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Abstract

In a world where service robots are increasingly becoming an inherent part of our lives,
it has become essential to provide robots with superior perception capabilities and
acute semantic knowledge of the environment. In recent years, the computer vision
field has advanced immensely, providing rich information at a fraction of the cost. It
has thereby become an essential part of many autonomous systems and the sensor of
choice while tackling the most challenging perception problems. Nevertheless, it is still
challenging for a robot to extract meaningful information from an image signal (a high
dimensional, complex, and noisy data). This dissertation presents several contributions
towards visual robot navigation relying solely on omnidirectional vision.

The first part of the thesis is devoted to robust free-space detection using omnidirec-
tional images. By mimicking a range sensor, the free-space extraction in the omniview
constitutes a fundamental block in our system, allowing for collision-free navigation,
localization, and map-building. The uncertainty in the free-space classifications is han-
dled with fuzzy preference structures, which explicitly expresses it in terms of prefer-
ence, conflict, and ignorance. This way, we show it is possible to substantially reduce
the classification error by rejecting queries associated with a strong degree of conflict
and ignorance.

The motivation of using vision in contrast to classical proximity sensors becomes
apparent after the incorporation of more semantic categories in the scene segmenta-
tion. We propose a multi-cue classifier able to distinguish between the classes: floor,
vertical structures, and clutter. This result is further enhanced to extract the scene’s spa-
tial layout and surface reconstruction for a better spatial and context awareness. Our
scheme corrects the problematic distortions induced by the hyperbolic mirror with a
novel bird’s eye formulation. The proposed framework is suitable for self-supervised
learning from 3D point cloud data.

Place context is integrated into the system by training a place category classifier able
to distinguish among the categories: room, corridor, doorway, and open space. Hand
engineered features, as well as those learned from data representations, are considered
with different ensemble systems.

The last part of the thesis is concerned with local and map-based navigation. Several
visual local semantic behaviors are derived by fusing the semantic scene segmentation
with the semantic place context. The advantage of the proposed local navigation is that
the system can recover from conflicting errors while activating behaviors in the wrong
context. Higher-level behaviors can also be achieved by compositions of the basic ones.
Finally, we propose different visual map-based navigation alternatives that reproduce
or achieve better results compared to classical proximity sensors, which include: map
generation, particle filter localization, and semantic map building.
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1
Introduction

Robots are migrating faster and faster from typical industrial applications to human
environments to perform increasingly complex tasks. This transition requires higher
perception capabilities and intelligence. Conventionally, mobile robots have operated
using range sensors, which provide robust proximity information to nearby obstacles.
However, in recent years, vision has emerged as a more versatile alternative as it pro-
vides more information, albeit more complex. This development is further supported
by the increasing availability of powerful computer vision systems at affordable costs.

Inspired by the human vision, our most important sensor, we expect the robot of the
future to have a deep semantic understanding of the world to dramatically improve
human-robot natural communication, navigation, localization, and recognition of sur-
rounding objects. Nevertheless, despite the recent advances, it is still challenging for
a robot to extract meaningful information from the image signal (a high dimensional,
complex, and noisy data), since:

• Navigation relies on depth information of the scene, which is not provided by a
single 2D image.

• Raw image data is rather complex, which implies the need to segment and group
objects to extract their relevant features and to aggregate those in a meaningful
manner.

• Visual cues such as intensity, texture, and optical flow are highly context-depen-
dent.

• Visual appearance of the environment and objects vary substantially with view-
point and illumination.

This dissertation focuses on the visual navigation of mobile robots solely through
omnidirectional vision. We investigate different aspects of visual navigation, provid-
ing the robot with the following capabilities: (i) deriving the free-space in the scene for
collision-free navigation, (ii) handling uncertainty in the free-space classification for
improving the robot’s decision making, (iii) gaining semantic knowledge through clas-
sification of image regions, (iv) improving the spatial understanding through layout
and structure recovery, (v) advancing place recognition for context-aware navigation,
(vi) enhancing local semantic navigation with visual behaviors, and (vii) building a
semantic mapping and achieving a purely visual map-based navigation.

Specifically, our work is concerned with omnidirectional-vision, which provides
a wide field-of-view or panoramic snapshot of the environment. The advantage of
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1 Introduction

an omni-view (similar to a laser rangefinder), is that it captures the environment
around 360◦ invariant under rotation. Additionally, the appearance variation between
consecutive frames is small, given the low optical-flow due to the wide field-of-view
which is beneficial for navigation, map building, and localization. These advantages
come with the cost of low resolution, high distortion, and a blind-spot in the image
due to the nature of the hyperbolic mirrors. These limitations can be overcome, as we
shall see in the contributions derived in the following chapters.

1.1 Experimental Platform

The experimental platform used throughout this work consists of a Pioneer 3DX mo-
bile robot shown in Fig. 1.1. The robot is equipped with a range camera and an
omnidirectional camera.

Omnicamera

Range Camera

Omni-image

RGB image Range image

Pioneer Robot

Kinect

PMD

Laser
rangefinder

Ultrasonic
sensors

Figure 1.1: Robotic Platform and sensors.

In the experiments conducted in the first two chapters, we employ a Photo-mixer
Device Camera (PMD) as the 3D camera. The PMD provides 3D measurements at a
204 x 204 pixel resolution across a 40◦ x 40◦ field of view. In the latter chapters, the 3D
data is acquired with a Microsoft Kinect, which provides 320 x 240 depth data across
a 57◦ x 43◦ field of view. The omnidirectional sensor combines a CCD camera with a
hyperbolic mirror that has a vertical field of view of 75◦ that is directed towards the
bottom to capture the floor. Fig 1.2 illustrates at the right an omnidirectional image
captured on the scene at the left. The robot was positioned on the corridor and objects
on both images are labeled to illustrate how the hyperbolic mirror distorts the image,
but is able to capture a 360◦ wide field of view. The robot is also outfitted with a SICK
LMS-200 laser rangefinder and 16 Polaroid ultrasonic range sensors. The range data
acquired with these proximity sensors are mainly used for validation.

1.2 Contributions and Outline

The organization of the thesis is outlined in Fig 1.3. The first chapters deal with
estimating the free-space in omnidirectional images. These chapters constitute a sig-
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1.2 Contributions and Outline

Door

Floor

Column

Extinguisher

Posters

Door

Wall

Floor

Colum
n

E
xtin
g
u
ish
er

Posters

Door

Wall

Door

Figure 1.2: Experimental platform positioned on a scene where the omnidirectional image at
the right was captured. The scene and the omnidirectional image are labeled with the same
objects to show the wide field of view image formation and distortion introduced by the
hyperbolic mirror

nificant building block towards performing a purely visual local navigation and map
building without relying on range from proximity sensors. From Chapter 4 onwards,
the system incorporates more and more semantic understanding to take full advan-
tage of the vision-based systems necessary to achieve more complex robotics tasks.
The outline of the thesis is as follows:

Chapter 2 introduces two novel free-space segmentation approaches for omnidi-
rectional images that are pivotal for local navigation and map building in the last
chapters. The first scheme rests upon the fusion of multiple classifications generated
from heterogeneous segmentation schemes using a mixture of experts approach. The
second scheme employs an online self-supervised scheme that selects the traversable
floor region using the optimal segmentation to the appearance of the local environ-
ment by cross-validation over 3D scans captured by a 3D range camera.

Chapter 3 investigates the uncertainty inherent in a single free-space segmentation
as well as the global uncertainty across multiple segmentation based classifiers. The
uncertainty of the classifications is explicitly expressed in terms of preference, conflict,
and ignorance utilizing fuzzy preference structures, thereby mapping the problem
of classification into the domain of decision-making under fuzzy preferences. We
show that the classification error is substantially reduced by rejecting those queries
associated with a strong degree of conflict and ignorance.

Chapter 4 extends the binary classifier from Chapter 2, increasing the number of
semantic labels for each classified image’s region. The labeling distinguishes between
the main classes: floor, vertical structures, and clutter. Vertical planes are objects such
as walls, boards, and placards. Non-planar objects in the scene are grouped into the
class clutter and are objects with multiple surfaces such as furniture, plants, people,
or obstacles. We show that the method is suitable for self-supervised learning using
the 3D point cloud data of a range camera.

Chapter 5 extends further the semantic segmentation by extracting the spatial lay-
out and surface reconstruction of the omnidirectional image. Knowing the spatial
layout of the scene improves scene understanding and enhances object detection. The

3



1 Introduction

proposed system benefits from a cascaded classification, where all vertical structures
from the semantic segmentation are analyzed to find their main orientation by fusing
orientation features from the HOG transform, floor/wall boundaries, and oriented
lines in the image.

Chapter 6 presents a place-category recognition system that distinguishes among
the location categories: room, corridor, doorway, and open space. The approach eval-
uates hand-engineered features compared to learned-from-data representations. Dif-
ferent combinations of heterogeneous features are tested with non-learning ensembles
and ensembles that learn the model with supervised learning. The developed place
recognition system is a fundamental block for the local semantic navigation and the
semantic map building in Chapters 7 and 8.

Chapter 7 introduces a local semantic navigation approach based on visual behav-
iors solely relying on omnidirectional vision. Four basic behaviors are presented:
goal point homing, corridor centering, obstacle avoidance, and door passing. Places
in the behavior are described with a semantic category (e.g. room, corridor), while
regions in the scene are also labeled with semantic regions (e.g. door, wall, floor). The
proposed local navigation has the advantage that it can recover from conflicts, such
as activating behaviors in the wrong context. The chapter also shows how to derive
high-level behaviors by compositions of basic behaviors.

Chapter 8 deals with two aspects of the map-based navigation solely using om-
nidirectional vision: (i) map localization, and (ii) semantic map building. The map
representation consists of an occupancy grid constructed by a sensor model and its
inverse from the segmented local robot’s free-space. The sensor model corrects the
non-linear distortions of the omnidirectional mirror and outputs a scaled perspective
image of the ground plane using a bird’s eye mapping. The free-space bird’s eye
view images constitute the perceptual basis for both the mapping and the localiza-
tion. Robot localization is achieved with the Monte Carlo method and the semantic
map building uses the place category classifier from Chapter 6 to label categories:
room, corridor, doorway, and open room. Each place class maintains a separate grid
map that is fused with the range-based occupancy grid for building a dense semantic
map.
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Figure 1.3: Organization of the thesis
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2
Visual Range Sensor

2.1 Introduction

Navigation is one of the fundamental skills a mobile robot should master to perform
its task autonomously. Robot navigation has conventionally relied on range sensors
that provide robust proximity information to nearby obstacles. However, in recent
years, vision has emerged as an alternative, providing more information albeit more
complex.

Vision, in contrast to range sensors, enables the appearance-based distinction of ob-
jects, making it possible to differentiate, for example, ground floor, obstacles, people,
walls, corridors, and doors. Notwithstanding, in spite of a large amount of informa-
tion in an image, pure autonomous visual navigation remains a challenge given its
noisy, high-dimensional, and complex data in its signal.

Free-space detection constitutes a significant building block for vision-based robot-
ics as it supports high-level tasks such as localization, navigation, and map building.
In the context of mapless navigation, the segmentation of the free space in the local
environment replaces or augments proximity sensors and supports a direct mapping
from visual cues onto actions characteristic for reactive behaviors like in [Nar+09].

In this chapter, we address the problem of extracting free-space by segmenting the
floor obstacle regions in omnidirectional images using two approaches. The first tech-
nique rests upon the fusion of multiple classifications generated from heterogeneous
segmentation schemes. Each segmentation relies on different features and cues to de-
termine a pixel’s class label. The second approach extracts the traversable floor region
in the omnidirectional robocentric view by selecting the segmentation optimal to the
appearance of the local environment by cross-validation over 3D scans captured by
3D range camera.

While the literature reports several robust floor-obstacle segmentation methods, the
novelty of our method lies in the following ideas: Use of the mixture of experts ap-
proach [Pol06]. The key idea is to combine multiple segmentations in a way that the
overall decision making benefits from the mutual competences of heterogeneous in-
dividual classifiers. The analysis confirms that the combination of diverse classifiers
achieves a classification rate that far exceeds the performance of any single classifier.
Additionally, our approach differs in several important aspects, namely: a) 3D range
camera instead of a laser scanner; b) segmentation of the range image in addition to
the 2D image; c) multiple representations of the appearance-based floor model; d)

6



2.2 Related Work

various segmentation algorithms rather than one; e) obstacle and background model-
ing.

2.2 Related Work

Terrain traversability is a topic already studied by many research teams and has been
surveyed recently by Papadakis [Pap13]. The techniques covered are mainly from out-
door robotics, ranging from lidar, stereo, to color based ones. Indoor robotics methods
employ similar principles and are addressed under the name free-space detection.

Early free-space detection approaches [LBG97; UN00] employed color histograms
to model the appearance of the floor and non-floor objects. Obstacles are classified
as regions that differed significantly in appearance to the bottom part of the image
(assumed to be the floor). The method in [UN00] improved [LBG97] by implementing
an adaptive scheme that continuously updates the floor model based on the recently
traversed terrain. The drawback of these histogram-based systems is that the robot
is not able to continue navigation if the appearance of the floor changes abruptly.
For example, with markers or carpets on an otherwise homogeneous floor. The fast
approach in [LV03] also relies on color histograms, thus making it sensitive to am-
biguous texture or color.

Martin [Mar06] designs the vision system through evolutionary algorithms to esti-
mate the depth of free space along with different directions, thus mimicking a con-
ventional proximity sensor. Ground patches from planar homographies estimated
from corners tracked across multiple views were proposed by [PL01] while [KK04]
segments the ground plane by calculating plane normals from motion fields. The
segmentation in [Bla+08] rests upon a two-stage K-means clustering using local color
as well as texture descriptors. Plagemann et al. [Pla+08] employ Gaussian process
models of either edge-features or principal components of the image.

Self-supervised detection of traversable terrain gained increasing attention in out-
door robotics. The so-called near-to-far online learning [Dah+06; Gru+07; Kim+06]
extracts the ground truth about local flat drivable areas from laser range sensors. A
model is generated from the ground truth data to classify remote traversable regions
in off-road terrain beyond the short-range training region in front of the vehicle.

More recently, Suger et al. [SSB15] developed a system able to project into a 2D
occupancy grid the analysis of a 3D-lidar sensor. Delmerico et al. [Del+16] present
a method that combines an aerial and ground robot for an almost online, self-super-
vised system. The robot on-air collects data to fully train a small convolutional neural
network for terrain classification used by the ground robot. The training is achieved
after only one minute of flight.

While the literature reports many robust free-space segmentation methods, very
few are designed for omnidirectional vision. The novelty of our method lies in the
mixture of experts approach to combine multiple segmentations in a way that the
overall decision making benefits from the mutual competences of heterogeneous in-
dividual classifiers
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2.3 Free-Space Detection with Ensemble of Experts

In this section, we introduce the first approach for free-space segmentation, which
fuses multiple classifications generated from heterogeneous segmentation schemes.
We follow the mixture of experts approach [Pol06; Pos+10a; Pos+11b] with different
segmentations and cues to determine a pixel’s class label in omnidirectional images.

2.3.1 System Architecture

The overall system architecture is shown in Fig. 2.1. The upper part outlines the
ground truth data generation for classifier training. The lower part depicts the fea-
tures, segmentation schemes and the ensemble of classifiers. The ground truth labeled
data (Fig. 2.2 is generated using a PMD camera that delivers 3D range data at a 204
x 204 pixel resolution across a 40◦ × 40◦ field of view. The PMD camera information
only generates the ground truth for offline training and is not used at run time.
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Figure 2.1: System architecture of the free-space detection with ensemble of experts

The depth image of different scenes, such as corridors, open rooms, and confined
spaces, is obtained by rotating the robot and PMD camera by 360◦ and capturing scans
at each pose. The 3D data from the PMD is subsequently fitted to planar surfaces us-
ing random sampling consensus (RANSAC). Surface normal orientation, distance to
the camera, and connected components determine whether a pixel and its associated
3D point are labeled as obstacles or floor.

The target floor-obstacle labels for each omni-image are generated after projecting
the 3D labeled points into the omni-view. Furthermore, a complete 360◦ ground
truth mask is generated by the superposition of overlapping scans (10◦ overlaps) from
odometry and scan matching.

Fig. 2.2a-d illustrates the target data classification in the range image. Brightness
indicates proximity in the range image. The estimated planes in 3D space are each
marked with a different color in the point cloud. The 3D plane segmentations are
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2.3 Free-Space Detection with Ensemble of Experts

projected onto the corresponding sector in the omnidirectional view. The last step
is the generation of the complete 360◦ ground truth mask employing scan matching.
At runtime, the sole robotic reactive behavior perceptions are the classification of the
omnidirectional image into free space and obstacles.

(a) (b) (c) (d)

Figure 2.2: Ground truth data generation (a) Range image, (b) Planes fitted from the 3D data
with RANSAC, (c) Projection into the omnidirectional view, (d) Ground truth data after 360◦

scan-matching and considering points over the horizon

Four segmentation schemes generate heterogeneous segmentations: 2D histogram
models; marker-based watershed and region growing that rely on seeds and the
graph-based segmentation method an unsupervised approach. Further, the robot’s
built-in sonar sensors provide depth information to the system with low angular
resolution. Vertical and horizontal lines features that are strong obstacle indicators
contribute further to enhance the region growing and graph-based segmentation by
fusing their segmentation with geometric features. Only two segmentations are sup-
ported with line features to obtain as heterogeneous as possible features and clas-
sifiers. This diversity ensures that the classifiers make different errors at specific
instances. This heterogeneity is a fundamental property of ensemble-based classifi-
cation to reduce the generalization error compared to the individual classifier error
rates.

Each classification expert constitutes a naive Bayes classifier that predicts the poste-
rior probability of the class of a single-pixel as either floor or obstacle based upon the
features and their likelihoods computed on the training set. The naive Bayes classifier,
although it assumes conditional independence of features, achieves reasonable accu-
rate classification at low computational complexity in comparison to more advanced
schemes such as Bayesian networks. Notice that for reactive mobile robot navigation,
a frame rate of 10Hz is desirable, thus requiring fast real-time image processing and
classification.

For combining the expert evidence, we investigate four different combination meth-
ods [Pol06]: The stacked generalization approach, where the outputs of individual
classifiers serve as inputs to a second level meta-classifier; the behavior knowledge
space (BKS) that builds a lookup table that maps the possible combinations of mul-
tiple classifier decisions with the observed class frequencies in the training data and
finally two non-trainable aggregation rules based on the median and the majority
voting. Since the PMD data is not available at runtime, the seed-based segmenta-
tion algorithms obtain their seeds from pixels in the previous frame with high-class
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confidence. Extracting seeds from the previous frame is reasonable, given that the
optical flow between consecutive frames is low due to the wide field of view of the
omni-camera and the high frame rate.

2.3.2 Segmentation and Features

Histogram Backprojection

Histogram Backprojection [SB91] identifies regions in the image which match with a
reference model in appearance. The normalized histogram reference model M in a
2D color space is compared with the normalized histogram H of the current frame I
and the backprojection image B is computed by

B(u, v) = min
M(c(u, v))
H(c(u, v))

, 1 , (2.3.1)

in which c(u, v) denotes the 2D color of the pixel (u, v). The backprojection image
in the range between [0, 1] is interpreted as the degree of similarity between the region
and the reference model.

Instead of merely generating a single color model of the floor, our approach main-
tains additional models of the obstacles. Maintaining explicit appearance models of
the obstacle regions refines the decision boundary between the floor and obstacles
compared to a floor versus rest comparison. The omnidirectional view extends about
15◦ beyond the horizon line such that pixels above the horizon line certainly do not
belong to the floor. Thus, the obstacle model is estimated from pixels above the cor-
responding horizon circle in the omni-image. The 2D histograms are quantized into
32-32 bins to improve generalization, reduce the dimensionality, and are averaged
and normalized A naive Bayes classifier based on histogram backprojection merges
the information of the following four input features: The floor and obstacle model
backprojection use the Hue-Saturation channel of the HSV color space; accordingly,
the floor and obstacle model backprojection of the r-g channel of the RGB (normalized
RGB space). Examples of the output of the histogram backprojection segmentation are
shown in Fig. 2.3

(a) (b) (c) (d) (e)

Figure 2.3: (a) Input image (b) Hue-Saturation histogram backprojection with floor model (c)
Hue-Saturation histogram backprojection with obstacle model (d) R-g histogram backprojec-
tion with floor model (e) R-g histogram backprojection with obstacle model

Dynamic changes in slowly varying environments are addressed by updating the
histograms with an exponential moving average (EMA) whereas in rapid changes in
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the scene, e.g., changes in the floor surface, a new model is instantiated rather than
updating. This situation is identified with histogram-intersection, where a threshold
value indicates no matches with the stored histograms. The maximum number of
models stored simultaneously in short term memory is limited to five instances of
obstacle models and two for the floor to meet computational demands. The EMA is
computed with the following equation:

M̄(x, y)t = αM(x, y)t + (1 − α)M̄(x, y)t−1 (2.3.2)

in which Mt denotes the histogram of the current frame and M̄t−1 the previous
average. The smoothing factor α is set to 0.6 giving more importance to recent obser-
vations. The histogram intersection is given by:

d(M1, M2) = ∑
x,y

min(M1(x, y), M2(x, y)) (2.3.3)

in which a score of one denotes an exact match and zero a complete mismatch.
In practice, a new model is initialized if the histogram intersection between the cur-
rent frames and the most similar stored models falls below a threshold of 0.4. New
histogram models replace the oldest model in case the maximum storage capacity is
exceeded. Models that do not match with any of the thirty most recent frames are
automatically discarded.

Marker-based Watershed

Marker-based watershed segmentation [RM01] is best understood by interpreting the
gradient image as elevation information. The watershed lines coincide with strong
image gradients. Pixels in the elevation image are attracted to their local minimum,
thus forming so-called basins. Water is flooded evenly from each marker to flood
the basins. The process stops once the water level reaches the highest peak in the
landscape. Basins connected to the same original marker are merged into a single
region. Fig.2.4 shows an example of watershed segmentation seeded with a random
percentage of high confidence labeled seeds.

(a) (b) (c)

Figure 2.4: Watershed segmentation: (a) Input image (b) Marker-based watershed with ran-
dom seeds (c) Resulting watershed segmentation knowing the floor/obstacle seeds selected at
points with high posterior probability
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Graph-based Segmentation

Graph-based segmentation is described in [FH04]. This method is highly efficient
and produces segmentations based on a region comparison function that considers
the minimum weight edge in a graph between two regions in measuring the differ-
ence between them. The graph is constructed in such a way that image pixels are
transformed into a feature space vector that combines the (x, y) pixel location with
its RGB color value. Edges in the graph connect points that are close in the feature
space. The assignment of whether or not a region belongs to the ground or obstacles,
is determined with information from previous segmentations.

Given the unsupervised nature of this algorithm, it is common to find situations
where the segmentation grows unbounded. It is, therefore worthwhile to fuse the
graph-based segmentation in the classifier with the line features. Fig. 2.5 illustrates
the graph-based segmentation, the floor-obstacle assignment and the benefit of using
line features to prevent unbounded region growing.

