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1 Introduction

Throughout history people have always settled near rivers. Rivers provide access to
fresh water and therefore good farming conditions and are often important waterways
for trade. However, close habitation also entails the risk of destruction through
flooding. Already in ancient Egypt the water level of the Nile was observed in
so-called nilometers to understand and predict the occurrence of floods. In Germany
the first gauging stations were installed on the Elbe and Rhine rivers around 1775.

In the last two decades, several floods in Germany and Europe demonstrated the
risk that living near rivers inherently carries. In August of 2002 extreme rainfall
throughout several days led to floods on Elbe and Donau affecting people in Germany,
Czech Republic, and Austria. Alone in Germany 21 deaths and an economic damage
of about 11 billion Euro were reported (Baumgarten et al., 2011). In May and June
of 2013, again resulting from heavy rainfall, floods affected numerous river networks
in several countries in Western and Central Europe and caused 14 deaths and a
damage of around 6 billion Euro in Germany (DKKV, 2015).

Flood risks can be partially limited by measures like dams or reservoirs but there
will always remain some risk. According to the Federal Water Act (WHG, Wasser-
haushaltsgesetz), the governments of Germany’s federal states define areas in which
a recurrent flooding has to be expected. In those areas special regulations, like
limitations on farming and a ban on new construction sites, are implemented. To
determine such areas or the dimensions of flood protection measures, one has to
estimate the recurrence time of flood events. A common quantity is the 100 year
flood, i.e. the flood that is expected to be reached once in 100 years on average.
Expressed statistically, such a flood appears in any given year with a chance of one
percent.

In order to determine the 100 year flood (or floods even much more seldom) from
the flood records, often only yearly maxima are used. This has different advantages:
While daily or monthly observations are autocorrelated, yearly maxima are mostly
stochastically independent and their distribution can be approximated by a gen-
eralized extreme value distribution. On the other hand, the restriction to yearly
maxima leads to a shortage of data, typical to the analysis of floods. With only few
exceptions, most gauging stations in Germany record data since 40–80 years, often
interrupted by years without records due to modernisation or maintenance. Since
we are mostly interested in rare events, the estimation from relatively short records
can be very volatile. To improve this situation, information from different gauging
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2 1 Introduction

stations is used jointly. This is called regional flood frequency analysis and can be
performed using different approaches. Often groups of gauging stations are built
that share some distribution characteristic. For example, in the Index Flood model
it is assumed that the site’s distributions only vary by some site-specific scaling
factor. In the popular approach of Hosking and Wallis (1997) this model is used and
distribution parameters are estimated using L-moments, an alternative to product
moments that are linear combinations of expectations of order statistics.

This dissertation is mainly based on three works dealing with different aspects of
regional flood frequency analysis. Naturally each work itself contains parts in which
basic notation and methodology are presented. To avoid repetition, these are given
in a unified manner in Chapter 2 which gives an overview of the basics of flood
data analysis, the modelling of statistical extremes and multivariate distributions,
parameter estimation, and lastly of regional flood frequency analysis.

As mentioned before, regional flood frequency analysis is designed to transfer informa-
tion from multiple sites to one specific target site. Therefore it is an important step to
assure that this transfer is beneficial, i.e. that the assumption of a similar behaviour
is appropriate. Chapter 3 deals with this subject in case of intersite dependence and
highly skewed data, a scenario in which the most common L-moment-based procedure
gives poor results. This problem is faced by modelling the intersite dependence with
copulas and by using trimmed L-moments instead of L-moments. The proposed
generalized procedure, analysed in a comprehensive simulation study, is able to
overcome the known drawbacks.

An alternative to L-moments are probability-weighted moments that can be calculated
from L-moments and vice versa. In Chapter 4 a limit theorem for sample probability-
weighted moments of multiple sites is presented and extended to L-moments and
trimmed L-moments as well as resulting parameter and quantile estimators of
generalized extreme value distributions. Using this theory and a consistent estimator,
an asymptotic homogeneity test is derived and examined. This test is an alternative
to the procedure of the preceding chapter with advantages in computation speed,
but it requires a higher number of observations to give good results.

The last work, presented in Chapter 5, applies penalized Maximum-Likelihood
estimators to regional flood frequency analysis. The main goal is to provide a new
information pooling scheme by transferring the Index Flood principles to penalization.
Penalization techniques typically contain a parameter controlling the degree of
penalization. A cross-validation procedure is presented that allows for a data-driven
choice. As a result, the new estimator is able to give good results even in situations
in which we are not fully confident that the Index Flood model is appropriate.

Chapter 6 summarises the most important results from all works. The following
appendix contains further material regarding aspects from Chapter 4 and 5.



2 Basics

In this chapter the basic principles and statistical theories are given that are needed
to understand the following chapters. First the basics of the analysis of floods are
described. The data itself and its collection are of special interest here. Afterwards
an excursion into extreme value analysis shows how the behaviour of univariate
extreme events can be modelled. Two possibilities are presented: either we model the
statistical distribution of block maxima or the distribution of exceedances above some
fixed threshold. Copula theory is applied to model multivariate extremes. Its basics
and the most important copula classes (regarding our application) are described
in the following section. Multiple options to estimate distribution parameters are
given subsequently. First probability-weighted moments, L-moments, as well as
trimmed L-moments are defined and it is described how they can be used to estimate
parameters. These statistics are alternative moments, which are especially popular in
hydrology because of good small sample properties. As an alternative to L-moment
based methods a penalized Maximum-Likelihood estimator is given that will be
applied to regional flood frequency analysis in a later chapter. The last section in
this chapter deals with the practice of regionalization in hydrology. The basic steps
are described and a popular L-moment based procedure is given.

2.1 Basic principles of flood data analysis

When flood data is analysed the main goal is to formulate statements about the
likelihood of specific events or likewise about what events have to be expected every,
say, 100 years on average. Such assessments and their precision are important to
identify regions with an increased vulnerability to flooding and to plan structures
like dams or reservoirs, which are important measures to restrict danger to life or
property.

To be able to define what a flood is and what properties of a flood can be measured,
first we need to take a look at the collection of data. At measuring stations the
water level and flow velocity are constantly measured. Together with knowledge
about the stream’s cross-sectional area from the flow velocity and water level the
discharge or stream flow can be calculated which is measured in m3/sec (Wittenberg,
2011). Plotting of the discharge over time gives us a hydrograph which can be used
to determine floods and their properties.

3



4 2 Basics

Figure 2.1: Example of a hydrograph of two separate events with peaks at day 4 and
day 13.

First the different flood events have to be separated from the graph, see Figure 2.1
as an example. For this purpose multiple criteria are applied. Events are different, if
the peaks of the flow rate are more than seven days apart or if the difference between
the highest rate of an event and the lowest rate prior to that event is bigger than the
difference between the lowest rate between two possible events and the yearly mean
flow rate (LAWA, 1997). In the example the first two peaks belong to one event,
because the peaks are only three days apart and the difference between the minimum
between the peaks and the second peak is smaller than the difference between that
minimum and the yearly mean flow. The third peak at day 13 is considered to be
a new event, because it is more than seven days apart (and the second condition
would also give the same decision).

The properties of one flood event are peak, duration, and volume (see again Figure 2.1).
For more information how to assess these properties see, for example, Fohrer et al.
(2016). Often only the peak is analysed, but recently more and more multivariate
studies have been published that analyse multiple properties jointly (Chebana and
Ouarda, 2009; Requena, Chebana, and Mediero, 2016).

However, in the statistical analysis of floods mostly not all separated flood events
are used but only a subset of them. Two procedures are popular which use different
subsets of data and which are motivated by different theorems leading to either
a generalized extreme value distribution or a generalized Pareto distribution to
approximate the distributional behaviour of floods. The following section will give
a short introduction into the analysis of extreme values and how it is applied in
hydrology.

In hydrological applications we often talk about the return period or recurrence
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interval of events (even though being criticised for being prone to misuse, see Serinaldi,
2015). The return period describes the average time span, in which a flood exceeding
a certain value is to be expected. The often used 100-year flood therefore indicates
the height of a flood that is reached or exceeded one time on average every 100 years.
Statistically this means that such a flood has a 1% probability of occurrence in each
year (assuming the distribution of floods does not change over time). As a formula
the return period T of an event exceeding the value x can be expressed as

T = µ

P (X > x) , (2.1)

with X denoting the random variable of the process of interest and µ denoting the
average time between two realizations. In case of yearly maxima we have µ = 1 [year]
and the return period (in years) equals the reciprocal of the exceedance probability.

2.2 Statistical modelling of extreme events

The goal of extreme value analysis is to describe the behaviour and frequency of
extreme events, i.e. unusually rare ones. This section gives a concise overview
over this topic that is needed to understand the remainder of this dissertation. For
a thorough introduction it is referred to Coles (2001) and de Haan and Ferreira
(2006).

The two most important results in extreme value analysis are the Fisher-Tippett-
Gnedenko theorem and the theorem of Pickands-Balkema-de Haan. They describe
the asymptotic distributions of block maxima for increasing block length and of
threshold exceedances for increasing threshold. They are of huge importance in
the analysis of hydrological data (as well as in other disciplines in which extremal
data is analysed) because they offer a theoretical justification for the choice of
specific distribution families to model the distribution of events like extreme flows.
In this dissertation the block maxima method is used to model yearly maximal flows.
Because of their importance, though, both methods and the corresponding limiting
distributions are described shortly.

2.2.1 Theorem of Fisher-Tippett-Gnedenko

First we want to turn our attention to the question how maxima of a set of random
variables are distributed. Let Y1, . . . , Yn be independent and identically distributed
random variables with distribution function F . Further let Mn = max (Y1, . . . , Yn)
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be the maximum of this set. It is known that the distribution of Mn is given as:

FMn(x) = P (Mn ≤ x) = P (Y1 ≤ x, . . . , Yn ≤ x)
= P (Y1 ≤ x)× · · · × P (Yn ≤ x) = F n(x).

(2.2)

Because F (x) ∈ [0, 1] it follows that F n(x) converges to either zero or one for
increasing n. For this reason we consider the distribution of a standardized statistic
instead. Let an > 0 and bn ∈ R, so that

max (Y1, . . . , Yn)− bn
an

(2.3)

converges to a non-degenerate distribution G for n→∞ (de Haan and Ferreira, 2006,
Theorem 1.1.3; Leadbetter, 1974, Theorem 2.1). According to the theorem of Fisher-
Tippett-Gnedenko (Fisher and Tippett, 1928; Gnedenko, 1943), this distribution G
is a member of either the Fréchet, Gumbel, or Weibull distribution family, which can
be summarized in the family of the generalized extreme value distribution.

2.2.2 Generalized extreme value distribution

The generalized extreme value distribution (GEV) is a distribution family with a
location parameter µ ∈ R, a scale parameter σ > 0, and a shape parameter ξ ∈ R
(Jenkinson, 1955).

The distribution function of the GEV is given as

F (x) =

exp
(
−(1 + ξ x−µ

σ
)−1/ξ

)
, ξ 6= 0,

exp
(
− exp

(
−x−µ

σ

))
, ξ = 0,

(2.4)

for 1 + ξ(x− µ)/σ > 0.

The quantile function F−1 can be stated explicitly as

F−1(p) =

µ+ σ
ξ

(
(− log(p))−ξ − 1

)
, ξ 6= 0,

µ− σ log(− log(p)), ξ = 0.
(2.5)

The GEV has the important property that it unites the three families possible as
limit distribution for block maxima:

• Weibull family for negative shape parameters,

• Gumbel family for ξ = 0,

• Fréchet family for positive shape parameters.
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Figure 2.2: Density (left) and distribution function (right) of the three GEV sub-
classes: Weibull (ξ < 0), Gumbel (ξ = 0), and Fréchet (ξ > 0).

The Weibull family features a finite upper tail, the Gumbel family is unrestricted, and
the Fréchet family has a finite lower tail and a heavy upper tail. A representation of
these three families is given in Figure 2.2. Which of the three families is appropriate
to model the asymptotic limit distribution of (2.3) depends on the distribution of
the underlying variables Y1, . . . , Yn.

Moments of GEV distributions exist depending on the shape parameter ξ. The mean
and variance of a generalized extreme value distributed random variable are

E(X) =


µ+ σγ, ξ = 0,
µ+ σ

ξ
(Γ(1− ξ)− 1), ξ < 1,

∞, ξ ≥ 1,
(2.6)

V ar(X) =


σ2 π2

6 , ξ = 0,
σ2

ξ2 (Γ(1− 2ξ)− (Γ(1− ξ))2), ξ < 1/2,
∞, ξ ≥ 1/2,

(2.7)

with γ denoting Euler’s constant.

2.2.3 Theorem of Pickands-Balkema-de Haan

An alternative to the block maxima approach is the peaks-over-threshold (POT)
method. Instead of modelling the distribution of maxima of a set of random variables,
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the distribution of the exceedances over a threshold is modelled. Therefore consider a
random variable Y with distribution function F . The distribution of the exceedance
above some threshold u is given as

Fu(y) = P (Y − u ≤ y | Y > u) = F (y + u)− F (u)
1− F (u) , y > 0. (2.8)

According to the theorem of Pickands-Balkema-de Haan (Balkema and de Haan,
1974; Pickands, 1975) the asymptotic limit distribution of the excess Fu for u→∞
has to be a member of the generalized Pareto distribution family.

2.2.4 Generalized Pareto distribution

The generalized Pareto distribution (GPD) has two parameters: scale parameter
σ > 0 and shape parameter ξ ∈ R (Coles, 2001; Hosking and Wallis, 1987). In
some literature the GPD is given as a location-scale family with three parameters,
adding a location parameter µ ∈ R indicating the threshold or lower limit (e.g. Wang,
1991).

The distribution function of the GPD can be written as

F (x) =

1−
(
1 + ξ x

σ

)−1/ξ
, ξ 6= 0,

1− exp
(
x
σ

)
, ξ = 0,

(2.9)

with x > 0 for ξ ≥ 0 and 0 ≤ x ≤ −σ/ξ for ξ < 0.

The mean and variance of a generalized Pareto distributed random variable X are
given as

E(X) =


σ

1−ξ , ξ < 1,
∞, ξ ≥ 1,

(2.10)

V ar(X) =


σ2

(1−ξ)2(1−2ξ) , ξ < 1/2,
∞, ξ ≥ 1/2.

(2.11)

Figure 2.3 characterises density and distribution function of the GPD for different
shapes.

2.2.5 Application in hydrology

These two limit theorems enable us to theoretically justify the statistical modelling of
extreme floods. The practical application differs fundamentally in both approaches.
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Figure 2.3: Density (left) and distribution function (right) of the GPD.

If using the block maxima approach, maxima of specified time periods are built.
These periods normally span over one year, the so-called hydrological year. In
Germany it is defined to begin on 1 November and end on 31 October the following
year. The distribution of the maxima is modelled using the generalized extreme value
distribution, and return periods can be derived directly from the fitted distribution.

With the peaks-over-threshold approach we use all observations that exceed a thresh-
old that has to be specified prior to the analysis. The threshold should be chosen not
to be too high, so that enough data can be analysed. According to Cunnane (1973)
using the POT approach is beneficial in comparison to the annual maxima approach
if at least 1.65 peaks per year are selected. On the other hand it should neither be
too low, so that the approximation by using the limit distribution family is still good
enough. The choice of the threshold has a significant influence on parameter and
quantile estimates (Begueŕıa, 2005) and should therefore be performed with caution.
One option are graphical representations of the estimated GPD shape parameter
depending on the threshold value (Coles, 2001). Using the outcome of a statistical
goodness-of-fit test depending on the threshold can lead to an automated threshold
selection (Choulakian and Stephens, 2001; Durocher et al., 2018). The generalized
Pareto distribution then models the exceedances above the threshold. To calculate
annual return periods, also the frequency of exceedances has to be taken into account
which is commonly modelled using a Poisson process (e.g. Cunnane, 1973; Katz,
Parlange, and Naveau, 2002; Rosbjerg, 1985).

Which approach is chosen depends also on the data available. The POT approach
requires data of all individual flood events. Often only monthly or yearly maxima
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Figure 2.4: Comparison of block maxima and POT approach using an excerpt from
data of Wechselburg. Red observations mark yearly maxima, blue squares
mark exceedances over a threshold of 180m3/sec.

are available. While we can assume that most exceedances are present in sets of
monthly maxima, we cannot assume this for yearly maximal data.

Figure 2.4 compares the data basis of the block maxima and POT approach using a
real life example. Differences between the used data are clearly visible. From 1988
to 1993, for example, no yearly maximum was high enough to be used in a POT
analysis. Reversely there were multiple events around the year 1987 that we would
consider in the POT analysis but not in a block maxima approach.

The popularity of using the GEV and GPD to model the statistical behaviour of
extreme events originates in the two limit theorems that state them as limiting
distributions as well as in their flexibility of modelling distributions with a wide
variety of shapes. However, it should be considered that these theoretical results are
asymptotic ones. Because of the commonly used block length of one year as well
as the fixed chosen threshold the limiting distributions can only be considered as
approximations. The quality of the approximation depends on various factors and
on the distribution of the underlying random variables and can in practise hardly
be determined. Further, it should stay in mind that both limit theorems assume
independent and identically distributed variables. In practice this assumption is
often not fulfilled. If we consider flood events of a river, the distribution normally
varies over the year based on different flood origins. During winter and spring, floods
are mostly generated by snow melt, while during summer local heavy rain events are
the reason for high water levels. For assessment of the independence of such data



2.3 Modelling multivariate distributions 11

points, the temporal resolution of observations is the essential factor. Weekly, daily,
or even hourly observations are strongly dependent while with monthly maximum
values we tend to assume independence.

However, applications of the GEV and GPD to hydrological flood data and compar-
isons to other distribution families have shown that these distributions mostly give a
good approximation of the distribution of yearly maxima or of threshold exceedances.
Still, it is recommended to assess each case separately and to not simply rely on the
limit theorems.

2.3 Modelling multivariate distributions

Often modelling of the joint behaviour of multiple random variables or random
vectors is of interest. These can be different characteristics of one object or one
characteristic that is measured on multiple objects. In the context of flood analysis
these are, for example, the flood peak and duration at one station or the measurement
of the flood peak at several stations.

A possibility to model the statistical behaviour of random vectors are multivariate
distributions, e.g. the multivariate normal distribution. The disadvantage of this
approach is that the shape and strength of dependence between the dimensions are
limited. Often dependence between variables manifests not over the whole support of
the distribution but only in the tails, i.e. in extraordinary small events (like droughts)
or high events (like snow melts). A measure to assess such dependence in the tails is
the so-called tail dependence. In case of the multivariate normal distribution we can
adjust the strength of the mean dependence, but not the tail dependence.

A much more flexible approach is to model multivariate events with copulas. Copulas
are functions that connect marginal distributions to joint distributions and contain
all information about the dependence structure. They allow for a separate modelling
of marginal behaviour and dependence. Through a huge variety of different copula
families with different properties, dependences can be modelled in a much more
sophisticated and more complex manner.

This section contains the main definitions and the main theorem regarding copula
theory as well as the most important copula families that we need to model and to
describe flood events. For a more thorough and extensive introduction it is referred
to Nelsen (2006). In this section we mostly deal with the joint distribution of random
variables X1, . . . , Xd. For the sake of simplicity and to be closer to the usual notation,
the variables are denoted as X and Y in the case of two dimensions.
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2.3.1 Copulas

A function C : [0, 1]d 7→ [0, 1] is called copula, if the following properties hold:

i) C(u1, . . . , ui−1, 0, ui+1, . . . , ud) = 0 ∀ i = 1, . . . , d, (2.12)
ii) C(1, . . . , 1, ui,︸︷︷︸

i-th position

1, . . . , 1) = ui ∀ i = 1, . . . , d, (2.13)

iii) C is d-increasing. (2.14)

The last property means that the volume of each hyper rectangle under C is non-
negative. In one dimension this simply means that C is increasing, i.e. that
C(u2)− C(u1) ≥ 0 holds for u1 ≤ u2. In case of two dimensions this translates to
the property that

C(u12, u22)− C(u12, u21)− C(u11, u22) + C(u11, u21) ≥ 0. (2.15)

holds for u11, u12, u21, u22 ∈ [0, 1]. Figure 2.5 illustrates this. The contour lines are
representing the value of C(·, ·). The function C is d-increasing, if the volume of every
hyper rectangle [u11, u12]× [u21, u22] is non-negative. A more precise definition for
arbitrary dimensions can be found in Nelsen (2006, Definition 2.10.1 and 2.10.2).

2.3.2 Sklar’s theorem

A copula function can be seen as multivariate distribution with uniformly on [0, 1]
distributed marginals. Sklar’s theorem enables us to combine arbitrary marginal
distributions and copulas to multivariate distributions.

Let X1, . . . , Xd be random variables with marginal distributions Fj, j = 1, . . . , d, and
joint distribution F (x1, . . . , xd) = P (X1 ≤ x1, . . . , Xd ≤ xd). According to Sklar’s
theorem (Sklar, 1959) a copula C exists so that the joint distribution F can be
expressed as

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) ∀x1, . . . , xd ∈ R. (2.16)

All information about the dependence structure between X1, . . . Xd is contained in C,
all information about the marginal distributions in F1, . . . , Fd, respectively. If the
marginals are continuous, C is unique.

Given a joint distribution function F and marginal distributions F1, . . . , Fd and the
corresponding inverse functions F−1

1 , . . . , F−1
d , the copula function C can be stated

as
C(u1, . . . , ud) = F (F−1

1 (u1), . . . , F−1
d (ud)) ∀u1, . . . , ud ∈ [0, 1]. (2.17)
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Figure 2.5: Graphical illustration of the third copula property for bivariate copulas.
Contour lines give the value of C(·, ·). The C-volume of every hyper
rectangle (grey) must not be negative.

To model the behaviour of multivariate events it can be used that the reverse of
Sklar’s theorem holds as well. Given marginal distributions F1, . . . , Fd and a copula
function C the combination C(F1(x1), . . . , Fd(xd)) is a multivariate distribution.
Therefore, the modelling of multivariate events can be split into modelling of marginal
distributions and modelling of the dependence structure separately. In the next
sections the most important classes of copulas are presented.

2.3.3 Archimedean copulas

Archimedean copulas are a popular class of copulas and defined using a so-called
generator φ. Let φ : [0, 1] 7→ [0,∞] be a continuous, strictly decreasing function with
φ(1) = 0. The pseudo-inverse of φ is defined as

φ[−1](t) =

φ−1(t), 0 ≤ t ≤ φ(0),
0, φ(0) < t ≤ ∞.

(2.18)

Then, a function C defined as

C(u1, u2) = φ[−1](φ(u1) + φ(u2)) (2.19)

is a (bivariate) copula if and only if φ is convex (Nelsen, 2006, Theorem 4.1.4). The
function φ is called generator of C.
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Independently from the used generator, Archimedean copulas share some proper-
ties. They are symmetrical, C(u1, u2) = C(u2, u1) ∀u1, u2 ∈ [0, 1], and associative,
C(C(u1, u2), u3) = C(u1, C(u2, u3)) ∀u1, u2, u3 ∈ [0, 1].

The class of bivariate Archimedean copulas can be extended to arbitrary dimensions
d > 2 using the associativity and a special property of the generator. Let φ be a
generator that is completely monotonic on [0,∞), i.e. it satisfies

(−1)k d
k

dtk
φ(t) ≥ 0 ∀ t ∈ (0,∞). (2.20)

for k ∈ N0. Then, according to Nelsen (2006, Theorem 4.6.2),

C(u1, . . . , ud) = φ[−1](φ(u1) + . . .+ φ(ud)) (2.21)

is a d-dimensional copula.

2.3.4 Extreme value copulas

Extreme value copulas are another important class of copulas, especially when
modelling extreme events (Gudendorf and Segers, 2010). The main application is the
modelling of multivariate extreme value distributions that result from combining an
extreme value copula with generalized extreme value distributed marginals (Durante
and Salvadori, 2010). Their defining property is the maximum-stability. This means
that a copula C is an extreme value copula if

C(ut1, . . . , utd) = Ct(u1, . . . , ud) (2.22)

holds for all u1, . . . , ud ∈ [0, 1] and t > 0.

Every bivariate extreme value copula can be expressed as

C(u1, u2) = exp
(

log(u1u2)A
(

log u2

log(u1u2)

))
, (2.23)

using a convex function A : [0, 1] 7→ [1/2, 1] called Pickands dependence function
(Pickands, 1981). Pickands dependence function A can be written depending on the
copula C as

A(t) = − lnC(e−(1−t), e−t), (2.24)

fulfils
max(t, 1− t) ≤ A(t) ≤ 1 ∀ t ∈ [0, 1] (2.25)

and can be used as a description of the dependence. The lower and upper limits of
equation (2.25) characterise the special cases of complete dependence or independence,
respectively. Figure 2.6 gives examples of different dependence functions. Because
the dependence function describes the copula C uniquely, it is often used as a mean
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Figure 2.6: Different dependence functions: , medium symmetric dependence;
, strong symmetric dependence, , medium asymmetric depen-

dence. Grey area marks lower and upper limits of equation (2.25).

to estimate copula parameters or to construct parameter tests (Genest et al., 2011;
Gudendorf and Segers, 2012).

A generalization to d-dimensional extreme value copulas is possible and has the
expression

C(u1, . . . , ud) = exp
 d∑

j=1
log(uj)

A( log(u1)∑d
j=1 log(uj)

, . . . ,
log(ud)∑d
j=1 log(uj)

) , (2.26)

in which A : ∆d−1 7→ [1/d, 1] is convex with

max(t1, . . . , td) ≤ A(t1, . . . , td) ≤ 1 ∀ t1, . . . , td ∈ ∆d−1 (2.27)

and ∆d−1 = {(t1, . . . , td) ∈ [0, 1]d : ∑d
j=1 tj = 1}.

