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“Give me a place to stand and I shall move the world”

Archimedes (c. 287 – c. 212 BC)
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the examination committee.

Special thanks go to the whole team of the Institute of Mechanics. During my time I
really enjoyed the collegial and friendly relationship between all team members. In this
context I would like to thank Professor Andreas Menzel for his enormous contribution
to the nice working atmosphere. I thank Kerstin Walter and Christina McDonagh for
helping with all the organisational, formal and administrative stuff but beyond this for
managing all the social events during the last years that I always enjoyed. Even though
our taste concerning football differs from blue and white to black and yellow, we always
had a lot of fun discussing the current ongoing in the Bundesliga.

Next, I want to express my thanks to all my colleagues that I have met during the
last years. During my time at the institute some real friendships have been created. I
thank Dr. Thorsten Bartel for the inspiring discussions far beyond the field of continuum
mechanics. Besides that, of course, especially his interest and expertise in all mechanical
topics is very helpful for all doctoral candidates at the institute. Furthermore, I was
really happy when Dr. Patrick Kurzeja joined our team since I already admired his
knowledge and inventiveness during my time as a student assistant in Bochum where
he promoted my interest in continuum mechanics. Particularly, I want to thank my
room mates Ph.D. Guillermo Diaz and Volker Fohrmeister who were the first ones who
shared my happiness when I received quadratic convergence and who helped me out
when things did not go well. As I already mentioned, I was always impressed by the

i



nice atmosphere at the institute. The high willingness of helping out with problems is
carried out by every group member. Therefore, I would like to thank Serhat Aygün, Tim
Furlan, Dr. Raphael Holtermann, Dr. Tobias Kaiser, Professor Sandra Klinge, Manuel
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Entwicklung und Implementierung von neu-
en Materialmodellen zur Beschreibung von Grenzflächen unter großen Verformungen
in einem geometrisch exakten Rahmen. Klassische Kohesivzonenmodelle sind eine weit
verbreitete Methode um das Materialverhalten von Grenzflächen zu beschreiben und zu
simulieren. In vielen solcher Modelle werden allerdings fundamentale physikalische Be-
dingungen, wie z.B thermodynamische Konsistenz, Bilanzgleichungen oder das Prinzip
der Objektivität, vernachlässigt. Im Gegensatz dazu wird in dieser Arbeit ein erweiter-
ter Ansatz für ein Kohesivzonenmodell vorgestellt. Das Modell ermöglicht die Untersu-
chung von lokalisierten plastischen Deformationen, welche nur vom Verschiebungssprung
entlang der Grenzfläche abhängen. Darüberhinaus, wird ein generalisierter Ansatz her-
ausgearbeitet, der im Gegensatz zu früheren konstitutiven Kohesivzonenmodellen eine
Beschreibung von beliebigen Anisotropien im Bereich der Grenzflächen ermöglicht. Da-
bei werden fundamentale physikalische Bedingungen, wie z.B. die Bilanzgleichungen oder
das Prinzip der materiellen Objektivität, erfüllt.

Grenzflächen beeinflussen die Materialantwort eines Werkstoffes sowohl auf der tech-
nologisch wichtigen Makroskala als auch auf der aus materialwissenschaftlicher Sicht
wichtigen Mikroskala. Unabhängig von der betrachteten Skala wird in dieser Arbeit im
Rahmen von numerischen Beispielen gezeigt, dass die Zusammenführung von Volumen-
und Grenzflächenenergien zu einem Größeneffekt führt. Abhängig von der Wahl des kon-
stitutiven Modells für die Grenzfäche werden verschiedene Effekte gezeigt und diskutiert.

Abschließend wird die Berücksichtigung von höheren Gradiententermen im konstitu-
tiven Modell untersucht.
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Abstract

This thesis deals with the derivation and implementation of novel material models suit-
able for material interfaces undergoing large deformations in a geometrically exact set-
ting. The classic cohesive zone framework is a widespread tool to describe and simulate
the behaviour of material interfaces. However, the constraints imposed by fundamental
physical principles such as thermodynamical consistency, balance equations and mate-
rial frame indifference are often ignored in classic formulations. By way of contrast,
a consistent cohesive zone framework suitable for the analysis of localised elastic and
inelastic deformations which only depends on the displacement jump is elaborated in
this thesis. Furthermore, a general interface framework is presented that, in contrast to
previous works, permits the description of arbitrary material anisotropies by fulfilling
all fundamental balance laws in physics as well as the principle of material objectivity.

Interfaces highly influence the material behaviour at the technologically relevant
macroscale as well as at the microscale which is important, e.g., in materials science.
Independent of the considered scale, it is shown by numerical examples that the interac-
tion of bulk energies and interface energies leads, in a very natural manner, to a complex
size effect. Depending on the chosen interface framework different effects are presented
and discussed.

The incorporation of higher gradients into the constitutive interface framework is also
investigated.
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Notation

The notation used in this thesis becomes obvious from its context. However, the following
essential relations are collectively provided for the sake of the reader’s convenience.
They are used in the entire thesis. In some places the descriptions are presented in
index notation which implies the Einstein summation rule. Throughout the thesis Latin
indices take the values 1, 2 and 3 and describe quantities belonging to bulk materials. In
contrast to that Greek indices take the values 1 and 2 and quantities using such notation
belong to surfaces respectively interfaces.

Tensors In a three-dimensional Euclidean space spanned by the Cartesian basis vectors
{ei}, i = 1, 2, 3, tensors of first, second, third and fourth order are expressed in terms
of their coefficients (•)i following Einstein’s summation convention, namely

a = ai ei , (first-order tensor, i.e. vector)

B = Bij ei ⊗ ej , (second-order tensor)

C = Cijk ei ⊗ ej ⊗ ek . (third-order tensor)

D = Dijkl ei ⊗ ej ⊗ ek ⊗ el . (fourth-order tensor)

Standard and non-standard inner tensor products Inner tensor products are denoted
by dots where the number of dots characterises the number of contractions, i.e.

a · b = ai bi ,

A · b = Aij bj ei ,

A ·B = Aij Bjk ei ⊗ ek ,

A : B = Sij Tij ,

A · b = Aijk bk ei ⊗ ej

A : B = Aijk Bjk ei

A
...B = Aijk Bijk ,

A ·̄B = Aijl Bjmei ⊗ el ⊗ em .

xi



Notation

In this regard only the definition of the operation (̄·) is non-standard since it represents
inner tensor product with the second index. An n-fold contraction of two nth-order
tensors always results in a scalar. A generalised scalar product of two n−th order
tensors A and B is denoted by the (◦) symbol, i.e., A ◦ B.

Outer tensor products Outer tensor products—also referred to as dyadic products—
are represented by the classical symbol ⊗ using the definitions

u⊗ v = ui vj ei ⊗ ej ,

S ⊗ T = Sij Tkl ei ⊗ ej ⊗ ek ⊗ el .

The dyadic product of two first-order tensors, i.e. vectors, results in second-order tensors,
whereas the dyadic products of two second-order tensors result in fourth-order tensors.

Identity tensors The second-order bulk identity tensor is denoted i or I in the spatial
and material configurations, respectively. Both notations are identical as

I = δij ei ⊗ ej = i

with the Kronecker delta symbol δij = ei · ej .
The second-order surface identity tensor is denoted i or I in the spatial and material

configurations, respectively and reads

I = I −N ⊗N and

i = i− n⊗ n,

with N and n being the normal vector of surface corresponding to the material respec-
tively spatial configuration. In general i and I are not identical.

Gradient and divergence operators With Gi and gi denoting the contravariant bulk
base vectors and their surface counter parts Gα and gα, the following gradient and
divergence operators are used throughout the thesis:

GRAD(•) = ∂(•)
∂θi

⊗Gi grad(•) = ∂(•)
∂θi

⊗ gi

GRAD(•) = ∂(•)
∂θα

⊗Gα grad(•) = ∂(•)
∂θα

⊗ gα

DIV(•) = ∂(•)
∂θi

·Gi div(•) = ∂(•)
∂θi

· gi

DIV(•) = ∂(•)
∂θα

·Gα div(•) = ∂(•)
∂θα

· gα
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1 Introduction

1.1 Motivation

Material interfaces have been a subject of interest for a long time since they can be
observed at all spatial scales and they often strongly affect the overall behaviour of the
considered material (system). Illustrative examples of material interfaces at the macro-
scopic scale include, for instance, cracks in quasi-brittle materials. While the relevance
of such macroscopic material interfaces for the structural response is obvious, material
interfaces observed at smaller length scales also frequently have a significant impact on
the macroscopic structural response. This is, for instance, confirmed by nanocrystalline
materials. Typical further examples for such microscopic interfaces are shear bands
in ductile materials, phase boundaries in solids or grain boundaries in polycrystals.
Furthermore, many materials are interspersed with inclusions, where different material
properties interact and thereby influence the overall mechanical response. Interfaces in
a material may be classified as coherent or non-coherent. In coherent interfaces the
displacement is continuous across the interface, whereas in non-coherent interfaces a
displacement jump exists across the interface. In addition to a possible jump of the
traction vector acting on the upper and lower side of the interface, coherent interfaces
also show in-plane membrane forces in the interface.

A modelling framework which falls into the range of non-coherent material interfaces
is the cohesive zone modelling approach. Cohesive zone models provide a powerful and
widespread tool for fracture simulation at the macroscopic scale as well as for the evo-
lution of material interfaces on microscopic scales. However, in most of the existing
cohesive zone models fundamental physical requirements are neglected. This is partic-
ularly true in the case of finite deformations. For instance, it can be shown that only
isotropic classic cohesive models can be derived in a thermodynamically consistent way.
Furthermore, only isotropic models fulfill balance of angular momentum. This limits
the possibility of modelling shear and anisotropic effects. However, due to experimental
observations, it is known that many materials behave differently in the case of normal
or shear loading. Thus, classic cohesive models cannot depict the realistic material

1



1 Introduction

behaviour. Further problems occur if elastoplastic effects are to be considered in the
constitutive framework.

As mentioned above, material interfaces at the microscale highly influence the overall
mechanical response. Since nearly all materials can be described as heterogeneous at a
certain length scale, it is important to evaluate effective macroscopic properties of such
materials. They can be estimated from the response of its underlying micro-structure
using homogenisation procedures. The combination of bulk and interface energies nat-
urally includes a size-effect due to the increasing area to volume ratio. Such size effects
are not described within classic first-order computational homogenisation schemes.

The main goal of this thesis is to avoid the aforementioned limitations and to investi-
gate the influence of material interfaces at different scales. Therefore, an extension of the
classic cohesive interface framework is introduced. This framework enables the consis-
tent modelling of elastoplastic effects within the interface. Furthermore, a general type
of interface formulation is presented. The novel framework combines the classic cohesive
zone theory and the theory of surface elasticity. The main features of the elaborated
generalised interface framework are:

• geometrically exact description based on finite deformations

• thermodynamical consistency

• fulfillment of all fundamental balance laws

• fulfillment of the principle of material frame indifference

• modelling of shear and anisotropic effects

• consideration of different fracture properties in normal and shear direction

Besides the extension of the interface framework, the classic homogenisation scheme also
has to be extended in order to capture the interface size effect. A possible solution will
be shown in this thesis and several size effects are investigated. Furthermore, this thesis
offers an insight into the incorporation of higher gradients into the interface descrip-
tion. To the best knowledge of the author, no further investigations concerning higher
gradients in cohesive zone models exist up to now. The incorporation of higher-order
gradients opens up the possibility of capturing new effects such as a bending resistance
which is becoming increasingly important at smaller length scales.

1.2 State of the art

Non-coherent interfaces embody the cohesive zone modelling concept which dates back
to the pioneering works by Barenblatt [4, 5] on quasi-brittle materials and by Dugdale
[25] on ductile materials. Probably inspired by the aforementioned works, the so-called
fictitious crack model has been proposed by Hillerborg et al. [42]. These works can be

2



1.2 State of the art

considered as cornerstones in classic cohesive zone modelling. Here, the stress vector
acting at the surface of an opened crack, frequently denoted as cohesive traction vec-
tor, is usually given in terms of the crack opening width, indicated by a displacement
discontinuity. The cohesive tractions resist the opening of the bulk material along the
cohesive zone. Accordingly, they are based on traction-separation laws – instead of a
classic stress-strain-relationship in bulk materials. Already now it should be outlined
that classic cohesive models do not consider in-plane or out-of-plane membrane forces
and that the traction vector is continuous across the interface.

The elaboration of suitable traction-separation laws is one of the main challenges in
cohesive zone modelling. Many different forms of functions and parameters have been
elaborated within the last decades. The applicability of the most common functions
to different material interfaces and crack behaviour was investigated, e.g., in Alfano
[1], Chandra et al. [16], Park and H. Paulino [78] amongst others.

In line with Mosler and Scheider [68], Park et al. [79], cohesive traction-separation
relationships may be classified in either non-potential based and potential based formu-
lations.

Within non-potential based models a relationship between the cohesive traction vector
acting at the interface and the displacement discontinuity, in the following referred to
as displacement jump, is postulated in an ad-hoc manner, cf. eg. Scheider and Brocks
[86]. Models falling into that range show some restrictions and limitations, especially
from a thermodynamical point of view as discussed in [68]. For instance, van den Bosch
et al. [100] proposed a non-potential based cohesive zone model employable for mixed-
mode decohesion. However, as shown by the same group, the model is only suitable for
small deformations and needs to be extended for finite displacements, see van den Bosch
et al. [101]. The authors neither decompose the traction vector nor the displacement
jump into normal and shear components which is equivalent to an isotropic interface
model. Later on, they suggest an extension of their model to anisotropic interfaces by
a decomposition of the displacement jump into a normal and a shear component, cf.
van den Bosch et al. [102]. However, one of the main disadvantages of non-potential
based cohesive models is that normally two independent models have to be introduced
since unloading behaviour is not captured within such models, cf. [101]. This is not in
line with the thermodynamically consistent elaboration of material models in the case
of classic stress–strain based constitutive models in bulk materials. For instance, in
the case of damage–type constitutive laws the reader is referred to Simo and Ju [89].
Furthermore, since such cohesive models are not derived from a potential, they do not
guarantee a symmetric tangent matrix and show path dependent behaviour. In [100]
it is argued that, due to the irreversibility of cohesive zone laws, the path dependency
is physically meaningful and the symmetry requirement for the tangent matrix might
be neglected. However, as discussed in [68] symmetry and path dependence are not
equivalent, and at least the case of elastic unloading of interfaces described by such
cohesive zone laws has to show a symmetric tangent matrix. Anyhow, non-potential
based cohesive laws are widespread and often applied to interface modelling.

3
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Nevertheless, due to the aforementioned restrictions and inconsistencies, the focus
of this thesis lies on the second main group of so-called potential based cohesive mod-
els. Following [68] thermodynamically consistent cohesive models have to be derived
from a potential. The idea here is to derive the traction vector as the derivative of
a potential function. Famous formulations in that range are for instance Needleman
[70], Tvergaard and Hutchinson [99]. Although, numerous widespread potential based
cohesive models exist, many of them exhibit restrictions and limitations. The exponen-
tial traction-separation law by Xu and Needleman [105] is probably one of the most
commonly implemented cohesive zone models. It is based on the definition of an in-
terface potential representing the work done by two surfaces at an interface undergoing
a relative separation. The resulting tractions are given as derivative of the potential
with respect to this separation. One special feature of this model is the coupling of
normal and tangential separation by two varying parameters for the work done by the
two opening processes. However, as shown in [100], within the exponential cohesive law
in [105] a physically realistic coupling behaviour only can be achieved with equal nor-
mal and tangential work of separation parameters. Due to experimental observations,
this is unrealistic for most materials. Furthermore, the model is reversible and thereby
history independent. This is unsatisfactory since interface models are mostly used in
order to capture material failure which is intrinsically a non-conservative process. In
order to consider the non-reversibility within the model of [105] an additional cohesive
model is required in the case of unloading. Due to this reasons many extensions and
improvements exist for the exponential potential based model throughout literature, cf.
for instance McGarry et al. [58], Éamonn Ó Máirt́ın et al. [107].

The PPR-model by Park et al. [79] represents a famous potential based cohesive
model. It captures different fracture energies as well as several cohesive strengths in
normal and tangential direction. A detailed derivation of the implementation is given
in Cerrone et al. [15]. However, the considered potential in the PPR-model just de-
pends on the displacement jump, and therefore the model does not contain a built-in
unloading/reloading relation. Certainly, following Spring et al. [91] the PPR model is
thermodynamically consistent under the pure loading conditions for which it was de-
signed. Nevertheless, it should be highlighted that this only holds if the crack faces
remain parallel during the deformation and if no structural tensors are considered in
the potential function. This seems to be unphysical in the case of finite displacements.
Furthermore, in [91] a novel thermodynamically consistent coupled unloading/reloading
relation for the PPR model under the aforementioned assumption is developed.

In summary, potential based models in line with the previously cited works do still not
solve all problems and restrictions discussed for non-potential formulations. A further
approach for the thermodynamically consistent derivation of cohesive models has been
proposed in Gasser and Holzapfel [32], Mergheim and Steinmann [59], Radulovic et al.
[84]. In contrast to the previous potential based models, the Helmholtz free energy
density Ψ is taken here as potential function and, apart from the displacement jump, a
set of internal variables is also considered. Thereby, the model becomes dependent on the
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deformation history. Clearly, this framework holds for loading as well as for unloading.
However, further restrictions of modelling anisotropic effects arise in the formulation.
To be more precise, modelling anisotropic effects requires the consideration of structural
tensors within Ψ. For instance, normal vector n might be chosen in order to decompose
the traction vector into a normal and a shear part. Due to the deformation dependence
of n an energetically conjugate stress contribution has to be introduced. If this is not
the case, the anisotropic formulation would either lead to unphysical dissipation (even
in the case of fully elastic deformation), cf. [68], or to an unsymmetric stiffness matrix
(also even in the case of fully elastic deformation), cf. [59]. Hence, the approach of
anisotropic cohesive zone description in [32] is thermodynamically inconsistent.

This problem might not occur in the case of small displacements where n is assumed to
be deformation independent. A thermodynamically consistent cohesive model in the case
of small deformations was introduced by Ottosen and Ristinmaa [76]. Dimitri et al. [24]
recently proposed a thermodynamically consistent reformulation of the non-potential
based model in [100]. Their reformulation includes monolithical loading, unloading,
decohesion and contact. However, although the authors of [24] consider n within the
Helmholtz free energy density Ψ, they do not consider an additional stress contribution
in the stress power due to the change of n. As already mentioned, this is only valid if
the normal vector does not change during deformation which seems to be physical in
the case of small deformations only.

Besides thermodynamical inconsistencies, classic cohesive zone models show further
restrictions concerning balance of angular momentum as pointed out by Vossen et al.
[103]. It is highlighted that the traction vector has to point into the direction of JuK in
the case of large deformations in order to fulfill balance of angular momentum. This for-
mulation is equivalent to an isotropic interface fiber model, cf. [101]. Recently Ottosen
et al. [75] pointed out that in classic cohesive zone theory only isotropic models fulfill
all fundamental requirements in continuum mechanics. An extension to elastoplastic-
ity leads to further problems concerning material frame indifference which is why the
authors of [75] propose a novel extended framework that expands the classic cohesive
zone fiber framework by allowing a sliding of the cohesive fiber’s corner points within
the material configuration. Heitbreder et al. [40] extended the framework with a novel
unloading behaviour and re-derived the formulation from a variational point of view.
Furthermore, the applicability of the cohesive framework is investigated by means of
numerical simulations in [40].

The classic cohesive zone framework is related to non-coherent interfaces that may
open during the deformation. However, interfaces can also be assumed as coherent. In
the case of coherent interfaces, the deformation is continuous across the interface. To
be more precise, the interface may not open during the deformation. In addition to
a possible jump of the traction vector acting on the upper and lower side of the in-
terface, coherent interfaces also show in-plane membrane forces in the interface. The
general framework for this problem was established by Gurtin and Murdoch [36] and
was further developed by Gurtin [34, 35], Murdoch [69]. Many extensions and applica-

5



1 Introduction

tions of the theory may be found in the literature, cf. Javili et al. [49], Kaessmair et al.
[52], Steinmann [94] among others. Curvature effects have for instance been studied
in Steigmann and Ogden [93] and Chhapadia et al. [17]. A formulation of a geometri-
cally nonlinear theory of higher-gradient elasticity accounting for boundary (surface and
curve) energies can be found in Javili et al. [46]. Javili et al. [51] recently proposed an
energetically consistent interface linear elasticity theory together with its appropriate
stress measures. The theory of surface elasticity has successfully been applied for the
analysis of, for instance, grain boundaries and the size effect observed at the nano-scale.

Ottosen et al. [77] recently proposed a novel framework combining the properties
of non-coherent interfaces and coherent interfaces at finite displacements. It does not
show the inconsistencies and restrictions appearing in classic cohesive zone theory. The
framework shows similarities to the work of Mosler and Scheider [68]. The main idea is
to consider additional tractions related to membrane-like forces and out-of-plane shear
forces acting within the interface, see Fig. 1.1. In summary, the framework allows jumps

a) b)

T +T +

T −T −

Ñ
T b

T b

Γ0

Γ0

Figure 1.1: Reference configuration of an interface Γ0: a) classic cohesive zone approach with tractions
T+ at the upper side and tractions T− at the lower side of the interface; b) Extended interface framework
additionally considering membrane-like and out-of-plane shear tractions T b along the interface

in the displacement as well as in the tractions. Hence, Javili et al. [50] denote this
extension as generalised interface framework. Due to the influence of material interfaces
on the macroscopic stress response, an extension of classic bulk homogenisation with
interface contributions is introduced in [50] and the arising size effects are investigated.
A formulation of the novel framework in a variationally consistent manner can be found
in Javili [47], see also Heitbreder et al. [41]. In [41] the applicability of the generalised
framework in the case of an anisotropic cohesive zone is investigated where the focus lies
on anisotropic material degradation and its numerical implementation.

In summary, generalised interfaces combine the framework of the classic cohesive
zone theory for non-coherent interfaces and the theory of surface elasticity for coherent
interfaces. Thereby, material anisotropies can for instance be modelled in a thermody-
namically consistent way.

Material interfaces can be embedded into the finite element method by assuming them
to be located between two adjacent continuum finite elements, cf. Ortiz and Pandolfi
[72]. This is especially convenient when the position of the interface is known in advance.
Although this type of numerical implementation is well established nowadays, several
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questions remain to be answered. For instance, the effect of numerical integration was
considered by Schellekens and de Borst [87], convergence issues were analysed by de Borst
[22] and locking effects were investigated by Mosler [63]. If, however, the position of the
interface is not known in advance – as for cracking – fundamental additional numerical
problems arise. A possible solution to this type of so-called free-discontinuity problems
is provided by the partition-of-unity concept, cf. Babuška and Melenk [3], Belytschko
and Black [9] and Moës et al. [62]. Although free-discontinuity problems are indeed
numerically challenging, they do not represent the focus of this thesis.

While the works already cited within the previous paragraph are associated with non-
coherent interfaces, finite element implementations for coherent ones are presented by
Javili and Steinmann [44, 45].

1.3 Structure of the thesis

As mentioned before, one of the main goals of this thesis is to elaborate interface material
models that are consistent with respect to all essential balance laws in physics. In order
to introduce the requirements for the consistent elaboration of mechanical material mod-
els, Chapter 2 contains a concise review of the fundamentals in continuum mechanics
for classic bulk materials. After the formulation of the kinematics, the relevant balance
laws are summarised. Subsequently, the focus is on constitutive modelling in the con-
text of variational principles. To be more precise, a framework is introduced that allows
the derivation of all fundamental balance laws, boundary conditions, together with the
constitutive equations (such as the evolution equations) by minimising an energy poten-
tial. Here, hyperelasticity is considered first. Afterwards, the derivation in the case of
dissipative materials is summarised.

The relevance of the elaboration of novel interface models is addressed in Chapter 3
where classic cohesive zone models are reviewed. It is highlighted that, while for small
displacements the only limitation is that of thermodynamic consistency, in finite dis-
placements, however, the classic theory leads to further problems. It is shown that
classic anisotropic cohesive zone models generally are inconsistent with respect to the
second law of thermodynamics as well as with respect to balance of angular momentum.
Due to the restrictions of modelling shear and anisotropic effects, it turns out that classic
cohesive models can be interpreted as fiber models where the traction has to point in the
direction of the displacement discontinuity within the interface. The fiber is defined by
two points, both with the same material coordinates, on each side of the interface. The
concept of traction continuity across the interface is explained from a variational point
of view. Furthermore, it is shown that the extension to isotropic damage is straightfor-
ward, whereas the extension to elastoplasticity leads to additional problems concerning
the principle of material frame indifference.

The aforementioned restrictions serve as a motivation for the first extended cohesive
framework presented in Chapter 4. In contrast to classic cohesive zone models, this
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extended framework is consistent with respect to the aforementioned points. Since the
novel framework abandons the classic fiber interface concept presented in the previous
chapter, the interface balance laws have to be derived first. Furthermore, it is pointed
out that the relaxation of the fiber concept enables a consistent modelling of elastoplastic
interface behaviour. A prototype model of the extended framework is then developed.
The prototype model is in line with classic cohesive zone models. One of the key aspects
of this chapter is the novel unloading behaviour elaborated afterwards. The underlying
idea of this behaviour is the consideration of a fiber with a vanishing bending stiffness
resulting in buckling without any energy. Subsequently, the elastoplastic loading and
the unloading model are combined and rewritten into a unified framework based on
incremental energy minimisation. The capability of the novel model is demonstrated
within numerical examples where it is compared to a classic isotropic damage interface
model.

A different approach for a generalised consistent interface model is proposed in Chap-
ter 5. Here, the idea is to combine the cohesive zone theory of non-coherent interfaces
with the theory of coherent interfaces based on surface elasticity. After the formulation
of the generalised interface kinematics, the extended balance laws are derived from a
variational point of view. The main point in the elaboration of this extended frame-
work lies in an extended stress power assumption. To be more precise, an additional
stress contribution is considered due to the change of the structural tensors during de-
formation. The novel model enables the consistent modelling of anisotropic interfaces.
As a prototype model, a quasi-brittle mixed-mode damage model is introduced. One
key feature of the model is the possibility to consider different fracture properties in
normal and shear direction. Subsequently, the numerical implementation of the novel
interface model is presented. The chapter closes with a numerical example in order to
illustrate the advantages of the extended framework compared to classic cohesive zone
models. The main outcome is that balance of angular momentum is fulfilled even in the
case of an anisotropic interface – in contrast to anisotropic interface modelling in classic
cohesive zone theory.

One further key point of this thesis is the investigation of size effects due to material
interfaces at different scales. As a consequence, Chapter 6 deals with a homogenisation
scheme that allows the analysis of the influence of the novel general interface model on
the resulting macroscopic (effective) material response. Therefore, the classic averaging
theory known from bulk homogenisation theory is extended in order to account for inter-
face contributions. Subsequently, the numerical implementation of the homogenisation
framework is provided in three different ways. To be more precise, it is shown that the
macroscopic stresses may be computed based on volume or surface integrals as well as
on the vector of internal forces. The capability of the generalised interface framework
is highlighted at the end of this chapter within numerical examples. A cubic repre-
sentative volume element with a spherical inclusion is investigated. The cross-coupled
damage model introduced in Chapter 5 enables the modelling of material degradation
in different directions within the interface. Furthermore, it is shown that the interaction
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of bulk energies and interface energies leads, in a very natural manner, to a complex
size effect. It includes the frequently observed

”
the smaller the stiffer“ relation, but also

the less often observed
”
the smaller the softer“ relation. However, it is highlighted that

the overall response is usually a superposition of such relations for with the generalised
interface model enables the modelling of complex non-monotonic size effects.

Besides the induced size effect of material interfaces due to the increasing area to
volume ratio, further influences like curvature of interfaces become significantly impor-
tant on smaller scales. In order to capture such phenomena, Chapter 7 deals with an
extension of the general interface to higher gradients of the displacement jump and the
surface deformation gradient.

This thesis is closed with a short summary and an outlook to future perspectives of
the presented interface models.
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2 Introduction to continuum
mechanics – bulk materials

This chapter gives a short summary of some fundamentals in continuum mechanics
and constitutive modelling of bulk materials. Firstly, the kinematics of a geometrically
exact description is introduced in Section 2.1. Thereafter, some of the basic balance
equations are briefly derived in Section 2.2. Subsequently in Section 2.3 the derivation
of constitutive relations is presented from a variational point of view. The concept of
hyperelasticity is summarised, where the focus lies on the variational derivation of the
mechanical boundary value problem. It is shown afterwards that dissipative material
models (for instance elastoplastic models) can also be derived in a variational format.

This chapter neither provides a complete overview of classic continuum mechanics
nor a detailed derivation of all presented correlations. It rather introduces the notation
and equations that are the basis for the elaboration of consistent interface material
models within the following chapters. For further details on relations provided here,
the interested reader is referred to the works of Basar and Weichert [7], Bertram [10],
Holzapfel [43], Marsden and Hughes [57].

2.1 Kinematics

This section briefly summarises the non-linear kinematics of finite deformation contin-
uum mechanics starting with the motion of a classic bulk material. Consider a continuum
body that takes the reference (also called material or Lagrangian) configuration B0 ⊂ R

3

at time t = 0. Every material point P ∈ B0 is characterised by its Cartesian coordinate
X(P ), see Fig. 2.1, where X = X i ei. Henceforth, the Latin index takes the values
1, 2 and 3. Furthermore, ei are unit vectors along the X i-axes. The body deforms
under the action of prescribed loads and displacements. The underlying deformation is
described by the nonlinear mapping ϕ, which maps the position X ∈ B0 of material
points in the reference configuration to their position x ∈ Bt, where Bt describes the
current (also called spatial or Eulerian) configuration of the body at any time t after the
deformation, i.e., x = ϕ(X, t). The current position x(P ) is determined with respect
to the same origin in the Cartesian coordinate system. Hence, it is defined by x = xi ei,
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e1
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X x
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Bt

PP
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dX dx

t = 0

t > 0

N

n

dA

da

dV

dv

Figure 2.1: Motion of a body without interfaces – reference configuration B0 and current configuration
Bt

see Fig. 2.1. The deformation mapping ϕ is bijective in the interior of the body. The
difference between the current and referential coordinate of material points results in
the displacement vector

u = x−X. (2.1)

With the aforementioned assumptions, the local deformation is well defined and can be
depicted by the deformation gradient

F := GRAD(ϕ) =
∂ϕ

∂X
=

∂x

∂X
. (2.2)

Accordingly,

GRAD(•) = ∂(•)
∂X

(2.3)

denotes the gradient of quantity (•) with respect to the reference configuration. Since
ϕ|B0

is bijective, the inverse ϕ−1|B0
exists and it follows that the inverse tensor F −1

exists. By definition it reads

F−1 := grad(X) =
∂X

∂x
, (2.4)

where

grad(•) = ∂(•)
∂x

(2.5)
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indicates the gradient of (•) with respect to the current configuration. The deformation
gradient F maps an infinitesimal line element dX in the reference configuration B0, to
its deformed counterpart dx in the current configuration Bt by means of

dx = F · dX. (2.6)

Similar relations for the transformation of volume and surface elements from the ref-
erence to the current configuration are derived in the following. In order to ensure
physically admissible deformation states, the local invertibility condition

J = det(F ) > 0 (2.7)

holds. Here, J denotes the Jacobian of the deformation gradient and it connects a
current volume element dv and the referential volume element dV as

dv = JdV. (2.8)

Consider now a referential area element dA = N dA where N denotes its unit normal,
see Fig. 2.1. This referential element is transferred to the current area element da = n da
with its unit normal n by means of Nanson’s formula

n da = J F−1N dA. (2.9)

In some cases it is preferable to introduce curvilinear coordinates θi. For a detailed
derivation of the relations presented in the following, the interested reader is referred
to [7]. The curvilinear coordinates θi are supposed to be convective. This means that
any point of the body is determined by the same values of the coordinates θi in the
reference as well as in the current configuration. The coordinate curves are subjected
to the same deformation as the body and are transformed at time t into a new set of
curvilinear coordinates. Thereby, the referential and current placements take the form
X = X(θi) and x = x(θi, t), see Fig. 2.2. This allows the calculation of covariant base
vectors related to a point P ∈ B0 as

Gi = X ,i =
∂X

∂θi
=

∂Xk

∂θi
ek (2.10)

and its contravariant counter part as

Gi =
∂θi

∂Xk
ek. (2.11)
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Figure 2.2: Motion of a body without interfaces – reference configuration B0 and current configuration
Bt - description of point P with curvilinear coordinates θi and referential base vectors Gi as well as
current base vectors gi.