(a) (b) (c) (d)

Figure 2.5: Graph-based segmentation: (a) Input image (b) Graph-based segmentation (c)
Floor-obstacle assignment to the graph-based regions from the previous segmentations; d)
Output of the classifier after merging the line features

Region Growing

Region growing starts with a set of seed points, and neighboring pixels are added
based on their similarity in an incremental fashion to a region. Each segmentation
originates from a single seed of known class labels. Region growing segmentation is
repeated Ni times with different seeds randomly sampled from pixels classified in the
previous image with high confidence. After Ni random region growing repetitions,
Ni(u, v) counts how often the pixel (u, v) is part of the final region, thus indicating
the similarity of that pixel with prototype pixels of class λi. It is important to notice
that a pixel that is not captured by a particular region growing instantiation might
still belong to the corresponding class, as region growing is a local method and only
expands to those pixels that are connected with the original seed. In particular, the
obstacle regions are often fragmented due to the multitude of objects. Therefore, it
is essential to relate the absolute counts to the average number of pixels < Mki > in
a single region growing segmentation. A pixel has a membership degree to class λi
given by

µi(u, v) = max{Ni(u, v)
Ni

∩Mi

Mi
, 1}. (2.3.4)
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The relative frequency Ni(u, v)/Ni is scaled by the ratio between the size of the union
of all segmentations ∩Mi of class λi and the average size Mi of a single segmented
region. The ratio is a coarse estimate of the number of fragmented segments of a class.
Therefore, the score of a fragmented class is weighted more strongly in comparison
to a class that forms a connected region.

(a) (b) (c)

Figure 2.6: Region growing segmentation: (a)Input image (b) Region growing (c) Classifier
output of region growing plus line features

Inverse Sonar Model

The sonar classifier computes the posterior probability of a pixel belonging to a class
floor, obstacle based on the observed likelihoods p(Ci|r, d, a). The feature r corre-
sponds to the discretized sonar range reading and is limited to ten discrete values. d
is the lateral distance of a pixel to the nearest sonar ray projected into the omni image,
and a denotes whether a pixel in the radial direction is in front or behind the nearest
sonar range reading. An example of the sonar classifier output is shown in Fig. 2.7.
Notice that sonar range readings might be misleading, such as the two range readings
in the north-west direction that overestimate the extension of free space.

(a) (b)

Figure 2.7: Sonar classifier: (a) Input image, with projected sonar readings (b) Output of the
sonar classifier

Segmentation Based on Lines

Edges often correspond to image regions at which the scene exhibits discontinuities in
shape, depth, or variation in material properties. In our context, they suffer from the
disadvantage of high sensitivity to variations in the scene illumination. Nevertheless,
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(a) (b) (c) (d)

Figure 2.8: Line features: (a) Input image (b) Canny edge detection (c) Edge linking and line
fitting (d) Vertical/horizontal lines

edges are strong indicators of the presence of obstacles and provide a valuable cue to
enhance the classification of region growing and the graph-based segmentation.

Rather than using merely the edge information at a pixel level, their connectiv-
ity is considered. Edges are linked by contour following and subsequently fitted to
lines using a split approach. Contours are first globally approximated by a straight
line connecting the endpoints. Consequently, they are recursively split at the points
of maximum traversal deviation. The resulting lines are classified into vertical and
horizontal lines according to their orientation in the omniview. Lines not belonging
to either orientation or lines that are too short are discarded. Vertical lines appear
radially distributed in the omni-image and in general correspond to typical indoor
environment objects such as shelves, cabinets, cupboards or table legs. A horizontal
line may indicate the presence of obstacles such as walls, doors or tables.

Four line features are defined accordingly: a) ahead or below a horizontal line;
b) Presence or absence of horizontal lines; this is determined for each pixel u, v by
verifying if there is an intersection of a horizontal line with the projected line formed
by the pixel u, v and the image center; c) ahead or below a vertical line; d) transversal
distance to the closest vertical line.

Naive Bayes Classification

The ensemble of experts is constituted by five Naive Bayes classifiers as shown in
Fig. 2.1. The likelihood p(xi|Cj) of a feature xi given the class Cj is modeled by a
Gaussian distribution in the case of continuous features, and by a multinomial distri-
bution in the case of discrete features. The likelihoods of the data and the class priors
are estimated from the observed frequencies of classes and features in the training
data. The naive Bayes classifier computes the a posteriori probability of the classes
C = {Floor, Obstacle} according to the likelihood of the conditionally independent
features:

p(Cj|x) =
1
Z

n

∏
i=1

p(xi|Cj)p(Cj) (2.3.5)

in which the normalization factor Z is the evidence of the features x. The ulti-
mate decision boundary is determined by the problem-specific relative costs of false
positive and false negative classifications.
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2.3.3 Experimental Results

The training data consists of almost two million pixels captured from 500 images
of which the true class label is established from the PMD depth information and
3D segmentation. The classification performance is validated on 500 additional un-
seen images with ground truth obtained from PMD data. The training in the case
of stacked generalization follows a k-fold selection in which the training data set is
divided into T blocks, in which T denotes the number of classifiers participating in
the ensemble. Each single classifier is trained with T − 1 blocks of data; thereby, each
classifier does not see one block of data. The outputs of the classifiers on the unseen
block, in conjunction with the ground truth segmentation, constitute the training pairs
for the second level meta-classifier. Once the second level classifier is trained, the T
classifiers are retrained with the entire training data set. The segmentation accu-
racy is determined based on the false positive rate FPR, the number of false positives
divided by the total number of negatives; and true positive rate TPR, the number of
true positives divided by the total number of positives. A false negative is constituted
by a floor pixel incorrectly classified as an obstacle, and a false positive is an obstacle
pixel incorrectly labeled as floor.

Table 2.1: Classifiers performance

Method FPR TPR
Histogram backprojection 0.085 0.889
Watershed 0.042 0.945
Watershed + line features 0.036 0.938
Region growing 0.120 0.718
Region growing + line features 0.044 0.907
Graph segmentation 0.064 0.869
Graph segmentation + line features 0.023 0.917
Sonar 0.045 0.890
Combination with stacked generalization 0.032 0.958
Combination with BKS 0.030 0.912
Combination with median 0.024 0.945
Combination with majority voting 0.024 0.927

Table 2.1 compares the true positive and false negative rates of the output of every
single classifier, namely histogram backprojection, watershed, region growing, graph
segmentation and sonar. The fusion of vertical and horizontal lines features in re-
gion growing and graph segmentation clearly improves the performance of these two
classifiers. Using line cues in conjunction with watershed does not improve its ac-
curacy, as watershed itself is already based on edge features. Notice, that watershed
and graph cut in isolation are unsupervised segmentation schemes not suitable for
classification. They instead inherit the classification from the proper labeling of seeds,
which in this case, are provided by stacked generalization. Therefore, their reported
accuracy in Table 2.1 has to be attributed to the ensemble of classifiers rather than the
watershed and graph-based segmentation itself.
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Stacked generalization exhibits the best classification rate in terms of FPR among
all classifier ensemble methods. The inferior performance of BKS combination is at-
tributed to the binarization of the posterior probabilities for the generation of the
lookup table that results in loss of information that is available to stacked gener-
alization. Even though median and majority voting combination rules require no
second-level training, they demonstrate the best performance in terms of FPR. In the
context of obstacle avoidance, false-positive classification is more critical since missing
an obstacle is potentially more severe than underestimation of the free space. One of
the main properties of the median combination is to filter out segmentations that are
outliers.

Fig. 2.9 shows the results of four prototypical scenarios, with the corresponding
output of the four combination methods. The first scene exhibits misleading specu-
lar reflections and shadows that are incorrectly segmented based on color information
alone. The vertical line features increase the segmentation performance since the three
vertical posts in the bottom right part of the image are correctly segmented from the
floor, even though some of the first level classifiers ignore them. The second sce-
nario illustrates a typical office environment with a rather high contrast between floor
and obstacles. The specular reflections on the surface are still correctly classified as
floor. The third to fifth scenarios illustrate segmentation tasks that exhibit substantial
variations in illumination, reflections, and shadows.

(a) (b) (c) (d) (e)

Figure 2.9: Segmentation examples: (a) Input image, (b) Stacked Generalization, (c) Behavior
Knowledge Space, (d) Median combining rule, (e) Majority voting.
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2.4 Online Self-Supervised Free-Space with Range Image
Data

In the previous section, we discussed a segmentation approach based on supervised
learning from offline data by fusing with a mixture of experts different heterogeneous
segmentations and features. In this section, we explore a self-supervision method
[Pos+10b] by online combining 3D information of the Range image to gather more
insight into the visual data in the omnidirectional image.

The approach employs a 3D camera to obtain ground truth segmentations in a
narrow frontal field of view. The accuracy of alternative segmentation schemes in
conjunction with alternative visual cues is evaluated by cross-validation over 3D scans
on the frontal view. The combination that performs best in the current context is then
applied to segment the omnidirectional view providing 360◦ depth information.

The range data in the front view provides the seeds and validation data to super-
vise the appearance-based segmentation in the omniview. The Segmentation relies
on histogram backprojection, which maintains separate appearance models for floor,
obstacles, and background.

2.4.1 System Architecture

The camera system consisting of a PMD and an Omnidirectional camera is mounted
on the Pioneer 3DX mobile robot, as shown in Fig. 2.10. The 40◦ x 40◦ field of view of
the time-of-flight (ToF) camera and the 75◦ vertical of the omnidirectional are directed
towards the floor and both camera’s fields of view intersect in a narrow region in
front of the robot.

3m1
5
°

4
0
°

40
°

60°

>10m

ToF Camera FOV

Omnidirectional
Camera FOV

Figure 2.10: Configuration and field of view of the PMD camera and the omnidirectional
camera

The overall system architecture is shown in Fig. 2.11. The online segmentation pro-
ceeds in four stages: a) range image segmentation into planar regions; b) projection of
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these regions into the omnidirectional view; c) omniview segmentation; d) validation
and selection of optimal segmentation and cue.

Figure 2.11: System architecture of the online self-supervised free-space detector

2.4.2 Validation Data with a Range Camera

The validation data is generated similar to the technique used in the previous section
to obtain the 360◦ training mask. A 3D scan of the frontal region is segmented into
planar surfaces using RANSAC. These segments are then classified according to the
orientation of the surface normal, distance to the camera and area into three cate-
gories: ground considered as free space, vertical planes and obstacles. Scan points
that do not belong to a surface are ignored. These labeled regions are projected as
ground truth segmentation into the omnidirectional view. This ground truth allows
the selection of the visual cue and segmentation method that is optimal for the ap-
pearance and illumination of the local environment. Part of the 3D scan segmentation
is utilized as seeds for the subsequent 2D appearance-based segmentation; the re-
maining data is used to validate the performance of alternative segmentations and
cues.

RANSAC is applied iteratively, such that the scan points that belong to the plane
with the most inliers are removed from the data set. The next plane is estimated from
the residual points until the number of points belonging to the best surface model falls
below a threshold. The classified 3D points are projected into the omnidirectional
view as shown in Fig. 2.12. It illustrates the range image in which brightness indicates
proximity, the estimated and labeled planes in 3D space, and the projection of these
labels onto the corresponding sector in the omnidirectional view.

A key aspect of marker or seed-based segmentation algorithms is the selection of
initial seeds. The more informative the set of seeds, the better the final segmenta-
tion result. Similar to the previous Section, in the online segmentation, we employ
four alternatives: segmentation based on color histogram backprojection in two dif-
ferent color spaces (hue-saturation and normalized red-gree), watershed algorithm,
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(a) (b) (c)

Figure 2.12: Seeds projection: (a) Range image, (b) Planes fitted from the 3D data with
RANSAC, (c) Seeds projected into the omnidirectional view.

and model-based region growing. Although we acknowledge the potential utility of
other appearance features such as texture [Bla+08], only color is considered as it is
difficult to extract reliable texture due to the low resolution of the omni-image.

No single segmentation scheme alone provides a robust, accurate segmentation
across all scenes. The idea is, therefore, to validate the accuracy of segmentation on
labeled ground truth data and then to select the method best suited for the current
floor texture and illumination. For this purpose, the ground truth segmentation data
obtained from the 3D scans is partitioned into training and validation data (Fig 2.13).
The training data is used to build the reference model for the histogram backprojec-
tion and to provide the initial seeds for marker-based watershed and region growing.

Training Validation

Floor training

Obstacle training

Floor correct 
segmented
Obstacle correct 
segmented

False positive

False  negative

Outside FOV

Figure 2.13: Segmentation validation

False positive rate and false negative rate are aggregated into a total classification
error

f = (2 fp + fn)/3 (2.4.1)

in which false positives are weighted twice as strong since an obstacle miss is poten-
tially more severe in the context of obstacle avoidance.

The segmentation validation utilizes two-fold cross-validation, in which the roles of
the training dataset and the validation dataset are reversed and the classification error
is averaged over both folds. The segmentation method with the lowest aggregated
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classification error is applied to the entire omnidirectional view. In order to save
computational resources, the segmentation validation and selection is only repeated
every fifth frame. The final segmentation is filtered by a 5x5 median filter in order to
eliminate isolated pixels and noise.

2.4.3 Experimental Results

The performance of the system is validated on 500 images with ground truth ob-
tained from PMD data and 30 images in which the actual floor area is segmented by
hand. Table 2.2 compares the true positive and false negative rates of watershed and
region growing seeded with one percent of labeled pixels as seeds, and histogram
backprojection using different models according to the seeds: floor, obstacles, and
background. From the results, we can conclude that selecting among several alter-
native models outperforms using a single floor model. Hue and saturation are more
reliable cues compared to normalized color ( r and g). On both test sets, the hue
saturation classifier with three models achieves true positive (floor classified as floor)
rates between 0.85− 0.9 if one accepts a false positive (obstacle classified as floor) rate
between 0.1 − 0.13. Selecting the best among all segmentation leads to the value of
0.085 (lowest false positive rate in the hand-labeled set) In the context of navigation,
the false positive rate is the critical variable to consider since missing an obstacle is
more severe than underestimating the free space.

The classification performance is similar across the PMD validation, and the hand-
labeled data set. In fact, the classification error on the hand-labeled data is even
lower. We attribute this phenomenon to the fact that the depth-based segmentation is
less accurate than hand segmentation. Thus, the test data set itself contains a small
fraction of incorrect samples that contribute to the classification error.

The classification performance of watershed and region growing is superior on the
PMD test set, with watershed outperforming region growing. It is not surprising that
watershed and region growing achieve high classification rates on the PMD test set,
as the seeds stem from the same narrow frontal region as the test data. The true
generalized classification error of watershed and region growing becomes apparent
on the manually labeled data set, in which the test data is uniformly distributed
across the omnidirectional view. The dependence of watershed and region growing
on a representative set of seeds is a definite disadvantage over more robust histogram
backprojection.

Figure 2.14 shows the results of eight prototypical scenarios, together with the cor-
responding floor segmentation results. The system is robust even with a tiled floor,
strong sun reflections, and imperfect lighting conditions. The second-row example
shows the ability to adapt to new unseen floor surfaces where floor color and texture
abruptly change behind the door.
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Table 2.2: Comparison of the segmentation schemes under two data sets

PMD ground truth Hand labeled
Method FPR TPR FPR TPR
H-S histogram features: F 0.173 0.855 0.089 0.905
H-S histogram features: F|O| 0.123 0.845 0.094 0.971
H-S histogram features: F|O|B 0.137 0.845 0.096 0.911
r-g Histogram features: F 0.210 0.828 0.118 0.923
r-g Histogram features: F|O 0.145 0.836 0.105 0.870
r-g Histogram features: F|O|B 0.147 0.825 0.112 0.896
Watershed 0.021 0.948 0.140 0.749
Region growing 0.097 0.932 0.149 0.676
Histogram all Feat. + Watershed +
Region Growing

0.158 0.867 0.085 0.904

F: Floor, O: Obstacle, B: Background

Figure 2.14: Segmentation Examples. The first and third rows show the omnidirectional input
image and the projected mask from the 3D segmentation. The second and fourth rows show
the output segmentation.

21



2 Visual Range Sensor

2.5 Summary

In this chapter, we introduced two schemes for detecting free-space in omnidirectional
images. The first scheme follows supervised training with the mixture of experts
paradigm in which the aggregation of multiple heterogeneous classifier opinions im-
proves the overall classification performance. The classifiers are trained with ground
truth segmentations provided by scanning different scenarios around 360° with a
PMD 3D camera. Histogram backprojection, marker-based watershed, region grow-
ing, and graph-based segmentation provide the core information for the classifier
ensemble. Region growing and graph segmentation are augmented by fusing their
segmentation with horizontal and vertical lines extracted from edge detection. More-
over, a classifier based on sonar range readings further improves the classification. The
expert decisions are combined with stacked generalization, behavior knowledge space
or voting. The second proposed scheme is a novel online self-supervised free-space
detector, which segments the free-space in omnidirectional images by determining the
segmentation optimal for the current situation by cross-validation over ground-truth
data provided by a PMD range camera. Both systems are robust for safely navigating
in unstructured environments of diverse appearance, texture, and illumination. The
systems were tested successfully and validated in robotics runs over several hours.

Several extensions are worth discussing. For instance, implementing more robust
segmentation methods with the new advances in convolutional neural networks tech-
nology or merging more sensor modalities such as laser or ultrasound range, for a
self-supervision in the omniview, with larger range and field-of-view than the 3D
camera.
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3
Uncertainty Representation with Fuzzy

Preference Structures

3.1 Introduction

In the last chapter, we introduced a visual range sensor able to extract the robot’s free-
space by fusing multiple cues stemming from different segmentation schemes. The
key concept was to combine multiple segmentations in such a way that the overall
decision-making benefits from the mutual competences of the heterogeneous features.
In this chapter, we extend these methods to explicitly model the uncertainty in the
classification through fuzzy preference structures [HB08]. In this way, it is possible
to establish a relationship between classification learning, fuzzy preference modeling,
and decision making, where the problem of classification is mapped into the domain
of decision-making under fuzzy preferences.

We investigate the uncertainty inherent in a single segmentation method as well
as the global uncertainty across multiple segmentation based classifiers. The results
demonstrate that the classification is substantially reduced by rejecting those queries
associated with a strong degree of conflict in the case of single segmentations, and
ignorance in the case of ensemble decisions.

The classification method combines pairwise decomposition techniques with ideas
and tools from fuzzy preference modeling. More specifically, we built upon the ap-
proaches [HPB11; Pos+11a], which first decompose a polychotomous classification
problem involving m classes into an ensemble of binary problems, one for each or-
dered pair of classes. The corresponding classifiers are trained on the relevant subsets
of the (transformed) original training data. In the classification phase, a new query
is submitted to every binary learner. The output of each classifier is interpreted as
a fuzzy degree of preference for the first in comparison with the second class. By
combining the outputs of all classifiers, one thus obtains a fuzzy preference relation,
which is taken as a point of departure for the final classification decision. This way,
the problem of classification is effectively reduced to a problem of decision making
based on a fuzzy preference relation. Corresponding techniques, which have been
investigated quite intensively in the field of fuzzy set theory, hence become amenable
to the task of classification. In particular, by decomposing a preference relation into
a strict preference, an indifference, and an incomparability relation, this approach
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3 Uncertainty Representation with Fuzzy Preference Structures

allows one to quantify different types of uncertainty in classification and thereby sup-
ports sophisticated classification and postprocessing strategies.

3.2 Related Work

The role of uncertainty in the context of autonomous robot navigation has been long
recognized in the robotic community [DS01; DS13; PPP17]. However, the majority
of approaches are concerned with behavior design in terms of reactive rule-based
fuzzy control. They lack explicit representation of the uncertainty inherent in the
perception of the environment attributed to imprecise sensors and the uncertain effect
of actions. A fuzzy approach for map building and path planning is investigated in
[OUV98; OUV97]. The authors in [NR07] demonstrate that in some scenarios, the
fuzzy fusion of sensor data is advantageous in comparison to probabilistic approaches
for map building. A comparison of Bayesian, Dempster-Shafer and fuzzy set theory
to represent uncertainty in the context of occupancy grid mapping from sonar data is
provided in [RP01]. The authors show that in the case of ambiguous range readings,
the probabilistic approach is more robust. However, to our best knowledge, none
of these approaches distinguishes among the causes of uncertainty, namely lack of
evidence or conflicting evidence.

Most realistic classification problems exhibit uncertainty and ambiguity to some
extent. This inherent imprecision is either ignored or represented in a probabilistic
manner or in terms of a fuzzy model. Nevertheless, most fuzzy classifiers constitute
crisp classifiers in that even though they rely on fuzzy inference; they operate with
crisp inputs and outputs. Only recently, vague data is explicitly considered in the
design and optimization of fuzzy classifiers [SC07].

3.3 Fuzzy Preference Structures

Fuzzy preference structures introduced in [HB08] establish a relationship between
classification learning and fuzzy preference modeling and decision making. The
problem classification is mapped into the domain of decision making under fuzzy
preferences. The resulting structure is a fuzzy relation, which for every pair of labels
λi, λj defines a degree of:

• Preference: which determines the degree to which the classification λi is pre-
ferred over λj,

• Conflict (indifference): the degree to which both labels are in conflict in the sense
that both classifications are supported by training data and,

• Ignorance (incomparability): the degree reflects the lack of information support-
ing either classification.

In summary, preference denotes the preferred classification if the learner is forced to
make a classification. Conflict reflects the proximity of an unknown instance to the
decision boundary that separates the two classes in case of sufficient training data.
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3.3 Fuzzy Preference Structures

Ignorance reflects the lack of data in case the training set contains neither evidence
for λi nor λj.

3.3.1 Preference Structure and Classification

The idea with Fuzzy preference structures for classification is to interpret the output
of a binary classifier ri,j = Mi,j(x) for a query x as a preference of class label λi in
comparison with λj. In this sense, the value ri,j ∈ [0, 1] can be interpreted as the
degree to which classification λi is preferred over λj. Denoting ri,j = R(λi, λj), the
matrix

R =


1 r1,2 . . . r1,m

r2,1 1 . . . r2,m
...

...
rm,1 rm,2 . . . 1

 (3.3.1)

is obtained by merging the binary fuzzy classifiers for each possible combination of
class labels into a fuzzy preference relation.

We are interested in decomposing the weak preference relation R into a fuzzy
preference structure that describes the strict preference relation P , the indifference
relation I , and an incomparability relation J . In principle, any fuzzy t-norm and
its dual t-conorm are suitable to obtain preference structure (P , I ,J ) [HB08]. The
employed decomposition is given by:

P(λi, λj) = ri,j(1 − rj,i) (3.3.2)
I(λi, λj) = ri,jrj,i (3.3.3)
J (λi, λj) = 1 − (ri,j + rj,i) (3.3.4)

Notice that the definition of incomparability J coincides with the width of the
distribution. At the extreme values ri,j = 1 − rj,i ∈ {0, 1} of the weak preference, we
obtain a strict strong preference P(λi, λj) ∈ {0, 1}. Finally, the degree of indifference
I assumes its maximum for ri,j = rj,i = 0.5, and the classifiers have no preference for
either class.

Uncertainty is investigated on the basis of the classification of a single-pixel sup-
ported by a single segmentation. This uncertainty reflects the ambiguity of a par-
ticular segmentation in associating a pixel to a particular class based on its color or
similarity with neighboring pixels. It provides insight as to which segmentation is
best suited for the particular context in terms of appearance and illumination of the
environment. In addition, we investigate uncertainty in the context of an ensemble
of classifiers across an entire image region. In this case, the image is partitioned into
homogeneous regions by unsupervised segmentation with watershed and graph cut.
Uncertainty depends on the amount of agreement among the ensemble across all pix-
els that constitute a region. Significant discrepancies in the classification across the
ensemble denote ignorance, whereas conflict is indicated by indifferent preference of
individual classifiers on either class.
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3 Uncertainty Representation with Fuzzy Preference Structures

Valued Preferences for Individual Segmentations

In the following, we detail how the fuzzy preference relation is obtained from data.
We assume an ensemble of binary classifiers, in our case, a set of diverse segmentation
schemes, in which a learner predicts a score si,j ∈ [0, 1], which is interpreted as a fuzzy
preference for class λi over class λj. The aggregation of scores over the entire ensemble
of classifiers generates the fuzzy preference relation ri,j. We first describe the mapping
from segmentations onto the scores si,j, which differs with the type of segmentation
processing [HPB11].