Different estimators were proposed to estimate the (bivariate) Pickands dependence
function from observed data. Genest and Segers (2009) compared them and recom-
mended a rank based version of the estimator of Capéraà, Fougères, and Genest
(1997). Let (X1, Y1), . . . , (Xn, Yn) be bivariate observations that have the same dis-
tribution like (X, Y ) and whose dependence can be described by bivariate copula C.
Then pseudo observations are calculated as

Ui = 1
n+ 1

n∑
i′=1

1(Xi′ ≤ Xi), Vi = 1
n+ 1

n∑
i′=1

1(Yi′ ≤ Yi). (2.28)

The so-called CFG estimator of the logarithm of Pickands dependence function A is
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logACFGn (t) = −γ − 1
n

n∑
i=1

log
(

min
(
− logUi

1− t ,
− log Vi

t

))
, (2.29)

with γ ≈ 0.577 being Euler’s constant. This estimator does not fulfil the condition
A(0) = A(1) = 1 resulting from inequality (2.25). Therefore often a correction is
applied:

logACFGn,corr(t) = logACFGn (t)− (1− t) logACFGn (0)− t logACFGn (1). (2.30)

This corrected estimator is asymptotically normal and unbiased (Genest and Segers,
2009). In this dissertation only estimators based on bivariate Pickands dependence
functions are applied. For estimators of copulas with more than two dimensions it is
referred to Gudendorf and Segers (2012).

2.3.5 Mixed copulas

In popular statistical software only few extreme value copulas are implemented that
can model more than two dimensions. A useful result from Durante and Salvadori
(2010, Corollary 2) allows for combining or mixing of copulas. This way, a much
more complex dependency structure can be created from simple copulas.

Let Cθ1 and Cθ2 be copulas and aj ∈ [0, 1], j = 1, . . . , d, then

C(u1, . . . , ud) = Cθ1(ua1
1 , . . . , u

ad
d ) Cθ2(u1−a1

1 , . . . , u1−ad
d ) (2.31)

is also a copula. If Cθ1 and Cθ2 are extreme value copulas, C is also an extreme value
copula. Because C is a (extreme value) copula again, through concatenation even
more complex structures can be generated by the cost of additional parameters.

The introduced parameters a1, . . . , ad define the mixing proportions between the two
copulas for each dimension separately and thus enable even asymmetrical dependence
structures (using symmetrical copulas). This is especially helpful in hydrological
applications because the river network inherently contains a directed structure.
Because of river junctions and the direction of flow, stations more downstream are
much more affected by upstream stations than otherwise.

2.3.6 Measures of dependence

Measures of dependence summarise the whole dependence structure to one value, but
they are often useful to obtain a first impression of the degree of dependence or can
be used to fit copulas to the data. The most popular measure is the (Bravais-Pearson)
correlation, which measures the linear dependence of two random variables. Correla-
tion is invariant against linear transformations but not generally against monotonous
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ones. Since a copula is invariant against monotonous increasing transformations of
the marginals (Genest and Favre, 2007), the correlation is not suitable as a measure
of the dependence inherent in a copula.

In the following, two important measures of dependence that are invariant against
monotonous transformations are given: the rank correlation of Spearman, that
only considers the order of observations and not the observations itself, and the
concordance measure of Kendall, that only takes pairwise comparisons into account.
It is presented how both can be used to describe and fit copulas models. Further,
the tail dependence is introduced which is a measure that assesses the dependence
in the upper or lower tail of distributions.

Spearman’s rho

The rank correlation of Spearman is calculated similarly to Pearson’s correlation
coefficient but uses observation ranks instead of the observations itself. This way the
coefficient is invariant against monotonous transformations. Let (X1, Y1), . . . , (Xn, Yn)
be random variables and let

Ri =
n∑

i′=1
1(Xi′ ≤ Xi) and Si =

n∑
i′=1

1(Yi′ ≤ Yi) (2.32)

be their ranks. Then the rank correlation is defined as

ρn =
∑n
i=1(Ri − R̄)(Si − S̄)√∑n

i=1(Ri − R̄)2∑n
i=1(Si − S̄)2

, (2.33)

with R̄ = S̄ = n+1
2 being the means of the ranks.

The corresponding rank correlation of a copula C can be derived directly as (Genest
and Favre, 2007):

ρ = 12
∫ 1

0

∫ 1

0
C(u, v)dudv − 3. (2.34)

If C is an extreme value copula, the rank correlation can be calculated from Pickands
dependence function as (Salvadori and De Michele, 2011):

ρ = 12
∫ 1

0

1
(1 + A(t))2dt− 3. (2.35)

Rank correlation ρn of equation (2.33) is an asymptotically unbiased estimator of ρ
in equations (2.34) and (2.35).
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Kendall’s tau

Kendall’s tau, also called concordance measure, compares the amount of concordant
observation pairs with the amount of discordant ones. A pair of observations,
(X1, Y1) and (X2, Y2), is called concordant, if X1 < X2 and Y1 < Y2 or if X1 > X2
and Y1 > Y2 holds, i.e. if the order in each dimension is equal. Otherwise the pair is
called discordant. Given random variables (X1, Y1), . . . , (Xn, Yn) Kendall’s tau can
be calculated as

τn = (C −D)/
(
n

2

)
= 2
n(n− 1)

∑
i<j

sgn(Xi −Xj)sgn(Yi − Yj), (2.36)

with C being the amount of concordant pairs, D the amount of discordant pairs,
and sgn being the sign function.

If copula C describes the dependence between X and Y , Kendall’s tau can be derived
as (Genest and Favre, 2007):

τ = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1. (2.37)

If C is Archimedean with generator φ the following form can be used:

τ = 1 + 4
∫ 1

0

φ(t)
φ′(t)dt. (2.38)

For an extreme value copula C we can also use Pickands dependence function A for
calculation (Salvadori and De Michele, 2011):

τ =
∫ 1

0

t(1− t)
A(t) dA′(t). (2.39)

Again, Kendall’s tau τn of equation (2.36) is an asymptotically unbiased estimator
of τ in (2.37), (2.38), and (2.39).

Tail dependence

Tail dependence (Joe, 1997) are two measures that quantify the dependence within
the lower and upper tails of two distributions. Therefore it is an important measure
to summarise the dependence of a copula. Let X and Y be two random variables
with cumulative distribution functions FX and FY , respectively. Then upper tail
dependence is defined as

λU = lim
t→1−

P (Y > F−1
Y (t)|X > F−1

X (t)), (2.40)
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and lower tail dependence is defined as

λL = lim
t→0+

P (Y ≤ F−1
Y (t)|X ≤ F−1

X (t)). (2.41)

If those limits exist and a copula C describes the dependence between X and Y ,
according to Nelsen (Theorem 5.4.2, 2006) it follows that

λU = 2− lim
t→1−

1− C(t, t)
1− t and λL = lim

t→0+

C(t, t)
t

. (2.42)

For bivariate Archimedean copulas the following forms using generator φ are resulting
from equation (2.42):

λU = 2− lim
t→1−

1− φ[−1](2φ(t))
1− t = 2− lim

x→0+

1− φ[−1](2x)
1− φ[−1](x) ,

λL = lim
t→0+

φ[−1](2φ(t))
t

= lim
x→∞

φ[−1](2x)
φ[−1](x) .

(2.43)

For bivariate extreme value copulas with dependence function A we get

λU = 2− 2A(1/2),

λL =

0, A(1/2) > 1/2,
1, A(1/2) = 1/2.

(2.44)

2.3.7 Important copula families

After relevant classes of copulas as well as summary statistics have been presented,
important copula families and their properties are given now.

First we consider simple copulas that are directly constructed from the joint cumula-
tive distribution function using equation (2.17). Assuming independence between
the dimensions the joint distribution function can be written as product of marginal
distribution functions. The independence copula therefore is written as

Π(u1, . . . , ud) := C(u1, . . . , ud) = F (F−1
1 (u1), . . . , F−1

d (ud))

= F1(F−1
1 (u1)) · . . . · Fd(F−1

d (ud)) =
d∏
i=1

ui.
(2.45)

If the distribution function can be written as minimum of the corresponding marginal
distribution functions, the dimensions feature a perfect positive dependence, they
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are comonotonic. In this case the copula of comonotonicity is resulting:

M(u1, . . . , ud) := C(u1, . . . , ud) = F (F−1
1 (u1), . . . , F−1

d (ud))
= min

i=1,...,d
Fi(F−1

i (ui)) = min
i=1,...,d

ui.
(2.46)

Of course, these two trivial copulas do mostly not allow for a realistic modelling of
dependence, but they are important for the modelling of extreme cases and they are
special cases in many copula families.

Another basic copula family are Gaussian copulas. Because of the popularity of
the multivariate Gaussian distribution the corresponding copula is an important
family even in this work, although this copula family is less appropriate in extreme
value analysis. As well, the Gaussian copula is defined by equation (2.17):

C(u1, . . . , ud) = ΦR

(
Φ−1(u1), . . . ,Φ−1(ud)

)
, (2.47)

with Φ−1 being the inverse cumulative distribution function of a standard Gaussian
distribution and ΦR being the joint distribution function of a centred multivariate
Gaussian distribution with correlation matrix R. Therefore the Gaussian copula
describes the dependence structure that exists within multivariate Gaussian distribu-
tions. The parameter R ∈ [−1, 1]d×d indicates the correlation structure.

As already stated, the Gaussian copula is rather inappropriate when modelling
extreme events (its misuse is even said to have had an impact on the financial crisis of
2008, Salmon, 2012). This is due to the fact that no upper or lower tail dependence
can be modelled but only dependencies in the centre of the distributions by modifying
the correlation parameter. Extreme events, however, tend to have dependencies
particularly in the tails whereas dependencies in the centre are often much lower.

A simple copula with upper tail dependence is the Gumbel copula. It is defined
as

Cθ(u1, . . . , ud) = exp
−( d∑

i=1
(− ln ui)θ

)1/θ , (2.48)

with θ ∈ [1,∞). The independence copula and the copula of comonotonicity are limit
cases of this family and result from θ = 1 and θ → ∞, respectively. The Gumbel
copula family belongs to the group of Archimedean copulas as well as to the group
of extreme value copulas with dependence function A(t) = (tθ + (1− t)θ)1/θ in the
bivariate case.

Because the Gumbel copula only describes relatively simple, symmetric dependencies,
mixed Gumbel copulas are constructed according to Section 2.3.5. Using two
Gumbel copulas Cθ1 and Cθ2 and mixing parameters a1, . . . , ad ∈ [0, 1] the dependence
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Table 2.1: Overview of used copula families and some of their properties.
Copula Parameter Generator ρ τ λL λU

Independence - φ(t) = − ln(t) 0 0 0 0
Comonotonicity - - 1 1 1 1
Gaussian R ∈ [−1, 1]d×d - 0 0
Clayton θ ∈ (0,∞) φ(t) = 1

θ (t−θ − 1) θ/(θ + 2) 2−1/θ 0
Gumbel θ ∈ [1,∞) φ(t) = (− ln t)θ 1− 1/θ 0 2− 21/θ

function in the bivariate case is written as

A(t) = ((a1t)θ1 + (a2(1− t))θ1)1/θ1 + (((1− a1)t)θ2 + ((1− a2)(1− t))θ2)1/θ2 , (2.49)

(Salvadori and De Michele, 2011) from which the measures of dependence can be
calculated depending on θ1 and θ2 using equations (2.35), (2.39), and (2.44).

The Clayton copula is used as a strong contrast to the Gumbel copula and mixed
Gumbel copula. It is defined as

Cθ(u1, . . . , ud) =
(

d∑
i=1

u−θi − 1
)−1/θ

, (2.50)

with θ > 0. Like the Gumbel copula the Clayton copula family is Archimedean and
contains the independence copula and copula of monotonicity as limiting cases for
θ → 0 and θ →∞, respectively. However, the Clayton copula is not an extreme value
copula and describes no upper tail dependence but only lower tail dependence.

Table 2.1 contains the simple copula models used in this dissertation, their parameters
and some important properties. Figure 2.7 illustrates the spectrum of different
dependence structures that can be modelled with the copulas presented. In it
n = 10 000 random numbers that are distributed according to different copulas are
displayed. Copula families vary along the rows, degree of dependency along the
columns. In each column, the rank correlation is the same for each copula family.

The topmost line displays Gaussian dependence, that has no lower or upper tail
dependence. The second and third line from the top give the Clayton and Gumbel
copula with lower and upper tail dependence, respectively. The bottom line contains
a mixed Gumbel copula featuring asymmetric dependence. Although the rank
correlation is identical in each column, the dependence structures are quite different.
This highlights the importance of attentive modelling of dependence.



22 2 Basics

Figure 2.7: Comparison of random numbers generated using different copula models
(rows) and different parameters (columns). Rank correlation ρ is iden-
tical in each column and amounts to ρ = 0.3, 0.7, 0.95. This illustrates
differences between copula models with equally specified rank correlation.
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2.3.8 Fitting of copulas

Often copulas are fitted to data using the Maximum-Pseudolikelihood approach,
which maximizes the sum of logarithms of copula densities evaluated at pseudo-
observations. Let X1;j, . . . , Xn;j be variables distributed like Xj and let Fn;j be
the corresponding empirical distribution function, j = 1, . . . , d. The Maximum-
Pseudolikelihood estimator is the solution to

arg max
θ

`(θ) = arg max
θ

n∑
i=1

log cθ(Fn;1(Xi;1), . . . , Fn;d(Xi;d)), (2.51)

in which cθ(u1, . . . , ud) = ∂d

∂u1...∂ud
Cθ(u1, . . . , ud) indicates the density of a copula Cθ.

This approach often needs numerical optimization but is generally applicable.

In many cases the relation between copula parameters and measures like Spearman’s
ρ or Kendall’s τ can be used to derive the parameters similar to the method of
moments in estimation of distribution parameters.

In Section 2.3.6 relations between bivariate copulas and measures of dependence
were described. For example, for a Gumbel copula with parameter θ Kendall’s tau
is τ = 1 − 1/θ, or, conversely, the copula parameter dependent on Kendall’s tau
is θ = 1/(1 − τ). If Kendall’s tau is calculated from data as τ̂ , the corresponding
parameter of a Gumbel copula can be estimated as

θ̂ = 1
1− τ̂ . (2.52)

This is only possible for bivariate copulas, because Kendall’s tau is only defined
for the bivariate case. However, if the assumption of equal dependence between all
dimensions is justified, a mean of the pairwise correlation can be used to estimate
the parameter. If the assumption is not justified, this leads to biased estimates. In
these cases simple copula models are inappropriate and more complex models and
estimations are needed.

For extreme value copulas Pickands dependence function can be used for parameter
estimation. Salvadori and De Michele (2011) recommend this in the context of
parameter estimation of mixed copulas. Their estimator minimizes the sum of pairwise
quadratic differences between the theoretical and empirical Pickands dependence
function at evaluation points xk = k/n, k = 1, . . . , n− 1:

θ̂ = arg min
θ

d−1∑
j=1

d∑
j′=i+1

n−1∑
k=1
|Ajj′(xk; θ)− Âjj′(xk)|2. (2.53)

Here Ajj′(xk; θ) is the value of Pickands dependence function between dimension j

and j′ of a copula C with parameter θ and Âjj′ is the corresponding estimator (for
example the corrected CFG estimator of equation (2.30)).
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Figure 2.8: Schematic representation of generating multivariate data sets of different
lengths with a copula C and marginal distributions Fj.

2.3.9 Random number generation

Being multivariate distributions, copulas can be used to generate synthetic data sets
which feature specific dependence structures and marginal distributions. Figure 2.8
gives a schematic overview on the procedure to generate data sets of different record
lengths given a copula C and marginal distributions F1, . . . , Fd.

First, uniformly distributed data with specified dependence structure is generated
with copula C. Since a copula is a distribution with uniformly distributed margins,
each component follows a uniform distribution on [0, 1] at first. To get the desired
marginal distributions, the inverse probability integral transform is applied at each
margin as a next step. If the data should consist of different record lengths or missing
values, this can be achieved by deletion of respective entries as final step. This is often
necessary to mimic the structure of real data in hydrology that normally features
different observation periods and gaps due to maintenance or reconstruction.

Depending on the copula, different algorithms can be used to do the first step. One
general approach is to begin with one independent uniformly-distributed vector
(v1, . . . , vd)′ and recursively transform each component using the conditional dis-
tribution depending on the former components (Bouyé et al., 2000). To generate
random numbers from Archimedean copulas, like Gumbel or Clayton, a more efficient
approach is described in Marshall and Olkin (1988). Algorithms for generating
random numbers for mixed copulas can be found in Durante and Salvadori (2010)
and Salvadori and De Michele (2010).

2.4 Distribution parameter estimation

In this section different estimators are presented for fitting distribution parameters
to data. In hydrology (in contrast to other disciplines) probability-weighted moments
or L-moments are very popular because they offer better estimation properties for
small samples in comparison to Maximum-Likelihood methods. Trimmed L-moments
are a generalization that has advantages when analysing highly skewed data. As an
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alternative the penalized Maximum-Likelihood estimator is presented. This is a
procedure that makes it possible to restrict the parameter space or to penalize
unrealistic estimations. This way, at the expense of some bias, the estimation
variance can often be reduced which results in a better overall quadratic deviation in
many situations, especially in small sample cases. In Chapter 5 the application of the
penalized Maximum-Likelihood estimator will be further investigated and applied to
regional flood frequency analysis.

2.4.1 Probability-weighted moments

Probability-weighted moments (PWMs) were described first by Greenwood et al.
(1979) with the goal to estimate parameters for distributions that are only defined
by their inverse distribution function. Similar to the method of moments, relations
between distribution parameters and probability-weighted moments can be used to
convert empirical PWMs to parameter estimations. In Hosking, Wallis, and Wood
(1985) the PWMs of a generalized extreme value distribution and their corresponding
PWM estimators are calculated. Superiority to Maximum-Likelihood estimation
in small samples (n < 50) is described in this work. PWMs have been replaced by
L-moments in hydrological applications (see the following section), but because many
properties of PWMs can be transferred to L-Moments, they are still relevant.

Definition & estimation

Let F be the cumulative distribution function of a continuous random variable X.
Further let the inverse distribution function F−1 be given in explicit form. Then
probability-weighted moments are defined as

Mp,r,s = E(XpF (X)r(1− F (X))s) =
∫ 1

0
(F−1(x))pxr(1− x)sdx, (2.54)

in which p, r, s ∈ R. With r = s = 0 this leads to classical non-centred product
moments.

For derivation of parameters, Greenwood et al. (1979) uses either M1,0,s, s = 0, 1, . . .,
orM1,r,0, r = 0, 1, . . ., where the moments of one of these series can each be represented
as a linear combination of the moments of the other series. The possible advantage
of these series to describe a distribution is that the power of X is set to one and only
the powers of F (X) or (1− F (X)) are varied. Therefore, extraordinary values do
not influence the outcome that much as for ordinary product moments. Hosking,
Wallis, and Wood (1985) exclusively use the series M1,r,0, r = 0, 1, . . ., which from
now on we will call

βr = M1,r,0 = E(XF (X)r). (2.55)
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From an ordered sample x1:n < . . . < xn:n an unbiased estimation of βr can be
calculated by (Hosking, Wallis, and Wood, 1985)

β̂r = 1
n

n∑
i=1

(i− 1)!(n− r − 1)!
(i− r − 1)!(n− 1)!xi:n = 1

n

n∑
i=1

(i− 1)(i− 2) . . . (i− r)
(n− 1)(n− 2) . . . (n− r)xi:n. (2.56)

The derivation of PWM-based parameter estimators is skipped here, because it is
analogous to the derivation using L- or TL-moments given in the following sections.
It is referred to Landwehr, Matalas, and Wallis (1979) and Hosking, Wallis, and
Wood (1985) for more information on this.

2.4.2 L-moments

L-moments (Hosking, 1990) are highly popular in hydrology as measures to describe
and identify distributions as well as to derive distribution parameters. In comparison
to classic product moments they are less sensitive to outliers or measurement errors
and they yield better properties than Maximum-Likelihood methods for parameter
estimation in small sample cases. They are closely related to probability-weighted
moments but are more descriptive and easier to interpret.

Definition

The most descriptive definition of L-moments (more possibilities to describe them
follow) defines them as linear combinations of expectations of order statistics. Let
X be a continuous random variable with cumulative distribution function F and
further let X1:n ≤ . . . ≤ Xn:n be increasing order statistics of a hypothetical sample
of size n from the distribution of X. Then the first four L-moments are defined as

λ1 = E(X1:1), (2.57)

λ2 = 1
2E(X2:2 −X1:2), (2.58)

λ3 = 1
3E(X3:3 − 2X2:3 +X1:3), (2.59)

λ4 = 1
4E(X4:4 − 3X3:4 + 3X2:4 −X1:4). (2.60)

Hence, the first L-moment is equal to the expectation of X and therefore a measure
of the central location of distribution F . The second L-moment is calculated as
the half of the expected range that results if a sample of size two is drawn. It is
a measure of variability. The third L-moment measures skewness because, under
the assumption of symmetry, the distance of the upper and lower order statistic,
X3:3, X1:3, respectively, to the mean order statistic, X2:3, would be equal and therefore
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X3:3 − 2X2:3 +X1:3 = (X3:3 −X2:3)− (X2:3 −X1:3) = 0 would follow. Positive values
indicate a positive skewness because the distance between the upper and middle order
statistic is higher than between the lower and middle one. For negative values it is
the other way round. The fourth L-moment describes the kurtosis of the distribution.
This becomes clear because X4:4−3X3:4 +3X2:4−X1:4 = (X4:4−X1:4)−3(X3:4−X2:4)
compares the distance between the extreme order statistics with the distance of the
two central order statistics. High values therefore indicate leptokurtic distributions,
low values platykurtic ones.

Generally, the L-moment of order r can be written as

λr = 1
r

r−1∑
i=0

(−1)i
(
r − 1
i

)
E(Xr−i:r). (2.61)

Alternatively, L-moments can be described by integrals over the inverse distribution
function of F . The expectation of an order statistic can be written as

E(Xi:n) = n!
(i− 1)!(n− i)!

∫ 1

0
F−1(x)xi−1(1− x)n−idx (2.62)

(David and Nagaraja, 2004). Then, according to Hosking (1990) the r-th L-moment
is given by

λr =
∫ 1

0
F−1(x)P ∗r−1(x)dx, (2.63)

with P ∗r (x) = ∑r
i=0 p

∗
r,ix

i being the so-called r-th shifted Legendre polynomial and
p∗r,i = (−1)r−i

(
r
i

)(
r+i
i

)
.

L-moments can also be written as linear combination of probability-weighted moments
(and vice versa). With β0, . . . , βr−1 being the first r PWMs (see equation (2.55)),
the r-th L-moment is given as

λr =
r−1∑
i=0

p∗r−1,i βi. (2.64)

Analogous to product moments, L-moments of higher order are usually standardised
to be independent of the unit of measurement. These L-moment ratios are calculated
as

τ2 = λ2/λ1, τr = λr/λ2, r ∈ {3, 4, . . .}. (2.65)

The L-moment ratios τ2, τ3, τ4 are called L-CV (coefficient of variation), L-skewness,
and L-kurtosis, respectively.

L-moments of a distribution exist if the first moment, the expectation, exists. In
this case, the set of L-moments uniquely describes the corresponding distribution.
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Empirical L-moments

Empirical L-moments can be calculated by plugging in empirical PWMs (see equa-
tion (2.56)) into equation (2.64). Let x1:n ≤ . . . ≤ xn:n be an increasingly ordered
sample of size n. The r-th empirical L-moment can be calculated as

λ̂r =
r−1∑
k=0

p∗r−1,k β̂k =
r−1∑
k=0

1
n

n∑
i=1

(i− 1)(i− 2) · · · (i− k)
(n− 1)(n− 2) · · · (n− k)xi:n. (2.66)

Alternatively the property

E(Xm:r) =
(
n

r

)−1 n−r+m∑
k=m

(
k − 1
m− 1

)(
n− k
r −m

)
E(Xk:n) (2.67)

of representation (2.61) can be used, which leads to estimator (Hosking, 1990)

λ̂r = 1
r

(
n

r

)−1 n∑
i=1

r−1∑
j=0

(−1)j
(
r − 1
j

)(
i− 1

r − 1− j

)(
n− i
j

)
xi:n. (2.68)

In Hosking and Balakrishnan (2015) another estimator is proposed that uses recur-
sively calculated weights. In a study they compare the PWM-based estimator (2.66),
the direct estimator (2.68), and the recursive estimator. The latter method leads
to the smallest calculation errors (due to rounding errors) while the PWM-based
calculation is the worst in this regard.

Empirical L-moment ratios are calculated as

τ̂2 = λ̂2/λ̂1, τ̂r = λ̂r/λ̂2, r ∈ {3, 4, . . .}. (2.69)

Empirical L-moments are unbiased estimators of their population counterparts while
empirical L-moment ratios are biased. According to Hosking and Wallis (1997) this
bias is moderate for samples consisting of at least 20 observations.

L-moment based parameter estimation

Besides their application as descriptive measures, L-moments are mostly used to
derive parameter estimations. Analogue to the regular method of moments, rela-
tions between distribution parameters and L-moments are used to derive parameter
estimation formulas.

This section presents the L-moment parameter estimators for a generalized extreme
value distribution. The estimators for other distributions can be found in Hosking
(1990) or can be derived analogously.
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The first three L-moments of a GEV(µ, σ, ξ) can be calculated by putting its inverse
distribution function into equation (2.63), which leads to:

λ1 = µ− σ

ξ
(1− Γ(1− ξ)), (2.70)

λ2 = σ

ξ
(2ξ − 1)Γ(1− ξ), (2.71)

λ3 = σ

ξ
(2 · 3ξ − 3 · 2ξ + 1)Γ(1− ξ). (2.72)

Hence, the L-skewness is

τ3 = λ3

λ2
= 2 · 3ξ − 3 · 2ξ + 1

2ξ − 1 , (2.73)

and only depends on the shape parameter ξ.