Similar relations can be derived for the current configuration Bt at a fixed time t. To be
more precise, the covariant and contravariant base vectors in the current configuration
are defined by

gi = x,i =
∂x

∂θi
=

∂xk

∂θi
ek (2.12)

and

gi =
∂θi

∂xk
ek. (2.13)

The identity tensors of the referential respectively of the current configuration are con-
structed with the respective base vectors as

I = Gi ⊗Gi and i = gi ⊗ gi with I = i. (2.14)

The introduction of the base vectors enables the expression of the deformation gradient
F (cf. Eq. (2.2)) and its inverse F−1 (cf. Eq. (2.5)) as

F = GRAD(x) =
∂x

∂θi
⊗ ∂θi

∂X
= gi ⊗Gi (2.15)

and

F−1 = grad(X) =
∂X

∂θi
⊗ ∂θi

∂x
= Gi ⊗ gi. (2.16)
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Thus, the deformation gradient maps the undeformed covariant basis Gi into the de-
formed one gi by

gi = F ·Gi. (2.17)

2.2 Balance laws

This section gives a short introduction to some fundamental balance laws in classic
continuum mechanics which are used in the following chapters. The derivations presented
in this section are limited to bulk bodies without interfaces based on a referential control
volume and control boundary, denoted as subsets V0 ⊂ B0 and ∂V0 ⊂ ∂B0. The principle
of conservation of mass is adopted in the following.

2.2.1 Balance of linear momentum

The conservation of balance of linear momentum states that the sum of prescribed vol-
ume forces and prescribed tractions on B0 equals the temporal change of linear momen-
tum. In what follows, ρ0 B and T ∗ represent the referential volumetric body forces and
the tractions applied to the surface of the reference body. The corresponding quantities
with respect to the current configuration Bt read ρ b and t∗. The resulting referential
forces are computed as

F =

∫

∂V0

T ∗ dA+

∫

V0

ρ0 B dV. (2.18)

The linear momentum is denoted by

L =
d

dt

∫

V0

ρ0 ϕ dV. (2.19)

Consequently, with L̇ = F the global form of balance of linear momentum reads

∫

V0

ρ0 ϕ̈ dV =

∫

V0

ρ0 B dV +

∫

∂V0

T ∗ dA. (2.20)

As mentioned above, the principle of conservation of mass, i.e., ρ̇0 = 0, where the
superposed dot represents the time derivative, is adopted. The double dot denotes the
second material time derivative of the nonlinear deformation map ϕ.

Next, the integral-type form (2.20) is re-written into a local form. Therefore, Cauchy’s
stress theorem is applied that postulates a linear dependency of the stress vector T ∗ and
the normal vector N , i.e. T ∗ = P · N . Here and henceforth, P indicates the first
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Piola-Kirchhoff stress tensor. Inserting this relation into Eq. (2.20) and applying the
Gauss divergence theorem, the local form of balance of linear momentum results in

ρ0 ϕ̈ = DIVP + ρ0 B ∀X ∈ B0, (2.21)

where

DIV(•) = GRAD(•) : I =
∂(•)
∂θi

·Gi (2.22)

is the divergence operator with respect to X. Accordingly,

div(•) = grad(•) : i = ∂(•)
∂θi

· gi (2.23)

denotes the divergence operator with respect to the current configuration x. In the case
of quasi-static analysis, dynamic effects are neglected and Eq. (2.21) reduces to

0 = DIVP + ρ0B ∀X ∈ B0. (2.24)

Remark 1 Starting with the corresponding spatial quantities of volumetric body forces
and applied tractions (ρ b and t∗), the local form of balance of linear momentum with
respect to the current configuration for quasi-statics reads

0 = div σ + ρ b ∀x ∈ Bt. (2.25)

Here and henceforth, σ = J−1P · F T indicates the Cauchy stress tensor.

2.2.2 Balance of angular momentum

The conservation law for balance of angular momentum states that the sum of all mo-
ments resulting from prescribed volume forces and prescribed tractions on B0 concerning
a fixed point P equals the temporal change of angular momentum with respect to point
P . The moment M resulting from ρ0B and T ∗ concerning point P is computed as

M =

∫

V0

r × ρ0B dV +

∫

∂V0

r × T ∗ dA, (2.26)

where r denotes the position vector of point P . The total angular momentumM relative
to P is calculated by

M =

∫

V0

r × ρ0 ϕ̇ dV (2.27)
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and consequently, with Ṁ = M the global form of balance of angular momentum reads

d

dt

∫

V0

r × ρ0 ϕ̇ dV =

∫

∂V0

r × T ∗ dA+

∫

V0

r × ρ0B dV. (2.28)

After some standard manipulations similar to the procedure in the previous Subsec-
tion 2.2.1, the local form of balance of angular momentum can eventually be reduced to

P · F T = F · P T . (2.29)

Remark 2 From Eq. (2.29) it follows that the second Piola-Kirchhoff stress tensor S =
F ·P is symmetric. Furthermore, by reformulating the local form of balance of angular
momentum with respect to the current configuration, i.e. σ = σT , it can be deduced that
the Cauchy stress tensor σ requires symmetry.

2.2.3 Balance of energy - first law of thermodynamics

This subsection summarises the postulate of energy balance and its local form that
corresponds to the first law of thermodynamics. Considering external mechanical power
Pext and external thermal power PΘ, balance of energy takes the form

E̊ + K̇ = Pext + PΘ, (2.30)

where E̊ denotes the rate of an energy and where K̇ indicates the rate of the kinetic
energy of a thermodynamical system. In general, E̊ is not necessarily the time derivative
of internal energy E. However, experimental observations show that the integral of E̊
over a time interval is almost independent of its respective path. Hence, the existence
of a material internal energy density U per unit mass can be justified and thereby the
internal energy is defined by

E(V0) =

∫

V0

ρ0U dV. (2.31)

Thus, the rate of the internal energy E simplifies to its material time derivative, i.e.,

E̊ = Ė. (2.32)

For dynamic systems the kinetic energy reads K =
∫
V0
1/2 ρ0‖ϕ̇‖2 dV , where ‖ • ‖

indicates the Euclidean 2-norm. Equation (2.30) states that the rate of the internal and
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the kinetic energy equals the sum of all external powers. According to Eq. (2.18), the
external mechanical power reads

Pext =

∫

∂V0

T ∗ · ϕ̇ dA+

∫

V0

ρ0B · ϕ̇ dV. (2.33)

The second part contributing to the sum of external power is related to heat. Taking
into account a volumetric heat source ρ0RΘ inside the body and a heat flux Q across
the boundaries, the thermal power is calculated by

PΘ = −
∫

∂V0

Q ·N dA +

∫

V0

ρ0RΘ dV. (2.34)

In order to derive a local form of the integral-type balance law (2.30), Gauss‘s diver-
gence theorem is applied and balance of linear momentum (Eq. (2.21)) is inserted. This
procedure leads to

ρ0U̇ = P : Ḟ − DIVQ+ ρ0RΘ ∀X ∈ B0. (2.35)

In terms of temperature-independent problems, as is the case in the present work, the
rate of the internal energy equals the stress power P : Ḟ . Similar to the previous
subsections, Eq. (2.35) can be re-written with respect to the current configuration.

2.2.4 Entropy inequality - second law of thermodynamics

The first law of thermodynamics considers the energy transfer within a thermodynamical
process. In order to govern the direction of energy transformation, the second law
of thermodynamics in form of the Clausius-Duhem inequality is summarised in this
subsection. This presentation relies on the works of Truesdell and Toupin [97] and
Coleman and Noll [19].

Firstly, by introducing the referential entropy density N per unit mass, the entropy
S is defined as

S(V0) =

∫

V0

ρ0N dV. (2.36)

The second law of thermodynamics states that the total entropy production for all
thermodynamic processes is never negative. The entropy production is determined by
the rate of change of entropy Ṡ and the rate of entropy input into a certain region of a
continuum body. Hence, in form of the Clausius-Duhem inequality, the second law of
thermodynamics reads

d

dt

∫

V0

ρ0N dV +

∫

∂V0

Q ·N
Θ

dA−
∫

V0

ρ0RΘ

Θ
dV ≥ 0, (2.37)
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2.3 Variational principles in continuum mechanics

where Θ > 0 indicates the total temperature in Kelvin. In this form, the entropy flux
across the boundary surface is related to the heat flux Q and the entropy source inside
the body is related to the heat source ρ0RΘ. The global integral-type form (2.37) can
be re-written into its local form as

ρ0Ṅ +
1

Θ
DIV(Q)− 1

Θ2
QGRAD(Θ)− ρ0RΘ

Θ
≥ 0. (2.38)

Furthermore, by applying a Legendre-Transformation, see Remark 3, and by using bal-
ance of energy (2.35), the Clausius-Duhem inequality can be written in the form

D = P : Ḟ − ρ0

(
Θ̇N + ψ̇

)
− 1

Θ
QGRAD(Θ) ≥ 0. (2.39)

Here and henceforth, D is the dissipation of a thermodynamical process and ψ is the
Helmholtz free energy, respectively ψ̇ is its rate. The present work only regards purely
mechanical processes (without thermal effects), and thus the (dissipation) inequality can
be presented in the Clausius-Planck form for isothermal processes as

D = P : Ḟ − Ψ̇ ≥ 0, (2.40)

where Ψ = ρ0ψ will be considered in the following chapters. Equation (2.40) plays
a major role when elaborating thermodynamical consistent material models which are
based on the framework of Coleman and Noll [19] and Coleman and Gurtin [18].

Remark 3 An alternative form of the second law of thermodynamics in terms of the
Helmholtz free energy ψ can be derived by applying the Legendre transformation of the
type

ψ(•, Θ) = inf
N

{U(•, Θ)−ΘN}, (2.41)

where Θ and N are thermomechanically dual variables and where (•) is a set of fur-
ther variables, e.g. the deformation gradient F . For sufficiently smooth functions the
Legendre transformation reads

ψ(•, Θ) = U(•, Θ)−ΘN. (2.42)

2.3 Variational principles in continuum mechanics

The subsequent section summarises the constitutive modelling in the context of varia-
tional principles. To be more precise, a framework is presented that enables the deriva-
tion of balance laws, boundary conditions and all unknown state variables directly from
minimising an energy potential. Apart from physical and mathematical elegance, the
variational derivation of the constitutive framework in continuum mechanics has several
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2 Introduction to continuum mechanics – bulk materials

advantages, for instance the possibility of using numerically efficient and robust optimi-
sation schemes in the numerical computations. First, an introduction to hyperelasticity
is given, where variational principles are widely used. The well known principle of virtual
work and the principle of minimum potential energy is summarised. The latter enables
the derivation of balance of linear momentum as well as Neumann boundary conditions
by computing the stationary of an energy potential. Subsequently, the focus is on mate-
rials showing dissipation. After a brief introduction into plasticity theory, an approach
for the derivation of evolution equations for internal variables based on the work of Ortiz
and Stainier [74] and Carstensen et al. [14] is presented. The idea is to transfer a rate
dependent potential into an incremental variational potential. According to the scope
of this work, the focus in this section lies on isothermal quasi-static processes.

2.3.1 Introduction to hyperelasticity

A material is referred to as Cauchy-elastic if the stress tensor only depends on the defor-
mation gradient, i.e. P (t,X) = P (F (t,X)). For the sake of simplicity, the dependence
of P on X is not explicitly highlighted in the following. Considering a Cauchy-elastic
material, the stress power reads P = P : Ḟ . If the stress power is path-independent, a
material is defined as hyperelastic. For such material models the Helmholtz free energy
is solely a function of the deformation gradient, i.e. ψ = ψ(F ), and identity

Ψ(F ) = ρ0ψ(F ) (2.43)

for the Helmholtz free energy density Ψ, also called strain-energy function, is employed
in the following. A hyperelastic process is characterised as perfectly elastic, and due to
the reversibility, the local dissipation inequality (2.40) degenerates to an equality with
D = 0. The time differentiation of the Helmholtz free energy density reads

Ψ̇(F ) =
∂Ψ

∂F
: Ḟ (2.44)

and inserting this into Eq. (2.40) leads to

D = P : Ḟ − Ψ̇ =

[
P − ∂Ψ

∂F

]
: Ḟ = 0. (2.45)

It can be deduced that Ψ(F ) serves as a potential, whose time derivative equals the stress
power and furthermore from which the constitutive relation for the first Piola-Kirchhoff
stress tensor follows as

P =
∂Ψ

∂F
. (2.46)
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2.3 Variational principles in continuum mechanics

In line with the work of Coleman and Noll [19] and Coleman and Gurtin [18], the stress
tensor P is referred to as thermodynamic force conjugate to deformation gradient F .

In the case of hyperelasticity it can be shown that, if the Helmholtz energy density
fulfills the principle of objectivity also known as material frame indifference, see Truesdell
and Noll [98, Section 19, 19A], balance of angular momentum is automatically fulfilled.
To be more precise, if Ψ is invariant with respect to an arbitrary rotation Q as

Ψ(F ) = Ψ(Q · F ) ∀Q ∈ SO3, (2.47)

the Helmholtz free energy density can equivalently be defined in dependence of a sym-
metric tensor C as

Ψ(F ) = Ψ̃(C), (2.48)

where

C = F T · F (2.49)

indicates the right Cauchy-Green deformation tensor. Thus, Piola stress tensor P can
be expressed as

P = 2F · ∂Ψ̃
∂C

. (2.50)

Representation (2.50) automatically fulfills the requirement for local form of balance of
angular momentum (2.29) (see also Simo and Hughes [90, Chapter 7.1.5.3]).

A hyperelastic material is denoted as isotropic if the response of the material is
identical in all directions, see Truesdell and Noll [98, Section 85]. Isotropy is a special
class of a material symmetry. For isotropy relation

Ψ(C) = Ψ(QT ·C ·Q) ∀Q ∈ SO3 (2.51)

has to hold. In this case the Helmholtz free energy density may be expressed in terms
of the invariants of C (cf. Truesdell and Noll [98, Section 10]), i.e.,

Ψ(C) = Ψ(I1(C), I2(C), I3(C)). (2.52)

The three invariants of C read

I1(C) = trC, (2.53)

I2(C) =
1

2

[
(tr(C))2 − tr(C)2

]
and (2.54)

I3(C) = detC. (2.55)
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2 Introduction to continuum mechanics – bulk materials

Instead of the invariants of C, its eigenvalues can be used as well.

2.3.1.1 Boundary value problem of continuum mechanics

This subsection briefly summarises the boundary value problem (BVP) of continuum
mechanics. In line with the scope of the present work, thermal and dynamical effects
are neglected in what follows. The mechanical behaviour of an elastic body is described
by balance of linear momentum, see Eq. (2.24), and associated boundary conditions that
are the Neumann boundary conditions

T ∗ = P ·N ∀X ∈ ∂NB0 (2.56)

and the Dirichlet boundary conditions

ϕ = ϕ∗ ∀X ∈ ∂DB0. (2.57)

Here, ∂NB0 denotes the Neumann boundary of B0 where tractions T ∗ are applied. In
analogy, ∂DB0 indicates the Dirichlet boundary of B0 where the deformations are pre-
scribed. Consequently, the BVP reads

DIVP + ρ0B = 0 ∀X ∈ B0

T ∗ = P ·N ∀X ∈ ∂NB0 (2.58)

ϕ = ϕ∗ ∀X ∈ ∂DB0.

2.3.1.2 Principle of virtual work

The principle of virtual work can be derived by multiplying local form of balance of
linear momentum (2.24) by a vector-valued test function η and by integration of the
resulting equation over the volume B0. If the space of the test functions V is sufficiently
large, balance of linear momentum is equivalent to

∫

B0

η · (DIVP + ρ0B) dV = 0 ∀η ∈ V. (2.59)

Applying Gauss’s divergence theorem together with the identity

DIV(η · P ) = η · DIVP + P : GRADη, (2.60)

Eq. (2.59) can be rewritten as

∫

B0

P : GRADη dV =

∫

B0

ρ0 η ·B dV +

∫

∂NB0

η · T ∗ dA ∀η ∈ V. (2.61)
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2.3 Variational principles in continuum mechanics

The above equation represents the principal of virtual work. The test function η can
physically be interpreted as virtual displacement. This allows an interpretation of the
left side of Eq. (2.61) as virtual internal work. The right sight of Eq. (2.61) appropriately
represents the virtual work of external forces.

In the range of finite deformations, η is interpreted as a virtual deformation rate.
Consequently, Eq. (2.61) sets the virtual internal stress power into relation to virtual
external powers, see also Eq. (2.33). As mentioned above, Eq. (2.61) implies balance
of linear momentum and the Neumann boundary conditions if the space of V is large
enough.

2.3.1.3 Principle of minimum potential energy

The Boundary Value Problem (BVP), see Subsection 2.3.1.1, can be derived from a
minimisation principle, if a total energy potential I exists for both the stresses and the
loads. In the case of hyperelasticity, the total potential of a body can be defined as the
sum of the total internal and external energy potential as

I(ϕ) = I int(ϕ) + Iext(ϕ). (2.62)

The total internal energy potential is the integral of the corresponding Helmholtz free
energy density Ψ(F ). Together with the total external energy potential consisting of
contributions from volumetric and externally applied forces, the total energy potential
for the body reads

I(ϕ) =

∫

B0

Ψ(F ) dV −
∫

B0

ρ0B · ϕ dV −
∫

∂NB0

T ∗ · ϕ dA. (2.63)

In order to find a state of equilibrium, a stationary point δI = 0 can be obtained by a
variation of the total potential with respect to the underlying deformation as

δϕI =

∫

B0

P : δF dV −
∫

B0

ρ0B · δϕ dV −
∫

∂NB0

T ∗ · δϕ dA = 0. (2.64)

Here, the constitutive relation P = ∂FΨ is substituted and the virtual deformations are
defined as δF = GRADδϕ. Again, by applying an identity of the form (2.60) together
with a divergence theorem, variation (2.64) transforms to

δϕI = −
∫

B0

[DIV(P ) + ρ0B] · δϕ dV +

∫

∂NB0

[P ·N − T ∗] · δϕ dA = 0. (2.65)

If the deformation field and the test functions are spanned by the same space (Bubnov-
Galerkin scheme), Eq. (2.65) is equivalent to the principle of virtual work (2.61). Conse-
quently, from Eq. (2.65) the local form of balance of linear momentum and the Neumann
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2 Introduction to continuum mechanics – bulk materials

boundary conditions (2.58) can be derived. However, the principle of virtual work does
not require a potential and is thus more general.

2.3.2 Introduction to plasticity

This section gives a brief introduction to plasticity theory for finite deformations. Further
information about the summarised equations and their derivations can for instance be
found in Bertram [10], Lubliner [55], Simo and Hughes [90]. The theory is based on the
multiplicative split of the deformation gradient into an elastic and a plastic part, i.e.,

F = F e · F p and det(F e) > 0, det (F p) > 0. (2.66)

Here, F e characterises the mapping of the elastic part of the deformation while F p

describes the irreversible plastic deformations. The idea of the multiplicative decom-
position of F reaches back to the works of Bilby et al. [12] and H. Lee [37] if not
further. This decomposition is associated with the introduction of a fictitious, locally
incompatible intermediate configuration which is stress free. Based on experimental re-
sults, the following plastic deformations are assumed to be isochoric, i.e. detF p = 1.
The classic approach postulates that the elastic properties of a material do not change
with hardening or softening effects. Hence, the Helmholtz energy density is separated
into one part related to elastic deformations and into one part associated with internal
hardening/softening processes due to the evolution of internal variables, i.e.,

Ψ = Ψe(F e) + Ψp(α) = Ψe(F ,F p) + Ψp(α). (2.67)

The elastic part of Ψ is assumed to be independent of the processes due to the evolu-
tion of α, which describes a set of internal strain-like variables correlated to harden-
ing/softening effects. Together with the stress power P = P : Ḟ and the Helmholtz
energy density (2.67), the Clausius-Planck form of the dissipation inequality (2.40) takes
the form

D = P : Ḟ − ∂Ψ

∂F e : Ḟ e − ∂Ψ

∂α
◦ α̇ ≥ 0. (2.68)

Inserting the multiplicative split (2.66), and applying the Coleman-Noll procedure leads
to the Piola-Kirchhoff stress tensor

P =
∂Ψ

∂F e · [F p]−T (2.69)

and the reduced dissipation inequality

D = Σ : Lp +Q ◦ α̇ ≥ 0. (2.70)
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The first term Σ : Lp is related to the plastic work rate with the Mandel stresses, cf.
Mandel [56],

Σ = [F e]T · ∂Ψ

∂F e (2.71)

and the plastic velocity gradient

Lp = Ḟ p · [F p]−1. (2.72)

Both objects are thermodynamically conjugated and belong to the intermediate config-
uration. The second term Q ◦ α̇ determines the power related to hardening with the
stress-like hardening variable

Q = −∂Ψ

∂α
, (2.73)

that is energetically conjugated to α. For the definition of the elastic domain, a space
of admissible stresses EΣ is defined, cf. Lubliner [55]. Here, according to Ineq. (2.70),
the stress space EΣ is formulated related to the Mandel stresses as

EΣ = {(Σ,Q) ∈ R
9+n|φ(Σ,Q) ≤ 0}. (2.74)

In order to distinguish between fully elastic and elastoplastic states, a level-set func-
tion also known as yield function (φ(Σ,Q)) is introduced. Many plasticity models are
described by a yield function of the type

φ(Σ,Q) = Σeq(Σ,Q)−Q0, (2.75)

where Σeq is an equivalent stress measure and where Q0 describes an initial strength for
the beginning of plastic deformation. Most of the yield functions postulated in practice
are positively homogeneous of degree n, see Remark 4.

The constitutive model is completed by choosing suitable evolution equations for
the internal variables and the definition of loading/unloading conditions. Following the
principle of maximum dissipation for admissible stress states, i.e.,

sup
Σ,Q∈EΣ

{Σ : Lp +Q ◦ α̇}, (2.76)

the evolution equations for the associated plasticity theory are obtained as

Lp = λ
∂φ

∂Σ
and α̇ = λ

∂φ

∂Q
. (2.77)
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2 Introduction to continuum mechanics – bulk materials

Furthermore, the stress state is admissible if the Karush-Kuhn-Tucker conditions

λ ≥ 0, φ ≤ 0, λφ = 0 (2.78)

are fulfilled. Here, λ denotes the plastic multiplier and conditions (2.78) serve as load-
ing/unloading conditions. The plastic multiplier is calculated from the consistency con-
dition

φ̇ = 0. (2.79)

Evolution equations of the type (2.77) are denoted as associative flow rules or normality
rules, since the rates of the internal variables (together with Lp) are proportional to the
gradient of the yield function. However, these equations are not valid for all types of
materials and sometimes have to be generalised. Evolution equations in a more general
format are postulated as

Lp = λ
∂g

∂Σ
and α̇ = λ

∂h

∂Q
(2.80)

within the framework of generalised standard materials, see Halphen and Nguyen [39].
Here, the plastic potential g and the hardening potential h define the directions of the
rates of Lp and α̇ and the second law of thermodynamics is automatically fulfilled.
For more details on generalised standard materials, the interested reader is referred for
instance to the work of Hackl [38].

Remark 4 In those cases where the yield function is postulated as positively homoge-
neous of degree n, the dissipation can be rewritten as

D = nλQ0. (2.81)

Remark 5 The elastic part of the Helmholtz energy is most often taken as Ψe = Ψe(Ce),
where Ce = [F e]T ·F e is the elastic Cauchy-Green deformation tensor in order to fulfill
the principle of material frame-indifference. However, Ce belongs to the intermediate
configuration. Consequently, a natural choice of the Helmholtz energy with respect to the
reference configuration would be Ψe(F e) = Ψ̃e(Ce) det(F p). For isochoric deformations
one obtains the classic relation Ψe = Ψe(Ce).

2.3.2.1 Standard dissipative media

As shown in Subsection 2.3.1.2, in the case of hyperelasticity all equations characterising
the boundary value problem follow a minimisation principle of an energy potential.
Thus, the BVP can be formulated in a variational format. For a broad range of different
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plasticity models such a variational structure also exists – particularly for associative
models, cf. Carstensen et al. [14], Miehe [60], Mosler [64], Mosler and Bruhns [66], Ortiz
and Repetto [73], Ortiz and Stainier [74]. Non-associative plasticity, see for instance
Mosler and Bruhns [65] as well as thermodynamical coupling, cf. Bartels et al. [6],
Fohrmeister et al. [28], Yang et al. [106] has also been investigated from a variational
point of view. The present work only considers an isothermal framework. Thus, the
goal of this section is to derive a potential of the form (2.63) which defines every aspect
of the elastoplastic problem from the previous section, i.e., all unknown state variables
follow from the stationary of the potential. Following Carstensen et al. [14], Ortiz and
Stainier [74], the functional

Ẽ(ϕ̇, Ḟ p, α̇,Σ,Q) = Ψ̇(ϕ̇, Ḟ p, α̇) +D(ϕ̇, Ḟ p, α̇,Σ,Q)− J(Σ,Q) (2.82)

is introduced. Here, J(Σ,Q) denotes an indicator function that is defined as

J(Σ,Q) :=

{
0 ∀ (Σ,Q) ∈ EΣ

∞ else.
(2.83)

It is evident that inadmissible stress states are penalised with J = ∞. It follows from
definition (2.83) that if the stresses are admissible (φ(Σ,Q) ≤ 0), potential (2.82) equals
the sum of the rate of the Helmholtz energy and the dissipation which represents the
stress power, i.e.,

Ẽ(ϕ̇, Ḟ p, α̇,Σ,Q) = P : Ḟ := P ∀ (Σ,Q) ∈ EΣ. (2.84)

Clearly, relation (2.84) is only valid in the case of rate-independence. The computation
of the stationary conditions of Ẽ leads to

δ(Σ,Q)Ẽ = 0 ⇒ (Lp, α̇) ∈ ∂J, (2.85)

δ(α̇)Ẽ = 0 ⇒ Q = −∂Ψ

∂α
and (2.86)

δ(Ḟ p)Ẽ = 0 ⇒ Σ = [F e]T · ∂Ψ

∂F e . (2.87)

Here, ∂J is the subdifferential of J . According to Eqs. (2.85)-(2.87), the stationary
conditions of Ẽ result in the flow rule and in the constitutive relations for Q and Σ as
already introduced in the previous section. It can be shown that the stationary condition
is mathematically represented by a saddle point problem. To be more precise, Ẽ is
minimised with respect to (α̇, Ḟ p) and maximised with respect to (Σ,Q). However, as
advocated in [74] and [14], it is possible to derive a reduced functional E whose minimum
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yields the evolution equations. Therefore the Legendre-Fenchel transformation of J is
introduced as

J∗(Lp, α̇) = sup{Σ : Lp +Q ◦ α̇− J(Σ,Q)| (Σ,Q) ∈ EΣ}. (2.88)

Since J∗ is homogeneous of degree 1, cf. [14], a maximisation of Ẽ with respect to (Σ,Q)
leads to the reduced functional

E(ϕ̇, Ḟ p, α̇) = Ψ̇(ϕ̇, Ḟ p, α̇) + J∗(Lp, α̇). (2.89)

Speaking from a physics point of view, E is still the stress power and J∗ represents the
dissipation, provided admissible stresses, together with the normality rule, are consid-
ered, cf. Mosler and Bruhns [65]. Furthermore, the reduced functional only depends
on the rates of the strains and strain-like variables (ϕ̇, Ḟ p, α̇). The internal strain-like
variables Ḟ p and α̇ follow jointly from the stationary of potential E which itself serves
as a reduced functional just depending on the deformation mapping, i.e.,

Ered = arg stat
{Ḟ p,α̇}

E(ϕ̇, Ḟ p, α̇). (2.90)

In the case of hyperelasticity, Ered equals the rate of the Helmholtz free energy density,
i.e. Ered(ϕ̇) = Ψ̇(ϕ̇), and obviously in this case Ered(ϕ̇) represents the time derivative of
a potential. Furthermore, the stress state is defined via

P =
∂Ered(ϕ̇)

∂Ḟ
. (2.91)

Obviously, under the aforementioned assumptions the standard hyperelastic stress-strain
relation P = ∂FΨ is received. It is now relatively straight-forward to extend the principle
of minimum potential energy to standard dissipative solids by definition of the functional

I(ϕ) = arg stat
{Ḟ p,α̇}

[∫

B0

E(ϕ̇, Ḟ p, α̇)dV −
∫

B0

ρ0B ·ϕ dV −
∫

∂NB0

T ∗ ·ϕ dV

]
. (2.92)

The unknown deformation mapping follows as

ϕ̇ = arg stat
{ϕ̇}

I(ϕ̇). (2.93)

A detailed derivation of the relations presented here can be found in [74] and [14].

The presented variational framework implies an efficient numerical implementation.
In order to derive such an implementation, the time-continuous functional (2.89) has to
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be discretised in time (in analogy to Eq. (2.92)) leading to the time-discretised repre-
sentation

∫

B0

∫ tn+1

tn

E(ϕ̇, Ḟ p, α̇) dt dV

≈
∫

B0

Ψn+1 −Ψn +

∫ tn+1

tn

J∗dtdV := Iinc(ϕn+1, F
p
n+1,αn+1). (2.94)

Here, the energy of externally applied forces and tractions is neglected since these do not
depend on Ḟ p and α̇. In the case where the yield function is assumed to be positively
homogeneous of degree one, see Remark 4, the integration of J∗ leads to the dissipa-
tion ∆λQ0, where ∆λ :=

∫ tn+1

tn
λ dt is introduced. The incremental potential (2.94)

is an approximation of Eq. (2.89) and, accordingly, the strain-like internal variables
(F p

n+1,αn+1) are obtained by the stationarity of Iinc as

(F p
n+1,αn+1) = arg stat

{F p
n+1,αn+1}

Iinc. (2.95)

The unknowns F p and α are defined pointwise. This means that the optimisation
problem is restricted to the integration points in the case of a standard finite element
formulation. For the calculation of (F p

n+1,αn+1) classic numerical procedures such as
Newton’s method can be applied. More details on the implementation can be found in
[13, 64, 66] among others.
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3 Review of classic cohesive zone
models

One of the main goals of this thesis is the derivation of a consistent cohesive zone
framework that fulfills all fundamental requirements in continuum mechanics. The co-
hesive zone concept was pioneered by Barenblatt [4, 5] on quasi-brittle materials and
by Dugdale [25] on ductile materials. Later on the so-called fictitious crack model was
proposed by Hillerborg et al. [42]. The framework of cohesive zone modelling is charac-
terised by a traction-separation law that relates the traction vector with the interface
(the crack) opening and sliding. The classic approach does not consider in-plane or
out-of-plane membrane forces and there is no discontinuity of the traction vector across
the interface.

This chapter gives an introduction to classic cohesive zone models, where the kine-
matics is described in the first section. In the following course of this chapter it will
be shown that the classic approach serves some restrictions and inconsistencies. While
for small displacements, the only limitation is that of thermodynamic consistency, in
finite displacements, however, the classic theory is exposed to severe further problems.
For instance, according to Mosler and Scheider [68], only isotropic classic cohesive zone
models are thermodynamically consistent, as shown in Section 3.2. This inhibits the
possibility of modelling shear and anisotropic effects. Furthermore, as pointed out by
Vossen et al. [103] and Ottosen et al. [75] classic cohesive zone models require collinear-
ity between the traction vector and the displacement discontinuity within the interface.
Section 3.3 gives a short review of the derivation of the classic balance laws resulting
in traction continuity across the interface and in the collinearity requirement between
traction vector and displacement discontinuity. Subsequently, the extension of cohesive
zone models with non-elastic deformations is shown. While the embedding of isotropic
damage is straightforward, see Section 3.4, the extension to elastoplastic interface mod-
els (cf. Section 3.5), encounters further problems, for instance due to the principle of
material frame indifference and due to balance of angular momentum, see Ottosen et al.
[75].
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3 Review of classic cohesive zone models

3.1 Kinematics of non-coherent interfaces

Consider that the bulk body from Section 2.1 now is subdivided into two arbitrary
subdomains B+

0 and B−
0 that are bonded via the zero thickness interface Γ0, see Fig. 3.1.

