaction

[<T7 g, b)l,la (T, g, b)1,27 ('I", g, b)1,37 (Ta g, b)1747 (Ta g, b)2,17 EIR) (7’7 g, b)474]

which has a length of 24 - 16 = 384 bits.

This way, we process two images: an illustration of Alice in Wonderland (Fig-
ure 6.7) and a selection of “aliens” from the classic game Space Invaders (Fig-
ure 6.8). We select Alice because the image contains multiple connected areas,
each representing a reasonable substructure, i.e., hair, face, dress, arm and back-
ground. In return, the Space Invaders image contains multiple patterns in terms
of color and shape, but the components are clearly spatially separable.

The original Alice image, as well as reconstructions #(XY) and the top-4 tiles
generated by NASSAU, MDL4BMF, PANDA+, PANPAL and PRIMP, are depicted
in Figure 6.7. Clearly, only PANDA+ and PRIMP select patterns, i.e., blocks of
pixels which provide a reasonable reconstruction of the original image. PANPAL’s
tendency to underestimate the rank (choosing only three tiles) becomes apparent
here again. Regarding the figured structures, PANDA4, PANPAL and PRIMP dis-
cover a hair-related substructure, where the one found by PRIMP has the most
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FIGURE 6.7: Reconstructions of the Alice image and visualizations of the top-4 outer
products. Best viewed in color.

distinctive contours, and PANDA+, PANPAL and PRIMP identify a face-related
structure. The reconstructions and factors found by NASSAU and MDL4BMF are
not easy to interpret without knowledge of the original image.

Reconstruction results and top-4 tiles of the Space Invaders image are shown
in Figure 6.8. All methods reconstruct at least the shape of the aliens. In terms
of color, however, the results diverge. PANDA+ and NASSAU interpret all colors
as negative noise effects on the color white; white has a binary representation
of 24 ones. PANPAL recovers the yellow color correctly and it extracts the full
blue channel from the image—an identical pattern is also detected by PRIMP.
PriMP and MDL4BMF reconstruct all three colors of the original image, yet the
reconstruction of MDL4BMF exhibits injections of white blocks. Only PRIMP is
capable to reconstruct the color information correctly.

Having a look at derived tiles, the greedy processes of PANDA+ and NASSAU
become particularly visible; PANDA+ and NASSAU overload the first factor with
all the shape information. The remaining factors reduce the quantitative recon-
struction error, but have no deeper interpretation. MDL4BMF tries to model one
type of aliens by each tile. Although this would result in a reasonable description



96 CHAPTER 6. BMF RANK SELECTION BY MDL

(PanDA+) (MDL4BMF) (NASSAU)
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FIGURE 6.8: Reconstructions of the Space Invaders image and visualizations of the top-4
outer products. Best viewed in color.

of the image, the actual extraction of tiles suffers from the greedy implementation.
We can see that, e.g., the first tile captures information about the yellow aliens
as well as strayed parts of other aliens. This unfortunate allocation of tiles re-
sults in the injection of white blocks in the reconstruction image. PANPAL clearly
separates yellow and blue aliens but interprets differences from the color blue to
purple and to turquoise as noise. Finally, PRIMP separates by its tiles the three
basic color channels which are actually used to mix the colors that appear in the
original image. Hence, PRIMP achieves the factorization rank that corresponds to
the natural amount of color concepts in the image, unlike all other competitors.

The results of this qualitive experiment particularly illustrates the benefits of
a non-greedy minimization procedure. Even though PANPAL is often not able to
minimize the costs due to an underestimation of the rank, its categorization into
tiles always yields interpretable parts.
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6.4 Discussion

We introduce the minimization of description lengths for the derivation of Boolean
matrix factorizations with an automatically determined rank by PAL-TILING. Re-
quiring that the description length has a smooth relaxed function, which combines
the matrix factorization error with a regularizing function, PAL-TILING minimizes
the relaxed objective under convergence guarantees.

Aiming at the robust identification of Boolean matrix factorizations in presence
of various noise distributions, we consider two description lengths in this framework
which defines two factorization algorithms. The first algorithm uses a simple £1-
norm regularization on the factor matrices and is called PANPAL. The second
minimizes the MDL-description length of the encoding by code tables as known
from KRiMP (Siebes et al., 2006). Foregoing the heuristics in computing the
usage of codes, we extend the application of this encoding from pattern mining to
Boolean matrix factorization and derive an upper bound which induces the relaxed
objective. We refer to this instance of PAL-TILING as PRIMP.

Our experiments on synthetically generated datasets show that the quality of
competing algorithms PANDA+, MDL4BMF and NASSAU is sensitive towards mul-
tiple data generation parameters. The first of the two newly introduced algorithms,
PANPAL, regularly underestimates the true factorization rank. We have seen that
this property can be beneficial in settings with large, overlapping tiles which induce
dense datasets (cf. Figure 6.5). In all other settings, the second algorithm PRiMP
is able to detect the underlying structure, regardless of the considered distribution
of noise or variations the factorization rank (cf. Figures 6.1-6.4).

A comparison of cost measures, as provided by the description lengths, on
real-world datasets show that PRIMP also most often achieves lowest costs (cf. Ta-
ble 6.4). With experiments based on images, we visualize the derived tiles under
presence of ambiguous factorization structures and special noise distributions (cf.
Figures 6.7 and 6.8). The quality of the reconstruction by established algorithms
varies considerably between both images. On the contrary, PANPAL and PRIMP
provide solid representations of the original images. The extracted factors reveal
a parts-based decomposition of the data (as known from nonnegative matrix fac-
torizations), which allows for interpretation of the results. In the Space Invaders
image (cf. Figure 6.8), PANPAL partitions the space invaders into those with a
blue component in their color (tile 2) and those without blue components (tile
1). On the other hand, PriMP divides the space invaders by the primary colors
they contain (repeating each space invader exactly twice, hence finding structure
in the data too, albeit a different structure from the one found by PANPAL). From
the Alice image (cf. Figure 6.7) particularly PRIMP manages to extract coherent
factors representing the hair (tile 1) and the face (tile 3).
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The implementation of the other popular cost measure, the TXD description
length, is not readily realizable in PAL-TILING. A real-valued relaxation of this
description length involves the gamma function, which is not definable and thus,
we cannot say whether this description length is a Kurdyka-f.ojasiewicz function.
Therefore, convergence to a local extremal point of the relaxed TXD function is
not guaranteed in PALM. However, other description lengths are possibly worth
exploring. For instance, a symmetric regularization of factor matrices appears to
be more suitable in the scope of BMF, opposed to the asymmetric regularization
implemented by PRiMP. The formulation of a description length which equally
penalizes the model complexity in an encoding by code tables could simplify the
implementation effort of PRIMP while maintaining the ability to suitably select
the rank.



CHAPTER 7

BMF Rank Selection
by the False Discovery Rate

Often enough in explorative data mining, the user is left alone with the result;
a bunch of groupings which supposedly expresses the underlying relations in the
dataset. The absence of quality guarantees is an eyesore for the painstaking data
miner. Whenever data is collected from an imperfect (noisy) channel—arising
from tainted or inaccurate measurements, or transmission errors—the method of
choice might be fooled by the noise, resulting in phantom patterns which actually
don’t exist in the data. Thus, the investigation of trustworthiness of data mining
techniques is important in practice. While some approaches for the supervised set-
ting exist, e.g., significant pattern mining (Llinares-Lépez et al., 2015), statistical
emerging pattern mining (Komiyama et al. (2017) and references therein), insights
for the unsupervised case are still missing.

In the scope of Boolean matrix factorization, if some of the modeled tiles
emerge from noise, false discoveries happen and the algorithm overfits. We prove
two bounds on the probability that a found tile is constituted of random Bernoulli-
distributed noise. Both allow us to exploit specific properties of a tile, resulting
in different strengths for different types of input data. The bounds require an
additional input from the user: an estimate to the positive noise level p% . While
this might seem to be a prohibitive burden, our experimental results show that a
rough estimate suffices—the user should merely know if her data is pretty noisy
or not so much.

We have seen in the last chapter how state-of-the-art BMF techniques filter
the structure from the noise and estimate the rank by employing rather compli-
cated regularization terms originating from the description lengths when encoding
the data. The belief in the correctness of these algorithms is based on empirical
evaluations, inter alia, experiments with synthetically added Bernoulli-distributed

99
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noise. Under this noise assumption, we employ our bounds to devise a new, theo-
retically well-founded, rank estimation strategy. Since our technique may be used
as a plug-in replacement for existing heuristics, our findings improve a whole class
of BMF algorithms. Our main contributions are:

o the first provision of bounds on the probability that a tile with specified
properties is generated from random noise;

o the validation of required properties for factorizations which minimize the
approximation error, showing that both bounds are non-trivial;

o the exemplification of algorithmic use of the bounds for automatic rank se-
lection and the empirical evaluation on synthetic and real-world datasets—a
step towards trustworthy data mining.

/1  False Discoveries
in Boolean Matrix Factorization

The generation of noise depends on two parameters; the probability to flip a zero
to a one p’ and the probability to flip a one to a zero p*. We refer to the first
kind of noise as positive noise and to the latter as negative noise. The Boolean
decomposition, where we keep positive and negative noise apart looks as follows:

D= (Y* P Gl N+) o <Y* OX @ JT) . (7.1)

The factor matrices X* € {0,1}™*" and Y* € {0, 1}™*" denote the true model and
Ny, N_ € {0,1}"™*" are the binary positive and negative noise matrices.

The first step towards trustworthy pattern mining is a measure of trustwor-
thiness. The False Discovery Rate (FDR) (Benjamini and Hochberg, 1995) is a
simple yet powerful way to measure the relative amount of hypothesis rejections
which have gone awry.

DEFINITION 7.1 (FDR). Let H be a finite set of null hypotheses. We define the
random variable Q to denote the ratio between false discoveries and discoveries in
total, that is the number of erroneously rejected null hypotheses divided by the
number of rejected null hypotheses. We say the FDR is controlled at level q if

E(Q) <q.
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In our setting, a null hypothesis states that the intersections of columns and
rows indicated by a tile yz " do not reflect underlying relations. In other words, we
say that the hypothesis H? is true when there is no overlap between the underlying
model Y*X*" and the s-th tile Y., X . This definition of a null hypothesis might
seem too restrictive for some applications. Therefore, we discuss possible relax-
ations of this requirement in Section 7.1.2. Bearing this in mind, we see that a BMF
of rank r corresponds to a joint rejection of r null hypotheses {HY, HY, ..., H}.
Thus, if the correct rank is r*, any rank r > r* factorization is likely to state some
erroneous rejections of null hypotheses, a.k.a. false discoveries.

Now, given factor matrices X € {0,1}"*" and Y € {0,1}™*", we define a
random variable Z; with domain {0, 1}, which takes the value 1 if and only if the
null hypothesis H? is not to be rejected, i.e., the outer product Y., X covers only
(or mostly — depending on the definition) noise. The FDR of a BMF is therefore
computed via

E(Q) — %ip(zs _ 1) <qif P(Zs=1)<q. (7.2)

711 Tiles in Bernoulli Matrices

We aim at assessing the probability P(Z; = 1). Therefore, we need to employ an
independence assumption on the noise.