For parameter estimation the formulas (2.70), (2.71), and (2.73) are solved for the
parameters and the empirical L-moments or L-moment ratios are plugged in. The
value of ξ̂ can be determined numerically from equation (2.73), or the following
approximation can be used (Hosking, 1990):

ξ̂ = −7.859z − 2.9554z2 with z = 2
3 + λ̂3/λ̂2

− ln 2
ln 3 . (2.74)

Estimators of σ̂ and µ̂ then follow as

σ̂ = λ̂2ξ̂(1 + 2ξ̂)Γ(1− ξ̂), (2.75)

µ̂ = λ̂1 + σ̂

ξ̂
(1− Γ(1− ξ̂)). (2.76)

2.4.3 TL-moments

An alternative to L-moments is a generalization of them, the trimmed L-moments, or
TL-moments. In comparison to L-moments two added parameters allow for trimming
of upper and lower order statistics. This can lead to a more robust parameter
estimation, which is an advantage especially when dealing with skewed data. TL-
moments were introduced by Elamir and Seheult (2003) at first, Hosking (2007) and
Hosking and Balakrishnan (2015) developed their theory further.

Definition

As before let us assume that X1:n ≤ . . . ≤ Xn:n are order statistics from a hypothetical
sample of size n following a continuous distribution F . The r-th TL(s, t)-moment
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with trimming parameters s, t ∈ N0 is given by (Elamir and Seheult, 2003)

λ(s,t)
r = 1

r

r−1∑
k=0

(−1)k
(
r − 1
k

)
E(Xr+s−k:r+s+t). (2.77)

With trimming parameters set to zero, s = t = 0, the regular L-moments result
as a special case. The trimming parameters therefore indicate how many lower or
upper order statistics are skipped in the linear combination. For example, the first
TL(1,1)-moment, λ(1,1)

1 = E(X2:3), is the expectation of the central element of a
sample of size three. The second TL(1,1)-moment, λ(1,1)

2 = 1
2E(X3:4−E2:4), is half of

the expected range of the inner elements from a sample of size four. In the formula of
both moments the smallest and the highest order statistic are skipped corresponding
to a trimming of s = 1 and t = 1.

Analogously to L-moments, TL-moments of a distribution F can be expressed using
an integral over the inverse distribution function:

λ(s,t)
r = 1

r

r−1∑
k=0

(
r − 1
k

)
(r + s+ t)!

(r + s− k − 1)!(t+ k)!×∫ 1

0
F−1(x)xr+s−k−1(1− x)t+kdx.

(2.78)

TL-moments can also be stated as linear combinations of PWMs (Hosking, 2007):

λ(s,t)
r =

r+s+t−1∑
i=s

z
(s,t)
r−1,iβi, (2.79)

with
z

(s,t)
r,i = r!(r + s+ t+ 1)!

(r + 1)(r + s)!(r + t)!(−1)s+r+i
(
r + t

s+ i

)(
r + i

r

)
. (2.80)

TL-moment ratios are given as

τ
(s,t)
2 = λ

(s,t)
2 /λ

(s,t)
1 , τ (s,t)

r = λ(s,t)
r /λ2, r ∈ {3, 4, . . .}, (2.81)

with τ
(s,t)
2 , τ

(s,t)
3 , and τ

(s,t)
4 being called TL(s, t)-CV, TL(s, t)-skewness, and TL(s, t)-

kurtosis, respectively.

All TL(s, t)-moments of a distribution exist if the expectations E(max(−X, 0)1/(s+1))
and E(max(X, 0)1/(t+1)) exist (Hosking, 2007). This is an advantage over L-moments
because this condition is weaker than that for L-moments. For example, L-moments
of a Cauchy distribution do not exist (because the first moment does not exist), but
TL(1,1)-moments can be calculated and used for parameter estimation. For other
distribution families the L-moments do not exist for all parameter combinations
(L-moments of a GEV distribution only exist for ξ < 1, for example). In these cases
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TL-moments can be useful for parameter estimators that are not restricted to that
space or, at least, to a larger parameter space.

One property of TL-moments useful for calculating empirical TL-moments is that
TL-moments, if they exist, can be expressed as a linear combination of TL-moments
with lower trimming parameters (Hosking, 2007):

(2r + s+ t− 1)λ(s,t)
r = (r + s+ t)λ(s,t−1)

r − 1
r

(r + 1)(r + s)λ(s,t−1)
r+1 , (2.82)

(2r + s+ t− 1)λ(s,t)
r = (r + s+ t)λ(s−1,t)

r + 1
r

(r + 1)(r + t)λ(s−1,t)
r+1 . (2.83)

By chaining this so-called recurrence property, TL-moments of arbitrary trimming
can be reduced to a combination of simple L-moments, for example:

λ(0,2)
r = (r + 1)(r + 2)

2r(2r + 1) λr −
r + 2

2r λr+1 + r + 2
2(2r + 1)λr+2. (2.84)

Empirical TL-moments

From an ordered sample x1:n ≤ . . . ≤ xn:n the empirical r-th TL(s, t)-moment can
be calculated as (Elamir and Seheult, 2003; Hosking, 2007)

λ̂(s,t)
r =

n−t∑
j=s+1

1
r
(

n
r+s+t

) r−1∑
k=0

(−1)k
(
r − 1
k

)(
j − 1

r + s− k − 1

)(
n− j
t+ k

)
xj:n

=
n−t∑
j=s+1

wj xj:n.

(2.85)

This estimator can be deduced by plugging in the PMW estimator from equa-
tion (2.56) into equation (2.79). Alternatively, an estimator can be constructed using
L-moment estimators and the recurrence properties (2.82) and (2.83). In Hosking and
Balakrishnan (2015) different implementations are compared regarding computation
time and numerical stability. Their result is that for medium degrees of trimming
(s+ t < 3) calculation using the recurrence properties is superior to other methods.

Corresponding empirical TL-moment ratios are calculated as

τ̂
(s,t)
2 = λ̂

(s,t)
2 /λ̂

(s,t)
1 and τ̂ (s,t)

r = λ̂(s,t)
r /λ̂

(s,t)
2 , r ∈ {3, 4, . . .}. (2.86)

The differences between trimming parameters regarding calculation of empirical
TL-moments can be best compared by means of the weights wj of formula (2.85).
Figure 2.9 illustrates the weights for the first three TL-moments for increasing
asymmetrical or symmetrical trimmings. For the first TL-moments it is easily
noticeable that the classic L-moment (which is the arithmetic mean) weighs all
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Figure 2.9: Weights of ordered observations for empirical asymmetrically (top) or
symmetrically trimmed (bottom) TL-moments with different trimming
parameters.

observations equally. Asymmetrically trimmed TL(0,t)-moments decreasingly weigh
larger observations and increasingly weigh the lower ones, while symmetrical trimming
puts emphasise on the central observations. Higher moments are more difficult to
interpret, but it is visible that different trimmings emphasize different sections of
the ordered sample. For TL-moments with positive trimming the smallest and/or
highest observations are neglected in the calculation (see equation (2.85)), so they
do not get any weight at all.

Estimation of distribution parameters

Parameter estimation using TL-moments works analogously to that for L-moments.
By formula (2.78) theoretical TL-moments dependent of distribution parameters
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can be calculated using the inverse distribution function. By plugging in empirical
TL-moments or TL-moment ratios into those equations, parameter estimations can
be deduced.

Elamir and Seheult (2003) give calculations of TL(1,1)-moments of the Gaussian,
Cauchy, logistic, and exponential distribution. Formulas for TL(0,1)-, TL(0,2)-,
and TL(1,1)-moments of the generalized extreme value distribution can be found in
Lilienthal (2014).

2.4.4 Penalized Maximum-Likelihood estimator

The penalized or regularized Maximum-Likelihood estimator (PMLE) is an adoption
of the regular Maximum-Likelihood estimator (MLE). It adds a penalization term
that can be used to push the model in a specified direction in order to avoid unrealistic
estimations or to add further information to the estimation. Popular examples of
PMLE are the Ridge and the Lasso estimator in regression analysis. Here, high
(quadratic or absolute) values of the coefficient vector are penalized which leads to
improved estimation properties and an in-built variable selection in case of the Lasso
estimator.

Let fθ be the density function of distribution Fθ with parameter vector θ ∈ Θ and
let X1, . . . , Xn be i.i.d. observation variables following distribution Fθ. The regular
MLE chooses the parameter vector that optimizes the product of density values or
likewise the sum of logarithms of density values:

θ̂ = arg max
θ∈Θ

n∏
i=1

fθ(Xi) = arg max
θ∈Θ

n∑
i=1

log fθ(Xi). (2.87)

More information on this estimator for the special case that Fθ is a GEV distribution
can be found in Prescott and Walden (1980). Since the support of the GEV
distribution depends on the parameters, classical Maximum-Likelihood asymptotics
are not trivial. Smith (1985) stated that asymptotic normality holds for ξ > −0.5,
which was completely proven in Bücher and Segers (2017).

Penalized estimation adds a penalization term to that maximization that is depending
on θ. The PMLE is given as

θ̂λ = arg max
θ∈Θ

n∑
i=1

log fθ(Xi)− λ′Ω(θ), (2.88)

with hyperparameter λ ∈ Rp and penalization term Ω : Θ→ R
p.

The penalization term is used to influence the parameter estimation. It can be used
to avoid unrealistic parameter estimations or to include expert knowledge or further
sources of information, like from nearby or similar stations in the hydrological context.
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This new possibilities come with the need to choose the degree of penalization by
modifying the hyperparameter. This often leads to a trade-off between variance and
bias. For λ = 0 the ML estimator is calculated that is unbiased but often yields high
variance. With increasing λ usually the bias raises and the variance decreases. By
skilfully selecting the hyperparameter often an improvement in terms of MSE can be
achieved.

In Chapter 5 this estimator is applied to hydrological issues and especially to regional
flood frequency analysis.

2.5 Regional flood frequency analysis

We now come back to analysing the distributional behaviour of flood peaks. Since
most measuring stations were built during the last century, nowadays often only the
data of some decades is available. Using the block maxima approach, i.e. only using
the maxima of each year, often leaves us with relatively small sample records. This
is critical because often the interest of the analysis is the estimation of a rather high
quantile, like the 99.9%-quantile corresponding to a return period of 1000 years. The
extrapolation to such extreme values hugely amplifies the uncertainty of parameter
estimation based on small samples.

A tool to improve this situation is regionalization. The idea is that the data of
a station is not analysed on its own, but that further information from similar
measuring stations is somehow included to improve estimation uncertainty. A special
case of regionalization is the situation in which a quantile should be calculated at
a site with no prior measurements at all, i.e. at a site with a record length of zero.
In this case we have to completely rely on regional information to obtain some
assessment.

The term “regionalization” does not imply a specific method of analysis, but it stands
generally for procedures in which regional information is used to improve a local
estimator. Applied procedures vary vastly in general conception and in statistical
methodology.

One possibility is to use regression techniques to establish relations between flood
characteristics like the 100-year flood and site characteristics like the mean height
or the mean slope. Regression models constructed using observations from a set
of stations and their characteristics can be applied to sites with only few observa-
tions or to sites with no observations at all. A comparison of the performance of
regression models and parameter estimation techniques for estimating flood quantiles
at ungauged sites can be found in Pandey and Nguyen (1999). Another approach
are interpolation methods like topological kriging (Skøien, Merz, and Blöschl, 2006)
or a kriging technique applied in a physiographical space that is built by applying
canonical correlation analysis or principal component analysis on site characteristics
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(Chokmani and Ouarda, 2004). A very popular approach nowadays is based on the
Index Flood model and uses regionalized L-moments to build a common distributional
form. It is now given in more detail.

The core concept of the so-called Index Flood model (Dalrymple, 1960) is the
assumption that the distributions of annual peaks at several stations in a region is
the same if normalized by some scaling factor called index flood. Expressed as a
formula this means that for X1, . . . , Xd being the random variables of d sites with
cumulative distribution functions Fj , its inverse F−1

j , and with sj being some scaling
factor:

H0,IF : F−1
j (p) = sj · q(p) ∀ j = 1, . . . , d. (2.89)

The p-quantile of site j therefore is split into the site-specific factor sj, called index
flood, and the dimensionless common quantile function q, often called regional growth
curve. The index flood is mostly selected as sample mean of annual peaks or as
locally calculated location parameter (Sveinsson, Salas, and Boes, 2003) if sample
data is available. Calculation of the growth curve is often done using L-moments of
normalized observations.

This model represents quite strong assumptions to the distributions Fj . Other models
have weaker assumptions, e.g. only an identical tail behaviour is assumed that is
measured using the extreme value index. See Kinsvater, Fried, and Lilienthal (2016)
for regional estimation and homogeneity testing in such a model.

Model (2.89) is important for all steps of the process because it defines what sites are
regarded as “homogeneous”. The whole process of regionalization can be separated
in three general steps:

1. Building of groups of similar stations,

2. Calculating the regional growth curve,

3. Deriving local quantiles.

Now the three steps are described in more detail.

Building homogeneous groups

The first step is very important because the benefit of regional flood frequency
analysis is highly dependent on how good the model (2.89) describes the data. If
the model is inappropriate for the group, this leads to biased estimations of the
regional growth curve and therefore to inaccurate quantile estimates (Lettenmaier,
Wallis, and Wood, 1987). The size of the group is some kind of trade off because the
homogeneity assumption is often more questionable the more sites are included in
the group. On the other hand, the less sites are included the less information can be
regionalized.
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Basically there are three different kinds of groups: Geographically contiguous regions,
fixed partitions of the available set of sites, and groups individually selected for one
target site. Contiguous regions have some advantages as well as disadvantages. New
sites can easily be included to an analysis based on their geographical location. On
the downside, nearby stations often have high intersite dependencies because they
are influenced by the same weather, which reduces the amount of information gained
by applying a regional analysis.

Fixed partitions do not need to be regions in the literal sense, i.e. the sites do
not necessarily need to be geographically close. Statistical methods like cluster
analysis (Burn, 1989), classification and regression trees (Walther et al., 2012),
canonical correlation analysis (Ouarda et al., 2001), or others are used to delineate
groups out of the set of available sites. The data basis of such procedures are mostly
not the flood records itself but site characteristics like catchment size, mean height, or
river length in the catchment. The reason for this is that it enables us to assign new
sites with no prior measurements to groups by only collecting those characteristics.

Individual groups (called regions of influence, Burn, 1990) are built for each target
site individually. They can form contiguous regions around the target site or can be
built by using statistical methods to find similar sites.

After a group is built, its homogeneity is assessed using discordance measures
and tests. Depending on the results, adjustments can be made to improve the
homogeneity. Because of its importance, homogeneity testing takes an important role
in this dissertation. Chapter 3 analyses drawbacks of the very popular Hosking-Wallis
homogeneity measure (Hosking and Wallis, 1997) and generalizes it to be applicable
in more general situations. In Chapter 4 a new homogeneity test based on a limit
theorem of PWM estimators is constructed.

Calculation of the regional growth curve

After a set of stations has been selected for which the regionalization seems to be
beneficial, the dimensionless regional growth curve is calculated. First, a parametric
family for this curve has to be chosen. A reasonable choice based on asymptotic
extreme value theory are the GEV and GPD distributions depending on whether
the block maxima or POT approach is used (see 2.2.2 and 2.2.4). Since they
only appear as limiting distributions, in hydrology often other families like the log
normal distribution (Stedinger, 1980), generalized logistic distribution, Pearson type
3 (Bobée, 1973), and log Pearson type 3 distribution (Bobée, 1975) are used.

To select a distribution, a popular graphical approach is the use of L-moment
ratio diagrams (Vogel and Fennessey, 1993) that display the empirical L-skewness,
empirical L-kurtosis, and the corresponding theoretical ratios of different distribution
families. Figure 2.10 gives an example using 25 stations consisting of n = 100 samples
generated by a GEV(10, 5, 0.2). The observations (filled points) spread around the
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Figure 2.10: Example of a L-moment ratio diagram with random data from a GEV(10,
5, 0.2) with record lengths n = 100.

red GEV curve, which indicates all combinations of L-skewness and L-kurtosis in
the GEV family. This example illustrates how difficult it is to choose an appropriate
distribution family from empirical data because a graphical representation often does
not give clear decisions. As an alternative to graphical methods, Hosking and Wallis
(1997) gave a goodness-of-fit measure based on the L-kurtosis.

When a parametric distribution family is selected, the growth curve is calculated from
the pooled information. To do this, remember that the Index Flood model (2.89)
assumes that the flood peak distribution of the sites of interest is equal up to a
site-specific factor. If X1, . . . , Xd denote random variables following the flood peak
distribution of d sites and with s1, . . . , sd denoting the site-specific factors, we get
that X1/s1, . . . , Xd/sd are following the same distribution (according to the model).
In the approach of Hosking and Wallis (1997) regionalized L-moment ratios are used
to calculate the parameters of the growth curve. They are calculated as weighted
means of local L-moment ratios:

τr;R =
∑d
j=1 njτr;j∑d
j=1 nj

, r ∈ {2, 3, . . .}, (2.90)

with τr;j being the r-th L-moment ratio of the scaled sample of site j, x1,j/sj, . . . ,
xnj ,j/sj, and nj being the record length of that site. With those regionalized L-
moment ratios a distribution is then fit as described in Section 2.4.2 and the quantile
function of that distribution is used as a growth curve estimate.
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Deriving local quantiles

The last step in regional flood frequency analysis is to calculate a quantile estimate
at a given site. Two quantities are needed: the site-specific index flood and the
regional growth curve.

If observations are available at the given site, the index flood is calculated based
on them (using the same statistic as in the previous data pooling scheme). If no
observations are available, one has to estimate the index flood by using regional
information and/or site characteristics and applying regression or interpolation
techniques.

The other part, the growth curve, comes from the group’s regional information and
was calculated in the preceding step. If multiple groups were built and the site
of interest is not already assigned to one group, this has to be done. This step is
dependent on the statistical method that was used to build the groups.

The p-quantile of the site of interest can then be calculated as

F̂−1
j (p) = ŝj × q̂(p), (2.91)

with ŝj denoting the index flood and q̂ the regional growth curve.

2.6 Software

All implementations, experiments, simulations studies, tables, and most of the figures
in this dissertation have been calculated or made using the statistical software
environment R (R Core Team, 2019). The most important packages used are
evd (Stephenson, 2002) for providing the extreme value distribution, copula (Hofert
et al., 2018) for modelling copulas, and ggplot2 (Wickham, 2016) for graphical
plotting. In Chapter 3 a new homogeneity test is compared to existing procedures
that are taken from the package homtest (Viglione, 2012).

An important concept in this dissertation are TL-moments. Because existing im-
plementations were either slow or limited in options (like trimming parameters),
the package TLMoments (Lilienthal, 2019) has been built and made available on
CRAN. The main focus of this package is the implementation of fast algorithms to
calculate TL-moments and parameter estimations which makes it feasible to conduct
comprehensive simulations studies using TL-moments. This has been done by taking
advantage of the recurrence properties described in equations (2.82) and (2.83) (see
also Hosking and Balakrishnan, 2015) and by implementing core parts in C++. Co-
variance estimators of the sample TL-moments and resulting parameter and quantile
estimators described in Chapter 4 were also implemented in this package.



3 Homogeneity test for skewed
and cross-correlated data

In Section 2.5 the procedure of regional flood frequency analysis was described with
special attention to the Index Flood procedure. In all regionalization techniques
information resulting or transferred from a set of stations is used for quantile
estimation at the site of interest. This can only be of benefit if the sites share
some common flood frequency characteristic. In the Index Flood model the flood
distribution of scaled variables is assumed to be the same for all stations. Test
procedures are used to assess if this assumption is appropriate or if modifications to
the group are to be recommended. The following chapter deals with this problem in
the case of skewed and cross-correlated data which is typical for flood observations
in Germany.

It is based on the work “Homogeneity testing for skewed and cross-correlated data in
regional flood frequency analysis” published in the Journal of Hydrology (Lilienthal,
Fried, and Schumann, 2018).

3.1 Introduction

As described previously, homogeneity of a set of stations is crucial for the benefit of
regionalization. A group of stations is called homogeneous, if the Index Flood model
(2.89) is an appropriate description of their statistical behaviour. Dalrymple (1960),
who also introduced the model itself, proposed a homogeneity test, but due to its
lack of power other procedures have been suggested (Fill and Stedinger, 1995; Lu
and Stedinger, 1992; Wiltshire, 1986). Hosking and Wallis (1993) introduced the
nowadays most common Hosking-Wallis (HW) procedure based on the variability
of L-moment ratios (Hosking, 1990). The former univariate procedure was later
on extended to multivariate situations (Chebana and Ouarda, 2007; Chebana and
Ouarda, 2009).

Although being widely used, the HW procedure is not free of drawbacks. Viglione,
Laio, and Claps (2007) compared it to two rank based tests and concluded that the
L-moment based HW procedure is better for little skewed distributions while rank
based tests are better for higher skewness. Another problem lies in cross-correlation
between the stations. Hosking and Wallis (1988) examined the effect of intersite
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dependence to regional flood frequency analysis in general and Castellarin, Burn, and
Brath (2008) to the HW procedure in particular. Their result is that cross-correlation
reduces the power of the test, which means that heterogeneous cross-correlated groups
misleadingly tend to look homogeneous. Their proposed solution is an empirical
corrector that is added to the test statistic. In a recent study Masselot, Chebana,
and Ouarda (2017) argued that the original rejection threshold is not well justified
and enhanced the test by replacing parametric assumptions with a nonparametric
procedure.

This study takes up the drawbacks regarding skewed distributions and intersite
dependence. Trimmed L-moments (Elamir and Seheult, 2003) are used to replace
regular L-moments and the intersite dependence is modelled with copulas.

In Section 3.2 the original Hosking-Wallis procedure is explained. The new approach
is motivated and the differences to the original Hosking-Wallis procedure are shown
in Section 3.3. In Section 3.4 simulation studies are performed to compare the new
method to existing approaches and to assess the quality of the modifications. Results
and comparisons to other approaches are discussed in Section 3.5. A case study
follows in Section 3.6, in which the need for modifications of the original procedure
is revealed. Thereafter the main results are summarized.

3.2 Hosking-Wallis heterogeneity measure

The heterogeneity measure of Hosking and Wallis (1993) is based on the comparison
of the observed sample variability of L-moment ratios (Hosking, 1990) and the
expected variability under the assumption of homogeneity. It can be divided into
three parts: the calculation of a statistic, the calculation of coefficients to normalize
this statistic, and finally the decision about homogeneity.

First, L-moment ratios have to be calculated at each site as well as regionalized
averages of them. Let there be d samples of length n1, . . . , nd and let τ̂2;j , τ̂3;j, and τ̂4;j
be the empirical L coefficient of variation (L-CV), L-skewness, and L-kurtosis of
sample j = 1, . . . , d, respectively. The regional averaged L-moment ratios are defined
by

τ̂2;R =
∑d
j=1 nj τ̂2;j∑d
j=1 nj

, τ̂3;R =
∑d
j=1 nj τ̂3;j∑d
j=1 nj

, τ̂4;R =
∑d
j=1 nj τ̂4;j∑d
j=1 nj

. (3.1)

Hosking and Wallis (1993) defined three different measures of dispersion using
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L-moment ratios. The two most often applied ones are

V1 =
d∑
j=1

nj(τ̂2;j − τ̂2;R)2/
d∑
j=1

nj, (3.2)

V2 =
d∑
j=1

nj((τ̂2;j − τ̂2;R)2 + (τ̂3;j − τ̂3;R)2)1/2/
d∑
j=1

nj. (3.3)

These statistics have to be normalized afterwards. This means that

Hi = Vi − µi
σi

, i = 1, 2, (3.4)

is calculated with appropriate values of µi and σi. To select these, a parametric
bootstrap is performed. Using the regional averages of L-CV, L-skewness, and
L-kurtosis a kappa distribution (Hosking, 1994) is fitted. A large number of datasets
is then drawn from this kappa distribution, each of them consisting of d samples
with corresponding sample lengths n1, . . . , nd. For each bootstrap dataset the value
of Vi is calculated and the mean and standard deviation over all of these values are
inserted for µi and σi, respectively.

According to Hosking and Wallis (1993) the set of samples is called “acceptably
homogeneous” if Hi < 1, “possibly heterogeneous” if 1 ≤ Hi < 2 and “definitely
heterogeneous” if Hi ≥ 2. Note that Hosking and Wallis (1993) did not formulate
this as a test, but rather as a recommendation. Therefore no specific significance
level is controlled.

3.3 Construction of a generalized Hosking-Wallis
procedure

In this section we motivate our new approach and describe the differences to the
original Hosking-Wallis procedure. For this we first review the papers of Castellarin,
Burn, and Brath (2008) and Viglione, Laio, and Claps (2007), which dealt with two
different drawbacks of the original procedure, and we explain the differences to our
approach. The modified procedure is summarised afterwards.

3.3.1 Consideration of intersite dependence

The original Hosking-Wallis homogeneity measure assumes intersite independence,
meaning that the observations of each station are independent of the other stations’
observations for the same year. In practice this is a strict assumption, which is
often not fulfilled. Stations in the same river network feature a natural dependence
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Figure 3.1: Sampling distribution of V1 when normal, Gumbel, Frank, or Clayton
copulas generate the data, grouped by increasing rank correlation.

because floods at upstream stations affect floods downstream. Additionally and more
generally, all nearby stations are simultaneously influenced by events like snow melt
or synoptic rainfalls.

Castellarin, Burn, and Brath (2008) investigated this problem. Their result is that
cross-correlation reduces the power of the test. This means that heterogeneity of a
group of stations is detected less often and therefore heterogeneous cross-correlated
groups misleadingly tend to appear as homogeneous. Their proposed solution is an
empirical corrector. They first calculate the test statistic H1 (see formula (3.4)) under
the assumption of intersite independence. After this, they calculate an adjusted test
statistic

H1,adj = H1 + C × ρ̄2(d− 1), (3.5)

with the average squared correlation ρ̄2, the number of stations d, and a constant
correction coefficient C, which has to be derived by simulations. Castellarin, Burn,
and Brath (2008) computed it as C = 0.122, but they noted that “the coefficient C
is inevitably associated with the Monte Carlo simulation experiments performed in
this study”.

A drawback of this approach is that the dependence structure is only taken into
account through the correlation ρ. Figure 3.1 shows the sampling distribution of the
dispersion of L-skewness (V1 given in formula (3.2)) when generating data with four
common copulas and given rank correlations ρ = 0, 0.3, 0.6, 0.9. One can observe that
the distribution changes more with increasing correlation and thus would require
different corrections. Hence, following the above approach, we would need to calculate
a specific correlation coefficient C for each dependence structure.