Histogram Backprojection

Our scheme maintains multiple models Mk(c(u, v)) for the classes floor λ f , obstacle
λo, and background λb. The similarity of the current histogram with a class is given
by the maximum similarity with any of its representing models:

Bi(u, v) = max
k∈λi

min
Mk(c(u, v))
H(c(u, v))

, 1 . (3.3.5)

Notice, that the similarity measure Bi(u, v) is interpretable as a fuzzy degree of mem-
bership of pixel (u, v) to class λi. The weak preference among two classes λi, λj is
given by the difference in the similarity of the image with the histogram models rep-
resenting classes λi, λj:

si,j = (Bi(u, v))(1 − Bj(u, v)). (3.3.6)

Notice that our scheme generates two backprojection images based on the hue-
saturation and red-green color spaces. The backprojection images capture the similar-
ity between a pixel and the color histogram of a class λi. This observation motivates
the following definitions of strong preference, conflict, and incomparability in the case
of backprojection:

P(u, v)(λi, λj) = Bi(u, v)(1 − Bj(u, v)) (3.3.7)
I(u, v)(λi, λj) = Bi(u, v) ∗ Bj(u, v) (3.3.8)
J (u, v)(λi, λj) = 1 − (Bi(u, v) + Bj(u, v)). (3.3.9)

Considering the extreme cases Bi(u, v) ∈ {0, 1}, namely the color of a pixel either
matches a model Bi(u, v) = 1 or does not Bi(u, v) = 0. Conflict corresponds to the case
in which a pixel matches both models Bi(u, v) = Bj(u, v) = 1. Thus there is sufficient
data similar to pixel (u, v), but the two classes are highly similar in appearance. Igno-
rance prevails in case a pixel matches none of the models Bi(u, v) = Bj(u, v) = 0, in
this case, the color of pixel (u, v) does not appear in the training set, which constitutes
a lack of data to provide a competent classification.

Region Growing

Region growing was already described in the previous chapter. It provides the mem-
bership degree of a pixel to a class λi by

µi(u, v) = max{Ni(u, v)
Ni

∩Mi

Mi
, 1}. (3.3.10)
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3.3 Fuzzy Preference Structures

The reasoning is similar to the considerations in histogram backprojection, where
a low degree of membership µi(u, v), µj(u, v) ≈ 0 for both classes is evidence of ig-
norance, whereas a high degree of membership for both classes µi(u, v), µj(u, v) ≈ 1
indicates conflict. This leads to the following definitions:

P(u, v)(λi, λj) = µi(u, v)(1 − µj(u, v)) (3.3.11)
I(u, v)(λi, λj) = µi(u, v) ∗ µj(u, v) (3.3.12)
J (u, v)(λi, λj) = 1 − (µi(u, v) + µj(u, v)). (3.3.13)

3.3.2 Valued Preferences for Ensembles of Segmentations

Until now, we have focused on uncertainty related to a single segmentation. This
information allows selecting the segmentation optimal for the current environment.
Thus, the one with the lowest ignorance and conflict. However, in order to fully
explore the potential of the fuzzy notion of uncertainty in terms of preference, igno-
rance, and conflict, the weak preferences of multiple classifiers are aggregated across
regions in the image. This allows us to obtain sufficient statistics, and the level of
strong preference, ignorance, and conflict is established according to the distribution
of weak preferences across the region.

Homogeneous regions in the image are obtained using watershed and graph-based
segmentation. Both methods operate in an unsupervised manner; hence, they do not
consider the class label of a pixel in advance.

The key idea is to assess the ambiguity of a classification given an ensemble of
binary scoring classifiers in which each classifier outputs a score sk

i,j. Given a set of
scoring classifiers the degree of weak preference for λi in comparison to λj is given
by

ri,j = min
k

sk
i,j (3.3.14)

In the case, where the analysis aggregates statics per region, rather than on the basis
of single pixels, the weak preference for a region Rn is defined as

rRni,j = min
(u,v)∈Rn,k

si,j(u, v)k (3.3.15)

in which the minimum is computed over the pixels that belong to Rn and the set of
segmentation based classifiers. As the min operator is rather sensitive to noise and
outliers, it is advisable to replace it by the α-quantile of the distribution. In our case,
the 20% lowest scores are ignored, and the weak preference is given by the α = 0.2
quantile of si,j(u, v)k. The distribution of scores allows an intuitive interpretation in
terms of conflict and ignorance. The width of the distribution of the sk

i,j is a measure
of ignorance, e.g., the ignorance vanishes in case all models predict the same score.

3.3.3 Experimental Results: Classification of Indoor Scenarios

The validation data consists of about 480.000 pixels from 24 images captured with a
photonic mixer device camera (PMD). The PMD generates the labeled instances for
validation, where the true class label is established from the 3D segmentation of the
PMD depth information.
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3 Uncertainty Representation with Fuzzy Preference Structures

Following the procedure from the previous chapter, we obtain ground truth labeled
masks by rotating the robot and PMD camera by 360◦ and capturing scans at each
pose. The captured images represent scenes such as corridors, open rooms, and con-
fined spaces. The 3D data from the PMD is fitted to planar surfaces using RANSAC.
Surface normal orientation, distance to the camera, and connected components deter-
mine whether a pixel and its associated 3D point are labeled as obstacles or floor.

Figs. 3.1-3.3 illustrate the fuzzy preference structures for omnidirectional images
of prototypical indoor scenes. In the first scenario in Fig. 3.1, the floor and walls are
easily distinguishable from their appearance and the scene is subject to homogeneous
illumination. The basic segmentations according to backprojection based on hue and
saturation and region growing exhibit no conflict, no ignorance on the floor region,
and partial ignorance with respect to the obstacle regions. Ignorance emerges in
the brighter areas of the wall for back projection as well as region growing. The
combination of preferences across multiple segmentations mediated by watershed
and graph cut exhibits a clear preference for either floor or obstacle in most parts of
the image. Ignorance only emerges in the darker floor region in the outside corridor
and in the shaded floor region at the bottom.

Figure 3.1: Scenario 1 : preference P , conflict I , and ignorance J for individual and ensemble
of segmentations

The second scenario in Fig. 3.2 exhibits substantial ambiguity in particular as the
floor and the darker parts of the wall are highly similar in appearance due to insuf-
ficient illumination. This ambiguity is apparent in terms of conflict in the individual
segmentations based on backprojection and region growing. Conflict is also persis-
tent in the ensemble of segmentations. Watershed and graph cut mainly differ in the
granulation of the segmented regions, with watershed resulting in a finer tessellation
compared to graph cut. The preference structure also exhibits regions of substan-
tial ignorance, indicating strong variations in weak preferences among the ensemble
classifiers.

The third scenario in Fig. 3.3 is characterized by a high level of ignorance partially
attributed to the variation in illumination. Ignorance is strong except for the floor
region at the top and the large wall region to the right. The appearance of the cluttered
and shaded areas does not provide sufficient evidence for a reliable classification.
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3.3 Fuzzy Preference Structures

Figure 3.2: Scenario 2, preference P , conflict I , and ignorance J for individual and ensemble
of segmentations

Despite the variations in illumination, conflict among the ensemble segmentations is
rather minimal.

Figure 3.3: Scenario 3, preference P , conflict I , and ignorance J for individual and ensemble
of segmentations

The effect of ignorance and conflict investigated on the 24 images, and 480.000
pixels is reported in Table 1.1. We report the Classification error for the segmentation
methods

The effect of ignorance and conflict is summarized in Table 3.1. We report the
Classification error for the segmentation methods backprojection with hue and satu-
ration, region growing and the ensemble segmentations with watershed and graph
cut. The analysis assumes that the classifier is allowed to reject a decision on those
image regions for which the conflict or ignorance is high, thus focusing only on those
decisions for which it has substantial confidence. Table 3.1 reports the relative classi-
fication error in case the classifier is allowed to reject a fraction α ∈ {0, 0.1, 0.2, 0.3, 0.4}
of queries with the highest ignorance or conflict.

It is to be expected that the classification error decreases with higher rejection rates.
In the case of backprojection with hue and saturation Chs, Ihs, the classification error

29



3 Uncertainty Representation with Fuzzy Preference Structures

Table 3.1: Classification error for hue-saturation backprojection Chs, region growing Crg, wa-
tershed Cws and graph cut Cgc, classifiers based on the rejection of queries according to conflict
I and ignorance J .

α Chs, Ihs Chs,Jhs Chs,Jws Crg, Irg Crg,Jrg
0.4 0.085 0.150 0.074 0.141 0.092
0.3 0.087 0.150 0.088 0.141 0.117
0.2 0.100 0.144 0.101 0.145 0.154
0.1 0.114 0.137 0.121 0.138 0.154
0.0 0.135 0.135 0.135 0.154 0.154

Table 3.1: (Continued) Classification error for hue-saturation backprojection Chs, region grow-
ing Crg, watershed Cws and graph cut Cgc.

α Crg,Jws Cws, Iws Cws,Jws Cgc, Igc Cgc,Jgc
0.4 0.068 0.157 0.054 0.150 0.054
0.3 0.077 0.170 0.059 0.170 0.062
0.2 0.090 0.167 0.067 0.167 0.085
0.1 0.119 0.162 0.124 0.187 0.135
0.0 0.154 0.174 0.174 0.194 0.194

is reduced if the classifier is allowed to reject queries according to its notion of con-
flict. Backprojection with hue and saturation does not capture ignorance well due
to the lack of uncorrelated training data such that filtering queries based on igno-
rance Chs,Jhs even deteriorates accuracy. The situation is reversed for region growing
in which case rejecting based on ignorance Crg,Jrg reduces the error rate, whereas
rejection based on conflict Crg, Irg only has a marginal effect. In the case of the re-
gion growing classifier, the variation is accomplished by a random selection of seeds
resulting in multiple independent classifications.

Ignorance is much easier to detect with the ensemble classifiers, according to equa-
tion 3.3.2, in terms of ambiguity across many classifications. Ambiguity emerges in
a two-fold manner, namely ambiguity among different segmentation schemes as well
as ambiguity in weak preference across the pixels that belong to the same region. The
classification error for the watershed segmentation Cws,Jws is reduced from e = 0.174
to e = 0.067 if 20% of the queries are rejected and even to e = 0.059 in case 30% are
rejected. A similar reduction is accomplished in case of ensemble classification based
on graph cut segmentation Cgc,Jgc, namely to e = 0.085 at 20% and e = 0.062 at 30%
rejection rate. It is no surprise that for the ensemble classifiers, the impact on the
classification accuracy related to conflict is less pronounced. Notice that the basic
error rate without rejection is larger for the ensemble classifiers, in particular, in com-
parison to the hue saturation classifier. In the ensemble classifiers, a homogeneous
classification is assigned to the entire region, whereas, in the case of the single classi-
fiers, each pixel is classified individually. In the case of single-pixel classification, it is
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3.4 Ensemble of Experts with Fuzzy Preference Structures

difficult to capture ignorance due to the lack of a sufficient statistical basis. In the case
of region-based classification, there are sufficient statistics to estimate conflict and ig-
norance; however, the accuracy of classifications suffers due to the coarse resolution.
This observation motivates us to use the pixel-based segmentations for classification
but reject queries based on ignorance captured by the ensemble classifiers. Table 3.1
reports the evolution of error rate for the hue saturation segmentation Chs,Jws with
queries rejected according to ignorance in watershed segmentation. It clearly outper-
forms rejection based on its internal ignorance Chs,Jhs, but is inferior to the ensemble
classifier Cws,Jws, even at low rejection rates. In summary, the ensemble classifiers
are best able to recognize ignorance whereas conflict is better revealed in the weak
preference of single segmentations.

3.4 Ensemble of Experts with Fuzzy Preference Structures

In the previous section, we applied fuzzy preference structures across pixels and
superpixels to explicitly represent the uncertainty in terms of preference, conflict,
and ignorance. In this section, we built upon [Pos+11a] and extend the ensemble of
experts approach from the previous chapter to include uncertainty information from
the fuzzy preference structures into the classification.

The overall scheme is illustrated in Fig. 3.4. The first layer relies on three base
experts that perform segmentation using: histogram backprojection with hue-satura-
tion channels, histogram backprojection with normalized red-green color space and
region growing. The ensemble layer consists of a set of classifiers that fuse the in-
formation from each expert. We investigate pixel-wise classifications and aggregation
across regions of homogeneous appearance to obtain a segmentation robust to noise
and outliers. Two separate appearance models for floor and obstacles are maintained,
thus capturing the decision boundary between floor and obstacles in a more refined
manner compared to a floor versus rest classification. Two ensembles of classifiers
combine the evidence of single segmentation experts for both models. The first en-
semble, called obstacle classifier, is intended to detect obstacles by fusing the segmen-
tations arising from seeds and histogram models of obstacles, the second ensemble,
called floor classifier, attempts to recognize floor regions by combining the segmenta-
tions using seeds and histogram models of the floor.

Inconsistencies in the predictions are resolved by decomposing the ensemble clas-
sifiers into a preference structure. Fig. 3.5 illustrates the pivotal processing steps to
generate an obstacle floor classification from the original image of a typical indoor
scene.

3.4.1 Classification Results

The training and validation data for evaluating the ensemble of experts with fuzzy
preference structures consist of about one million pixels captured from 30 images of
which the true class label is established from the PMD depth information and 3D
segmentation. Half of the images are used for training and the other half for testing.

Table 3.2 reports the classification error rate after decomposing the floor classifier and
obstacle classifier using fuzzy preference structures. The results show the pixel-wise
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Figure 3.4: Mixture of experts classification with fuzzy preference structures integrated

classification and the region-wise classification with watershed regions. The results
confirm the supposed improvement: computing statistics across a region improves the
classification accuracy as the error is substantially reduced by rejecting those queries
associated with a strong degree of conflict and ignorance.

Table 3.2: Classification error based on the rejection of queries according to conflict and igno-
rance

Pixel-wise
Rejection rate Ignorance 0% Ignorance 10% Ignorance 20%
Conflict 0% 0.152 0.140 0.133
Conflict 10% 0.134 0.118 0.107
Conflict 20% 0.128 0.109 0.102

Region-wise
Rejection rate Ignorance 0% Ignorance 10% Ignorance 20%
Conflict 0% 0.122 0.109 0.091
Conflict 10% 0.111 0.095 0.072
Conflict 20% 0.106 0.086 0.065

Fig. 3.6 illustrates the fuzzy preference structure for omnidirectional images of
prototypical indoor scenes using the ensemble of experts. The two first scenarios
illustrate a situation in which the robot encounters isolates obstacles of which the
initial model or seeds are unknown. Such obstacles exhibit a high level of ignorance
reflecting the lack of data to distinguish those novel objects into either floor or obsta-
cle. The third scenario illustrates a scene of ambiguous appearance, which exhibits a
substantial amount of conflict due to the similar color of floor and background. The
following scenarios depict different levels of texture, illumination, and shadows.
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(a) (b)

(c) (d) (e) (f)

(g) (h)

(i) (j) (k)

(l) (m) (n)

Figure 3.5: Overview of the processing steps in obstacle-floor detection: (a) Input image. (b)
marker-based watershed. (c,d) Obstacle segmentations with region growing and histogram
backprojection (hue-sat) respectively. (e,f) floor segmentations with region growing and his-
togram backprojection (hue-sat) respectively. (g,h) Obstacle and floor classifier (i,j,k) Pixel-
wise preference, ignorance and conflict. (l,m,n) Preference, ignorance, and conflict processed
per watershed regions (watershed lines shown for visualization purposes).
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3 Uncertainty Representation with Fuzzy Preference Structures

(a) (b) (c) (d)

Figure 3.6: Classification examples: (a) Input image, b) Preference P , c) Conflict I , d) Igno-
rance J (watershed lines shown for visualization purposes)
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3.5 Summary

3.5 Summary

This chapter has presented a floor/obstacle classifier able to represent the implied
uncertainty with fuzzy preference structures. The uncertainty of the classifications
is explicitly expressed in terms of preference, conflict, and ignorance utilizing fuzzy
preference structures.

The preference structure captures the uncertainty inherent to individual segmen-
tations as well as an ensemble of segmentation based classifiers. We also apply this
technique to the ensemble of experts paradigm from the previous chapter and fuse
heterogeneous segmentations schemes maintaining separate models for floor and ob-
stacles.

The experimental results confirm the initial hypothesis that multiple diverse visual
cues in conjunction with an explicit representation of uncertainty attributed to igno-
rance and conflict are of paramount benefit to vision-based robot local navigation.
The method can be extended incorporating additional features, such as ones learned
from data and domain specific knowledge to further improve the distinction of novel
terrain and obstacles.
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4
Semantic Segmentation of Scenes

4.1 Introduction

Robots require a more profound semantic understanding of the environments in
which they operate to comprehend human task descriptions in natural language. The
ability to reason about objects and their spatial and functional relationship entitles the
robot to perform complex tasks autonomously and make human-robot communica-
tion more natural.

This chapter presents an approach that segments a scene and provides a semantic
label for each region (see Fig. 4.1). The region labeling distinguishes between three
main classes: floor, vertical structures, and clutter. The approach does not seek to
identify every single object in the scene, but only navigation relevant categories. The
category, vertical plane, is composed of objects such as walls, boards, and placards.
Non-planar objects with multiple surfaces, e.g., furniture, plants, people or obstacles,
are grouped into the class clutter.

 

Floor

Vertical

Clutter

Label

Figure 4.1: Semantic labeling of an indoor omnidirectional image. Three labels are shown:
green indicates the floor region ; blue the vertical structures; and red clutter or obstacles

Compared to the approaches presented in previous chapters, the current chapter
deals with more sophisticated visual features, and the proposed method is able to
classify image regions beyond the classes ground/obstacle. This forms the basis for
more advanced analysis such as layout reconstruction, which will be introduced in
chapter 5.
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4.2 Related Work

Our method has the following characteristics: it is purely vision-based and does not
rely on range information or a geometric reconstruction of the scene; it operates on
single images and does not depend on a sequence of observations. The method uses
a probabilistic representation that allows the fusion of observations into semantic
occupancy grid maps (chapter 8). The training of the system, in contrast to more
complex models such as Convolutional Neural Networks, does not require a massive
dataset. The method is suitable for online learning and self-supervised with a range
camera.

4.2 Related Work

The computer vision community has studied for several decades the general problem
of semantic segmentation using a diverse number of object categories. The most
important methods are surveyed in [Zhu+16; Tho16; GG+17].

Early approaches are based on hand-crafted features, while the current trend is
to increasingly rely on highly discriminative features learned from data using deep
learning [LBH15]. Deep learning approaches are reborn with the GPU processing
era and the availability of huge labeled datasets such as the ImageNet [Rus+15]. The
learned features consistently [LSD15; Zhe+15; Che+16] achieve superior results com-
pared to hand features on most of the publicly available datasets. However, training
such deep neural network architectures comes at the expense of requiring a massive
amount of data for fitting the millions of parameters of these large variance models.
Further, to apply deep learning networks to the segmentation task (where currently
only small datasets exist), it is required to use the so-called transfer learning [LSD15].
Transfer learning fine-tunes an already pre-trained model (e.g. on object recognition
with the ImageNet dataset) to work in another task (e.g. segmentation) by adding
additional layers that adapt to the new task.

Engineered features continue to play a role in tasks where labeled data availabil-
ity is limited, and learning starts from scratch. In this study, we employ engineered
features using omnidirectional images where labeled datasets are inexistent. Very
few semantic segmentation approaches have been proposed using purely omnidirec-
tional images [Per+07; Pos+13]. The method in [Per+07] presents a system able to
discriminate buildings and nature from sub-images extracted from an unwrapped
omni-image. The approach on which we build upon [Pos+13] employs unsupervised
over-segmentation (similar to [HEH07; SSN09]) to obtain image regions that are la-
beled with multi-cue statistical learning models.

The robotics community, in counterpart, has focused on labeling mainly objects
relevant for robotics tasks such as terrain, sky, vegetation, obstacles, walls, doors,
windows, etc. [NH08; Pos+13; Wol+14; Val+16]. Nüchter and Hertzberg [NH08]
analyze 3D laser scans to identify floor, walls, and doors. The work of [Wol+14]
employ point clouds from an RGBD camera using Randomized Decision Forest. More
recently, [Val+16] presented a very successful system for outdoor labeling with a Deep
Neural Network. The published dataset of 15.000 images was released to the public.
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4 Semantic Segmentation of Scenes

4.3 Semantic Segmentation

The objective of semantic region classification is to segment and classify different re-
gions: floor, vertical planar surfaces (wall, placards ), and isolated objects (e.g. plants,
people). The semantic segmentation extracts multiple heterogeneous visual features
at the superpixel-level that are labeled by randomized decision trees. The overall
system architecture is based on [Pos+13; PHB14] and is shown in Fig. 4.2
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Figure 4.2: System architecture of the semantic segmentation

4.4 Features

Similar to previous approaches [HEH05; DLN05; FVS09; Pos+11a], our vision-based
classifier gains statistical support from groups of pixels called superpixels. The ob-
jective is to generate superpixels that preserve image structure, but at the same time
are computed efficiently. The graph-based segmentation [FH04] fulfills these require-
ments in the context of our application. It takes on average 200ms to process an
image of 440x440 pixels while investigated alternative methods such as the entropy
rate segmentation [Liu+11] took five times longer. Superpixels obtained with this
method exhibit the best compromise in preserving structure in both simple and com-
plex scenes since it does not need to fix a priori the number of superpixels or balance
the superpixel in terms of size. In Fig. 4.3 three examples are shown with different
parameter configurations.

(a) (b) (c) (d)

Figure 4.3: Graph based segmentation [FH04] (a) Input image (b) σ = 0.5, k = 50 (c) σ = 0.5, k
= 100 (d) σ = 0.5, k = 200

4.4.1 Location

Location is an important feature in our system since it provides a strong prior to the
superpixel class. The omnidirectional camera field of view partially extends beyond
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4.4 Features

the horizon, and those pixels certainly do not belong to the floor. Likewise, large por-
tions of the floor regions intersect with a blind circular spot in the image center. The
spatial information of a superpixel is captured by the features: average, maximum,
minimum, first and third quartile, and the standard deviation of the radial distance
measured from the image center of all pixels inside the superpixel. All features are
normalized with respect to image size to achieve a better image resolution invariabil-
ity. Fig. 4.4 illustrates some radial distance features computed per superpixel.

(a) (b) (c) (d)

Figure 4.4: Examples of radial distance features a) Input image b) Radial distance from the
image center c) Average distance per superpixel d) Standard deviation per superpixel

4.4.2 Color

The color distribution in a superpixel is captured with three bin local histograms using
RGB and HSV colorspaces, and with the mean, standard deviation, and first and third
quartile of the RGB and HSV channels. Additionally, two separate color models are
generated for the region above the horizon and in the vicinity of the image’s center.
The models are 2D hue-saturation histograms sampled from the mentioned regions,
and histogram backprojection computes the degree of similarity with the reference
models. The statistics average, the first and third quartile of the two backprojection
images are computed.

4.4.3 Local Intensity Distribution

The local intensity distribution features are computed using entropy, mean, variance,
and range of the intensities per superpixel. Entropy is extracted in a 9x9 window
around each pixel and the average value for the whole superpixel. Entropy is useful
for capturing the randomness of the distribution and is defined as:

Entropy: E = −
L−1

∑
i=0

p(xi) log2 p(xi)

where xi is a discrete random variable that denotes intensity levels and p(xi) is
computed from the normalized histogram (sum up to 1) with levels: i = 0, 1, ..., L − 1.