DEFINITION 7.2 (BERNOULLI MATRIX). Let B be an m x n random matrix
whose entries are i.i.d copies of a Bernoulli (p) random variable, that is

then we say B is a Bernoulli(p) matriz.

In what follows, we assume that the positive noise matrix N, is a realization
of a Bernoulli (p* ) matrix. If a tile Y, X | does not approximate the model Y*X*"
then it has to have some overlap with the positive noise matrix, otherwise the tile
wouldn’t contribute to minimizing the data approximation error. The overlap is
computed as the sum of common 1 entries

[V X1 oNy| = (Vo X1, Ny)=tr (X,V]Ny) =Y N X, .
This quantity is used to determine the density of a tile in the positive noise matrix.

DEFINITION 7.3 (6/-DENSE). Let A be an m x n binary matrix and ¢ € [0, 1].
We say a tile or binary outer product yx ' is d-dense in A if

y' Ax > dlz|ly| .
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Since a Boolean matrix product, approximating the data matrix well, covers
a high proportion of ones in D, the tiles returned by a Boolean factorization are
expected to be dense in D. We will discuss in the following section how dense a
tile has to be in the data matrix in order to approximate it well. The following
theorem explores the probability with which a d-dense tile of given minimal size
exists in a Bernoulli matrix. This gives us an upper bound on the probability
P(Z; =1) from Eq. (7.2), which in turn allows us to bound the FDR.

THEOREM 7.4. Suppose B is an m xn Bernoulli(p) matriz, § € [0,1], 1 < a <n,
and 1 < b < m. The probability that B has a d-dense tile of size |x| > a and |y| > b

is no larger than
(Z) (7:) exp (—2ab(5 — p)?) . (7.3)

Proof. If a d-dense tile yz " exists in B, having the size (|z|,|y|) > (a,b), then we
can construct a d-dense sub-tile of exact size (a,b). This follows by induction from
the observation that removing the sparsest column/row in B o yz " from the tile
does not decrease the density. Thus, the probability that a d-dense tile of size at
least (a,b) exists is no larger than the probability that a tile of size (a,b) exists.

Now, let yz " be such a tile with |z| = a and |y| = b. The probability that yz "
is 6-dense in B is equal to

.
y' Bz ) 1
(5t 2 ((bZ . ) ! p)

< exp (—2ab(6 — p)?),

where the inequality follows from Hoeffding’s inequality. An application of the
union bound over all possible combinations to place a ones in x and b ones in y
yields the statement of the theorem. Il

The proof of Theorem 7.4 indicates that the tightness of the bound in Eq. (7.3)
might suffer from the extensive use of the union bound. This originates from the
numerous possibilities to select a set of columns and rows of given cardinality. If
we expect that rows and columns which are selected by a tile have proportionately
many ones in common, we bypass the requirement to take all possible column and
row selections into account. To this end, given an m x n matrix A, we assess the
value of the function
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THEOREM 7.5. Let B be an m x n Bernoulli(p) matriz and let T > p?. The
function value of n satisfies n ((1/v/m)B) > 7 with probability no larger than

mn=1) (_§ M) | (7.4

2" 2+ T

Proof. Let B be as described above and 1 < ¢ # k < n. The variance of the
random variable Bj;By, is

2
E [(BﬂBjk —7°) } =p’(1-p%).
Since the variables Bj;Bj; are independent for j € {1,...,m}, the Bernstein

inequality yields

P({(B;,By) >mr) =P (Z (B;iBjr —p°) > m7 — mp2)

J

B VS5 O TS

mp?(1 — p?) + 1/3(m1 — mp? 2/3p*+1/37

where we made use of the relations E[B;;B;;] = p? and 1 — p? < 1. The union
bound over all possible pairs of distinct rows (i # k) yields the final result. ]

If the columns of a matrix A are normalized, then the function n(A) returns
the coherence of A. The coherence measures how close the column vectors are to
an orthogonal system, an extensively studied property in the field of compressed
sensing (Foucart and Rauhut, 2013). If all columns of a matrix are orthogonal
to each other, then the coherence is zero. The bound in Eq. (7.4) also implies a
bound on the coherence of the matrix A. Thus, we refer to Bound (7.4) as the
coherence bound and to Bound (7.3) as the density bound. For any given tile, we
can now derive two upper bounds on the quantity P(Zs; = 1) from Eq. (7.2), and
thus control the FDR.

712 Rejecting the Rejection of Null Hypotheses

How does the density and the coherence bound now help assessing the probability
P(Zs; = 1) from Eq. (7.2)7 Let us reconsider the universal formulation of a null
hypothesis, which poses that a tile does not reflect actual relations given by the
true model Y*X*'. First, we relax this definition by counting those tiles which
cover only a fraction of the true model among the false discoveries as well. Given
factor matrices X and Y and and a fraction parameter a € [0, 1], we define the
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null hypothesis H?(«) to be true if the overlap between the s-th tile and the model
is smaller than o

Y, XTov o X*'

| - <a. (7.5)
V. XT]

Assuming that the positive noise is generated by a Bernoulli (p% ) matrix B, we

define the random matrix corresponding to the decomposition of the data matrix
given in Eq. (7.1) by

D= (Y*@X*T@B> o (Y*@X*T@K). (7.6)
The generalization of the data to a random matrix enables us to asses the proba-

bility of a false discovery.

COROLLARY 7.6. Let B be an m xn Bernoulli(p’.) matriz and define the random
matriz D as in Eq. (7.6). Given matrices X € {0,1}"*" and Y € {0,1}™*" with
an observed density of

Y;l—-DXS = 5S|Ys||X~s|7
then for p = max{d, — o — p* , 0}, the probability that the null hypothesis HY(c) is
true and thus not to be rejected is bounded by

Y. X oY*® X*T YTDX
P(Z,=1)=P | 2 <oA= >
( [V, XT| V|| X s

< (1) () o (2t

Proof. We apply the triangle inequality to the density of tile s, substituting D
with its decomposition:

Y)DX,| <|V.X]oY o X" +|V,X]oB].

Dividing by |Y,||X | and applying Eq. (7.5) yields that Y., X[ is (J, — a)-dense in
B. The probability for this event is bounded by Theorem 7.4. [

Similar considerations lead to a false discovery bound based on coherence. In
this setting, we define the null hypothesis H?(3) for 8 € N to hold if

0 <YX oY*® X*T> < 8. (7.7)

This restriction affects the tile-wise overlap between the underlying and the com-
puted model more than the definition based on density does. As such, Eq. (7.7)
implies that each column of the outer product Y, X ;' covers at most 3 rows of each
tile Y X* " of the underlying model. The probability of a false discovery according
to this definition of a null hypothesis is bounded by the following corollary.
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COROLLARY 7.7. Let B be an m xn Bernoulli(p’.) matriz and define the random
matriz D as in Eq. (7.6). Given X € {0,1}"*" and Y € {0, 1}™*" having

n (Y.SXI o D) =T,m,

then for p = max{7, —B8/m, p*}, the probability that the null hypothesis H2(3) holds
as defined in Eq. (7.7) is bounded by

P(Z,=1)=P (n (Y,SX,S oY* ® X*T> < B Ay (Y.X]oD) = Tsm)
< Mexp (—%m(p _p2)2>

2 2p2+p

Proof. From the composition of D as denoted in Eq. (7.1) and the definition of 7,
computing a maximum, follows that

n(VoX1oD) <y (VX0 VIX1T) 49 (V. X]0B).

Applying Eq. (7.7) and n (Y.,X.] o D) > 7,m yields n(B) > 7;m — 3. The proba-
bility that this inequality holds is bounded by Theorem 7.5. O

We assume from now on that o = 8 = 0, by what both definitions of the null hy-
pothesis concur. The following results are though easily adapted to a parametrized
definition of the null hypothesis.

/7.2 Theoretical Comparison of Proposed Bounds

The bounds from the previous section supposedly enable a theoretically well-
founded approach to select the rank for a Boolean factorization. Given any fac-
torization, the proposed bounds help to toss all tiles which may just as well have
arisen from noise. However, the tightness of the bounds is the linchpin of the
applicability of this scheme. Since we do not require a penalization term of the
model complexity to determine the correct rank in the FDR controlled scenario,
we can choose the most simple objective function: the residual sum of squares as
defined in problem (BMF). The minimization of the residual sum of squares is
not only simple to implement, but this function is also simple enough to let us
derive characteristics of its optima with regard to coherence and minimum density
of tiles. This enables a theoretic characterization of those tiles which would be
tossed by the bounds. Moreover, this contributes to a fundamental understanding
of the nature of tiles in a minimizing factorization. Assuming the data is composed
as stated in Eq. (7.1), we explore the circumstances which have to be met such
that a tile in the noise matrix contributes to minimizing the approximation error.
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LEMMA7.8. Let X andY benxr and mxr binary matrices and lets € {1,...,r}.
We collect in T ={1,...,r} \ {s} all indices except s and denote with the matriz
M =Y. ® X the Boolean matriz factorization excluding the s-th tile. If (X,Y)
is a solution of (BMF), then the density of tile (x,y) = (X.s, Ys) is lower-bounded
on the area which is not covered by any other tile, i.e.,

o
y' DoM)x 1 (7.8)
y ' Mx 2

Proof. Let X, Y, M and (z,y) be as described above. The Boolean product of X
and Y is written in dependence of M as

YOX' =Y. X]®..0Y, X =M+yr' oM.

The approximation error of a Boolean product is the sum of uncovered ones and
covered zeros in the data:

D-YoX'|=(D-1+1-YoX' D-YoX')
= (DYoX)+(D,YyoXT')
— (D, M +yz" o M)+ (D, M +ya" o M)
= (D,M)—y"(DoM)z+(D,M)+y" (DoM)=x
= |D-M|—y" (DoM)z+y' (DoM)u.

Since (X,Y’) minimizes the RSS, we have |[D — M| > |D —Y ® XT|. Hence
y " (DoM)x—y' (DoM)x=2y"(DoM)x—y' Mz > 0.
Transforming this inequality yields the final result. [

Note that the proof of Lemma 7.8 implies, that the density in Eq. (7.8) has to
be larger than one half, if the objective function incorporates a regularization term
on the factor matrices. This could be for instance the ¢1-norm of the matrices.
From Lemma 7.8 we now conclude the following property of tiles which reflect a
false discovery.

COROLLARY 7.9. Let the matrices X andY solve (BMF), and let s € {1,...,r}.
If the tile Y., X[ is a false discovery and has no overlap with the remaining tiles,
ie, (Yo, Yi) (X X)) =0 for s #t, then Y., X! is 1/2-dense in the positive noise
matriz Ny.