Our solution to the problem of cross-correlated data differs from the above approach.
Instead of ignoring the assumption of independence and correcting for this afterwards,
we dispose the assumption by allowing cross-correlated data. Therefore the procedure
for generating bootstrap data to calculate the test statistic needs to be modified.
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We use a d-dimensional copula to describe the intersite dependence of a group of d
stations. This copula is taken to generate datasets which feature the same dependence
structure like the observed data. This way the cross-correlation between the stations
is directly included in the procedure.

3.3.2 Robustification against high skewness

Another weakness of the original procedure arises when analysing skewed data.
Viglione, Laio, and Claps (2007) compared the Hosking-Wallis procedure to two
rank-based test statistics, a generalization of the Anderson-Darling goodness of fit test
and the Durbin and Knott test (Durbin and Knott, 1972). Viglione, Laio, and Claps
(2007) concluded that L-moment based tests are better for little skewed distributions
while rank-based tests are better for higher skewness. Their final recommendation is
to use the Hosking-Wallis procedure if the regionalized L-skewness is lower than 0.23
and the Anderson-Darling test otherwise.

Our approach to face this issue is to improve the Hosking-Wallis procedure by using
trimmed L-moments (see Section 2.4.3) instead of regular L-moments. This is done
by substituting the L-moment ratios τ̂2;j, τ̂2;R, τ̂3;j, τ̂3;R in formula (3.2) and (3.3) by
corresponding TL-moment ratios τ̂ (s,t)

2;j , τ̂
(s,t)
2;R , τ̂

(s,t)
3;j , τ̂

(s,t)
3;R with trimming parameters

s, t ∈ N0, which need to be specified. A simulation study in Section 3.4 will analyse
the influence of these parameters to the test performance.

3.3.3 Generalized Hosking-Wallis procedure

We now briefly describe our proposed generalized Hosking-Wallis procedure. After-
wards we provide further notes to the different steps.

To calculate the generalized Hosking-Wallis procedure the following steps are per-
formed:

1. Analyse the data to identify suitable trimming parameters (s, t) and copula
model C.

2. Calculate a TL-moment based statistic:

V1 =
d∑
j=1

nj(τ̂ (s,t)
2;j − τ̂

(s,t)
2;R )2/

d∑
j=1

nj, (3.6)

V2 =
∑d
j=1 nj

√
(τ̂ (s,t)

2;j − τ̂
(s,t)
2;R )2 + (τ̂ (s,t)

3;j − τ̂
(s,t)
3;R )2∑d

j=1 nj
. (3.7)

3. Fit the copula Ĉ and the marginal kappa distribution K̂ to the data.
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4. Generate NSim datasets of the same structure as the real data using the
copula approach with copula Ĉ and equal kappa margins K̂ and calculate (3.6)
and/or (3.7) in each of them (called V1,1, . . . , V1,NSim and/or V2,1, . . . , V2,NSim ,
respectively).

5. Use either a) or b) to derive a decision:

a) Calculate µi = 1/NSim
∑NSim
j=1 Vi,j and σi = 1/(NSim + 1)∑NSim

j=1 (Vi,j −µi)2

to get
Hi = Vi − µi

σi
, i = 1, 2, (3.8)

and reject the homogeneity according to a critical value or use the original
suggestion-type decision rule: Classify the group as “acceptably homoge-
neous” if Hi < 1, “possibly heterogeneous” if 1 ≤ Hi < 2, and “definitely
heterogeneous” if Hi ≥ 2.

b) Use the position of the observed Vi inside the ordered bootstrap results to
determine the unlikeliness of the observed data. Reject the null hypothesis
at the α% significance level if Vi > c̃α with c̃α being the empirical (1−α)-
quantile of Vi,1, . . . , Vi,NSim .

A note should be made regarding the last step that contains the decision making. We
decided to mention two options, the classic suggestion-type decision of the original
procedure and a more statistical way that determines a critical value based on
the bootstrap results, similar to the suggestion of Masselot, Chebana, and Ouarda
(2017). In Section 3.4.2 we will compare these options and explain our choices in the
simulation study.

The original procedure can be obtained by choosing L-moments (setting s = t = 0)
and the independence copula C(u1, . . . , ud) = ∏d

i=1 ui (see Section 2.3.7). Hence, this
new procedure truly generalizes the original one.

The choice of trimming parameters and copula model needs further attention and
will be analysed in the following simulation studies. The appropriate trimming
seems to depend on the skewness of the analysed data. In situations with positively
skewed data upper-trimmed TL-moments turn out to be preferable. In situations
with negative or no skewness other choices might be better. A suitable copula model
could be chosen with the help of Goodness-of-fit procedures (e.g. Genest, Rémillard,
and Beaudoin, 2009). Small misspecifications are negligible as the simulation study
will show.

A difficulty that arises when analysing real data is that the stations usually feature
different record lengths and missing data. In Step 3 this has to be considered in the
fitting procedure. Simple Gumbel or Clayton copulas can be fitted by calculating a
weighted mean of the pairwise Spearman’s ρ and using the inversion of ρ method
(as described in Section 2.3.8). The given procedure for fitting the mixed Gumbel
model uses only pairwise calculations of Pickands dependence function anyway, so
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this is easily adopted by only considering the common records of each two stations.
How data sets of unequal record lengths are simulated using a copula and marginal
distributions is described in Section 2.3.9.

3.4 Simulation studies

In this section simulation studies are carried out to investigate the advantages and
drawbacks of our proposed new procedure. Comparisons to other approaches will be
given in Section 3.5.

3.4.1 Data generation

In the subsequent studies a scenario with 20 stations, each with a maximum record
length of 60 years, is considered. In practice observation periods typically start at
varying points in time. To reflect this, the beginning of each station’s simulated
observations is randomised for each data set. Four stations start in the “first” year,
six 10 years later, another six 20 years later, and the last four stations start 30 years
after the first observation. The group’s mean sample length is n̄ = 45. An example
how the data scheme looks like is illustrated in the left panel of Figure 3.2.

The simulated network of stations can contain intersite dependence and can either
be homogeneous or heterogeneous. The joint distribution of the sites is constructed
using the copula approach, which means that the marginal distributions and the
copula are specified separately.
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Figure 3.2: Left: Schematic example of simulated observation lengths. Right: Distri-
butions employed in the simulation studies characterized by their L-CV
and L-skewness.
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Table 3.1: Overview of the configuration of the six studies: Data generation consists
of different marginal distributions and copulas. Operated test procedure
depends on trimming parameters and copula model.

Data generation Test configuration

No. Marginals Copulas TL Copulas

1 little skewed Gumbel(1.5) (0, 0), (0, 1), (0, 2) Gumbel
medium skewed (0, 3), (0, 4), (1, 1)
highly skewed (1, 2), (2, 2)

2 little skewed Independence (0, 1) Independence
medium skewed MixedGumbel∗ Gumbel
highly skewed MixedGumbel

3 medium skewed Clayton(2) (0, 0), (0, 1), (0, 2) Gumbel
Clayton

4 medium skewed∗∗ Gumbel(1.5) (0, 0), (0, 1), (0, 2) Gumbel

5 medium skewed∗∗∗ Gumbel(1.5) (0, 0), (0, 1), (0, 2) Gumbel

6 medium skewed∗∗∗∗ Gumbel(1.5) (0, 0), (0, 1), (0, 2) Gumbel
∗ as in formula (2.31): C1 = Gumbel(3), C2 = Gumbel(1.25), a = (.2, .4, .6, .8, .2, .4, . . . , .8)
∗∗ discordant sites vary on a free grid, ∗∗∗ artifical outliers added,
∗∗∗∗ different mean record lengths and number of stations

The generalized extreme value distribution family is selected for every marginal
distribution. 16 stations always have the same GEV parameters, while the parameters
of four other stations are allowed to vary. Similarly to Viglione, Laio, and Claps
(2007) we perform these modifications in the space of L-moment ratios, which means
that we either modify the L-CV τ2 or the L-skewness τ3 of the discordant stations.
These modifications are indicated as τ2 ↓, τ2 ↑, τ3 ↓, and τ3 ↑. The right panel of
Figure 3.2 shows the τ2 − τ3-combinations chosen. We consider three parameter
combinations as a base point (filled circles; parameters of station 1–16) and vary them
at the τ2- and τ3-scale (unfilled circles; possibly modified parameters of stations 17–20
in the main study). These three combinations represent common distributions we
found in real data and feature high, medium, or little skewness. To ease readability,
we will use the terms CV and skewness without their L-prefix from now on.

To model the intersite dependence of these stations the independent, Gumbel, and
mixed Gumbel copula are used. The latter is constructed using two Gumbel copulas
and the result of formula (2.31). We chose these copulas because it allows us to
examine copulas of different complexity within one framework (the independence
copula is a special case of the Gumbel copula, which in turn is a special case of the
mixed Gumbel copula). Additionally, all these models are extreme value copulas and
therefore a logical choice to model the dependence of extremes. The Clayton copula
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is neither an extreme value copula nor does it capture upper tail dependence. It is
included to simulate a severe case of copula misspecification.

Each of the settings is replicated B = 5000 times. On the left hand side of Table 3.1
the different configurations of our studies are summarised.

3.4.2 Test application

Our proposed procedure is calculated with different configurations, i.e. different
selections of trimming parameters or copula models. The right hand side of Table 3.1
summarises these options for the different studies. We use mainly TL-moments with
upper-trimming. The reason for this lies in the fact that we deal with distributions
with heavy upper tails. The influence of extraordinary high observations should
therefore be restricted.

Both test statistics, H1 and H2, are calculated. Because the results of H1 are superior
to those of H2 in almost every respect (Viglione, Laio, and Claps, 2007, experienced
similar results), the test results based on H2 are neglected in favour of a simpler
presentation.

In Section 3.3.3 we provided two options to determine the test’s outcome. The method
of Hosking and Wallis is formally not a test and is meant more as a recommendation.
Because of this there is no critical value whose exceedance defines the rejection of the
null hypothesis. Some authors (Fill and Stedinger, 1995; Hosking and Wallis, 1997)
suggest using H > 1.64 as a rejection criterion assuming V to be normally distributed.
In fact, the original V statistic using L-moments is not normally distributed and
the critical value cα for which the rejection criterion H > cα leads to a significance
level of (α× 100)% depends strongly on the sizes and record lengths of the groups
and especially on the skewness of the marginal distributions as we will see in the
following.

Table 3.2 illustrates this by giving the empirical critical values ĉ5% for using the V1
statistic with L-moments based on a simulation of homogeneous regions consisting of
20 sites with different skewnesses and record lengths (5000 replications each). Other
factors like the intersite dependence are not considered here, but have impact, too.
In the second and third line the estimated rejection rates indicate that both fixed
critical values fail to ensure a constant significance level. The rejection criterion
Vi > c̃α with c̃α being set as the empirical (1− α)-quantile of the simulated V (given
in the fourth line) works well for little skewed data, but also fails when the data
features higher skewness. The lower part of Table 3.2 gives the same information but
using the TL(0,1)-moments to calculate V1. It is visible that the empirical critical
values at the α = 5% level are more stable over the different situations. The decision
rule H1 > 1.64 leads to more stable rejection rates about 6-8%. The assumption of
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Table 3.2: Empirical critical values that would lead to a 5% significance level (ĉ5%)
and the empirical rejection rates for different decision rules (with c̃5%
being the 95%-quantile of the simulated V ). Results are based on 5000
simulated homogeneous regions consisting of 20 sites. The values show
the strong connection between the critical values and rejection rates and
the data’s skewness and record lengths when using L-moments.

little skewed medium skewed highly skewed

n = 30 50 100 30 50 100 30 50 100

L ĉ5% 1.84 1.76 1.75 2.29 2.07 2.00 2.77 2.59 2.31
P̂ (H1 > 2) 0.04 0.03 0.03 0.08 0.06 0.05 0.14 0.11 0.07
P̂ (H1 > 1.64) 0.07 0.06 0.06 0.13 0.10 0.09 0.22 0.17 0.12
P̂ (V1 > c̃5%) 0.07 0.06 0.05 0.11 0.09 0.08 0.19 0.14 0.09

TL ĉ5% 1.80 1.73 1.79 1.82 1.80 1.70 1.93 1.88 1.84
P̂ (H1 > 2) 0.04 0.03 0.03 0.04 0.04 0.03 0.04 0.04 0.03
P̂ (H1 > 1.64) 0.07 0.06 0.06 0.07 0.06 0.06 0.08 0.07 0.07
P̂ (V1 > c̃5%) 0.06 0.05 0.06 0.06 0.06 0.05 0.08 0.07 0.07

normality seems to work better when using TL-moments in the V -statistic. There
are no substantial differences between using the criterion H1 > 1.64 and V1 > c̃5%.

We choose H1 > 1.64 as rejection criterion in this study. We do not see substantial
improvements with using the empirical simulated quantile as a critical value since all
methods fail to hold the significance level for skewed data. When using TL-moments,
the resulting differences between these options are small anyway.

3.4.3 Test assessment

To assess the test’s performance we need to distinguish between two cases. If the
analysed group of stations is truly homogeneous we want the rate of rejections to be
low. The proportion of rejections of the null hypothesis estimate the probability of
committing a type-I-error and is subsequently called size of the test. If the group
is truly heterogeneous a high rate of rejections is desirable and the proportion of
rejections describes the power of the test in this case. Given a simulated group of
stations, denoted by G, and a simulation of B replications, we therefore calculate
both measures as

1
B

B∑
b=1
1(H1,b ≥ 1.64) =

size, if G is homogeneous,
power, if G is heterogeneous.

(3.9)
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The indicator function 1(·) takes the value 1 if H1,b ≥ 1.64, and is 0 otherwise, with
H1,b indicating the observed test statistic in replication b.

Because different tests can have different sizes a direct comparison regarding the
power is often difficult or even not feasible. For a fair comparison we adjust the
empirical power by choosing the critical value cα as the value that leads to a size of
(α× 100)% in the simulations (see also Zhang and Boos, 1994):

size adjusted power = 1
B

B∑
b=1
1(H1,b ≥ cα) (G is heterogeneous),

with 1
B

B∑
b=1
1(H1,b ≥ cα) = α (G is homogeneous).

(3.10)

In this study we present the size adjusted power for α = 5%.

3.4.4 Influence of the trimming

This simulation study assesses which trimming parameters are appropriate in the
presence of intersite dependence as it is described by a Gumbel copula with parameter
ϑ = 1.5. The generalized Hosking-Wallis procedure using a Gumbel copula is
calculated for several TL-moments. The results for L-, TL(0,1)-, TL(0,2)-, TL(0,3)-,
and TL(0,4)- moments are given below. Other trimmings (see Table 3.1) lead to
inferior results and are not reported here.

The results are depicted in Figure 3.3. The left panel contains the size and the
right one displays the size adjusted power of the test for the different modifications.
Both graphics are grouped row-wise by the three degrees of skewness. The different
trimming parameters are indicated by different colours.

The size using L-moments (TL(0,0)) exceeds 5% noticeably, especially in the medium
and highly skewed setting. For TL(0,1)-moments the size is generally the lowest, but
still above the 5% level. Higher trimmings lead to increased sizes.

Looking at the size adjusted power of the tests, the first finding is that there are
substantial differences between the different modifications. In the little skewed setting
changes of CV are more likely to be detected than changes of skewness, while in the
highly skewed setting the detection rates are more similar or even the other way
round. In case of changes of CV the (0,1)-trimming generally is the most preferable
one, other trimmings mostly lead to inferior rates or only minor improvements (in
case of highly skewed data). For changes of skewness the size adjusted power improves
for higher trimmings up to the trimming of (0,2) or (0,3) and then declines.

As a result we suggest the use of TL(0,1)-moments because their size adjusted power
is always an improvement over L-moments while they also lead to an substantial
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Figure 3.3: Size and size adjusted power of the generalized Hosking-Wallis proce-
dure with different TL-moments and Gumbel copula. Synthetic data is
generated with Gumbel(1.5) dependence structure.

decrease in size when standard decision rules are applied (i.e. H > 2 or H > 1.64).
Higher trimmings can result in a more powerful test for some problems but more
considerations would be necessary on how to control the significance level.

In the remaining studies we will choose TL(0,1)-moments to calculate the modified
Hosking-Wallis statistics, unless stated otherwise.

3.4.5 Influence of the copula model choice

This section deals with the influence of the chosen copula model. The independence
copula or the mixed Gumbel model were used to generate data sets. The generalized
Hosking-Wallis procedure is applied to each data set using either the independence
copula, the Gumbel copula, or the mixed Gumbel copula. Parameters of the latter
two copula models have to be estimated. As stated before, TL(0,1)-moments are
chosen to calculate H1.

First we have a look at the results when the data is generated without intersite
dependence, depicted in Figure 3.4. Fitting copulas to the independently generated
data lead to increases in size. These are minor if simple Gumbel copulas are used
and higher for the more complex mixed copula model. The size adjusted power rates
are practically the same for all tests. The reason for this is that the fitted copula
model is only used in the bootstrap procedure, which only affects the coefficients
that standardize the V -statistic. This only changes the size of the test but not the
size adjusted power rate.



3.4 Simulation studies 51

7.6 7.8

10

6.4 6.6

8.2

5.5 5.7
6.8

h
ig

h
ly

 s
k
e
w

e
d

m
e
d
iu

m
 s

k
e
w

e
d

little
 s

k
e
w

e
d

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

s
iz

e
 [
%

]

copula model fitted

Independence

Gumbel

Gumbel x Gumbel

272727

363535
303030

353433

343536
404041

192021 202020

585859
555656

141515 141415

h
ig

h
ly

 s
k
e
w

e
d

m
e
d
iu

m
 s

k
e
w

e
d

little
 s

k
e
w

e
d

 τ ↓  τ ↑  τ3 ↓  τ3 ↑

0

20

40

60

0

20

40

60

0

20

40

60

modification

s
iz

e
 a

d
ju

s
te

d
 p

o
w

e
r 

[%
]

Figure 3.4: Size and size adjusted power of the generalized Hosking-Wallis procedure
with different copula models and TL(0,1)-moments. Synthetic data is
generated without dependence structure.

This demonstrates that there is generally little harm in the assumption of a simple
dependence structure when in fact there is no intersite dependence present. The size
is not drastically increased and the size adjusted power is not affected. Of course, one
reason for this is that both the Gumbel copula and the mixed Gumbel copula include
the independence copula as a special case. In fact, the mean fitted Gumbel parameter
over all replications of the displayed settings here is θ̄ = 1.05 (corresponding to a
correlation of ρ̄ = 0.05) and therefore indicates almost the independence copula.

Now we have a look at the opposite case, meaning that the real dependence structure
is more complex than the fitted one (Figure 3.5). The size using the independence
copula is very low. The unconsidered dependence structure leads to a wrongly
adjusted bootstrap, which corrupts the test. The differences between the Gumbel
and the mixed Gumbel model are smaller here. The size for the simpler model is
generally lower than that for the true model. The estimation of a simple copula
seems more beneficial than the estimation of the true model with many parameters.
As in the previous study, the size adjusted power rates are similar for all tests.

To investigate the case of complete misspecification of the copula model, data was
generated in the medium-skewed situation using a Clayton(2) copula. The Clayton
copula describes dependencies with a lower tail dependence and is therefore very
different to the Gumbel model, which features upper tail dependence.

Figure 3.6 shows the results of this situation, in which the H1 statistic was calculated
under the assumption of Clayton or Gumbel copulas. To analyse the role of the
trimmed L-moments in this setting, L, TL(0,1)-, and TL(0,2)-moments were chosen.
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Figure 3.5: Size and size adjusted power of the generalized Hosking-Wallis procedure
with different copula models and TL(0,1)-moments. Synthetic data is
generated with mixed Gumbel model.
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Figure 3.6: Size and size adjusted power of the generalized Hosking-Wallis procedure
in the case of copula misspecification. Real copula is Clayton(2); Gumbel
and Clayton copulas are fitted and different TL-moments are used.

The Gumbel copula is not to be recommended in the case of L-moments (TL(0,0))
because the resulting size in case of the copula misspecification considered here is by
far too large. Fitting a Clayton copula leads to an excessive size, too. The results
change with TL(0,1)-moments in the test statistic. The size is below 6% for both
copula models. The size adjusted power is clearly better using the Clayton model,
but reasonable results are achieved using the Gumbel model. Larger trimming leads
to more conservative tests in this situation. The size adjusted power is even better
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than for TL(0,1)-moment, but in practice this is irrelevant when the exact critical
values are unknown.

These findings indicate that the application of trimmed L-moments leads to some
robustness against misspecification of the copula model. Even in this highly con-
structed case, in which the copulas generating the data are very different from those
fitted, the test using trimmed L-moments maintains some power while not exceeding
the nominal level too much.

3.4.6 Sensitivity Analysis

We have seen that the power of the test is affected differently by the different types
of modification to CV or skewness. It is important to investigate this further to be
able to decide if an assumed heterogeneity can be discovered by the procedure.

For this, the medium skewed situation is regarded as base distribution (τ2 = τ3 =
0.35). Now the modified stations are varied to all possible combinations on the
grid (τ2, τ3) ∈ {0.25, 0.26, . . . , 0.45} × {0.15, 0.17, . . . , 0.55}. A Gumbel(1.5) copula
describes the intersite dependence.

Figure 3.7 contains the size adjusted power of the test depending on CV and skewness
of the modified station. Differences in the structure of the rejection rates between
L- and TL-moments become obvious. With L-moments, the power raises mainly
when the CV varies. The test statistic only incorporates the empirical CV, so this
behaviour is to be expected. With TL-moments a variation of lower CV and higher
skewness or inversely can easily be detected, but when CV and skewness changes
in the same direction nearly no detection is possible. The reason for this is that

Figure 3.7: Size adjusted power rates of the generalized Hosking-Wallis procedure
depending on the position of discordant site grouped by TL-moments.
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the modified statistic now incorporates TL-moments and therefore the test detects
variations in the TL-moment space.

3.4.7 Robustness against outliers

This analysis concerns the robustness against outliers. An outlier can occur because of
a measurement error but also due to a rare event. The first type could be eliminated
by simply removing it, but the second one is a valid observation and removing it
would change the data. Due to the typically short observation periods, already a few
very high measurements can have a big impact on the analysis of homogeneity. It is
desirable that homogeneous groups do not appear heterogeneous due to some rare
single events. By investigating the test size under the presence of a varying number
of outliers we can check for this quality.

A homogeneous group of medium skewness and with a Gumbel(1.5) copula describing
their intersite dependence is simulated. After generating data, up to five observations
at one single station are changed to the theoretical 99%, 99.9% or 99.99%-quantile
of the respective distribution. This reflects the situation in which an extraordinarily
large, but still plausible, observation occurs.

The size was calculated applying L-, TL(0,1)-, and TL(0,2)-moments. The results,
displayed in Figure 3.8, show that the robustness against extreme observations
improves with the degree of the trimming. While the differences in size are quite
small for outliers equalling the 99%-quantile, they increase for outliers of the size 99.9%
or 99.99% (corresponding to return periods of 1000 or 10 000 years, respectively).
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Figure 3.8: Size of the generalized Hosking-Wallis procedure depending on the number
of artificial outliers added to one single site, grouped by outlier height.
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3.4.8 Influence of record lengths and number of stations

Finally we examine the influence of record lengths and the number of stations on our
findings. Figure 3.9 provides size and power for different group sizes and three mean
records lengths (the length ratios of the stations are chosen as in the other simulations
but adapted to the varied mean record lengths). The test data is generated from the
medium skewness scenario with dependence structure Gumbel(1.5) and test statistics
are calculated using TL(0,0)-, TL(0,1)-, and TL(0,2)-moments. To illustrate the
case of heterogeneous groups (i.e. calculation of power rate) we choose the case of
increased skewness at one out of each five sites.

Naturally we observe an increase in size adjusted power with increasing number of
stations and mean record length. The size increases with the number of stations
when using L-moments, but it is rather constant with trimmed L-moments. Increased
mean record length can cause a decrease in size. For all group sizes and record
lengths the choice of TL(0,1)-moments seems preferable. A higher trimming does
not lead to an improved size adjusted power but to an increase in size, independent
of record length and number of stations.

These findings suggest that our results apply also for other group sizes and record
lengths than those examined before. It also indicates that the optimal trimming is
not affected strongly by these parameters.
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Figure 3.9: Influence of different group sizes and mean record lengths dependent on
the degree of trimming.
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3.5 Discussion

The simulation studies of the previous section show that our proposed procedure
improves the results of heterogeneity tests in many situations. Due to the use of
copulas, intersite dependence within the monitored group can be taken into account.
The usage of trimmed L-moments can have several positive impacts. It shrinks
the size of the test when skewed and cross-correlated regions are examined and
simultaneously increases the power. Additionally they lead to a higher robustness
against misspecification of the copula model as well as against outliers occurring at
single sites. Lastly, our results hold even when varying the number of stations and
the mean record lengths.

These benefits come with the need of specifying an appropriate trimming and a
copula model. Our simulations suggest that the use of TL(0,1)-moments is preferable
to the use of L-moments. Besides improved size and power rates, TL(0,1)-moments
lead to an increased robustness against extraordinary high observations. However,
it is likely that other trimmings could be more useful in other situations. If the
marginal distributions feature a heavy lower tail, for example, lower-trimming appears
promising. The specification of the copula model seems challenging because many
different models have been proposed in the literature. Our finding, that the chosen
copula model does not have to fit perfectly, eases this problem. Using a reasonable
choice (like copulas featuring upper tail dependence) will be preferable over neglecting
the dependence in any case.

A general problem of the HW procedure is its inability to hold the significance
level for skewed data. The use of trimmed L-moments eases this problem but still
increased sizes are too be expected.

Masselot, Chebana, and Ouarda (2017) introduce a nonparametric procedure to
replace the parametric bootstrap in the HW test. Their suggestion is to use a
permutation-based procedure that results in an increased power and decreased
computational costs. However, as the bootstrap samples are drawn from the pooled
set of all stations, it does not account for intersite dependence. The construction of
a nonparametric procedure that keeps the dependence intact could be an interesting
enhancement.