Since Γ0 is the common boundary of B+
0 and B−

0 , Γ0 can also be subdivided into the two
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Figure 3.1: Motion of a body with a non-coherent interface – reference configuration B0 and current
configuration Bt

surfaces Γ+
0 and Γ−

0 that coincide geometrically in the reference configuration, i.e. Γ+
0 =

Γ−
0 := Γ0. Furthermore, every material point P ∈ Γ0 is described by two coordinates

X+(P ) ∈ Γ+
0 and X−(P ) ∈ Γ−

0 . In the reference configuration the coordinates are
identical, i.e., X+(P ) = X−(P ) := X(P ), and it follows that JXK = 0. The unit normal
to the zero thickness reference interface Γ0 pointing from the minus to the plus side is
denoted N . Since this work deals with non-coherent interfaces that may open during the
deformation, especially points within Γ0 have to be considered. The sharp interface Γ0

decomposes into the two surfaces Γ+
t and Γ−

t within the deformed configuration. Hence,
deformation mapping ϕ is discontinuous across Γ0. To be more precise, ϕ is decomposed
into ϕ+ and ϕ−, and it holds that ϕ− : Γ0 → Γ−

t maps points belonging to the lower
surface of the interface, and that ϕ+ : Γ0 → Γ+

t maps points belonging to the upper
surface of the interface. Accordingly, a material point X(P ) ∈ Γ0 decomposes into

x+(P ) = ϕ+(X(P )), x+(P ) ∈ Γ+
t (3.1)

and

x−(P ) = ϕ−(X(P )), x−(P ) ∈ Γ−
t . (3.2)
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3.1 Kinematics of non-coherent interfaces

As becomes evident from (3.1) and (3.2), it follows that the deformation of non-coherent
interfaces results in JxK 6= 0 across the interface. This interface discontinuity is related
to the discontinuity in the bulk deformation JϕK 6= 0. Henceforth, this discontinuity is
denoted as displacement jump

JuK = x+ − x−. (3.3)

Alternatively, in relation to Eq. (2.1), with u− representing the displacement field on
Γ−
t and with u+ representing the displacement field on Γ+

t , the displacement jump reads

JuK = u+ − u−. (3.4)

The deformation discontinuity requires further attention. For instance, due to the in-
dependence of ϕ− and ϕ+, the current configuration provides a normal vector n− on
the lower surface Γ−

t and a normal vector n+ on the upper surface Γ+
t . Consequently,

the normal vector n across the interface in the deformed configuration is not uniquely
defined. In order to solve the non-uniqueness of n, a fictitious intermediate configu-
ration x(m) – not to be confused with the intermediate configuration in finite strain
elastoplasticity – has to be introduced, see Fig. 3.2. According to this description, a

x−

x+ B+
t

B−
t Γ−

t

Γ+
t

x(m)

n

n−

n+

Figure 3.2: Opened material interface (cohesive zone in the deformed configuration) and fictitious
intermediate configuration defining the structural tensors (dashed lines) and representing the unique
current configuration of the interface Γt.

unique representation of the interface within the current configuration is defined as Γt.
The intermediate configuration x(m) is frequently chosen as the arithmetic average, i.e.,

x(m) =
1

2
(x+ + x−), x(m) ∈ Γt. (3.5)

However, this choice is not mandatory. Further details and a discussion of the choice of
x(m) can be found in Mosler and Scheider [68]. This configuration allows the definition
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3 Review of classic cohesive zone models

of a normal vector n corresponding to the current configuration of an opened interface
in unique manner pointing from Γ−

t to Γ+
t .

3.2 Thermodynamical consistency

In a simple case of reversible cohesive zone models, the Helmholtz free energy density
only depends on the displacement jump JuK. Focusing on a purely mechanical problem,
the dissipation can be computed from the stress power P and the rate, respectively
the material time derivative of Ψ, see Subsection 2.2.4. The stress power in the classic
cohesive zone theory is usually assumed as

P = T · ˙JuK (3.6)

and thus, the dissipation equality for a reversible process, cf. Eq. (2.45), reads

D = T · ˙JuK − Ψ̇(JuK) =

(
T − ∂Ψ

∂JuK

)
· ˙JuK = 0. (3.7)

Applying the Coleman-Noll procedure leads to the traction vector

T =
∂Ψ

∂JuK
. (3.8)

At first, it is concluded that the stress power equals the time derivative of the Helmholtz
energy potential. In order to account for more complex material behaviour, for instance
material anisotropies, structural vectors ai are considered in many interface models.
Such vectors belong to the deformed configuration and refer to the intermediate con-
figuration x(m). Although the structural vectors may change during the deformation
process, most cohesive zone models assume the classic stress power (3.6). However, this
causes problems as can be seen in the following example. A special and widespread case
of these models uses the midsurface’s current normal vector n as structural tensor, i.e.,

Ψ = Ψ(JuK, n). (3.9)

This procedure allows a decomposition of the traction vector into a normal part T n =
(T · n) · n and a shear part T s = T − T n. Thereby, a distinction between normal and
shear separation is possible and material anisotropies can be captured. In the case of
such models, as already mentioned above, the stress power is again mostly assumed as
P = T · ˙JuK and then the dissipation reads

D = T · ˙JuK − Ψ̇(JuK, n) =

(
T − ∂Ψ

∂JuK

)
· ˙JuK − ∂Ψ

∂n
· ṅ = 0. (3.10)
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3.3 Balance of linear and angular momentum

In general, the displacement jump JuK and the normal vector n are uncoupled, i.e.
n 6= n(JuK), and applying the Coleman-Noll procedure in turn leads to the traction
vector

T =
∂Ψ

∂JuK
. (3.11)

According to

D = −∂Ψ

∂n
· ṅ 6= 0, (3.12)

the dissipation does not vanish, although hyperelasticity is assumed. This is certainly
a contradiction, and it follows that the stress power assumption P = T · ˙JuK leads to
thermodynamical inconsistencies for models of the type Ψ = Ψ(JuK, ai). Further details
and consequences implied by the classic stress power postulate are discussed in Mosler
and Scheider [68] and Ottosen et al. [77].

In the framework of large deformations the structural tensors may evolve during de-
formation. Therefore, it is unphysical to neglect the change of the normal vector, for
instance by assuming the interface facets to remain parallel during deformation. Instead,
it turns out that an extended stress power assumption with an additional term account-
ing for the change in structural tensors has to be considered, see Chapter 5. Resulting
from this term, an energetically conjugate stress contribution has to be introduced.

3.3 Balance of linear and angular momentum

The following paragraph summarises the conditions and restrictions of classic cohesive
zone models concerning balance of linear and angular momentum. The main points are
in accordance to the findings of the works Costanzo [20], Vossen et al. [103] and Ottosen
et al. [75]. The classic cohesive zone framework only assumes tractions upon the upper
and the lower surface of an interface. With T denoting the Piola-Kirchhoff traction
vector of the reference configuration, T + acts upon the upper surface Γ+

0 and T − acts
upon the lower surface Γ−

0 , see Fig. 3.3 for a sketch of the quantities within the current
configuration where t denotes the Cauchy traction vector. Since no further tractions
within the interface are considered, it appears that membrane-like surface stresses are
excluded in the classic theory. Accordingly, balance of linear momentum reads

T + + T− = 0, (3.13)

which requires traction continuity within the cohesive zone, i.e.,

T := T+ = −T−. (3.14)

35



3 Review of classic cohesive zone models

Γ+
t

Γ−
t

JuK

x+(X, t)

x−(X, t)

t+

t−

Figure 3.3: Current configuration of an opened cohesive zone with upper surface and tractions Γ+
t , t

+

and lower surface and tractions Γ−

t , t
−. The traction vectors do not point in the direction of the displace-

ment jump JuK and thereby generate a resulting moment. Furthermore, balance of linear momentum
is not fulfilled.

A detailed discussion about the continuity of the traction vector across the interface can
be found in Javili [48]. Since t± are collinear to the Piola-Kirchhoff traction vectors T±

and considering balance of angular momentum it requires that

t × JuK = 0, (3.15)

which is not the case in the configuration shown in Fig. 3.3. In order to exclude a
resulting moment, the traction vector has to be collinear to the displacement jump, i.e.,

t ‖ JuK. (3.16)

Using the collinearity between T and t, this can be rewritten as

T ‖ JuK, (3.17)

which is fulfilled for instance if the traction vector can be expressed in the form

T = kJuK, (3.18)

where k can be any factor. Hence, if the interface is made up of springs or fibers and
if the displacement discontinuity JuK is aligned with the respective fiber direction, then
conditions (3.16) and (3.17) denote that the traction within the interface has to point
into the spring or fiber direction. Thus, classic cohesive zone models can be interpreted as
fiber models. The fiber is defined by the two spatial coordinates x−(X, t) and x+(X, t)
that are described by the same material coordinate X, see Fig. 3.3. Furthermore,
T = ∂JuK Ψ holds in the range of these models, see Eq. (3.8). Consequently, it follows
from Eq. (3.17) that Ψ has to be isotropic with respect to JuK. Isotropy as a special case
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3.3 Balance of linear and angular momentum

of material symmetry is ensured by defining a Helmholtz energy in terms of the length
of the displacement jump JuK as

Ψ(JuK) = Ψ(‖JuK‖) = Ψ(∆). (3.19)

This is a contradiction to general anisotropic models of the type Ψ = Ψ(JuK, ai). For
this reason and within the classic cohesive zone framework, any anisotropic Helmholtz
energy of the type (3.9) is inconsistent with respect to balance of angular momentum.

3.3.1 Variational formulation of balance of linear momentum

In this subsection, the traction continuity for classic cohesive zone models, see Eq. (3.13),
is obtained in a variational format. The derivation for hyperelastic interfaces is in line
with the one for bulk materials, cf. Subsection 2.3.1.3. Figure 3.4 shows tractions acting

Ñ
T +

T −

T b

T b

Figure 3.4: Stresses acting on an interface – referential description: Tractions acting at the upper
surface Γ+

0 = Γ0 are denoted by T+ and tractions acting at the lower surface Γ−

0 = Γ0 are denoted
by T−. In classic cohesive zone theory, stresses T b acting at the boundary of the interface ∂Γ0 are
neglected.

within an interface in the referential description consisting of tractions T+ on the upper
surface Γ+

0 = Γ0, T
− on the lower surface Γ−

0 = Γ0 and membrane like tractions T b on the
boundary ∂Γ0 of the interface. Classic cohesive zone theory does not consider tractions
T b, see Ottosen et al. [77]. A variational derivation for balance of linear momentum in
the general case considering additional interface stresses will be shown in Chapter 5.

Here, the interface potential neglecting tractions T b takes the form

I =

∫

Γ0

Ψ(JuK) dA−
∫

Γ+
0 =Γ0

T+ ·ϕ+ dA−
∫

Γ−

0 =Γ0

T − · ϕ− dA. (3.20)

Potential (3.20) consists of energies related to tractions T + and T − at the upper and
lower side of the interface that follow the bulk motions ϕ+ and ϕ−. In the case of
hyperelasticity, the first term in Eq. (3.20) represents the integrated Helmholtz free
energy density Ψ, and I is the total potential energy of the interface. Further contribu-
tions to the total potential are neglected, see Remark 6. A variation of potential (3.20)
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3 Review of classic cohesive zone models

with respect to deformation ϕ leads to balance of linear momentum. According to the
constitutive relation (3.8), the variation of the Helmholtz energy leads to

∫

Γ0

δϕ ΨdA =

∫

Γ0

T · δJuK dA. (3.21)

Taking this into consideration, the variation of Eq. (3.20) takes the form

δϕI =

∫

Γ0

[
T ·

(
δx+ − δx−

)
− T+ · δx+ − T− · δx−

]
dA = 0 ∀δx−, δx+, (3.22)

where variations

δJuK = δx+ − δx− and δϕ± = δu± = δx± (3.23)

have been used. Since δx− and δx+ are independent of each other and arbitrary,
Eq. (3.22) is equivalent to the two equations

−T + + T = 0 ⇒ T+ = T and

−T − − T = 0 ⇒ −T − = T+ := T (3.24)

that represent balance of linear momentum in the classic cohesive zone framework re-
sulting in traction continuity across the interface.

Remark 6 For the sake of completeness, interface force densities along and across the
interface, comparable to the volumetric contributions ρ0B in the bulk continuum, could
have been considered in the total interface potential (3.20). Nevertheless, they would not
have led to new findings and have thus been neglected in this work.

3.4 Extension to isotropic damage

The extension of classic hyperelastic cohesive zone models to isotropic damage is straight-
forward. This derivation follows the work of Radulovic et al. [84]. The scalar valued
damage variable d ∈ [0, 1] indicates the state of material degradation where d = 0
denotes the undamaged initial stage and where d = 1 denotes the totally damaged ma-
terial. With this damage variable, the Helmholtz energy density is assumed to be of the
form

Ψ = (1− d) Ψe(JuK), (3.25)

where Ψe describes the elastic part of the undamaged material. In this section, no
structural tensors are considered in the Helmholtz energy. In line with classic cohesive
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3.4 Extension to isotropic damage

zone theory, the stress power is assumed as P = T · ˙JuK and the dissipation inequality,
see Eq. (2.40), reads

D =

(
T − ∂Ψ

∂JuK

)
· ˙JuK − ∂Ψ

∂d
ḋ ≥ 0. (3.26)

Evaluating (3.26) for purely elastic unloading (D = 0, ḋ = 0) generates the classic
traction vector

T =
∂Ψ

∂JuK
. (3.27)

Inserting the traction vector (3.27) into the dissipation inequality (3.26) leads to the
reduced dissipation as

Dred = −∂Ψ

∂d
ḋ = Ψe ḋ ≥ 0. (3.28)

Since Ψe ≥ 0, the second law of thermodynamics is automatically fulfilled if d monoton-
ically increases, respectively if self-healing is avoided, i.e.,

ḋ ≥ 0. (3.29)

Furthermore, from Eq. (3.28) it follows that d is thermodynamically conjugate to energy
Ψe and therefore represents a driving force for damage evolution d = d(Ψe). In order to
accumulate damage only for increasing energy, the internal variable κ is introduced as

d = d(κ), κ(tn+1) = max{κ(tn), Ψe(tn+1)}, κ(t0) = κ0. (3.30)

Since Ψe = Ψe(JuK), an equivalent choice for the driving force would be the displacement
jump, i.e., d = d(JuK).

3.4.1 Variational formulation for isotropic interface damage models

The standard derivation of the isotropic damage cohesive zone framework in line with the
Coleman-Noll procedure, see Section 3.4, is widespread. In order to derive a variational
structure of the framework and in line with Mosler and Scheider [68], the stress power
P = Ψ̇ +D of the model is considered and integrated over the interface area. Together
with externally applied mechanical powers, a resulting potential is built up as

İ =

∫

Γ0

(
Ψ̇ +D

)
dA− Pext. (3.31)
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3 Review of classic cohesive zone models

All equations characterising the isotropic interface damage models follow jointly from
stationarity of potential (3.31), i.e.,

{ϕ̇, κ̇} = arg stat
{ϕ̇,κ̇}

İ. (3.32)

Here, dissipation D reads

D = κ|ḋ| = κ
∂d

∂κ
|κ̇| (3.33)

and together with Helmholtz energy (3.25) insertion into potential (3.31) leads to

İ =

∫

Γ0

[
∂Ψ

∂JuK
· ˙JuK −Ψe ∂d

∂κ
κ̇ + κ

∂d

∂κ
|κ̇|

]
dA− Pext. (3.34)

Furthermore, the external interface stress power, cf. Subsection 3.3.1, is inserted as

Pext =

∫

Γ0

[
T + · ϕ̇+ + T − · ϕ̇−

]
dA. (3.35)

In line with classic cohesive zone theory, interface tractions T b are neglected here. The
variation of potential (3.31) with respect to velocity field ϕ̇ can be computed in a
straightforward fashion. Stationarity of (3.31) yields

δϕ̇İ =

∫

Γ0

[
T · (δu̇+ − δu̇−)− T + · δu̇+ − T − · δu̇−

]
dA = 0 ∀ δu̇+, δu̇−, (3.36)

where variations

δ ˙JuK = (δu̇+ − δu̇−) and δϕ̇± = δu̇± (3.37)

have been used. It becomes obvious that Eq. (3.36) is equivalent to Eq. (3.22) and
thereby represents the weak form of equilibrium, respectively balance of linear momen-
tum, see Eq. (3.24). The second stationary condition of potential (3.31) is the one related
to a variation of κ̇ that is obtained as

δκ̇İ =

∫

Γ0

(
−Ψe ∂d

∂κ
+ ∂κ̇ D

)
δκ̇dA = 0 ∀ δκ̇, (3.38)
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where

∂κ̇D :=





κ
∂d

∂κ
sign(κ̇) ∀ κ̇ 6= 0

κ
∂d

∂κ
[−1, 1] else

(3.39)

denotes the subdifferential of D. Stationary condition (3.38) contains the flow rule for
the internal variable. First, in order to avoid healing of the material, κ̇ > 0 holds.
Thereby, in the case of damage (κ̇ 6= 0) it follows that

κ = Ψe (3.40)

is the driving force for damage evolution. On the other hand, in the case of elastic
loading or unloading (κ̇) = 0 it holds that

Ψe ≤ κ. (3.41)

This is in line with the introduction of the internal variable in the previous section as

d = d(κ), κ(tn+1) = max{κ(tn), Ψe(tn+1)}, κ(t0) = κ0. (3.42)

This equation covers inelastic loading with an evolution of the internal variable as well
as elastic unloading.

3.5 Extension to elastoplasticity

3.5.1 Eulerian framework

According to Section 3.3, physically consistent hyperelasticity within the classic cohesive
zone framework requires an isotropic Helmholtz energy of the type

Ψ(JuK) = Ψ(‖JuK‖) = Ψ(∆). (3.43)

This is the most general format of a classic cohesive zone model that fulfills all funda-
mental principles since

T =
∂Ψ

∂∆

JuK

∆
. (3.44)

This traction vector is indeed collinear to the displacement jump and the model has the
property of a fiber model. It is also observed that this constitutive relation fulfills the
principle of frame indifference.
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3 Review of classic cohesive zone models

Elastoplastic deformations are then investigated. Most frequently in cohesive zone
theory, the displacement jump is additively decomposed into an elastic and a plastic
part, i.e.,

JuK = JuKe + JuKp. (3.45)

Although hardening effects have been neglected in this section for the sake of simplicity,
they would not have led to further difficulties. Here, the Helmholtz energy depends only
on the elastic part of the displacement jump, to be more precise

Ψ = Ψ(JuKe). (3.46)

Again, the classic stress power assumption P = T · ˙JuK is used and the dissipation
inequality then reads

D =

(
T − ∂Ψ

∂JuKe

)
· ˙JuK +

∂Ψ

∂JuKe
· ˙JuK

p ≥ 0 (3.47)

Application of the Coleman-Noll procedure results in the traction vector as

T =
∂Ψ

∂JuKe
=

∂Ψ

∂JuK
(3.48)

and the reduced dissipation inequality is calculated as

T · ˙JuK
p ≥ 0. (3.49)

Usually the model is completed by defining suitable evolution equations of the type
˙JuK

p
= λ f(T ) where λ is the plastic multiplier. However, this would lead to physically

inconsistent models. To be more explicit and following the discussion in Ottosen et al.
[75], ˙JuK

p
is not material frame indifferent (objective). Thus, a naive choice for the

evolution equation ˙JuK
p
= λ f (T ) would not lead to objective constitutive models

either. Furthermore, plasticity is intrinsically anisotropic. According to Fig. 3.5, the
plastic part of the displacement jump JuKp resulting from the chosen evolution equations
does not need to be parallel to JuK. Hence, in such a case JuKe is not collinear to JuK.
This means, that for isotropic Helmholtz energies of the type

Ψ(JuKe) = Ψ(‖JuKe‖) = Ψ(∆e) (3.50)

collinearity between T and JuKe is implied by Eq. (3.48). However, since JuKe is usually
not collinear to JuK it also holds that T does not need to be collinear to JuK. However,
as stated in Section 3.3, this collinearity is the requirement to fulfill balance of angular
momentum. Thus, even an isotropic Helmholtz energy of the type (3.50) does usually
not fulfill balance of angular momentum.
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Γ+
t

Γ−
t

JuK

x+(X, t)

x−(X, t)

JuKp

JuKe

Figure 3.5: Current configuration of an opened cohesive zone with upper surface Γ+
t and lower surface

Γ−

t . General case: the displacement jump JuK is additively decomposed into an elastic part JuKe and a
plastic part JuKp.

3.5.2 Lagrangian framework

Alternatively to the Eulerian framework based on the displacement jump JuK, cohesive
zone models can be described in a Lagrangian framework related to the material dis-
placement jump J , cf. Garikipati [31] and Armero and Garikipati [2]. It is defined by
the pull back operator as

J = F−1 · JuK. (3.51)

Here, F can describe the deformation at the lower, upper or the fictitious midsurface.
The classic strong discontinuity approach (SDA) assumes a continuous F across the
interface, cf. [2, 31]. Hence, the results are identical if the deformation gradient of the
lower or upper side of the interface is considered in Eq. (3.51). By using a referential
description, the requirements for material frame indifference are automatically fulfilled,
see Fagerström and Larsson [27]. However, this description is not well suited for several
applications due to some important restrictions. First, following Mosler and Scheider
[68], the use of J within constitutive laws implies that the physical displacement jump
JuK consists of an additional convective term. To be more precise, from Eq. (3.51) the
material time derivative of JuK follows as

˙JuK = Ḟ · J + F · J̇ . (3.52)

It is noticeable that an unloading process with J̇ = 0 does not automatically imply
˙JuK = 0 which means that the length of JuK could change even when Ḟ = 0 holds. A

further critical point is emphasised in Ottosen et al. [75]. According to the decomposition
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of JuK, see Eq. (3.45), the material displacement jump is also additively decomposed,
i.e.,

J = Je + Jp. (3.53)

In line with the choice for the Helmholtz energy in the Eulerian framework (3.46), the
strain-energy is taken as

Ψ = Ψ(Je). (3.54)

By insertion of Eqs. (3.52) and (3.53), the dissipation inequality reads

D =

(
tM − ∂Ψ

∂J e

)
· J̇ +

∂Ψ

∂J e · J̇p + T · Ḟ · J ≥ 0, (3.55)

where the constitutive relation for the traction vector tM = F T · T follows as

tM =
∂Ψ

∂J e . (3.56)

It is straightforward to show that tM fulfills the principle of material frame indifference,
cf. Fagerström and Larsson [27]. In the following, the Helmholtz energy is chosen as

Ψ =
1

2
(J − Jp) ·K · (J − Jp), (3.57)

where K is a constant symmetric interface stiffness tensor. In this case, the constitutive
relation (3.56) leads to the traction vector

tM = K · J e (3.58)

that can be transformed to the classic reference traction vector T as

T = F−T ·K · F−1 · (JuK − JuKp) . (3.59)

In order to fulfill balance of angular momentum, traction vector T has to be collinear to
the displacement jump JuK, which enables an expression of the form (3.18). Considering
a purely elastic process with JuKp = 0, condition (3.18) is only fulfilled if K = kF T ·F .
Applying this expression for the stiffness K allows the reformulation

T = k (JuK − JuKp) . (3.60)

Nonetheless, the condition of a deformation dependent stiffness K violates the assump-
tion of a constant tensor. Thus, even in the case of elasticity, balance of angular mo-
mentum is not fulfilled. Furthermore, in line with the discussion in Subsection 3.5.1 the
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3.5 Extension to elastoplasticity

plastic deformation jump JuKp is in general not collinear to JuK, see Fig. 3.5. Accepting
constitutive relation (3.56), the reduced dissipation inequality takes the form

D = tM · J̇p + T · Ḟ · J ≥ 0 (3.61)

and, even for pure elasticity, the dissipation does not vanish. Following Ottosen et al.
[75], the last term in (3.61) is usually neglected and an evolution law for J̇p with tM ·J̇p is
postulated. In contrast to the Eulerian framework this evolution law fulfills the principle
of material frame indifference. However, within this description the dissipation inequality
is only fulfilled approximately and the balance of angular momentum still is not fulfilled
in general.
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4 Consistent cohesive zone framework
I – sliding of the fiber’s corner points

According to the previous chapter, consistent classic cohesive zone models can be
interpreted as fiber models, where the traction within the interface has to point into
the fiber direction. The fiber is defined by the displacement vector between two spatial
coordinates that refer to the same point in the reference configuration. These restrictions
limit the possibility of modelling shear and anisotropic effects as well as elastoplasticity
within the interface.

This chapter introduces one possibility for an extended consistent cohesive zone frame-
work that was first elaborated in Ottosen et al. [75]. At the beginning, the kinematics of
a relaxed fiber concept in the sense that the corner points of the fiber may change during
the deformation process is summarised. To be more precise, the fiber no longer links
two points that belong to the same material coordinate. Afterwards in Section 4.2 the
adjusted balance laws for the extended framework are summarised and the constitutive
relations are presented, cf. Section 4.3. Subsequently, a simple model of the generalised
framework is introduced in Section 4.4. This prototype model represents a thermo-
dynamically consistent elastoplastic fiber interface model and fulfills all fundamental
balance laws. Due to the physical behaviour of fibers under compression, particular
attention is given to the unloading behaviour. Therefore, a novel unloading approach is
presented in Section 4.5. Subsequently, it is shown that the introduced consistent elasto-
plastic interface framework can be formulated in a variational format, cf. Section 4.6.
At the end of this chapter the consistent elastoplastic fiber model is investigated within
numerical simulations. Here, the focus lies on the novel unloading behaviour which is
compared to classic damage material models.
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Γ+
t

Γ−
t

JuK

x+(θα)

x−(θα)

θ1

θ1

θ2

θ2

Figure 4.1: Representation of the fiber idea in classic cohesive zone framework. The fiber connecting
the lower surface Γ−

t and the upper surface Γ+
t of an opened interface is defined by the two points

x−(θα) and x+(θα), represented by the same material coordinates within the curvilinear coordinate
system θα. The difference of x−(θα) and x+(θα) is known as classic displacement jump JuK

4.1 Kinematics of the generalised fiber model

Following Section 3.1, the two coinciding crack surfaces of a non-coherent interface in
the reference configuration are denoted by

Γ−
0 = Γ−

0 (X
i) and Γ+

0 = Γ+
0 (X

i), (4.1)

which are described by the same Cartesian coordinates X i. Next, a two dimensional
curvilinear coordinate system with coordinates θα is introduced within the surfaces, i.e.,
X i = X i(θα). Here and henceforth, Greek indices take the values 1 and 2. In the current
configuration after crack opening, the reference surface decomposes into the two surfaces
Γ−
t and Γ+

t which are characterised by

x− = x−(θα, t) and x+ = x+(θα, t). (4.2)

In the classic cohesive zone formulation, a fiber connecting the upper and lower surface
of an opened interface is always defined by identical material coordinates θα on each side
of the crack/interface, see Fig. 4.1. The classic displacement jump reads

JuK = x+(θα, t)− x−(θα, t). (4.3)

Hence, its directional unit vector is calculated by

nJuK =
JuK

‖JuK‖ . (4.4)
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4.1 Kinematics of the generalised fiber model

The approach of fixed fiber coordinates is generalised in Ottosen et al. [75]. Instead
of always defining a fiber by two fixed material coordinates, the corner points of the
fiber are allowed to change during plastic loading. Therefore, the points are defined
by independent material coordinates, to be more precise by θα− on the lower surface Γ−

0

and by θα+ on the upper surface Γ+
0 as shown in Fig. 4.2. As mentioned above, the

Γ+
t

Γ−
t

w

x+(θα+)

x−(θα−)

θ1−

θ2−

θ1+

θ2+

Figure 4.2: Representation of the relaxed fiber idea in the generalised cohesive zone framework. The
fiber connecting the lower surface Γ−

t and the upper surface Γ+
t of an opened interface is defined by

two points x−(θα
−

) and x+(θα+), represented by different material coordinates within the curvilinear
coordinate system θα

−

and θα+. The difference of x−(θα
−

) and x+(θα+) can be interpreted as non-classic
displacement jump w.

redefinition of the starting and the end point of the fiber is associated with elastoplastic
deformations. To be more precise, during elastic deformation the fiber is defined by
coordinates that belong to the same material point, i.e., initially it holds that

θα−(t = 0) = θα+(t = 0) = θα(t = 0). (4.5)

This approach refers to the classic fiber concept of cohesive zones as sketched in Fig. 4.1.
If assumption (4.5) were neglected, different load paths that do not involve a change of
the fiber length would be possible and the corresponding stiffness would then be zero.
The redefinition of the fiber coordinates is characterised by a sliding of the original
material coordinates. An exemplary sliding of the original green fiber points to the
redefined black points in the θ1 direction is outlined by the red lines in Fig. 4.2. In order
to obtain a symmetry in the formulation, relations

θα− = θα − cα and θα+ = θα + cα (4.6)

are introduced. The sliding of the points (red line in Fig. 4.2) is described by a scalar-
valued evolution equation for

cα = cα(θβ). (4.7)
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4 Consistent cohesive zone framework I – sliding of the fiber’s corner points

Since θα denotes a fixed material point, the evolution of the coordinates is expressed by

˙θα− = −ċα and ˙θα+ = ċα. (4.8)

Taking all this into consideration, the positions of the fiber starting and end points of
the current configuration within the generalised framework read

x− = x−(θα−, t) and x+ = x+(θα+, t). (4.9)

Thereby, the non-classic part of the displacement jump is introduced as

w = x+(θα+, t)− x−(θα−, t), (4.10)

see also Fig. 4.2, and its direction is defined by

mw =
w

‖w‖ . (4.11)

In summary, when plasticity has developed, the two surfaces Γ−
t and Γ+

t do not nec-
essarily involve the same material coordinates (in general θα− 6= θα+). While the classic
positions (4.2) result in coinciding reference surfaces Γ−

0 = Γ+
0 , this is not the case in the

extended framework. To be more precise, the generalisation of the fiber concept results
in different reference crack surfaces during plastic loading, i.e., Γ−

0 6= Γ+
0 .

The concept of the coordinate sliding for the fiber generalisation as presented in
[75] bears some similarities to moving coordinates adopted in contact mechanics, cf. for
instance Curnier et al. [21], Pietrzak and Curnier [80]. The idea is to distinguish between
a master and a slave surface in the case of contact. The material coordinates on the
master surface are the projections of some material points on the slave surface. The
material coordinates on the master are allowed to move during loading, as is the case in
the generalised fiber concept for cohesive zone models.