A similar procedure leads to a bound on the coherence.
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LEMMA 7.10. Let the matrices X and Y solve (BMF) and let s € {1,...,r}. If
the outer product Y., X.,' is 6-dense in D, then

51X — 1

nD) > AI¥.l T

(7.9)

Proof. Let X,Y and s be described as above. Denote by Z, = {i € {1,...,n} |
X;s = 1} the set of all items indicated by X .. Since the ¢1-norm is bounded for
a vector x with a nonzero entries by |z| < \/al|z|| and since Y, X! is d-dense, it
holds that

T 2

Y. DX,
nm%aanszLiWTi—zwwmxg?

The norm above is equal to

|diag(Y ) DX ||> = X[ DT diag(Y,) DX ,
= Z D) diag(Y.,) D,

i,k€ELs

=Y!DX,+ Y  Djdiag(Y,)D.y.
i#k€eT,

Combining both (in)equalities above yields

YIDX,
> DJ diag(Y,)Dy > Y] DX, (T - 1)
i£keT, Vs

According to the pigeonhole principle, indices ¢ # k exist, i, k € Z, such that

51X - 1

D, D) > 6|y dtsl =2

]

If we assume that a tile Y, X | is a false discovery from a solution (X,Y) to
the optimization problem (BMF), then Eq. (7.9) applies to N,.
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(n,m) = (1000, 800) (n,m) = (1600, 500)
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FIGURE 7.1: Minimum relative size [Y's|/m, depending on |X:sl/n, for which P(Zs; =1) <
0.01, based on density (blue) and coherence (green).

These results enable a theoretic comparison of the bounds based on coherence
and density. Figure 7.1 contrasts the two bounds for two settings of dimensions.
The plot on the left refers to almost square dimensions (n,m) = (1000,800) and
the one on the right to more imbalanced dimensions (n,m) = (1600, 500). Let
(X,Y) be a solution of (BMF) and assume that the positive noise matrix is a
Bernoulli (p*.) matrix with probability p% = 0.1. We plot the minimum relative size
Y'sl/m against the relative size [X-sl/n such that the probability of a false discovery
is P(Zs; = 1) < 0.01. The blue curve displays the minimum tile size, assessing the
false discovery probability by Corollary 7.6, while green refers to Corollary 7.7.
Thereby, we assume that the tile is 1/2-dense in N, and the value (N, ) is bounded
by Eq. (7.9). Figure 7.1 indicates that under the given circumstances the coherence
provides a more loose bound than the density. The difference between the required
sizes is larger if the dimensions are disproportionate. This suggests that more tiles
are rejected as potential false discoveries by the coherence bound, in particular for
wide or tall data matrices. Most importantly, the density bound is tight enough to
let most of the tiles pass, which would be generated according to the synthetic data
generation in Algorithm 9. The default setting of the data generating algorithm
specifies the relative sizes to lie in the interval [0.01, &0, = 0.1]. The plot shows,
e.g., that the density bound would accept tiles having a size of 0.03n x 0.5m,
even if the negative noise flips half of the ones to zeros. This demonstrates that
the density bound is tight enough to align with the common sense regarding the
minimum size of identifiable tiles.
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ALGORITHM 10 The tossing functions for the application of PAL-TILING imple-
menting the determination of the rank via FDR control.

1: FUNCTION TossDENS(x,y,D)

m

D
2: pemax{u—a—p%()

lyl||
3. RETURN |Z|) (("m) exp (—2Jz(ylp?) > ¢
4: END FUNCTION
ot
6: FUNCTION TossCoH(x,y,D)

Y., X! oD)—

7 ,0<—max{77( : o D) 67101

n(n —1) 3 (p—p*)?
8: RETURN—= ——m-—
5 exp ( 2m 2+ p >q
9: END FUNCTION

7.3 Algorithmic Integration of FDR Control

The false discovery bounds might be applied as a postprocessing step to any
Boolean factorization result. Here, we also establish the use of these bounds to
directly estimate the rank. In the rounding procedure at the end of the relaxed
optimization in PAL-TILING (Algorithm 7), we can integrate a check of the false
discovery bounds via a specification of the function To0ss.

Since we intend to solve problem (BMF), a suitable smooth relaxed objective
is the residual sum of squares. Therefore, we employ the vanilla PAL-TILING (Al-
gorithm Specification 1) and the function T0OSS as stated in Algorithm 10. We call
the resulting algorithm TRUSTPAL, which requires additional to the parameters
of PAL-TILING the estimated noise probability p,, the null hypothesis defining
parameters «, (3 (default value 0) and the FDR control level g (default value 0.01).
The functions in Algorithm 10 define that a tile is supposed to be tossed if the
risk that it is a false discovery is not bounded above by ¢. That is, if Corollary 7.6
or 7.7 does not yield P(Zs = 1) < g, then the tile s is removed from the factor-
ization. Multiple combinations of the density and coherence bound are possible.
Here, we distinguish between TRUSTPAL employing the density bound, that is
function TosSDENS and TRUSTPAL employing the coherence bound, where we
toss tile s when TossCoH(X ,, Y., D) and TossCoH (Y, X, D) both return
true. The application to the transposed factorization serves a symmetric test of
the coherence bound.
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74 Experiments

Our experimental evaluation serves the assessment of provided bounds in practical
applications. Although the theoretical properties of minimizing factorizations yield
satisfactory bounds on the size of a tile (cf. Figure 7.1), in practice no feasible
existing algorithm can guarantee to return optimal solutions of problem (BMF).
In addition, we evaluate the sensitivity to the estimated noise probability.

The implementation of TRUSTPAL follows the highly parallel GPU implemen-
tation from the framework PAL-TILING. The source code of TRUSTPAL, together
with Julia scripts to generate data and to compare proposed bounds, is provided!.

We compare the two variants of TRUSTPAL, employing the bounds based on
density or coherence to determine the rank, and the performance of the algorithm
PriMP. For both bounds, we assume that the null hypothesis with regard to a tile
holds if the tile covers only noise. That is, the parameters of the rounding pro-
cedure in Algorithm 10 are set to a = = 0. We have seen in the experimental
evaluation of Section 6.3.1 that PANPAL displays a strong tendency to underes-
timate the rank, but is able to yield more accurate results than PRIMP in some
particular settings. Whenever that is the case, we display the results for PANPAL
in the following plots.

741  Experiments on Synthetic Data

We generate 1600 x 500 and 1000 x 800 data matrices according to Algorithm 9. For
every parameter variation, we generate 8 matrices, 4 for each dimension setting
(n,m) € {(1000,800), (1600,500)}. If not stated otherwise, the default settings
py =p- =01, 7" =25 and d = 0.1 apply. We compare again the computed
models against the planted structure by the adaptation of the micro-averaged F-
measure, as discussed in Section 6.3.1.

Figure 7.2 displays the performance of the density and coherence approach of
TrRUSTPAL with PrRIMP. The noise probability is between p’. € {0,0.05,...,0.25}.
While the plots on the left show aggregated results over 20 almost square 1000 x
800 matrices, the plots on the right refer to 20 more imbalanced datasets with
dimension 1600 x 500. The input parameter of TRUSTPAL, the estimated noise
probability, is consistently set to p, = 10%. The plots show that both probability
bounds yield similar results. In particular, if the noise percentage exceeds the
estimated noise probability, no more than the actually planted tiles are discovered.
An overestimation of the rank, as happening with PRIMP on more square matrices,
is prevented.

http://sfb876.tu-dortmund.de/trustpal
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FIGURE 7.2: Variation of uniform noise for 1600 x 500- and 1000 x 800-dimensional
data. Comparison of F-measures (the higher the better) and the estimated rank of the
calculated Boolean factorization (the closer to 25 the better) for varying levels of noise
indicated on the x-axis.

We state the average measures over all variations of the positive noise parame-
ter pt € {5,10,...,25} and the rank 7* € {5,10,...,45} in Table 7.1. We see that
all algorithms consistently gain high F-values and an average deviation of the rank
which is close to zero. Yet, PRIMPs average rank deviates to a positive amount
and TRUSTPAL rather underestimates the rank. Note, that an overestimation of
the rank does not necessarily imply a false discovery; planted tiles might be split.

In Figure 7.3 we plot the F-measure and the computed rank against the param-
eter &4z, which bounds the maximum size of a tile. Here, we add a comparison to
the algorithm PANPAL, whose tendency to underestimate the rank comes in handy
for more dense matrices, when &,,,, is larger than 0.2. We see that TRUSTPAL is
able to find the right balance and obtains the highest F-measure over all variations
of &z In total, the experimental evaluation suggests that the estimation of the
noise probability is not critical in practice and that both bounds are suitable to
yield accurate rank estimations under false discovery control.
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Vary Algorithm F-measure r—r

TRUSTPAL Dens 0.99 + 0.015 —0.39+£1.65
TrusTPAL Coh 0.98 +£0.023 —1.77 4+ 1.57
PRIMP 0.99 £ 0.004 1.21 +£2.89

TRUSTPAL Dens 0.98 4 0.050 —0.4754 2.54
kS TrRusTPAL Coh  0.96 +0.069 —2.875+3.17
PRIMP 0.98 £ 0.074 0.975+2.14

TABLE 7.1: Average F-measure and difference between computed and planted rank r—r*
for varied positive noise and true rank. For each setting the average value is computed
over all dimension variations.

w ~ 20 T aeemne 4= ---- +
i
4+ : : : : 0 : : : :
0.1 015 0.2 025 0.3 01 015 0.2 025 0.3
Smam é.maa;

TRUSTPAL dens == TRUSTPAL coh
PRriMP - PaNPAL

FIGURE 7.3: Variation of density and overlap influencing parameter &4, € [0.1,...,0.3].
Comparison of F-measures (the higher the better) and the estimated rank (the closer to
25 the better) for uniform noise of p¥ = 10%.

74.2  Movielens Experiments

Comparing the performance of algorithms in terms of the false discovery rate
proves difficult for real-world datasets, since, obviously, the actual noise distribu-
tion is unknown. Recommendation data at least provides some information about
its positive noise in form of negative reviews. We explore the performance of al-
gorithms on the binarized MovieLensb00K dataset, as discussed in Section 6.3.2.
We compare the output of TRUSTPAL for various noise probability estimations p,
to the results from PRIMP and PANPAL.

Table 7.2 summarizes the results. We estimate the positive noise to be small
py € {0.01,0.05,0.1} as we not often expect that users give a positive rating of a
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Algorithm  Bound p, r %RSS Wrong rec.

TRUSTPAL coh 0.1 23 80.68 2.43
0.05 25 80.52 2.38

0.01 25 80.26 2.44

dens 0.1 26 81.59 2.11

0.05 35 79.54 2.43

0.01 25 78.22 2.72

PriMmp - 78 88.59 2.38
PANPAL - 15 94.05 2.23

TABLE 7.2: Comparison of TRUSTPAL for estimated noise probabilities p; with PRIMP
and PANPAL on the MovieLens dataset. Denoted are the rank r, approximation error
%RSS and the percentage of traceable wrong recommendations, i.e., user-movie recom-
mendations corresponding to bad reviews (< 2.5 of five stars).

movie they do not actually like. We observe again that a variation of the estimated
noise probability does not make much of a difference. The residual sum of squares
decreases with decreasing noise estimations, but not more than 4% in total. The
calculated rank and the percentage of wrong recommendations do not display such
a monotone behaviour. Using the coherence bound, the rank only slightly increases
from 23 to 25 when less noise is assumed. The rank determined by the density
bound does not display a monotone behaviour. It jumps from 26 to 35 to 25
with decreasing expected noise. The estimated ranks of TRUSTPAL are close to
25, which differs notably from the rank of 78 from PRIMP. Impressive is that all
runs of TRUSTPAL achieve a lower approximation error than PRIMP an PANPAL.
Looking at the amount of traceable wrong recommendations, we see that PANPAL
with its very conservative selection of tiles achieves a generally low amount of
wrong recommendations, which is only topped by one run of TRUSTPAL. PRIMP
exhibits a comparably low amount of traceable wrong recommendations as well.
Only two of the six runs of TRUSTPAL achieve an equal or lower amount of wrong
recommendations than PRIMP. By and large, the results show that the effect of
random initialization is stronger than the the effect of the estimated noise p, .