Mean: µ =
L−1

∑
i=0

xi p(xi)

Variance: σ2 =
L−1

∑
i=0

(xi − µ)2p(xi)

Range: max
i

xi − min
i

xi
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4 Semantic Segmentation of Scenes

(a) (b) (c) (d) (e)

Figure 4.5: Local intensity statistics features a) Input image b) Entropy c) Standard deviation
d) Range e) Median

4.4.4 Shape

Shape features are computed using image moments [PR92], regional and boundary
descriptors, Hu invariants [Hu62], shape topology, and convex hull properties.

Image Moments

The image moments mpq, of order p, q, of a discrete image I(x, y) are computed as:

mpq = ∑
x

∑
y

xpyq I(x, y) (4.4.1)

The centroid is computed using the zero and first-order moments

xc = m10/m00 ; yc = m01/m00 (4.4.2)

The central moments are computed with respect to the centroid to achieve transla-
tion invariance

µpq = ∑
x

∑
y
(x − xc)

p(y − yc)
q I(x, y) (4.4.3)

The normalized central moments are normalized with respect to the zeroth moment
to achieve invariance to scale.

ηpq = µpq/µ
γ
00 ; γ =

p + q
2

+ 1 (4.4.4)

The two principal axes of the shape region are approximated by an ellipse of equiv-
alent inertia with semi major axis a, semi minor axis b, and orientation ϕ by:

ϕa =
1
2

arctan
2µ11

µ20 − µ02
where µ20 6= µ02 (4.4.5)

a =

r
2
h
µ20+µ02+

√
(µ20−µ02)2+4µ2

11)
i

µ00

b =

r
2
h
µ20+µ02−

√
(µ20−µ02)2+4µ2

11)
i

µ00

(4.4.6)
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Hu Invariants

The Hu moment invariants [Hu62] extend the normalized central moments (trans-
lation and scale-invariant) to achieve rotation and mirroring invariance. They are
constructed with the following seven polynomials using second and third-order mo-
ments and combinations:

φ1 = η20 + η02 (4.4.7)

φ2 = (η20 − η02)
2 + 4η2

11 (4.4.8)

φ3 = (η30 − 3η12)
2 + (3η21 − η03)

2 (4.4.9)

φ4 = (η30 + η12)
2 + (η21 + η03)

2 (4.4.10)

φ5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]+

(3η21 − η03)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2] (4.4.11)

φ6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2] + 4η11(η30 + η12)(η21 + η03) (4.4.12)

φ7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]−
(η30 − 3η12)(η21 + η03)[3(η30 + η12)

2 − (η21 + η03)
2] (4.4.13)

Regional Descriptors

The regional analysis [GW08; FCCJ09] employs a binary mask extracted from each
superpixel forming a region R, its boundary contour C, its area A, and perimeter P.
The following features constitute the regional descriptors:

• Area: A = m00 is computed as the sum of intensity levels in a region

• Perimeter: P is a scalar that measures arc length around the boundary of a
region

• Circularity ratio: Rc = 4πA/P2, where the maximal value of 1 is attained when
R is circular and π/4 when it is a square. This descriptor is invariant to scale
and rotation.

• Compactness: P2/A is an alternative method to circularity ratio.

• Area to perimeter ratio: A/P

• Rectangularity: A/Abbox, with Abbox, the area of the bounding box.
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4 Semantic Segmentation of Scenes

• Solidity: A/Achull is scalar specifying the proportion of pixels in the convex hull
that are also in the region. Achull is the convex hull area.

• Irregularity: I(R) =

π max
(x,y)∈R

(x − xc)
2 + (y − yc)

2

A this feature is similar to
solidity but considers area (π) of the maximum enclosing circle in the numerator
computed by calculating the major chord length in R.

• Major and minor axis length: a, b; Aspect ratio: a/b; and orientation of the major
axis: ϕa

• Eccentricity: E =
q

1 − ( a
b )

2 is a scalar that specifies the eccentricity of the inertia
equivalent ellipse of R. With E ∈ (0, 1). The value of 1 is obtained when both
axes have the same length, meaning that the ellipse degenerates to a circle. The
value of 0 represents the opposite case, and the ellipse degenerates to a line.

• Relation of the major axis to the perimeter: a/P

• Number of convex hull vertices

• Mean boundary distance: Db = 1
N ∑ d(r, boundary(R)) where r ∈ R be a point

of R, and the mean distance is computed between the shape’s internal points
and the shape boundary points.

• Shape complexity measure: f = A/D2
b can be calculated using the relation

between the region area and the mean boundary distance.

• Euler Number: E = NC − NH is a scalar that specifies the number of connected
components in a region NC minus the number of holes NH

(a) (b) (c) (d) (e)

Figure 4.6: Shape Features a) Input image b) Ratio of pixels in the region to pixels in the total
bounding box, (square detector) c) Scalar specifying the proportion of the pixels in the convex
hull that are also in the region. Computed as Area/ConvexArea. d) Eccentricity e) Aspect
Ratio

Boundary Descriptors

The boundary analysis [GW08; FCCJ09] starts with the contour of a region as a se-
quence of pixels B = {(xk, yk); 1 ≤ k ≤ K} and the distance from each point to
the centroid Dk =

p
(xk − xc)2 + (yk − yc)2. The following boundary features can be

extracted:
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4.5 Random Forest Classification

• Mean radial distance: Dmean =
1
K

K

∑
k=1

Dk

• Standard deviation of the radial distance: σr =

s
1
K

K

∑
k=1

(Dk − µr)
2

• Minimum and maximum distance between the centroid and boundary points:
Dmin = min

k
(Dk), Dmax = max

k
(Dk)

• Features based on the following relations: Dmax/Dmin, Dmax/Dmean, Dmin/Dmean

• Higher-order statistics: skewness and kurtosis

4.4.5 Texture

Texture features are captured by a subset of the maximum response set (MR8) filter
banks [VZ05]. The original filter consists of a Gaussian and a Laplacian of Gaussian
computed at six different orientations and three scales. Because of computational
restrictions, our approach only considers a single scale (σx = 1, σy = 3) ( See Fig.
4.7a ). Additionally, instead of computing the maximum response for each scale,
we capture the maximum response among all filters in a histogram and the mean
absolute response of the filters per superpixel. Fig. 4.7 c-d, illustrates the output of
three different histogram bins.

(a) (b) (c) (d) (e)

Figure 4.7: Texture features a) Subset of Maximum Response MR8 Filter Bank with σx = 1 and
σy = 3 b) Input image c)-d) Visualization of three different histogram bins that captures the
maximum respond among all filters.

4.5 Random Forest Classification

Randomized decision trees or Random Forests for classification[Bre01] consist of an
ensemble of T classification trees trained with the bootstrap aggregation technique.
With bootstrap, each tree is grown by sampling subsets of the training data with
replacement. Additionally, correlated predictors are avoided in the training by picking
the best split at each tree node from a subset of m randomly selected features without
replacement.

Each tree is fully grown recursively from top to bottom, and majority voting makes
a final prediction Y among the predictions of the ensemble. Alternatively, a posterior

43



4 Semantic Segmentation of Scenes

probability for each tree P(Y = c|nl) can be learned from the training data by record-
ing the ratio of the number of times a class c is assigned to a leaf node nl, to the total
number of examples that accumulate at that node.

P(Y = c) =
1
T

T

∑
t=1

Pt(Y = c|nl,t) (4.5.1)

4.6 Semantic Segmentation Results

The segmentation algorithm is evaluated on two separated datasets. The first one is
shown in Fig. 4.8a and consists of 75 images with their labeled ground truth seg-
mentations [Pos+13]. The images were captured at different locations at the Technical
University of Dortmund using the same camera configuration for all of them. In or-
der to assess the generalization ability of the segmentation and to prevent artificial
correlation in appearance between training and test images, the entire data set was
split into three distinct scenarios (P: physics building, E: electrical engineering build-
ing and C: chemistry building). The exemplar scenarios are shown in Fig. 4.8a and
correspond to different wings of the complex and exhibit different colors and texture
in the floor, walls, and objects.

The second dataset (shown in Fig. 4.8b) consists of 100 manually labeled images
captured at four different European cities and using different robot and sensor config-
urations. The objective of this dataset is to assess the generalization ability to differ-
ent sensors and configurations, and unknown scenarios. Three of the cities are from
the public available COLD dataset [PC09], which provides omnidirectional images
from the indoor locations in the University of Freiburg, University of Ljubljana, and
the German Research Center for Artificial Intelligence in Saarbrücken. The fourth
location, not part of the COLD dataset, corresponds to the Technical University of
Dortmund. Each location contributes with 25 manually labeled images.

Unfortunately, no dataset with such segmentations for omnidirectional images is
publicly available for comparison or benchmarking. Performance is measured in both
datasets pixel-wise with leave-one-out cross-validation. In the first data set, repeat-
edly, one out of three scenarios is used for testing and the other two datasets for
training. In the second dataset, one of the cities is left for testing, while the remaining
three are used for training.

Table 4.1 reports the confusion matrix of the tree classes for Dataset I. The overall
classification rate of the approach is 86%, whereas Table 4.2 shows the results for
Dataset II with an overall accuracy of 80%. The optimal number of trees were chosen
with cross-validation and were 300 and 500 for Dataset I and Dataset II, respectively.
These values can be seen in Fig. 4.9 by plotting accuracy as a function of the number
of trees. Notice that an increase in the number of trees beyond 300 trees for Dataset
I shows no further improvement, and no significant improvement is achieved with
more than 500 trees for Dataset II.

According to Fig. 4.10, sampling beyond 4 predictors for splitting at each node of
the trees does not achieve further performance improvement. Fig. 4.11 reveals the
random forest out-of-bag estimates of the importance of the features according to its
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(a) Dataset I (TU Dortmund) (b) Dataset II (COLD)

Figure 4.8: Example images from the dataset I and II. (a) Dataset I: Technical University of
Dortmund. First row: physics building; Second row: electrical engineering building; Third
row: chemistry building (b) Dataset II: Public available COLD dataset. First row: Freiburg;
Second row: Ljubljana, Third row: Saarbrücken

Floor Vertical Clutter
Floor 0.79 0.03 0.19
Vertical 0.02 0.92 0.06
Clutter 0.05 0.25 0.70

Table 4.1: Dataset I: Confusion Matrix

Floor Vertical Clutter
Floor 0.77 0.10 0.13
Vertical 0.12 0.85 0.03
Clutter 0.17 0.04 0.79

Table 4.2: Dataset II: Confusion Matrix

mean decrease in accuracy after removing each group of features. Location represents
the most important feature, followed by texture.

Several of the semantic segmentation of prototypical indoor scenes with their cor-
responding ground truths for Dataset I and Dataset II are illustrated on Fig. 4.12.
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(a) (b)

Figure 4.9: Random Forest parameters a) Classification accuracy versus number of trees in the
random forest using Dataset I. b) Same as a) with Dataset II

number of predictors for splitting at each node

Figure 4.10: Number of predictors sampled for splitting at each node of the trees.

Figure 4.11: Mean decrease in accuracy after removing each group of features.
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4.6 Semantic Segmentation Results

(a) Dataset I (TU Dortmund)

(b) Dataset II (COLD)

Figure 4.12: Semantic classification examples, green color represents floor, blue vertical struc-
tures and red obstacles or clutter. Left column: input image; Center column: Classification
results (label opacity represents the posterior probability of the associated class); Right col-
umn: ground truth.
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4.7 Self-Supervised Semantic Segmentation with Range
Images

Similar to the system architecture presented in Chapter 2, we can devise a self-
supervised system to train the semantic segmentation by labeling the training data
using the 3D points from a range camera. The process is illustrated in Fig. 4.13. By
rotating the robot 360◦ and registering the individual frame labeling, we obtain the
mask for training the system shown in Fig. 4.13d.

(a) (b) (c) (d)

Figure 4.13: Self-supervised semantic labeling using range data. a) Range image b) Segmen-
tation of range data from the 3D points of the range image c) Omnidirectional image labeling
by projecting the range labeling d) Output after registration frames from a 360◦ robot rotation

4.8 Summary

This chapter has presented a system that can provide a semantic segmentation of
single image regions. The semantic segmentation aggregates multiple heterogeneous
features extracted at the superpixel level with a Random Forest classifier and provide
a posterior probability of the class. The image regions are classified into the categories:
floor, vertical planar surfaces, and isolated objects (e.g. furniture).

The introduced semantic segmentation constitutes the basis for the layout recon-
struction, local semantic, and map-based semantic navigation that will be introduced
in the next chapters.

The framework is suitable for online self-supervised learning using range data from
a time of flight camera. Future work can extend the current system with a larger
number of object and scene categories and using a temporal fusion of the perceptions.
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5
Surface Layout of Scenes

5.1 Introduction

Humans possess the remarkable ability to understand effortlessly complex scenes
very fast [Oli14]. For example, by looking at the scene in Fig. 5.1, we can extract the
structure and layout reliably —even by looking at it from different viewpoints. Nev-
ertheless, for automatic systems, this task remains a challenge since the interpretation
of a scene is complicated by the fact that 2D images provide no depth information,
visual cues are highly context-dependent, and there is uncertainty from noise, occlu-
sion, and illumination in real-world scenarios.

 

Label

z-axis

x-axis

y-axis

Figure 5.1: Surface Layout labeling of an indoor omnidirectional image. (left) input image, and
(right) output of the classifier. Three labels are shown: red indicates structures with normal
parallel to the x-axis of the robot coordinate system, green indicates structures aligned with
normal corresponding to the y-axis, and blue are regions in the ground plane with normal
aligned to the z-axis

Scene understanding through single images is a difficult problem due to ambiguity
in the 3D visual reconstruction. An infinite number of 3D structures could project into
the same 2D image. The advantage of analyzing human environments is that they are
fairly structured. Thus, we can reason about how objects and surfaces are connected
by exploiting prior knowledge and the regularities on those environments.

Similarly to humans, we want robotic systems to reason about the environment and
execute advanced cognitive tasks such as recognition and navigation. A good starting
point towards better scene understanding is to extract the spatial layout configuration.
The object detection task becomes more accurate with evidence from the 3D layout
and knowledge of the supporting structures and vice versa [SBS10].
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While the literature reports several schemes for extracting the spatial layout from
surfaces in the scene from monocular vision, very few tackle the problem using om-
nidirectional images. Existing methods for surface layout extraction with omnidirec-
tional vision [OLNG11; OLNG12] focus on corners and line entities for the structure
computation. However, difficulties arise in cluttered environments where those en-
tities cannot be computed reliably. This motivates us in this chapter to address this
problem using a different perspective. Our point of departure is statistical learning
using a different set of heterogeneous features. The scheme first begins identifying
vertical structures in the image with the free-space/vertical structure segmentation.
Vertical components are further classified according to their orientation using orien-
tation signals from histograms of oriented gradients, floor/wall boundary features,
and oriented line features.

Important monocular cues such as size, location, color, and texture already ex-
ploited in the literature [DLN05; HEH07; HC12a] are still useful in omnidirectional
systems [PHB14]. Nonetheless, important features for layout extraction, such as ori-
ented lines and vanishing points, need to be computed differently, since the omnidi-
rectional projection geometry distorts those entities, lines in the 3D space project into
conics in the omni-image.

This chapter presents an approach that segments a scene into regions and assigns
them a category according to their orientation [PVL16]. The region labeling distin-
guishes between three surface orientation classes. The surfaces are orthogonal to each
other and labeled as illustrated in Fig. 5.1. The color red indicates structures with nor-
mals parallel to the x-axis of the robot coordinate system; green indicates structures
with normals aligned to the y-axis; blue indicates structures with normals aligned to
the z-axis (parallel to the ground plane).

5.2 Related Work

The majority of the literature in the surface and spatial layout domain has focused on
monocular perspective vision [HEH07; YZM08; LHK09; SSN09; HHF09; HC12b]. Very
few references address the omnidirectional vision counterpart [OLNG11; OLNG12].
The last authors exploit line structure in the scene for extracting the layout in indoor
setups. Yet overcoming the problems induced from clutter remain an issue, since they
hinder the corner extraction necessary in [OLNG11] and the floor-wall boundaries in
[OLNG12]. Additionally, the predefined wall layout hypotheses in [OLNG12], limit
the recovery of layout configurations outside the predefined set.

Line segment features in [YZM08; Lee+10] remain the main ones for surface layout
recovery. The work in [YZM08] uses the geometric regularities in human-made indoor
environments and a non-learning approach that finds depth-ordered planes along
with dominant directions. The process groups the edges and subsequently fits lines
into quadrilaterals based on co-planarity and relative depth.

The work in [LHK09] finds structure by generating the best fitting model to line
segments. The approach identifies constraining corners (connections of walls), and
several plausible building hypotheses are created and tested against an orientation
map. Some difficulties arise in that not all lines or edges lie on a target structure and
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floor-wall boundaries are often occluded. These are alleviated assuming symmetry
between floor and ceiling, and floor-wall boundaries can be retrieved using the ceil-
wall boundaries, which are rarely occluded.

The approaches in [HEH05] and [HEH07] use a larger set of cues such as color, tex-
ture, geometry, and position to learn appearance models of geometric classes: parallel
to the ground, vertical structures, and sky. Vertical structures are further subdivided
according to coarse orientation (left, center, or right/left) and according to the mate-
rial (porous or solid).

Saxena et al. [SSN09] developed a system called Make3D that infers 3D structure
from a single image. In contrast to [HEH07], Make3D does not make strong assump-
tions that scenes consist of the ground plane, vertical walls, or sky. Their system finds
superpixels and infers for each of them, plane parameters that capture 3D location,
and 3D orientation. Make3D builds upon the depth estimation method in [SSN07],
incorporating region properties such as connectedness, co-planarity, and co-linearity
into a probabilistic Markov Random Field (MRF) framework.

Delage et al. [DLN05] focus on a fully automatic 3D reconstruction of indoor en-
vironments from single images. The world is assumed to be Manhattan, meaning
that planes are oriented in three orthogonal directions. The 3D ambiguous structure
is learned using a Markov Random Field methodology similar to [SSN07], but in-
stead of estimating depth, they estimate whether each point in the image represents
a surface or an edge and its orientation.

Haines and Calway [HC12a] follow a different methodology for estimating planar
structures. They use a bag of words (BoW) representation trained in urban environ-
ments to learn the relationship between appearance and plane structure. K-nearest
neighbor determines whether or nor a region is planar and its orientation. Visual
primitives in the BoW are computed with HOG extracted at salient points. The issue
of different appearance for the same orientation is solved, reducing the dimensional-
ity of histograms and creating a compact representation with the so-called topics in
the Latent Semantic Analysis method.

5.3 Surface Layout Approach

The overall system architecture is shown in Fig. 5.2. There are four fundamental
blocks: (i) The free-space segmentation block, which labels each image region as free-
space/vertical structure and computes the floor boundary features, (ii) The vanishing
points extraction and line classification block that assigns orientations according to
the three-axis of the robocentric coordinate system, (iii) The histogram of oriented
gradients block, which aggregates the gradient distribution per region, and (iv) The
surface layout block, which combines all features and assigns an orientation to each
vertical structure. The orientation classification is done similar to the previous chapter
using Random Forests.

5.3.1 Free-space and Vertical Structures

The first process consists of segmenting the ground floor and the vertical structures
using the processing block illustrated in the upper part of Fig. 5.2. The scheme
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Figure 5.2: Surface layout system architecture

finds the free-space and vertical structures using the heterogeneous cues: location,
color, texture, geometry, and shape. The segmentation method is described in detail
in chapter 4. Another feasible floor/obstacle segmentation is explained in chapter 2.
Vertical structures are all objects above the ground floor e.g. walls, doors, and clutter.
The method extracts the layout of the scene assigning those vertical structures with
orientations shown in Fig. 5.1.

5.3.2 Vanishing Points Estimation and Oriented Lines

The importance of vanishing points (VPs) for estimating the orientation of structures
was already highlighted in the literature [YZM08; LHK09; HEH07; Cri01]. There are
different strategies for extracting VPs in omnidirectional images [OLNG12; Baz+12;
BP12]. Our approach is slightly different in that it uses a bird’s-eye projection to obtain
undistorted lines from the omni-image conics. Subsequently to this transformation,
the RANSAC algorithm searches for lines imposing an orthogonality constrain.

Our VP extraction scheme makes the following assumptions: i) The sensor is a
central omnidirectional system in which all optical rays intersect into a single effective
viewpoint, ii) The camera axis is aligned with the ground normal, which is reasonable
in most wheeled robots operating indoors, and iii) The world surfaces are assumed
to have normals aligned vertically or horizontally following the Manhattan World
assumption.

With the above assumptions, boundary lines located in a 3D plane correspond to
vertical and horizontal lines in the omni-projection. Vertical lines project into radially
distributed lines intersecting into one single point in the image. This point corre-
sponds to the vertical vanishing point (VVP). In our omni-images, the VVP is located
in the image center, since images are cropped into a symmetric square with center
coincident with the single effective viewpoint.

The VPs of horizontal lines (HVP) cannot be extracted so straightforwardly, since
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horizontal lines in the world project into conics in the omni-image given the nature
of omni-mirror. Some methods search VPs in the image space, locating the intersec-
tion points of conics. Alternatively, the search can be done in a sphere space [Gey00],
projecting into the sphere all image entities. Other approaches used the Hough Trans-
form for clustering, with the disadvantage that each VP is found independently and
no orthogonality constrain can be ensured. More recently, [Baz+12] clusters the lines
with exhaustive search or uses RANSAC with models that ensure orthogonality in
the VPs [BP12].

Our VPs extraction scheme models the camera using a sphere. However, it is differ-
ent from [OLNG12], in that we additionally project the conics in the sphere into lines
using a bird’s-eye view remapping that removes the distortion (See Fig. 5.3). With the
omnicamera aligned to the horizontal ground normal, the HVPs are located with the
RANSAC method in the bird’s-eye projection. This robust estimator is suitable given
the large number of outliers and the necessity of finding several VPs iteratively. The
main orthogonal directions are found using 2-line RANSAC, ensuring the orthogo-
nality constraint.

Bird’s-Eye View

The bird’s-eye view necessary for the VPs computation consists of a scaled perspective
projection of the image ground plane. The projection consists of mapping image
points into a sphere and projecting them back into a bird’s-eye perspective plane.

The uniform model in [SMS06] has the advantage of working with all types of cam-
eras, including a fish-eye camera. This model can relate unit sphere points [xs, ys, zs]T

and the normalized image points [xm, ym]T with the equation:xs
ys
zs

 =

 xm
ym

a0 + a1ρ + a2ρ2 + · · ·+ aNρN

 (5.3.1)

where a0...aN are the polynomial calibration coefficients, and zs becomes a function
f (ρ) with ρ =

p
x2

m + y2
m. The equations above assume the camera sensor and mir-

ror perfectly aligned, so the normalized image coordinates are proportional to scene
points.

xm
ym

= α
xs
ys

(5.3.2)

Notice that the constant α is not explicit in equation 5.3.1, since it can be included in
f (ρ). Fig. 5.3b shows a visualization example of a hyperbolic mirror camera bird’s-eye
projection after calibration with [SMS06].