4.2 Balance laws of the generalised cohesive zone

sliding framework

In the generalised cohesive zone framework introduced in Ottosen et al. [75], the kine-
matics of a fiber are adjusted by the sliding of points along the crack surfaces. The
classic framework of consistent cohesive zone models is expanded by the redefinition of a
fiber as a connection between two points described by different material coordinates θα+
and θα−. Hence, the generalised balance laws as well as the dissipation inequality have
to be re-derived.
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4.2 Balance laws of the generalised cohesive zone sliding framework

4.2.1 Balance of linear momentum

The sliding of nodes is dissipative in nature, cf. [75]. This means that ċα is not considered
in the stress power. Therefore, only tractions upon the lower and upper surfaces have
to be considered in the balance law for linear momentum, cf. Section 3.3 for the classic
fiber framework. Thus, the global form reads

∫

Γ−

t

t− ds+

∫

Γ+
t

t+ ds = 0 (4.12)

and ds denotes the relevant incremental area of the interface (crack) surface. The area
ds− on the lower interface side Γ−

t around x− can be related to the corresponding area
element ds+ on the upper side Γ+

t around x+ by

ds+ = jds−. (4.13)

The factor j is derived in the Appendix A.1 in analogy to [75], cf. Eq. (A.11). Inserting
relation (4.13) into Eq. (4.12) yields

∫

Γ−

t

[
t−(x−, t) + jt+(x+, t)

]
ds = 0. (4.14)

Due to the symmetric definition of the sliding, see Eq. (4.6), the upper position
x+(θα+, t) is related to the lower position x−(θα−, t). Finally, the localisation of the global
form (4.12) leads to the local form of balance of linear momentum, i.e.,

t−(x−, t) + jt+(x+, t) = 0. (4.15)

4.2.2 Balance of angular momentum

In this subsection balance of angular momentum is considered for the extended fiber
concept. Together with the aforementioned preliminaries, the global form of balance of
angular momentum reads

∫

Γ−

t

x− × t−(x−, t) ds+

∫

Γ+
t

x+ × t+(x+, t) ds = 0, (4.16)

which can be reduced by inserting relation (4.13) into a form related to the lower interface
surface, i.e.,

∫

Γ−

t

[
x− × t−(x−, t) + jx+ × t+(x+, t)

]
ds = 0. (4.17)
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4 Consistent cohesive zone framework I – sliding of the fiber’s corner points

Application of balance of linear momentum (4.15) leads to the local form of balance of
angular momentum for the generalised fiber framework, i.e.,

(
x+ − x−

)
× t− = 0. (4.18)

From Eq. (4.18) it can be concluded that the traction vector t− has to be collinear to the
non-classic displacement jump w (cf. Eq. (4.10)) in order to fulfill balance of angular
momentum. Therefore, it can be expressed in the form

t−(x−, t) = βw, (4.19)

where β is any (not necessarily deformation independent) proportionality factor. The
Piola-Kirchhoff traction vector T− that refers to the lower surface Γ−

0 is collinear to t−,
cf. t and T in the classic fiber framework. This gives rise to the relation

T − = γw. (4.20)

Here, the connection of t− and T − through relation

T −dS− = t−ds (4.21)

has been used where dS denotes the incremental area in the reference configuration Γ−
0 .

4.2.3 Second law of thermodynamics

According to Subsection 2.2.4, the second law of thermodynamics in form of the Clausius-
Planck inequality plays a major role in the derivation of consistent material models.
In the case of isothermal hyperelastic processes, the stress power P is related to the
material time derivative of the Helmholtz energy density Ψ̇. Based on the generalised
fiber concept, the stress power reads

P =

∫

Γ−

t

t−(x−, t) · v−ds+

∫

Γ+
t

t+(x+, t) · v+ds, (4.22)

where v− denotes the velocity of the lower position x− for fixed θα− and where v+ denotes

the velocity of the upper position x+ for fixed θα+, i.e.,
˙θα+ = ˙θα− = 0. It holds that

v− =
∂ϕ−

∂ t
and v+ =

∂ϕ+

∂ t
. (4.23)
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4.3 Constitutive modelling

Together with expression (4.13) and balance of linear momentum (4.15), the stress power
can be expressed in terms of the lower traction vector as

P =

∫

Γ−

t

t− ·
[
v− − v+

]
ds. (4.24)

Following the collinearity of t and T , the stress power can also be defined with respect
to the reference configuration as

P =

∫

Γ−

0

T − ·
[
v− − v+

]
dS. (4.25)

Similarly to the localisation process for bulk continua, cf. Subsection 2.2.4, the dissi-
pation inequality for the generalised fiber framework in the Clausius-Planck form reads

D = T − ·
[
v− − v+

]
− Ψ̇ = T+ ·

[
v+ − v−

]
− Ψ̇ ≥ 0, (4.26)

which is formally identical to the dissipation in classic cohesive zone fiber framework,
cf. Eq. (3.7) for hyperelasticity.

4.3 Constitutive modelling

4.3.1 Elasticity

As long as the deformations within the cohesive zone are elastic, no fiber sliding occurs.
To be more precise, the two crack surfaces Γ−

t and Γ+
t are described by the same material

coordinates θα− = θα+ = θα. This is in accordance with the classic fiber cohesive zone
framework. It gives rise to the classic displacement jump JuK, cf. Eq. (4.3). Therefore,
all assumptions and limitations presented in Chapter 3 are valid. Thus, only an isotropic
Helmholtz energy of the form

Ψ = Ψ(‖JuK‖) = Ψ(∆) (4.27)

together with a traction vector

T =
∂Ψ

∂‖JuK‖
JuK

‖JuK‖ (4.28)

can fulfill all fundamental requirements such as balance of angular momentum and ma-
terial frame indifference.

53



4 Consistent cohesive zone framework I – sliding of the fiber’s corner points

4.3.2 Elastoplasticity

As mentioned above regarding the range of elastic deformation, the classic fiber concept is
still employed. However, from the point when plasticity starts to evolve, the coordinates
given by θ1 and θ2 are allowed to slide along the surfaces Γ+

t and Γ−
t , cf. Section 4.1.

According to Eq. (4.20), balance of angular momentum requires that the traction vector
T− and the non-standard displacement jump w have to be collinear in the sense of

t−‖T− = γ
(
x+(θα+)− x−(θα−)

)
:= γw 6= γJuK, (4.29)

where γ is any proportionality factor. The introduced jumpw is non-standard since it no
longer connects two points with identical material coordinates. Hence, after coordinate
sliding, w does not point into the same direction as the classic jump JuK. Within the
extended framework, the quantity we represents the elastic part of w, comparable but
not to be confused with JuKe in the classic fiber concept. It is assumed that we and w

are collinear. Hence, the elastic part can be expressed as

we = βw, (4.30)

where β is any factor. According to Fig. 4.3 the length of the non-classic displacement

Γ+
t

Γ−
t

w

x+(θα+, t)

x−(θα−, t)

∆w

∆e
w

∆p

we

Figure 4.3: Current configuration of an opened cohesive zone with upper surface Γ+
t and lower surface

Γ−

t with the generalised fiber concept. The non-classic displacement jump w (length ∆w) is defined by
x+(θα+, t) and x−(θα

−

, t) referring to different material coordinates.

jump reads

∆w = ‖x+(θα+)− x−(θα−)‖ 6= ‖JuK‖. (4.31)

The corresponding elastic and plastic distances follow as

‖we‖ = ∆e
w = β∆w and ∆p = ∆w −∆e

w. (4.32)
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4.3 Constitutive modelling

While the direction of the elastic portion we is defined due to the collinearity with the
non-classic jump w, an interpretation of the relation between wp and the classic jump
JuK is shown in Fig. 4.4. The plastic part of the generalised displacement is calculated

Γ+
t

Γ−
t

JuK

x+(θα+, t)

x−(θα−, t)

x+(θα−, t)

∆w

we

wp

Figure 4.4: Current configuration of an opened cohesive zone with upper surface Γ+
t and lower surface

Γ−

t with the classic displacement jump JuK. The corresponding decomposition into we and wp referring
to the generalised fiber concept (sliding of nodes) is sketched.

by

wp = JuK −we. (4.33)

After combining all the introduced relations, Eq. (4.33) can be rewritten as

wp = x+(θα−, t)− x−(θα−, t)︸ ︷︷ ︸
JuK

−
(
1− ∆e

w

∆w

)(
x+(θα+, t)− x−(θα−, t)

)

︸ ︷︷ ︸
βw

. (4.34)

By including hardening effects, an isotropic Helmholtz energy of type

Ψ = Ψe(∆e
w) + Ψp(α) (4.35)

is assumed. From Eq. (4.32) it follows that

∆̇e
w = ∆̇w − ∆̇p. (4.36)

Inserting energy (4.35) together with relation (4.36) into the dissipation inequality leads
to

D = T − ·
(
v− − v+

)
− ∂Ψ

∂∆e
w

∆̇p +
∂Ψ

∂∆e
w

∆̇p +Q(α) α̇ ≥ 0. (4.37)

Here, Q := −∂αΨ is the stress-like internal variable energetically conjugate to α. The as-
sumption for the stress power P = T − ·(v− − v+) = T+ ·(v+ − v−) has been introduced
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4 Consistent cohesive zone framework I – sliding of the fiber’s corner points

in Subsection 4.2.3. In contrast to the classic fiber concept, the material coordinates of
the fiber starting and end point are allowed to slide along the θα-axes in the generalised
framework. Hence, the material time derivative of the current coordinates is expressed
by

ẋ−(θα−, t) =
∂x−

∂t
+

∂x−

∂θα−

dθα−
dt

= v− + g−
α θ̇α− (4.38)

and

ẋ+(θα+, t) =
∂x+

∂t
+

∂x+

∂θα+

dθα+
dt

= v+ + g+
α θ̇α+. (4.39)

Due to the definition of ∆w, cf. Eq. (4.31), its material time derivative is computed as

∆̇w =
(x+ − x−)

∆w

·
(
ẋ+ − ẋ−

)
=

w

∆w

·
[(

v+ + g+
α

˙θα+

)
−

(
v− + g−

α
˙θα−

)]
. (4.40)

By inserting relations (4.8), (4.38), (4.39) and (4.40) into Eq. (4.37), the dissipation
takes the form
[
T + − ∂Ψ

∂∆e
w

w

∆w

]
·
(
v+ − v−

)
+

∂Ψ

∂∆e
w

w

∆w

·
(
g+
α + g−

α

)
ċα+

∂Ψ

∂∆e
w

∆̇p+Q(α) α̇ ≥ 0. (4.41)

Application of the Coleman-Noll procedure yields the constitutive relation

T + =
∂Ψ

∂∆e
w

w

∆w

(4.42)

and the reduced dissipation inequality

T + ·
(
g+
α + g−

α

)
ċα +

∂Ψ

∂∆e
w

∆̇p +Q(α) α̇ ≥ 0. (4.43)

According to Eq. (4.42) it can be concluded that the traction vector T+ is collinear to
the generalised fiber w. Therefore, it fulfills the balance of angular momentum as well
as the principle of material frame indifference. Next, a physical interpretation of the
considered terms in Eq. (4.43) is given. The first part is related to the sliding of the
material coordinate ċα and the general τα may be defined as

τα = T + ·
(
g+
α + g−

α

)
. (4.44)

Taking a closer look to the second part of (4.43), the derivative is expressed as

∂Ψ

∂∆e
w

(mw ·mw) ∆̇p = T+ ·mw ∆̇p, (4.45)
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4.3 Constitutive modelling

wheremw is defined as unit vector in the direction of the generalised fiber from x−(θα−, t)
to x+(θα+, t), see Eq. (4.11). Introducing σm as

σm = T+ ·mw, (4.46)

this quantity can be interpreted as the normal stress component within the fiber. The
third part of (4.43) is related to hardening/softening effects. The reduced dissipa-
tion (4.43) can be rewritten as

ταċ
α + σm∆̇

p +Q(α) α̇ ≥ 0. (4.47)

If the crack surfaces Γ−
t and Γ+

t are parallel then τα are tangential shear forces. From
the reduced dissipation inequality (4.47) it follows that the fiber normal stress σm as
well as the generalised shear stress component τα are driving forces for the evolution of
plasticity.

The model is completed by choosing suitable evolution equations. A thermodynami-
cally consistent framework a priori guaranteeing Ineq. (4.47) is provided by the concept
of Generalised Standard Materials (GSM), cf. Halphen and Nguyen [39]. Within this
framework, a convex plastic potential g = g(σm, τα, Q; ...) is introduced. The gradients
of g define the evolution equations as

∆̇p = λ
∂g

∂σm

, ċα = λ
∂g

∂τα
and α̇ = λ

∂g

∂Q
, (4.48)

where λ ≥ 0 is the plastic multiplier. If potential g is convex and non-negative and con-
tains the origin (g(0) = 0), the dissipation inequality is automatically fulfilled. It bears
emphasis that ∆p, cα and α are scalar-valued and, thus, their material time derivatives
are material frame indifferent. In order to distinguish between fully elastic and elasto-
plastic deformations, a yield function φ is employed. Analogously to the plastic potential
g, it depends on σm, τα and Q, i.e., φ = φ(σm, τα, Q) ≤ 0. Based on the yield function,
loading/unloading conditions can be defined in standard manner as:

λ ≥ 0, φ ≤ 0, λφ = 0. (4.49)

If the sliding of the material coordinates is avoided (cα = 0), the classic fiber concept
with identical material coordinates for the starting and end point of the fiber is adopted.
This represents a special case of the generalised model for which a consistent elastoplastic
prototype model in line with the classic fiber theory is derived in the following section.
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4 Consistent cohesive zone framework I – sliding of the fiber’s corner points

4.4 Consistent elastoplastic fiber model – prototype

model of the generalised cohesive zone framework

According to Chapter 3, classic cohesive zone models can be interpreted as fiber mod-
els and none of the existing classic plasticity-based frameworks fulfills all fundamental
requirements of continuum mechanics. So far in this chapter, a generalised framework
which extends the classic fiber assumption has been used. In this section the gen-
eral framework is simplified in the sense that the sliding of the material coordinates is
prevented (cα = 0). This leads to the classic fiber concept with identical material coordi-
nates for the corner points of the fiber (θα+ = θα− = θα). In this range, a special case of an
elastoplastic prototype fiber model fulfilling all fundamental requirements is presented.
The key point of this derivation is the additive decomposition of the displacement jump
into an elastic and a plastic part, i.e. JuK = JuKe + JuKp. Starting with a Helmholtz
energy of type

Ψ = Ψ(JuKe) (4.50)

hardening and softening effects are neglected for now. According to Eq. (3.17), balance of
angular momentum in classic fiber models requires that the traction vector T is collinear
to JuK. As shown in Subsection 3.5.1, an isotropic Helmholtz energy of the type

Ψ(JuKe) = Ψ(‖JuKe‖) = Ψ(∆e) (4.51)

ensures collinearity between T and JuKe. However, this is not sufficient in order to fulfill
balance of angular momentum. Now, the next step is to enforce collinearity between
JuK and its plastic part JuKp, see Fig. 4.5. Therefore, an evolution equation that implies

Γ+
t

Γ−
t

JuK

x+(X, t)

x−(X, t)

∆

∆e

∆p

JuKe

JuKp

Figure 4.5: Current configuration of an opened cohesive zone with upper surface Γ+
t and lower surface

Γ−

t . The displacement jump JuK (length ∆) is decomposed into an elastic part JuKe (length ∆e) and a
plastic part JuKp (length ∆p), that are both taken to be collinear to JuK.

JuK‖JuKp has to be chosen. In such a case, JuKe is collinear to JuK and T is collinear to
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4.4 Consistent elastoplastic fiber model – prototype model of the generalised cohesive zone framework

JuKe leading to the desired collinearity between JuK and T . According to Fig. 4.5, the
lengths of the respective proportions of JuK are given by

∆ = ∆e +∆p. (4.52)

The direction m of the displacement jump is introduced, i.e.,

m =
JuK

∆
(4.53)

and due to collinearity, the different parts of the displacement jump are rewritten as

JuK = ∆m, JuKp = ∆p m and JuKe = ∆em. (4.54)

Following these preliminaries, a dissipative material response of the interface should now
be considered. To be more precise, hardening and softening effects are accounted for.
Therefore, a description with internal state variables is used. Within this framework, a
Helmholtz energy of type

Ψ = Ψe(∆e) + Ψp(α) (4.55)

is adopted, where α denotes a scalar-valued displacement-like internal variable. Accord-
ing to Eq. (4.55), the elastic response modelled by the first term Ψe is assumed to be
completely independent of the internal hardening/softening processes reproduced by α.
Besides, the second term Ψp represents the stored energy due to plastic work. With the
additive decomposition JuK = JuKe+ JuKp the dissipation inequality D = P − Ψ̇ ≥ 0 can
be written as

D =

(
T − ∂Ψ

∂JuKe

)
· ˙JuK +

∂Ψ

∂JuKe
· ˙JuK

p
+Q(α) α̇ ≥ 0. (4.56)

In line with the previous section, Q := −∂αΨ is the stress-like internal variable energet-
ically conjugate to α. Application of the Coleman-Noll procedure defines the traction
vector

T =
∂Ψ

∂JuKe
=

∂Ψe

∂∆e

JuKe

∆e
(4.57)

and the reduced dissipation inequality then becomes

T · ˙JuK
p
+Q(α)α̇ ≥ 0. (4.58)

Considering collinearity between JuKe, JuKp and JuK, cf. Fig. 4.5, enables a further sim-
plification of the reduced dissipation inequality and a derivation of evolution equations
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4 Consistent cohesive zone framework I – sliding of the fiber’s corner points

complying with the second law of thermodynamics. The definitions in Eq. (4.54) allow
the derivation of the material time derivative of JuKp as

˙JuK
p
= ∆̇p m+ ṁ∆p. (4.59)

Inserting Eq. (4.59) into the reduced dissipation inequality (4.58) yields

(T ·m) ∆̇p + (T · ṁ) ∆p +Q(α)α̇ ≥ 0. (4.60)

Since m is a unit vector, its time derivative is orthogonal to m. Using the collinearity
between m and T , the second term in Eq. (4.60) vanishes (ṁ ⊥ T ). By further
introducing the notation σm := T ·m, the reduced dissipation inequality simplifies to

σm ∆̇p +Q(α)α̇ ≥ 0. (4.61)

If the classic cohesive zone model is interpreted as a fiber model, σm denotes the normal
stress in the classic fiber direction from x−(X, t) to x+(X, t). Clearly, Ineq. (4.61)
follows as a special case of the general dissipation inequality (4.47) if sliding is prevented
(ċα = 0). Thus, this prototype model constitutes a simplified type of the generalised
framework in line with the classic cohesive zone framework.

Now the model is completed by choosing suitable evolution equations. According to
the previous section, the concept of Generalised Standard Materials (GSM), cf. Halphen
and Nguyen [39] is adopted. The convex plastic potential g(σm, Q) is introduced whose
gradients define the evolution equations, i.e.,

∆̇p = λ
∂g

∂σm

(4.62)

and

α̇ = λ
∂g

∂Q
. (4.63)

Again, λ > 0 is the plastic multiplier. It bears emphasis that ∆p and α are scalar-
valued and, thus, their material time derivatives are material frame indifferent. In order
to distinguish between fully elastic and elastoplastic deformations, a yield function φ
is employed. Analogously to the plastic potential g, it depends on σm and Q, i.e.,
φ = φ(σm, Q) ≤ 0. Based on the yield function, loading/unloading conditions can be
defined in standard manner as

λ ≥ 0, φ ≤ 0, λφ = 0. (4.64)

60



4.4 Consistent elastoplastic fiber model – prototype model of the generalised cohesive zone framework

4.4.1 Elastoplastic prototype model

In line with the theory presented in Section 4.4 a prototype model of the type

Ψ(∆, ∆p, α) =
1

2
c (∆e)2 +Ψp(α) (4.65)

is chosen within the numerical computations presented in Section 4.7. The elastic part Ψe

is assumed to be quadratic. Since this model represents a fiber model, c is interpreted
as the elastic stiffness of the fiber, respectively the spring, connecting x−(X, t) and
x+(X, t). Concerning the yield function, the choice

φ(σm, Q) = σeq − (Q0 +Q) (4.66)

is made, where σeq is a positively homogeneous function of degree one and where Q0 is
the initial yield strength of the interface. In the following, an equivalent stress of the
type

σeq = |σm| (4.67)

is adopted. By considering associative evolution equations, i.e. g = φ, it follows that

∆̇p = λ sign(σm) (4.68)

and

α̇ = −λ = −∆̇p sign(σm). (4.69)

The plastic part in Eq. (4.65) is represented by an exponential softening model of the
type

Ψp(α) := Gf

[
1− Exp

(
αQ0

Gf

)]
+Q0 α, (4.70)

and the stress-like internal variable

Q = −∂Ψp

∂α
= −Q0

[
1− Exp

(
αQ0

Gf

)]
, (4.71)

where Gf denotes the fracture energy.

Remark 7 The fracture energy Gf follows from the time integration of the stress power

P = T · ˙JuK as

Gf =

∫ ∞

t=0

T · ˙JuK dt =

∫ ∞

t=0

(
Ψ̇ +D

)
dt. (4.72)
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4 Consistent cohesive zone framework I – sliding of the fiber’s corner points

According to the presented prototype model from Subsection 4.4.1 the yield function is
homogeneous of degree one, leading to a dissipation D = λQ0. Finally, one obtains the
fracture energy as

∫ −∞

α=0

(
∂Ψp

∂α
−Q0

)
dα = Gf . (4.73)

4.4.2 Prototype model including damage

The mechanical properties of the novel elastoplastic prototype model are analysed at
the end of this chapter. For the sake of comparison, computations based on a standard
isotropic damage cohesive zone model, cf. [84], characterised by Helmholtz energy

Ψ(∆) = (1− d) Ψe = (1− d)
1

2
c∆2 (4.74)

are also employed. The material parameters of this model (elastic stiffness of the in-
terface c, fracture energy Gf and strength Q0) are chosen according to those of the
advocated elastoplastic model, see Subsection 4.4.1.

According to the theory presented in Section 3.4, the isotropic damage variable d ∈
[0, 1] indicates for d = 0 the virgin material, while d = 1 is associated with the totally
damaged material. In line with the elastoplastic prototype model, c denotes the elastic
stiffness of the interface (corresponding to the virgin material). Since d is energetically
conjugate to the Helmholtz energy of the virgin material, which in turn depends only on
the displacement jump, thermodynamical arguments suggest a damage evolution of the
type d = d(∆), cf. Section 3.4. However, since the displacement jump is not necessarily
monotonic in nature, d = d(∆) could lead to self-healing of the material. In order to
avoid this, a history variable κ is introduced by means of

κ(tn+1) = max{κ(tn), ∆(tn+1)}, κ(t0) = κ0. (4.75)

The model is completed by a suitable damage evolution law d = d(κ), i.e.,

d(κ) = 1− κ0

κ
Exp

[
− (κ− κ0)

Q0

Gf

]
. (4.76)

Here, κ0 denotes the amplitude of the displacement jump necessary for damage initiation,
Q0 is the strength of the interface (similar to the yield stress for the elastoplastic model)
and Gf represents the fracture energy.
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4.5 Novel unloading approach

As far as unloading is concerned, closing of interfaces always requires special attention.
Otherwise a non-physical penetration between Γ− and Γ+ can occur. A careful review
on this problem can be found in literature on contact mechanics. The interested reader
is referred to Laursen [54], Wriggers [104]. However, this general problem is not the
focus of this work. For this reason, a simple penalty formulation is employed. To be
more precise, in the case of penetration, i.e., if JuK · n < 0, the interface is assumed to
have regained its initial elastic stiffness. However, penetration of the surfaces Γ+

t and
Γ−
t is not the only critical problem to be considered.

4.5.1 Preliminaries

As shown in Chapter 3, classic cohesive zone models are fiber models where the traction
points into the direction of the fiber, respectively the displacement jump JuK. During
the opening process of an interface, the fiber is loaded under tension and elastic and
plastic deformation parts are collinear, see Section 4.4. Following the previous plasticity
concepts, the traction-separation diagram for a representative fiber is shown in Fig. 4.6.
Combining the yield criterion with the equivalent stress leads to an isotropic softening

A

B

C

D
E

∂Ψe

∂∆e

∆

Figure 4.6: Intuitively unphysical traction-separation diagram for the fiber model; thin fibers could not
bear compressive stresses (hypothetical load path between CE); furthermore, in point E the direction
of the displacement jump is not defined.

model, sketched out in the load path to point A. If loading were continued, it would follow
path AB. On the contrary, unloading of the fiber follows path AC to the stress free state
of the fiber, where its displacement is fully plastic, e.g. ∆ = ∆p. The slope of this path
is parallel to the initial slope of the elastic area. Following path CD, further unloading
results in ∆e < 0, which would generate compressive stresses within the fiber. Due to
isotropic softening, plasticity would again be activated at point D and it would follow
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4 Consistent cohesive zone framework I – sliding of the fiber’s corner points

path DE which corresponds to AB. Following such an unloading behaviour, one obtains
a singularity in point E. The displacement jump vanishes and consequently its direction
m and traction vector t are not defined. Physically speaking, this corresponds to a fiber
compressed to one point, where the direction of the respective force is not defined. For
this reason, a fiber model requires t(JuK = 0) = 0. Furthermore, thin fibers cannot bear
compressive stresses without buckling. Hence, a novel physical meaningful unloading
behaviour is introduced in the following.

4.5.2 Novel unloading behaviour - wrinkling of fibers

A physically sound unloading model can be motivated by considering the physical prop-
erties of fibers: If a thin fiber is loaded under compression, it buckles. If one further
assumes a vanishing bending stiffness (sufficiently thin fibers), compressive stresses are
inadmissible. Similar ideas have also been successfully applied in order to study wrinkling
in membranes, cf. Epstein [26], Mosler and Cirak [67], Pipkin [81, 82, 83]. Application
of this assumption leads to the traction-separation diagram in Fig. 4.7, where load path

A

B

C

D

∂Ψe

∂∆e

∆

Figure 4.7: Load displacement diagram of the novel unloading model related to fiber wrinkling with
stress free relaxation of the fiber to the deformation free state (load path CD).

CD captures the stress free relaxation of the fiber to the deformation free state with
t(JuK = 0) = 0. Wrinkling in membranes is captured by a wrinkling strain. In anal-
ogy thereto, a wrinkling proportion JuKw adjusts the displacement jump in the case of
unloading, i.e.,

JuK = JuKe + JuKp − JuKw. (4.77)
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Thereby, the buckling of fibers under compression is captured in the presented cohesive
zone framework. In analogy to Section 4.4, all proportions of the displacement jump are
collinear leading to the additive decomposition

∆ = ∆e +∆p −∆w, (4.78)

where ∆w := ‖JuKw‖. The underlying idea of the wrinkling portion of ∆ is sketched out
in Fig. 4.8. First, a fiber is loaded under tension and the fiber displacement decomposes

Γ+
t

Γ+
t

Γ+
t

Γ−
tΓ−

t Γ−
t

JuK
JuK

JuK

x+(X, t)

x+(X, t)

x+(X, t)

x−(X, t)x−(X, t) x−(X, t)

∆

∆
, ∆

∆e

∆p

∆p ∆p

∆w

a) b) c)

Figure 4.8: Graphical explanation for the unloading process within the fiber model including wrinkling:
a) a fiber under tensile loading where the fiber stretch decomposes into an elastic and a plastic part;
b) unloading of the fiber to the stress free state, where the fiber stretch is purely plastic; c) a further
compression of the fiber would result in a negative elastic stretch ∆e < 0, respectively in a compressive
stress. However, this does not seem to be realistic since thin fibers would show buckling and consequently
vanishing stresses. The wrinkling approach precisely depicts this process by enforcing vanishing stresses
through ∆er = ∆ −∆p + ∆w = 0. Since under compression it holds that ∆ − ∆p < 0, the condition
∆w > 0 has to be fulfilled.

into an elastic and a plastic part, e.g. ∆ = ∆e + ∆p, see Fig. 4.8 a). Then the fiber
undergoes elastic unloading until the hole deformation is purely plastic, e.g. ∆ = ∆p,
see Fig. 4.8 b). According to Subsection 4.5.1, compressive stresses within the fiber due
to ∆e < 0 should be excluded since the fiber would start to buckle. This process is
precisely captured by the wrinkling related stretching part of the fiber ∆w. Physically
speaking, ∆w describes the change in the length of the fiber under buckling. Since under
compression of the fiber it holds that ∆−∆p < 0, the condition

∆w ≥ 0 (4.79)

is implied, see Fig. 4.8 c). Inserting Eq. (4.78) into the Helmholtz energy density of the
elastoplastic prototype model (4.65) gives

Ψ(∆, ∆p, ∆w, α) = Ψe(∆e) + Ψp(α). (4.80)
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4 Consistent cohesive zone framework I – sliding of the fiber’s corner points

As shown in [26, 67, 81–83] this potential includes the wrinkling conditions in a varia-
tional format. To be more explicit, the wrinkling/buckling displacement jump can be
computed by minimising Eq. (4.80) subjected to the constraint (4.79), i.e.,

∆w = arg inf
∆w≥0

Ψ(∆, ∆p, ∆w, α). (4.81)

This can be seen by computing the necessary condition for stationarity resulting in

∂Ψ

∂∆w
=

∂Ψe

∂∆w
=

∂Ψe

∂∆e
= σm ≥ 0. (4.82)

Accordingly, the variational principle (4.81) naturally enforces tensile stresses.
A closed-form solution of the variational problem (4.81) providing further insights

can be derived by enforcing the following two physically sound constraints:

(1) Ψe(∆e) = 0 ⇔ ∆e = 0,

(2) Ψe(∆e) is monotonically increasing.

Suppose ∆ − ∆p < 0. Without buckling, this case would correspond to compressive
stresses in the fiber. With ∆w ≥ 0, the closed-form solution of the variational prob-
lem (4.81) reads

∆−∆p < 0 ⇒ ∆w = ∆p −∆ > 0 ,∆e = 0, Ψe = 0, σm = 0. (4.83)

The closed-form solution in the case of a positive elastic part of the jump reads

∆−∆p > 0 ⇒ ∆w = 0 ,∆e = ∆−∆p > 0, Ψe > 0, σm > 0. (4.84)

Wrinkling is therefore not active. The solution follows from the monotony of Ψe, i.e.,
∆w > 0 would lead to a further increase in energy.

4.6 Variational structure of the cohesive zone framework

As shown in the previous section, buckling of the fibers can be written in a variational
format. For a broad range of different plasticity models such a variational structure
also exists, cf. Section 2.3. For this reason, the combination of fiber buckling and fiber
plasticity could have a variational structure as well. For wrinkling in membranes the
variational structure was shown in Mosler and Cirak [67].

In order to derive a variational structure and in line with [67], the stress power

P = T · ˙JuK = Ψ̇+D of the model is considered. Assuming associative evolution equations
and a yield function given by Eq. (4.66), combined with the equivalent stress (4.67), the
dissipation reduces to D = λ Q0 ≥ 0 and the stress power can then be written as

P = Ψ̇ + λ Q0. (4.85)
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According to Eq. (2.89) for classic bulk materials, the interface stress power (4.85) can

be interpreted as a functional in terms of ˙JuK, λ and ∆̇w, i.e.,

E( ˙JuK, ∆̇w, λ) = Ψ̇( ˙JuK, ∆̇w, λ) + λ Q0. (4.86)

The variational structure

(∆̇w, λ) = arg stat
{∆̇w≥0,λ≥0}

E( ˙JuK, ∆̇w, λ) (4.87)

can be shown by computing the stationary conditions. With

Ψ̇ = σm

(
∆̇− ∆̇p + ∆̇w

)
−Q α̇ = σm

(
∆̇− λ∂σm

φ + ∆̇w
)
+Qλ (4.88)

the stationary conditions associated with Eq. (4.87) result in

∂E
∂λ

= −σm ∂σm
φ+Q+Q0 = −φ ≥ 0 (4.89)

and

∂E
∂∆̇w

= σm ≥ 0. (4.90)

Accordingly, the model is indeed variational, i.e., it contains the yield function (4.89)
as well as the constraint corresponding to buckling of the fibers (4.90). Furthermore,
the reduced energy

Ered( ˙JuK) = inf
∆̇w≥0, λ≥0

E( ˙JuK, ∆̇w, λ) (4.91)

serves as a quasi hyperelastic potential defining the stress state via

T =
∂Ered( ˙JuK)

∂ ˙JuK
. (4.92)

In addition to its elegance, the presented variational framework implies an efficient nu-
merical implementation. In order to derive such an implementation, the time-continuous
functional E( ˙JuK, λ, ∆̇w) is discretised in time (time interval t ∈ [tn; tn+1]) leading to the
time-discrete approximation

I(JuKn+1,∆λ,∆w
n+1) =

tn+1∫

tn

E( ˙JuK, λ, ∆̇w) dt = Ψn+1 −Ψn +∆λ Q0, (4.93)
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where ∆λ :=
∫ tn+1

tn
λ dt. The discrete counterparts corresponding to the stationary

conditions (4.89) and (4.90) of the time-continuous problem are

∂I
∂∆λ

= − [σm ∂σm
φ]|n+1 +Q|n+1 +Q0 = −φn+1 ≥ 0 (4.94)

and

∂I
∂∆w

= σm|n+1 ≥ 0. (4.95)

Within the numerical implementation, such implicit constraints are solved by means of
a classic predictor-corrector algorithm similar to the one advocated in [67]. In the case
of plastic loading or buckling, the implicit problems φn+1 = 0 and σm|n+1 = 0 are solved
by means of a Newton iteration giving asymptotically a quadratic convergence. Finally,
the stress update is performed in the standard manner

T =
∂

∂JuKn+1

{
inf

∆λ≥0,∆w
n+1≥0

I
}
. (4.96)

4.7 Numerical examples

This section deals with numerical structural analyses. Such analyses serve two purposes.
First, efficiency and accuracy of the proposed numerical implementation is checked. Sec-
ondly and more importantly, the mechanical properties characterising the novel fiber-like
cohesive zone model are studied. For all computations, the L-shape shown in Fig. 4.9 is
considered. While quadratic displacement-driven 10-node tetrahedron finite elements,
together with a standard neo-Hooke-type model, are employed for the bulk material, the
novel interface model is incorporated into standard quadratic displacement-driven 12-
node interface models (6 nodes on each side), cf. Ortiz and Pandolfi [72]. The material
parameters of the cohesive zone model summarised in Fig. 4.9 correspond to the proto-
type presented in Subsection 4.4.1 and the elastic parameters (µ and λ) are identical to
those adopted in Radulovic et al. [84]. According to the employed interface implemen-
tation [72], cohesive zones can only open between existing bulk elements and, thus, the
geometry of the cohesive zones is biased by the finite element discretisation. However, it
bears emphasis that the respective constitutive model can also be implemented within
the framework of the embedded strong discontinuity approach or the extended finite el-
ement method not showing this bias, cf. [84]. In any case, the mesh bias is not the focus
of this work. First, the influence of the discretisation is analysed. For that purpose,
the L-shape is computed with a coarse mesh (see Fig. 4.10 left) and with a fine mesh
(see Fig. 4.10 right). Figure 4.10 shows the deformed configurations (displacements are
magnified). It can be seen that both meshes lead to a curved cohesive zone surface,
similar to the geometry reported in [84]. Furthermore, the mesh bias is almost negli-
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Figure 4.9: L-shaped structure: dimensions [cm], boundary conditions and material parameters (see
Eq. (4.70)) used within the numerical analysis, cf. [84].