Multivariate versions of the HW procedure based on multivariate L-moments (Serfling
and Xiao, 2007) have gained popularity (Chebana and Ouarda, 2007). Our proposed
procedure could be adapted by defining multivariate TL-moments analogously. Dif-
ficulties could be the definition of an appropriate copula for the bootstrap, which
must model the dependence of all variates at all sites simultaneously. A promising
approach could be the use of nested Archimedean copulas (e.g. Hofert, 2010) that
combine d copulas describing the dependence between multiple variates at d sites
with one copula describing the intersite dependence.
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In the following two subsections we compare our approach to the ones of Castellarin,
Burn, and Brath (2008) and Viglione, Laio, and Claps (2007) by replication of their
simulation studies. In each comparison only one of the two problems, heterogeneity
or skewed data, is considered. In order to stay close to these studies, we use the
rejection criterion H1 > 2 here and present size and power rates. We calculated the
size adjusted power as well and mention its behaviour.

3.5.1 Comparison to Castellarin

Castellarin, Burn, and Brath (2008) proposed an empirical corrector applied af-
terwards to the Hosking-Wallis test statistic to adjust for cross-correlation. We
replicated their simulation with 20 stations of which 19 follow a GEV(1, 0.4, 0) and
one station follows a GEV(1, 0.7, 0) as marginal distribution. Each station consists
of n = 25 years of measurements. Because these authors used a multivariate normal
distribution to generate cross-correlated data and then transformed the margins
to the above-mentioned distributions, we utilised a Gaussian copula to generate
similar dependence structures. Rank correlations of ρ = 0, 0.1, . . . , 0.8 were consid-
ered. To simulate the case of homogeneity, data sets in which each margin follows a
GEV(1, 0.4, 0) distribution are considered as well.

For each setting 25 000 data sets are simulated. We apply the original Hosking-Wallis
procedure, the corrected version (with correction coefficient C = 0.122 calculated by
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Figure 3.10: Comparison of size and power between original procedure (HW), corrected
procedure (HW+Corr), and generalized Hosking-Wallis (GHW) procedure
for different correlations.
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Castellarin, Burn, and Brath, 2008), and the generalized Hosking-Wallis procedure
using L-moments and the Gaussian copula model.

Figure 3.10 contains the size and power of the three procedures depending on the
rank correlation coefficient. The size and power rates are similar in the independence
case (ρ = 0), but differ with increasing correlation. The size of the original and
corrected version shrinks with higher correlations while the size of the generalized
version stays higher and exceeds 5% at the highest correlation. The power of the
original procedure decreases, but the corrected version is able to compensate and
leads to a stable curve. The generalized procedure, however, is even able to increase
the power with increasing correlation.

If the size adjusted power is considered, all three tests yield similar rates. This is
because the introduction of a copula only prevents the size from dropping due to
intersite dependence and does not improve the heterogeneity detection itself.

This shows that in the settings considered here the generalized version can be more
suited to face cross-correlation because it not only compensates the power reduction
but instead can incorporate the dependence to increase the power. It has to be noted
that in this simulation we specified the copula model accurately, which is difficult in
practice.

3.5.2 Comparison to Viglione

Viglione, Laio, and Claps (2007) compared the Hosking-Wallis procedure to two
rank-based procedures, the Anderson-Darling test and the Durbin-Knott test. Their
final recommendation is to choose the Hosking-Wallis procedure if the L-skewness
coefficient is below 0.23 and the Anderson-Darling-test otherwise. We redid most of
their simulation study including our new approach. For this, several combinations of
L-CV and L-skewness are considered as the mean of a group of stations. Sets of 11
stations are built with varying either L-CV, L-skewness, or none (which corresponds to
the homogeneous case). Each station consisting of n = 30 measurements is simulated
using the generalized extreme value distribution with parameters corresponding to
the specific L-CV and L-skewness.

Besides the original Hosking-Wallis procedure and the Anderson-Darling test, we
included the generalized Hosking-Wallis procedure using TL(0,1)-moments and an
independence copula to the simulation.

Figure 3.11 (top panel) gives the size when analysing homogeneously built data sets.
Comparing the new procedure (GHW) to the others, it can be observed that the
size is comparable or smaller and that there are no regions in which the size of the
new procedure exceeds 5% substantially. In the bottom panel of Figure 3.11 the
power rates are given for the case that the station’s L-CV τ2 varies equidistantly
around the group’s mean L-CV τ̄2. The spread of these variations, ∆τ2, is set to



3.5 Discussion 59

Figure 3.11: Size and power of the Anderson-Darling (AD), Hosking-Wallis (HW),
and generalized Hosking-Wallis (GHW) procedure in the τ2 − τ3-space.
Position on the grid determines the group’s mean L-CV and L-skewness.
Heterogeneity is constructed varying L-CV. Bordered tiles indicate the
procedure with the highest power at each position in the bottom panel.

∆τ2 = 0.5τ̄2, so with a mean L-CV of 0.4 we vary the station’s L-CV between 0.3
and 0.5. The generalized Hosking-Wallis procedure is the best among these tests
when L-skewness is roughly larger than or equal to 0.2. The original Hosking-Wallis
procedure outperforms the other procedures when L-skewness is lower than 0.2. The
Anderson-Darling test provides the highest power rates when the groups centre lies
on the upper edge of L-CV, but in this region the size (see upper panel) is increased
simultaneously. If the power was adjusted to an equal size, this became even more
clear. In that case the best test is either the HW or the GHW test, with the GHW
being best at the same positions like for the regular power.

Besides variation in L-CV, Viglione, Laio, and Claps (2007) examined variation in
L-skewness τ3. With ∆τ3 denoting the group’s spread in L-skewness, Figure 3.12 gives
the power rates at four specific points in the τ2 − τ3-grid depending on the relative
spread. As we can see, the new procedure can compete with the Anderson-Darling
test, which was superior to the original Hosking-Wallis procedure in this setting.
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Figure 3.12: Rejection of the null hypothesis using the Anderson-Darling (AD),
Hosking-Wallis (HW), and generalized Hosking-Wallis (GHW) procedure at
specific points of L-CV and L-skewness. Heterogeneity is constructed
varying L-skewness.

In summary, the new procedure outperforms the Anderson-Darling test when
analysing highly skewed data sets. When the skewness is low and variations at
L-CV scale are expected, the original Hosking-Wallis procedure can still be recom-
mended.

3.6 Case study

A real data example is presented to illustrate the advantage of the modified procedure.
For this purpose we use discharge data from 10 gauges in the Mulde river basin in
the South-Eastern part of Germany with observation lengths of more than 75 years.
This basin almost completely drains the north side of a low mountain range, the Ore
Mountains, and is part of the Elbe river basin, which has suffered two extreme floods
in the last 20 years (2002 and 2013; for more information see Fischer, Schumann, and
Schulte, 2016). The Mulde basin consists of the watersheds of three main tributaries
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Figure 3.13: Map of the stations and river network.

– the Zwickauer Mulde, Zschopau and Freiberger Mulde rivers – and the catchment
of the Vereinigte (united) Mulde River downstream. An overview of the basin, the
river network, and the runoff gauges is given in Figure 3.13. The catchment covers
an area of approximately 7400 km2. The three main tributaries rise close to the
mountain ridge at elevations between 760 and 1125 m above sea level. The outlet of
the basin is located at an elevation of 81 m a.s.l.

The climatic seasonality of the runoff and flood regimes differ. The seasonal distri-
bution of runoff has its maximum in late spring and its minimum in autumn. The
flood peak averages are also high in spring (resulting from snowmelt and wet soil
conditions), but there is often also a maximum in summer (July/August) caused by
extreme rainfall events. With regard to higher spatial variability of summer flood
events, the series of annual maxima of the summer period were used here.

Table 3.3 contains basic information about the gauges. Besides mean and standard
deviation (sd) of the summerly maximum flood peak, the coefficient of variation (cv)
and the discordancy measure (Dj, Hosking and Wallis, 1997) is given. The cv varies
around a value of 1 at most of the stations but is clearly lower at “Goeritzhain”.
The discordancy measure, which is based on L-moment ratios, is relatively high for
“Goeritzhain” and “Hopfgarten”, although both values do not exceed the critical value
of 2.491 (given in Hosking and Wallis, 1997). Both measures can be an indication of
heterogeneity.
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Table 3.3: Summary of maximum flood peaks at stations used in the case study.
Name catchment range of n mean sd cv Dj

of station area [km2] records

Borstendorf 644 1929-2013 78 69.6 71.7 1.03 0.58
Goeritzhain 532 1910-2013 101 57.8 45.0 0.78 1.95
Golzern 5433 1912-2013 96 376.7 394.0 1.05 0.58
Hopfgarten 529 1911-2013 97 56.7 57.2 1.01 2.17
Lichtenwalde 1572 1910-2013 98 150.5 164.9 1.10 0.69
Niederschlema 754 1929-2013 78 88.8 87.7 0.99 0.35
Rothenthal 75 1929-2013 82 12.0 11.4 0.95 0.97
Streckewalde 206 1921-2013 88 22.9 21.2 0.93 0.75
Wechselburg 2099 1910-2013 101 174.6 171.8 0.98 1.28
Zwickau-Poelbitz 1021 1928-2013 79 105.6 112.0 1.06 0.70

Our task is therefore to assess the homogeneity of the given group of stations, e.g.
in order to check if a regional flood frequency analysis is reasonable. A difficulty
that arises is the high intersite dependence. Spearman’s rank correlation coefficient
was calculated for each pair of stations. Coefficients between 0.5 and 0.96 (between
“Zwickau-Poelbitz” and “Niederschlema”) verify the existence of medium to strong
dependencies.

Figure 3.14 depicts a L-moment ratio diagram, which is commonly used to assess
which distribution is suitable to model the data (Vogel and Fennessey, 1993). The
group mean is near the GEV distribution line and inside the area covered by the
four-parameter kappa distribution, which contains all pictured combinations below
the GLO curve (see Hosking, 1994; Hosking and Wallis, 1993). Usage of the kappa
distribution within the bootstrap procedure seems therefore reasonable. Additionally
the goodness-of-fit measure of Hosking and Wallis (1997) was calculated for all
distribution families which confirmed the findings (ZGLO = 0.24, ZGEV = −0.25,
ZGNO = −1.51, ZP3 = −3.67, ZGPA = −2.15 with |Z| > 1.64 indicating a rejection
of the assumption that the distribution fits the data). Because all stations lie
between the medium skewed and highly skewed setting of the simulation study (see
Figure 3.14), the recommendation derived in this study is to choose asymmetrically
trimmed L-moments.

The group is tested with the original Hosking-Wallis procedure (i.e. with independence
copula and L-moments), the corrected version of Castellarin, Burn, and Brath (2008),
the Anderson-Darling procedure, and with the modified procedure using a Gumbel
copula and TL(0,1)-moments. The results are given in Table 3.4. Our proposed
procedure is the only one able to detect heterogeneity. The Hosking-Wallis procedure
gives a negative value which is an indication of correlation between the sites according
to Hosking and Wallis (1997). With this in mind, this result cannot be used to decide
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Figure 3.14: L-moment ratio diagram of stations and their group mean (cross).
Curves give distribution families of generalized logistic (GLO), generalized
extreme-value (GEV), generalized normal (GNO), generalized Pareto (GPD),
and Pearson type 3 distribution (P3). Big circles give distributions
employed in the simulation study (M and H indicating medium and high
skewness, respectively).

about homogeneity. Based on the empirical coefficient of variation, we suspected
the station “Goeritzhain” to be discordant to the others. All procedures yield
homogeneity if the station “Goeritzhain” is excluded from the group. This result
can be explained by different hydrological conditions. The catchment of the gauge
Goeritzhain has a significant urbanised part (220 of 533 km2), which is caused by
the City of Chemnitz. In summertime this part of the catchment reacts faster and
the flood peaks differ from other gauges.

Table 3.4: Results of homogeneity tests applied to our case study data (with and
without the discordant site of Goeritzhain) for the classic and corrected
HW procedure, the AD procedure, and our proposed approach.

Test complete data without Goeritzhain
HW H1 = −0.88 H1 = −1.61

HW + Corr H1 = −0.14 H1 = −0.90
GHW (TL(0,1), Gumbel) H1 = 2.74 H1 = 0.75

AD∗ p = 0.52 p = 0.89
* reject to α-level if p < α.
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3.7 Conclusions

We have proposed a generalization of the Hosking-Wallis procedure that uses trimmed
L-moments and copula models to overcome the known disadvantages when highly-
skewed or cross-correlated data occurs.

In simulation studies we investigated the choice of the degree of trimming of TL-
moments and the selection of copula models as well as the robustness to extreme
values occurring unusually often. A comparison to former studies showed that the
new procedure is capable of improving drawbacks of the original procedure. A case
study illustrated that the classic procedure can fail to detect heterogeneity due
to intersite dependence and medium to high skewed distributions. The improved
procedure, however, is able to detect heterogeneity in this application.

Overall the generalized procedure offers an improvement to the original procedure
in many cases. The drawback, in exchange, is the need to specify a copula model
and to select trimming parameters of L-moments. The most important observa-
tions/recommendations are as follows:

1. There is a disparity in the test’s power rate depending on the direction in
which the discordant site varies. It is important to keep in mind that some
variations are not detectable and that the detectable region differs depending
on whether L- or TL-moments are used.

2. Asymmetrical trimmed L-moments are beneficial in our settings. We recom-
mend the application of TL(0,1)-moments when analysing positively skewed
data. TL(0,2)-moments could be useful when analysing highly skewed data,
but tend to increase the type-I-error.

3. The usage of simple copula models does not harm when analysing independent
data if the independence copula is a special case of the used copula model.

4. When analysing dependent data, simple copula models seem to be sufficient
to calculate adequate test statistics, even when the dependence structure is
more complex. Trimmed L-moments lead to a robustification against copula
misspecification.

5. Application of trimmed L-moments also leads to a more robust behaviour
when a station experiences very high values unusually often. The degree of
robustness increases with the degree of trimming, which needs to be chosen
prior to the analysis.



4 Limit theorems for sample
PWMs and TL-moments

In Section 2.4.1 and 2.4.3 the basics of probability-weighted moments and TL-
moments have been provided. To build procedures like homogeneity tests based on
such moments, it is useful to know the distribution of their sample versions. Hosking,
Wallis, and Wood (1985) state that sample PWMs are asymptotically normal and
give expressions to calculate the limiting covariance matrix for GEV distributed
data. The exact covariance structure of sample TL-moments is analysed and a
nonparametric estimation thereof is given in Elamir and Seheult (2003) and more
generally in Hosking (2007). However, those works only consider the distributions of
sample PWMs or TL-moments from a single distribution and not in a regional setting.
Therefore, in this chapter a limit theorem for sample PWMs is constructed that is
valid for local as well as for regional situations, i.e. the asymptotic joint distribution
of PWMs at different stations is analysed. Limit laws for sample TL-moments and
resulting GEV parameter and even quantile estimations can then be derived by
application of the delta method. These results are used to construct an asymptotic
test of homogeneity.

This chapter is based on the work “On the method of probability-weighted moments
in regional frequency analysis” published as Discussion Paper (Lilienthal, Kinsvater,
and Fried, 2016).

4.1 Limit theorem for sample PWMs

Let X = (X1, . . . , Xd)′ be a d-dimensional random vector whose continuous marginal
distribution functions are denoted by Fj(x) = P (Xj ≤ x), j = 1, . . . , d. Note that
we do not assume the components to be independent. Let R ∈ N be fixed. The first
R PWMs of Fj are denoted by βj = (β0;j, β1;j, . . . , βR−1;j)′ ∈ RR, where

βr;j = E(XjFj(Xj)r) =
∫
R

xF r
j (x)dFj(x), r = 0, . . . , R− 1, j = 1, . . . , d. (4.1)

All these local PWM vectors are summarized in β = (β′1, . . . ,β′d) ∈ RdR.

65
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Suppose that Xi = (Xi;1, . . . , Xi;d)′, i = 1, . . . , n, denote independent copies of X,
where i can be interpreted as a time index and with {1, . . . , n} covering the full
observation period. Keep in mind that in the application to the analysis of river
flows it is unlikely that the observation period is the same for all d sites. Instead we
want to assume that sites are built at different points in time but the observation
ends at the same time. Let n = n1 ≥ n2 ≥ . . . ≥ nd denote the local sample lengths,
which are rearranged by length for ease of presentation. We observe the scheme

X1;1, X2;1, X3;1, X4;1, X5;1, . . . , Xn;1,
Xa2+1;2, Xa2+2;2, Xa2+3;2, . . . , Xn;2,

. . . ...
Xad+1;d, Xad+2;d, . . . , Xn;d,

(4.2)

with aj = n−nj and where each row contains only observations from the same station.
It is important to account for the structure of this scheme to be able to properly
capture the dependence between local estimates of probability-weighted moments.
For the asymptotic results we let n→∞ and assume that nj/n→ cj ∈ (0, 1) in order
to account for possibly very different local sample lengths, i.e. we set nj = bncjc.

The sample version of βr;j computed from Xaj+1;j, . . . , Xn;j is given by

β̂r;j =
∫
R
x · F r

aj+1:n;j(x) dFaj+1:n;j(x) = 1
nj

nj∑
i=1

Xaj+i;j · F r
aj+1:n;j(Xaj+i;j), (4.3)

where F`:m;j is the empirical distribution function of X`;j, X`+1;j, . . . , Xm;j. Sample
counterparts of βj ∈ RR and β ∈ RdR are denoted by

β̂j =
(
β̂0;j, . . . , β̂R−1;j

)′
and β̂ =

(
β̂′1, . . . , β̂

′
d

)′
, (4.4)

respectively.

Theorem 1 Suppose that Xi, i ≥ 1, is a sequence of independent copies of X =
(X1, . . . , Xd)′, whose PWMs are summarized in the vector β = (β′1, . . . ,β′d)′ ∈ RdR

and with

E
[
XjF

k
j (Xj) X`F

m
` (X`)

]
<∞ for all 1 ≤ j, ` ≤ d and 0 ≤ k,m < R.

Suppose further that supx∈R |x{Fj(x)(1− Fj(x))}w| < ∞ for all j = 1, . . . , d and
some w ∈ [0, 1/2). Then, for fixed r ∈ (0, 1)d and n→∞, we have that

√
n
(
β̂ − β

)
D−→ N (0, Σ) ,

where the limiting covariance matrix Σ ∈ RdR×dR is provided in Section 4.3.
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This theorem has been derived and proven by Paul Kinsvater (see Lilienthal, Kins-
vater, and Fried, 2016). Theorem 1 and a consistent estimator Σ̂ of Σ allow us to
develop asymptotically consistent methods for regional frequency analysis.

4.2 Limit theorems for sample TL-moments and
resulting estimators

Instead of PWMs, in hydrological application nowadays mainly L-moments or more
generally trimmed L-moments are used. As described in Section 2.4.2 and 2.4.3, they
are interpretable analogously to summary statistics based on classical product mo-
ments, for instance, with λ1, λ2, and τ3 = λ3/λ2 representing location, dispersion, and
skewness of the analysed distribution F , respectively. As shown in equations (2.64)
and (2.79) every L-moment or TL-moment can be represented as a linear combination
of a finite number of PWMs, provided F has finite mean. This fact, by referring
to Theorem 1, allows us to derive limit theorems for sample TL-moments (and
L-moments as a special case) and related methods.

4.2.1 At-site statistics

First we want to describe how limit theorems for at-site statistics, i.e. statistics of a
single distribution Fj, can be deduced from Theorem 1. Therefore we assume that
a set of local PWMs, βj = (β0;j, . . . , βR−1;j), is given. According to Theorem 1 it
follows that for some Σj

√
n
(
β̂j − βj

)
D−→ N (0, Σj) . (4.5)

The TL-moment λ(s,t)
m;j of Fj of order m ∈ N with trimming s, t ∈ N0 is known to

satisfy

λ
(s,t)
m;j =

m+s+t−1∑
i=0

z
(s,t)
m−1,i βi;j = (z(s,t)

m−1)′βj, (4.6)

with βj = (β0;j, . . . , βm+s+t−1;j)
′ being the vector of the first m+ s+ t PWMs of Fj

and z(s,t)
m−1 = (z(s,t)

m−1,0, . . . , z
(s,t)
m−1,r+s+t−1)′ being a coefficient vector with components

z
(s,t)
m,i = m!(m+ s+ t+ 1)!

(m+ 1)(m+ s)!(m+ t)!(−1)s+m+i
(
m+ t

i+ s

)(
m+ i

m

)
. (4.7)

Now let ∆(s,t)
β→λ = (z(s,t)

0 , . . . ,z
(s,t)
M−1)

′ denote the linear mapping such that λ(s,t)
j =

(λ(s,t)
1;j , . . . , λ

(s,t)
M ;j )′ = ∆(s,t)

β→λβj. Then the first M sample TL(s, t)-moments λ̂(s,t)
j =
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(λ̂(s,t)
1;j , . . . , λ̂

(s,t)
M ;j )

′ are given by λ̂(s,t)
j = ∆(s,t)

β→λβ̂j.

By using the affine property of multivariate normal distributions and the continuous
mapping theorem, from equation (4.5) it follows that

√
n
(
λ̂

(s,t)
j − λ(s,t)

j

)
D−→ N

(
0, ∆(s,t)

β→λΣj(∆(s,t)
β→λ)

′)
. (4.8)

So far we have introduced TL-moments as summary statistics of distributions without
restricting to any parametric family. In practice, however, one usually assumes that
Fj = Fϑj for some unknown parameter vector ϑj ∈ Θ ⊂ Rp. Relationships between
TL-moments and the distribution parameters are employed which allows us to
estimate these parameters by plugging in sample TL-moments into the formulas.

More specifically, let g(s,t) : Rm 7→ R
p be a totally differentiable function that maps

the first M TL(s, t)-moments of Fϑj onto its parameter vector ϑj. From the delta
method, for ϑ̂j = g(s,t)(λ̂(s,t)

j ) and n→∞, we obtain that

√
n
(
ϑ̂j − ϑj

)
D−→ N

(
0, ∆(s,t)

λj→ϑ∆(s,t)
β→λ Σj (∆(s,t)

λj→ϑ∆(s,t)
β→λ)

′)
, (4.9)

where ∆(s,t)
λj→ϑ = ∂

∂λ
g(s,t)(λj) ∈ Rp×m denotes the Jacobi matrix of g(s,t) evaluated at

λj ∈ Rm. Note that, according to Rao (1973, p. 388), the rank of the multivariate
normal distribution is equal to the rank of ∆(s,t)

λj→ϑ∆(s,t)
β→λ Σj (∆(s,t)

λj→ϑ∆(s,t)
β→λ)

′ . The
matrices ∆(s,t)

λj→ϑ corresponding to TL(0,0)- and TL(0,1)-moments are summarized in
Appendix A.

In flood frequency analysis we are usually interested in the estimation of some
quantile q̂. Suppose that h : Rp → R with h(ϑ) = F−1

ϑ (q) is differentiable and let
∆ϑj→q ∈ R1×p denote the corresponding Jacobi matrix evaluated at ϑj. Again, from
the delta method we obtain for n→∞

√
n (q̂ − q) D−→ N

(
0, ∆ϑj→q∆

(s,t)
λj→ϑ∆(s,t)

β→λ Σj (∆ϑj→q∆
(s,t)
λj→ϑ∆(s,t)

β→λ)
′)
. (4.10)

Considering the GEV with parameter vector ϑ = (µ, σ, ξ)′ and quantile function as
in equation (2.5), the Jacobi matrix of h is given by

∆ϑj→q = ∂

∂ϑ
h(ϑ)

=
(

1, (− log(q))−ξ − 1
ξ

,
σ(ξ−1 − (− log(q))−ξ(log(− log(q)) + ξ−1))

ξ

)
.

(4.11)
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4.2.2 Joint estimation at multiple stations

We now switch to a regional scale by considering multivariate observations as given
in scheme (4.2). Recall that β̂ from equation (4.4) contains sample PWMs of all d
marginal distributions Fj involved. In analogy to equation (4.4), the vector of all
sample TL(s, t)-moments is denoted by

λ̂(s,t) =
(
(λ̂(s,t)

1 )′, . . . , (λ̂(s,t)
d )′

)′
, (4.12)

with population counterpart λ(s,t) =
(
(λ(s,t)

1 )′, . . . , (λ(s,t)
d )′

)′
∈ RMd. By Theorem 1

and the delta method we obtain that for n→∞
√
n
(
λ̂(s,t) − λ(s,t)

)
D−→ N

(
0, ∆̃(s,t)

β→λ Σ (∆̃(s,t)
β→λ)

′)
, (4.13)

with Σ being the limiting covariance matrix of Theorem 1 and with block-diagonal
matrix

∆̃(s,t)
β→λ = diag(∆(s,t)

β→λ, . . . ,∆
(s,t)
β→λ) =


∆(s,t)
β→λ 0 . . . 0
0 ∆(s,t)

β→λ
...

... . . .
0 . . . ∆(s,t)

β→λ

 . (4.14)

Similarly, under the assumption that we have parametric margins Fj = Fϑj for
all j = 1, . . . , d with block-diagonal matrices ∆̃(s,t)

λ→ϑ = diag(∆(s,t)
λ1→ϑ, . . . ,∆

(s,t)
λd→ϑ) and

∆̃ϑ→q = diag(∆ϑ1→q, . . . ,∆ϑd→q) taken into account, one can easily obtain the joint
limiting distribution of parameter and quantile estimators for all d stations.

4.3 Estimation of the limiting covariance matrix

The limiting covariance matrix

Σ =


Σ1,1 · · · Σ1,d

... . . . ...
Σd,1 · · · Σd,d

 = lim
n→∞

Var
(√

n
(
β̂n − β

))
(4.15)

from Theorem 1 is defined block-wise by

Σj,l = lim
n→∞

Cov
(√

n
(
β̂j − βj

)
,
√
n
(
β̂` − β`

))
= min(cj, c`)

cj · c`
Cov(Zj, Z`) ∈ RR×R

(4.16)
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and where Zj = (Z0;j, Z1;j, . . . , ZR−1;j)′, j = 1, . . . , d, are random vectors defined
through

Zr;j = Xj · F r
j (Xj) +

∫
R
x · r · F r−1

j (x) · 1(Xj ≤ x) dFj(x), r = 0, . . . , R− 1. (4.17)

According to Theorem 1, empirical probability-weighted moments are asymptotically
jointly normal with limiting covariance matrix obtained from that of the variables
defined in equation (4.17) (see the proof in Lilienthal, Kinsvater, and Fried, 2016,
for more details).