7.5 FDR Control in Clustering and Pattern Mining

False discovery control in unsupervised settings is basically unexplored. One no-
table approach is scan clustering (Pacifico et al., 2007), focusing on one- or two-
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dimensional spatial density clustering. The authors control the area of discovered
clusters by the FDR, addressing Gaussian processes in continuous data. Thus,
this approach cannot be applied to binary or discrete data in general.

In the pattern mining literature, a standard framework for handling false dis-
coveries is the Significant Pattern Mining proposed by Webb (2007). It assesses
individual patterns, handling the pattern explosion problem by Bonferroni-like
corrections on the significance level. The significant pattern mining framework
can work with any null hypothesis to be tested on patterns. One considerable
approach that works in this setting is statistical significant pattern mining via
permutation testing (see (Llinares-Lépez et al., 2015) and references therein). The
major difference to our scenario is the supervision of the mining procedure. In
the significant pattern mining scenario, patterns are annotated by class labels,
and the task is to identify those patterns which appear significantly more often
in one class than in the other class(es). State-of-the-art approaches rely on (vari-
ants of) Westfall-Young permutation based hypothesis testing. In a similar line
of research, namely statistical emerging pattern mining (Komiyama et al., 2017),
patterns from different sources (e.g., databases) are considered. The goal is to find
patterns which appear significantly more often in one database than in another.
Multiple hypothesis testing is applied to control the FDR, and to provide other
statistical guarantees.

A method designed to test one specific null hypothesis on supervised pattern
mining results (such as Subgroup Discovery and Exceptional Model Mining) is
DFD Validation by Duivesteijn and Knobbe (2011). In what essentially boils
down to a permutation test, a Distribution of artificial False Discoveries (DFD) is
generated. Subgroups resulting from the actual supervised local pattern mining
run are then accepted only if they refute the null hypothesis that they are generated
by the DFD. This provides evidence that the subgroups are deemed interesting by
more than solely random effects, but the method is specific to the supervised local
pattern mining setting. All approaches make heavy use of the fact that data comes
from multiple classes or sources and are not easily transferred to the unsupervised
setting.

/.6 Discussion

We introduce a method to control the false discovery rate in Boolean matrix factor-
ization and prove two bounds to estimate the probability that a tile minimizes the
objective while covering (mostly) noise. A theoretical comparison of our bounds
characterizes the tiles which are regarded as false discoveries (cf. Figure 7.1). We
explain how FDR control can be integrated into existing BMF algorithms—this
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improves the theoretical properties of algorithms and takes away the need to regu-
larize the model complexity. An empirical study on synthetic and real-world data
demonstrates its practical utility.

In conclusion, FDR control takes the concern about too noisy results off the
researcher’s hand. The remaining question is how to derive tiles which approach
the underlying model best, e.g., which do not split true tiles? In this respect, the
suitable application of regularizers is still important. Another arising question is
if we can incorporate other noise distributions or how we can test if the noise is,
e.g., actually Bernoulli distributed. Multiple avenues of research are opened now.
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CHAPTER 8

Mining Class-Specific Alterations
with BMF

When given labeled data, a natural instinct for a data miner is to build a discrim-
inative model that predicts the correct class. Yet in this chapter we focus on the
characterization of the data with respect to the label in order to find similarities
and differences between chunks of data belonging to miscellaneous classes. Con-
sider a binary matrix where each row is assigned to one class. Such data emerge
from fields such as gene expression analysis, e.g., a row reflects the genetic infor-
mation of a cell, assigned to one tissue type (primary/relapse/no tumor), market
basket analysis, e.g., a row indicates purchased items at the assigned store, or
from text analyses, e.g., a row corresponds to a document/article and the class
denotes the publishing platform. For various applications a characterization of
the data with respect to classes is of particular interest. In genetics, filtering the
genes which are responsible for the reoccurrence of a tumor may introduce new
possibilities for personalized medicine (Schramm et al., 2015). In market basket
analysis it might be of interest which items sell better in some shops than others
and in text analysis one might ask about variations in the vocabulary used when
reporting from diverse viewpoints.

These questions are approached as pattern mining (Vreeken et al., 2007) and
Boolean matrix factorization problems (Miettinen, 2012). Both approaches search
for factors or patterns which occur in both or only one of the classes. This is
illustrated in Figure 8.1; a data matrix is indicated on the left, whose rows are
assigned to one class, A or B. While the green outer product spreads over both
classes, the blue products concentrate in only one of the classes. We refer to the
factorizations of the first kind as common and to those of the second kind as
class-specific.

117
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FIGURE 8.1: A Boolean factorization of rank three. The data matrix on the left is
composed by transactions belonging to two classes A and B. Each outer product is
highlighted. Best viewed in color.

The identification of class specific and common factorizations is key to a charac-
terization of similarities and differences among the classes. Yet, what if meaningful
deviations between the classes are slightly hidden underneath an overarching struc-
ture? The factorization in Figure 8.1 is not exact, we can see that the red colored
ones in the data matrix are not taken into account by the model (the factorization
on the right). This is partially desired as the data is expected to contain noise
which is supposedly filtered out. On the other hand, we can observe concurrence
of the red ones and the pattern of the green tile — in each class. In this chapter we
propose a novel Boolean matrix factorization method which is suitable to compare
horizontally concatenated binary data matrices originating from diverse sources or
belonging to various classes. To the best of the authors knowledge, this is the first
method in the field of matrix factorizations of any kind, combining the properties
listed below in one framework:

o the method can be applied to compare any number of classes or sources,

o the factorization rank is automatically determined; this includes the auto-
matic identification of tiles being common among multiple classes as well as
the identification of discriminative tiles occurring in only one class,

e in addition to discriminative tiles, more subtle characteristics of classes can
be derived, pointing out the features where common tiles deviate among the
classes.

While works exist which approach one of the first two points mentioned above (cf.
Section 8.1), the focus on subtle deviations among the classes as addressed in the
third point is entirely new. This expands the applicability of the new method to
datasets where deviations among the classes have a more complex structure.
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FIGURE 8.2: A Boolean product identifying common (green) and discriminative outer
products (blue). Best viewed in color.

8.1 Integrating Class Labels into BMF

We assume that the data matrix is composed of various sources, represented by
an assignment of transactions to c classes. We denote the transactions belonging
to class a with the set set of indices J, C {1,...,m}. The cardinality of set J, is
mg, hence we have m = my + ...+ m,. If the given data matrix is partitioned into
classes, a first approach for finding class-defining characteristics is to separately
derive factorizations for each class. However, simple approximation measurements
such as the residual sum of squares of a Boolean factorization are already noncon-
vex and have multiple local optima. Due to this local view of computed models,
class-wise factorizations are not easy to interpret; they lack a view on the global
structure. Puzzling together the (parts of) patterns defining (dis-)similarities of
classes afterwards, is not trivial. Therefore, finding suitable factorizations which
reflect dependencies between the classes is a problem on its own.

In the case of nonnegative, labeled data matrices, measures such as Fisher’s lin-
ear discriminant criterion are minimized to derive weighted feature vectors, that are
patterns in the binary case, which discriminate most between classes. This variant
of NMF is successfully implemented for classification problems such as face recog-
nition (Nikitidis et al., 2014) and identification of cancer-associated genes (Odibat
and Reddy, 2014).

For social media retrieval, Gupta et al. (2010) introduce Joint Subspace Ma-
trix Factorization (JSMF). Focusing on the two-class setting, they assume that
data points emerge not only from discriminative but also from common subspaces.
JSMF infers for a given nonnegative data matrix and ranks ro,r; and o a fac-
torization as displayed in Figure 8.2. Note that there are exactly ry columns in
the factor matrix Y spanning over points from both classes and r; respectively 79
columns whose nonzero entries are restricted to class one or two. Multiplicative
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updates are used to minimize a weighted sum of class-wise computed residual sums
of squares. In Regularized JSNMF (RJSNMF), a regularization term is used to
prevent that shared feature vectors (in X,TSU) swap into discriminative subspaces
and vice versa (Gupta et al., 2013). This happens if a column in Y5, is divided into
two columns, one in Y s, and the other in Y;,s,. Correspondingly, a discrimina-
tive feature vector in X.s, or X s, could be represented as one of the shared vectors.
The arising optimization problem is solved by the method of Lagrange multipli-
ers. Furthermore, a provisional method to determine the rank automatically is
evaluated. However, this involves multiple runs of the algorithm with increasing
numbers of shared and discriminative subspaces, until the approximation error
barely decreases. A pioneering extension of this method to the multi-class case
(¢ > 2) is provided by Gupta et al. (2014).

Miettinen (2012) transfers the objective of JSMF into Boolean algebra, solving

. % T
min 7@ ‘DJE- = Y7.500s. © X 5,08,
" oae{1,2}
for binary matrices D, X and Y, and normalizing constants :“1_/12 = |D v /2|. A

variant of the BMF algorithm ASSO governs the minimization. A provisional
determination of ranks based on the MDL principle is proposed, computing which
of the candidate rank constellations yields the lowest description length.

Vreeken et al. (2007) pursue the idea of MDL in the context of deriving a set of
pattern sets, which characterizes similarities and differences of groups of classes.
Identifying the usage of each pattern with its support in the data, the number of
derived patterns equates the rank in BMF. In this respect, their proposed algorithm
DirFrNORM automatically determines the ranks in the multi-class case. However,
as known from pattern mining, restricting the usage to the supporting transactions
often results in a vast amount of returned patterns.

In the case where two-classes are given for a nonnegative data matrix, Kim et al.
(2015) improve over RJSNMF by allowing small deviations from shared patterns in
each class. They found that shared patterns are often marginally altered according
to the class. In this work, we aim at finding these overlooked variations of shared
patterns together with strident differences among multiple classes, combining the
strengths of MDL for rank detection and the latest results in NMF.

8.2  Mining Class-Specific Alterations

Given a binary data matrix composed from multiple classes, we assume that the
data has an underlying model similar to the one in Figure 8.1. There are common
or shared patterns (green) and class-specific patterns (blue). Furthermore, there



8.2. MINING CLASS-SPECIFIC ALTERATIONS 121

are class-specific patterns, which align within a subset of the classes where a pat-
tern is used (the red ones). We call such aligning patterns class-specific alterations
and introduce the matrix V to reflect them.

DEFINITION 8.1 (CLASS-SPECIFIC ALTERATIONS). Let X € {0,1}"*" and
V € {0,1}*" be binary matrices, where V stacks the n x r binary matrices V,
for 1 < a < ¢ on top of each other. We say the matrix V models class-specific
alterations of X if [ X oV,||=0forall 1 <a <c¢,and ||[Vjo...0V,| =0.