Figure 4.10: L-shaped structure: deformed discretisations as computed by means of the proposed
cohesive zone model. left: coarse mesh; right: fine mesh. The geometry and the material parameters
are summarised in Fig. 4.9. magnification factor: 150
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gible for the two different tetrahedron discretisations. The load-displacement diagrams
corresponding to the two computations are summarised in Fig. 4.11. Again, only a slight

0

1

2

3

4

5

6

7

0 0.01 0.02 0.03 0.04 0.05

F
or
ce

F
[k
N
]

Displacement u [cm]

Coarse mesh

Fine mesh

Figure 4.11: L-shaped structure: load-displacement diagrams as computed by means of the proposed
cohesive zone model: coarse mesh (continuous line) and fine mesh (dashed line). The geometry and the
material parameters are summarised in Fig. 4.9.

influence of the discretisation on the predicted mechanical response can be observed.
The properties of the novel cohesive zone model are then studied. Since the coarse

mesh and the fine mesh lead to almost identical results, only the coarser mesh is con-
sidered in the following. For comparison purposes, the computations are also performed
by using the scalar-valued damage cohesive zone presented in Subsection 4.4.2. The
material parameters of this model (elastic stiffness of the interface, fracture energy and
strength) are chosen according to those of the respective elastoplastic model.

A comparison between the elastoplastic model and the classic damage model shows
that both models lead to exponential softening during loading. Furthermore, both pre-
dict the same strength of the interface and the same fracture energy. As a matter of fact,
the damage evolution (4.76) has been designed such that both models lead to identical
results for monotonic loading and for a uniaxial stress state. For this reason, major
differences between both models are expected only during unloading. In order to acti-
vate local unloading, the L-shape is first loaded and subsequently, displacement-driven
unloaded.

The deformed L-shaped structures as predicted by the two constitutive models are
shown in Fig. 4.12. Such configurations correspond to the maximum prescribed dis-
placement umax = 0.025 cm. It can be seen that both constitutive models lead to almost
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Figure 4.12: L-shaped structure: deformed configuration as computed by means of the proposed co-
hesive zone model (left diagram) compared to the deformed configuration as computed by means of
a scalar-valued damage model (right diagram). The geometry and the material parameters are sum-
marised in Fig. 4.9. magnification factor: 250

identical results. This is not surprising, since the local deformation paths which the
material points experience are monotonic (almost no unloading). Consequently, the dif-
ferences between elastoplasticity and damage theory are not pronounced. Similarly, the
predicted load-displacement diagrams corresponding to the two different models also
agree reasonably, see Fig. 4.13. While this is expected for loading, the good agreement
for unloading seems to be surprising at first glance. To be more precise, the results
obtained by the novel elastoplastic cohesive zone models look counterintuitive. For in-
stance, no plastic deformations remain after unloading. The reason for this non-standard
behaviour seems to be related to the buckling mode included in the model: In the case of
unloading, the tensile stresses within the opened cohesive zones decrease and finally, the
buckling kinematics is active leading to zero stresses – as for a fully damaged material
point. This conjecture is confirmed by means of Fig. 4.14. As can be seen, some material
points show the unloading behaviour according to classic elastoplasticity (picture at the
bottom right in Fig. 4.14), while other material points show wrinkling (picture at the
top right in Fig. 4.14). The global structural unloading response is thus a superposition
of these two different effects.

The aforementioned superposition is explained schematically in Fig. 4.15 and in
Fig. 4.16. Figure 4.15 depicts local loading-unloading diagrams in the equivalent
traction-displacement-jump space for two different material points (upper and lower
row). The horizontal axis is associated with time. Accordingly, the first material point

71



4 Consistent cohesive zone framework I – sliding of the fiber’s corner points

0

1

2

3

4

5

6

7

0 0.01 0.02 0.03

F
or
ce

F
[k
N
]

Displacement u [cm]

Damage

Plasticity

Figure 4.13: L-shaped structure: load-displacement diagram as computed by means of the proposed
cohesive zone model (continuous line) compared to the load-displacement diagram as computed by
means of a scalar-valued damage model (dashed line). The geometry and the material parameters are
summarised in Fig. 4.9.
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Figure 4.14: L-shaped structure: (left) deformed structure and visualisation of the crack; (right) equiv-
alent traction separation diagram for two different Gauss points on the crack; (top right) Gauss point
showing unloading according to wrinkling in the final state; (bottom right): Gauss point showing un-
loading according to plasticity theory in the final state
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Figure 4.15: Schematic local load-displacement diagrams (equivalent traction vs. equivalent displace-
ment jump) for two different Gauss points (upper and lower row) at three different time steps (from
left to right)
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Figure 4.16: Schematic illustration of the structural response by means of a load-displacement dia-
gram resulting from the local loading-unloading behaviour of two different material points according to
Fig. 4.15
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(upper row) unloads in line with elastoplasticity theory in the first time step (upper left
diagram). Subsequently, wrinkling is observed (middle and right upper diagrams). Sim-
ilarly, the second material point follows the classic elastoplastic unloading behaviour in
the first time step (bottom left diagram). During the second time step (bottom middle
diagram), the same elastoplastic unloading behaviour is observed. Only during the final
step (bottom right diagram) wrinkling is active. If these two material points belong to
the same structure, the structural response is conceptually obtained by superposition
of the different diagrams. Such a superposition is shown in Fig. 4.16. In line with the
behaviour of the two material points, the standard elastoplastic unloading behaviour can
also be seen at the structural level during the first loading stage. Likewise, wrinkling-
like behaviour is visible for the third loading step. However, the interesting loading
step is step two, where the different material points correspond to different unloading
responses, see the middle diagrams in Fig. 4.15. In this case, superposition leads to a
smooth transition between elastoplasticity and damage theory (the circle in Fig. 4.16).
This is precisely the effect explaining the diagram in Fig. 4.13.
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5 Consistent cohesive zone framework
II – coupling with surface elasticity

This chapter presents a generalised consistent interface framework based on an ex-
tended stress power assumption. To be more precise, the change of the structural tensors
is accounted for in this chapter. This results in a further stress contribution besides the
classic traction vector within the interface.

The idea is to combine the framework of classic non-coherent interfaces investigated in
the previous chapter with the theory of coherent interfaces. The general framework for
coherent interfaces is based on surface elasticity established by Gurtin [34, 35], Gurtin
and Murdoch [36], Murdoch [69] and further developed by Steinmann [94], Javili et al.
[49], Kaessmair et al. [52] and recently by Javili et al. [51]. The combination of the
cohesive zone and coherent interface theory was first established in Ottosen et al. [77],
see also Javili et al. [50] and Javili [47]. The change of structural tensors is considered
within the stress power. Thereby, the derived interface framework is thermodynamically
consistent and allows the investigation of shear and anisotropic effects what is not the
case for classic cohesive zone fiber models.

After a short introduction to the generalised kinematics in Section 5.1, the balance
laws for the generalised interface framework are derived from a variational point of view
in Section 5.2. Subsequently, the framework is extended with an anisotropic damage
model and a quasi-brittle prototype model is introduced in Section 5.3. Afterwards,
the numerical implementation of the proposed framework is introduced. At the end of
this chapter, numerical investigations are presented that show the advantages of the
extended interface framework in contrast to classic cohesive zone models.

5.1 Kinematics of coherent interfaces - introduction to

surface elasticity

This section introduces the kinematics of surfaces, respectively coherent interfaces, re-
lated to surface elasticity theory established in Gurtin and Murdoch [36], Murdoch [69].
According to Section 3.1, the kinematics describe the motion of particles within the
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reference interface Γ0 to the current configuration of the interface Γt. Mathematically,
the surface Γ0 is understood as a two-dimensional submanifold in R

3. The essential
difference to the previous two chapters is that the interface may not open during the
deformation process. To be more precise the interface is assumed to be coherent and the
jump of the motion across the interface vanishes, i.e. JϕK = 0. Thereby, only in-plane
deformations within the interface can be captured. As mentioned before, a point P
lying within Γ0 is described by X(P ). During the deformation, the material point does
not decompose into two different spatial configurations as in non-coherent interface the-
ory, see Eqs. (3.1) and (3.2). Here, the motion from its referential to its unique spatial
configuration is denoted as ϕ and the position is labelled as x. In order to deliver a re-
lation for the notation of surface elasticity and the kinematics of non-coherent interfaces
introduced in Section 3.1, it is assumed that

x(P ) = x(m)(P ) = ϕ(X(P )), x(m)(P ) ∈ Γt. (5.1)

Furthermore, the motion of the interface follows the motion of the bulk as ϕ = ϕ|Γ0
.

In order to describe the in-plane deformation, curvilinear coordinates θ1 and θ2 are
introduced. Thereby, points belonging to the undeformed interface Γ0 are denoted by
X(θα), where the Greek index runs from 1 to 2, see Fig. 5.1. The covariant tangential

G1

G2

G3 = N

g2

g1

g3 = n

X

x(m)

Γ0

Γtϕ, F

θ
1

θ2

dX

dx

Figure 5.1: Motion of a surface – reference configuration Γ0 and current configuration Γt. The defor-
mation mapping ϕ maps points X belonging to Γ0 to their current counterparts x(m) in Γt.

base vectors of the reference configuration Gα are given by

Gα = X ,α =
∂X

∂θα
, (5.2)

which allow the definition of the unit normal vector

N =
G1 ×G2

|G1 ×G2|
= G3 (5.3)

and it follows that G3 = G3. The base vectors G1, G2 and G3 then constitute a right-
handed system, see Fig. 5.1. The normal vector N points from the lower interface side
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Γ−
0 to the upper interface side Γ+

0 . Having introduced the deformation, the tangential
base vectors of the deformed configuration of a coherent interface read

gα = x(m),α =
∂x(m)

∂θα
. (5.4)

The unit normal vector n is given by

n =
g1 × g2

|g1 × g2|
= g3, (5.5)

where it follows that g3 = g3. Having set up the notation, the surface deformation
gradient F is introduced as

F := GRAD(x(m)) =
∂x(m)

∂X
=

∂x(m)

∂θα
⊗ ∂θα

∂X
= gα ⊗Gα. (5.6)

Accordingly,

GRAD(•) = ∂(•)
∂θα

⊗ ∂θα

∂X
(5.7)

denotes the surface gradient of quantity (•) with respect to the referential configuration
and Gα are the contravariant base vectors of Γ0. In relation to Eq. (2.16), the inverse

of the surface deformation gradient F
−1

also exists and reads

F
−1

= grad(X) =
∂X

∂θα
⊗ ∂θα

∂x(m)

= Gα ⊗ gα, (5.8)

where

grad(•) = ∂(•)
∂θα

⊗ ∂θα

∂x(m)

=
∂(•)
∂θα

⊗ gα (5.9)

defines the surface gradient of (•) with respect to the current configuration. Analogously
to the bulk, the surface deformation gradient F is a linear deformation map of line
elements dX within the reference surface Γ0 to their counterpart dx within the current
configuration of the surface Γt, i.e.,

dx = F · dX. (5.10)

As already mentioned, this chapter presents a generalised interface theory. The kinemat-
ics of non-coherent cohesive zone models are combined with the kinematics of coherent
interfaces based on surface elasticity theory as introduced in this section. Thereby,
modelling of shear and anisotropic effects in a thermodynamically consistent matter is
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5 Consistent cohesive zone framework II – coupling with surface elasticity

possible. The balance laws and constitutive relations for the extended interface frame-
work are derived in the following sections.

5.2 Balance laws of the generalised interface framework

5.2.1 Preliminaries

According to Sections 3.1 and 5.1, the kinematics of the generalised interface depend
on the displacement jump JuK and on the surface deformation gradient F . It bears
emphasis that such variables are independent of each other. To be more precise, F

cannot be computed if JuK is known, i.e., F 6= F (JuK) and vice versa, if F is known,
JuK cannot be computed, i.e., JuK 6= JuK(F ). This mathematical independence is also
comprehensible from a physics point of view. While JuK describes the opening of an
interface (e.g., the crack opening), F captures the in-plane deformation of the interface.
Thus, they are related to different physical effects and consequently, the aforementioned
independence is expected. Since the opening and the in-plane deformation of an interface
are independent, a Helmholtz energy Ψ that should capture both effects has to depend
on JuK as well as on F . Focusing on hyperelasticity for now, and in line with Javili et al.
[50], Ottosen et al. [77], an energy of type

Ψ = Ψ(JuK, F , α) (5.11)

is therefore adopted in the following. Here, α is a set of suitable internal variables cap-
turing inelastic effects such as hardening/softening due to plasticity or material degrada-
tion due to microcracking. Alternatively, this choice can also be motivated by modelling
anisotropies. Taking material anisotropies into consideration, the Helmholtz energy has
to be extended with structural tensors ai to Ψ = Ψ(JuK, ai, α). For instance, in order
to distinguish between mode-I and mode-II or mode-III failure, the normal vector of the
interface n = g3 has to enter the Helmholtz energy, i.e., Ψ = Ψ(JuK, n, α), see Eq. (3.9).
However, g3 is a function in terms of the tangential vector g1 and g2 which, in turn, can
be computed by means of surface deformation gradient F , cf. Eq. (5.6). In summary,
Ψ = Ψ(JuK, n, α) = Ψ̂(JuK, F , α) and thus energy Ψ(JuK,n,α) depicts a special case
in the range of general interfaces represented by Helmholtz energy (5.11). Consequently,
the incorporation of surface deformation gradient F can either be motivated by the
independence of F on JuK or by the introduction of structural tensors/vectors such as
n = g3.

An alternative, equivalent representation of Helmholtz energy (5.11) can be derived
considering material time derivative

Ḟ = ġα ⊗Gα (5.12)
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of the surface deformation gradient, cf Eq. (5.6). Accordingly, the only deformation-
dependent variables entering F are the tangent vectors gα. They can therefore be
considered as structural tensors ai for a Helmholtz energy of type

Ψ = Ψ(JuK, gα,α). (5.13)

This choice is indeed a different, but nevertheless equivalent representation of Eq. (5.11).
Helmholtz energies (5.11) and (5.13) both represent descriptions for general interfaces.

5.2.2 Work conjugacy and second law of thermodynamics

Based on Helmholtz energy (5.11) or (5.13), the stresses dual to JuK and F , or those
dual to JuK and gα can be derived by applying the classic Coleman-Noll procedure. For
that purpose and focusing on representation (5.11), the variables conjugate to JuK and
F are introduced first. They are denoted by T and P . Assuming that α is exclusively
related to dissipative effects – in line with standard (local) plasticity theory or damage
mechanics – the stress power reads

P = T · ˙JuK + P : Ḟ , (5.14)

where T is a traction vector dual to JuK and where P is a stress tensor dual to F . In
analogy to bulk materials, P is denoted as first Piola-Kirchhoff interface stress tensor.
The new variable T has to be introduced, since it will turn out that T + 6= −T − 6= T in
general.

Alternatively, and starting from Eq. (5.13), the stress power takes the format

P = T · ˙JuK +Aα · ġα, (5.15)

where the stresses Aα dual to gα are related to P by Aα = P ·Gα. This relation follows
from inserting Eq. (5.12) into Eq. (5.14) and by comparing the result to Eq. (5.15).

According to representations (5.11) and (5.14), the dissipation of the generalised
isothermal interface model takes the form

D = P − Ψ̇ =

[
T − ∂Ψ

∂JuK

]
· ˙JuK +

[
P − ∂Ψ

∂F

]
: Ḟ +Q · α̇ ≥ 0, (5.16)

where Q := −∂Ψ/∂α is the internal variable dual to α. Adopting the classic Coleman-
Noll procedure leads to the stresses dual to JuK and F as

T =
∂Ψ

∂JuK
(5.17)
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and

P =
∂Ψ

∂F
. (5.18)

Here, the analogy to the Piola-Kirchhoff bulk stress tensor (2.46) is obvious. The
components of P are calculated as P = P αigi ⊗ Gα, cf. [77]. Hence, it holds that
P ·G3 = P ·G3 = 0 and P is a superficial tensor, see Gurtin [35, Section 15a]. Due to
Javili et al. [46] the superficiality is the consequence of a first-order continuum theory.
The obtained stresses give rise to the reduced dissipation inequality

D = Q · α̇ ≥ 0. (5.19)

In what follows, representations (5.13) and (5.15) are considered – a representation in
terms of JuK and gα. Based on this choice, the dissipation of an isothermal model can
be computed as (see also [77])

D = P − Ψ̇ =

[
T − ∂Ψ

∂JuK

]
· ˙JuK +

[
Aα − ∂Ψ

∂ġα

]
· ġα +Q · α̇ ≥ 0. (5.20)

Again by applying the Coleman-Noll procedure, the stresses dual to JuK and gα are
obtained as

T =
∂Ψ

∂JuK
(5.21)

and

Aα =
∂Ψ

∂gα

. (5.22)

In turn, stress contributions (5.21) and (5.22) again lead to the reduced dissipation
inequality (5.19).

Remark 8 It bears emphasis that Ineq. (5.20) indeed represents the most general case
– as far as assumed stress power (5.15) is concerned. For instance, Ineq. (5.20) also
encompasses plasticity theories. In this case and in line with [75], internal variables α

would also include certain plasticity related displacement jumps.

5.2.3 Balance of linear momentum

In order to derive balance of linear momentum in the case of general interfaces, a vari-
ational point of view is adopted here. A similar derivation can be found in the work by
Javili [47]. As will be shown, the variational framework leads to a compact and direct
derivation. In this subsection hyperelasticity is considered. In analogy to the principle
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Ñ
T +

T −

T b

T b

Figure 5.2: Stresses acting on an interface – referential description: Tractions acting at the upper
surface Γ+

0 = Γ0 are denoted by T+, tractions acting at the lower surface Γ−

0 = Γ0 are denoted by
T−, stresses acting at the boundary of the interface ∂Γ0 are denoted by T b. The normal vector of the
boundary of the interface is denoted by Ñ .

of minimum potential energy for bulk materials (cf. Subsection 2.3.1.3), the starting
point of the variational re-derivation is the total potential energy of the interface

I =

∫

Γ0

Ψ(JuK, gα) dA

−
∫

Γ+
0 =Γ0

T+ · ϕ+ dA−
∫

Γ−

0 =Γ0

T− · ϕ− dA−
∮

∂Γ0

T b · ϕ(m) dL. (5.23)

The first term represents the total Helmholtz energy. According to Fig. 5.2, the external
potential consists of energies related to tractions T+ and T −. The motions of the upper
and lower side of the interface follow the bulk motions ϕ+ and ϕ−. Moreover, as an
extension to the classic cohesive zone framework, the tractions T b prescribed on the
boundary dL are also considered here. It bears emphasis that T+ and T − are standard
tractions showing the physical unit force/area, while stresses T b show the physical unit
force/length.

In order to compute the variation of I, the term depending on the Helmholtz energy
is considered first. Applying the constitutive relations (5.21) and (5.22), its variation
yields

∫

Γ0

δϕ Ψ(JuK, gα) dA =

∫

Γ0

[
T · δJuK +Aα · δgα

]
dA. (5.24)

By employing the identity

DIV
(
δx(m) · P

)
= δx(m) ·DIVP +Aα · δgα, (5.25)

which depends on the surface divergence operator

DIV(•) = ∂(•)
∂θα

·Gα, (5.26)
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5 Consistent cohesive zone framework II – coupling with surface elasticity

Eq. (5.24) can be rewritten as

∫

Γ0

δϕ Ψ(JuK, gα) dA =

∫

Γ0

[
T · δJuK +DIV

(
P · δx(m)

)
−DIVP · δx(m)

]
dA. (5.27)

Now, the surface Gauss theorem, cf. for instance Gurtin and Murdoch [36], Steinmann
[94],

∫

Γ0

DIV
(
δx(m) · P

)
dA =

∮

∂Γ0

δx(m) ·
(
P · Ñ

)
dL−

∫

Γ0

Kδx(m) ·P ·N dA, (5.28)

is inserted into Eq. (5.27). Here, the second term in Eq. (7.16) concerning the curvature
K vanishes due to the superficiality property P ·N = 0 of the Piola-Kirchhoff interface
stress. Furthermore, the Cauchy-type relation T b = P · Ñ – in line with bulk materials
– is employed. The variation of potential (5.23) with respect to the deformation ϕ

simplifies to

δϕI =

∫

Γ0

[
T ·

(
δx+ − δx−

)
− T + · δx+ − T − · δx−−

1

2
DIVP ·

(
δx+ + δx−

) ]
dA = 0 ∀ δx+, δx−, (5.29)

where the variations

δJuK = δx+ − δx− and δϕ± = δu± = δx± (5.30)

have been used. Since δx− and δx+ are independent of each other and arbitrary,
Eq. (5.29) is equivalent to the two equations

−1

2
DIVP − T+ + T = 0 (5.31)

and

−1

2
DIVP − T− − T = 0. (5.32)

These are the Euler-Lagrange equations associated with potential (5.23). Since these
cannot be compared easily to existing frameworks, they are reformulated next. For that
purpose, Eq. (5.31) is added to Eq. (5.32) yielding

T + + T− +DIVP = 0. (5.33)

This equation is equivalent to the local form of balance of linear momentum as derived
in [77] and [47]. Equation (5.33) shows that trivial identity T+ = −T −, cf. Eq. (3.13),
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5.2 Balance laws of the generalised interface framework

is only fulfilled in the classic framework, i.e., if the Helmholtz energy only depends on
the displacement jump JuK – and not also on structural tensors like base vectors gα.
Finally, by subtracting Eq. (5.32) from Eq. (5.31) one obtains

T =
1

2

(
T+ − T−

)
, (5.34)

which is the averaged traction vector conjugate to JuK.

Remark 9 As an alternative to the considered variational principle and to the principle
of virtual work, one can also start from postulating the external mechanical power, cf.
Javili et al. [50]. In this case, invariance principles such as those in Noll [71] and Beatty
[8] can be applied. Again, this would eventually lead to strong form (5.33).

5.2.4 Balance of angular momentum

The goal of this subsection is to derive the balance of angular momentum for the ex-
tended interface framework from a variational point of view – in line with the derivation
in Ottosen et al. [77]. According to (local) bulk material models, balance of angular
momentum can be enforced point-wise by choosing a suitable Helmholtz energy. To
be more precise, it was shown in [77] that an invariance of the Helmholtz energy with
respect to arbitrary isometries – also known as material objectivity or frame indifference
from a physics point of view – is sufficient in order to fulfill balance of angular momen-
tum point-wise, cf. Subsection 2.3.1 for bulk materials. In the case of hyperelasticity,
the aforementioned invariance reads

Ψ(Q · JuK,Q · gα) = Ψ(JuK, gα) ∀Q ∈ SO(3), (5.35)

where Q is an arbitrarily proper orthogonal matrix. In line with classic invariance
principles, cf. Green and Rivlin [33], Noll [71] (see also Del Piero [23]), it can be shown
that invariance of the power with respect to a change of observer is equivalent to balance
of linear and angular momentum. Consequently, any objective Helmholtz energy Ψ
automatically fulfills balance of angular momentum. In order to derive the local form of
balance of angular momentum for the extended interface framework, the material time
derivative of Eq. (5.35) is computed as

∂Ψ(Q · JuK,Q · gα)

∂Q
: Q̇

=

[
∂Ψ(Q · JuK,Q · gα)

∂(Q · JuK)
· ∂(Q · JuK)

∂Q
+

∂Ψ(Q · JuK,Q · gα)

∂(Q · gα)
· ∂(Q · gα)

∂Q

]
: Q̇ = 0.

(5.36)
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Clearly, in the case of hyperelasticity the material time derivative of Ψ is equivalent to
the internal stress power. By applying the relations

∂Ψ

∂(Q · JuK)
=

∂Ψ

∂JuK
·QT and

∂Ψ

∂(Q · gα)
=

∂Ψ

∂gα

·QT (5.37)

together with the constitutive relations (5.21) and (5.22), Eq. (5.36) is reformulated to

[
T ⊗ JuK +Aα ⊗ gα

]
: Ω = 0, (5.38)

where Ω = QT · Q̇ denotes the spin tensor. Since Ω is skew symmetric, it is implied
that the term within the square brackets is symmetric. Then, following [77] and using
arguments similar to, for instance, Bertram [10, p. 31], Eq. (5.38) is fulfilled, if and only
if

JuK × T + gα ×Aα = 0. (5.39)

Equation (5.39) represents the local form of balance of angular momentum for the ex-
tended general interface framework. Accordingly, in a classic cohesive zone framework
Aα = 0 which implies collinearity between JuK and T , i.e., a fiber model, cf. Eq. (3.15).

In what follows, condition (5.35) is a priori fulfilled by considering suitable invariants.
A possible choice for such invariants is

I1 = JuK · JuK, I2 = JuK · (g1 ⊗ g1) · JuK, I3 = JuK · (g2 ⊗ g2) · JuK (5.40)

and

C = F
T · F = (gα · gβ)G

α ⊗Gβ. (5.41)

Due to the symmetry of C, the total number of (independent) invariants is six. Three
of those are related to an anisotropic cohesive zone-like model (see Eq. (5.40)), while the
remaining three are associated with the deformation of the mid-surface (see Eq. (5.41)).
The derivatives of such invariants necessary for the implementation are summarised in
Appendix B.1.

5.3 Prototype model – a quasi-brittle mixed-mode

damage model

In this section, a prototype model is presented which falls into the range of the con-
stitutive framework elaborated before. It is a mixed-mode quasi-brittle damage model
which accounts for the different physics associated with mode-I and mode-II/III failure.
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5.3 Prototype model – a quasi-brittle mixed-mode damage model

For instance, different fracture energies and material strengths can be chosen for the
aforementioned failure modes.

In order to derive the prototype model, the Helmholtz energy is additively decomposed
into energies related to the relevant failure modes. In line with Mosler and Scheider [68],
Ottosen et al. [75] and Ottosen et al. [77], a Helmholtz energy of type

Ψ =
n∑

i=1

Ψi(JuK, gα,α) (5.42)

is thus postulated. For a mixed-mode model distinguishing between mode-I failure
(index n – failure in normal direction of the interface) and mode-II/III failure (index t
– failure in tangential direction of the interface), Eq. (5.42) simplifies to

Ψ = Ψn(JuK, gα,α) + Ψt(JuK, gα,α). (5.43)

Material degradation / failure of the considered interface is realised by a degradation of
the material’s stiffness through scalar-valued damage parameters. Such parameters are
denoted by

• d
(n)
n : degradation in normal direction due to loading in normal direction

• d
(t)
t : degradation in tangential direction due to loading in tangential direction

• d
(t)
n : degradation in normal direction due to loading in tangential direction

• d
(n)
t : degradation in tangential direction due to loading in normal direction.

Since all d
(j)
i ∈ [0; 1] are scalar-valued, they are a priori invariant with respect to a change

of observer. According to this invariance, Eq. (5.35) indeed guarantees material frame
indifference of the Helmholtz energy. In order to couple failure in normal and failure
in tangential direction (cross softening), and in order to enforce an effective damage
parameter within the range [0; 1], a multiplicative decomposition of the effective damage
parameter is used. To be more precise, a Helmholtz energy of type

Ψ = (1− d(n)n )(1− d(t)n ) Ψ0
n(JuK, gα) + (1− d

(n)
t )(1− d

(t)
t ) Ψ0

t (JuK, gα) (5.44)

is assumed. Since d
(j)
i ∈ [0; 1], the effective parameters (1 − d

(n)
n )(1 − d

(t)
n ) and (1 −

d
(n)
t )(1− d

(t)
t ) indeed belong to the same interval – as required by physics. The energies

Ψ0
n(JuK, gα) and Ψ0

t (JuK, gα) in Eq. (5.44) are the Helmholtz energies due to mode-I and
mode-II/III loading associated with the virgin undamaged material (the superscript 0
signals the undamaged state).

Energies Ψ0
n(JuK, gα) and Ψ0

t (JuK, gα) are defined next. For that purpose, invariants

I1 = JuK · JuK, I2 = JuK · (g1 ⊗ g1) · JuK, I3 = JuK · (g2 ⊗ g2) · JuK (5.45)
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are introduced. Here, the contravariant vectors gβ being dual to gα have been used,
i.e., gβ ·gα = δβα. Accordingly, the mixed-variant invariants (5.45) are not only invariant
with respect to isometries (as required by the principle of material objectivity), but also
invariant with respect to arbitrary isomorphisms. Consequently, if Helmholtz energies
Ψ0

n(JuK, gα) and Ψ0
t (JuK, gα) are written in terms of such invariants, the resulting po-

tential is spatially covariant. This property implies material frame indifference which,
in turn, implies balance of angular momentum (point-wise), cf. Subsection 5.2.4 (see
also Remark 10). As the energy associated with mode-I loading should depend on the
normal component of the displacement jump JuK ·n = JuK ·g3 = JuK ·g3 which is related
to invariants (5.45) by I1 − I2 − I3 = JuK · (g3 ⊗ g3) · JuK, ansatz

Ψ0
n = Ψ0

n(I1 − I2 − I3) (5.46)

is made. With respect to the numerical examples presented in Section 6.4, the simplest
possible choice – a quadratic energy (quadratic with respect to the displacement jump)

Ψ0
n =

1

2
cn (I1 − I2 − I3) (5.47)

is considered. Here, cn is the elastic stiffness of the interface in normal direction. Anal-
ogously to Eq. (5.47), the energy due to failure in tangential direction (represented by
the quadratic invariants I2 and I3), is defined by

Ψ0
t = Ψ0

t (I2, I3). (5.48)

Assuming the same mechanical response in both tangential directions and again a
quadratic representation of the Helmholtz energy,

Ψ0
t =

1

2
ct (I2 + I3) (5.49)

is chosen for the numerical examples. It is shown explicitly in [77] that choices (5.47)
and (5.49) imply a cohesive model where, in addition to traditional cohesive fiber forces,
also out-of-plane membrane forces exist.