4.3.1 Empirical estimator

Suppose that we have collected an observation scheme as given in (4.2). In practice
the covariance matrices Cov(Zj,Z`) can be consistently estimated by their sample
analogues: Let

Ẑi,r;j = Xi;j ·F r
aj+1:n;j(Xi;j)+ 1

nj

n∑
i′=aj+1

Xi′;j ·r ·F r−1
aj+1:n;j(Xi′;j) ·1(Xi;j ≤ Xi′;j) (4.18)

and Ẑi;j = (Zi,0;j, Zi,1;j, . . . , Zi,R−1;j)′, i = aj + 1, . . . , n. For 1 ≤ j, ` ≤ d, the
covariance matrix Cov(Zj,Z`) is estimated by the empirical covariance matrix of
the sample {(

Ẑmax(aj ,a`)+1;j, Ẑmax(aj ,a`)+1;`
)
, . . . ,

(
Ẑn;j, Ẑn;`

)}
. (4.19)

The resulting estimator Σ̂ =
(
Σ̂j,`

)
j,`=1,...,d

with

Σ̂j,` = min(cj, c`)
cj · c`

Ĉov(Zj,Z`) (4.20)

is called empirical estimator or nonparametric estimator.

Using Σ̂ (which gives us an estimate of the limiting covariance matrix of
√
n(β̂ − β))

the limiting variance matrices of TL-Moments, parameter estimations, and quantile
estimations can be estimated using the matrices ∆̃(s,t)

β→λ, ∆̃(s,t)
λ→ϑ, and ∆̃ϑ→q, described

in Section 4.2.

4.3.2 Parametric modification on the block diagonal

Hosking, Wallis, and Wood (1985) derived a parametric expression for the limiting
covariance matrix of empirical PWMs of GEV distributed variables. In applications
we often assume that the margins are GEV and known up to some finite dimensional
parameters ϑj , i.e. Fj = Gϑj . Therefore these expressions can be used to replace the



4.3 Estimation of the limiting covariance matrix 71

local parts of Σ̂, i.e. Σ̂1,1, . . . , Σ̂d,d, by their parametric estimates Σj,j(ϑ̂j), where ϑ̂j
are consistent estimates of ϑj, e.g. TL-moment estimators of GEV parameters. The
non-diagonal elements of Σ̂, i.e. the parts describing covariances between PWMs of
different distributions, are still estimated using the empirical estimator. The modified
estimator of Σ is denoted by Σ̂m and can also be used to derive estimations of the
limiting variance of TL-moments, parameter estimates, and quantile estimates. The
modified estimator Σ̂m is not necessarily a valid covariance matrix. The mixture of
nonparametric and parametric parts involved produces negative eigenvalues in some
cases. In the following section this problem will be analysed.

4.3.3 Empirical analysis

We now want to empirically examine the consistency of the estimators Σ̂ and Σ̂m as
well as the derived covariance estimators for TL-moments and distribution parameter
estimates.

Therefore data from a two-dimensional distribution is generated with margins being
defined as Fj = GEV (10, 5, ξj), j ∈ {1, 2} and a Gumbel(θ) copula describing their
dependence. The shape ξj ∈ {0, 0.05, 0.25, 0.45, 0.5}, the degree of dependence
θ ∈ {1.1, 1.4, 2.4}, and the number of observations n ∈ {25, 50, 100, 250, 500, 1000,
2500, 5000} are varied. Each situation is replicated B = 5000 times.

To assess the performance of the respective estimator, relative distances to the true
covariance matrix are calculated using the Frobenius norm:

d(Σ̂,Σ) = ||Σ̂b − Σ||F
||Σ||F

=

√∑d
j=1

∑d
j′=1(ŝjj′ − sjj′)2√∑d

j=1
∑d
j′=1 s

2
jj′

, (4.21)

with Σ̂b = (ŝjj′)jj′ being the estimator of Σ = (sjj′)jj′ in one specific replication.
Since the true covariance matrix Σ is unknown, we approximate it as the empirical
covariance matrix in the corresponding situation built using 50 000 replications.
The distance (4.21) is calculated for each of the B = 5000 estimations and the
mean relative Frobenius distance 1

B

∑B
b=1 d(Σ̂b,Σ) is used to measure the quality

of estimation. Note that, for the sake of simplicity, Σ and Σ̂ here denote the
limiting covariance matrix of either PWMs, TL-moments, or parameter estimators
and the corresponding estimation thereof (empirical estimator or with parametric
modification).

Results of this analysis for the PWM estimator are given in Figure 4.1. The panels
do not differ much within each row, so the degree of dependence seems to have little
influence on the distance to the true covariance matrix. For little and moderately
skewed situations (upper two rows) both estimators tend to zero for increasing sample
length, and for samples longer than n = 250 the differences between both estimators
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Figure 4.1: Mean relative Frobenius distances to true limiting covariance matrix of
PWM estimator for increasing sample length n in different situations.

become very small. In settings with higher skewness the decrease of distance is
very slow or even negative. One reason is that the parametric formulas used in the
modified estimator are only valid for ξ < 0.5 (Hosking, Wallis, and Wood, 1985).

Situations in which both shape parameters differ have been analysed as well but are
not reported in full detail for the sake of brevity. The results are similar to those
given before with the larger shape parameter determining the behaviour.

We now have a look at the consistency of the covariance estimation of TL-moment
estimators and parameter estimators. Because of the previous results and for the
sake of simplicity, we restrict ourselves to the medium-dependence case of θ = 1.4.
Figure 4.2 displays the results. Again, only the situations with equal shapes are given,
differing shapes lead to similar plots with the upper shape defining the behaviour.
In scenarios of low to medium skewness, the distances between all covariance matrix
estimators to the true covariance matrix tend to zero for increasing sample length. In
situations of higher skewness this fails for TL(0,0)-moments and parameter estimators
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Figure 4.2: Mean relative Frobenius distances to true limiting covariance matrix of
TL-moment estimators and parameter estimators for increasing sample
length n in different situations (θ = 1.4).

based on TL(0,0)-moments. Asymmetrically trimmed TL(0,1)- or TL(0,2)-moments
and parameter estimators based on them are still consistent in these situations.

As mentioned earlier, the modified estimator can lead to matrices that are not
positive semi-definite. Figure 4.3 shows the proportion of positive semi-definite
covariance matrices given by the modified estimator. If no trimming is used there
is a substantial proportion of matrices in most settings (except for situations with
low skewness and low dependence) that are not positive semi-definite. For trimmed
moments the proportion of positive semi-definite matrices is much higher and the
proportion is only remarkably different from one for short record lengths (less than
100 observations) and high dependence.

The empirical analysis has shown that the limiting covariance matrix of PWM
estimators can be estimated consistently in low to medium skewness situations
and that these estimations can also be extended to estimators of TL-moments
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Figure 4.3: Proportion of positive semi-definite matrices yield by the modified esti-
mator depending on record length.

and resulting parameter estimations. In the case of high skewness, the use of a
non-negative trimming still leads to consistent estimators.

4.4 Test of regional homogeneity

When considering observations from multiple stations, e.g. scheme (4.2), in flood
frequency analysis mostly the Index Flood assumptionH0,IF stated in (2.89) is applied
in order to decrease the variability of estimation. However, while a moderate amount
of heterogeneity of the group may still lead to an overall improvement compared
to local estimation (Lettenmaier, Wallis, and Wood, 1987), strong heterogeneity
typically leads to a severe bias which again increases the overall estimation error.
It is thus important to be able to identify serious sources of heterogeneity. We are
going to introduce a statistical test that proves to be advantageous in several aspects
to competitive procedures from the literature.
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4.4.1 Test construction

Suppose that we have observed scheme (4.2) with site-specific distribution functions
Fj = Fϑj , j = 1, . . . , d, and that Fϑj = GEV (µj, σj, ξj) is the GEV distribution with
parameters ϑj = (µj, σj, ξj)′. In this case the Index Flood model H0,IF is equivalent
to

µi
σi

= . . . = µd
σd

and ξ1 = . . . = ξd. (4.22)

Let ϑ̂ = (µ̂1, σ̂1, ξ̂1, . . . , µ̂d, σ̂d, ξ̂d)′ denote the TL(s, t)-moment estimator of local
parameters from Section 4.2 obtained from scheme (4.2). Let g : R3d 7→ R

2d denote
the mapping g(ϑ) = (µ1/σ1, ξ1, . . . , µd/σd, ξd)′ and ∆ϑ→ϑ̃ the corresponding Jacobi-
matrix ∂

∂ϑ
g(ϑ) evaluated at ϑ. Again, from the delta method, we obtain that

√
n
(
g(ϑ̂)− g(ϑ)

)
D−→ N (0, Γ) , (4.23)

with Γ = ∆ϑ→ϑ̃∆̃(s,t)
λ→ϑ∆̃(s,t)

β→λ Σ (∆ϑ→ϑ̃∆̃(s,t)
λ→ϑ∆̃(s,t)

β→λ)′ as n→∞.

Using

C =


1 0 −1 0 · · · 0 0 0
0 1 0 −1 · · · 0 0 0
... . . . ...
0 · · · 1 0 −1

 ∈ R2(d−1),2d, (4.24)

hypothesis (4.22) can be expressed as

C · g(ϑ) =



δ1 − δ2
ξ1 − ξ2

...
δd−1 − δd
ξd−1 − ξd

 =



0
0
...
0
0

 . (4.25)

To check if assumption (4.22) holds, we use a Wald-type test statistic

Tn = n (C g(ϑ̂))′(C Γ̂ C
′)−1(C g(ϑ̂)). (4.26)

Under H0,IF , for n −→∞ and under the assumptions of Theorem 1, we have that
Tn

D−→ χ2
2(d−1) (which can be proved easily by application of the continuous mapping

theorem and the theorem of Slutsky to the result (4.23)). Therefore, the hypothesis
that H0,IF holds is rejected at a significance level of α, if the observed value of Tn
exceeds the (1− α)-quantile of a χ2

2(d−1).
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4.4.2 Simulation study

To check the capability of the proposed homogeneity test, a simulation study is
conducted at a nominal level of α = 5%. The data is generated from d = 6 stations
with different local sample lengths, with margins Fj = GEV (µj, σj, ξj) and, for
simplicity, with a Gumbel copula Cθ describing their intersite dependence.

Five of the six sites are selected concordant with µj = 10× j, σj = 5× j, j = 1, . . . , 5
and the shape parameter as either ξj = 0.05 (little skewed), ξj = 0.25 (medium
skewed), or ξj = 0.45 (highly skewed), for j = 1, . . . , 5. The sixth site can be
discordant from the first five stations with µ6 = 10×6, σ6 = σ̃×6 and ξ6 = ξ̃ varying
on a grid around the parameters of the concordant sites. The dependence parameter
controlling the intersite dependence is varied as θ ∈ {1.1, 1.4, 2.4}.

We replicate the homogeneous situations, i.e. the sixth site is concordant to the
first five sites, 10 000 times for nmax ∈ {25, 50, 100, 250, 500, 1000, 2500, 5000}. The
heterogeneous situations are (due to their high number) replicated 5000 times for
nmax ∈ {100, 500}. To reflect reality with different sample lengths, they are set
as n1 = n6 = nmax, n2 = n5 = b0.85nmaxc, and n3 = n4 = b0.7nmaxc. Not
completely observed sites (number 2 to 5) are truncated in the beginning (we refer
to scheme (4.2)).

The test statistic (4.26) is calculated with Γ̂ being constructed plugging in either
the nonparametric Σ̂ or the modified Σ̂m (see Section 4.3.1 and 4.3.2) and by using
either L-, TL(0,1)-, or TL(0,2)-moments to derive parameter estimations. If, in case
of the modified estimator, the covariance estimate is not positive definite, the test is
considered to not reject the null hypothesis. The proportion of test rejections, i.e.
the proportion of p-values smaller than α = 5%, is interpreted as empirical error in
the homogeneous case and as empirical power in the heterogeneous case.

Figure 4.4 gives the error rates (i.e. the proportion of test rejections in homogeneous
situations) for increasing samples lengths and different estimators. The first and
most important observation is that although most tests approach the nominal level
of 5% for increasing nmax (with exception of the L-moment based estimation in the
highly skewed setting), the tests are very liberal for small or medium sample lengths
(nmax ≤ 100). A test based on the nonparametric covariance estimator needs very
high sample lengths (nmax ≥ 1000) to have an error of reasonable size. For tests
using the modified covariance estimator the results are better but still at least 100
observations per station are required to yield acceptable error rates below 10%. The
TL(0,0)-based estimator seems not to work well in skewed situations. Comparing
TL(0,1)- and TL(0,2)-based procedures, the former seems to be favourable for small
to medium sized sample lengths in nearly all situations.

These results are a bit unexpected since we found the modified estimator to have
larger distances to the true covariance matrix in the empirical analysis in Section 4.3.3.
However, this is a different situation using the inverse of a non-linear transformation
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Figure 4.4: Error rates of the proposed test for increasing sample length.

of that matrix which results in better test properties for the modified estimator in
the examined settings.

Considering these results, the analysis of the power of the test is presented for the
procedure using the modified covariance estimator and TL(0,1)-based estimation.
Figure 4.5 presents the rejection rates, depending on outlier shape ξ̃ and outlier scale
σ̃, in different situations for nmax = 100. In the centre of each panel, i.e. in situations
in which the varying station is concordant or almost concordant to the remaining
stations, the rejection rates are relatively low, between 6.1% and around 12%. The
further away the varying station is from the centre, the higher the proportion of test
rejections.
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Figure 4.5: Rejection rates of the proposed test using the modified covariance esti-
mator and TL(0,1)-moments, nmax = 100.
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Figure 4.6: Rejection rates of the proposed test using the modified covariance esti-
mator and TL(0,1)-moments, nmax = 500.



80 4 Limit theorems for sample PWMs and TL-moments

Figure 4.6 presents the same plot for nmax = 500. The type-I-error rates are at a
lower level between 5.5% and 9.3% and heterogeneous situations are detected much
earlier. These figures show that, despite being too liberal especially for small sample
lengths, the test works as intended by diagnosing deviations from the common centre
of the group.

4.5 Conclusions

In this chapter a multivariate limit theorem for PWM estimators in a regional
setting is introduced. By application of the delta rule, the theorem regarding PWM
estimators can be extended to describe the asymptotic limit distributions of TL-
moment estimators and derived parameter and quantile estimators. In contrast
to other approaches, our theory can be applied to situations with multiple sites
described by different distributions and with intersite dependence. This allows for a
wide variety of possible applications in regional analysis like the presented procedure
for testing homogeneity.

An empirical estimator for the limiting variance matrix and, as an alternative, a
modification that plugs in local parametric expressions, are given. Both estimators
are analysed afterwards in a simulation study consisting of different record lengths
and GEV shapes. This indicates that both options are consistent estimators of the
PWM estimator’s limiting variance for small to moderately large shapes. For higher
shapes (ξ ≥ 0.5) both estimators are not consistent anymore. These studies were also
conducted for the estimation of the asymptotic covariance matrix of TL-moments
and GEV parameter estimates using different asymmetrical trimming options. This
showed that estimation of the limiting variance of trimmed TL-moments or parameter
estimates based on them is consistent even for high shapes.

Based on the presented theorem, a homogeneity test was constructed that analyses
whether the Index Flood model is appropriate for a specific group of observations
under the assumption that we have GEV marginals. Therefore the Index Flood model
was transferred to constraints regarding GEV parameters and those are tested using
a Wald-type test statistic. The procedure was examined in a simulation study which
indicates that the nominal significance level is achieved asymptotically. However, a
very high record length is needed to ensure an error probability of first kind close
to the nominal level if the empirical estimator is used. For the modified estimator
and using TL(0,1)-based statistics a record length of n = 100 or higher mostly leads
to acceptable error rates. In this configuration the test can detect violations of the
Index Flood model.

In conclusion, these simulations indicate that the presented theorem and methods
can be an option if record lengths are large enough. In many applications in regional
flood frequency analysis this may be problematic, since it is mainly used in short data
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situations. Hence, for testing the assumption of homogeneity in such applications
the generalized Hosking-Wallis procedure presented in Chapter 3 is recommended.
The presented theory, however, could be useful in more data-rich situations, e.g.
when analysing monthly rainfall or when modelling financial risks. In these cases, an
advantage over the bootstrap-based Hosking-Wallis procedure would be the much
faster computation time.





5 Penalized Maximum-Likelihood
estimation

The main focus of the following chapter is the estimation of distribution parameters
in order to model the flood distribution at one or multiple sites. In hydrology and
in particular in the Index Flood procedure, the most common method to estimate
parameters is the L-moment method, described in Section 2.4.2. One reason is that
Maximum-Likelihood estimators often give very volatile estimates in small sample
scenarios that are common when analysing annual maxima of flood events. As an
alternative to both, in this chapter the penalized Maximum-Likelihood estimator
(see Section 2.4.4) is applied to flood frequency analysis. Its usefulness in two
different aspects of information expansion (expert knowledge, seasonal information)
and especially in regional flood frequency analysis is illustrated. For the latter the
Index Flood model is adapted and used in a regularization framework.

The chapter is based on the work “Penalized Quasi-Maximum-Likelihood Estimation
for Extreme Value Models with Application to Flood Frequency Analysis” (Bücher,
Lilienthal, Kinsvater, and Fried, 2019) which is submitted but not yet published.

5.1 Introduction

As described in Section 2.2.5, a widely accepted framework for the analysis of annual
maxima, or more generally of block maxima, relies on the assumption that the
cumulative distribution function (c.d.f.) F belongs to the family of generalized
extreme value distributions with parameters ϑ = (µ, σ, ξ)′ ∈ Θ = R× R+ × R called
location, scale, and shape, respectively. Throughout this chapter, we will denote the
GEV c.d.f. as Gϑ and the corresponding density as gϑ. Being particularly interested
in high quantiles (i.e. the right tail), note that the GEV family can handle a wide
variety of right tail behaviour, with limited right tails for ξ < 0, exponential tails for
ξ = 0, and arbitrarily heavy tails for ξ > 0. The drawback of this flexibility shows
up in the estimation of the parameter vector ϑ, particularly by a volatile estimation
of the shape ξ resulting in a volatile quantile estimate. Different attempts have been
made to reduce the estimation uncertainty for such estimation problems, in statistics
for extremes in general and particularly in flood frequency analysis.

83
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For instance, probability-weighted moments or L-moments (see Sections 2.4.1 and
2.4.2) have been proposed as alternatives to moment or Maximum-Likelihood esti-
mators. Indeed, the former show a superior performance in typical small sample
cases (Hosking, Wallis, and Wood, 1985), which has been mainly attributed to their
restricted parameter space (Coles and Dixon, 1999).

Alternative approaches are based on reducing the model complexity, for instance,
by restricting oneself to the two-parametric sub-family with a predefined shape like
ξ = 0, resulting in the location-scale Gumbel model (Lu and Stedinger, 1992). The
shortcoming of this approach is that only tails of one specific form (exponential
if ξ = 0) are taken into account, which is not appropriate for many practical
applications, in particular those that are primarily interested in the tails.

Finally, several attempts have been made to include additional sources of information
into flood analyses. Regional methods are the main focus of this dissertation, but in
this chapter we will also address seasonal methods. While regional methods try to
reduce the variability of a quantile estimator at a specific site by taking observations
from other sites into account, seasonal methods do not only use time series on
an annual scale but consider, say, monthly maximal flows, allowing for seasonal
variability (Baratti et al., 2012; Buishand and Demaré, 1990; Waylen and Woo,
1982).

The two last-mentioned approaches, the reduction of local model complexity and
the homogenization of a collection of stations, can be considered in the framework
of regularization. Let Fn denote the empirical c.d.f. of the data X1, . . . , Xn and
suppose that one aims at minimizing some risk measure R(ϑ; F ) with respect to
a model parameter ϑ ∈ Θ, where the c.d.f. F of the data is unknown. As for
instance demonstrated in Vapnik (2000) by a simple regression example, minimizing
the empirical counterpart R(ϑ; Fn) over the whole parameter space Θ is typically
not the best strategy in finite samples. A more sophisticated and often preferable
strategy (reducing possible overfitting) takes an additional penalty term Ω(ϑ) ≥ 0
into account, which can be interpreted as measuring model complexity or representing
a-priori expert knowledge:

ϑ̂Ω = arg min
ϑ∈Θ

R(ϑ; Fn) + Ω(ϑ). (5.1)

The idea of accounting for model complexity in the estimation of GEV parameters is
not new. In fact, using the so-called cross-entropy risk R(ϑ; F ) = −E[log gϑ(X)],
where gϑ is the density of a GEV with parameter ϑ and X is a generic random
variable with F (x) = P (X ≤ x), then minimizing the empirical cross-entropy
R(ϑ; Fn) = −n−1∑n

i=1 log gϑ(Xi) with respect to ϑ is equivalent to Maximum-
Likelihood (ML) estimation. When including a non-zero penalty, the resulting
estimators are therefore called penalized Maximum-Likelihood (PML) estimators.
Coles and Dixon (1999) and Martins and Stedinger (2000) propose two slightly
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different estimators of GEV parameters of this particular form (5.1), with a regularizer
Ω(ϑ) depending only on the shape ξ, thus aiming at ruling out unusual values of the
shape parameter. However, no asymptotic theory is provided and it is even unknown
whether (and under what conditions) the estimators are consistent. The same is
true for related approaches in extremes for hydrology, e.g. the PML estimators in
Song et al. (2018) proposed for non-stationary Pearson-type 3 distributions. It is
worthwhile to mention that, due to the fact that the support of the GEV distribution
depends on the parameter, even the asymptotic analysis of the classical ML estimator
is actually quite complicated, and has just recently been fully worked out in Bücher
and Segers (2017) and Dombry and Ferreira (2017).

The main focus of this chapter is the issue of choosing a suitable penalizing function Ω
for some non-trivial problems with the prime example being regional flood frequency
analysis based on the Index Flood assumption. Moreover, a data-adaptive approach
to select a tuning parameter that controls the level of penalization in finite samples
is provided. We illustrate that the proposed method performs very well compared to
existing standard methods in an extensive simulation study and that it yields easily
interpretable results in a case study. In Bücher, Lilienthal, Kinsvater, and Fried (2019)
also asymptotic results in a quite general multivariate setting are presented that
were proven by Axel Bücher. These are given in this dissertation in short.

The remainder of this chapter is organized as follows: Section 5.2 provides illustrations
of possible applications of penalized (quasi) ML estimators in flood frequency analysis.
Section 5.3 presents theoretical properties of such estimators in a general multivariate
framework with GEV marginals. The degree of penalization is controlled by a
hyperparameter, and the problem of its selection is treated in Section 5.4. An
extensive simulation study in Section 5.5 compares the Index Flood penalization
to estimators common in hydrology. A case study in Section 5.6 illustrates the
applicability to hydrological data.

5.2 Regularization in flood frequency analysis

Within this section, we illustrate the broad applicability of penalized (quasi) maximum
likelihood techniques in flood frequency analysis. For illustrative purposes, we start
with a simple approach based on penalizing unusual GEV shape parameters in a
univariate setting. Then we discuss two possibilities to include additional data by
joint estimation of a set of stations using an Index Flood like penalization (adding
regional information) and by using monthly instead of annual maxima (adding
seasonal information).
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5.2.1 Simple shape parameter penalization

Let X1, . . . , Xn represent the data, consisting of independent and identically dis-
tributed observations with unknown distribution function F (x) = P (Xi ≤ x). We
are interested in the estimation of a high quantile q = F−1(p) from a rather small
sample length n. Often enough, flood frequency analysts need to deal with p ≥ 0.99
and n ≤ 50.

Restriction to a 2-parametric sub-family of the GEV-model, like the Gumbel or a
GEV distribution with a fixed shape parameter ξc, reduces the variance of a respective
quantile estimator but possibly leads to a large bias. As a first application, we use
penalization as an alternative to such a strict reduction of model complexity. More
precisely, suppose that an expert claims that the true shape parameter ξ0 is close to
ξc = 0.2. This knowledge may be reflected by choosing a penalty term of the form
Ωλ(ϑ) = λ(ξ − ξc)2 with hyperparameter λ ≥ 0 reflecting our confidence in this prior
belief and by considering the PML estimator

ϑ̂λ ∈ arg max
ϑ∈Θ

n∑
i=1

log gϑ(Xi)− λ (ξ − ξc)2. (5.2)

If the expert was perfectly sure that actually ξ0 = ξc holds, we should choose λ =∞
and thus enforce an estimate of ϑ with third component ξ̂ = ξc (using the convention
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Figure 5.1: Empirical MSE, squared bias, and variance of a 99%-quantile estimate
from PML parameter estimation with penalized deviations of the shape
parameter to a ξc. Even though ξc = 0.2 does not correspond to the true
ξ0 = 0.4, regularization is still beneficial (n = 50).
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that ∞ · 0 = 0). Alternatively, we can select any value 0 ≤ λ < ∞ reflecting the
uncertainty in the expert’s prior information, with λ = 0 leading to the ordinary ML
estimator.