We assume that the data emerges from a Boolean matrix product; yet, we
now consider multiple products, one for each class, which are defined by the class-
wise alteration matrix V', the pattern matrix, usage and the noise matrix N &
{=1,0,1}™*" such that for 1 < a < ¢ the data is decomposed as

Dz, =0 (Y7.(X+V,)")+ Ng,. (8.1)

Given a class-wise decomposed binary data matrix as shown above, we wish to
filter the factorization, defined by X, Y and V', from the noise.

8.21 (C-Salt

We propose to capture class-defining characteristics in the framework of PAL-
TILING, for which few extensions have to be made. We pose two requirements on
the interplay between usage and class-specific alterations of patterns: class-specific
alterations ought to fit very well to the corresponding class but as little as possible
to other classes. We penalize nonconformity to this request with the function

S(K V) = Z Z (|YJas| |‘/a~s| - YJQSTD\Z;-V;LS) + Z Y:;;—,SDJI;“/;I'S

s=1 a=1 b#a

= itr (Y7."(1=2Dg )+ YD) V).

The left summand in the equation on the top becomes smaller the more often the
class-specific alteration occurs in used transactions of that class. Conversely, as
the right summand decreases, the class-specific alteration matches less to foreign
classes. As a result, the regularizing function S(Y, V') returns zero if every class
specific alteration occurs exactly at those transactions where the pattern is used,
but only in the corresponding class.
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ALGORITHM 11 The PAL-TILING extension C-SALT, mining class-specific alter-
ations in a labeled binary database.

1: FUNCTION C-SALT(D; A, = 10)

2: (XK,VK,YK) — (@,@,@)

3: FOR r € {A,,2A,,3A,,...} DO

4: (Xo, Vo, Yy) <~ INCREASERANK(X [k, Vi, Yi, A,)

5: FOR £ =0,1,... DO > Select stopping criterion
6: Oélzl — MVXF<Vk7Yk)

7: Xk+1 < pl"OXak¢B (Xk — oszXF(Xk, Vk, Yk))

8: Vo Myy, p(Xii1, V) pl<a<c
9: Varsr < prox, o (Var — %t Vv, F(Xiy1, Var, Ya)) pl<a<c
10: Bt Myyr(Xit1, Vi)

11: Yiy1 < proxg, 4. (Ye — B Vy F(Xpi1, Vigr, Ya))

12: END FOR

13: (X,V,Y) <~ RounD(L, Xy, Vi, Yy, D)

14: IF RANKGAP(X,V)Y,r) THEN RETURN (X,V,Y) END IF

15: END FOR

16: END FUNCTION

17: FUNCTION Rounn(L, X, Yz, Vi, D)
18 (X, V5 Y* L*) « (0,0,0,00)
19: FOR ¢,,t, € {0,0.05,0.1,...1} DO

20: (X, V,Y) ¢ (6, (X0), 60, (Vi) 6, (Y2)

21: Vo+—V,—XoV, >l1<a<c

22: U+ Vio...oV,

23: X+ 0X~+U)

24: VoV, = U >pl<a<c

25: FOR se{l,...,r},ae{l,...,c} DO

26: IF TosS(X.s + Vi, Y75, D7) THEN (X, V.., Y7,) < (0,0,0)
END IF

27: END FOR

28: IF L(X,V,Y) < L* THEN (X*,V*.Y* L*) « (X,Y,L(X,V,Y)) END
IF

20:  END FOR
300 RETURN (X*,V* V)
31: END FUNCTION

We include this regularizing function in the description length L(X,Y,V)
and its relaxation F'(X,Y,V). Since the function S(Y,V) is a polynomial and
thus semi-algebraic, its composition with definable functions returns a Kurdyka-
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bojasiewicz function, suitable for the optimization via PALM. The overall scheme
to derive alternating derivations in a binary data matrix is sketched in Algo-
rithm 11. The algorithm C-SALT largely follows the framework of PAL-TILING,
extending the optimization to more than two matrices which are involved in the
factorization. The input of C-SALT is the data matrix D and the rank increment
A,, where the transactions belonging to class a are indicated within the chunk
D, .. For each considered rank, the optimization scheme of PALM is applied to
the nonbinary penalization of the relaxed objective (line 5-12). The alternating
updates with respect to more than two matrices corresponds to the extension of
PALM for multiple blocks, as discussed by Bolte et al. (2014). Subsequently, a
rounding procedure is applied. Within the rounding procedure, the validity of Def-
inition 8.1 to the class-specific alteration matrix V' is ensured (line 20-24). Once
more, we apply a function T0OSS to remove trivial outer products. The number
of remaining outer products defines the rank. If the gap between the number of
possibly and actually modeled tiles is larger than one, the current factorization is
returned (line 14).

ALGORITHM SPECIFICATION 4 (C-SALT). Apply PAL-TILING with the func-
tion Toss from Algorithm 8 and the following functions, where the function Lct
and G are the same as denoted for PRIMP (Algorithm Specification 3). We employ
the following constants, objective L and its smooth part F"

D,
S (T pp—

LX,V,Y)=Ler ([X Vi...V],Y) + S(Y.V)

POCVY) =53 |pa. - Yga.(X—i—Va)THZ + %G ([X Vi...V.],Y) + SV, V).
a=1

The partial gradients are given as follows:

C 1T
VF(X,V,Y) = (Yo (X4+Vi)T = D) Yo + CT

1T
vVaF(X7 ‘/7 Y) :/’L (Yja(X + ‘/a)—l— - lj:]a,)T Yja‘ + CT

a=1

+D'Y+(1-2D;)" Y.

1 Y. |+1
(VY FX VY g =t (Vo X4V T = D) X = L (log (2EL)
2 Y|+r iedus

+Y Dz Vo +(1—2Dg,)Va.
b=1
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Further, we specify the employed Lipschitz moduli:

My p(Y,V) > llHYYT ; My, r(X,Y) > #HYJa-YJa-T”
MVYF(X> V) > H(Mya(X’ V))a”v MYG(X> V) = /LH(X + Va)(X + VG)TH + Myg.

We follow the automatic rank determination scheme by minimizing the de-
scription length of the encoding by a code table, as pursued by PriMP. The
class-specific alterations are denoted by means of standard codes, just as patterns
are stated in the code table. Therewith, we obtain an extension of this descrip-
tion length to class-specific alterations as denoted in Algorithm Specification 4.
Correspondingly, we employ the simplistic tossing function from Algorithm 8. An
automatic rank determination by FDR control is also applicable in this setting.
We check for the FDR probability bounds whenever the application domain is
sensitive to false discoveries.

8.3 Experiments

The experimental evaluations concern the following research questions: First, given
that the data matrix is generated as stated in Eq. (8.1), does C-SALT find the
original data structure? Second, is the assumption that real-world data emerge as
stated in Eq. (8.1) reasonable, and what effect has the modeling of class-specific
alterations on the results?” We compare against the algorithms DBSSL, the dom-
inated approach proposed in Miettinen (2012), and PrimP. The first question is
approached by a series of synthetic datasets, generated according to Eq. (8.1). To
address the second question, we compare on real-world datasets the residual sum of
squares, computed factorization ranks and visually inspect derived patterns. Fur-
thermore, we discuss an application in genome analysis where none of the existing
methods is able to provide the crucial information.

For C-SALT and PRIMP we use as stopping criterion a minimum average func-
tion decrease (of last 500 iterations) of 0.005 and maximal 10,000 iterations. We
use the Matlab/C implementation of DBSSL which has been kindly provided by
the authors upon request. Setting the minimum support parameter of the em-
ployed FP-Growth algorithm proved tricky. Choosing the minimum support too
low results in a vast memory consumption (we provided 100GiB RAM); setting it
too high yields too few candidate patterns. Hence, this parameter varies between
experiments within the range {2,...,8}.

C-SArLT is implemented for GPU. We provide the source code of our algorithms
together with the data generating script !.

http://sfb876.tu-dortmund.de/csalt
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8.3.1 Experiments on Synthetic Data

EVALUATION For synthetic datasets, we compare the computed models against
the planted structure by the known adaptation of the micro-averaged F-measure.
However, here we compute the F-measure for every class with respect to the ma-
trices Y7,. and X, = X + V,. We denote the class-wise calculated F-measure with
F..

Since class-specific alterations of patterns, reflected by the matrix V', are par-
ticularly interesting in the scope of this work, we additionally state the recall of
V*, denoted by recy. Therefore, we compute another maximum matching oy
between generated class alterations V* with usage Y* and computed patterns
Xy =[X Vi ... V] (setting V to the cn X r zero matrix for other algorithms than
C-SALT) with usage Yy = [V ...Y] (concatenating ¢ times). The recall recy, is
then computed with respect to the matrices V*,Y* Xy and Yy. Furthermore,
we compute the class-wise factorization rank r, as the number of nontrivial outer
products, involving more than only one column or row. Outer products where
solely one item or one transaction is involved yield no insight for the user and are
therefore always discarded. In following plots, we indicate averaged measures over

all classes 1 1 1
F=-> Fa. = - dr=-)> 7a
(DR mee = Doy, and = L3

a a

Therewith, the size of the class is not taken into account; the discovery of planted
structure is considered equally important for every class.

DATA GENERATION Algorithm 12 states the synthetic data generation as a
procedure which receives the class labels in form of indices (J,), and n, the fac-
torization rank r*, matrix C' € {0,1}°*” and noise probability p* as input. The
matrix C indicates which patterns are common over all classes and which occur
in only some classes. We define for our experiments three instances, one for each
considered number of classes ¢ € {2, 3,4}

11000

1100
101 10100
@_Qlwo’@_ 181?’ “%=l10110
10111

Every zero in the matrix C' determines an m,, x % submatrix of Y which is entirely
set to zero. That is, the entry C,, indicates whether the patterns X ¢ with (u —
1)% <s< u% are used at all in class a. For example, the shape of Y depicted in
Figure 8.2 for rg = r; =19 = % would be generated when using C5. By default,
we set the parameters r* = 24, m, = “* and the noise flipping probability p* = 0.1.
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ALGORITHM 12 Generation of synthetic datasets for Boolean matrix factoriza-
tions with class-specific alterations.

1: FUNCTION GENERATENOISYCSBMF (n, (Ja)a, 7%, C,p*) > C € {0,1}
2 X« UNIFORMRAND({X e {0,1} | 0.01 < =l <. 1}

3: V* UNIFORMRAND({V € {0, 1} | 0.01 < ‘Va ol el < 2}

n XA = 3

" Y*«-UNHORMRANDQ}fe{OJ}m“”\001§‘22”5501 1§(z§c})
5: FOR (a,s) € {1,...,¢} x{1,...,r*} DO

6: Y. CuYs,s" where u = (ST%—‘

7: END FOR

8: Dy Y 0X +V*" > Ensure Def. 8.1
9: FOR1<57<m,1<i<nDO

10: Dj; <1 — Dj; with probability p*

11:  END FOR
122 RETURN (X*,V* Y*)
13: END FUNCTION

SENSITIVITY TO NOISE AND CLASS DISTRIBUTIONS We plot for the fol-
lowing series of experiments the averaged F-measure, recall recy, and the rank
against the varied data generation parameter. For every experiment, we gener-
ate eight matrices: two for each combination of dimensions (n,m) € {(500, 1600),
(1600, 500), (800, 1000), (1000, 800) }.