The model is completed by suitable evolution equations for d
(j)
i . Since the reduced

dissipation inequality (5.19) resulting from general Helmholtz energy (5.44) reads

D = (1−d(t)n ) Ψ0
n ḋ(n)n +(1−d(n)n ) Ψ0

n ḋ(t)n +(1−d
(n)
t ) Ψ0

t ḋ
(t)
t +(1−d

(t)
t ) Ψ0

t ḋ
(n)
t ≥ 0 (5.50)

and since factor (1 − d
(j)
i ) Ψ0

k ≥ 0 is non-negative for all four terms occurring in this
inequality, a sufficient condition in order to fulfill the second law of thermodynamics is

ḋ
(j)
i ≥ 0. (5.51)
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Speaking in terms of physics, Ineq. (5.51) prohibits self-healing. In line with Simo
and Ju [89], a suitable evolution equation guaranteeing Ineq. (5.51) is postulated in

terms of variables being dual to d
(j)
i . According to Ineq. (5.51), d

(j)
i is dual to Ψ0

i (and

a prefactor). For this reason, ansatz d
(j)
i = d

(j)
i (Ψ0

i ) is made. Again, by following
standard continuum damage mechanics (cf. [89]), Ineq. (5.51) is enforced by choosing

a monotonously increasing function d
(j)
i = d

(j)
i (Ψ0

i ) and by replacing non-monotonous
energies Ψ0

i by their maximum value, i.e.,

d
(j)
i = d

(j)
i (κj), κjn+1

= max{κjn; Ψjn+1
}. (5.52)

Within the numerical examples presented in Section 6.4 a function of the type

d
(j)
i (κj) = 1−

√
κj0

κj

exp

[
−
(√

κj −
√
κj0

) Q0j√
1/2 cj Gfj

]
(5.53)

is chosen, cf. Radulovic et al. [84]. Here, κj0 denotes the value of energy Ψ0
j that has to

be reached for damage initiation, Q0j is the strength of the interface and Gfj represents
the interface’s fracture energy. The parameters can be adjusted individually for failure
in normal (mode-I) and failure in tangential (mode-II/III)) direction. A summary of the
prototype model is given in Tab. 5.1.

Remark 10 Energies (5.46) and (5.48) are material covariant, i.e., they are invariant
with respect to an arbitrary change of frame. This is a stronger condition as the one im-
plied by the principle of material frame indifference, which is – mathematically speaking
– an invariance with respect to isometries (with respect to the deformed configuration).
If only material frame indifference is to be fulfilled, invariants (5.45) can be replaced by
rotationally invariant invariants

I1 = JuK · JuK, I2 = JuK · g1, I3 = JuK · g2. (5.54)

However, it bears emphasis that an in-plane stretch of the interface leading to a change
in gα would in this case lead to a change in I2 and I3 and thus, to a change in en-
ergy (5.48) as well. For this reason, if only the jump is to be decomposed into a normal
and a shear part without taking into account energy due to stretching of the interface,
invariants (5.45) should be employed. They are invariant with respect to a stretch of the
interface.

Remark 11 Since Helmholtz energy (5.46) due to mode-I loading depends quadratically
on the displacement jump (I1−I2−I3 = JuK · (g3⊗g3) · JuK), damage would occur under
tension as well as under compression, cf. Eq. (5.52). Certainly, the latter is unphysical.
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Table 5.1: Summary of the prototype model

• Total Helmholtz energy

Ψ = (1− d(n)n )(1− d(t)n ) Ψ0
n(JuK, gα) + (1− d

(n)
t )(1− d

(t)
t ) Ψ0

t (JuK, gα)

• Elastic parts of Helmholtz energy

– Due to mode-I loading

Ψ0
n =

1

2
cn (I1 − I2 − I3)

– Due to mode-II/III loading

Ψ0
t =

1

2
ct (I2 + I3)

• Damage criterion and evolution

– Due to mode-I loading

κnn+1
= max{κnn

; Ψnn+1
}

d(n)n (κn) = 1−
√

κn0

κn

exp
[
−
(√

κn −
√
κn0

)
Q0n/

(√
1/2 cn Gfn

)]

d
(n)
t (κn) = 1−

√
κn0

κn

exp
[
−
(√

κn −
√
κn0

)
Q0n/

(√
1/2 cn Gfn

)]

– Due to mode-II/III loading

κtn+1
= max{κtn ; Ψtn+1

}

d
(n)
t (κt) = 1−

√
κt0

κt

exp
[
−
(√

κt −
√
κt0

)
Q0t/

(√
1/2 ct Gft

)]

d
(t)
t (κt) = 1−

√
κt0

κt

exp
[
−
(√

κt −
√
κt0

)
Q0t/

(√
1/2 ct Gft

)]

• Model parameters:

cn, ct, Q0n , Gfn , κn0
=

1

2

Q2
0n

cn
, Q0t ,Gft , κt0 =

1

2

Q2
0t

ct
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For this reason, the loading type is checked first by condition JuK·n ≥ 0. If this condition
is met, energy (5.44) is used. Otherwise (crack closure), it is replaced by

Ψ = Ψ0
n(JuK, gα) + (1− d

(n)
t )(1− d

(t)
t ) Ψ0

t (JuK, gα). (5.55)

Consequently, an initial undamaged state is considered for mode-I loading and, there-
fore, if the normal stiffness cn entering Ψ0

n is chosen to be large enough, a physically
inadmissible overlapping of the upper and the lower interface surfaces cannot occur.
Mathematically, this corresponds to a penalty-like formulation. In line with this assump-
tion, damage evolution due to mode-I loading is suppressed, i.e., κn is fixed as constant,
cf. Eq. (5.52). With regard to mode-II/III failure, damage variable κt may still evolve
under compression.

5.3.1 Numerical implementation

This subsection deals with the numerical implementation of the proposed framework
for the description of interfaces. According to Eq. (5.44), the general structure of the
underlying Helmholtz energy is of type

Ψ = Ψ(ϕ, α), (5.56)

where ϕ := (ϕ−,ϕ+) describes the deformation of the interface (its upper and its lower
surfaces correlated to the affiliated bulk deformation, cf. Section 3.1) and where α

denotes a set of internal variables (such as the damage variables d
(j)
i as introduced in the

previous section). Since ϕ contains the kinematics of the upper and the lower surfaces
of the interface, displacement jump JuK as well as tangential base vectors gα can be
computed from ϕ. To be more explicit,

JuK = ϕ+ − ϕ− , gα =
∂

∂θα

(
1

2
(ϕ− +ϕ+)

)
. (5.57)

According to Subsection 5.2.4, balance of angular momentum can be enforced point-wise
by choosing the Helmholtz energy to be material frame indifferent. Likewise, the second
law can be fulfilled by using suitable evolution equations. The only balance law which
cannot be fulfilled a priori is balance of linear momentum. According to Subsection 5.2.3,
this law is equivalent to a vanishing first variation of the total energy with respect to the
deformation (if the internal variables are kept fixed). With ϕ := (ϕ−,ϕ+), the stored
energy of the interface can be written as

I(ϕ,α) =

∫

I0

Ψ(ϕ,α) dA. (5.58)
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5 Consistent cohesive zone framework II – coupling with surface elasticity

In order to compute Energy (5.58), a spatial finite element discretisation is employed.
The respective triangulation by means of interface elements reads

I0 ≈ Ih
0 =

nIE⋃

e=1

Ie
0 , (5.59)

where nIE denotes the number of interface elements. Within each of the nIE ele-
ments, an isoparametric ansatz is made. Accordingly, the reference configuration and
its deformed counterpart are approximated as

X− = X+ ≈ X(θ) =
nNIE∑

i=1

N (i)(θ)X(i), (5.60)

x−(θ) ≈
nNIE∑

i=1

N (i)(θ)x
(i)
−

x+(θ) ≈
nNIE∑

i=1

N (i)(θ)x
(i)
+





=: x±(θ) ≈
nNIE∑

i=1

N (i)(θ)x
(i)
± (5.61)

where N (i) are shape functions depending on natural coordinates θ and where nNIE
denotes the number of nodes on the lower side of an interface element (respectively, on the

upper side). The unknowns in this representation are x
(i)
± = (x

(i)
− ,x

(i)
+ ): the coordinates

of the nodes with respect to the deformed configuration. Based on approximations (5.61),
the deformed mid-surface of the interface (denoted by x(m)) as well as the displacement
jump are obtained as

x(m)(θ) =

nNIE∑

i=1

1

2
N (i)(θ)

(
x
(i)
− + x

(i)
+

)
, JuK(θ) ≈

nNIE∑

i=1

N (i)(θ)
(
x
(i)
+ − x

(i)
−

)
. (5.62)

Furthermore, the approximation of tangential base vectors Gα and gα is given by

Gα(θ) ≈
nNIE∑

i=1

∂N (i)(θ)

∂θα
X(i),

∂ϕ

∂θα
≈ gα(θ) =

nNIE∑

i=1

1

2

∂N (i)(θ)

∂θα

(
x
(i)
− + x

(i)
+

)
. (5.63)

By inserting such approximations into energy (5.58), I becomes a function in terms of

x± — to be more precise, a function in terms of the nodal unknowns x
(i)
± . For this reason,

the computation of the first variation of I with respect to the deformation requires the
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5.3 Prototype model – a quasi-brittle mixed-mode damage model

variation of the unknown field x±. By using a Bubnov-Galerkin scheme, this variation
is approximated in standard manner by means of

δx+ ≈ δx+(θ) =
nNIE∑

i=1

N (i)(θ)δx
(i)
+ , δx− ≈ δx−(θ) =

nNIE∑

i=1

N (i)(θ)δx
(i)
− . (5.64)

With such approximations, the aforementioned first variation results in

δϕ I(ϕ) =
∫

I0

δϕΨdA =

∫

I0

[
∂Ψ

∂JuK
· δJuK +

∂Ψ

∂gα

· δgα

]
dA

=

nIE⋃

e=1

∫

Ie
0

{
∂Ψ

∂JuK
·
[
nNIE∑

i=1

N (i)(θ)
(
δx

(i)
+ − δx

(i)
−

)]
+

∂Ψ

∂gα

·
[
nNIE∑

i=1

1

2

∂N (i)(θ)

∂θα

(
δx

(i)
− + δx

(i)
+

)]
dA

}
. (5.65)

By introducing the vector of internal forces R
(i)
± = (R

(i)
− ,R

(i)
+ ) corresponding to node

i of the considered finite element at the lower (-) or at the upper (+) surface of the
interface, Eq. (5.65) can be rewritten as

δϕ I(ϕ) =
nIE⋃

e=1

[
nNIE∑

i

R
(i)
− · δx(i)

− +

nNIE∑

i

R
(i)
+ · δx(i)

+

]
=:

nIE⋃

e=1

nNIE∑

i

R
(i)
± · δx(i)

± . (5.66)

Consequently, a comparison between Eq. (5.66) and Eq. (5.65) yields

R
(i)
± =

∫

I0


±N (i) ∂Ψ

∂JuK
+

1

2

∂N (i)

∂θα
∂Ψ

∂gα︸ ︷︷ ︸
Summation over α


 dA. (5.67)

Assembling all elemental contributions – including those related to bulk elements and
prescribed forces – leads to the global residual vector [R]. With this notation, the
approximated weak form of equilibrium reads [R] = 0. This equation depends on all

unknown nodal positions with respect to the deformed configuration such as x
(i)
± .

In order to find the solution [R] = 0, a Newton-Raphson scheme is employed. There-
fore, the consistent linearisation of the system is needed. Starting from Eq. (5.66), the
general structure of this linearisation due to the interface’s contribution is

∆ϕ

(
δϕI

)
=

nIE⋃

e=1

nNIE∑

i=1

δx
(i)
± ·∆R

(i)
± . (5.68)

93



5 Consistent cohesive zone framework II – coupling with surface elasticity

Considering residual (5.67), the linearisation of R
(i)
± shows the format

∆R
(i)
± =

∫

I0

[
±N (i) ∆

(
∂Ψ

∂JuK

)
+

1

2

∂N (i)(θ)

∂θα
∆

(
∂Ψ

∂gα

)]
dA. (5.69)

The linearisations involved in Eq. (5.69) can be computed as

∆

(
∂Ψ

∂JuK

)
=

∂2Ψ

∂JuK ⊗ ∂JuK
·∆JuK +

∂2Ψ

∂JuK ⊗ ∂gα

·∆gα +
∂2Ψ

∂JuK ⊗ ∂α
·∆α (5.70)

and

∆

(
∂Ψ

∂gα

)
=

∂2Ψ

∂gα ⊗ ∂gβ

·∆gβ +
∂2Ψ

∂gα ⊗ ∂JuK
·∆JuK +

∂2Ψ

∂gα ⊗ ∂α
·∆α. (5.71)

It bears emphasis that the variation of internal variablesα has now indeed to be included.
While the linearisations of JuK and gβ are obvious, i.e.,

∆JuK(θ) ≈
nNIE∑

i=1

N (i)(θ)
(
∆x

(i)
+ −∆x

(i)
−

)
(5.72)

and

∆gβ(θ) ≈
nNIE∑

i=1

1

2

∂N (i)(θ)

∂θβ

(
∆x

(i)
− +∆x

(i)
+

)
, (5.73)

the linearisation of internal variables α follows from linearising the constitutive update
algorithm – in line with, e.g., the classic return-mapping algorithm in computational
plasticity theory. This is shown next.

According to Eq. (5.52), if loading is signalled (non-vanishing damage evolution),
identity

κj = κj(Ψj(JuK, gα)) (5.74)

holds true. This is an explicit function which relates internal variables κj to the defor-
mation mapping (through JuK and gα). A generalisation of this relation is

α = α (JuK, gα) . (5.75)

Without going into too much detail, for implicitly defined constitutive models, Eq. (5.75),
has to be replaced by the implicit relation

R = R (α, JuK, gα) = 0. (5.76)
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5.3 Prototype model – a quasi-brittle mixed-mode damage model

For Eq. (5.75) as well as for Eq. (5.76), the linearisation of α eventually results in

∆α = ∆α (∆JuK, ∆gα) . (5.77)

Finally by inserting Eqs. (5.70) and (5.71), together with sensitivities (5.77) and approx-

imations (5.72) and (5.73), into Eq. (5.69), the linearisation of R
(i)
± can be transferred

into the compact notation

∆R
(i)
± =

∫

I0

nNIE∑

j=1

(
K

(ij)
(±+) ·∆x

(j)
+ +K(±−) ·∆x

(j)
−

)
dA. (5.78)

Here, K is the stiffness matrix. In matrix notation it shows the structure

K(ij) =

[
K

(ij)
−− K

(ij)
−+

K
(ij)
+− K

(ij)
++

]
=




dR
(i)
−

dx
(j)
−

dR
(i)
−

dx
(j)
+

dR
(i)
+

dx
(j)
−

dR
(i)
+

dx
(j)
+


 . (5.79)

Within this subsection, the generic implementation of the proposed framework for
interfaces has been given. Further details — and the required derivatives — are provided
in Appendix B.1. It is important to observe that the linearisation process relies on some
non-trivial differentials.

Remark 12 The integrals in Eq. (5.67) and Eq. (5.69) are computed numerically by
employing a standard Gauss-type integration. For this reason, the proper number of
integration points has to be chosen. Since quadratic interface elements are used, i.e., 6
nodes at the lower and 6 nodes at the upper part of the interface, the resulting stiffness
matrix is a 36×36 matrix (12 nodes ×3 Dofs = 36). Furthermore, the interface element

shows 18 zero energy modes. This follows from setting x
(i)
− = x

(i)
+ which results in a

vanishing displacement jump, and by observing that this coupling implies 18 independent
nodal degrees of freedom. Since the stiffness matrix is a 36 × 36 matrix and since the
interface shows 18 zero energy modes, the stiffness matrix has a rank of 18. Focusing
on isotropic hyperelasticity for the sake of illustration, the interface stiffness matrix
simplifies to

K
(ij)
±± =

∫

I0

[(
±N (i)

) ∂2Ψ

∂JuK ⊗ ∂JuK

(
±N (j)

)]
dA. (5.80)

Accordingly, the integrand is represented by a matrix with a rank lower or equal to 3,
since ∂2Ψ/(∂JuK⊗ ∂JuK) is a 3× 3-matrix. Consequently, a necessary condition for the
stiffness matrix to have a rank of 18 is a Gauss integration by means of 6 integration
points. The same number also follows from postulating that product N (i) N (j) should

95



5 Consistent cohesive zone framework II – coupling with surface elasticity

be integrated exactly. Clearly, the proposed interface model is not isotropic. However,
the respective stiffness matrix also shows terms of the type N (i) N (j). Furthermore, the
matrix connecting T and JuK as well as the one connecting Aα and gα are 3×3 matrices.
For this reason, a numerical integration by means of 6 Gauss points is indeed reasonable.
However, it should not be ignored that a full Gauss integration may lead to numerical
oscillations as reported in Svenning [96]. Fortunately, such instabilities have not been
observed in the numerical examples.

5.4 Numerical investigation of balance of angular

momentum

This section presents a comparison of numerical results within the classic fiber cohesive
zone and the extended general interface framework derived in this chapter. To be more
explicit, an anisotropic interface Helmholtz energy is considered. It will be shown that
this leads to inconsistencies concerning fundamental physical laws within a classic fiber
cohesive zone model. In contrast thereto the generalised interface model is indeed con-
sistent in terms of physics. As shown in Subsection 5.3.1, the novel generalised interface
model is characterised by residuum

[R
(i)
± ]gen =

∫

I0

[
±N (i) ∂Ψ

∂JuK
+

1

2

∂N (i)

∂θα
∂Ψ

∂gα

]
dA =

∫

I0

[
±N (i)T +

1

2

∂N (i)

∂θα
Aα

]
dA

(5.81)

while the second term is ignored in the classic framework, i.e.,

[R
(i)
± ]cla =

∫

I0

[
±N (i) ∂Ψ

∂JuK

]
dA =

∫

I0

[
±N (i)T

]
dA. (5.82)

With these preliminaries one example with two comparative numerical simulations is
presented in the following. The L-shape structure already known from Section 4.7 is
investigated. For the bulk material, quadratic displacement-driven 10-node tetrahedron
finite elements together with a standard Neo-Hooke-type model are employed. The bulk
material parameters are identical to the parameters used in Section 4.7. However, the
discretisation is different since the crack path is prescribed for a better understanding of
the influence of the opening process of the interface, see Fig. 5.3. The crack face where
the standard quadratic displacement-driven 12-node interface elements, cf. Ortiz and
Pandolfi [72], are implemented is plotted in red colour. In order to show the advantages
of the generalised interface framework, the anisotropic Helmholtz energy

Ψ = Ψ(JuK, gα) =
1

2
cn (I1 − I2 − I3) +

1

2
ct (I2 + I3) (5.83)
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x

y

z

u, F

Figure 5.3: L-shape structure: undeformed discretisation with prescribed crack path. Within the red
marked surface interface elements are implemented. The displacement vector u is prescribed and the
corresponding force vector F arises.

is considered. Here, cn = 102 kN/cm and ct = 2 ·104 kN/cm denote the interface stiffness
in normal, respectively shear direction and the invariants I1, I2 and I3 were introduced
in (5.45).

Since the differences between the classic and the generalised framework require the
consideration of large deformations, a displacement of u = 30 cm is prescribed. The
displacement is prescribed in 30 time steps. In order to find the solution in the both
cases [R]gen = 0 and [R]cla = 0, a Newton-Raphson scheme is employed. In line with
the underlying theory, the generalised model leads to a vanishing angular momentum,
i.e.,

[M ]gen =
nn∑

i=1

[R](i)gen × x(i) = 0, (5.84)

where nn denotes the number of nodes of the model. The amplitude of the corresponding
force is

‖F gen‖ = 20, 329 kN. (5.85)
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The force F gen refers to the edge where the displacement is prescribed, see Fig. 5.3. By
way of contrast, the classic approach applied to the anisotropic constitutive model yields
a resulting angular momentum

[M ]cla =
nn∑

i=1

[R]
(i)
cla × x(i) =




−0.67
0.38

−83, 164.92


 kN cm 6= 0 (5.86)

with

‖[M ]cla‖ = 83, 164 kN cm. (5.87)

This is inconsistent in terms of physics. The amplitude of the corresponding force is

‖F cla‖ = 20, 175 kN. (5.88)

It turns out that the difference between the corresponding forces in the classic case
‖F ‖cla and in the generalised model ‖F ‖gen is negligible. However, the non-vanishing
angular moment is not consistent in terms of physics. In order to give a relation for
this, the resultant moment about point XP is considered, see Fig. 5.4. Related to this

x

y

XP F cla

Figure 5.4: L-shape structure: corresponding force vector F cla and edge point XP . The resultant
moment on this point is considered in order to give a relation for the error arising with classic cohesive
zone theory.

point, the corresponding force F cla generates a resultant angular moment of ‖F cla‖ ·
‖[−25, 0, 0]‖ cm = 504, 375 kNcm. It is noteworthy that there is a factor of six between
the corresponding moment appearing at the L-shape corner and the resultant angular
moment from the simulation with the classic cohesive fiber framework. Hence, the
resultant angular moment is not negligible and has a high influence on the real material
behaviour.
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A further graphical illustration of the problems arising with classic cohesive zone
theory within this example is shown in Fig. 5.5. It shows the deformed configuration of

x(m)

x−

x+

Figure 5.5: L-shape structure: deformed configuration with red marked upper and lower crack surface
as well as fictitious mid-surface (dashed line) at three different time steps – left configuration after 10
time steps (u = 10 cm), middle configuration after 20 time steps (u = 20 cm) and left picture after 30
time steps (u = 30 cm).

the L-shape structure at three different time steps. The upper and lower crack surfaces
are marked by red lines, while the fictitious mid-surface is indicated with the red dashed
line. It becomes clear that even after 10 time steps the assumption of parallel crack faces,
as it is the case in small deformations, is no longer valid. Since the structural tensors, for
instance the normal vector n, are related to the current mid-surface (dashed red line),
their adjustment during deformation is not negligible in the case of large displacements.
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6 Size effects due to material
interfaces

Cohesive zone models are most frequently applied to the analysis of cracking at the
macroscale. However, they certainly can also be used at the microscale, e.g., for the
description of microcracks or debonding between different constituents, cf. Javili et al.
[50]. This application is very interesting from a materials science point of view, since the
coupling of bulk materials and interface materials naturally introduces a length scale in
the resulting response and, thus, a size-effect can be modelled. Such an example will be
studied in this chapter. In order to define the effective mechanical response due to the
interaction between bulk and interface materials at the microscale, a novel computational
homogenisation scheme is presented. This scheme allows the analysis of the influence of
material interfaces on the resulting macroscopic (effective) material response. It is shown
by numerical examples that the interaction of bulk energies and interface energies leads,
in a very natural manner, to a complex size effect. It includes the frequently observed

”
the smaller the stiffer“ relation, but also the less often observed

”
the smaller the softer“

relation. However, since the overall response is usually a superposition of such relations,
the effective properties cannot generally be characterised by one of the aforementioned
limiting relations.

6.1 Preliminaries

In the following, a representative volume element (RVE) containing bulk materials and
material interfaces is considered, cf. Fig. 6.1. Quantities belonging to the macroscopic
scale are denoted by (•)M . The kinematics and constitutive relations for the macroscale
follow the correlations presented in Chapter 2 for classic bulk materials. Thus, the focus
is on the microscopic scale. For a unified review of several homogenisation theories, the
interested reader is referred to Saeb et al. [85] and the references cited therein. The
solution of the mechanical problem characterising the microscale is governed by balance
of linear momentum, i.e.,

DIVP = 0 ∀X ∈ B0 (6.1)
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BM
0

B0
Γ0

X

XM

N

N

∂MB0 ∂B0

macroscale microscale

Figure 6.1: Sketch of the multiscale (two-scale) homogenisation problem: Left hand side: macroscopic
problem (respective variables are denoted by (•)M ). A representative volume element (right hand side)
is assigned to each macroscopic material point XM . The representative volume element consists of an
inclusion embedded in a matrix. The bulk materials are separated by a general interface with normal
vector N .

for all points belonging to bulk materials and

DIVP + (T+ + T −) = 0 ∀X ∈ Γ0 (6.2)

for all points belonging to the material interface, cf. Subsection 5.2.3. In Eqs. (6.1) and
(6.2), P is the classic first Piola-Kirchhoff stress tensor at microscale, P represents its
interfacial counterpart, T+ and T− denote the Piola-Kirchhoff traction vectors acting at
the interface as introduced in the previous chapters. According to Eqs. (6.1) and (6.2),
vanishing external body forces have been assumed for the sake of simplicity. However,
they could be accounted for in a straightforward manner.

6.2 Average theorems for interface homogenisation

Up to now, the boundary conditions at the microscale have been implicitly assumed as
given. Clearly, they are related to the macroscopic problem. In order to couple the
deformation at the microscale to that at the macroscale, the standard ansatz

FM :=
1

V0

∫

∂B0

x⊗N dA, (6.3)

is adopted in [50]. Here, V0 denotes the total volume of the RVE, respectively of the
matrix and the inclusion. Since this ansatz is based on the deformation at the boundary
of the RVE, the effect of material interfaces cannot be explicitly seen – if the interfaces do
not cross the boundary as shown in Fig. 6.1. However, the case of interfaces crossing the
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boundaries has to be excluded anyway, since it would neither comply with the assumed
periodicity (see next paragraph) nor with the assumption of scale separation. Following
[50], Eq. (6.3) can be rewritten as

FM :=
1

V0

∫

B0

F dV +
1

V0

∫

Γ0

JuK ⊗N dA (6.4)

by using the gradient theorem. By doing so, the classic first term (volume averaging) is
obtained, together with the non-standard second term associated with the displacement
discontinuity. Clearly, for coherent interfaces without displacement jumps, Eq. (6.4)
reduces to the classic average deformation gradient theorem.

In a similar manner, the homogenisation of the stress tensor can be derived. For that
purpose – and in line with Eq. (6.3) – the ansatz

PM :=
1

V0

∫

∂B0

T ∗ ⊗X dA, (6.5)

is made which can be transformed into the equivalent equation

PM :=
1

V0

∫

B0

P dV +
1

V0

∫

Γ0

P dA. (6.6)

Accordingly, one obtains the classic first term (volume averaging) again, together with
a non-classic part corresponding to the material interface. However, while the non-
standard term related to averaging of the deformation gradient (6.4) shows the displace-
ment jump, the non-standard term related to averaging of the stress tensor (6.6) contains
the interface stress tensor P . As a consequence, the influence of a classic cohesive zone
model characterised by a Helmholtz energy of type Ψ = Ψ(JuK) (which implies P = 0)
can only be seen in the averaging of the deformation gradient. By way of contrast,
an interface model of type Ψ = Ψ(F ) falling into the range of Gurtin & Murdoch’s
framework [36] (which implies JuK = 0) can only be seen in the averaging of the stress
tensor. Since general interface models as presented in Chapter 5 can be interpreted as
a non-trivial coupling of the aforementioned models, both non-standard terms have to
be considered.

In a classic homogenisation scheme, incremental energy equivalence between the
micro- and the macroscale is imposed by the Hill-Mandel condition, i.e.,

PM : Ḟ
M

=
1

V0

∫

∂B0

T ∗ · ẋ dA. (6.7)

The classic representation of the Hill-Mandel condition as surface integral does not need
to be modified in the presence of interfaces, cf. [50]. Suitable boundary conditions
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are therefore derived, starting with representation (6.7). This derivation is in line with
Schröder [88, Chapter 3]. Relation (6.7) can therefore be expressed equivalently as

1

V0

∫

∂B0

T ∗ · ẋ dA−PM : Ḟ
M

+ PM : Ḟ
M −PM : Ḟ

M

︸ ︷︷ ︸
=0

= 0. (6.8)

According to Eqs. (6.3) and (6.5) and considering the gradient theorem

1

V0

∫

∂B0

N ⊗X dA =
1

V0

∫

B0

[GRAD(X)]T dV =
1

V0

∫

B0

I dV = I (6.9)

the second, third and last terms in Eq. (6.8) can be rewritten as

PM : Ḟ
M

= PM :
1

V0

∫

∂B0

ẋ⊗N dA =
1

V0

∫

∂B0

(
PM ·N

)
· ẋ dA,

PM : Ḟ
M

=
1

V0

∫

∂B0

T ∗ ⊗X dA : Ḟ
M

=
1

V0

∫

∂B0

T ∗ ·
(
Ḟ

M ·X
)
dA, (6.10)

PM : Ḟ
M

= PM · 1

V0

∫

B0

[GRAD(X)]T dV · ḞM
=

∫

∂B0

(
Ḟ

M ·X
)
·
(
PM ·N

)
dA.

Inserting relation (6.10) into (6.8) leads to the Hill-Mandel condition in the form

1

V0

∫

∂B0

(
T ∗ − PM ·N

)
·
(
ẋ− Ḟ

M ·X
)
dA = 0. (6.11)

Following the derivation for suitable boundary conditions presented in [50], Eq. (6.11) is
also valid if the RVE contains interfaces. Nevertheless, the equivalent volume integral for
the classic condition has to be extended in order to account for interfaces. The extended
energy equivalence equation between the macro- and the microscale including interfaces
reads

PM : Ḟ
M

=
1

V0

∫

B0

P : Ḟ dV +
1

V0

∫

Γ0

P : Ḟ dA +
1

V0

∫

Γ0

T · ˙JuKdA. (6.12)

Here, the relation

1

V0

∫

∂B0

T ∗ · ẋ dA =
1

V0

∫

B0

P : Ḟ dV +
1

V0

∫

Γ0

P : Ḟ dA+
1

V0

∫

Γ0

T · ˙JuKdA, (6.13)

has been taken from [50], where a detailed derivation of (6.13) can be found. As already
mentioned, suitable boundary conditions for the microscopic problem can be determined
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6.3 Numerical implementation

by fulfilling the Hill-Mandel condition (6.11). As shown in [50], the Hill-Mandel condition
including interfaces is represented as

PM : Ḟ
M − 1

V0

∫

B0

P : Ḟ dV +
1

V0

∫

Γ0

P : Ḟ dA+
1

V0

∫

Γ0

T · ˙JuK dA =

1

V0

∫

∂B0

(
T ∗ − PM ·N

)
·
(
ẋ− Ḟ

M ·X
)
dA. (6.14)

Obviously, the Hill-Mandel condition is satisfied if the right-hand side of Eq. (6.12) van-
ishes, which is equivalent to fulfilling Eq. (6.11). According to [50] admissible boundary
conditions are the ones already known from classic homogenisation. Thus, linear dis-
placement boundary conditions (x = FM · X) as well as constant traction boundary
conditions (T ∗ = PM ·N) agree with Eq. (6.14). A third class of boundary conditions
involves periodic boundary conditions. To be more precise, the classic choice

x = FM ·X +w (6.15)

is made. As a consequence, the deformation map at the microscale consists of a part
reflecting the macroscopic deformation gradient, as well as of a part allowing for fluctu-
ations w. The fluctuations are enforced to be periodic at the boundaries of the RVE,
i.e. w+ = w−. From Eq. (6.15) it follows that

ẋ = Ḟ
M ·X + ẇ. (6.16)

Inserting this into Eq. (6.7) leads to

PM : Ḟ
M

=
1

V0

∫

∂B0

T ∗ ·
(
Ḟ

M ·X
)
dA+

1

V0

∫

∂B+
0

T ∗+ · ẇ+ dA+
1

V0

∫

∂B−

0

T ∗− · ẇ− dA.

(6.17)

Since the fluctuations are periodic, it holds that ẇ+ = ẇ−. Furthermore, the tractions
are anti-periodic, i.e. T ∗+ = −T ∗−. Thereby, it follows that

1

V0

∫

∂B+
0

T ∗+· ẇ+ dA+
1

V0

∫

∂B−

0

T ∗−· ẇ− dA =
1

V0

∫

∂B+
0

(
T ∗+ − T ∗+

)
· ẇ dA = 0. (6.18)

Following [50, 88] the resulting terms in Eq. (6.17) fulfill the Hill-Mandel condition.

6.3 Numerical implementation

This section deals with the numerical implementation of the homogenisation scheme
presented in Section 6.2. For the prolongation condition, Eq. (6.15) is employed. By
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6 Size effects due to material interfaces

doing so, macroscopic deformation gradient FM defines the boundary conditions – up
to the periodic fluctuation w. This step is identical to the one for classic bulk materials.
For this reason, no additional implementation effort is required – provided a code for
bulk materials exists. For the same reason, no further explanation seems necessary.

Having defined the boundary conditions, the mechanical problem associated with
the microscale can be computed. For that purpose, strong forms (6.1) and (6.2) are
approximated by means of the finite element method. The solution of the resulting
set of nonlinear equations gives the deformation mapping which, in turn, allows the
computation of the stresses at the microscale.

The computational scheme is completed by an averaging step which yields the macro-
scopic stresses. This step is usually based on Eq. (6.5) or Eq. (6.6).