The above formulation is useful if we have access to the omnidirectional camera
calibration parameters. Thus, limiting the applicability of this formulation to im-
ages, e.g., in the public dataset COLD [PC09]. The COLD dataset provides no mirror
parameter data or images capturing calibration patterns. Therefore, to obtain a bird’s-
eye view on those images, we can opt for a simpler model [RSV; Nay97]. The mirror
projection is assumed to be single-viewpoint and orthographic. These assumptions
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(a) (b) (c) (d)

Figure 5.3: Bird’s-eye projection a) Input Image b) Bird’s-eye mapping into the sphere or
parabolid c) Resulting bird’s-eye image with z = 50px d) Bird’s-eye image with z = 37px.

approximate the mirror to a paraboloid with only one parameter: the radius of the
paraboloid. Hence, mirror calibration can be virtually obviated.

The bird’s-eye perspective projection is computed using polar and azimuthal an-
gles:

θ = arccos
zq

x2
be + y2

be + z2
be

(5.3.3)

φ = arctan
ybe
xbe

(5.3.4)

ρ =
h

1 + cos θ
(5.3.5)

xomn
yomn

=
ρ sin θ cos φ

ρ sin θ sin φ
(5.3.6)

with h, the radius of the circle describing the 90◦ incidence angle on the omnidirec-
tional camera effective viewpoint, and z defined by the distance between the effective
viewpoint and the projection plane in pixels.

Figs. 5.3c-d show some examples of a bird’s-eye projections using the polar az-
imuthal formulation and the effect of changing the height value.

Oriented Lines

Lines in the scene, which are oriented according to the main vanishing points, provide
valuable information about the scene layout structure [YZM08; LHK09; HEH07].

The line extraction process is achieved by following two steps: (i) Edges are ex-
tracted with the canny detector and edge pixels are linked by contour following, and
(ii) Contours are fit to line segments using the split and merge approach with the
Iterative-End-Point-Fit algorithm [Ngu+05].

The resulting lines are classified into vertical and horizontal according to their
orientation in the omni-view. Lines not belonging to those orientations or non-
descriptive lines (e.g. too short) are simply discarded. Horizontal lines are further
clustered according to the closest VP. The process is illustrated in Fig. 5.4a-c.
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(a) (b) (c)

Figure 5.4: Oriented lines according to the main vanishing points a) Edge image with the
Canny edge detector b) Classification as vertical and horizontal lines c) Lines oriented to the
three main vanishing points. Red lines follow the x-axis, green the y-axis and blue the z-axis.

The next processing step consists of sampling the clustered oriented lines according
to the main VPs, and extend them radially at steps with a fixed angular resolution (See
Fig 5.5a). Image regions without line orientation information are extrapolated using
the marker-based watershed algorithm [RM01]. Watershed fills all image regions,
starting from a set of seed points and floods the landscape, which is represented by
the image gradient. The result after watershed is shown in Fig. 5.5b.

(a) (b) (c)

Figure 5.5: Orientation map feature from oriented lines according to the scene’s vanishing
points a) Each horizontal line is extended radially at a fixed angular resolution b) Watershed
extends the map to all image regions c) Orientation map at the superpixel level.

The idea is to average the watershed extrapolation on the homogeneous superpixels
regions. This way, we obtain a more robust statistical weighting of orientations in the
homogeneous regions. This is illustrated in Fig. 5.5c, where some mistakes in the
extrapolation were corrected.

5.3.3 Floor-Wall Boundary Features

The floor-wall boundary is an important feature for recovering the spatial layout in a
scene. Indeed, the most important one for estimating shape hypotheses in [OLNG11;
OLNG12]. However, the line extraction process to compute the floor/wall boundaries
is in both methods hindered by clutter, noise, and lighting conditions. Our method
follows a different approach. We start by segmenting the floor region and project
the segmentation into the bird’s-eye view. This way, lines in the 3D scene captured
as conics in the omni-image get undistorted. The floor region in the bird’s-eye view
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roughly sketches the orientations of the planes in the scene. Fig. 5.6 a-c illustrates the
process.

(a) (b) (c) (d)

Figure 5.6: Orientation map feature computed with the floor wall boundary. a) Input omnidi-
rectional image. b) Floor/Wall segmentation c) Bird’s-eye view of the floor/wall segmentation.
d) The orientation map using the floor/wall contour orientation aggregated per superpixel.

Since clutter generates undesired noisy lines in the boundary approximation, we
apply morphological dilation followed by erosion to close gaps and remove noise in
the segmentation image. The canny edge detector extracts the boundary contour.
Subsequently, the orientation of vertical structures is computed from the obtained
borderline. The process that follows is similar to the one explained in the previous
section. Boundary-lines are extended radially by sampling the boundary at a fixed
angular resolution. Marker-based watershed and the graph-based over-segmentation
extend the orientation map to all regions and average the inconsistencies. The pivotal
steps are illustrated in Fig. 5.6.

5.3.4 Histogram of Oriented Gradients

Histogram of Oriented Gradients (HOG) is a descriptor able to represent the shape
and local appearance by the distribution of gradient orientation in localized portions
of an image [DT05]. The gradient is computed by convolving the image with Prewitt
kernels without smoothing: [-1 0 1] and [-1 0 1]T. The image is divided into rectan-
gular regions called cells, where gradient orientation occurrences are accumulated in
a histogram of 9 bin orientation values. The unsigned version of HOG spread from
0 to 180◦, while the signed spread from 0 to 360◦. In this work, we use the unsigned
version and weight the contribution of each pixel in the histogram with the value of
the gradient itself.

The HOG descriptor, as demonstrated by [DT05] exhibits better invariance to illu-
mination and contrast changes by normalizing the local response over larger spatial
regions called blocks. The parameters 8 x 8 pixels per cell, 2 x 2 cells per block, and
9 orientations bins showed very good performance results in the original implemen-
tation and are adopted in this work using the publicly available code in the VLFeat
open-source library [VF08].

Our HOG descriptors are computed densely for each of the cells and are normal-
ized with the L2-norm of the block. The final HOG descriptor per superpixels gets
contributions from all cell descriptors inside the superpixel region. They are normal-
ized with area of the region to be more invariant to scale and size. Fig. 5.7 illustrates
the response per superpixel at different orientations.
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(a) (b) (c) (d)

Figure 5.7: Histogram of Oriented Gradients feature. Angles are measured clockwise to the
horizontal axis of the image a) Input image b)–d) Average response per superpixel at three
random chosen angles (90◦, 110◦, 130◦). Color white represents a high number of orientations
coincident with the shown angle.

5.4 Experimental Results

The layout classification scheme is evaluated on 100 manually labeled images on four
different locations in Europe. The first three locations are from the publicly available
COLD dataset [PC09]. Each location provides 25 images in the following places: the
University of Freiburg, the University of Ljubljana, and the German Research Cen-
ter for Artificial Intelligence in Saarbrücken. The last location consists of 25 images
captured at different scenarios at the Technical University of Dortmund.

Performance is measured pixel-wise with leave-one-out cross-validation, meaning,
repeatedly one out of four scenarios is used for testing, and the other three for train-
ing. The overall classification performance achieved is 76% and the confusion matrix
is reported in Table 5.1. The optimal number of trees in the Random Forest ensem-
ble was found to be 500. Beyond this number, the accuracy slightly decreases to a
saturation point close to 70%.

Table 5.1: Confusion matrix of the Random Forest classifier with all features

plane-x plane-y plane-z
plane-x 0.75 0.22 0.03
plane-y 0.24 0.73 0.03
plane-z 0.09 0.08 0.83

Table 5.2 shows the effect on the performance after removing each group of orien-
tation features. Removing HOG features decreases the overall accuracy by 2%. Re-
moving the floor/wall boundary features decreases by 3%, the oriented line features
by 6%, and removing all three groups of orientation features reduces the performance
by 13%. Oriented lines represent the most important feature, followed by floor-wall
boundary and HOG.

Fig. 5.8 illustrates some layout classification results at different prototypical in-
door scenarios from the COLD dataset and TU Dortmund. The input image and the
ground truth are shown as a reference. The classification is performed per superpixel.
However, performance evaluation is measured pixel-wise.
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Table 5.2: Classifier performance with different sets of features

Accuracy
Classifier + Feature x-axis / y-axis / z-axis / overall

RF all Features 0.75 / 0.73 / 0.83 / 0.76
RF without HOG 0.74 / 0.71 / 0.82 / 0.74

RF without Wall/Floor 0.74 / 0.71 / 0.80 / 0.73
RF without Oriented Lines 0.67 / 0.69 / 0.82 / 0.70

RF w/o (HOG,Wall/Floor,Lines) 0.57 / 0.63 / 0.81 / 0.63

5.5 Summary

This chapter has presented a system that extracts the spatial layout and main orien-
tation of surfaces in a scene captured with an omnidirectional camera. The system
benefits from a cascaded classification, where free-space and vertical structures are
first extracted. Subsequently, all vertical structures are analyzed to find their main
orientation. The scheme aggregates multiple heterogeneous features computed at the
superpixel level with a Random Forest classifier. The fusion of orientation features
from the HOG transform, floor/wall boundaries, and oriented lines proved to be very
effective in the layout classification. Future work is concerned with extending the
number of orientation directions in the scene to go beyond orthogonal planes.
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Figure 5.8: Surface layout examples from the TU Dortmund and the COLD Dataset. Three
labels are shown: (red) corresponds to the x-axis; (green) y-axis, and (blue) z-axis. Left col-
umn is the input image; the center column is the classification results, and the right column
corresponds to the ground truth. The top-two rows are examples from the TU Dortmund
dataset, and the rest rows below illustrate examples from the COLD dataset.
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6
Visual Place Category Recognition

6.1 Introduction

The ability of a robot to reason about the place it occupies and translate sensor read-
ings into human concepts will allow the latter to perform more complex tasks and
achieve natural human-robot communication. In this chapter, we investigate the trans-
lation of visual cues on omnidirectional images into place categories useful for robot
navigation.

In recent years, vision has been increasingly used in robot navigation, since it al-
lows better disambiguation of place categories compared to traditional range sensors.
Geometric information extracted from laser rangefinders distance scans [MMSB05]
allows only recognition of a limited number of categories. Vision apart of providing
appearance information of both scene and its embedded objects [Rot+05] can be used
as well as a range sensor to capture the free-space needed in local navigation and
obstacle avoidance [Pos+11b].

In this chapter, we propose a place category recognition system using omnidirec-
tional images to distinguish among four location categories: room, corridor, doorway,
and open space. We do not seek to recognize all possible scene categories [Zho+14],
but rather relevant navigation locations. Humans and animals are our inspiratio; they
predominantly rely only on visual information to achieve complex navigation in un-
structured environments. We seek to exploit the available visual cues to understand
the place, tasks, and environment semantically. In this chapter, though, we concen-
trate only on place categorization. The results of this chapter will be used in local
semantic navigation in chapter 7 and semantic map-based navigation in chapter 8.

Despite the discriminate power of vision, the visual recognition of indoor scenes re-
mains a challenge given: i) the difficult information extraction from the complex raw
image data; and (ii) the large intra-class variability in indoor places. Good discrim-
inative appearance features that often perform good in outdoors (e.g. color, texture
exhibit little regularity in indoor settings[QT09]).

We study different hand-engineered image representations with good classification
performance in the literature, such as GIST, HOG, PHOW, dense SIFT, LBP, color his-
tograms and SSIM. Base classifiers are trained using Support Vector Machines (SVM)
and random forest (RF). Several ensemble methods are further studied with the idea
of combining multiple decisions in a way that the overall decision making benefits
from the mutual competences of heterogeneous individual classifiers. Analysis con-
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firms that the combination of diverse classifiers achieves a classification rate that far
exceeds the performance of any single classifier.

Additionally, our system also evaluates learned-features using the current tech-
nology of convolution neural networks (CNN) and deep learning [GBC16]. Deep
learning techniques have advanced very fast, boosted with the era of massive paral-
lelization in GPUs achieving an impressive number of records in the last years on very
challenging datasets. All this comes with the drawback of requiring many training
examples (sometimes in the order of millions) to fit the huge parameter space of deep
neural architectures. Since our data is derived from the relatively small COLD dataset
[PC09] and our set comprehends 130 examples of each of the categories: room, cor-
ridor, doorway, and open space, we cannot perform a full end-to-end network train-
ing. We, therefore, evaluate learned-features from already trained systems on other
recognition tasks, such as the ImageNet [Den+09]. Recent studies [SR+14; Xiao2014;
Simonyan2014; Ren2015] have shown that generic descriptors extracted from CNN
trained in a specific task (e.g. object recognition), perform very well on other recogni-
tion tasks (in many cases outperforming hand-tuned features).

6.2 Related Work

One of the first attempts to extract semantic place information in robotics from laser
rangefinders for semantic map annotation was presented in [MMSB05]. An exten-
sion of this work by [Rot+05] was able to disambiguate better similar place categories
with the aid of object recognition within the scene using monocular vision. Hid-
den Markov models (HMM) have been integrated into various approaches [MMSB05;
Rot+05; RMG12] to enhance classification accuracy by integrating spatial dependen-
cies among multiple perceptions.

The majority of the literature body tackles methods with monocular vision. Only
a few methods report results using omnidirectional vision [RMG12; Pos+13]. The
approach [RMG12] considers a GIST image representation adapted to catadioptric
sensors which achieve rotation invariance and HMM for better classification accuracy.
The system is cascaded for first recognizing two main classes (places and transitions).
Further processing recognizes the sub-classes: corridor, and room within places, and
door and stairs from the place transition class. The system presented in this chapter
is an enhancement of [Pos+13; Oel+14; PHB14] evaluating a larger set of features,
including learned-from-data representations.

In the recent past, the computer vision community has achieved extraordinary
progress on the general problem of scene recognition. Techniques such as global
features and bag of words with local features, are highly effective in discriminating
an impressive, diverse amount of scenes [OT01; LSP06; QT09] Object and scene recog-
nition systems report excellent results using a variety of image features, such as GIST
[OT01; QT09; RMG12], histogram of oriented gradients (HOG) [DT05], or densely
extracted SIFT features and PHOW [LSP06; QT09].

With the recent advances in the GPU computing era, we have seen a rebirth of
convolution neural networks (CNN) [LeC+98]. CNN have achieved an impressive
number of records in the last years on very challenging object recognition datasets
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Figure 6.1: System architecture of the place category recognition system

such as the ImageNet [KSH12; Ser+13; SZ14; Sze+15; Ren+15]. The advances are
mainly boosted by massive parallelization in GPUs, which allow the computation of
very large layer architectures. The learned-features are general enough to be ported
to other recognition tasks such as place categorization, by transfer learning or fine-
tuning [SR+14; Xia+14; SZ14; Ren+15]. In this work, we evaluate some of those
representations on omnidirectional images of places.

6.3 System Architecture

The overall system architecture is shown in Fig. 6.1. The upper part of the figure
sketches the recognition using hand-engineered features. Several base classifiers are
trained with SVM and their outputs are compared with Ensemble Based Systems
[Pol06]. The fusion of features using kernel combination is also evaluated. The part
below of the figure shows the recognition with CNN learned-features from the Ima-
geNet dataset. We investigate: (i) whether they outperform the hand-crafted repre-
sentations, (ii) serve as general purpose features able to generalize to omnidirectional
images for place categorization. We are inspired by [SR+14; Xia+14; SZ14], which
report good performance of ImageNet learned-features applied to a recognition do-
main different from the one from which they were derived. However, those studies
use monocular cameras and do not consider the effects of the non-linear distortion of
omnidirectional cameras, which often require rotation invariant features.

The place categorization is able to recognize the classes: room (R), corridor (C),
doorway (D) and open room (O). Our approach classifies using single omnidirectional
images rather than accumulate evidence over image sequences using hidden Markov
models [RMG12]. In the next sections we describe the features implemented.

6.4 Engineered Visual Features

Our system evaluates several of the most prominent engineered visual features used
in general object and scene recognition. Most engineered features try to emulate
different aspects of human vision. We present them according to the attribute they
emulate, such as: gradient, texture, color, and shape.
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6.4.1 Gradient-Based Features

HOG: The histogram of oriented gradients feature [DT05], briefly described in the
previous chapter, has achieved great success in many computer vision recognition
tasks [LSP06; Fel+10; Kho+12; Xia+14]. HOG captures with 9 bin histograms, gradient
orientations in localized portions of the image called cells. HOG achieves invariance to
illumination and contrast changes by block normalization. A block consists of a grid
of a certain number of cells. In this work, we investigate 2x2 and 3x3 cells per block
with a different bag of visual words (BoW) techniques, such as k-means dictionary
with the Elkan algorithm [Elk03], matching with 3 spatial pyramid matching [LSP06],
k-d trees nearest neighbour search, and max-pooling matching from a spatial pyramid
of 2 levels using Locality-Constrained Linear Coding (LLC) [Kho+12].

SIFT: The Scale Invariant Feature Transform (SIFT) [Low04] is a widely used gra-
dient-based feature similar to HOG, but rather than computing gradient orientations
at fixed grid locations, it finds keypoints on the image upon which their descriptors
are computed. Keypoints are located on extrema over a scale-space search on Differ-
ence of Gaussians (DoG) images. DoG is an approximation of the costly to compute
Laplacian of Gaussians (LoG) which, in practice behaves as a blob detector. DoG are
computed at different pyramid scales, accounting for different blob sizes. Local max-
ima on DoG images is subsequently searched using pixelwise comparisons between
each point and its neighbors as well as neighbors at nearby scales as to check whether
the keypoint is better represented at the nearby scales. The SIFT algorithm imple-
ments outliers filtering using contrast thresholding and edge thresholding to reject
keypoints with low contrast and edges, which exhibit a high DoG value.

The descriptor is computed in a 16x16 pixel neighborhood, which is divided in
4x4 sub-blocks of 4x4 pixels. An 8-bin histogram captures the orientation of each
sub-block, thus achieving a 4x4x8 = 128 dimension descriptor.

In the same way, as with the HOG, we employ BoW with k-means dictionary, k-d
tree, and pyramid matching with max-pooling and LLC.

Dense SIFT and PHOW: Dense SIFT is a fast computation version of SIFT which
employs a flat rather than a Gaussian window. The descriptors are densely extracted
at a fixed scale and orientation. The keypoints are sampled at 8 pixels step and
with a spatial bin of 4 pixels wide. We compare grayscale dense SIFT versus PHOW
[BZM07a], which is a dense SIFT variant extracted at multiple scales and with color
information. We report results with 2 scales, using RGB and HSV color channels,
and implementing different BoW techniques. Namely, nearest-neighbor search using
a k-d tree for fast querying in high dimensional data, classical euclidean search, and
max-pooling strategy from a spatial pyramid of 2 levels using LLC coding.

GIST: GIST is a descriptor specially crafted for scene recognition with the idea of
capturing [OT01] the spatial structure of scenes. It uses a low dimensional repre-
sentation with five perceptual dimensions, namely naturalness, openness, roughness,
expansion, and ruggedness. In the implementation, dimensions are estimated with
spectral and spatial information from Gabor filters in the form of steerable pyramids
using 8 orientations and 4 scales. In order to make GIST represent global image prop-
erties, the local responses are averaged over 4x4 grids which lead to a 8x4x16 = 512
dimension feature.
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6.4.2 Texture-Based Features

Local Binary Patterns: Local Binary Pattern (LBP) [OPH96] is a feature suitable for
representing texture, faces, and materials. Since scenes in many situations are well
represented by texture [RM04], it is no coincidence that LBP has shown to be useful
in scene recognition [Xia+10]. LBP descriptor is constructed by comparison of pix-
els with their neighbors and recording the sign of differences. In an 8-neighborhood
comparison, an 8-bit binary number is obtained. The sum of occurrences of the bi-
nary patterns within a window in a histogram leads to the LBP feature vector. In
this work, we employ a rotation invariant and multiresolution LBP variant [OPM02],
which enhances the original LBP idea by using a circular pattern neighborhood that
can vary in size to account for scale. Each pattern is also rotated to the minimum
value to achieve rotation invariance.

Local Binary Pattern Histogram Fourier: We also evaluate the variant Local Binary
Pattern Histogram Fourier(LBP-HF) [Aho+09], to verify whether the better rotation
normalization claimed by the method increases performance with our omni-images.
Instead of normalizing rotation locally, LBP-HF computes from non-uniform LBP his-
tograms, a global rotation invariant feature from the Fourier magnitude spectrum.

6.4.3 Color-Based Features

Color Histograms: Large scale scene recognition [Xia+14] has shown that color has
a significant correlation with hundreds of different scenes categories. However, color
histograms performance is well below gradient-based methods such as HOG or SIFT,
since they only record global color composition. Thus, discarding important spatial
information which is important to discern images belonging to different categories,
but with a similar color distribution. The color histogram features evaluated in this
study consist of joint color histograms of 8x8x8 = 512 bins using RGB color space. We
evaluate also HSV joint histograms of 10x10x5 = 500 bins and L*a*b with 5x10x10 =
500 bins.

Color Name Feature: We also extract Color Name features [VDW+09], which are
more localized models than color histograms to check whether the spatial information
increases performance improvement in our problem. Color Name Features use 8,12,
and 16-pixel patches with 2 pyramid levels and 4-pixel spacing. We use a dictionary of
256 images and 50 colors. The code implementation is publically available [Kho+12].
Color names are automatically learned from images collected on the Internet using
Probabilistic Latent Semantic Analysis (PLSA). This technique allows us to overcome
noisy query results in the image retrieval domain and to improve performance.

6.4.4 Shape-Based Features

Self Similarity Images (SSIM): The SSIM descriptor [SI07] computes the internal lay-
out of local self-similarities in images. SSIM can match images having a similar shape
and spatial layout while being robust to large appearance variations in color, texture,
photometric properties, edges, and small local affine deformations. The descriptor
measures internal self-similarity by comparing patches (typically 5x5 pixels) with a
larger surrounding (region of 40 pixels radius). The sum of squared differences (SSD)
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between patch colors in CIE L*a*b space, leads to a correlation map, which is further
discretized using a log-polar representation with 4-radial intervals and 20 angles. The
descriptor thus has 80 values and records the maximum value inside each bin. The fi-
nal processing consists of a [0− 1] range normalization. We compute SSIM descriptors
with the code found in [CPZ09], which uses a BoW to collect all per patch descriptor
occurrences in a histogram before a visual-word mapping. The visual vocabulary is
built with k-means clustering with thousands of SSIM descriptors from a large set of
images.

6.5 Learned Visual Features

In the previous section, we presented some of the most important hand-engineered
features that dominated the last decade in many visual recognition tasks. In the
recent past, after the publication of the AlexNet [KSH12] and the advent of the GPU
computation era, computer vision has been revolutionized to achieve human-like and
above performance in object, place, activity recognition to mention a few.

Learned-features, in contrast, to hand-engineered ones, are derived automatically
from data using Convolutional Neural Networks (CNN) [LeC+98]. Some examples
are [KSH12] and more recently [Ren+15], which are trained using millions of images
from the ImageNet dataset [Den+09].

Convolutional networks, opposed to traditional multilayer perceptron networks,
have sparse connectivity linking neurons locally between adjacent layers. Thus, recep-
tive field, parameters, size, and memory are drastically reduced, allowing for inputs
of raw pixels from larger images and avoiding prohibitive huge training sets to fit the
several order of magnitude parameter space of the densely connected counterparts.
CNNs also have the advantage of not discarding the image topology, thus, render
them ideal for grid-like data structures such as images. Thorough convolutions (in-
stead of matrix multiplications of traditional networks), parameters are shared per
layer.

A non-linearity and pooling on top of the convolutional layer, make them very
robust to image variations, such as scale, rotation, distortions. CNN are trained with
back-propagation which leads to a feature extractor of increasing order as the layer
gets deeper. The learned-features have shown to be general enough to beat state-of-
the-art hand-tuned features in visual tasks different from the one they were trained
[SR+14; Xia+14; SZ14; Ren+15].