Figure 8.3 contrasts the results of C-SALT, PRIMP and DBSSL in the two-class
setting. For DBSSL, we evaluate two parameter settings. We recall that DBSSL
requires a specification of the number of shared and discriminative patterns. We
generate the usage matrix according to matrix Cy, where we have v = 3 types
of patterns: % shared patterns and just as many discriminative patterns for each
class. However, the question is to which of the sets (shared or discriminative) we
assign class-specific alterations. In one perspective, class-specific alterations state
discriminative patterns on their own. In this view, we have ﬁ shared patterns
and 2” discriminative patterns for each class. Another perspectlve is to interpret
a shared pattern together with its class-specific alterations as one discriminative
pattern. In this view, we have zero shared patterns and 2% discriminative patterns
for each class. Both settings correctly reflect the number of planted discriminative
and shared patterns. In the experiments varying the rank, we employ the MDL-

based selection of the rank proposed for DBSSL.

Figure 8.3 shows the performance measures of the competing algorithms when
varying three parameters: noise p*, ratio of transactions per class - and rank
r*. We observe an overall high F-measure of C-SALT and PrRiMP. Both DBSSL
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FIGURE 8.3: Variation of noise, class distribution 721 and the rank. The F-measure,
recall of the matrix V' (both the higher the better) and the class-wise estimated rank
of the calculated factorization is plotted against the varied parameter. Best viewed in
color.

instantiations also obtain high F-values, but only at lower noise levels and if one
class is not very dominant over the other. C-SALT and PRIMP differ most notably
in the discovery of class specific alterations measured by recy. C-SALT shows
a similar recall as DBsSSL if the noise is varied but a lower recall if classes are
imbalanced. The ranks of returned factorizations by all algorithms lie in a rea-
sonable interval, considering that class-specific alterations can also be interpreted
as unattached patterns. Hence, a class-wise averaged rank between 16 and 24
is legitimate. When varying the number of planted patterns, the MDL selection
procedure of the rank also yields correct estimations for DBSSL. However, the
F-measure and recall of VV* decrease to 0.5 if the rank is not set to the correct
parameters for DBSSL.

Figure 8.4 displays the results of PRIMP and C-SALT when varying the noise
for generated factorizations according to three (using matrix C3) and four classes
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FIGURE 8.4: Variation of noise for generated data matrices with three (left) and four
classes (right). The F-measure, recall of the matrix V' (both the higher the better) and
the class-wise estimated rank of the calculated factorization (between 16 and 24 can be
considered correct) is plotted against the varied parameter. Best viewed in color.

(using matrix Cy). The plots are similar to Figure 8.3. The more complex con-
stellations of class-overarching tiles, which occur when more than two classes are
involved, do not notably affect the ability to discover class-specific alterations by
C-SALT and the planted factorization by PRiMP and C-SALT.

8.3.2 Real-World Data Experiments

We explore the algorithms’ behavior by three interpretable text datasets depicted
in Table 8.1. The datasets are composed by two classes, allowing a comparison
to DBSSL. The dimensions m; and msy describe how many documents belong
to the first, respectively second class. Each document is represented by its oc-
curring lemmatized words, excluding stop words. The dimension n reflects the
number of words which occur in 20 documents at least. From the 20 News-
group corpus?, we compose the Space-Rel dataset by posts from sci.space and

’http://quone.com/~jason/20Newsgroups/
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Dataset — my meo n Density [%)]
Space-Rel 622 980 2244 2.27
Politics 936 775 2985 2.64
Movies 998 997 4442 3.68

TABLE 8.1: Characteristics of considered datasets: Number of rows belonging to class
one my and two mg, number of columns n and density |D|/(nm) in percent.

Data Algorithm r To r Ty %RSS
C-SaLT  29(28)  4(3)  9(9) 16(16)  93.1(94.3)
SoaceRe] PRIMP  30(30)  8(8)  8(8) 14(14) 93.1(93.1)
PACeRE DrssL1 40(7)  19(1)  13(4)  8(2) 89.5(96.8)
DBSSL2 18(6)  7(1)  8(4)  3(1)  93.1(96.8)

C-SALT  41(40) 10(10) 19(18) 12(12) 88.2(88.3)

Politice  PRIMP30(30)  8(8) 15(15)  7(7)  90.5(90.5)
DessLl  57(20) 16(2) 27(14) 14(4) 81.6(90.5)

DessL2  42(15)  5(0) 18(11) 19(4)  86.0(91.2)

C-SALT  26(25) 25(25)  1(0)  0(0)  98.1(98.2)

Mov Privp  30(27) 29(27)  1(0)  0(0)  97.8(98.0)
VI Dpssil 27(4)  21(1)  3(1)  3(2) 96.6(97.5)
DBSSL2 12(4)  6(0)  3(1)  3(3)  96.9(97.6)

TABLE 8.2: Comparison of the amount of derived discriminative (r1,72) and class-
common patterns (rg), the overall rank r = ro + 71 + ro and the %RSS of the BMF
for real-world datasets. Values in parentheses correspond to factorizations where outer
products with less than four items or transactions are discarded.

talk.religion.misc, and the Politics dataset from talk.politics.mideast and
talk.politics.misc. The Mowvies dataset is prepared from a collection of 1000
negative and 1000 positive movie reviews®.

We consider two instantiations of DBSSL: DBSSL1 is specified by rg = r; =19 =
30 and DBSSL2 by ro = r; = r9 = 15. For a fair comparison, we set a maximum
rank of 30 for C-SALT and PRiIMP. Therewith, the returned factorizations have a
maximum rank of 90 for DBSSL1, 45 for DBSSL2, 30 for PRiMP and 60 for C-SALT.
Note that C-SALT has the possibility to neglect X and use mainly V' to reflect
cr = 60 class-specific outer products. In practice, we consider patterns V, 4+ X g

as individual class-specific patterns if |V, | > | X 4|.

3http://www.cs.cornell.edu/People/pabo/movie-review-data/
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C-SALT

PRrRiMP

DBssL

FIGURE 8.5: Illustration of a selection of derived topics for the 20 News articles from
classes space and religion. The size of a word reflects its frequency in the topic (~ Y,;—D.i)
and the color its class affiliation: pink words are common among both classes, blue
indicates a space and green a religion article. Best viewed in color.

Table 8.2 shows the number of discriminative and common patterns, and the re-
sulting residual sum of squares. Since outer products involving only a few items or
transactions either provide little insight or are difficult to interpret, we also state in
parentheses the values concerning truncated factorizations, discarding outer prod-
ucts reflecting less than four items or transactions (glossing over the truncating of
singletons, which is performed in both cases).

The untruncated factorizations obtained from DBSSL generally obtain a low
RSS. However, when we move to the more interesting truncated factorizations,
DBssL suffers (the rank shrinks to less than a third for factorizations of DBSSL2).
On the 20 Newsgroup datasets this leads to a substantial RSS increase; C-SALT
and PRIMP provide the lowest RSS in this case. We also observe, that the inte-
gration of the matrix V' by C-SALT empowers the derivation of more class-specific
factorizations than PRIMP. Nevertheless, both algorithms describe the Movies
dataset only by class-common patterns. We inspect these results more closely in
the next paragraph, showing that mining class-specific alterations points at exclu-
sively derived class characteristics, especially for the Movies dataset.

ILLUSTRATION OF FACTORIZATIONS Let us inspect the derived most preva-
lent topics in the form of word clouds. Figures 8.5, 8.6 and 8.7 display for every
algorithm the top four topics, whose outer product (tile) spans the largest area.
Class-common patterns are colored pink whereas class-specific patterns are blue
or green. Class-specific alterations within topics become apparent by differently
colored words in one word cloud. We observe that the topics displayed for the
20-Newsgroup data are mostly attributed to one of the classes. The topics are
generally interpretable and even comparable among the algorithms (cf. the first
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C-SALT

PRrRIMP

DBssL

FIGURE 8.6: Illustration of a selection of derived topics for the 20 News articles from
classes mideast politics and miscellaneous politics. The size of a word reflects its fre-
quency in the topic (~ Y] D.;) and the color its class affiliation: pink words are common
among both classes, blue indicates a mideast and green a miscellaneous politics article.
Best viewed in color.

C-SALT

PRIMP

DBssL

FIGURE 8.7: Illustration of a selection of derived topics for the Movies dataset, compris-
ing bad and good reviews. The size of a word reflects its frequency in the topic (~ Y] D.;)
and the color its class affiliation: pink words are common among both classes, blue in-
dicates a bad and green a good review. Best viewed in color.

topic in the Politics dataset). Here, class-specific alterations of C-SALT point at
the context in which a topic is discussed, e.g., the press release from the white
house after a conference or meeting took place, whereby the latter may be dis-
cussed in both threads (cf. the third topic for the Politics dataset).

The most remarkable contribution of class-specific alterations is given for the
Movies dataset. Generally, movie reviews addressing a particular genre, actors,
etc., are not exclusively bad or good. PRIMP and C-SALT derive accordingly only
common patterns. Here, C-SALT gives the decisive hint which additional words
indicate the class membership. We recall from Table 8.2 that DBSSL returns
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TABLE 8.3: Average size and empirical
standard deviation of patterns (-10%) and
class-specific alterations (-103).

FIGURE 8.8: Transposed usage matrix re- X [Vl [Vr| Vgl
turned by C-SALT on the genome dataset. 10.7+96 21425 3.6+48 38+6.6
Class-memberships are signalized by col-

ors.

in total four truncated topics for the Movies dataset. Thus, the displayed topics
for the Movies dataset represent all the information we obtain from DBSSL. In
addition, the topics display a high overlap in words, which underlines the reason-
ability of our assumption that minor deviations of common patterns denote for
some datasets the sole class-distinctions.

8.3.3 Genome Data Analysis

The results depicted in the previous section are qualitatively easy to assess. We
easily identify overlapping words and filter the important class characteristics from
the topics at hand. In this experiment, the importance or meaning of features
is unclear and researchers benefit from any summarizing information which is
provided by the method, e.g., the common and class-specific parts of a pattern. We
regard the dataset introduced in Schramm et al. (2015), representing the genomic
profile of 18 Neuroblastoma patients. For each patient, samples are taken from
three classes: normal (N), primary tumor (T) and relapse tumor cell (R). The
data denotes loci and alterations taking place with respect to a reference genome.
Alterations denote nucleotide variations such as A — C, insertions (C — AC)
and deletions (AC' — A). One sample from each of the classes N and T is given
for every patient (my = my = 18), one patient lacks one and another has three
additional relapse samples (mg = 20), resulting in m = 56 samples. We convert
the alterations into binary features, each representing one alteration at one locus
(position on a chromosome). The resulting matrix has n ~ 3.7 million columns.