6.3.1 Computation of macroscopic stresses based on volume
integrals

In this work, representation (6.6) is considered. A straightforward evaluation of this
equation by means of numerical integration leads to

PM = PMB + PMI ≈ 1

V0

[
nBE∑

i=1

nGPB∑

j=1

P (ij)V (ij) +

nIE∑

i=1

nGPI∑

j=1

P
(ij)

A(ij)

]
. (6.19)

Here, nBE denotes the number of bulk elements, nGPB is the number of Gauss points
per Bulk element and V (ij) is a weighting coefficient (volume) due to the numerical
integration. Analogously, nIE is the number of interface elements, nGPI the number
of Gauss points per interface element and A(ij) a weighting coefficient (area) due to the
numerical integration.

6.3.2 Computation of macroscopic stresses based on surface
integrals

As an alternative to Eq. (6.19), one could also start from the surface-specific represen-
tation (6.5). This choice has the advantage that existing bulk homogenisation codes
do not have to be modified at all – if they are based on Eq. (6.5) and if none of the
interfaces crosses the boundary of the RVE. In this case, the macroscopic stresses can
be computed as

PM ≈ 1

V0

nSE∑

i=1

nGPB∑

j=1

[
P (ij) ·N (ij)

]
⊗X(ij)A(ij), (6.20)

where nSE denotes the number of bulk facets joining the facet of the RVE, nGPB is the
number of Gauss points necessary for the numerical integration, X(ij) is the referential
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6.3 Numerical implementation

coordinate of the considered Gauss point and Aij is a weighting coefficient (area) due to
the numerical integration. Furthermore, N represents the normal vector at the boundary
of the considered RVE.

6.3.3 Computation of macroscopic stresses based on the vector of
internal forces

Finally, a third possibility of computing the macroscopic stresses is elaborated. In order
to follow this third possibility, the finite element approximation of Eq. (6.5) is considered.
The contribution of node (i) of one finite element having one facet at the boundary of
the RVE reads (only bulk elements are at the boundary of the RVE)

PM ≈ 1

V0

{∫
(P ·N) N (i) dA

}
⊗X(i), (6.21)

where the reference configuration of the aforementioned facet is approximated by X ≈∑
i∈∂RV E N (i) X(i). Here, N (i) are the shape functions and X(i) are the nodal positions.

Clearly, representation (6.21) is related to the vector of internal forces. In order to show
this explicitly, the weak form of equilibrium for bulk elements is rewritten first

∫

Ω

P ·GRADδx dV
DIVP=0

=

∫

∂Ω

T ∗ · δx dV (6.22)

and subsequently approximated by means of finite elements. The contribution resulting
from a single finite element is given by (with δx ≈ ∑

i N
(i) δx(i))

∫

Ω

P ·GRADδx dV ≈
∑

i

{∫
(P ·N) N (i) dA

}
· δx(i) =:

∑

i

R(i) · δx(i). (6.23)

By comparing Eq. (6.23) to Eq. (6.21) an alternative representation of the macroscopic
stress tensor can be derived, i.e.,

PM ≈ 1

V0

elements∑

i

nodes∑

j

R(i) ⊗X (i). (6.24)

Since the assembled contributions of all points belonging to the interior of the RVE
vanish, only nodes at the boundary of the RVE contribute to Eq. (6.24), i.e.,

PM ≈ 1

V0

elements∑

i

nodes∑

j

R(i) ⊗X (i) =
1

V0

elements∑

i

nodes∩∂RV E∑

j

R(i) ⊗X(i). (6.25)
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6 Size effects due to material interfaces

For this reason and depending on the implementation, one can either consider all nodes
or only those belonging to the boundary of the RVE.

6.4 Numerical Examples

This section deals with numerical analyses of the influence of general material interfaces
on the macroscopic response. The focus is on two different aspects: (a) anisotropy of the
interface model, i.e., mode-I failure vs. mode-II/III failure; (b) the size effect induced
by general material interfaces. For all computations, a representative volume element
consisting of a cube with a spherical inclusion is considered, see Fig. 6.2.

8

10

10

10

λ

µ

6.16 GPa

10.95 GPa

Bulk parameter

Interface parameter

cj , Q0j , Gfj

Figure 6.2: Numerical analysis of an RVE consisting of a spherical inclusion embedded in a matrix.
The bulk materials are separated by a general interface: geometry and bulk material parameters, cf.
[84]. The interface parameters according to Tab. 5.1 are summarised on page 110 corresponding to the
depicted degradation mechanism j.

The bulk material is discretised by means of standard 10-node quadratic displace-
ment-driven tetrahedron finite elements, while standard 12-node quadratic displacement-
driven interface elements (6 nodes on each side) are used for the interface between the
inclusion and the surrounding matrix, cf. Ortiz and Pandolfi [72]. Additional interfaces
resulting from cracks in the inclusion or in the matrix are not considered. Since the focus
of this work is on material interfaces, a standard Neo-Hooke model with identical elastic
material parameters for the matrix and the inclusion is chosen for the bulk materials (the
respective Lamé parameters are denoted by λ and µ, see Fig. 6.2). The RVE shown in
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Fig. 6.2 is subjected to uniaxial strain. The respective macroscopic deformation gradient
reads

FM =



1.05 0 0
0 1 0
0 0 1


 , (6.26)

i.e., the maximum engineering strains have an amplitude of 5%. The load is applied in
five equidistant load steps in the hyperelastic model and in 50 equidistant load steps
in the simulations including damage. Periodic boundary conditions are enforced, cf.
Eq. (6.15).

6.4.1 Analysis of the anisotropy induced by the general interface

model

First, a purely hyperelastic interface is investigated for different stiffnesses in normal
direction (the respective stiffness is denoted by cn) and in shear direction (the respective
stiffness is denoted by ct). The Helmholtz energy of the elastic interface reads

Ψ = Ψ(JuK, gα) =
1

2
cn (I1 − I2 − I3) +

1

2
ct (I2 + I3), (6.27)

where the invariants are defined as

I1 = JuK · JuK, I2 = JuK · (g1 ⊗ g1) · JuK and I3 = JuK · (g2 ⊗ g2) · JuK. (6.28)

The following two limiting cases are considered:

(a) Isotropic hyperelasticity with cn = ct = 108 kN/cm3 ≫ 0
Homogeneous problem; matrix without an inclusion

(b) Isotropic hyperelasticity with cn = ct = 10−1 kN/cm3 ≈ 0
Matrix with a spherical pore

Case (a) characterises a perfect interface which cannot open. Since the bulk materials
(inclusion and matrix) have been assumed to be identical, this case is equivalent to an
RVE consisting only of a matrix without an inclusion, i.e., a homogeneous problem. By
way of contrast, the inclusion is not connected to the matrix in case (b). Consequently,
it corresponds to a matrix with a pore whose diameter is identical to the one of the
inclusion. Clearly, these cases are indeed limiting cases. To be more precise, the response
of a realistic interface model is bounded by such cases.

In addition to the purely isotropic and hyperelastic interface, several computations
based on different damage models were also performed. To be more precise, the following
three different models are compared:
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6 Size effects due to material interfaces

(c) Isotropic mixed-mode fiber model:
Ψ = (1− d) 1

2
c ‖JuK‖2

Q0 = 270MPa , Gf = 650kN/m

(d) Anisotropic damage in normal direction (mode-I)
with out-of-plane membrane forces:
Ψ = (1− d

(n)
n ) 1

2
[cn (I1 − I2 − I3) + ct (I2 + I3)]

Q0n = 270MPa , Gfn = 650kN/m

(e) Anisotropic damage in shear direction (mode-II/III)
with out-of-plane membrane forces:
Ψ = (1− d

(t)
t ) 1

2
[cn (I1 − I2 − I3) + ct (I2 + I3)]

Q0t = 270MPa , Gft = 650kN/m

For the isotropic damage model, the elastic stiffness is chosen as c = 104 kN/cm3, while
cn = 2 · 104 kN/cm3 = 2 ct is set for the anisotropic damage models. Furthermore,
the driving force conjugate to d is the total elastic energy Ψ0 = 1/2c JuK · JuK in the

isotropic damage model (c). By way of contrast, d
(n)
n and d

(t)
t are only governed by the

normal part Ψ0
n of the total elastic energy (model (d)) and the tangential part Ψ0

t of
the total elastic energy (model (e)) in the case of the anisotropic damage models, see
Tab. (5.1). It has to be noted that in the case of crack closure, the models have to
be slightly modified, see Remark 11. However, the crack closure effect is only of minor
importance for the analysed RVE and as a consequence it could be neglected.

Figure 6.3 shows the macroscopic stress (11-component of the first Piola-Kirchhoff
stress tensor) plotted over the macroscopic deformation gradient (11-component of the
deformation gradient subtracted by 1). According to Fig. 6.3, model (a) and model (b)
define the limiting cases: case (a) represents a perfect interface being equivalent to a
homogeneous matrix with neither a pore nor an inclusion. By way of contrast, model
(b) is associated with a pore in a matrix (no connection between the inclusion and the
matrix). Consequently, model (a) defines the stiffest response while model (b) spans the
softest response. All damage models (model (c), (d) and (e) described on page 110) are
bounded by the aforementioned limiting cases. Furthermore, since the initial stiffness
of the damage models is identical to that of the perfect interface, all damage models
agree with model (a) during the first loading stage. When damage initiates, a deviation
towards the pore-like model (b) can be observed. Since the same damage function d(κ) as
well as the same initial value of the internal variables κ have been chosen for all damage
models, damage starts first in the isotropic damage model, since the total elastic energy
Ψ0 is always larger than the respective normal part Ψ0

n or the tangential part Ψ0
t of it.

Furthermore, damage due to mode-I separation is more pronounced than damage due
to mode-II/III separation. This was indeed expected for the analysed RVE under the
considered loading.

The stronger effect of mode-I separation compared to that of mode-II/III separation
can also be seen in Tab. 6.1: The normal component of the displacement jump is indeed
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Figure 6.3: Numerical analysis of an RVE consisting of a spherical inclusion embedded in a matrix. The
bulk materials are separated by a general interface: macroscopic stress (11-component of the first Piola-
Kirchhoff stress tensor) plotted over macroscopic engineering strain (11-component of the deformation
gradient subtracted by 1). Comparison between purely hyperelastic models (model (a) and model (b)
on page 109) and damage models (model (c)) and model (d) and model (e) on page 110)

larger than its shear counterpart. The figures in Tab. 6.1 show the deformed RVE at the
final stage of deformation. The colours are associated with the value of the 11-component
of the first Piola-Kirchhoff stress tensor. According to the figures in Tab. 6.1 and as
expected, higher stresses are observed below and above the inclusion for all models, i.e.,
in regions which are farthest away from those showing a fully softened response. In the
case of model (e), high stress peaks can also be seen on the left as well as on the right
hand side of the inclusion. In such zones the shear deformation within the interfaces is
zero due to symmetry of the problem. Thus, damage caused by shearing does not evolve
in this case.

Furthermore, Tab. 6.1 confirms that model (a) indeed corresponds to a homogeneous
matrix.

6.4.2 Analysis of the size effect induced by interface models

While the energies associated with bulk materials scale with respect to volume, energies
corresponding to interfaces scale with respect to area. The non-trivial superposition
of both such scaling in the analysed RVE results in a size effect, cf. Javili et al. [50].
This size effect is analysed in the following section. For that purpose, geometrically
equivalent RVEs are considered and the length of the cube is varied (from l = 0.01 cm
up to l = 100 cm). The results are compared to the following three size independent
limiting cases: (1) perfect interface behaviour resulting in an RVE with a homogeneous
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6 Size effects due to material interfaces

Table 6.1: Numerical analysis of an RVE consisting of a spherical inclusion embedded in a matrix.
The bulk materials are separated by a general interface: distribution of the stresses (component P11

[kN/cm2] of the first Piola-Kirchhoff stress tensor) at a cut through the middle of the cube at the end of
the simulation time (five times magnified deformation). Models (a) and (b) are described on page 109,
while models (c), (d) and (e) are described on page 110

Hyperelasticity (a) - perfect interface (b) - pore

P11 190

0

Damage (c) - isotropic (d) - mode-I (e) - mode-II

stress state, (2) zero-stiffness interface leading to a pore like behaviour and (3) a rigid
inclusion.

Regarding the interface, the following different constitutive models are considered:

(1) Anisotropic hyperelastic cohesive zone model
with out-of-plane membrane forces:
Ψcoh(JuK, gα) =

1
2
[cn (I1 − I2 − I3) + ct (I2 + I3)]

cn = 2 · 104 kN/cm3, ct = 104 kN/cm3

(2) Isotropic surface elasticity theory (cf. Javili et al. [50]):

Ψela(gα) =
1

2
µ
[
trC − 2− 2 ln

(
detF

)]

µ = 103 kN/cm

(3) General interface
with out-of-plane membrane forces:

Ψ = 1
2
[cn (I1 − I2 − I3) + ct (I2 + I3)] +

1

2
µ
[
trC − 2− 2 ln

(
detF

)]

cn = 2 · 104 kN/cm3, ct = 104 kN/cm3, µ = 103 kN/cm
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A systematic analysis of the size effect resulting from different interface models can also
be found in [50]. However, only isotropic models are considered within the cited work.
The present thesis extends this analysis to anisotropic interface models.

6.4.2.1 Loading case I – Uniaxial strain

In order to quantify the size effect, the macroscopic stresses PM
11 corresponding to the

final strain with magnitude FM
11 − 1 = 0.05 are plotted in Fig. 6.4 as a function in terms
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Figure 6.4: Numerical analysis of an RVE consisting of a spherical inclusion embedded in a matrix.
Load case: uniaxial strain. Macroscopic stresses PM

11 at FM
11 − 1 = 0.05 as a function in terms of the

RVE’s size (l). The material models are defined on page 112 and page 109.

of the RVE’s size l. First, the anisotropic cohesive model (model (1)) is investigated.
In line with [50], the effect ”the smaller the softer” is observed for the cohesive in-

terface model (model (1)). A cohesive zone interface can be interpreted as containing
elastic springs normal to the interface and infinitely compliant springs along the inter-
face. The latter shows that cohesive zone models do not capture in-plane deformation.
They only resist against the opening process. To be more precise, the energy of a cohe-
sive zone is not affected by a pure stretch of the interface. Thus, including cohesive zone
interfaces into the boundary of the matrix and the inclusion leads to an interpretation
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6 Size effects due to material interfaces

of including further springs in series. This leads to a more compliant material behaviour
which becomes dominant at small scales. Therefore, the two limiting cases being l → 0
and l → ∞ correspond to a pore (l → 0) in a matrix and to a homogeneous matrix
without a hole (l → ∞). It bears emphasis that this effect does not depend on the
ratio of the chosen stiffness values. To be more precise, in the case of decreasing RVE
size the cohesive interface model converges to a final value PM

11 that corresponds to the
behaviour of a cube with a pore. In contrast to that, an increasing RVE size converges
to a final stress value PM

11 corresponding to the behaviour of a homogeneous cube since
the interface influence is negligible for large RVE sizes.

The coherent surface elasticity model (model (2)) shows a size effect in the opposite
direction, i.e., a ”the smaller the stiffer” relation. According to Section 5.1, coherent
interfaces may exhibit a jump within the tractions (JtK 6= 0), while the displacement
is continuous across the interface (JuK = 0). Physically speaking the interface resists
against an expansion of its area. This behaviour can be represented by an infinitely
stiff spring across and an elastic spring along the interface with the elastic stiffness
µ. Including such interface behaviour into the boundary of matrix and inclusion leads
to an interpretation of including further parallel springs. Again, for sufficiently large
RVEs, the interface behaviour does not influence the overall material response. The
model converges to a perfect interface (homogeneous matrix without a hole). However,
the effect of the additional springs becomes more pronounced on small scales. For small
RVEs, the overall material response becomes stiffer due to the additional parallel springs
and the increasing area to volume ratio. The limiting case being l → 0 corresponds to a
rigid inclusion embedded in an elastic matrix, cf. [50]. This becomes obvious since the
interface model converges to a final stress value PM

11 corresponding to the behaviour of
a RVE with a rigid inclusion.

Finally, the coupled model (model (3)) which can be understood as a non-trivial
superposition of model (1) and model (2) shows a more complex, non-monotonous size
effect. Model (3) can suffer a jump in the tractions (JtK 6= 0) as well as in the deformation
(JuK 6= 0). Thus, the interface behaviour is represented by elastic springs across and
along the interface. Each of the two directions across and along the interface has its own
stiffness. In turn, sufficiently large RVEs converge to a homogeneous matrix without a
hole – in line with model (1) and model (2). Decreasing the RVE’s size then leads to a
”the smaller the stiffer” effect first. However, if the RVE’s size is decreased further, a
”the smaller the softer” relation is obtained. Furthermore, the limiting case related to
l → 0 is not obvious and depends on the stiffness ratio of the material parameters – in
contrast to model (1) and model (2). In summary, no general statement concerning the
size effect induced by model (3) can thus be given. To be more precise, the size effect
can be designed and fine-tuned for a certain application by carefully coupling cohesive
zone models (model (1)) with surface elasticity theory (model (2)).
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6.4.2.2 Loading case II – Simple shear

Finally, the inclusion embedded in a matrix is re-analysed for the load case ”simple
shear”. The respective macroscopic deformation gradient reads

FM =



1 0.05 0
0 1 0
0 0 1


 . (6.29)

The obtained size effect is again investigated by comparing the macroscopic stresses
obtained for different RVEs with different edge lengths. The results are summarised in
Fig. 6.5. According to Fig. 6.5, the cohesive interface model (model (1)) again shows an
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Figure 6.5: Numerical analysis of an RVE consisting of a spherical inclusion embedded in a matrix.
Load case: simple shear. Macroscopic stresses PM

12 at FM
12 = 0.05 as a function in terms of the RVE’s

size (l). The material models are defined on page 112 and page 109.

effect of the type ”the smaller the softer”, while the coherent surface elasticity model
(model (2)) yields a size effect of the type ”the smaller the stiffer” again. Furthermore
and in line with the previous example, the coupled model (model (3)) leads to a more
complex, non-monotonous size effect.

115





7 Higher-order interfaces

The coupling of bulk materials and interface materials naturally introduces a length
scale in the resulting response. Thus, a size-effect can be modelled. According to the
previous chapter, several size-effects can be investigated and understood at small length
scales by invoking the concept of cohesive zone theory, surface elasticity or the non-trivial
combination of the both – also known as generalised interface theory, cf. [50]. So far,
the presented interface theories are of first order. To be more precise, only displacement
jump JuK and surface deformation gradient F enter the model. However, higher-order
interface gradients could also be of high interest concerning size effects. For instance it is
known that bulk materials exhibit internal length scales if higher deformation gradients
are considered in the material model. This idea goes back at least to the work of Mindlin
[61] on elastic solids. It has been been intensively expanded through the last decades
since then. However, gradient enhancement in bulk materials is not the focus of this
thesis. The interested reader is referred to Bertram [11] and the references cited therein.
The cited manuscript gives a concise overview of gradient enhanced bulk theory. In this
chapter some investigations of gradient enhanced interface models are presented.

First, the surface gradient of the displacement jump is considered. It is studied if the
incorporation of GRADJuK into the interface Helmholtz energy leads to further physical
effects in the material response. Furthermore, the motivation of taking GRADJuK into
account lies in a novel homogenisation approach. To be more precise, it is investigated
if the behaviour of a cohesive interface finite element can be described completely by a
single point when an averaged displacement jump JuKM and its gradient GRADMJuK
are known, see Fig. 7.1. In general, opening of a material interface can be captured by
interface elements in numerical simulations, cf. [72]. A typical RVE is schematically
shown in the middle of Fig. 7.1. For simplicity the figure shows a two-dimensional
view of the interface. The RVE illustrated in the middle of the figure is loaded in
mode-I direction. The interface elements are implemented along the expected crack
path. If the framework is based on a minimisation principle, a potential is required.
The classic way of calculating the potential is by spatial integration of a local interface
model Ψ = Ψ(JuK), see Fig. 7.1 (left). In Fig. 7.1 (left), JuK(1) and JuK(2) denote the
displacement jumps between upper and lower coordinates of x(1) respectively x(2). The
goal of the first part of this chapter is to investigate if the behaviour computed by this
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x+
(1)

x+
(2)

x−
(1) x−

(2)

⇔⇔

∫
Ψ(JuK)dA = IJuK

JuK(1) JuK(2)

Γ+
Γ+

Γ−
Γ−

GRADMJuK

JuKM

M+

M−

I∇JuK(JuKM , GRADMJuK)

Figure 7.1: Graphical illustration of a homogenisation approach: An open interface (see RVE in the
middle) can be represented by spatial integration of a local model (left side, Ψ 6= Ψ(GRADJuK)) or
equivalently by an effective model of type Ψ = Ψ(JuKM ,GRADM JuK) in one material point

procedure can be captured by an effective model in one single material point represented
by potential I∇JuK(JuKM , GRADMJuK), i.e.,

∫
Ψ(JuK) dA

?
= I∇JuK(JuKM , GRADMJuK) A, (7.1)

where A denotes the area of the interface element. Here, JuKM is an effective displace-
ment jump averaged over the element and GRADMJuK is its effective surface gradient.
The interface behaviour is thereby reduced to one single material point which would
be helpful in homogenisation theory. For the sake of comparison, additional energy po-
tential I = I(JuK(i) · JuK(j)) is postulated and compared to both models sketched out
before. Here, JuK(i) denotes the displacement jump at point (i).

The second part of this chapter deals with the enhancement of the surface elasticity
theory. According to Chapter 5, the theory based on the work of Gurtin and Murdoch
[36] is independent of the curvature of the surface/interface. To be more precise, no
flexural resistance is considered. An important expansion of this was developed by
Steigmann and Ogden [92, 93]. Here, the Gurtin–Murdoch theory is generalised to
incorporate a flexural stiffness of the surface into the material behaviour. This was
further studied for instance by Chhapadia et al. [17] in order to capture the curvature
dependence of surfaces. The theory was applied to the investigation of nano structures,
see Gao et al. [29, 30]. In Javili et al. [46] the interaction between higher-order interface
and bulk theories is investigated. It is shown that, in order to have an interface energy
depending on the total (surface) deformation gradient, the bulk energy needs to be a
function of at least the first derivative of the bulk deformation gradient.

The enhancement of the interface with GRAD(F ) intrinsically includes curvature
effects to the interface behaviour. This is investigated in this chapter. It is shown that
the mean curvature of a surface can be represented as a covariant function of F and
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7.1 Enhancement with the gradient of the displacement jump

GRAD(F ). The balance of angular of momentum is thereby automatically fulfilled for
the enhanced model.

7.1 Enhancement with the gradient of the displacement

jump

7.1.1 Preliminaries – Objectivity requirements

Starting from the general interface model, an extension in order to account for the
gradient of the displacement jump leads to the respective Helmholtz energy of type

Ψ = Ψ(JuK, gα,∇JuK). (7.2)

Here, ∇JuK is the surface gradient of JuK with respect to the reference configuration,
i.e., ∇JuK describes the change of the displacement jump along the interface surface.
Compared to the definition of the surface gradient within the considered curvilinear
setting, cf. Eq. (5.7), it reads

∇JuK = GRADJuK =
∂JuK

∂θα
⊗ ∂θα

∂X
=

∂JuK

∂θα
⊗Gα. (7.3)

For this extended framework, objectivity (frame indifference) requires

Ψ(JuK, g1, g2,∇JuK) = Ψ(Q · JuK,Q · g1,Q · g2,Q · ∇JuK) ∀Q ∈ SO3, (7.4)

since the gradient of the displacement jump transforms under an observer transformation
according to

{∇JuK}∗ = Q · ∇JuK. (7.5)

Evidently, by applying the same procedure as outlined in the previous chapters, one
obtains the objective representation of Helmholtz energy (7.97) as

Ψ = Ψ(I1, I2, I3,C, g1 · ∇JuK, g2 · ∇JuK, JuK · ∇JuK, (∇JuK)T · ∇JuK). (7.6)

Hence, an objective isotropic energy including the surface gradient of JuK has to be of
the form

Ψ(JuK, gα,∇JuK) = Ψ(I1, I2, I3, tr(C), det(C), ‖g1 · ∇JuK‖,
‖g2 · ∇JuK‖, ‖JuK · ∇JuK‖, tr(∇T

JuK · ∇JuK), det(∇T
JuK · ∇JuK)). (7.7)
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7 Higher-order interfaces

7.1.2 Balance of linear momentum

In this subsection the balance of linear momentum for the gradient extended interface
framework is derived in variational manner. In analogy to the principle of minimum
potential energy for bulk materials (cf. Subsection 2.3.1.3), the starting point of the
variational derivation is the total potential energy of the interface

I =

∫

Γ0

Ψ(JuK,∇JuK) dA −
∫

Γ+
0

T+ · ϕ+ dA −
∫

Γ−

0

T − · ϕ− dA

−
∮

∂Γ+
0

T+
b · ϕ+ dL −

∮

∂Γ−

0

T −
b · ϕ− dL. (7.8)

The first term represents the total Helmholtz energy. In contrast to the general interface
(cf. Subsection 5.2.3) additional tractions T b are separated into one part at the upper
and one part at the lower interface surface, cf. Fig. 7.2. First, the variation of Ψ with

Ñ
T +

T −

T +
b

T +
b

T −
b

T −
b

Figure 7.2: Stresses acting on an interface – referential description: Tractions acting at the upper
surface Γ+

0 = Γ0 are denoted by T+, tractions acting at the lower surface Γ−

0 = Γ0 are denoted by
T−, stresses acting at the boundary of the interface ∂Γ0 are denoted by T b. The normal vector of the
boundary of the interface is denoted by Ñ .

respect to deformation ϕ is considered as

∫

Γ0

δϕΨ(JuK,∇JuK) dA =

∫

Γ0

[
∂Ψ

∂JuK
· δJuK +

∂Ψ

∂∇JuK
: δ∇JuK

]
dA. (7.9)

Since the surface gradient of JuK is defined as

∇JuK =
∂JuK

∂θα
⊗Gα =

∂x+

∂θα
⊗Gα − ∂x−

∂θα
⊗Gα = F

+ − F
−
, (7.10)

one obtains

δ∇JuK = δF
+ − δF

−
. (7.11)
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7.1 Enhancement with the gradient of the displacement jump

Hence, variation (7.9) can be rewritten as

∫

Γ0

δϕΨ(JuK,∇JuK) dA =

∫

Γ0

[
T · δJuK + P̃ :

(
δF

+ − δF
−
)]

dA, (7.12)

where the definitions

T =
∂Ψ

∂JuK
and P̃ =

∂Ψ

∂∇JuK
(7.13)

are applied. Hence, P̃ represents a stress tensor that is thermodynamically conjugate

to ∇JuK. Taking into consideration that δF
±
= GRADδϕ±, identity

P̃ : F
±
= P̃ : GRADδϕ± = DIV

(
δϕ± · P̃

)
− δϕ± · DIV P̃ (7.14)

holds true. By inserting this identity into (7.12) one obtains

∫

Γ0

[
T · δJuK + P̃ :

(
δF

+ − δF
−
)]

dA =

∫

Γ0

[
T · δJuK +DIV

(
δϕ+ · P̃

)
− δϕ+ · DIV P̃ −DIV

(
δϕ− · P̃

)
+ δϕ− · DIV P̃

]
dA.

(7.15)

Next, interface divergence theorem

∫

Γ0

DIV
(
δϕ± · P̃

)
dA =

∮

∂Γ0

δϕ± ·
(
P̃ · Ñ±

)
dL−

∫

Γ0

Kδϕ± · P̃ ·N±
dA, (7.16)

is introduced. Following the same arguments as for the superficiality of P , stress tensor

P̃ is also superficial. Consequently, it holds that P̃ ·N±
= 0. Taking all the aforemen-

tioned relations into consideration and requiring the variation of potential (7.8) with
respect to the deformation ϕ to be zero it follows that

δϕI =

∫

Γ0

T ·
(
δx+ − δx−

)
dA

−
∫

Γ+
0

T+ · δx+ dA−
∫

Γ−

0

T− · δx− dA

+

∮

∂Γ+
0

δx+ ·
(
P̃ · Ñ+

)
dL−

∫

Γ+
0

δx+ · DIV P̃ dA−
∮

∂Γ+
0

T+
b · δx+ dL

−
∮

∂Γ−

0

δx− ·
(
P̃ · Ñ−

)
dL+

∫

Γ−

0

δx− ·DIV P̃ dA−
∮

∂Γ−

0

T−
b · δx− dL = 0.

(7.17)
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7 Higher-order interfaces

Again, variations

δJuK = δx+ − δx− and δϕ± = δu± = δx± (7.18)

have been used. Since δx− and δx+ are independent of each other and arbitrary,
Eq. (7.17) is equivalent to

T − T+ − DIV P̃ = 0 (7.19)

− T − T − +DIV P̃ = 0, (7.20)

T +
b = P̃ · Ñ+

on ∂Γ+
0 (7.21)

and

T −
b = −P̃ · Ñ−

on ∂Γ−
0 . (7.22)

These are the Euler-Lagrange equations associated with potential (7.8). Since these
cannot be compared easily to existing frameworks, they are reformulated next – in line
with Subsection 5.2.3. For that purpose, Eq. (7.19) is added to Eq. (7.20) yielding

T + = −T −. (7.23)

By subtracting Eq. (7.20) from Eq. (7.19) one obtains under consideration of Eq. (7.23)

T − T+ − DIV P̃ = 0. (7.24)

By comparing Eq. (7.24) to balance of linear momentum for the generalised interface
model (Eq. (5.33)), one can clearly see the strong analogy. This analogy is due to

GRADJuK = F
+ − F

−
, i.e., only deformation gradients F

+
and F

−
enter the new

model - similarly as in generalised interface model with Ψ = Ψ(JuK, F ).

7.2 Interface models in homogenisation theory

The idea is to describe the energy arising from one interface element by means of
an effective model in one single material point. Therefore, an opening process with
GRAD JuK 6= 0 is required, cf. Fig. 7.1. Now, the two following possibilities are com-
pared:

a) Classic local standard model with potential IJuK =
∫
Ψ(JuK) dA

b) Enhanced gradient model with potential I∇JuK = I∇JuK(JuKM , GRADMJuK)

In order to compare the two approaches some assumptions have to be introduced. The
investigation of approach a) reduces to one triangle interface element with six nodes –
three on each side, see Fig. 7.3. A linear ansatz (representing a linear interface element
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JuK(1)

JuK(2) JuK(3)

x+
(1)

x+
(2)

x+
(3)

x−
(1)

x−
(2)

x−
(3)

Figure 7.3: Linear triangle interface element with three nodes on the upper side and with three nodes
on the lower side

with 3 nodes) for the displacement jump is chosen, i.e.,

JuK(X) ≈
3∑

i=1

N (i)JuK(i). (7.25)

As a consequence

∇JuK ≈
3∑

i=1

JuK(i) ⊗GRADN (i) =

3∑

i=1

JuK(i) ⊗N (i)
,α Gα. (7.26)

The approximation of JuK by affine functions leads to a spatially constant gradient, i.e.,
GRAD JuK = const.