In the following, we summarize and evaluate some of the most significant CNN
architectures found in the literature.

AlexNet: AlexNet proposed by Krizhevsky et al. [KSH12] is a convolutional neu-
ral network trained with 1.2 million images from the ImageNet Dataset [Den+09] to
classify 1000 object categories. The network consists of 8 layers: The first 5 are convo-
lutional and the last 3 are fully connected. AlexNet implements in its convolutional
layers Rectified Linear Units (ReLU), which converge faster than tanh, and in some
layers, contrast normalization and max-pooling. Refer to [KSH12] for details. Dropout
technique, which randomly drop units and their connections, is used in the first two
fully-connected layers. Dropout serves as a mechanism for avoiding over-fitting. The
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fully connected layers have 4096 neurons. AlexNet with its 60 million parameters
and 650000 neurons, requires different data augmentation to prevent over-fitting. The
training data is increased by a factor of 2048 using random cropping, horizontal flip-
ping, and RGB intensities jittering.

CaffeNet: The Caffe reference model (CaffeNet) [Jia+14] is basically the same
AlexNet architecture. However, with max-pooling and normalization layers inter-
changed, and training is not augmented with RGB intensities jittering.

OverFeat: The OverFeat network [Ser+13] has a similar layer architecture to the
AlexNet with the following differences: the first and second layers have a larger di-
mension due to stride of 2 pixels instead of 4. However, max-pooling does not over-
lap. OverFeat also avoids contrast normalization and trains with crop variations and
horizontal flips but no intensity jittering.

Zeiler & Fergus: The network proposed by Zeiler & Fergus [ZF14] is a modification
of the AlexNet. They improve it by changing the 11x11 filters to 7x7 in the first layer,
and by reducing the stride from 4 to 2. With these changes, the network can reduce
aliasing artifacts, and retain more information in the first and second layer features.

VGGNet: VGGNet was one of the first very deep convolutional networks proposed
by Simonyan et al. [SZ14] achieving state of the art object recognition in the ImageNet
challenge. One of the key ideas of VGGNet was to reduce the filter size to 3x3 and
pooling to 2x2 , while increasing deep to 16-19 layers. This way, the number of pa-
rameters remain similar to a shallower net. The features of the VGGNet recorded
an excellent performance on other recognition tasks and generalized well on a wide
range of datasets. The end classifier was trained with SVM and without fine-tuning.
This network was inspired by AlexNet and was outfitted with ReLU units and with-
out local normalization.

GoogLeNet: GoogLeNet [Sze+15] is a network of 22 layers depth designed to in-
crease depth and width while keeping computations constant. The use of 1x1, 3x3,
and 5x5 filters and reducing spatial resolution drastically in the first layers allows it
to decrease computations. Thus, GoogLeNet can achieve a deeper layer-architecture.
The training follows a similar procedure to AlexNet with 1.2M images from the Im-
ageNet dataset. However, data augmentation additionally to cropping jittering in-
cluded aspect ratio and photometric distortions.

ResNet: ResNet [Ren+15] is a very deep neural network with 152 layers (8 times
larger than VGGNet and 7 times GoogLeNet). ResNet was able to achieve such large
depth architecture by implementing learning residual functions that reference the
input layers. This learning technique prevents a degradation problem found on large
unreferenced architectures. There exist several ResNet models with 51, 101, and 152
layers, with each having increasing accuracy.

6.6 Classification

We investigate linear Support Vector Machines (SVM) and kernelized SVM classifiers.
The multi-class SVM is handled with one-vs-all training.

Combination and fusion of base predictors (trained individually with the features
above), is also considered to evaluate the performance increase of ensemble-based
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systems [Pol06], which idea is to produce a stronger classifier. We consider sim-
ple non-learning methods such as: majority voting and weighted voting up to more
advanced ensemble methods with meta-classifiers and kernels fusion. We conduct
several experiments to conclude which combinations and techniques are more appro-
priate to our problem.

6.6.1 Support Vector Machines

Support Vector Machines (SVM) [CV95] are called large margin binary classifiers since
they learn a hyperplane, which separates classes with the largest margin to the nearest
training sample of any class. Given training data in the form of pairs: {(xi, yi );
i = 1, ..., n} with yi ∈ {−1,+1}, xi ∈ Rn, the goal is to find the hyperplane (assuming
separable data) with larger margin, following the constraint:

yi(wTxi + b) ≥ 1 (6.6.1)

where the margin 2
kwk is found to be maximum by solving the following optimiza-

tion problem:

min
1
2
kwk2,

s.t. yi(wTxi + b) ≥ 1

In the case of non-linearly separable data, constraints cannot be satisfied; therefore
a soft margin term is introduced,

min
1
2
kwk2 + C ∑

i
ξi,

s.t. yi(wTxi + b) ≥ 1 − ξi, ξi ≥ 0

The positive slack variables ξ > 0 and the regularization parameter C relax the
constraints by introducing a further cost with the following behavior:

• ξi = 0 the point is on the correct margin boundary

• 0 < ξi ≤ 1 the point is between the margin and the correct side of the hyper-
plane. (margin violation)

• ξi > 1 the point lies on the wrong side of the boundary (misclassified).

While the parameter C tries to find a compromise between two conflicting objec-
tives: maximizing the margin and minimizing the number of errors on the training
data. A larger C makes constraints hard to ignore; therefore the margin gets nar-
row, and the sum of error term dominates. A smaller C allows the constraints to be
ignored, and the margin gets large since the sum of errors term is negligible.

The optimization with a soft margin can be solved with Lagrange multipliers.
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L =
1
2
kwk2 − ∑

i
αi(yi(wTxi + b)− 1 + ξi)) (6.6.2)

By setting the partial derivatives of the Lagrangian ∂L
∂wi

= 0, ∂L
∂bi

= 0, and ∂L
∂ξi

= 0,
the problem can be written in its dual form:

max ∑
i

αi −
1
2 ∑

ij
αiαjyiyjxT

i xj

s.t. ∑
i

αiyi = 0, 0 ≤ αi ≤ C

solving for α, w becomes,

w = ∑
i

αiyixi, (6.6.3)

and the classifier function can be written as a sum over support vectors:

f (x) = wTx + b = ∑
i

αiyixT
i x + b (6.6.4)

Support vectors are vectors xi for which αi > 0. The function f (·) is conveniently
expressed in term of dot products xT

i x, which can be replaced with kernels (see next
section). The classifier decision function for prediction is sign( f (x)).

Nonlinear SVM

SVM can be extended beyond linear models using kernel functions. By mapping the
input features with a non-linear function φ(x), the classifier in equation 6.6.4 becomes:

∑
i

αiyiφ(xi)
Tφ(x) + b = ∑

i
αiyiK(xi, x) + b (6.6.5)

where K is a kernel function defined as:

K(x, x0) = φ(x)Tφ(x0) (6.6.6)

and maps feature vectors onto a higher dimensional space with the idea that on the
transformed space, the hyperplane separation might become non-linear. The mapping
φ(x) can be very expensive to compute since it can be a very high dimensional vector.
However, with kernels, only the inexpensive inner product embedded in K need to be
calculated, avoiding the explicit mapping. This shortcut is the so-called kernel trick
in the literature.

So that kernels can be expressed as inner products in high dimensional spaces while
keeping computational complexity almost unchanged, they must satisfy the Mercer’s
condition. This condition states that a kernel must be a symmetric function, and the
kernel matrix must be positive semidefinite.

In this work, we evaluate the following kernels:
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Klin(x, x0) = xTx0 (6.6.7)

Krb f (x, x0) = exp −kx − x0k2

2σ2 (6.6.8)

Kχ2(x, x0) =
n

∑
i=1

2xix0i
(xi + x0i)

(6.6.9)

Keχ2(x, x0) = exp(−µDχ2(x, x0)) (6.6.10)

Khi(x, x0) =
N

∑
i=1

min(xi, x0i) (6.6.11)

Klin is the lineal kernel, Krb f is the radial basis function kernel (Gaussian), Kχ2 is
the chi-square distance kernel, Keχ2 is the exponential chi-square version, and Khi is
the histogram intersection kernel.

Equation 6.6.9 is a positive semi-definite chi-square version [VZ12]. While 6.6.10
uses the conventional Dχ2 distance formulation.

Dχ2(x, x0) =
1
2

n

∑
i=1

(xi − x0i)
2

(xi + x0i)
(6.6.12)

However, in order to incorporate Dχ2 into the SVM, an extended Gaussian kernel
[Zha+07] is used and denoted as Keχ2 .

We use the publicly available library code for Support Vector Machines LIBSVM
[CL11]. This implementation provides an efficient implementation and Kernel sup-
port.

Multiclass SVM

SVM are binary classifiers and need to be extended for solving the multi-class prob-
lem. In this work, we use the one-vs-all technique, where K classifiers are trained
with a total K number of classes. Each classifier separates a class k of the training
examples from the rest of the classes. While predicting the output ŷ of an unseen
sample x, all classifiers are presented with x, and the larger output score is chosen as
the prediction:

ŷ = argmax
k∈{1...K}

fk(x) (6.6.13)

In this chapter, we investigate different ensemble strategies. We start with kernel
combinations, followed by stacked generalization in which a meta-classifier is trained
with the score outputs of the base classifiers. We also investigate simple non-learning
rules to check whether performance is similar to the meta-classifiers, which require
an extra learning stage.

Kernel Combination

Kernel combination consists of a weighted combination of individual kernels based
on accuracy:
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Kall = w1KSi f t + w2KHog + w3KGist + ... + wNKN (6.6.14)

We evaluate different kernel weighting strategies for determining wi (i = 1..N). The
simplest approach is to normalize according to the accuracy determined thorough
cross-validation

wi =
accuracyKi

∑N
j=1 accuracyKj

(6.6.15)

The second approach employs the following heuristic [GA11]:

wi =
accuracyKi

− δ

∑N
j=1(accuracyKj

− δ)
(6.6.16)

where the accuracy of each kernel is compared with a threshold δ. We set δ to the
lowest kernel accuracy, thereby, decreasing the effect of low-performance kernels.

The third weighting we evaluate is proposed by Xiao et al. [Xia+14], where the
weighting is the accuracy with respect to the median of the accuracies weighted to
the fourth power

wi =

 
accuracyKi

median({accuracyK1
, accuracyK2

, . . . , accuracyKN
})

!4

(6.6.17)

Non Learning Combinations

Majority Voting: There are different variants of majority voting classifiers (e.g. unan-
imous voting, simple-majority, plurality voting) [Pol06]. Unanimous voting requires
all voting to agree. Simple-majority needs at least one more than half the number of
votes. In this work, we consider plurality voting (or simply majority voting), where
the chosen class is the one that receives the largest number of votes.

C(x) = mode{h1(x), h2(x), . . . , hk(x)} (6.6.18)

Weighted Majority Voting: Knowing that some base classifiers are more accurate,
we can weight their decisions to try improve overall performance,

C(x) = argmax
i

C

∑
j=1

wj I(hj(x) = i) (6.6.19)

where I(·) is the indicator function. Similar to the kernel combination ( equation
6.6.16), cross-validation accuracy is employed as a weighting factor. By normalizing
the weights, we can ensure they add up to one.

6.7 Place Recognition Results

The dataset for this study consists of 520 images with ground truth labels. There
are 130 images of each of the classes: corridor, room, doorway, and open space (See
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Fig. 6.2). The images were selected at different building locations from the COLD
database [PC09] and from the Technical University of Dortmund. Special care was
taken to choose instances with minimum overlap among the scenes; thus, evaluating
better the true generalization ability of the system as training and testing are less
correlated.

Figure 6.2: Examples of images of Dortmund (first column) and COLD dataset (Freiburg,
Saarbrucken, Ljubljana). The first row shows examples of the corridor category; second row:
doorway; third row: room; and the last row: open space.

The distribution of classes was equally extracted from the locations: Freiburg, Saar-
brücken, Ljubljana, and TU Dortmund. The exception was the open-space category,
which had very few examples in the COLD dataset. Therefore, 80% of open-space
data comes from TU-Dortmund images.

The examples were randomly partitioned into 50% training and 50% testing with
the holdout method five times. Results report the average classification accuracy over
these five repetitions. To avoid the over-fitting in such a small dataset, especially with
feature vectors of large dimensions, we augment the training data with more images.
Each image was rotated 4 times 45◦, and was mirrored horizontally and vertically,
thereby, enlarging the training data 6 times.

Table 6.1 summarizes the classification performance of the base classifiers using
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SVM for each of the engineered features and the corresponding best performing ker-
nel. Table 6.2 is shown for comparison purposes and evaluates the same features
under linear SVMs. PHOW features perform best, achieving 88% overall accuracy
with a kernelized SVM and 85% using a linear SVM. In general, Kernelized SVM
outperforms linear SVM in the majority of experiments. DenseSIFT and HOG3x3 fea-
tures are close below PHOW. The results show that gradient-based methods dominate
the upper positions (PHOW, HOG, SIFT).

GIST is the only gradient technique without BoW, and 86% accuracy is very close
to HOG3x3 with BoW. Texture features (LBP) are in the middle of the ranking and
also do not employ the BoW framework. SSIM close to 82% accuracy provides an
alternative information source to gradient.

Color (between 55-75% accuracy) is well below the other features and does not
provide as a good representation for places. Using different variants of BoW does not
seem to have a contribution as we notice that the classical vector quantization with
k-means achieves very similar results to the k-d tree representation.

The combination of base-classifiers with engineered-features with the non-learning
combinations: majority voting, weighted voting, and the median is summarized in
Table 6.3. Accuracy improves in all tested combinations compared to single base
classifiers. It scales up to 89.9% combining different base classifiers and features.
Weighted majority has slightly better results compared to majority voting. Median
combination performs slightly below voting strategies.

Table 6.4 shows the results of SVM with Kernel combinations. Kernel combination
achieves the best accuracy of all systems evaluated with an overall accuracy of 90.8%
combining the features PHOW, denseSIFT, HOG, and GIST. We do not notice a signif-
icant improvement by using any particular weighting formula. The Kernel weighting
raised to the fourth power in equation 6.6.17 leads to almost the same results as with
equations: 6.6.15, and 6.6.16.

The learned-from-data features evaluation is summarized in Table 6.5. We notice
that these general-purpose features exhibit good generalization in the experiments,
although they were learned in a completely different recognition task setup. The
best learned-feature is the ResNet with 152 layers architecture and achieves 80.4 %
accuracy. Thus, it is comparable with denseSIFT using a linear SVM. In general,
the learned-features in this experiment perform below the engineered features. The
reason can be partly attributed to the fact that engineered features were tuned us-
ing omnidirectional images of the same recognition task, whereas the learning in the
learned-features was carried out with monocular images and using a different recog-
nition task (object recognition). We expect the performance of the learned-features to
increase significantly by fine-tuning them with a larger set of omnidirectional images
and using examples of place category recognition.

6.8 Summary

This chapter has presented a place category recognition system able to classify the
locations: room, corridor, doorway, and open-space in omnidirectional images. The
developed recognition system is pivotal in more advanced semantic-based robot nav-
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Table 6.1: Kernelized SVM Classifiers with Best Performance per Feature

Name Feature Kernel
Accuracy in %

C|D|O|R| Overall)

C1 PHOW Grayscale + BoW with k-d tree Keχ2 91.4|85.2|88.0|88.6 | 88.3
C2 PHOW HSV + BoW with L2 distance Keχ2 86.8|81.9|91.7|90.8 | 87.7
C3 PHOW RGB + BoW with L2 distance Keχ2 90.5|83.1|86.8|89.5 | 87.5
C4 Dense SIFT + BoW with L2 distance Keχ2 88.6|80.6|88.6|90.5 | 87.1
C5 HOG 3x3 + BoW with Max Pooling + LLC Krb f 88.6|81.2|89.8|87.1 | 86.7
C6 GIST Krb f 84.6|84.9|86.2|88.3 | 86.0
C7 HOG 2x2 + BoW with L2 distance Keχ2 88.0|80.3|86.8|88.0 | 85.8
C8 Sparse SIFT + BoW with L2 distance Khi 86.5|79.4|85.5|85.8 | 84.3
C9 LBP Krb f 88.3|80.0|83.1|82.5 | 83.5
C10 LBP Fourier Krb f 88.3|79.7|82.8|83.1 | 83.5
C11 SSIM Krb f 82.8|79.7|81.5|83.1 | 81.8
C12 Color Name 256 Krb f 76.3|62.5|86.5|76.6 | 75.5
C13 Color Name 64 Krb f 74.5|61.8|79.4|73.5 | 72.3
C14 Color Histogram RGB Keχ2 74.5|53.2|80.0|72.0 | 69.9
C15 Color Histogram HSV Keχ2 69.2|54.2|78.8|66.5 | 67.2
C16 Color Histogram L*a*b Keχ2 52.3|43.7|69.5|53.2 | 54.7

Table 6.2: Linear SVM Classifiers with Best Performance per Feature

Name Feature Kernel
Accuracy in %

C|D|O|R| Overall)

L1 PHOW Grayscale + BoW with k-d tree Klin 88.3|85.8|81.2|87.1 | 85.6
L2 PHOW HSV + BoW with k-d tree Klin 85.2|79.4|86.8|90.2 | 85.4
L3 PHOW RGB + BoW with k-d tree Klin 88.3|82.2|82.2|88.3 | 85.2
L4 HOG 3x3 + BoW with Max Pooling + LLC Klin 85.2|78.8|84.6|83.7 | 83.1
L5 HOG 2x2 + BoW with L2 distance Klin 85.8|77.2|83.7|82.2 | 82.2
L6 Sparse SIFT + BoW with L2 distance Klin 82.5|79.1|83.4|83.7 | 82.2
L7 Dense SIFT + BoW with L2 distance Klin 83.4|74.5|83.1|82.2 | 80.8
L8 SSIM Klin 78.8|80.0|75.7|79.1 | 78.4
L9 LBP Klin 84.3|70.8|72.9|77.2 | 76.3
L10 GIST Klin 76.0|73.2|67.4|76.3 | 73.2
L11 LBP Fourier Klin 75.7|67.4|77.8|68.6 | 72.4
L12 Color Name 256 Klin 71.4|53.2|80.9|66.8 | 68.1
L13 Color Name 64 Klin 60.0|48.0|74.2|58.5 | 60.2
L14 Color Histogram RGB Klin 72.6|17.2|72.0|64.3 | 56.5
L15 Color Histogram HSV Klin 62.5|21.5|65.5|60.0 | 52.4
L16 Color Histogram L*a*b Klin 46.5|35.4|50.8|50.8 | 45.8
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Table 6.3: Ensemble Performance Results with Non-Learning Combinations

Name Classifier Combination
Accuracy in %

C|D|O|R| Overall)

NL1 PHOW(C1) + Dense SIFT(C4)
Median 83.7|84.6|84.9|88.0| 85.3
Majority 96.3|81.5|89.5|86.5| 88.5

Weighted Majority 91.4|85.2|88.0|88.6| 88.3

NL2 PHOW(C1) + Dense SIFT(C4) +
HOG(C5)

Median 91.1|84.3|91.4|89.8| 89.2
Majority 92.6|83.4|90.8|89.8| 89.2

Weighted Majority 92.3|84.0|91.1|89.8| 89.3

NL3 PHOW(C1) + Dense SIFT(C4) +
HOG(C5) + GIST(C6)

Median 87.4|86.2|90.8|88.9| 88.3
Majority 94.8|84.9|91.4|88.3| 89.8

Weighted Majority 93.5|84.9|90.8|89.2| 89.6

NL4 PHOW(C1) + Dense SIFT(C4) +
HOG(C5) + GIST(C6) + LBP(C9)

Median 90.8|86.5|91.4|89.5| 89.5
Majority 94.5|85.2|90.2|89.5| 89.8

Weighted Majority 93.5|85.2|90.8|89.8| 89.8

NL5
PHOW(C1) + Dense SIFT(C4) +
HOG(C5) + GIST(C6) + LBP(C9) +
SSIM(C11)

Median 88.3|85.8|89.8|88.3| 88.1
Majority 94.8|84.9|90.8|88.3| 89.7

Weighted Majority 94.2|84.9|91.1|89.5| 89.9

NL6
PHOW(C1) + Dense SIFT(C4) +
HOG(C5) + GIST(C6) + LBP(C9) +
SSIM(C11) + COLOR(C12)

Median 89.8|86.8|92.0|88.9| 89.4
Majority 92.6|84.3|91.1|89.2| 89.3

Weighted Majority 92.6|84.3|91.1|89.5| 89.4

NL7 Best 5: C1 + C2 + C3 + C4 + C5
Median 91.1|85.5|91.4|90.2| 89.5
Majority 92.0|84.6|90.5|90.2| 89.3

Weighted Majority 91.4|84.9|90.5|90.2| 89.2

NL8 All Kernels: C1 + C2 + . . . + C16
Median 87.4|86.5|91.4|90.2| 88.8
Majority 91.1|83.1|90.5|91.1| 88.9

Weighted Majority 91.1|83.1|90.5|91.1| 88.9
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Table 6.4: Kernel Combination Performance Results

Name Kernels Combination
Accuracy in %

C|D|O|R| Overall)

KC1 PHOW(C1) + Dense SIFT(C4)
Eq. 6.6.15 88.3|84.0|90.5|90.8| 88.4
Eq. 6.6.16 91.4|85.2|88.0|88.6| 88.3
Eq. 6.6.17 88.6|84.0|90.2|90.8| 88.4

KC2 PHOW(C1) + Dense SIFT(C4) +
HOG(C5)

Eq. 6.6.15 88.9|84.6|91.1|92.0| 89.2
Eq. 6.6.16 89.2|85.2|88.3|90.8| 88.4
Eq. 6.6.17 89.2|84.6|91.1|92.0| 89.2

KC3 PHOW(C1) + Dense SIFT(C4) +
HOG(C5) + GIST(C6)

Eq. 6.6.15 92.0|87.7|91.7|92.0| 90.8
Eq. 6.6.16 89.5|83.7|91.1|91.4| 88.9
Eq. 6.6.17 92.0|87.7|91.7|91.4| 90.7

KC4 PHOW(C1) + Dense SIFT(C4) +
HOG(C5) + GIST(C6) + LBP(C9)

Eq. 6.6.15 92.3|86.8|90.8|91.1| 90.2
Eq. 6.6.16 92.0|87.1|92.3|91.1| 90.6
Eq. 6.6.17 92.3|86.8|90.8|91.1| 90.2

KC5
PHOW(C1) + Dense SIFT(C4) +
HOG(C5) + GIST(C6) + LBP(C9) +
SSIM(C11)

Eq. 6.6.15 92.3|86.5|92.3|91.4| 90.6
Eq. 6.6.16 92.6|86.5|91.1|90.8| 90.2
Eq. 6.6.17 92.3|86.5|92.3|91.4| 90.6

KC6
PHOW(C1) + Dense SIFT(C4) +
HOG(C5) + GIST(C6) + LBP(C9) +
SSIM(C11) + COLOR(C12)

Eq. 6.6.15 91.7|84.6|91.4|90.5| 89.5
Eq. 6.6.16 92.3|86.5|92.0|91.4| 90.5
Eq. 6.6.17 92.3|85.8|91.4|90.5| 90.0

KC7 Best 5: (C1 + C2 + C3 + C4 + C5)
Eq. 6.6.15 89.5|83.1|90.8|90.8| 88.5
Eq. 6.6.16 89.8|84.0|89.8|91.1| 88.7
Eq. 6.6.17 89.5|83.4|90.8|90.8| 88.6

KC8 All Kernels: C1 + C2 + . . . + C16
Eq. 6.6.15 87.4|80.6|90.2|90.2| 87.1
Eq. 6.6.16 89.2|84.9|92.0|91.7| 89.5
Eq. 6.6.17 88.3|84.3|92.3|91.4| 89.1
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Table 6.5: Performance Results with Learned-features

Name Feature Kernel
Accuracy in %

C|D|O|R| Overall)

CNN1 ResNet 152 Krb f 80.6|84.9|80.3|75.7 | 80.4
CNN2 CaffeNet Krb f 81.8|69.5|78.5|80.0 | 77.5
CNN3 ResNet 50 Kkl2 80.9|73.2|81.2|72.9 | 77.1
CNN4 AlexNet Krb f 81.2|67.4|77.8|77.8 | 76.1
CNN5 ResNet 101 Krb f 75.1|78.2|77.8|72.3 | 75.8
CNN6 GoogLeNet Krb f 80.6|69.8|72.3|75.1 | 74.5
CNN7 Zeiler & Fergus Kkl1 80.3|66.8|65.8|76.6 | 72.4
CNN8 OverFeat Krb f 71.4|75.7|77.2|60.3 | 71.2
CNN9 VGGNet Kkl1 75.1|64.3|68.3|74.8 | 70.6

igation. As we shall see in the following chapters, the place category information
will allow the robot to build a semantic map and perform a more complex local nav-
igation, which exploits the place context. In this chapter, we also evaluated several
hand-engineered features and learned-from-data representations. For our particu-
lar task with such a small omnidirectional images dataset, the engineered features
showed better results. However, the potential of learned-features is promising, since
they were able to generalize to omni-images , although they were learned in a com-
pletely different task and using monocular images. Similar to previous chapters, the
place category recognition also benefits from the combination of heterogeneous fea-
tures. We analyzed non-learning and learning combinations. The latter performed
better by including an extra learning state.
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7
Behavior-Based Local Semantic

Navigation

7.1 Introduction

Mobile robots are being shifted very quickly from controlled setups in industries to
unstructured human environments to perform progressively more complex tasks. In
fact, service robotics represents the fastest growing market in the robotics sector with
new exciting applications emerging every year in diverse areas such as inspection,
surveillance, assistance, rescue, and entertainment. Nevertheless, fully autonomous
robots dealing with complex human-robot interaction still require profound semantic
understanding to comprehend human navigation task descriptions in natural lan-
guage (e.g. follow the corridor and enter the room at the right doorway) and better
understand the world and its enclosed objects.