C-SALT returns on the genome data a factorization of rank 32, of which we
omit 20 patterns by means of the density bound (Theorem 7.4) with a noise as-
sumption of 20%. Figure 8.8 depicts the usage of the remaining twelve outer
products, being almost identical for each class. Most notably, all derived patterns
are class-common and describe the genetic background of patients instead of class
characteristics. Table 8.3 summarizes the average length of patterns and corre-
sponding class-specific alterations. We see that the average pattern reflects ten
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thousands of genomic alterations and that among the class-specific alterations,
the ones which are attributed to relapse samples are highest in average. These
results correspond to the evaluation in Schramm et al. (2015).

The information provided by C-SALT can not be extracted by existing meth-
ods. PRIMP yields only class-common patterns whose usage aligns with patients,
regardless of the class. Running PRIMP separately on each class-related part D, .
yields factorizations of rank zero — the genomic alignments between patients can
not be differentiated from noise for such few samples. However, applying Vanilla
PAL-TILING separately, minimizing the RSS without any regularization for a
specified rank of 15, yields patterns for each part D,.. The separately mined
patterns overlap over the classes in an intertwined fashion. The specific class
characteristics are not easily perceived for such complex dependencies and would
require further applications of algorithms which structure the information from
the sets of vast amounts of features. This illustrates the importance of a global
view on shared, discriminative and alterating patterns.

84 Discussion

We propose C-SALT, an explorative method to simultaneously derive similarities
and differences among sets of transactions, originating from diverse classes. C-
SALT solves a Boolean matrix factorization by means of numerical optimization,
extending the method PRIMP to incorporate class assignments of the transactions.
We integrate a factor matrix reflecting class-specific alterations of outer prod-
ucts from a BMF (cf. Definition 8.1). Therewith, we capture class characteristics,
which are lost by unsupervised factorization methods such as PRIMP. Synthetic
experiments show that a planted structure corresponding to our model assump-
tion is filtered by C-SALT (cf. Figure 8.3). Even in the case of more than two
classes, C-SALT filters complex dependencies among patterns and the classes (cf.
Figure 8.4). These experiments also show that the rank is suitably estimated. On
interpretable text data, C-SALT derives meaningful factorizations which provide
valuable insight into prevalent topics and their class specific characteristics (cf.
Table 8.2 and Figures 8.5, 8.6 and 8.7). An analysis of genomic data underlines
the usefulness of our new factorization method, yielding information which none
if the existing algorithms can provide (cf. Section 8.3.3).
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CHAPTER 9

Conclusions

Making decisions is hard — however, with respect to machine learning, we have
seen that there are some tools to reach suitable binary solutions by means of
theoretically sound and empirically robust methods. With this work, we contribute
to the theory of making hard decisions in the scope of clustering. Our overview of
state-of-the-art clustering methods shows that there is a variety of clustering tasks
equivalent to matrix factorization problems involving binary constraints on one or
two of the factor matrices. Summarizing clustering problems in the framework of
matrix factorization has proven useful for deriving characteristics of solutions and
comparing approaches. For instance, we lay out in which sense the famous k-means
clustering task corresponds to learning orthogonal projections, eigenvectors, and
nonnegative factorizations in Theorem 2.1.

The overview of clustering tasks as matrix factorization has additionally proven
useful to provide deeper insights into the state of the art. As such, we lay out how
the seemingly arbitrary step of discretization via k-means in spectral clustering
can actually be made theoretically justified. Here, the formalization of the mini-
mum cut objective as matrix factorization displays its relation to kernel k-means,
yielding the equivalence of minimum cut and k-means clustering, given a sym-
metric decomposition of the data matrix such as the eigendecomposition. Based
on this observation, we have developed the algorithm SPECTACTL, tackling two of
the main issues in spectral clustering: robustness to noise and interpretability of
the embedding. Looking at visualizations of the embedding used in SPECTACL
(cf. Figure 4.2), we see how every projected eigenvector corresponds to one cluster
component of a specific density. The exploration of density-based clustering in the
framework of spectral clustering furthermore builds a bridge to the other main ap-
proach in nonconvex clustering, which is represented by the DBSCAN algorithm.
In conclusion, the algorithm SPECTACL and its normalized version is an efficient,
robust, and versatile tool to derive nonconvex clusters.

135



136 CHAPTER 9. CONCLUSIONS

Our comparison of popular clustering objectives shows that the majority of
methods is designed to find partitioning clusters. Suitable adaptations of Lloyd’s
algorithm (cf. Section 3.2) guarantee the convergence to a local optimum of the
objective function subject to the partitioning and particularly binary constraints.
This offers an undeniable advantage over other practical alternatives, requiring a
relaxation of the binary constraint. The major drawback of relaxing approaches is
the discretization step, in which theoretical guarantees, which might be provided
for solutions of the relaxed objective, are usually lost. However, the partitioning
constraint, enabling the alternating minimization according to Lloyd, is not feasible
in some applications. Overlapping and nonexhaustive clusterings are more likely
to represent the true model when it comes among other things to the clustering
of text or genomic data. In this case, the theoretical foundation regarding the
efficient optimization of corresponding objectives is leaky.

In this work, we mainly focus on the optimization of Boolean matrix factor-
izations, which is explicitly designed to model overlapping clusters of binary data.
The optimization of this clustering objective is provisional, since so far only greedy
heuristics prevail. This results in a strong preference bias towards factorizations
where the first tile covers the largest chunk of the data, and consecutive tiles
cover less and less. By contrast, we propose the simultaneous optimization of all
clusters via an efficient proximal gradient procedure, based on a nonnegative relax-
ation of the binary values. We specifically incorporate a penalty term to regulate
the convergence towards approximately binary values. This way, we still can not
guarantee that the discretized solutions are actual local minima of the objective
function, but we can guarantee that the approximately binary result is a local
minimum of the relaxed objective.

The approach to add a penalty term for nonbinary values is not new (cf. Sec-
tion 3.5). In particular, the optimization scheme proposed by Zhang et al. (2007)
incorporates nonbinary penalization by means of the Mexican hat function in the
scope of binary matrix factorization, aiming once again for nonoverlapping clus-
ters. However, the proposed optimization scheme is based on multiplicative up-
dates, which are slow in practice due to a very conservative choice of the stepsize.
We propose the optimization of Boolean matrix factorization via PALM, a univer-
sal approach which is applicable to solving constrained matrix factorizations. The
constraints are thereby required to be convertible to a simple but possibly nons-
mooth regularization term whose proximal mapping is efficient to compute. We
have derived a closed form for the proximal mapping of a nonbinary penalization
term (cf. Section 5.3.1). Hence, we contribute to the theory of proximal opti-
mization, extending its applications to problems involving binary or more general
integer constraints.
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The task of Boolean matrix factorization is moreover interesting due to its es-
tablished methodology to estimate the rank of the factorization. In particular, the
Minimum Description Length (MDL) principle is used for that purpose. Originat-
ing from the selection of interesting patterns in pattern mining, the MDL principle
has been transferred to the more general notion of Boolean matrix factorization.
In this work, we explore two directions in order to automatically select the rank
of Boolean factorizations: the one is to minimize the description length via a suit-
able relaxation as a smooth Kurdyka-t.ojasiewicz function, and the other is based
on controlling the false discovery rate. We propose two instances of the first di-
rection with the algorithms PRIMP and PANPAL. Our experimental evaluation
shows that the method PRIMP, employing a description length based on a com-
pression by code tables, delivers correct rank estimations and is able to filter the
haphazard from the formative structure. However, there are some settings where
PrIMP tends to overestimate the number of clusters. In this case, the result is
likely to contain false discoveries, that are tiles which mostly cover noise. For some
applications, controlling the amount of the false discoveries is crucial. For such
cases, we establish the estimation of the probability that particular tiles are gen-
erated by Bernoulli distributed noise (cf. Section 7.1.2). Our method TRUSTPAL
incorporates the novel model selection by the false discovery rate into our opti-
mization framework PAL-TILING. Here, we furthermore contribute towards the
aspect of explainability. In a theoretical analysis of our false discovery controlling
mechanism, we derive characteristics of local minima of the Boolean factorization’s
residual sum of squares. As a result, we have found out that every item selected
in a Boolean bicluster occurs in at least half of the data points assigned to that
cluster; hence, giving first explanations of what makes a tile a tile.

Last but not least, we have explored the possibility to derive descriptions of
clusters with regard to predefined classes. Identifying similarly expressed features
together with class-discriminating features in one cluster helps the practitioner to
explore a dataset in a supervised setting. A motivating example is the analysis of
genomic mutations, and the development of genomic variations from normal to tu-
mor cells and a possible relapse. The method C-SALT extends the tradition model
of matrix factorization with an additional matrix, reflecting class-specific feature
expressions for each cluster. Therewith, we find patterns in a database which
cannot be derived with state-of-the-art methods. Due to the near-orthogonality
of matrix factorizations (cf. Section 2.2.1), deviations from the patterns which
identify cluster membership are hardly recovered by general matrix factorization
approaches. The model assumption of C-SALT is a fundamental change in the
core of the matrix factorization scheme. It takes into account that class-defining
characteristics may lie in the alteration of a theme and do not pose a theme by
itself. Hence, groups are identified together with their class-indicating features.
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With regard to our motivating example, the model assumption of C-SALT takes
into account that there may not be one therapy for all, but multiple treatments,
each one tailored to features of people belonging to one cluster.

9] |mpact and Future Directions

We have discussed and evaluated in which ways deriving Boolean matrix factor-
izations by advanced numerical optimization methods is preferable over greedy
optimization. This poses only the beginning of a potentially versatile theory of
numerical optimization for binary learning tasks. The theoretical progress in the
field of nonconvex optimization provides new insights, which are now transfer-
able to Boolean factorization (and perhaps beyond Boolean). Meanwhile, stochas-
tic (Davis et al., 2016), accelerated (Li and Lin, 2015), and inertial (Pock and
Sabach, 2016) variants exist of the PALM optimization scheme. The exploration
of stochastic gradient descent for matrix factorization is particularly promising
with regard to its generalizing properties (Hardt et al., 2016; Hoffer et al., 2017).

Inertial methods are interesting since they can find good local optima, even if
the objective functions’ landscape is rough (Goh, 2017). Inertial methods inte-
grate the direction of the previous gradient descent update into the current step,
which is sometimes referred to as giving gradient descent a short-time memory.
This is also the foundation of accelerating methods, which can improve the conver-
gence rate. Considering that the framework PAL-TILING is basically applicable
to all discussed matrix factorizations from Chapter 2 (discarding the partitioning
requirement), PAL-TILING and possible extensions potentially provide a general
optimization scheme for hard clusterings.

If the matrix product is not approximated in another algebra (as in Boolean
matrix factorization), then we can adapt the optimization scheme of PAL-TILING
such that the thresholding step at the end is no longer necessary. For example,
consider the optimization of the objective of k-means by PAL-TILING. One could
derive binary solutions via PAL-TILING, by increasing the weight of the nonbi-
nary penalization such that only binary values in the cluster assignment matrix are
possible. Although this optimization scheme comes with theoretical convergence
guarantees to a local optimum, the result will probably not be suitable due to the
vast amount of local minima in k-means clustering. On the contrary, the method
is likely to be stuck at a local optimum close to the initialization matrix. This
issue can be addressed by providing better initializations. Those initializations
may themselves be derived by the application of PAL-TILING, employing a lower
scale nonbinary penalty term. Hence, we could also gradually increase the nonbi-
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nary penalty term, starting with an unconstrained matrix factorization. This is a
promising approach to derive matrix factorizations with binary constraints under
convergence guarantees.