For further insight, we present the outcome of a small simulation experiment. Fig-
ure 5.1 depicts common empirical performance measures of estimators q̂λ = G−1

ϑ̂λ
(0.99)

with ϑ̂λ from equation (5.2), ξc = 0.2, and increasing values of λ. The measures are
computed from 10 000 independent samples of size n = 50, each with true param-
eter ϑ0 = (µ0, σ0, ξ0)′ = (2, 1, 0.4)′. Note that our prior information reflected by
Ωλ(ϑ) = λ(ξ − 0.2)2 is not centred around the true value of ξ0 = 0.4. The (almost)
unbiasedness of the ML estimator (for λ = 0) is outweighed by larger variability.
Increasing the value of λ can be interpreted as trading variance for bias. In this
example, the estimator q̂λ with λ = 20 performs best in terms of empirical mean
squared error. In fact, every value λ > 0 leads to better performance than λ = 0 (the
empirical mean squared error for λ =∞ is 31.16) although ξ0 = 0.4 is not close to
our a-priori guess ξc = 0.2. This can be explained by the strong imbalance between
a small sample length and a comparably high quantile. Also note that neither λ = 0
nor λ = ∞ are optimal. Selecting a good value of λ is the most critical task in
application of this method and will be discussed later on.

5.2.2 Penalization inspired by the Index Flood model

Practitioners typically have data from several stations in the same region available.
The local record lengths often vary substantially over the stations, typically with
different start times (times of gauge installations) and a common end time. The
data scheme can hence be written as

X1;1, X2;1, X3;1, X4;1, X5;1, . . . , Xn;1 ∼ F1
Xa2+1;2, Xa2+2;2, Xa2+3;2, . . . , Xn;2 ∼ F2

. . . ...
Xad+1;d, Xad+2;d, . . . , Xn;d ∼ Fd


observations
from d sites (5.3)

with n denoting the end time, aj + 1, 0 ≤ aj ≤ n, the start times, and nj = n− aj
the record lengths. For ease of presentation, we arranged the samples in (5.3) such
that the first station corresponds to that with the full sample length of n1 = n.

We assume that the random vectors Xi = (Xi;1, . . . , Xi;d)′, consisting of possibly
partially observed values for the different years, are independent and identically
distributed with GEV margins Fj ∈ {Gϑj : ϑj = (µj, σj, ξj)′ ∈ Θ} for all j = 1, . . . , d.
Note that we neither assume the d components Xi;j for the same time point i to be
independent nor that we impose a specific model for the spatial dependence.

Recall the Index Flood assumption from equation (2.89). If we additionally assume
that the common distribution is a member of the GEV family, i.e. H = Gϑ0 for
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certain parameters ϑ0 = (µ0, σ0, ξ0)′ ∈ Θ, the hypothesis H0,IF is equivalent to
ϑj = (µj, σj, ξj)′ satisfying

µ1

σ1
= . . . = µd

σd
= δ0 and ξ1 = . . . = ξd = ξ0 for some δ0, ξ0 ∈ R. (5.4)

A straightforward combination of the Index Flood principle and penalization tech-
niques suggests to penalize deviations between δj = µj/σj and δ0 and between ξj
and ξ0. Because δ0 and ξ0 are not known, we replace them by approximations δc and
ξc, which can be chosen as weighted means, δc = ∑d

j=1wjδj and ξc = ∑d
j=1wjξj with

weights wj = nj/
∑d
j′=1 nj′ , or using a-priori knowledge. A suitable penalization is

given by

Ωλ(ϑ) = ((δ1 − δc)2 , . . . , (δd − δc)2 , (ξ1 − ξc)2 , . . . , (ξd − ξc)2)λ, (5.5)

with hyperparameter λ = (λ11, . . . , λ1d, λ21, . . . , λ2d)′ ∈ [0,∞]2d. This results in the
penalized quasi ML estimator

ϑ̂λ ∈ arg max
ϑ∈Θd

d∑
j=1

n∑
i=aj+1

log gϑj(Xi;j)−
d∑
j=1

{
λ1j (δj − δc)2 + λ2j (ξj − ξc)2

}
. (5.6)

The term quasi refers to the fact that the likelihood is derived under the additional
assumption of spatially independent observations which is actually not necessary for
consistency of the estimator, see Section 5.3.

In this application, increasing the hyperparameters λ reflects stronger belief in
ξj ≈ ξc and δj ≈ δc for all j = 1, . . . , d or weaker certainty about the quality of the
local estimator. In fact, both options of regular flood frequency analysis, calculation
of local or regional estimates, are included as special cases when choosing λ = 0 or
λ → ∞, respectively. The elegance of this approach lies in the fact that strange
local estimates are effectively ruled out without relying completely on the restrictive
application of the Index Flood model or an arbitrary initial guess. The performance of
this estimator in finite samples will be analysed in detail by simulations in Section 5.5,
and by a real-data application in Section 5.6.

5.2.3 Penalization inspired by seasonal smoothness
assumptions

An analysis that considers seasonal or monthly instead of annual maxima allows
to expand the available information and can improve the estimation of very high
quantiles because, due to different flood origins (like snow melt or heavy rainfall),
stochastic characteristics vary over the course of a year. At a particular station,
the observed monthly maximal flows are denoted by M (m)

1 , . . . ,M (m)
n ∼ F (m), m =
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Figure 5.2: Error of the shape parameter estimation (top) and its empirical MSE
(bottom). λ = 0 leads to the smallest bias but λ = 100 to the smallest
MSE.

1, . . . , 12. Under the assumption of independence of the monthly maxima, quantiles
of the annual maximal flows Xi = max

{
M

(1)
i , . . . ,M

(12)
i

}
are given by

F−1(p) =
(
F (1) · . . . · F (12)

)−1
(p). (5.7)

It is reasonable to assume that the distributions of the monthly maxima F (m) are
given by GEV distributions Gϑm with parameters ϑm = (µm, σm, ξm)′, m = 1, . . . , 12.
We estimate the vector of unknown model parameters ϑ = (ϑ′1, . . . , ϑ′12)′ by

ϑ̂λ ∈ arg max
ϑ∈Θ12

12∑
m=1

n∑
i=1

log gϑm
(
M

(m)
i

)
− Ωλ(ϑ), (5.8)

using a penalty Ωλ that prefers gradually changing shape parameters ξ1, . . . , ξ12 over
the year. More specifically, we set

Ωλ(ϑ) = Ωλ (ξ1, . . . , ξ12) = λ
{ 11∑
m=1

(ξm − ξm+1)2 + (ξ12 − ξ1)2
}
, (5.9)

which implies a natural periodicity of one year. Note that we could have also
incorporated similar penalties for location and scale parameters.

Figure 5.2 shows the outcome of a simulation experiment based on 10 000 independent
samples of n = 50 independent GEV observations per month with µ0 = 2, σ0 = 1
and shapes following a sinus curve ξ(m)

0 = 0.35 + 0.25 sin(mπ/6 + 3), m = 1, . . . , 12,
with a period of one year. The boxplots illustrate the distribution of the bias of



90 5 Penalized Maximum-Likelihood estimation

the shape estimates for each month and different penalties λ ∈ {0, 100, 1000}. The
corresponding empirical MSE are depicted below. The regular ML estimate (λ = 0)
leads to the lowest bias, but trading some variance for bias, a much smaller MSE
can be achieved by λ = 100. This choice also leads to the smallest mean square
error of the yearly 99%-quantile estimate, calculated using equation (5.7) among the
considered penalties (MSE of 226 compared to 1728 for λ = 0 and 232 for λ = 1000).
An approach using only yearly maxima would have resulted in a MSE of 839, so the
seasonal model yields a substantial gain in this situation.

5.2.4 Further extensions

The examples presented before assumed stationary distributions (over the years),
but, due to known or unknown causes like river regulations or climate change, the
assumption of stationarity is often hardly justified. PML estimators can be applied in
such scenarios. An intuitive way to model a time-dependent distribution Ft = G(ϑt)
is splitting the time span {1, . . . , n} into b blocks for which we assume stationarity,
i.e.

ϑt = κ(t) =


ϑ1 = (µ1, σ1, ξ1)′, t ∈ [i0, i1),
... ...
ϑb = (µb, σb, ξb)′, t ∈ [ib−1, ib],

(5.10)

for given 1 = i0 < i1 < · · · < ib−1 < ib = n. It is reasonable to penalize differences
between parameters of consecutive blocks, for example Ωλ(ϑ) = λ

∑b
j=1(ξj − ξj−1)2,

possibly in addition to other penalizations. The main focus of this paper is to analyse
PML estimators in the context of regionalization, and we restrict to stationarity in
the following sections.

In the previous three subsections we have focused on squared distances in the
penalization term. As an alternative, one could use absolute differences as in LASSO
regression (Tibshirani, 1996), which leads to a built-in variable selection in regression
problems by automatically setting coefficients to zero. In our applications, however,
there is no particular advantage in setting individual parameters to an exact pre-
described value. Throughout our simulation study described in Section 5.5, we
have checked the performance of absolute differences (similar to a LASSO approach)
and of a combination of absolute and squared differences (similar to the so-called
elastic net) in different settings, but these choices lead to inferior empirical MSEs
as compared to quadratic differences and also to higher computation times. We
concentrate on quadratic differences in this work and use the BFGS algorithm, a
quasi-Newton method, for the optimization of the objective function (5.2), (5.6), or
(5.8), respectively, to be given in a general form in (5.11) in the next section.
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5.3 Theoretical results

This section contains the theoretical results derived and proven by Axel Bücher (see
Bücher, Lilienthal, Kinsvater, and Fried, 2019).

We show that the penalized quasi ML estimator exists (i.e. the maximization problem
has a solution) and is consistent under fairly general conditions on the penalty. We
also provide a result about the rate of consistency, which turns out to depend
explicitly on the strength of penalization.

Let X1, . . . ,Xn with Xi = (Xi;1, . . . , Xi;d)′ denote an i.i.d. sequence from X =
(X1, . . . , Xd)′, a d-dimensional random vector with marginal cumulative distribution
functions denoted by F1, . . . , Fd. We assume that the marginal laws are from the
GEV-family, that is, there exists ϑ0j = (µ0j, σ0j, ξ0j)′ ∈ Θ−1 = R× (0,∞)× (−1,∞)
such that Fj = Gϑ0j , for j = 1, . . . , d. Note that the parameter set Θ−1 is restricted
to ξ0j > −1 since otherwise the classical ML estimator for the GEV parameters is
not consistent (Dombry, 2015). The dependence between the coordinates of X is
left unspecified.

Note that the setting of Section 5.2.2 fits into this framework, with d denoting the
number of sites, as long as aj = 0 for j = 2, . . . , d (the results can however be easily
extended to situations with n′ = n − ad → ∞). The setting of Section 5.2.3 is
accomplished with d = 12; additionally, the coordinates of X are assumed to be
stochastically independent then.

Let ϑ0 = (ϑ′01, . . . , ϑ
′
0d)′ ∈ Θd

−1 denote the stacked vector of true marginal parameters.
A generic vector of marginal parameters will be denoted by ϑ = (ϑ′1, . . . , ϑ′d)′ with
ϑj = (µj, σj, ξj)′. Let ϑ̂ denote any local maximum of the function

Qn(ϑ) = 1
n

n∑
i=1

d∑
j=1

log gϑj(Xi;j)−
1
n
λ′nΩ(ϑ) ≡ 1

n

n∑
i=1

`ϑ(Xi)−
1
n
λ′nΩ(ϑ), (5.11)

where Ω : Θd
−1 → [0,∞)m denotes an arbitrary penalty function.

The following main result shows that there always exists a strongly consistent local
maximizer as soon as the smoothing parameter is of smaller order than n. Similar
results have been obtained for Lasso-type estimators in a linear regression model in
Knight and Fu (2000), although their results are easier to obtain due to the convexity
of their criterion function.

Proposition 2 (Strong consistency) Let K denote an arbitrarily large compact
subset of Θd

−1, containing ϑ0 in its interior. Suppose that the penalty Ω is continuous.
Then, provided λ = λn satisfies ‖λn‖ = o(n) as n→∞, any estimator ϑ̂n such that

Qn(ϑ̂n) = sup
ϑ∈K

Qn(ϑ), (5.12)



92 5 Penalized Maximum-Likelihood estimation

such maximizers always existing, is strongly consistent for ϑ0, as n→∞.

While the estimator is strongly consistent for any smoothing parameter of the order
o(n), it turns out that the rate of convergence of ‖ϑ̂n − ϑ0‖ to zero in fact depends
on the precise order of the smoothing parameter. The following second main results
shows that we obtain the usual parametric rate for ‖λn‖ = O(

√
n) and smaller rates

for ‖λn‖ between n1/2 and n, asymptotically. Similar results have been obtained for
Lasso-type estimators in simple linear regression models in Pötscher and Leeb (2009,
Section 4). For technical reasons, we restrict ourselves to the reduced parameter
set Θ−1/2 = R × (0,∞) × (−1/2,∞), as this is the set where the GEV family is
differentiable in quadratic mean and the usual ML estimator is

√
n-consistent and

asymptotically normal, see Bücher and Segers (2017).

Proposition 3 (Rate of convergence) Suppose that the conditions of Proposi-
tion 2 are met, with K denoting a compact subset of Θd

−1/2 containing ϑ0 in its
interior. Additionally, let Q be Lipschitz-continuous on K. Then, as n→∞,

‖ϑ̂n − ϑ0‖ =

OP (n−1/2) if ‖λn‖ = O(
√
n),

OP (n−1/2+κ) if ‖λn‖ = O(n1/2+κ) for some κ ∈ [0, 1/2).
(5.13)

An empirical illustration of the consistency statements with rate can be found in
Section B in the appendix.

5.4 Hyperparameter selection

In this section strategies to select appropriate values of λ are discussed. We re-
strict attention to estimator (5.6) inspired by the Index Flood model, but similar
approaches are applicable to the seasonal smoothing estimator (5.8) or the general
estimator (5.12).

The first strategy is a cross-validation procedure in which λ can be selected to be
identical for all sites or individually for every site. A combination of the individually
and globally selected λ is given as an extension. Cross-validation strategies rely only
on the observed measurements and can be unreliable if available data is scarce. Often
additional data is availabe that contains information about the fit to the selected
group. A possibility to use such information is presented as a last option.
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5.4.1 Cross-validation

We propose a cross-validation procedure based on the empirical cross-entropy. The set
of observed years, I = {1, . . . , n}, is partitioned evenly into K subsets, I1, . . . , IK ⊂ I,
that do not necessarily consist of consecutive years and are chosen randomly. Let F (k)

n

be the empirical c.d.f. of the k-th subset and let ϑ̂(−k)
λ = ((ϑ̂(−k)

λ;1 )′, . . . , (ϑ̂(−k)
λ;d )′)′ be the

estimator of ϑ0 calculated without the data of the k-th group. Select the parameter
λ ∈ [0,∞]m that minimizes the sum of empirical cross-entropies R(ϑ̂(−k)

λ , F (k)
n ) over

all groups, i.e.

λCV = arg min
λ∈[0,∞]m

K∑
k=1

R(ϑ̂(−k)
λ , F (k)

n ) = arg max
λ∈[0,∞]m

K∑
k=1

∑
i∈ Ik

∑
{j:aj<i}

log g
ϑ̂

(−k)
λ;j

(Xi;j). (5.14)

The much higher computational costs of a Leave-one-out cross validation using K = n
did not lead to a better quality of the selected hyperparameter in our experiments.
Therefore, we choose K = 10 groups in our simulations and application.

If λ is high dimensional, the optimization of equation (5.14) can become very complex
or even not feasible. In this case, constraints on λ can simplify calculations. More
precisely, for some m′ ≤ m, let τ : [0,∞]m′ → [0,∞]m be a given fixed function. The
resulting constrained estimator associated with τ is written as λCV = τ(λCVcons) with

λCVcons = arg max
λ∈[0,∞]m′

K∑
k=1

∑
i∈ Ik

∑
{j:aj<i}

g
ϑ̂

(−k)
τ(λ);j

(Xi;j). (5.15)

The most simple constraint is equality of all hyperparameters, i.e. λ1j = λ2j = λ for
all j = 1, . . . , d, which is achieved using τ(λ) = (λ, . . . , λ)′, λ ∈ [0,∞]. We refer to
hyperparameters derived using this τ as λCVglobal.

Note that equality of all hyperparameters does not imply that the penalization effect
is the same for sites with different record lengths. Indeed, the log-Likelihood part of
equation (5.6) consists of different numbers of observations while the penalization
term is independent of the observation length. Hence, the ratio between those two
parts is different according to the length of records, penalizing sites with few records
(relatively) more than sites with many records.

Alternatively, to have stronger differences in the penalization effect but still a feasible
dimension of λ, the constraint λ1j = λ2j = λj for all j = 1, . . . , d can be used which
is achieved by τ(λ1, . . . , λd) = (λ1, . . . , λd, λ1, . . . , λd)′. We denote this selection as
λCVlocal.

As we will see in the results of the simulation study (Section 5.5), globally selected
hyperparameters tend to have high bias and low variance while individually selected
hyperparameters tend to have low bias and high variance. To investigate whether
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combinations of the local and global λ result in a better estimation, we also consider

λCVcomb,p = pλCVlocal + (1− p)λCVglobal, p ∈ [0, 1]. (5.16)

5.4.2 Surrogate variables

A disadvantage of cross-validation procedures is the dependence on recorded data.
Short record lengths complicate the determination of appropriate regularisation
factors, so it could be useful to resort to additional variables containing information
on how good a site fits to a group. Because of their use as an surrogate, we will call
them surrogate variables.

The idea is to adjust between the local (ordinary ML estimation) and regional
estimation based on variables other than the observations that are used to derive
the estimations. Those variables can be meteorological data or physiographical
characteristics like mean height, mean slope, or river length, that are often already
used in regional flood frequency analysis to construct groups of stations.

Such procedures are often based on distances between sites, for example in space
of physiographical variables (cluster analysis procedures) or in space of canonical
variables (Ouarda et al., 2001). Distances between sites and centroids of those groups
can be used as surrogate variables.

To integrate surrogate variables into the PML estimate, we investigate a three-step
procedure:

1. Transformation/Adjustment of the surrogate variable.

2. Identification of relevant λ-space.

3. Construction of a function that maps surrogate variables to λ values.

In the following more details are given on the different steps.

To be able to construct a reasonable mapping into the space of λ values, we assume
that small absolute values of the surrogate indicate a good fit to the group while
bigger absolute values argue against it. In many cases this assumption may already
be fulfilled, for example when using distance-based measures. In other cases a
transformation like centring or normalization may be necessary.

The second step is to identify a space [λlower, λupper] that is relevant for the PML esti-
mator, i.e. the space in which changes of λ lead to different estimations. Therefore we
measure the distance from the estimated tuples (δ̂λ,j, ξ̂λ,j)′ using the hyperparameter
λ = (λ, . . . , λ)′ to the regional values (δ0, ξ0):

w(λ) =
d∑
j=1

(δ̂λ,j − δ0)2 + (ξ̂λ,j − ξ0)2. (5.17)
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Figure 5.3: Different τ functions, [λlower, λupper] = [0, 1].

The distance function w is decreasing in λ with w(λ)→ 0 for λ→∞. We normalize
w by using w̃(λ) = w(λ)/w(0) with w(0) being the distance of the regular ML
estimates. The boundaries λlower and λupper are chosen so that w̃(λlower) = 0.01 and
w̃(λupper) = 0.99.

After we have identified the relevant space, we have to select a function τ : [0,∞] 7→
[λlower, λupper]. Considering the assumption that small absolute values indicate a
good fit to the group, the following functions are possible choices:

τ (1)
η (h) = λlower + (λupper − λlower) ·

4 exp(−h/η)
(1 + exp(−h/η))2 , η ∈ (0,∞), (5.18)

τ (2)
η (h) = λlower + (λupper − λlower) · exp

−1
2

(
h

η

)2
 , η ∈ (0,∞), (5.19)

τ (3)
η (h) = λlower + (λupper − λlower) · exp

−1
2

(
h

η

)4
 , η ∈ (0,∞), (5.20)

τ (4)
η (h) = η1 · 1[0,c](h2) + η2 · 1(c,∞)(h2), c ∈ [0,∞), η1, η2 ∈ [λlower, λupper]. (5.21)

These functions are inspired by the densities of the logistic and Gaussian distribution
and by a step function. The shape of these functions is illustrated in Figure 5.3.

Appropriate values of the parameter vector η can be chosen by a cross-validation
procedure using the PML estimation with λ = τη(h):

η = arg max
η

K∑
k=1

∑
i∈ Ik

∑
{j:aj<i}

g
ϑ̂

(−k)
τη(h);j

(Xi;j). (5.22)
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The case study in Section 5.6 will illustrate the application of this technique to
regional flood frequency analysis.

5.5 Simulation study

In this section we compare the performance of the penalized quasi ML estimator for
regional flood quantile estimation with standard methods in this field.

5.5.1 Scenarios

We generate several synthetic data sets of different types and different lengths. We
consider four types of heterogeneity: (I) a setting in which the sites are divided into
two groups (called “groups”), (II) sites with linearly varying parameters (“linear”),
(III) a setting with single sites that vary from the rest (“single”), and (IV) a setting
with parameters that are arranged in a spherical fashion (“spherical”). All sites follow
GEV(µj, σj, ξj) distributions with the location parameter of station j = 1, . . . , d, set
to µj = 5× j. The location-scale ratio δj = µj/σj (and hence the scale parameter)
and the shape parameter ξj of station j are selected using the following formulas in
the four settings (I)-(IV):

δj = 1.8 + r ×∆1(j, d), ξj = 0.2 + 2r ×∆2(j, d), (5.23)

with


∆1(j, d) = ∆2(j, d) = sign( j−1

d−1 −
1
2), (I)

∆1(j, d) = ∆2(j, d) = j−1
d−1 −

1
2 , (II)

∆1(j, d) = 1{1,2}(j)− 1{3,4}(j),∆2(j, d) = 1{1,3}(j)− 1{2,4}(j), (III)
∆1(j, d) = cos( j

d
2π),∆2(j, d) = sin( j

d
2π), (IV)

and with parameter r ∈ R+ controlling the degree of heterogeneity, 1 denoting the
indicator function and sign the sign function. Figure 5.4 illustrates the four settings.
The central coordinate (1.8, 0.2) was chosen because it is an average coordinate in
the case study presented in Section 5.6. We select record lengths between 20 and
100 observations and d = 12 stations. Quantile estimates of different heights are
calculated from B = 5000 replications of each scenario using the methods described
in the following section.

For the ease of a clear presentation, we only present results in spatially independent
settings. Alternative simulation scenarios based on dependent data (with dependence
described by a Gumbel copula) did not exhibit any fundamental qualitative differences,
aside from increased variances of the estimators for all methods.
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Figure 5.4: Representation of the four data settings. Sites differ group-wise, linearly,
with single outliers, or in a circular fashion in terms of loc-scale-ratio and
shape parameter.

5.5.2 Methods

We compare local and regional methods that are based either on Maximum-Likelihood
(including our proposed penalized estimator) or L-moments.

The local L-moment method, denoted as l-local, calculates L-moments for each
site individually and converts them to GEV parameters ϑ̂Lj = (µ̂Lj , σ̂Lj , ξ̂Lj )′, j =
1, . . . , d. The regional L-moment method, l-regional, uses the famous regional flood
frequency approach of Hosking and Wallis (1997), which is based on the Index Flood
model given in equation (2.89). L-moments are calculated from the normalized series
Xij/sj, i = 1, . . . , nj, with individual index floods sj, j = 1, . . . , d, being calculated
as local arithmetic means. Regional L-moments are built as weighted means of
these, with weights equal to the record lengths. Regional GEV parameters ϑ̂R =
(µ̂R, σ̂R, ξ̂R)′ are calculated by converting the regional L-moments to GEV parameters.
Local parameter estimates are then given through ϑ̂LRegj = (µ̂R sj, σ̂R sj, ξ̂R)′, j =
1, . . . , d. Note that Hosking and Wallis (1997) describe a much more comprehensive
procedure, beginning with data screenings, identifications of homogeneous regions,
and tests to check assumptions. We only concentrate on the data information pooling
scheme in this study.

The local Maximum-Likelihood approach, denoted as ml-local, calculates ML
estimates at each site individually by optimizing

ϑ̂ML
j = arg max

ϑ∈Θ

n∑
i=aj+1

log gϑ(Xi;j), j = 1, . . . , d. (5.24)

Starting values for the numerical optimization are chosen from L-moments.

Our proposed method is the penalized (quasi) ML estimator described in equa-
tion (5.6). Throughout the optimization, we fix δc and ξc using weighted means of
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local L-estimates δc = n−1∑d
j=1 njµ̂

L
j /σ̂

L
j and ξc = n−1∑d

j=1 nj ξ̂
L
j . This reduces the

optimization problem to an individual maximization at each site:

ϑ̂MLReg
λ = arg max

ϑ∈Θd

d∑
j=1

n∑
i=aj+1

log gϑj(Xi;j)−
d∑
j=1

(
λ1j (δj − δc)2 + λ2j (ξj − ξc)2

)

=


arg max
ϑ1∈Θ

∑n
i=a1+1 log gϑ1(Xi;1)− λ11 (δ1 − δc)2 − λ21 (ξ1 − ξc)2

...
arg max
ϑd∈Θ

∑n
i=ad+1 log gϑd(Xi;d)− λ1d (δd − δc)2 − λ2d (ξd − ξc)2

 .
(5.25)

To determine appropriate hyperparameters λ we use cross-validation as described
in Section 5.4.1 with K = 10 subsets. We use and compare the constrained hyper-
parameters λCVglobal, λCVlocal, as well as combinations λCVcomb,p with p ∈ {0.25, 0.5, 0.75}.
This method will be denoted by pml-gl, pml-ll, pml-cl-0.25, pml-cl-0.5, or
pml-cl-0.75, respectively.

The parameter estimates ϑ̂ of all methods are converted to quantile estimates by
q̂ = F−1

ϑ̂
(p), p ∈ (0, 1).