Autonomous navigation is one of the fundamental capabilities that a robot must
achieve. It involves global navigation (localization and path planning), and local nav-
igation (for collision avoidance). Proximity sensors such as laser range finders have
been used effectively over the past two decades to perform both types of navigation.
However, understanding the environment semantically from range is limited to rec-
ognizing a few semantic categories [MMSB05]. This limitation motivates the use of
visual data. In this work, we employ a wide field-of-view sensor that provides an
omnidirectional camera. Similar to a range laser finder, it captures the environment
globally and invariant under robot’s rotation, but provides a much richer semantic
information.

In this chapter, we propose a framework for local robot navigation (i.e. naviga-
tion not involving maps) based on visual behaviors that extract the information from
omnidirectional vision. In semantic navigation, rather than navigating with mere met-
ric pose instructions, robots require much more complex recognition and navigation
capabilities. This type of navigation is inspired by humans, where places are not de-
scribed in terms of coordinates in a global map, but with semantic data. The current
robot’s place is given a semantic category (e.g. room, corridor), while regions in the
scene are also labeled with semantic regions (e.g. door, wall, floor). The advantage
of using this representation is that the system can recover from errors occurring from
conflicts while activating behaviors in the current context. For example, activating a
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corridor-centering behavior inside a room.

The local semantic navigation scheme allows the robot to reach its targets by acti-
vating behaviors that can be parsed directly from natural language (e.g. get out of
the room). Starting points and goals are described by places, rather than by poses.
This kind of local navigation requires no prior map knowledge but relies on differ-
ent visual recognition modules such as place categorization, semantic segmentation,
free-space detection, and door detection. Each module assists in different basic visual
navigation behaviors.

7.2 Related Work

The literature reports several schemes to extract semantic information from visual
data in mobile robotics [KG15]. Most systems either recognize places semantically
[Rot+05; RMG12; Sün+16] or label portions of the image with semantic labels [NH08;
SBB12]. Nevertheless, very few systems present a coherent navigation framework
integrating the available semantic data.

In the context of map-based semantic navigation, [Tse+05] proposes a hybrid navi-
gation system for humans that combines classical geometric navigation with semantic
information using an ontology for modeling environmental concepts, rules, relation-
ships, and preferences of users. The authors in [URD11] propose an environmental
model for robot navigation that can handle metric, topological, and semantic features
for performing planning and reachability analysis given start and end-points (called
semantic positions). The proposed ontology enables the robot to reach the positions
using a graph, whose edges translate to robot actions.

Within the framework of local navigation, the autonomous city explorer robot
[Bau+09] is a very successful system that could travel about 1.5km in downtown Mu-
nich, finding its way without prior map or GPS signals merely by asking pedestrians
for heading information. The city explorer robot shares the focus on reliable and safe
local navigation between intermediate navigation points with our system. Our sys-
tem differs in that the start and end-points are described by semantic places (as in
[URD11]), rather than following directions pointed out by pedestrians.

Similar to our system that is based on visual behaviors, Narayanan et al. propose
to learn the behaviors using supervised learning to draw the relationships between
perception and the geometry of the environment [Nar+10; Nar+11a; Nar+12; Nar+13].
The learning performance by additionally classifying the scenario as corridor, open
space, and cluttered environments, and learn more specific behaviors per current
scenario is discussed in [Nar+11b].

In an effort to interpret human language and apply corresponding robot’s motor
actions, the work on [Mat+13] describes from the natural language perspective how
to parse the commands, and their system can translate English commands into se-
quences of desired actions. While their system operates with good results on simula-
tion, the handling of complex data from real robots is still open to research and needs
verification.
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7.3 System Architecture

7.3 System Architecture

The overall system architecture of the local semantic navigation, partly inspired by
[PHB14], is illustrated in Fig. 7.1. The system is divided into four modules. The place
category recognition module presented in chapter 6 assigns the current robot’s location
with four place labels: room, corridor, doorway, and open space. Place categorization
plays an important role in our system since it gives the robot context information for
activating the behaviors and allows the robot to recover from conflicting behaviors.
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Figure 7.1: Local navigation system architecture

The semantic segmentation module from chapter 4 identifies relevant navigation ob-
jects and regions in the image such as floor, walls, vertical structures, and obstacles in
the local environment.

Doors are very important objects in indoor navigation since they are located at
transition points between places. The door recognition module can identify doors in
the image and detect whether they are open or closed. Doors cannot be readily ex-
tracted from the semantic segmentation module since they often overlap with other
classes in the segmentation (floor and walls). To counter that, the door detection em-
ploys the bounding box representation, which in combination with a sliding window,
outputs a probability map of door locations on a constructed panorama. As opposed
to an omniview, where doors are radially distributed in the image; in the panorama,
all doors are oriented vertically. Thus, this avoids using specially crafted rotation
invariant descriptors as in [RMG12].

The local navigation module is composed of different navigation behaviors. The
high-level behaviors (e.g. get out/ enter the room) are constituted by several basic
behaviors such as goal point, obstacle avoidance, and door traversing which are acti-
vated sequentially with behavior arbitration. The semantic navigation gives the robot
context for activating the behaviors. The system checks the start point and endpoint
context. This logic allows the system to decide whether it is feasible or not the acti-
vation. This way the system can avoid activating, for example, a corridor following
behavior when no corridor is present or a door-passing behavior without a doorway.

Section 7.6 describes the behaviors in detail.
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7 Behavior-Based Local Semantic Navigation

7.4 Semantic Segmentation

The semantic segmentation module follows the approach presented in chapter 4. Fig-
ures 7.2 a-b show the output of the segmentation. The images are divided into super-
pixels where features: location, color, texture, shape, and line features are computed
and are the inputs to the semantic classifier. The Random Forest classification method
predicts with high accuracy the classes: ground region, clutter, and planar structures
illustrated in the figure with labels: green, red, and blue, respectively.

(a) (b) (c) (d)

Figure 7.2: Semantic segmentation and Bird’s-eye mapping a) Input image b) Semantic seg-
mentation c)-d) Corresponding bird’s-eye views

The omnidirectional image contains a substantial amount of distortion given the
nature of the hyperbolic mirror. To better assess the traversability of the terrain, dis-
tortions in the free-space image are corrected with the bird’s-eye mapping presented
in chapter 5 (See Fig. 7.2 c-d. The free-space in the bird’s eye projection corresponds
to a scaled version of the real metric scenario. Thereby, distances to obstacles can be
measured conveniently with Euclidean distance.

7.5 Door Detection

The door detection module is based on the histogram of oriented gradients (HOG)
descriptor [DT05]. HOG (explained in chapter 6) records the distribution of local
orientations in the gradient image and is useful for object detection where an object’s
appearance is predominately described by shape. HOG is robust to background noise,
illumination changes and clutter. In this work, we use the spatial pyramid extension
[BZM07b] using three pyramid levels. Since its bounding box can well represent a
door, we search in a constructed panorama image with a fixed-width sliding window
from left to right. The panorama image increases the classification performance since
HOG is not rotation invariant. The descriptors computed at each pyramid level are
stacked and inputted to a random forest classifier using a probabilistic output learned
from the training. Furthermore, we train a meta-classifier for determining whether
the door is open or closed. This meta-classifier includes additional features that better
capture the door surface. We compute mean, variance, entropy, solidity, MR8 texture
and floor continuity (See chapter 4 for more details). An output example of the door
detection classifier is shown in Fig.7.3.
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Figure 7.3: Door detection example. Left: Input omnidirectional image. Top: Panorama
image. Bottom: Probability output of the door classifier represented with the opacity of the
green mask and the superimposed orange line.

7.6 Navigation Behaviors

The behaviors’ starting and ending points are described by semantic places: {room,
corridor, doorway, hallway}. The low-level behaviors: {obstacle avoidance, goal point, corri-
dor following, door traversing} are the building blocks of more sophisticated high-level
behaviors such as: {enter, get_out, traverse, follow}. Each behavior is defined by the
triplet <start point, behavior, end point>. The system first checks if the behavior can
be activated in the current place context by querying the place recognition module
and reporting the status if the behavior can be executed in the current location. Ro-
bust navigation between start and goal is accomplished by arbitration of the basic
behaviors. The behavior obstacle avoidance is always present in the arbitration to avoid
collisions. Once the target goal is reached, the robot reports the status comparing the
current end place with the commanded one.

7.6.1 Goal Point Homing

The goal point behavior drives the robot from a current pose (x, y, θ) towards the
goal pose (x0, y0, θ0) using a feedback controller similar to [Ast99]. Fig. 7.4 illustrates
the variables involved in the goal computation. The system is transformed to polar
coordinates to obtain a smooth control law with the following relations:

ρ =
p
(x0 − x)2 + (y − y0)2

γ = atan2(y0 − y, x0 − x)− θ

φ = θ0 − θ + γ

(7.6.1)

velocity and rotational velocity signals follow the control law:

v = Kρρ

ω = Kγγ + Kφφ
(7.6.2)

in which the gains Kρ, Kγ and Kφ are tuned to achieve a smooth convergence and
Kρ > 0, Kγ − Kρ < 0 and Kφ < 0 ensure local stability.
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7 Behavior-Based Local Semantic Navigation

Figure 7.4: Goal point behavior involved variables.

7.6.2 Corridor Centering

This behavior is supposed to align the robot’s heading with the orientation of the
walls and centering the robot in the middle of a corridor. The robot’s heading error
and lateral offset are reflected in the distribution of the ground in robocentric coor-
dinates. For this purpose, the free-space region is characterized by image moments,
which approximate the free space distribution with an ellipse with major axis and
minor axis and orientation ϕ. Fig. 7.5 sketches the involved variables in the centering
behavior, where the segmented image is approximated with an ellipse. Considering
a look ahead point A positioned on the major axis at a distance d from the centroid,
the angles α and β are easily computed and describe the current robot’s offset and
misalignment to the corridor centerline at A.

Figure 7.5: Corridor centering behavior variables
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The image moments presented in chapter 4 allows us to calculate the major and
minor axis and the orientation as follows:

ϕ =
1
2

arctan
2µ11

µ20 − µ02
(7.6.3)

a =

r
2
h
µ20+µ02+

√
(µ20−µ02)2+4µ2

11)
i

µ00

b =

r
2
h
µ20+µ02−

√
(µ20−µ02)2+4µ2

11)
i

µ00

(7.6.4)

It is assumed that the semi major axis coincides with the orientation of the corridor
and that the displacement of the centroid from the image center captures the lateral
displacement of the robot within the corridor. The lateral and orientation errors are
computed with respect to a look-ahead point A located on the major axis at a distance
d from the centroid. The angle

α = −ϕ − β (7.6.5)

between the vectors that connect the image center and the centroid of the floor with
the look-ahead point, reflects the lateral offset. The angle

β = arctan
xc + d cos(ϕ + π/2)
yc + d sin(ϕ + π/2)

(7.6.6)

between the robot’s current heading and the major axis directly captures the orienta-
tion error.

In experiments with the pioneer 3DX robot, a distance d in pixels corresponding to
2m in the ground showed good centering results. The turn rate that aligns the robot
with the corridor middle line is computed from a similar stabilizing error feedback
proportional control law of the goal point behavior, but with translational velocity
constant.

v = v0
ω = Kαα + Kββ

(7.6.7)

The robot’s translational velocity remains constant v0 during the centering maneu-
ver. The gains Kα < 0 and Kβ < 0 are tuned to achieve a smooth convergence.

7.6.3 Obstacle Avoidance

This behavior monitors the frontal region of the omnidirectional image. The avoidance
region R is defined by the aperture angle ψ and the activation distance da as illustrated
in Fig. 7.6. If a non-floor pixel denoting an obstacle is detected inside R, the behavior
is activated. The perception is aggregated into the distance dm and heading φobst of
the closest obstacle. The perception is mapped onto a motor action

v = vadm/da
ω = sign(ωo)ωa sin φobst

(7.6.8)

The sign of the initial turn rate ωo depends on whether the obstacle is in the right
or left half-plane, and the robot then turns in the opposite direction. A turn flag
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(a)

Figure 7.6: Obstacle avoidance behavior variables

sign(ωo) memorizes this turning direction, which is maintained throughout the entire
avoidance maneuver. The relative heading of the obstacle modulates the magnitude
of the turn rate. The constants va and ωa denote the avoidance translational and
rotational velocities.

Figure 7.7: Examples showing the computed obstacle avoidance and corridor following vari-
ables. First column: input image. Second column: bird’s-eye view. Third column: Bird’s-eye
view of the free-space with the behavior variables.

The obstacle avoidance and corridor following computed variables for three ran-
dom images taken from different autonomous navigation experiments can be visual-
ized in Fig. 7.7. In the three sequences, the robot could follow the corridor, and avoid
obstacles when the activation distance was below a threshold distance of 1 meter. The
third example shows an image where the segmentation misclassifies a column and
weights the ellipse major line. In practice, this effect can be reduced by weighting
the pixels more near the center, where the segmentation and bird’s eye projection are
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more reliable.

7.6.4 Door Passing Behavior

Detected doors similar to [Pos+09] are tracked by estimating the robot’s current pose
(x, y, θ) with respect to the midpoint of the door poles. This pose is recovered using
bearing only localization, which triangulates door features from multiple captures
taken at different viewpoints. The built-in odometer estimates the relative robot mo-
tion between consecutive viewpoints. Since measurements and motion are both sub-
ject to noise and errors, the door pose is estimated with an extended Kalman filter
(EKF). Once the robot is aligned with the door’s front, a door traversing behavior is
activated using visual servoing to control the robot’s turn rate such that both door-
posts remain equilateral in the omnidirectional view.

The state prediction of the EKF relies on the odometry motion model, which de-
scribes the relative robot motion between two consecutive poses by three basic mo-
tions: an initial rotation δrot1 followed by a straight motion δtrans and a final rota-
tion δrot2. Fig. 7.8 illustrates the involved variables in the bearing only localization.
The odometry model predicts the relative robot motion between consecutive states
[TBF05]:

x−t =

x−t
y−t
θ−t

 =

x+t−1
y+t−1
θ+t−1

+

δtrans cos(θt−1 + δrot1)
δtrans sin(θt−1 + δrot1)

δrot1 + δrot2

 (7.6.9)

The superscript (-) denotes a priori estimate of the process model, and the super-
script (+) indicates a posteriori estimate after the correction step.

Figure 7.8: EKF bearing localization with respect to the door
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The door coordinate frame hxD, yDi shown in Fig. 7.8 is located at the center of the
door and the two robot poses are represented with the frames hx

0
R, y

0
Ri and hxR, yRi.

With simple trigonometric relations is possible to obtain a formula for the door pose
based on k1,2 (the magnitudes of the vectors r1,2) as:

xd
yd
θd

 =

(k1 cos(β1) + k2 cos(β2))/2
(k1 sin(β1) + k2 sin(β2))/2
arctan k1 sin(β1)−k2 sin(β2)

k1 cos(β1)−k2 sin(β2)

 (7.6.10)

Notice that in the figure r1,2 are represented with their unitary vectors r̂1,2. Finally,
the robot pose with respect to the door frame can be predicted using the bearing
angles:

zt =

−xd cos(θd)− yd sin(θd)
xd sin(θd)− yd cos(θd)

−θd

 (7.6.11)

In the correction step of the Kalman filter, the posteriori state estimate is obtained
as x+t = x−t + Kt(zt − x−t ). In which the Kalman gain Kt depends on the ratio of
measurement and process covariance. The Kalman filter is initialized based on the
first two consecutive measurements of door post bearings.

At short distances from the door, the Kalman filter is no longer applied, and the
door passing behavior is performed using visual servoing. The reason for this is that
depth information becomes unreliable at close range and is not needed for guiding
the robot through the door. Fig 7.9 shows the geometry and variables in the door
traversing behavior. The robot traverses the door at a constant velocity by centering
itself to the continuously tracked doorposts. The visual servoing controls the robot’s
turn rate, such both doorposts remain equilateral (β1 = β2) in the omnidirectional
view.

Figure 7.9: Door traversing behavior
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7.6.5 High-Level Behaviors

In this section, we show how high-level behaviors can be achieved using compositions
or combinations of basic behaviors to perform more specific tasks. Some examples in-
clude: enter room, get out room, follow corridor until next door, follow hallway, etc. A robot,
for instance standing in a corridor, could activate an enter room behavior by following
the sequence: First, detect a door. If the door center is not aligned with the robot
center, activate the corridor following behavior to move the robot until alignment us-
ing the position estimates from the EKF door localization. Subsequently, once the
robot is aligned with the door, rotate it until the robot’s front coincides with the door
opening. Then, activate the door traversing behavior with visual servoing to keep the
robot in the middle of the door poles. Once the robot is placed at the other side of the
door, query the place recognition module to detect whether the location corresponds
to a room and reports the status. Any of the navigation behaviors can be combined
with stop conditions by querying any of the modules. For example, a corridor follow-
ing behavior can be activated with a stop condition when the robot reaches a door.
Likewise, a hallway following behavior could be active until a wall is encountered.

7.7 Summary

This chapter has presented a local navigation system based on several basic visual
behaviors that exploit semantic visual data. Four key modules allow the robot to nav-
igate between semantic positions by activating either basic behaviors or compositions
to perform higher-level navigation.

The free-space module estimates the robot’s local drive-able regions upon all basic
behaviors rely. The door detection module allows the robot to transition between
indoor places and provides landmarks for local localization and traversing doors.
The place category recognition module is crucial for determining the context and
avoid conflicting behavior activations.

Finally, the navigation module describes the local navigation behaviors mapping
visual data into motor actions. Four basic behaviors are presented, goal point homing,
corridor centering, obstacle avoidance, and door passing.

Different future work opportunities can extend the presented local navigation by in-
tegrating the basic behaviors into a more elaborated navigation ontology and extend-
ing the system to handle more object and place categories as well as more high-level
behaviors.
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8
Map-Based Navigation and Semantic

Mapping

8.1 Introduction

Map-based navigation is one of the fundamental competences of a robot. To be truly
autonomous, a robot must localize itself to know its position anytime in the environ-
ment. This process requires abstracting the environment with a suitable map rep-
resentation. In this chapter, we deal with occupancy grid maps built from omnidi-
rectional images data. We employ occupancy grid maps for Montecarlo localization
and extend it further with deeper semantic knowledge annotating each map’s loca-
tion into a semantic map. Semantic mapping has emerged in recent years as a very
active research area [KG15], expanding robot capabilities significantly, allowing them
to operate under more complex tasks and with better human-robot communication.

Robot navigation has been traditionally tackled relying on geometric information
from range sensors. Laser 2D scanners and sonars have played a crucial role in map-
based navigation during the past two decades and still today with new lidar 3D point-
cloud technologies. However, in recent years, with the need for better perceptual
capabilities and richer representations of more complex robotic tasks, the navigation
problem has integrated increasingly more semantics captured from imaging devices.

This chapter introduces a semantic mapping and localization framework solely
based on visual information from omnidirectional cameras. The map representation
consists of an occupancy grid map, which is one of the most popular mapping tech-
niques currently in robotics. Occupancy grids are robust, easy to create, and update
but with the shortcoming that consume large memory space, which is problematic for
very large environments.

Very few approaches [San+11; YL13] have been proposed able to build purely
visual-based occupancy grids, which require a proper estimation of the robot’s free
space. The main motivation for using omnidirectional sensors lies in that they provide
a global view of the robot’s surroundings with a single image capture. This advan-
tage comes with the drawback of limited resolution and distortion of omnidirectional
images in comparison to conventional perspective vision sensors. Nonetheless, in
map building, the lack of high resolution does not play a crucial role in reliable de-
tection of free-space. The occupancy map building approach employs the free space
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transformed region into a bird’s-eye view which generates distortion-free local maps.

8.2 Related Work

Vision-based map building and localization are subjects already studied for a long
time, and the main techniques are surveyed in [FPRARM15; GFO15]. The majority of
schemes focus on monocular sensing devices employing different image features for
building either a metric or topological representation. Feature-based methods have
the advantage that can provide a compact and rich description of the environment in
terms of appearance and shape. However, they are not capable of a dense geometric
reconstruction as with occupancy grid maps [Thr02b].

Purely visual-based occupancy grid map building has been solved using differ-
ent approaches and sensors. Monocular cameras provide no depth data; therefore,
the mapping system must estimate depth either from a learned regressor [Pla+08] or
thorough free-space segmentation [San+11]. Stereo vision mapping systems [AG07]
provide depth but require textured scenes and known camera parameters to compute
disparity. Some proposed systems combine different information and sensor modali-
ties. Braillon et al. [Bra+06] fuse two partial occupancy grids from stereo vision and
optical flow and [AG07] combine an occupancy grid with a feature-based map.

Omnidirectional vision methods are close to our system by sharing the advantages
and limitations of the wide field of view. Plagemann et al. [Pla+10] project the om-
nidirectional image into a panoramic view to avoid polar indexing and implement
a Gaussian process regression to mimic a laser rangefinder (Similar to the visual
sonar [LV03] and closest color transitions distance [Men+06]). The mapping system
in [Mac+10] combines feature-based visual odometry (computed inside an annulus in
the omniview close to the center) with ray-casting obstacle distances on a segmented
floor omni-image. More recently, [LLD15] combines feature-based visual SLAM to ini-
tially compute accurate poses with a later 3D semi-dense reconstruction for visibility
reasoning. These steps result in a 2D occupancy grid map.