With regard to our evaluations of automatic determinations of the factorization
rank, extending clustering from binary to real-valued data would be of interest. In
particular, the experiments of SPECTACL display potential to integrate model se-
lection techniques into this nonconvex clustering task. Looking at the visualization
of the clustering of the three blobs dataset in Figure 4.4, we see that SPECTACL is
able to identify a smaller and dense cluster on top of a larger cluster. Imagine that
we compare SPECTACL’s clustering of two clusters with the one shown, assuming
three clusters. It is reasonable to assume that SPECTACL returns the two point
clouds at both edges just as DBSCAN if the number of clusters is set to two. If
we follow the approach of hypothesis testing from TRUSTPAL, then a bound on
the probability that the smaller, denser cluster appears due to noise effects from
a larger cluster would deliver a theoretically founded way of determining whether
the rank of this three blobs dataset is equal to two or three.
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APPENDIX A
Proofs of Chapter 2

We state here the more lengthy proofs of results presented in Chapter 2.
THEOREM 2.1. The following optimization problems are equivalent to objec-

tive (KM)
min D - Y X[’ s Y e1™ " X =Dy (YY) (2.7)
min ||D - YYD’ st Y € 1™ (2.8)
min |[D - Y XT||* st Y € 1™ X € R (2.9)
Y, X
max tr (2 DD Z) st Z=Y(YTY) Py ermr (210
min [DDT - YY1’ st Y 1™ (2.11)

Proof. We have already shown in Section 2.3.1 that problem (KM) is equivalent
to Eq. (2.7). The equivalence of Eq. (2.7) and Eq. (2.8) follows by definition of the
matrix X in Eq. (2.7). The equivalence of problem (KM) and Eq. (2.9) follows from
the convexity of the matrix factorization problem when the matrix Y is fixed. We
show that for a given matrix Y € 1™*", the matrix X = DTY(YTY)_1 minimizes
the residual sum of squares.

argmin|[D — VX" ||* = argmin —2tr (X DY) + tr (XYY XT)
X X

= argminz —2XIDTY, + || XY
X S

Y 2

Vsl

D' - X, (A1)

= arg min Y.,
g1 ES:I |

Y,

The last equation shows that the minimum is attained when X.;, = D" v
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The equivalence of Eq. (2.7) and Eq. (2.10) follows from the expansion

i

ID = YY'D|* = DI — 2t (DTY (v T¥) YD) + [y (v TY) YD
and the following equation:

YY) YD = (DY (YY) Y TY (YY) YD)

-1

—u (DY (YY) YT D).

Likewise, we can add the term
YY) YT =t (Y(YTy)‘lyTy(YTy)‘1YT> — tr(L,) =7

to the optimization problem in Eq. (2.10) and complete the square such that we
obtain Eq. (2.11). O

THEOREM 2.7. Define ©(A) as the set

The following optimization problems are equivalent:

min[| D - YX || st X €{0, 1} Y e 1™ (2.32)
min|| D — vV X7 | st. Xeo (Dy(yTy) ) yerr (233
max tr (YT(2D — 1)X) s.t. X €{0, 1} Y e 1™ (2.34)

Proof. Let (X,Y) be the solution to the problem of Eq. (2.32). From the convexity
of the objective function when fixing Y, we derive from Eq. (A.1) that X is given
as the binary matrix minimizing

Y, ?
arg min Z|YS| (DT — Xis)

Xe{o,1yxr 77 Y]

|y [meorvvy aprvgv £
- " e {0,1} otherwise '

The equivalence of Eq. (2.33) and Eq. (2.34) follows from the definition of the
Frobenius inner product via the trace. O



APPENDIX B
Proofs of Chapter 5

We state here the more lengthy proofs of results presented in Chapter 6.

LEMMA 6.1. Let D be a data matriz. For any code table C'T' and its cover
function there exists a Boolean matriz factorization D = Q(YXT) + N such that
non-singleton patterns in C'T are mirrored in X and the cover function is reflected
by Y. The description lengths correspond to each other, such that

Ler(CT) = Ler(X,Y) = LE (X, Y) + LE(X,Y),

where the functions returning the model and the data description size are given as

T n

LEr(X,Y) = =) V| -log(ps) = > _IN| - log(pr:) = Ler(CT)
s=1 =1
LEX,Y)= ) (Xle—logp))+ Y. (ci—log(pri)) =L&(CT).
s:|Y.s|>0 2| N.;|>0

The probabilities ps and p,.; indicate the relational usage of non-singleton patterns
X.s and singletons {i},

Yl | Vil

Ps = 5 o~ Pr+i = o7 A
Y]+ N7 Y]+ [N

We denote with ¢ € R, the vector of standard code lengths for each item, i.e.,

c,=—1o D

Proof. Let D be a data matrix, CT = {(X;,Cs) | 1 < s <y} an ro-element code
table and cover the cover function. Let r be the number of non-singleton patterns
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in C'T" and assume w.l.o.g. that CT" is indexed such that these non-singleton
patterns have an index 1 < s < r. We construct the pattern matrix X € {0, 1}"*"
and usage matrix Y € {0, 1}™*" such that for 1 < s < r it holds that

Xis=1s1€ X,
Yjs =1 & & € cover(CT, D;.).

The Boolean product Y ® X " indicates the entries of D which are covered by non-
singleton patterns of CT. Nonzero elements in the noise matrix N = D —0(Y XT)
are covered by singletons,

Nj; # 0 < {i} € cover(CT, D;.).
The usage of a non-singleton pattern X; is then computed as

usage(Xs) = {j € {1,...,m} | Xs € cover(CT, D;.)}|

={je{l,....m} Y}, =1}
— V..

Correspondingly follows that usage({i}) = |N;|. The calculation of the probabil-
ities ps for 1 < s < r + n is directly obtained by inserting this usage calculation
in the definition of code-usage-probabilities of Eq. (6.1). Likewise follow the def-
initions of the matrix functions LX(X,Y) and L2 (X,Y) from the definitions of
the description sizes L¥(CT) and LEZ(CT). O

LEMMA B.1. Let (as) be a finite sequence of r monnegative scalars such that
S, =>"_,as>0. The function g : [0,00) — [0,00) defined by

S, +rx

g($5a1>~-7ar,5r):_Z(aerx)log(as+x)

s=1

is monotonically increasing in x.

Proof. W.lo.g., let ay,...,a,, >0 and a;y4+1 = ... = a, = 0 for some ryp € N. We
rewrite the function g as

g(l', Qg ... aaT7S7’) = g(fL‘;al, s 7a7‘oaS7“) +g(x;aro+17 cee aaT>Sr>
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and show that each of the subfunctions is monotonically increasing. The first
subfunction is differentiable and its derivative is nonnegative

as +x Sy +rz S, +rr—r(as + x)
:—Z log + (as + x)
— S, +rx

as +x (S, +rz)? )
——ilo s + 2 + - M
N — & S, +rx — S, +rx

The second subfunction is monotonically increasing, since for as = 0 and all > 0
it holds that

S, +rx

_aslog(%) :0§—(a5—|—x)log(a5+$>.

O
THEOREM 6.2. Given binary matrices X and Y and = 1+log(n), it holds that

Ler(X,Y) < | D= YXT|P = 3 7(1] + 1) log (lm : 1) +1v]

— Y| +r
Proof. We recall that the description size of the data is computed as

s=1

+1Yl)
—Li(XY)

(6.3)

7L2(X7Y)
Applying the logarithmic properties, we rewrite the first sum

== 3o (7 51 )

Y]+ |N]

:‘ZWW4WO+ZW“<MﬂW)

N
wmmmﬂwm0+%b.

= g(0;[Yal,.
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From the monotonicity of g (Lemma B.1) and the logarithm inequality (log(1+z) <
x, Vo > 0) follows that L; is upper bounded by

- V| +1
Li(X,Y) <= ([Vi|+1)log ( v )t IN|.

s=1

The second term L, is transformed into

n

Ly(X,Y) = = Y [Nyl -log (INu]) + > [Nl - log (|N] + Y])

i=1 i=1

- 1
= N 1ogm + | N[log(|N| + [Y]).
i=1 "

Subsequently, we show that Ly(X,Y) < |[N|log(n) + |Y|. This inequality trivially
holds if |[N| = 0. Otherwise, we apply Jensen’s inequality to the concave logarithm

function
|N. 1 n
|V < |N|log
Z INI A IN|

Therewith, we obtain
La(X,¥) < |¥]1og () + V(N1 + ¥

Y
= |N|log(n) + |N|log <1 + %)
< |N[log(n) + [Y],
where the last equality again follows from the logarithm inequality. We derive the
final inequality

L?T(Xv Y) = LI(X7 Y) + L2<X7 Y)

< (L toglu) V] = YV + Dtog (L) 4y

s=1

]

PRIMP'S LIPSCHITZ MODULI We study the partial gradients of the regular-
ization term used in PRIMP (Section 6.2.2)

Yol +1
Y)=cl' XY = - (1og (X 1
VO —etT 6 y) - - (e (7)) +
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The partial gradient with respect to X is constant and has a Lipschitz constant of
zero. The partial gradient with respect to Y is equal to the sum

VyG(X,Y) = ~((log(|Y.| + 1)), — (log([Y] +7)),.) + 1.

—A(Y) —B(Y)

From the triangle inequality follows that the gradient with respect to Y is Lipschitz
continuous with modulus My, ¢(X) = M4 + Mp, if the functions A and B are
Lipschitz continuous with moduli M4 and Mp:

[VyG(X,Y) = VvG(X, V)| = |[A(Y) — A(V) + B(Y) — B(V)]|
[AY) = AV) |+ [[BY) = B(V)]]
A+ M

(M B)[IY = V.

IAINA

The one-dimensional function = — log(x + 0), z € Ry is for any § > 0 Lipschitz
continuous with modulus §~%. This is easily derived by the mean value theorem
and the bound

ilog(:c—iré): ! <

dz r+0

S| =

for all x > 0. We show with the following equations, that M, = Mg = m. For
improved readability, we use the squared Lipschitz inequality, i.e.,

IA(Y) ~ AV = 3 (Jos(1¥al + 1) ~ log(Va + 1)
_ milaogum 1)~ log(V,] + 1))
< mgm Vapy B.1)
_ mi <i<yj~s - m))z

< m? Z s — Vi)t =m?lY = V|2 (B.2)
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where Eq. (B.1) follows from the Lipschitz continuity of the logarithmic function
as discussed above for 6 = 1 and Eq. (B.2) follows from the Cauchy-Schwarz
inequality. Similar steps yield the Lipschitz modulus of B,

IBY) = BV)II? =) _(log(|Y| +7) —log(|V| + 7))’

s?j

— mr(log(|Y] + ) — log([V| + r))?
< T3]V

= % (Z(}/Js - %s))

S7j

<m’ Z(Yjs - Vj8)2-
8,4

We conclude that the Lipschitz moduli of the gradients are given as

vag(Y) =0 nyg(X) = 2m.
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