5.5.3 Performance measures

We use common performance measures to assess the quality of the methods. Let
qj = qj(Fj) be a specific quantile of a distribution Fj and q̂b,j = q̂b,j(ϑ̂λ,b) the
corresponding estimation in sample b = 1, . . . , B. For each method we calculate the
average empirical relative mean squared error as

relMSE = d−1
d∑
j=1

B−1
B∑
b=1

(q̂b,j − qj)2

q2
j

. (5.26)

We also examine the composition of this measure by calculating the mean empirical
relative squared bias and mean empirical relative variance as

relSqBias = d−1
d∑
j=1

(
B−1

B∑
b=1

q̂b,j − qj
qj

)2

, (5.27)

relVar = d−1
d∑
j=1

B−1
B∑
b=1

(
q̂b,j −B−1∑B

b′=1 q̂b′,j
qj

)2

. (5.28)
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5.5.4 Results

Figure 5.5 displays the relative MSE of the 99%-quantile estimation for the penalized
ML methods with different hyperparameters in the linear and the single setting. The
two settings not displayed are qualitatively comparable to the linear one. The global
λ-selection, which selects the same hyperparameter for all sites, is the best choice in
most of these situations. The relative MSE tends to get worse if a higher proportion
of the local selection is used, with the only exception being the single setting with a
high degree of heterogeneity. We therefore stick with λglobal for PML estimation in
the following.

Figure 5.6 depicts the relative MSE of the estimates for the 99%-quantile for record
lengths of n = 80 and two settings. These illustrations are representative also for
other quantiles, record lengths (as we will see later), and the other two settings. Both
L-moment based methods perform well for their intended application, the regional
one for homogeneous groups (small r) and the local one for heterogeneous groups
(large r), but they lack quality if they are applied to the contrary situation. The
PML estimator overcomes this problem by allowing to gradually choose between
local and regional estimation. Using the globally selected hyperparameter λ, it
performs best or close to the best in all these situations, independently of the degree
of heterogeneity r. The local L-moment based estimation outperforms the local ML
based one in all settings considered here. As already discussed in Hosking, Wallis,
and Wood (1985), this is likely due to the short record length.
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Figure 5.5: Relative MSE depending on the heterogeneity r for different λ-selections
(n = 80). The two settings not displayed are qualitatively comparable to
the linear case.
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Figure 5.6: Relative MSE of the 99%-quantile estimators depending on the distance
r for two settings and records of length n = 80.

The top panels of Figure 5.7 show the influence of the record length on the relative
MSE in the linear setting for three degrees of heterogeneity. The local ML method
fails for record lengths smaller than, say, n = 40, but it catches up with increasing
record length while the L-moment estimations are not that much influenced by small
record lengths. The PML estimator gives good results for record lengths larger than
n = 30 and is nearly as good as the regional L-moment estimator in homogeneous
groups (r = 0) and surpasses all other methods in groups of higher heterogeneity.

The bottom panels of Figure 5.7 show the MSE of the estimation of different quantiles
in the linear setting for n = 80. The methods show stable relative performances
for all quantiles and each degree of heterogeneity. For homogeneous groups, the
local methods show much larger MSE than the regional ones. As opposed to the
regional L-moment estimator, the PML estimator remains the best choice among
these methods as the heterogeneity increases.

Figure 5.8 finally splits the MSE into the squared bias and the variance. The squared
bias increases rapidly with increasing heterogeneity for the regional L-moment method,
while for the other methods it is rather small as compared to the variance. The
variance is substantially smaller for the regional estimators than for the local ones,
with a small advantage for the regional L-moment estimator in this respect.

Overall, the PML estimator combines a small squared bias with a low variance, which
results in a good relative MSE. The proposed cross-validation procedure is able to
provide hyperparameters that adapt to local or regional solutions depending on the
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Figure 5.7: Results for the linear setting. Top: Relative MSEs for the 99%-quantile
and different record lengths n. Bottom: Relative MSE as a function of
the estimated quantile.

data situation and can reduce the relative mean square error substantially in this
way.

5.6 Case study

We illustrate the application of our PML estimator with a case study. The data
set consists of annual flood peaks at 26 stations in the Elbe river basin in Saxony,
Germany, located in the north side of the Ore Mountains (with a mountaintop of
1244 m a.s.l.) and its foothills. The sites differ in mean height (from 168 m to 754 m
a.s.l.) and catchment area (from around 36 km2 to 5433 km2) and consist of record
lengths between 64 and 103 years.

Section 5.5 showed that the proposed PML estimator yields comparably good results
both in homogeneous and heterogeneous situations. Because regional flood frequency
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Figure 5.8: Relative squared bias and relative variance of 99%-quantile estimators
depending on the heterogeneity r in the linear setting, n = 80.

analysis is most advantageous if the group is homogeneous, site characteristics like
catchment area or mean height are used to construct two groups by application of a
k-means clustering on standardized site characteristics. One group (mostly) contains
sites with small catchment areas located in higher areas of the Ore Mountains, while
the other group includes sites with bigger catchment areas further downstream.
Smaller catchments are more strongly affected by single events and therefore often
feature larger shape parameters in a GEV model. To analyse the influence of
the group-building process, the estimates are calculated once with a single group
containing all sites and once after division into these two groups.

The PML estimator of equation (5.25) is calculated for each group with a global λ
(i.e. λ1j = λ2j = λ ∀j = 1, . . . , d). Selecting δc and ξc as weighted means of the
corresponding local values resulted in unstable results over varying hyperparameters.
Therefore, as in the simulation study, we fix the group centres at pre-specified
weighted means of local L-moment estimations throughout the optimization.

Figure 5.9 shows the estimates without and with group-building. In both plots the
lines indicate all estimates obtained by the PML estimator using λ ∈ [0,∞), with the
local ML estimate (i.e. λ = 0) being the most outward point of the line. The symbols
indicate the estimates chosen by the crossvalidated λCVglobal. Without grouping, the
estimates vary moderately around the centre, clearly less than ordinary ML estimates
would do. With two groups, there are clear differences: the first group (filled circles)
has a medium level of regionalization, resulting in estimates in the middle of the
path. Regionalization is much stronger for the other group, with all estimates being
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Figure 5.9: PML estimates without (left) and with group-building (right). Lines mark
all possible estimates for different hyperparameters, symbols indicate the
crossvalidated solution.

closer to the centre of the group.

We now use the PML estimation for both groups with a surrogate variable as
described in Section 5.4.2. Because the groups were built using distances in the space
of site characteristics, we use the distances to the group centres as surrogate and
standardize them by their standard deviation. In both groups the PML estimator of
equation (5.6) is calculated with δc and ξc being the respective group centres (i.e. the
weighted means of local L-moment estimates of the respective group). The surrogate
variables are mapped to the λ-space using the mapping functions of equations (5.18)–
(5.21) with parameters of those functions determined by cross-validation procedures
(see equation (5.22)).

We found mapping τ (2)
η leading to the lowest empirical cross-entropy. The left panel

of Figure 5.10 shows the resulting λ-mappings for both groups dependent of the
surrogate as well as the positions of the sites of both groups. The hyperparameters
of the sites of one group (unfilled squares) are rather high, which results in a high
degree of regionalization. The other group has both high and low parameters and
therefore both high and low degrees of regionalization. The right panel of Figure 5.10
depicts the chosen estimates as before.

This use of surrogate variables to determine the degree of regionalization results in
quite similar estimations as in the observation-driven cross-validation used before.
We therefore believe that the use of further information to generate hyperparameters
is a good alternative to the observation-based cross-validation, especially in cases of
record lengths shorter than in this case study.
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Figure 5.10: Left: Mapping between distances to centre of the groups and the crossval-
idated hyperparameter. Right: Estimates using those hyperparameters.

Another promising possibility to use the PML estimator in such a setting is to
modify the penalization term to penalize to all group centres simultaneously with
the strength determined by the distance to the respective group. This way sites that
have nearly equal fits to both groups are affected by both and not only by one of
them. With (δ0g, ξ0g)′, g = 1, 2, being the centre of the g-th group we change the
penalizing term of equation (5.6) to

λ′Ω(θ) =
d∑
j=1

(
λ1j

(
(δj − δ01)2 + (ξj − ξ01)2

)
+ λ2j

(
(δj − δ02)2 + (ξj − ξ02)2

) )
.

(5.29)

To obtain hyperparameters, the distances to both group centres are calculated for
each site and the set of distances is standardized by the standard deviation over
all distances. Then the mapping functions are used to convert those distances to
hyperparameters. As before, the parameters of the mapping function are deduced
from a cross-validation procedure.

The left panel of Figure 5.11 depicts the combinations of the resulting hyperparameters
for all 26 sites. The distribution of those parameters is quite diverse, but most sites
have a high hyperparameter for one of the groups and a low one for the other. Few
sites are influenced by both groups and few by neither.

In the right panel of Figure 5.11 the GEV estimates are given. The crosses indicate
the centres of both groups. Nearly all estimates are spreading in the area between
those two centre points now.
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Figure 5.11: Left: Resulting combinations of hyperparameters for each site. Right:

Regularized ML estimates of all sites. Crosses indicate both group
centres.

In comparison to the former calculation, the sites’ estimates vary about a wider
margin between the two centres. This allows for individual estimates that are still
stabilized by the penalization.

5.7 Conclusions

In this chapter applications of penalized quasi ML estimators in flood frequency
analysis were presented. Possible applications cover simple constraints on the shape
parameter, seasonal constraints, and an Index Flood like regularization for regional
flood frequency analysis. The last application is of particular interest and analysed
using synthetic data in a simulation study and real data in a case study. The
penalization term is chosen to represent the popular Index Flood model by penalizing
deviations from local parameter estimates to regional ones.

The crucial point in regularization techniques is the choice of the hyperparameters.
In case of Index Flood regularization, the hyperparameters control the balance
between local and regional estimates. As opposed to other methods, this enables
us to adjust the degree of regionalization for the group or individually for each site.
We have compared cross-validation procedures that calculate the hyperparameters
with different constraints. Simulations indicate that the reduction of variance in
case of short record lengths outperforms the increase of the squared bias if the
same hyperparameters are chosen for all sites. An alternative to observation-based
cross-validation procedures is the use of additional information that is often available
in regional flood frequency analysis.
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The main result of the simulation study is that the penalized ML estimator applied to
regional flood frequency analysis generally provides good quantile estimates and, in
particular, better estimates than other methods when there are uncertainties about
the homogeneity of the group of sites. While the local and the regional L-moment
estimators offer good results in situations they are actually made for, they lack quality
if the situation is unclear or misspecified. The penalized estimator overcomes this
problem by allowing to gradually choose between local and regional estimation.

The real-world applicability has been demonstrated for a set of 26 gauges in Germany
which was divided into two groups. Even though the penalized estimator works for
heterogeneous groups, we suggest to perform such a group-building process because
the benefit of regional analysis is larger if the group is rather homogeneous. Using
this example, we have shown how surrogate information like the distance of the
stations to the centre of the group in the space of site characteristics can be used to
derive hyperparameters. This might be a promising alternative to observation-based
cross-validation in situations of short record lengths. We have also shown how the
estimates of sites can be influenced by multiple groups at once. This could reflect
reality better in which there often is no native membership to one group but different
degrees of membership to multiple groups.



6 Summary

This dissertation deals with the problem of estimating the recurrence time of rare
flood events, especially in the case of short data records. In such scenarios regional
flood frequency analysis is used, a multi-step procedure with the goal of improving
quantile estimates by pooling information across different gauging stations. Different
aspects of regional flood frequency analysis using the Index Flood model are analysed,
and improvements for parts of the procedure are proposed.

In group-based regional flood frequency analysis, sets of stations are built from
which a similar flood distribution is assumed. In the Index Flood model, this means
that the flood distributions of all stations are the same except for a site-specific
scaling factor. In other words, the quantile function can be split into a site-specific
factor and a common curve that is the same for all sites in the group. Because the
validity of this assumption is of crucial importance for the benefits of regionalization,
it is commonly checked using homogeneity tests. After possible reassignments of
stations to the groups, the information of records within a group is pooled. The most
popular approach for this is the calculation of regionalized L-moments that result as
a weighted mean of local L-moments. Using these regionalized moments, distribution
parameters can be deduced that define the common curve. In combination with the
site-specific factor, quantile estimates can then be calculated.

Each of the main chapters of this dissertation focuses attention on specific steps
of this procedure. The first work investigates the commonly used homogeneity
testing procedure of Hosking and Wallis (1997) based on L-moments. This procedure
has known drawbacks if the distribution of the observations is highly skewed or if
the sites are spatially correlated. A new generalized procedure is proposed that
uses copulas to model the intersite dependence and trimmed L-moments as a more
robust replacement of L-moments. The influence of both changes is analysed in a
comprehensive simulation study. The main outcomes are that TL(0,1)-moments
work very well in the scenario of medium to high skewness and that the use of simple
copula models clearly improves the results of the test, even if the true dependence
is of a more complex nature. Another benefit from using asymmetrically trimmed
L-moments is an increased robustness against outliers or extreme events.

The second main chapter is more technical. The asymptotic distribution of sample
probability-weighted moments is described in a setting of multiple sites of different
record lengths. This theory is then extended to sample TL-moments and GEV
parameter and quantile estimators based on them. An estimator for the limiting
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covariance matrix is given and analysed. The applicability of the theory is illustrated
by the construction of a homogeneity test. This test works well if TL(0,1)-moments
are used to derive GEV parameters but needs a record length of at least 100
observations at each site to give acceptable error rates.

The last main chapter deals with penalized Maximum-Likelihood estimation in flood
frequency analysis. The main part provides an alternative to the information pooling
scheme based on L-moments. Under the assumption of generalized extreme value
distributed data, the Index Flood model is translated to restrictions on the parameter
space. The penalty term of the optimization problem is then chosen to reflect those
restrictions. The influence of the penalty term can be controlled by a hyperparameter,
which in this case gives us the possibility to control the degree of regionalization.
Using a crossvalidated hyperparameter, this leads to a procedure that automatically
finds a compromise between local and regional estimation based on the data. This is
especially useful in situations in which homogeneity is unclear. A simulation study
indicates that this approach works nearly as good as pure regional methods if the
homogeneity assumption is completely true and better than its competitors if the
assumption does not hold.

Overall, this dissertation presents different approaches and improvements to steps of
a group-based regionalization procedure. A special interest is the assessment of the
homogeneity of a given group that is analysed with two different approaches. However,
due to short record lengths or limitations in the homogeneity testing procedures,
heterogeneous groups are often still hard to detect. In such situations the presented
penalized Maximum-Likelihood estimator can be applied that gives comparatively
good results both in homogeneous and heterogeneous scenarios. It should be stressed
that application of this estimator does not supersede the group building steps. The
benefit of regionalization is highest if the homogeneity assumption is fulfilled.

This dissertation only covers a small part of regionalization, so there is much potential
for further research and development. The first step of group-based regionalization,
the group building itself, has not been discussed in detail. Research could be invested
in how to optimally delineate groups. The difficulty lies in the problem of using only
site characteristics for this task. This is necessary in order to being able to dispatch
unrecorded sites to groups.

In the data pooling step the penalized Maximum-Likelihood estimator offers a wide
range of further extensions by adjusting the penalization term. One possibility for
further research is an analysis of how strong deviations of the location-scale ratio
and deviations of the shape from their respective group centres should be penalized
and if that should be dependent on the quantile of interest. In the case study of
Section 5.6 an approach is presented that penalizes the estimates to not only one
group but to multiple groups simultaneously. This approach, similar to a fuzzy
clustering procedure, seems promising and worth pursuing further.
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This dissertation mainly used the assumption that the distribution of the data can
be approximated by a generalized extreme value distribution and does not vary over
time. The presented methodology could be adapted to other approaches including
different distribution families or a time-dependent modelling allowing for trends or
seasonal effects. Section 5.2.3 and 5.2.4 contain ideas on how to achieve this in
the data pooling step using the penalized Maximum-Likelihood estimator. It could
be worthwhile to investigate this further. Since we have focused on group-based
procedures using the Index Flood model, also adaptation to other regionalization
techniques seems interesting.
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A Appendix to Chapter 4

This section presents the corresponding Jacobi matrices involved in formulas (4.9)
and (4.10) for TL(0,0)- and TL(0,1)-moments.

TL(0,0)

Let ϑ = (µ, σ, ξ)′ with ξ < 1 and λ = (λ1, λ2, λ3)′ denote parameters and untrimmed
L-moments of a GEV distribution, respectively, and let g(0,0) be the function that
maps L-moments to GEV parameters. The Jacobi matrix ∆(0,0)

λj→ϑ = ∂
∂λ
g(0,0)(λ)

involved in the asymptotic distribution of L-moment estimators is approximated by
that of the explicit solution. For the latter we obtain

A =

1 a12 a13
0 a22 a23
0 a32 a33

 (A.1)

with

a12 =log (2) λ2 (Γ (1− π)− 1) 2π ρ θ
Γ (1− π) (1− 2π)2 + λ2 ψ0 (1− π) (Γ (1− π)− 1) ρ θ

Γ (1− π) (1− 2π) −

λ2 ψ0 (1− π) ρ θ
1− 2π + Γ (1− π)− 1

Γ (1− π) (1− 2π)

a13 =− log (2) λ2
2 (Γ (1− π)− 1) 2π+1 ρ ζ2

Γ (1− π) (1− 2π)2 −

2λ2
2 ψ0 (1− π) (Γ (1− π)− 1) ρ ζ2

Γ (1− π) (1− 2π) + 2λ2
2 ψ0 (1− π) ρ ζ2

1− 2π

a22 =− log (2) λ2 π 2π ρ θ
Γ (1− π) (1− 2π)2 −

λ2 ρ θ (ψ0 (1− π) π + 1)
Γ (1− π) (1− 2π) − π

Γ (1− π) (1− 2π)

a23 =log (2) λ2
2 π 2π+1 ρ ζ2

Γ (1− π) (1− 2π)2 + 2λ2
2 ρ ζ2 (ψ0 (1− π) π + 1)
Γ (1− π) (1− 2π)

a32 =− 2λ3 (2 b κ λ3 − a λ3 + 6 b κ λ2 − 4 b λ2 − 3 a λ2) ζ3

a33 =2λ2 (2 b κ λ3 − a λ3 + 6 b κ λ2 − 4 b λ2 − 3 a λ2) ζ3
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and with a = −7.859, b = −2.9554, κ = log 2
log 3 ,

η = (2λ2ζ − κ),
π = bη2 + aη,

ζ = 1/(λ3 + 3λ2),
θ = (2ζ − 6λ2ζ

2),
ρ = 2bη + a,

ψ0(x) = Γ′(x)/Γ(x).

TL(0,1)

Considering now trimmed L-moments λ(0,1) of a GEV distribution with parameters
ϑ and mapping function g(0,1). The Jacobi matrix ∆(0,1)

λ
(0,1)
j →ϑ

= ∂
∂λ(0,1) g

(0,1)(λ(0,1)) is
approximated by

A =

1 a12 a13
0 a22 a23
0 a32 a33

 , (A.2)

where

a12 =−
2λ(0,1)

2 ψ0 (−π)
(
−2 b (ζ − η)

(
λ

(0,1)
2 ζ − κ

)
− a (ζ − η)

)
+ 2

3 π (−2π+1 + 3π + 1) γ (−π)

− 2λ(0,1)
2 (log (3) ι 3π − log (2) ι 2π+1) (1− (2π − 2)π γ(−π))

3π (−2π+1 + 3π + 1)2 γ (−π)

− 2 ι λ(0,1)
2

3π2 (−2π+1 + 3π + 1) γ (−π) −
log (2) ι λ(0,1)

2 2π+1 + 2 (2π − 2)
3 (−2π+1 + 3π + 1)

a13 =− 2λ(0,1)
2 (log (2) 2π+1 ρ− log (3) 3π ρ) (1− (2π − 2) π γ(−π))

3π (−2π+1 + 3π + 1)2 γ (−π)

− 2λ(0,1)
2 ρ (ψ0(−π)π − 2π log(2)− 1)
3 π2 (−2π+1 + 3π + 1) γ (−π)

a22 =−
2λ(0,1)

2 ψ0 (−π)
(
−2 b (ζ − η)

(
λ

(0,1)
2 ζ − κ

)
− a (ζ − η)

)
+ 2

3 (−2π+1 + 3π + 1) γ (−π)

− 2λ(0,1)
2 (log (3) ι 3π − log (2) ι 2π+1)

3 (−2π+1 + 3π + 1)2 γ (−π)

a23 =− 2λ(0,1)
2 (log (2) 2π+1 ρ− log (3) 3π ρ)

3 (−2π+1 + 3π + 1)2 γ (−π)
− 2λ(0,1)

2 ψ0 (−π) ρ
3 (−2π+1 + 3π + 1) γ (−π)

a32 =ι
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a33 =− ρ

and with a = −8.5674, b = 0.6760, κ = 2 log 2− log 3
3 log 3− 2 log 4 ,

θ = 3(λ(0,1)
3 + 2λ(0,1)

2 ),
ζ = 10/(3θ),
η = 20λ(0,1)

2 /θ2,

π = b(λ(0,1)
2 ζ − κ)2 + a(λ(0,1)

2 ζ − κ)
ρ = −bη(λ(0,1)

2 ζ − κ),
ι = 2b(ζ − η)(λ(0,1)

2 ζ − κ) + a(ζ − η)
ψ0(x) = Γ′(x)/Γ(x)
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In this section we examine the validity of the results derived in Section 5.3 using
simulation studies. Therefore we analyse the consistency of the estimator (see Propo-
sition 2 on page 91) and the rate of convergence (see Proposition 3 on page 92).

Study design

We consider a sample of observations X1 . . . , Xn following a GEV distribution:

Xi ∼ GEV(µ0, σ0, ξ0), i = 1, . . . , n. (B.1)

While we chose the location and scale parameter to be µ0 = 10 and σ0 = 10/1.8,
we investigate three different settings regarding the true shape parameter ξ0: a
light-tailed scenario (ξ0 = −0.3), a heavy-tailed scenario (ξ0 = 0.3), and the Gumbel
case in which ξ0 = 0.

A realisation of N = 100 000 observations is drawn for each setting and the regularized
ML estimator ϑn that maximizes

Qn(ϑ) = 1
n

n∑
i=1

log gϑ(Xi)−
1
n
λ′n Ω(ϑ) (B.2)

is calculated for n = 50, 100, 200, 500, 1000, 2000, 5000, 10 000, 50 000, 100 000 (using
the first n observations and neglecting the remaining). The regularization term is
selected as

Ω(ϑ) =
(
(µj/σj − δc)2, (ξj − ξc)2

)′
(B.3)

with δc = 2 and ξc = 0.

The smoothing parameter is varied as λn ∈ {(np, np)′ : p ∈ {0, 1/4, 1/2, 3/4, 1}},
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that is, λn satisfies

||λn|| =



o(1), if λn = (1, 1)′,
O(n1/4), if λn = (n1/4, n1/4)′,
O(
√
n), if λn = (

√
n,
√
n)′,

O(n3/4), if λn = (n3/4, n3/4)′,
O(n), if λn = (n, n)′.

(B.4)

Each scenario is replicated B = 10 000 times and the estimator of the b-th replication
using n observations and smoothing parameter λn is denoted as ϑ̂(b)

n,λ, b = 1, . . . , B.

Strong consistency

To check for strong consistency we examine the behaviour of ϑ̂n,λ. Figure B.1, B.2,
and B.3 display the paths of the entries of ϑ̂(i)

n,λ for increasing n and different smoothing
parameters in the light-tailed, Gumbel, and heavy-tailed scenario, respectively. For
λn ∈ {(0, 0)′, (

√
n,
√
n)′} all estimates seemingly tend towards the true parameter,

but for λn = (n, n)′ they tend to wrong values. This corroborates Proposition 1 that
states consistency as long as ||λn|| = o(n).

MSE-consistency

Although not being addressed theoretically, we also investigate the MSE-consistency
of the estimator. For ϑ̂n,λ to be a MSE consistent estimator for ϑ0 the mean squared
error MSE(ϑ̂n,λ) = E((ϑ̂n,λ − ϑ0)2) = V ar(ϑ̂n,λ) + Bias(ϑ̂n,λ,ϑ0)2 needs to tend
to zero for increasing n. We check this by investigating the empirical mean squared
error M̂SE(ϑ̂n,λ) = B−1∑B

i=1(ϑ̂(i)
n,λ − ϑ0)2 for increasing n.

In Figure B.4 the components of the empirical MSE vector for a true shape ξ0 = 0.3
are given. Except for λn = (n, n)′ all choices of λn lead to an empirical MSE tending
towards zero. For λn = (n, n)′ the empirical MSE stabilizes for increasing n, which
suggests that the resulting estimator is not MSE-consistent.

Rate of convergence

Proposition 2 provides the rate of convergence, saying that ||ϑ̂n,λ−ϑ0|| = OP(n−1/2)
if ||λn|| = O(

√
n). This means that in this case

√
n||ϑ̂n,λ − ϑ0|| = OP(1) (is limited

in probability).



125

In Figure B.5 the empirical non-exceedance probabilities for different fixed limits c
are given for a true shape ξ0 = 0.3. The figure affirms the results of Proposition 2,
showing stable probabilities P (

√
n||ϑ̂n,λ − ϑ0|| < c) for fixed c and increasing n if

||λn|| = O(
√
n) (upper panel). If ||λn|| = O(n3/4), such probabilities decrease to 0,

but note that P (n1/4||ϑ̂n,λ−ϑ0|| < c) then even increases towards 1 (lower panel).

The results of Proposition 2 can further be affirmed by analysing the density functions
of
√
n||ϑ̂n,λ − ϑ0|| and n1/4||ϑ̂n,λ − ϑ0|| (Figure B.6).
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Figure B.1: Behavior of 10 000 estimations ϑ̂n,λ for increasing n and different λn for
ξ0 = −0.3. Red line marks the true parameter.
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Figure B.2: Behavior of 10 000 estimations ϑ̂n,λ for increasing n and different λn for
ξ0 = 0. Red line marks the true parameter.
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Figure B.3: Behavior of 10 000 estimations ϑ̂n,λ for increasing n and different λn for
ξ0 = 0.3. Red line marks the true parameter.



129

Figure B.4: Empirical MSE of ϑ̂n,λ for increasing n and different λn for ξ0 = 0.3.
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Figure B.5: Non-exceedance probabilities of P̂ (
√
n||ϑ̂n,λ − ϑ0|| < c) and

P̂ (n1/4||ϑ̂n,λ − ϑ0|| < c) for different λn (ξ0 = 0.3).
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Figure B.6: Density functions of
√
n||ϑ̂n,λ − ϑ0|| and n1/4||ϑ̂n,λ − ϑ0|| for different

λn (true shape ξ0 = 0.3).
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