In the context of visual localization with omnidirectional images, the majority of
approaches have tackle problem feature-based [Men+04; MGS07; Cou+08; LPB12;
KUM13; Pay+14; LWF15]. A few approaches are able to localize on dense maps
(e.g. occupancy grids) [Men+06; Pla+10; YL13]. These schemes have adapted common
computer vision and robotics workflows to work on large distorted omni-images such
as: global features from Fourier Transform [Men+04; Pay+14]; laser rangefinder emu-
lation (with color changes [Men+06] ,with features and Gaussian regression [Pla+10];
and gradient changes [YL13] local features matching (pyramid matching kernels with
SURF) [MGS07], combination of global and local descriptors [Cou+08] and bag of
words using a Vector of Locally Aggregated Descriptors (VLAD) [KUM13].

Paya et al. [Pay+14] compare several popular global appearance descriptors such as
Fourier Signature, Principal Components Analysis, Histogram of Oriented Gradients
and Gist. Lourenco et al. [LPB12] proposed a system that localizes with monocular
images, which query omnidirectional visual maps with adapted SIFT descriptors. The
method in [LWF15] employs feature tracking and an estimator that fuse inertial and
odometry measurements.
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The main semantic mapping approaches proposed in the literature are surveyed in
[KG15] An early attempt of building a richer map representation consisted of anno-
tating occupancy maps with place labels coming from a classifier trained with laser
data encoded into different range-features [MMSB05]. An extension of this work by
[Rot+05] improved the disambiguation of similar place categories by integrating ob-
ject recognition within the scene with a monocular camera.

3D laser scans have been used to build semantic agricultural maps [WB10] and la-
beling of objects instead of places [NH08; SBB12]. More recently, [Sün+16] have build
an occupancy grid map that combines the advantages of the Bayes filter implemented
in the occupancy grid algorithm to capture temporal coherence of the sensor data
with the latest advances of place classification using convolutional neural networks.
The novelty of their work lies in the fact that their system can learn online new seman-
tic classes. This is a limitation of conventional computer vision classification, which
considers isolated images and its output is limited to the classes of the dataset where
they were trained (closed-set limitation).

Related to our work with omnidirectional images, Rituerto et al. [RMG12] present a
system that can label indoor topological maps using a rotation-invariant GIST [OT01]
descriptor adaptation. Their system employs a cascaded classifier to recognize first
places and transitions, and further, to discriminate them into corridors, rooms, doors,
and stairs. The difference with our system is that can build a dense semantic map with
richer image features useful for localization A related problem tackled by [ZBK07]
consists of grouping images associated to similar rooms and locations using clustering
according to convex places such as rooms but assigns no category to the places.

8.3 Semantic Mapping Framework

The overall system architecture of the semantic mapping framework was presented on
[Pos+18] and is illustrated in Fig. 8.1. The system is divided into five modules: (i) free
space in charge of segmenting the floor region (ii) inverse sensor model that computes
the probability of occupancy given the current omni-image floor segmentation (iii)
occupancy grid mapping in charge of updating the occupancy probability of each grid
cell with the Bayes filter (iv) place category recognition for assigning a semantic place to
each perception, and (v) semantic mapping that annotates the range-based occupancy
grid with the recognized semantic places maintaining a grid map for each place class.

8.3.1 Free Space Segmentation

The free space module oversees finding free-space with a binary floor/obstacle classi-
fier. We built upon chapter 4, Fig. 8.2 (b) and (c) illustrate an example of a superpixel
image and its corresponding floor segmentation. Another feasible segmentation can
be found in chapter 2, which fuses multiple segmentations from different cues with
an ensemble of experts.
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Figure 8.1: System architecture of the semantic mapping framework

(a) (b) (c)

(d) (e) (f)

Figure 8.2: Inverse sensor model a) Input Image b) Superpixels for semantic classification c)
Floor Segmentation d) Bird’s-eye projection of the input image e) Bird’s-eye view of the free
space f) Inverse Sensor model: gray color (0.5) represents unknown occupancy, white color
represents the free space, while color black corresponds to the occupied space. Notice the
Gaussian distribution around the occupied regions
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8.3.2 Inverse Sensor Model

The inverse sensor model is a key module that computes the probability of occupancy
conditioned on the floor segmentation. The process starts by correcting the non-
linear distortion induced by the omni-camera mirror. The bird’s eye transformation
introduced in chapter 5 is used for undistorting the image and projecting the floor
into a virtual plane, as illustrated in Fig. 8.2 (d)-(e). The second step of the inverse
model consists of assigning occupancy values for all grid cells as follows: free space
is represented with white pixels (unoccupied cells), whereas border edges indicate
occupied cells and are represented with black. Beyond the edges, the occupancy
information is unknown. Fig. 8.2 (f) depicts the inverse model cell assignation with
the above assumptions. Free space regions are assigned with 0, border regions with
1, and unknown occupancy with a value of 0.5.

The final step of the inverse model is to transform image coordinates to map coordi-
nates with a trained robust regression model [RL87]. We fit the regressor with ground
truth data from a laser rangefinder. For each laser ray, we sample in its direction, the
free-space segmentation range value in pixels (See Fig. 8.3). We train the model with
50 images and 180 scans for a total of 9000 training instances.

Figure 8.3: Laser ranger scans projected onto the omnidirectional image

8.3.3 Occupancy Grid Mapping

The map building process follows the occupancy grid algorithm [Thr02b], where a
posterior over the map is computed using a Bayes filter and a 2D cell map represen-
tation. Each grid cell mi has a binary value of occupancy of 0 or 1 ( corresponding to
free or occupied space).

The mapping problem consists of calculating the posterior over maps p(mi|z1:t, x1:t),
with z1:t the measurements and x1:t the poses up to time t. The log-odds formulation
of the Bayes filter [TBF05] is very convenient allowing faster computations by using
additions instead of multiplications and avoiding numerical instabilities when divid-
ing by probabilities close to zero. With odds(x) = p(x)

1−p(x) , the binary Bayes filter for
occupancy grid can be written as:
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log
p (mi | z1:t, x1:t)

1 − p (mi | z1:t, x1:t)
= log

p (mi | zt, xt)

1 − p (mi | zt, xt)
+

log
1 − p (mi)

p (mi)
+ log

p (mi | z1:t−1, x1:t−1)

1 − p (mi | z1:t−1, x1:t−1)
,

(8.3.1)

which can be simplified using the terms lt,i and lt−1,i to:

lt,i = log
p (mi | zt, xt)

1 − p (mi | zt, xt)
+ log

1 − p (mi)

p (mi)
+ lt−1,i (8.3.2)

The estimation is done recursively, and all cells are updated with newly available
sensor information. The probability of occupancy is calculated from the log-odds as:

p (mi | z1:t, x1:t) = 1 − 1
1 + exp {lt,i}

(8.3.3)

The probability p(mi) is the prior of occupancy and has a typical value of 0.5 (un-
known occupancy); the probability p(mi|zt, xt) is called the inverse sensor model with
values computed using the model derived above.

8.3.4 Place Classification

The place categorization module labels each image with the categories: room (R), cor-
ridor (C), doorway (D), and open room (O). Our approach classifies single omnidirec-
tional images rather than accumulating evidence over image sequences [RMG12]. The
place categorization analysis starts with extracting visual features with good scene de-
scription performance. The place category recognition follows the method introduced
in chapter 6.

8.3.5 Semantic Mapping

Occupancy grid

Open space

Room

Doorway

Corridor

Semantic map

Figure 8.4: Semantic map building. Each place class maintains a separated grid map parallel
to the occupancy grid map.

The semantic mapping module operates similar to the occupancy grid mapping. For
each place class, a separated grid map is maintained and updated with the Bayes
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filter equation 8.3.1 to ensure the temporal consistency of the perceptions. Instead of
recording occupancy, the semantic map updates the probability of each cell being the
current place category. Updates are made only in free-cells and cells within a circle of
the current location. A Gaussian modulates the updating to give more weight to the
cells near the current pose and decrease it on those further away. Fig. 8.4 illustrates
the semantic mapping process with each place class having a separated grid map
parallel to the occupancy map.

8.4 Semantic Mapping Results

The dataset in this study consists of a sensor data sequence of 2145 images acquired
at the Freiburg University location from the public available COLD database [PC09].
Odometry and robot poses are available; therefore, no SLAM pre-processing for esti-
mating the robot poses is necessary. Fig. 8.5 sketches the Freiburg floor plan and the
trajectory followed by the robot while acquiring the sensor data.

Region not mapped
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Figure 8.5: Sketch of the Freiburg floor plan (COLD Dataset). The dotted red line indicates
the sequence followed by the robot while acquiring the sensor data

The map building process with omnidirectional images as the only sensor data is
illustrated in Fig. 8.6. At t = 0 (first image on the left), the occupancy is unknown,
and all grid elements are assigned with p = 0.5 (color gray). After acquiring the first
sensor data at t = 1 (second image), the occupancy changes according to equation
8.3.2, updating cells covered by the regions of the local map. The map continues to
be updated from each incoming sensor data until frame 2145 (last image). Notice that
areas beyond the perception are not altered, whereas the probabilities of cells inside
the omniview are updated according to the local free space in the inverse sensor
model.

A comparison of the vision-based map versus the one constructed with a 2D laser
scanner is shown in Fig. 8.7. Notice that the laser rays reach far beyond the mapped
areas of the visual method. The visual-based map also shows some phantom artifacts
in the map caused by data misalignment (odometry and images). This is especially
noticeable at points of fast robot rotation where the optical flow becomes large. The
mismatch of images and odometry was visually confirmed by plotting all sensor data
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Figure 8.6: Incremental steps while building the occupancy grid map of Freiburg University
from the COLD dataset. The first image (top-left) corresponds to t = 0. The following steps
shown correspond to t = 1, 100, 1000, 1500 until last frame at t = 2745 (bottom-right image)

(odometry, laser, and images) frame by frame. The laser constructed map is not
affected by this effect since laser and odometry data match perfectly.

(a) (b)

Figure 8.7: Comparison of the map building using a laser rangefinder vs using visual data. a)
Map built using 2D laser scans (shown as reference) c) Map built using the proposed method
with omnidirectional images.

The resulting semantic map of the COLD dataset Freiburg sequence is shown in
Fig. 8.8. The map on the left corresponds to the semantic labels annotated within a
circle outlined from each point of the robot’s trajectory. The map on the right extends
the semantic labels to the nearest un-occupied cells with a region growing algorithm.
Notice that the robot to build a more accurate semantic map needs to visit all map
places to avoid miss-classifications with the label expansion.

8.5 Monte Carlo Localization with Omnidirectional Vision

This section describes the localization scheme followed by our robot. The approach
rest upon a sensor model of the omnivision segmentation that relies on scan match-
ing and provides the basis for the Monte Carlo localization. Probabilistic-based local-
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(a) (b)

Figure 8.8: Semantic map building. Red: corridor, Blue: room, Green: doorway, Yellow: open
spaces a) Semantic labels superimposed on top of the map b) Labels expanded beyond the
robot trajectory with region growing.

ization methods have consistently outperformed alternative methods since they can
better handle the uncertainty of real-world such as sensor noise and aliasing, actuator
noise, errors, and abstraction in the models. Their advantages lie in being able to
represent robot pose as a probability distribution over all poses, instead of choosing
the best estimate.

To localize the robot, we should estimate the robot’s pose in a map m using data
from the omnimages and the tracked motion with odometry. We employ the particle
filter localization scheme [Thr+01; Thr02a], also referred in the literature as Monte
Carlo Localization.

We first consider the general formulation of Markov localization ( Localization us-
ing the Bayes filter) before reviewing the particle filter localization, which is a special
case of Markov localization. The Bayes filter allows computing the posterior belief
distribution bel(xt) of a robot pose xt, where bel(xt) is an abbreviation of the poste-
rior:

bel(xt) = p(xt|u1:t, z1:t) (8.5.1)

bel(xt) at time t is conditioned on the controls u and measurements z.
The Bayes filter allows the computation of bel(xt) from a former state bel(xt−1)

recursively using the Markov assumption, where xt is a function only of a previous
state xt−1 and a recent actions ut and the measurements zt.

Bel(xt) = ηp(zt|xt, m)
Z

p(xt|ut, xt−1)Bel(xt−1)dxt−1 (8.5.2)

The state transition probability p(xt|ut, xt−1) is referred as motion model and serves
for the prediction step in the Bayes filter, whereas p(zt|xt, m) is measurement model
used to compute the probability of a measurement given the location of a robot in the
map.

Particle Filters

Particle filters are a non-parametric implementation of the Bayes filter and represent
Bel(xt) with a discrete set of M weighted particles

96



8.5 Monte Carlo Localization with Omnidirectional Vision

Xt =
n
< x[1]t , w[1]

t >,< x[2]t , w[2]
t >, ...,< x[M]

t , w[M]
t >

o
(8.5.3)

The particle filter localization algorithm estimates the true pose of the robot in four
steps.

1. Initialization: the initial belief bel(xo) is obtained with a set of samples {<
x[i]o , w[i]

o >} drawn according to a uniform distribution over the map with ho-
mogeneous importance factors w = 1/M

2. Prediction: The prediction step computes the integral part of equation 8.5.2,
which is the product of two distributions. bel(xt−1) is the prior probability
assigned to the state xt−1, and p(xt|ut, xt−1) is the probabilistic motion model that
describes the probability that the control ut induces the transition from xt−1 to
xt. Each sample in the prediction step is drawn from the motion model.

3. Update: The update step assigns an importance weight to each particle. This is
achieved by computing the left multiplier in equation 8.5.2, which is the mea-
surement model p(zt|xt, m). The likelihood of zt given xt and the knowledge of
the map m determine the weight w of each particle.

4. Resampling: this step generates a new set of particles around previous particles
that have a large weight. That means that particles with high likelihood have a
higher probability to being re-sampled than particles with low likelihood. After
the resampling process, particle weights become homogeneous w = 1

N . Thus,
computational resources are allocated across the localization space according to
the probability density.

Motion Model

The particle filter localization has the advantage that it is not necessary to compute
p(xt|ut, xt−1) explicitly. Instead, p(xt|ut, xt−1) is sampled for arbitrary poses xt, xt−1
and ut using the odometry motion model [TBF05]. Odometry can estimate motion, but
its value is only available after robot movement. This poses a problem in robotics
control or planning, but not in our case with localization and mapping.

The odometry motion model considers odometry data as controls ut (which are techni-
cally measurements). This simplification has the advantage of keeping the state space
small and achieves superior results when compared to the common used velocity mo-
tion model. The velocity model, additional to the problems of slippage and geometry
inconsistencies, suffers from the mismatch between the actual actuated motion and
the motion computed from mathematical models.

The robot motion between two poses in the odometry motion model is decomposed
using three basic movements: a rotation followed by a translation and another ro-
tation. The sampling algorithm outputs a random xt according to the distribution
p(xt|ut, xt−1) considering different error parameters. A detailed description can be
found in the book [TBF05].
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Measurement Model

The measurement model p(zt|xt, m) computes the likelihood of observing the mea-
surement zt given the robot pose xt and the knowledge of the map m. In the particle
filter, this probability is proportional to the weight or importance factor of each par-
ticle w[i]

t = p(zt|x[i]t , m). The importance factor is calculated using map matching of a
local occupancy grid map mlocal to the global map m. Fig. 8.9 illustrates the expected
scan (mi), which corresponds to an ideal noise-free scan of the obstacles according to
the map at the particle’s pose. The normalized cross-correlation or Baron’s correlation
is widely used as a measure of amount of matching.

ρm,mlocal =
1

N − 1
1q

σ2
mσ2

mlocal

∑
i
(mi − µm)(mlocal,i − µmlocal) (8.5.4)

µm =
1
N ∑

i
mi, µmlocal =

1
N ∑

i
mlocal,i (8.5.5)

σ2
m =

1
N − 1 ∑

i
(mi − µm)

2, σ2
mlocal

=
1

N − 1 ∑
i
(mlocal,i − µmlocal)

2 (8.5.6)

Figure 8.9: Particle’s expected scan at pose (xi, yi, θi)

The output values are in the range [−1, 1]. Therefore, they are shifted to positive
values and scaled to sum up to one.

Scan matching has the advantage that it considers the free-space directly within the
local map rather than computing features or scans endpoint, thus including additional
information present in the local occupancy grid maps.

Resampling

The low variance sampler [TBF05] is a resampling strategy based on a sequential
stochastic process. Instead of generating independently random numbers while se-
lecting the particles, the low variance algorithm computes a single random number
r and selects a sample with replacement. r lies between 0 and 1/M, where M is the
number of samples. The number 1/M is added repeatedly to r, and a particle is
selected if it corresponds to the result of the addition.
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8.6 Robot Localization Results

Figure 8.10 shows a localization sequence of 220 sensor instances acquired at the
Technische Universität Dortmund [Oli10]. The robot’s localization state is shown at
different stages. The environment presents some difficulties for the localization due to
substantial perceptual aliasing caused by the geometric similarity of locations along
the hallway. The blue circle and the green square correspond to the true and estimated
location of the robot respectively. We assess the robustness of the localization scheme
with an odometry motion model that exhibits substantially more noise than the actual
robot’s odometry. The robot’s true location is recovered from odometry data, which
is, in this particular case, is highly accurate as the robot travels along a straight path
down the corridor.

Figure 8.10: Localization using a Particle Filter with omnidirectional images. The sequence
consists of 220 images and its correspoinding occupancy grid map at the Technische Univer-
sität Dortmund [Oli10]. The green square represents the computed robot’s location, while the
blue dot is the real robot’s position.

The estimated locations are calculated by clustering a total of 1500 particles. The
cluster with the most particles determines the robot’s location. Thus, the estimated
location switches from cluster to cluster until the majority of particles belong to only
one cluster. In the shown experiment, the robot is approximately localized after 75
steps corresponding to a distance of around nine meters.

8.7 Summary

This chapter has presented a semantic mapping and localization framework able to
operate solely with omnidirectional visual data. The proposed sensor model mimics
a range a sensor in that it segments the local robots free space. The sensor model also
corrects the non-linear distortions of the omnidirectional mirror and outputs a scaled
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perspective image of the ground plane using bird’s-eye mapping. These free space
segmented bird’s eye view images constitute the perceptual basis for both mapping
and the localization.

Map building is achieved by discretizing the environment into a grid, in which
the state of each cell is described by its probability of being occupied or empty. The
occupancy grid algorithm updates the probabilities of the global map.

The obtained occupancy grid map, constitute the basis of the Monte Carlo localiza-
tion and the semantic map building. The semantic map employs the place category
classifier from chapter 6 to label categories: room, corridor, doorway, and open room.
Each place class maintains a separate grid map that is fused with the range-based
occupancy grid for building a dense semantic map.

Experiments with real robot sensor data for localization and map building confirm
the utility of omnidirectional vision as a universal sensor in mobile robotics.
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Conclusions and Outlook

This thesis has covered some of the essential components of a robot navigation system
solely based on omnidirectional vision. We have shown robust methods tested in real-
life experiments, ranging from local to map-based navigation. In some of the tasks,
our results are comparable to classical proximity sensors, such as laser rangefinders
or ultrasound sensors. However, as robots require more semantic information from
complex tasks, the more evident the need for computer vision, which provides a much
richer representation of the environment.

In the first chapters, we developed different free-space segmentation schemes to
mimic with a camera the functionality of a range sensor. Two different approaches
were proposed. The first scheme rests upon the fusion of multiple segmentation
schemes. Each segmentation relies on a particular feature to determine a pixel’s
class label. The classifiers were trained with ground truth provided by a 3D cam-
era. The second approach employed an online self-supervised scheme that selects the
traversable floor region in the omnidirectional view using the optimal segmentation
to the local environment by cross-validation over 3D scans captured by a 3D camera.

Uncertainty in the free-space classifiers was handled with Fuzzy Preference Struc-
tures. We investigated the uncertainty inherent in a single free-space segmentation,
as well as the global uncertainty across multiple segmentation based classifiers. The
uncertainty explicitly expressed in terms of preference, conflict, and ignorance uti-
lizing Fuzzy Preference Structures. We showed that the classification error could be
substantially reduced by rejecting queries associated with a strong degree of conflict
and ignorance.

In an effort to incorporate more semantics into the system, we enhanced the binary
obstacle/floor classifier with a semantic classifier. The proposed scheme considers a
larger feature set and labels each image’s region with the classes: floor, vertical struc-
tures, and clutter. The scheme aggregates multiple heterogeneous features computed
at the superpixel level with a Random Forest classifier. The method is suitable for
self-supervised learning using the 3D point cloud data of a range camera.

The semantic segmentation was further enhanced to provide the spatial layout and
surface reconstruction of the scene in an omnidirectional image. Evidence of support-
ing structures and the 3D layout can significantly enhance the scene understanding
and object detection performance. The proposed method considers a novel bird’s eye
view formulation and benefits from a cascaded classification, where the free-space
and vertical structures are first extracted. Subsequently, all vertical structures are ana-

101



9 Conclusions and Outlook

lyzed to find their main orientation. The fusion of orientation features from the HOG
transform, floor/wall boundaries, and oriented lines proved to be very effective in the
layout classification experiments.

One of the fundamental capabilities of a service robot is to recognize the place
where it is. In the thesis, a place category recognition was proposed to distinguish
among the location categories: room, corridor, doorway, and open space. The sys-
tem evaluated hand-engineered features and learned from data representations. The
place category classifier showed improvement from the combination of heterogeneous
features using both non-learning and learning combination methods.

Previously obtained semantic information was integrated into a local navigation
framework. We explored local semantic navigation by deriving several visual behav-
iors. Four basic behaviors were presented: goal point homing, corridor centering,
obstacle avoidance, and door passing. Current place knowledge described with a se-
mantic category (e.g. room, corridor, doorway) gives the context to the behaviors.
While regions in the scene labeled with semantic regions (e.g. floor, door, wall, floor)
provide the constraints for the motion, the derived visual behaviors employ all this
available semantic information. The advantage of the proposed navigation is that the
system can recover from conflicting errors (e.g. activating a behavior in the wrong
context). Higher-level behaviors can be achieved by compositions of basic behaviors
to perform more complex behaviors.

The last part of the thesis faced two aspects of map-based navigation: (i) map-based
localization solely based on omnidirectional vision, and (ii) building semantic maps
with omnidirectional vision. The map representation consisted of an occupancy grid
built with a sensor model of the omni-view able to correct the non-linear distortions
of the hyperbolic mirror and output a scaled perspective image of the ground plane
using the bird’s-eye mapping. The free-space segmented bird’s-eye view constituted
the perceptual basis for both the mapping and the localization. Localization was
achieved with Monte Carlo localization and the semantic map building employs the
place category classifier from Chapter 6 to label the place categories. Each place class
maintains a separate grid map that is fused with the range-based occupancy grid to
build a dense semantic map.

The work presented in this thesis has shown promising results for vision as the sen-
sor of choice for robot navigation. We believe the results can be enhanced significantly
in the future providing larger image datasets to take advantage of the faster compu-
tation hardware coming out every day. Currently, the new era of GPU computing has
seen flourishing new deep learning methods, which can learn the huge parameter
space of very large architectures that generalize to very complex recognition tasks.
The manual deriving of specialized features, therefore, becomes an obsolete task.

Currently, in the context of omnidirectional images, the datasets remain small.
Improvement can be achieved using transfer learning and fine-tuning from general-
purpose features of an already trained model. A future work direction can also inves-
tigate learning with self-supervision from 3D using the proposed methods from some
of the chapters of this work. This way, it is possible to generate automatically labeled
data for feeding the data-hungry deep neural networks.
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