The kinematics of the displacement jump can also be described by an averaged (ef-
fective) jump JuKM and the averaged (effective) gradient along the surface as

JuK(X) = JuKM +GRADMJuK · (X −XM) (7.27)

with

JuKM =
3∑

i=1

N (i)
∣∣
XM

JuK(i) (7.28)

and XM as the coordinate of the center of gravity. Clearly, in the case of a linear
interpolation of JuK, cf. Eq. (7.25), GRADMJuK is spatially constant. Furthermore, a
spatially constant stiffness parameter is considered as it is the case in classic quadratic
cohesive model Ψ(JuK) = 1/2 c JuK · JuK with c 6= c(X).
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7 Higher-order interfaces

7.2.1 Preliminaries for the local interface model

This subsection elaborates an energy potential by spatial integration of a local interface
model of type Ψ = Ψ(JuK), see Fig. 7.1 (left). Following the procedure in order to obtain
an objective interface model, the Helmholtz energy takes the form

Ψ = Ψ(JuK · JuK) = Ψ(I1). (7.29)

Since energy (7.29) just depends on a scalar invariant it is intrinsically isotropic. As
mentioned above the displacement jump is approximated by affine functions. From the
requirement for objectivity (7.29) and the linear approximation of JuK it follows that
the energy potential of the discretised element IJuK can be represented as a function of
the displacement jumps at the interface’s nodes, i.e.,

∫
Ψ(JuK · JuK)dA ≈

∫
Ψ

(
∑

i

∑

j

N (i)N (j)(JuK(i) · JuK(j))

)
dA

= IJuK(JuK(i) · JuK(j)). (7.30)

Furthermore, it is assumed that energy potential IJuK can be approximated by a Taylor
series, i.e.,

IJuK(JuK(i) · JuK(j)) ≈ ael0 +
∑

i

∑

j

aelij (JuK(i) · JuK(j))+

∑

i

∑

j

∑

k

∑

l

aelijkl (JuK(i) · JuK(j)) (JuK(k) · JuK(l)) + ... , (7.31)

with coefficients

aelij = celI

∫ ∫
N (i)N (j) dA and aelijkl = celII

∫ ∫
N (i)N (j)N (k)N (l) dA. (7.32)

Here, celI denotes one stiffness parameter concerned with contributions (JuK(i) · JuK(j))
and celII describes the stiffness related to (JuK(i) · JuK(j)) (JuK(k) · JuK(l)). Coefficients aelij ,
aelijkl and all further higher order contributions depend on the class of shape functions.
Due to the commutativity, the following symmetry holds true

aelij = aelji. (7.33)

Furthermore, all permutations within aelijkl are commutative. Due to the commutativity
of the scalar product equal contributions in (JuK(i) · JuK(j)) are collected. For instance
in the case of a six node triangle interface element with three nodes on the upper side
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7.2 Interface models in homogenisation theory

and with three nodes on the lower side (cf. Fig. 7.3), the possible combinations reduce
from nine to six scalar product combinations, i.e.,

JuK(ij) =

[
JuK(1)·JuK(1), JuK(1)·JuK(2), JuK(1)·JuK(3), JuK(2)·JuK(2), JuK(2)·JuK(3), JuK(3)·JuK(3)

]

(7.34)

The same holds equivalently for higher order terms.

By additionally taking all assumptions presented in Subsection 7.2 into consideration
the following equivalence arises:

∫
Ψ(JuK) dA ⇒ IJuK(JuK(i) · JuK(j)) (7.35)

To be more explicit it seems obvious that spatial integration of the local interface model
just depending on JuK always leads to a potential in dependence of the nodes’ jumps
scalar products (JuK(i) · JuK(j)). However, since there are six different possible combina-
tions, a general potential in dependence of (JuK(i) · JuK(j)) shows six different material
parameters. Clearly, this cannot be captured by a local model with just one material
parameter.

7.2.2 Preliminaries of the effective interface model

This subsection presents certain invariants that allow the definition of an objective
effective interface energy depending on averaged jump JuKM and averaged gradient
GRADMJuK.

Following the objectivity requirement of the extended energy (7.6), invariants are
defined by means of different relations between JuKM and GRADMJuK. To be more
precise, the invariants are defined by means of

JuKM · JuKM → Î1, (7.36)

JuKM ·GRADMJuK ≈
n∑

i=1

(
JuKM · JuK(i)

)
N (i)

,α Gα → Î2, Î3 (7.37)

and

∇T
JuK · ∇JuK ≈

n∑

i=1

n∑

j=1

(
JuK(i) · JuK(j)

)
N (i)

,α N
(j)
,β Gα ⊗Gβ → Î4, Î5, Î6, (7.38)
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7 Higher-order interfaces

where the symmetry of the scalar products has been accounted for. Insertion of the
linear approximation (7.25) into the combination of JuKM and GRADMJuK, see (7.36) -
(7.38), leads to six invariants, i.e.

Î1 = JuKM · JuKM = Î1(JuK(i) · JuK(j)) (7.39)

Î2 =

n∑

i=1

(
JuK(i) · JuKM

)
N

(i)
,1 = Î2(JuK(i) · JuK(j)), (7.40)

Î3 =

n∑

i=1

(
JuK(i) · JuKM

)
N

(i)
,2 = Î3(JuK(i) · JuK(j)), (7.41)

Î4 =
n∑

i=1

n∑

j=1

(
JuK(i) · JuK(j)

)
N

(i)
,1 N

(j)
,1 = Î4(JuK(i) · JuK(j)), (7.42)

Î5 =

n∑

i=1

n∑

j=1

(
JuK(i) · JuK(j)

)
N

(i)
,1 N

(j)
,2 = Î5(JuK(i) · JuK(j)) and (7.43)

Î6 =
n∑

i=1

n∑

j=1

(
JuK(i) · JuK(j)

)
N

(i)
,2 N

(j)
,2 = Î6(JuK(i) · JuK(j)). (7.44)

Using invariants Î1 − Î6, an objective interface potential of the form

I∇JuK(JuKM , GRADMJuK) = I∇JuK(Î1, Î2, Î3, Î4, Î5, Î6) (7.45)

can be formulated. It bears emphasis that potential (7.45) does not need to be isotropic
since it is not of form (7.7), see Remark 13.

Focussing on an affine displacement field (spatially constant gradient of displacement
jump), see Fig. 7.3, invariants Î1− Î6 can be rewritten in terms of the six different scalar
products JuK(i) · JuK(j), i.e.,




Î1
Î2
Î3
Î4
Î5
Î6




=




1/9 2/9 2/9 1/9 2/9 1/9
−1/3 0 −1/3 1/3 1/3 0
−1/3 −1/3 0 0 1/3 1/3
1 −2 0 1 0 0
1 −1 −1 0 1 0
1 0 −2 0 0 1




︸ ︷︷ ︸
A

·




JuK(1) · JuK(1)
JuK(1) · JuK(2)
JuK(1) · JuK(3)
JuK(2) · JuK(2)
JuK(2) · JuK(3)
JuK(3) · JuK(3)



. (7.46)
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By inverting matrix A, one obtains




JuK(1) · JuK(1)
JuK(1) · JuK(2)
JuK(1) · JuK(3)
JuK(2) · JuK(2)
JuK(2) · JuK(3)
JuK(3) · JuK(3)




=




1 −2/3 −2/3 1/9 2/9 1/9
1 1/3 −2/3 −2/9 −1/9 1/9
1 −2/3 1/3 1/9 −1/9 −2/9
1 4/3 −2/3 4/9 −4/9 1/9
1 1/3 1/3 −2/9 5/9 −2/9
1 −2/3 4/3 1/9 −4/9 4/9



·




Î1
Î2
Î3
Î4
Î5
Î6




, (7.47)

which allows the representation of I∇JuK as

I∇JuK(Î1, Î2, Î3, Î4, Î5, Î6) = I∇JuK(JuK(i) · JuK(j)). (7.48)

Thus, every model in terms of JuKM and GRADMJuK can be rewritten into an equivalent
model in terms of (JuK(i) · JuK(j)) and vice versa.

According to the Taylor approximation of IJuK(JuK(i) · JuK(j)), cf. Eq. (7.31), effective
energy I∇JuK(JuKM , GRADMJuK) can also be represented as a combination of the jump
scalar products as

I∇JuK(JuK(i) · JuK(j)) = ceff0 +
∑

i

∑

j

ceffij (JuK(i) · JuK(j))+

∑

i

∑

j

∑

k

∑

l

ceffijkl (JuK(i) · JuK(j)) (JuK(k) · JuK(l)) + ... , (7.49)

where the coefficients ceffij and ceffijkl can be chosen arbitrarily. However, due to the com-
mutativity of the scalar product it holds that

ceffij = ceffji (7.50)

and ceffijkl shows the major and the minor symmetry, i.e., ceffijkl = ceffijlk = ceffjikl = ceffjilk. In
summary, in the case of the gradient enhanced model the equivalence follows as

I∇JuK(JuKM , GRADMJuK) ⇔ I∇JuK(JuK(i) · JuK(j)). (7.51)

7.2.3 Comparison of the different approaches

Within Subsections 7.2.1 and 7.2.2, two representations of integrated local energy IJuK =∫
Ψ(JuK) dA and effective potential I∇JuK(JuKM , GRADMJuK) have been derived. These

two descriptions are now compared to generic potential

I = I(JuK(i) · JuK(j)). (7.52)
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Evidently, this energy is a priori frame indifferent. If it is assumed that the energy
potential (7.52) can be approximated by a Taylor series, i.e.,

I(JuK(i) · JuK(j)) ≈ b0 +
∑

i

∑

j

bij (JuK(i) · JuK(j))+

∑

i

∑

j

∑

k

∑

l

bijkl (JuK(i) · JuK(j)) (JuK(k) · JuK(l)) + ... , (7.53)

the coefficients b0, bij and bijkl may be chosen arbitrarily. Due to the commutativity it
holds – nevertheless – that bij = bji and bijkl = bijlk = bjikl = bjilk, see Tab. 7.1

Table 7.1: Overview of the different approaches

Ψ = Ψ(JuK)

Linear approximation of JuK: JuK(X) ≈ ∑
i N

(i)JuK(i)

objectivity +

spatial integration

dependence on combina-
tions of scalar products of
node jumps (JuK(i) · JuK(j))

objectivity +
averaging leading to effec-
tive jump JuKM and its
gradient ∇JuK

∫
Ψ(JuK) dA = IJuK generic potential I I∇JuK(JuKM , ∇JuKM)

Potential can be approximated by a Taylor series

IJuK(JuK(i) · JuK(j)) =
ael0 +∑

ij

aelij (JuK(i) · JuK(j)) +

∑

ijkl

aelijkl

(JuK(i) · JuK(j))
(JuK(k) · JuK(l)) + ...

I(JuK(i) · JuK(j)) =
b0 +∑

ij

bij (JuK(i) · JuK(j)) +

∑

ijkl

bijkl

(JuK(i) · JuK(j))
(JuK(k) · JuK(l)) + ...

I∇JuK(JuK(i) · JuK(j)) =

ceff0 +∑

ij

ceffij (JuK(i) · JuK(j)) +

∑

ijkl

ceffijkl

(JuK(i) · JuK(j))
(JuK(k) · JuK(l)) + ...

Number of unknowns

aelij = aelI
∫ ∫

N (i) N (j) dA
aelijkl =

aelII
∫ ∫

N (i)N (j)N (k)N (l) dA,

XJuK = {a0, aelI , aelII , ...}
#(XJuK) = 1 + 1 + 1 + ...

bij = bji,
bijkl = bijlk = bjikl = bjilk,

X = {b0, bij , bijkl, ...}
#(X) = 1 + 6 + 21 + ...

ceffij = ceffji ,
ceffijkl = ceffijlk = ceffjikl = ceffjilk,

X∇JuK = {ceff0 , ceffij , c
eff
ijkl, ...}

#(X∇JuK) = 1+ 6+21+ ...

IJuK(JuK(i) · JuK(j))
(7.35)⇒ I(JuK(i) · JuK(j))

(7.51)⇔ I∇JuK(JuK(i) · JuK(j))
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7.2.3.1 Example for equivalence with one material parameter

Spatial integration of the local interface model leads to an energy potential IJuK(JuK(i) ·
JuK(j)) where the coefficients aelij and aelijkl are prescribed due to the integration of the
shape functions, see Eq. (7.32). Furthermore, the commutativity of the scalar product
is applied. Thereby, contributions JuK(i) · JuK(j) reduce from nine to six different combi-
nations while the higher order contributions (JuK(i) · JuK(j)) (JuK(k) · JuK(l)) reduce from
81 to 21 different combinations.

In this subsection, the classic local cohesive zone model with just one spatially con-
stant material parameter µ is investigated, i.e.,

Ψ = Ψ(JuK) =
1

2
µ JuK · JuK. (7.54)

Spatial integration and insertion of the linear ansatz (7.25) lead to energy potential

∫
ψ(JuK) dA ≈

∫

∆

1

2
µ

(
3∑

i=1

3∑

j=1

N (i) N (j) JuK(i) · JuK(j)

)
detJ ξ dAξ

=
1

2

3∑

1

3∑

1

∫

∆

µ N (i) N (j) detJ ξ dAξ

︸ ︷︷ ︸
aelij

JuK(i) · JuK(j)

=
1

2
A

(
1

6
µ JuK2(1) + 2

1

12
µ JuK(1) · JuK(2) + 2

1

12
µ JuK(1) · JuK(3)+

1

6
µ JuK2(2) + 2

1

12
µ JuK(2) · JuK(3) +

1

6
µ JuK2(3)

)

=
1

12
Aµ

(
JuK2(1) + JuK(1) · JuK(2) + JuK(1) · JuK(3) + JuK2(2) + JuK(2) · JuK(3) + JuK2(3)

)

= IJuK(JuK(i) · JuK(j)). (7.55)

Using the commutativity of the scalar product, all stiffness contributions for the different
scalar product combinations JuK(i) ·JuK(j) are identical. The comparison to ansatz (7.31)
results in ael0 = 0 and aelij = 1/12µ.

Alternatively, energy potential (7.55) can also be represented by an effective gradient
enhanced model I∇JuK(JuK(i) · JuK(j)). In this case, the inverse coefficient matrix from
Eq. (7.47) has to be evaluated for energy ansatz (7.54). This leads to

I∇JuK(JuKM ,GRADMJuK) = I∇JuK(JuK(i) · JuK(j))

= I∇JuK(Î1, Î2, Î3, Î4, Î5, Î6) =

[
1

2
λ Î1 +

1

36
λ
(
Î4 − Î5 + Î6

)]
A
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=
1

12
Aλ

(
JuK2(1) + JuK(1) · JuK(2) + JuK(1) · JuK(3) + JuK2(2) + JuK(2) · JuK(3) + JuK2(3)

)
.

(7.56)

Accordingly, by choosing µ = λ, Eq. (7.56) is equivalent to Eq. (7.55). It can be shown
in a straightforward manner, that the same inclusion also holds for higher-order models
and thus,

IJuK(JuK(i) · JuK(j)) ⇒ I∇JuK(JuKM ,GRADMJuK)A. (7.57)

7.2.3.2 Example for more than one material parameter

As shown in the previous subsection, equivalence (7.57) holds in the case of one spatially
constant material parameter. In contrast to that, this subsection shows with a simple
example that equivalence (7.57) is not valid from the opposite direction. A quadratic
counter example is given by energy

I∇JuK = I∇JuK(JuKM ,GRADMJuK)

=
1

2

[
λ1 JuKM · JuKM + λ2

(
GRADMJuK : GRADMJuK

)]

=
1

2
A

[(
λ1

9
+ 2 λ2

)
JuK2(1) +

(
λ1

9
− 2 λ2

)
JuK(1) · JuK(2)

(
λ1

9
− 2 λ2

)
JuK(1) · JuK(3) +

(
λ1

9
+ λ2

)
JuK2(2)

+

(
1

9
λ1

)
JuK(2) · JuK(3) +

(
λ1

9
+ λ2

)
JuK2(3)

]
. (7.58)

It becomes obvious that potential (7.58) cannot be captured by a local model with only
one material parameter µ. To be more explicit, by rewriting this equation into generic
form

I∇JuK(JuK(i) · JuK(j))

=

(
ceff11JuK2(1) + ceff12JuK(1) · JuK(2) + ceff13JuK(1) · JuK(3)+

ceff22JuK2(2) + ceff23JuK(2) · JuK(3) + ceff33JuK2(3)

)
(7.59)

and by comparing the coefficients, one obtains

ceff11 =
1

2

(
λ1

9
+ 2 λ2

)
, ceff12 = ceff13 =

1

2

(
λ1

9
− 2 λ2

)
,
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ceff22 = ceff33 =
1

2

(
λ1

9
+ λ2

)
, ceff23 =

1

2

(
1

9
λ1

)
. (7.60)

Clearly, this set of equations does not have a solution. Consequently, in general it is not
possible to create an arbitrary generic potential by integration of a local model with just
one material parameter leading to equivalence

IJuK(JuK(i) · JuK(j))
(7.35)⇒ I(JuK(i) · JuK(j))

(7.51)⇔ I∇JuK(JuK(i) · JuK(j)). (7.61)

7.2.4 Possibilities to expand the equivalence

As shown in the previous subsection, it is not possible to generate an arbitrary generic
potential of the form IJuK(JuK(i) · JuK(j)) from spatial integration of a local model with
just one single material parameter.

As a possible expansion, a spatial distribution of the material parameter in the local
interface model µ is investigated next. Since the generic model (7.59) shows six model
parameters for a quadratic energy, six different material parameters are also required for
the local model. As a consequence, the material parameters are discretised by quadratic
shape functions Ñ (i) leading to

ael
I (X) ≈

6∑

i

Ñ (i) c̃(i). (7.62)

Thereby, the integration off the local model reads

∫

∆

Ψ(JuK · JuK)dA ≈
∫

∆

1

2

(
∑

i

∑

j

∑

k

Ñ (i) N (j) N (k) c̃(i) JuK(j) · JuK(k)

)
detJ ξ dAξ

=
1

2
A




JuK(1) · JuK(1)
JuK(1) · JuK(2)
JuK(1) · JuK(3)
JuK(2) · JuK(2)
JuK(2) · JuK(3)
JuK(3) · JuK(3)



·







1/30 −1/90 −1/90 1/15 1/45 1/15
0 0 −1/90 4/45 2/45 2/45
0 −1/90 0 2/45 2/45 4/45

−1/90 1/30 −1/90 1/15 1/15 1/45
−1/90 0 0 2/45 4/45 2/45
−1/90 −1/90 1/30 1/45 1/15 1/15




︸ ︷︷ ︸
B

·




c̃(1)

c̃(2)

c̃(3)

c̃(4)

c̃(5)

c̃(6)







(7.63)

leading to a potential with six material parameters. On the other hand, postulating a
general quadratic effective potential yields

I∇JuK(JuKM , ∇JuK)
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= I∇JuK(Î1, Î2, Î3, Î4, Î5, Î6) =
[
k̂(1) Î1 + k̂(2) Î2 + k̂(3) Î3 + k̂(4) Î4 + k̂(5) Î5 + k̂(6) Î6

]

= I∇JuK(JuK(i) · JuK(j)) ≈

1

2




JuK(1) · JuK(1)
JuK(1) · JuK(2)
JuK(1) · JuK(3)
JuK(2) · JuK(2)
JuK(2) · JuK(3)
JuK(3) · JuK(3)



·







1/9 −1/3 −1/3 1 1 1
2/9 0 −1/3 −2 −1 0
2/9 −1/3 0 0 −1 −2
1/9 1/3 0 1 0 0
2/9 1/3 1/3 0 1 0
1/9 0 1/3 0 0 1




︸ ︷︷ ︸
C

·




k̂(1)

k̂(2)

k̂(3)

k̂(4)

k̂(5)

k̂(6)







. (7.64)

Since matrix B as well as matrix C are invertible, both models can be transferred to
each other in the case of a quadratic relation of the displacement jump and a spatial
distribution of the material parameter, i.e.,

∫
Ψ(JuK) dA ⇔ I∇JuK(JuKM , GRADMJuK) A (for quadratic energies). (7.65)

However, equivalence (7.65) is only valid under the aforementioned assumptions. Fur-
thermore, the inversion of matrix B and C provides information about the choice of
material parameters, see Remark 14.

An extension to higher-order energies is not possible. For instance, in the case of a
fourth order potential (JuK(i) · JuK(j)) (JuK(k) · JuK(l)), one has 21 material parameters. In
this case, the stiffness of the respective local model would be approximated by

ael
II(X) =

21∑

m=1

N̂ (m)ĉ(m). (7.66)

A detailed overview of the shape functions is given in Appendix C.1. In analogy to
Eq. (7.63), integration of the local energy takes the form

∫

∆

Ψ
(
(JuK · JuK)2

)
dA ≈

∫

∆

1

2

( 21∑

m=1

3∑

i=1

3∑

j=1

3∑

k=1

3∑

l=1

N̂ (m) N (i) N (j) N (k)N (l) ĉ(m)

(JuK(i) · JuK(j)) (JuK(k) · JuK(l))

)
detJ ξ dAξ =

1

2
A JuK(ijkl) ·D · ĉ. (7.67)

Here, JuK(ijkl) represents a vector with the 21 different scalar product combinations of
node jumps, D is a 21×21 matrix including the several stiffness pre-factors arising from
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the integration and ĉ denotes the vector with the 21 stiffness contributions. A detailed
representation is given in Appendix C.1.

It can be shown that matrix D is not invertible due to the commutativity of the
product of the shape functions. For instance, it holds that

∫
N (i) N (j)N (k) N (l) dA =

∫
N (i) N (k) N (j)N (l) dA. (7.68)

However, it also holds that

(JuK(i) · JuK(j)) (JuK(k) · JuK(l)) 6= (JuK(i) · JuK(k))(JuK(j) · JuK(l)). (7.69)

Consequently, in general local potential IJuK does not follow from I∇JuK since the local
model provides identical stiffness values to several contributions due to commutativity
of the shape functions.

7.2.5 Physical interpretation of the interface contributions

In the previous subsection it was shown that the equivalence between the integration
of a local interface model with a spatial distribution of the material parameter and
the gradient enhanced effective model is only valid in the case of quadratic dependence
of the displacement jump JuK. From a physics point of view this is not surprising,
since the local approach cannot capture different stiffness values for all different physical
modes. In the case of (i) = (j), the contributions are related to the length of the fiber
connecting nodes with identical material coordinates in the reference configuration, see
Fig. 7.4 (left). In contrast, if (i) 6= (j), the contributions are related to the angle between

x+
(1)

x+
(1)

x+
(2)x+

(2)

x−
(1)x−

(1)
x−
(2)x−

(2)

‖Ju
K (1

)
‖

‖J
u
K (
2
)
‖

JuK(1) JuK(1)JuK(1)

JuK(2)
JuK(2)

α

Figure 7.4: Two-dimensional interface element with four nodes (two on each side of the interface). Left
side: Graphical interpretation of the contributions JuK(i) · JuK(j) if (i) = (j) – length of the fiber. Right
side: Graphical interpretation of the contributions JuK(i) · JuK(j) if (i) 6= (j) –angle between the fibers.
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two different fibers, see Fig. 7.4 (right), i.e.,

JuK(i) · JuK(j) = ‖JuK(i)‖ ‖JuK(j)‖ cos∠(JuK(i), JuK(j)) (7.70)

with ∠(JuK(i), JuK(j)) denoting the angle between JuK(i) and JuK(j). Thus, Eq. (7.69)
compares contributions with different physical modes, although they are described by
the same material stiffness, see Eq. (7.68). For instance, the contribution

(JuK(1) · JuK(1)) (JuK(2) · JuK(2)) (7.71)

describes the relation of two node jump lengths while contribution

(JuK(1) · JuK(2)) (JuK(1) · JuK(2)) (7.72)

is related to the change of the angle between two fibers. Thus, they can be characterised
by different stiffness values in general, while integration of the local model yields identical
stiffness values for both contributions due to Eq. (7.68).

Remark 13 An isotropic model of type Ψ(JuK) does not imply an isotropic model of
type Ψ(JuKM ,GRADMJuK). First, a quadratic Helmholtz energy just depending on the
displacement jump JuK (classic framework) is considered, i.e.,

Ψ(JuK) =
1

2
c JuK · JuK, (7.73)

where approximation (7.27) for the displacement jump vector is used. Thereby, energy
(7.73) takes the form

Ψ =
1

2
c
[
JuKM +GRADMJuK · (X −XM)

]
·
[
JuKM +GRADMJuK · (X −XM)

]
(7.74)

with XM = 0, see Fig. 7.5. An integration of Ψ over the element area leads to

X1 X2

X3

Xm
x

y

Figure 7.5: Linear triangle element
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∫
Ψ dA =

1

2
c

[
JuKM · JuKM A+ 2GRAD

T

MJuK · JuKM ·
∫

X dA
︸ ︷︷ ︸

=0

(7.75)

+ (GRAD
T

MJuK ·GRADMJuK) :

∫
X ⊗X dA

︸ ︷︷ ︸
I

]
, (7.76)

where the second term vanishes due to the position of the coordinate system in the center
of gravity. Accordingly, starting from an isotropic energy depending on JuK leads to an
anisotropic energy depending on JuKM and ∇JuKM . The anisotropy is related to tensor
I (tensor of moment of inertia).

Remark 14 The inversion of matrices B and C in Eqs. (7.63) and (7.64) provides
information about the choice of the material parameter. To be more explicit, the simple
choice of k̂(i) = 1 leading to

I∇JuK(Î1, Î2, Î3, Î4, Î5, Î6) =
[
Î1 + Î2 + Î3 + Î4 + Î5 + Î6

]
(7.77)

yields the following equivalent material parameter c̃(i) for the local model (units are ig-
nored here):

c̃(1) = 258.667, c̃(2) = −101.333, c̃(3) = −101.333

c̃(4) = −171.333, c̃(5) = 143.667, c̃(6) = 33.6667 (7.78)

It follows that, although both models are equivalent, this does not mean that the models
are meaningful from a physics point of view since negative stiffness values are from a
physics point of view - at least - questionable.
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7.3 Gradient of surface deformation gradient

7.3.1 Motivation

As presented in Chapter 6 complex non-monotonic size effects can be captured with the
generalised interface framework combining the displacement jump JuK and the surface
deformation gradient F . However, the influence of curvature effects is not considered.
Especially at small scales curvature effects can highly influence the material behaviour.
An extension of surface elasticity theory with curvature effects was shown, for instance
in [92, 93] and further elaborated in [17]. In this section it is investigated as to how
curvature effects can be captured within the interface by incorporation of the surface
gradient of F into the Helmholtz energy. Firstly, it is shown by a simple example why
this could be of high interest at small length scales. For that purpose, different energies
are compared in order to investigate the influence of displacement jump JuK, surface
deformation gradient F and the gradient of F . A spherical RVE with reference radius
r = R is chosen, where ϕ and θ describe the curvilinear coordinates θ1 and θ2, see
Fig. 7.6. A point P lying on the reference surface of the sphere is described by spherical

G1

G2

G3

R
θ

ϕ

Figure 7.6: Reference configuration of the sphere with covariant base vectors G1, G2 and G3

coordinates, i.e.,

X(R, ϕ, θ) =



R sin(θ) cos(ϕ)
R sin(θ) sin(ϕ)

R cos(θ)


 . (7.79)

136



7.3 Gradient of surface deformation gradient

The tangential base vectors of the reference configuration are calculated by

G1 =
∂X

∂ϕ
and G2 =

∂X

∂θ
(7.80)

and the unit normal vector N = G3 simplifies to X/R. The sphere undergoes a uniform
expansion by applying displacement JuK to the initial radius R. The current configura-
tion is thus computed

x = X + JuKer. (7.81)

For this deformation, the surface deformation gradient reads

F (JuK) =
∂x(JuK)

∂θα
⊗ ∂θα

∂X
(7.82)

and its gradient

GRAD (F )(JuK) =
∂2x(JuK)

∂θα∂θβ
⊗Gα ⊗Gβ +

∂x(JuK)

∂θα
⊗ ∂Gα

∂θβ
⊗Gβ. (7.83)

First, an isotropic quadratic energy ψ(JuK) = 1/2 c̃ JuK2 is analysed. The Helmholtz
energy is integrated over the sphere surface, i.e.,

Ψ̃JuK = Ψ̃eff(JuK) =

∫
1

2
c̃ JuK2 er · er︸ ︷︷ ︸

=1

dA = 2 π cR2 JuK2, (7.84)

where R denotes the initial radius of the sphere and the material parameter c̃ charac-
terises a stiffness. In the case of a fully reversible material response, the energetically
dual force results in

F̃JuK =
dΨ̃JuK

dJuK
= 4 π cR2 JuK. (7.85)

Next, an energy depending on F is investigated. It is given by

Ψ(F ) =
1

2
ĉ
(
F : F − 2− 2 ln

[
det(F )

])
. (7.86)

It is a Neo-Hooke-like energy which vanishes for the undeformed configuration, the
respective stresses also vanish in the undeformed configuration and converges to infinity,
if the sphere is either compressed to a point or increased up to infinity. Integration yields

Ψ̂F = Ψ̂(F ) = Ψ̂eff(JuK) =

∫
1

2
ĉ
(
F : F − 2− 2 ln

[
det(F )

])
dA
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= π ĉ

[
JuK (JuK + 4R)− 4R2 ln

(
(2R+ JuK)2

4R2

)]
. (7.87)

The material parameter ĉ characterises again a stiffness. The energetically dual force
reads

F̂F =
dΨ̂F

dJuK
= π ĉ JuK

(
4R + JuK

R + 1
2
JuK

)
. (7.88)

Finally, an energy depending on GRAD (F ), respectively the current mean curvature h
is investigated. It is assumed that the reference configuration of the sphere has no initial
energy, i.e.,

Ψ(F , GRAD(F )) = c (h−H)2 , (7.89)

where c denotes a bending stiffness and where H is the mean curvature of the reference
configuration. The integration over the sphere surface leads to

ΨGRAD(F ) = Ψ(F , GRAD(F )) = Ψ
eff
(JuK)

=

∫
c̃ JuK2

r2 (2 r + JuK)2
dA =

4 π c JuK2

(JuK + 2R)2
. (7.90)

The energetically dual force results now in

FGRAD(F ) =
dΨGRAD(F )

dJuK
=

16 π c r JuK

(2 r + JuK)3
. (7.91)

Next, the different types of surface energies and the conjugate forces are compared. For
that reason the stiffness parameters are chosen as

c̃ = 100
N

cm3
, ĉ = 3300

N

cm
and c = 40000Ncm (7.92)

and the initial radius of the sphere is set to R = 10 cm. The evaluation of the energies
and the corresponding forces versus JuK/R are plotted in Fig. 7.7 and Fig. 7.8.
It can be seen that all energies and forces vanish in the reference configuration. Fur-

thermore, and in contrast to Ψ̂ and Ψ, energy Ψ̃ quadratically depending on JuK is finite
and thus unphysical if the sphere is compressed to a point (JuK/R = −1). In the case of

JuK/R → ∞, Ψ̃ and Ψ̂ also converge to infinity. By ways of contrast energy Ψ saturates
and thus the respective force approaches zero for JuK/R → ∞. This is expected, since
the curvature of the deformed configuration vanishes in this case. It can be seen that
especially on small sizes the curvature highly influences the energy and the respective

138



7.3 Gradient of surface deformation gradient

Ψ

JuK/R
−1 1 2 3

Ψ̃(JuK)

Ψ̂(F )

Ψ(F , GRAD(F ))

Figure 7.7: Sphere undergoing deformation in radial direction: Energies depending on JuK/R

F

JuK/R
−1 1 2 3

F̃ (JuK)

F̂ (F )

F (F , GRAD(F ))

Figure 7.8: Sphere undergoing deformation in radial direction: Reaction forces depending on JuK/R

force. Therefore, it seems to be promising to further investigate the curvature influence
to capture additional size effects on small length scales.

7.3.2 Kinematics

According to Chapter 5, in the case of non-coherent interfaces the surface deformation
gradient is related to the coordinates x(m) located in the fictitious mid-surface and is
defined as

F := GRAD(x(m)) =
∂x(m)

∂X
=

∂x(m)

∂θα
⊗ ∂θα

∂X
= gα ⊗Gα. (7.93)

It follows then

F
T
= Gα ⊗ gα, F

−1
= Gα ⊗ gα and F

−T
= gα ⊗Gα. (7.94)
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Accordingly, the surface gradient of F is calculated by

GRAD (F ) =
∂F

∂θβ
⊗Gβ =

∂ (gα ⊗Gα)

∂θβ
⊗Gβ, (7.95)

which leads to

GRAD (F ) = gα, β ⊗Gα ⊗Gβ + gα ⊗Gα
, β ⊗Gβ. (7.96)

Here and henceforth [(•), β] denotes the partial derivative of (•) with respect to the
coordinate θβ .

7.3.3 Objectivity requirements

In the case of the general interface model an extension in order to account for the gradient
of F leads to the respective Helmholtz energy of type

Ψ = Ψ(JuK,F ,GRAD(F )). (7.97)

For this extended framework, objectivity (frame indifference) requires

Ψ(JuK,F ,GRAD(F )) = Ψ(Q · JuK,Q · F ,Q ·GRAD(F )) ∀Q ∈ SO3, (7.98)

since the surface gradient of F transforms under an observer transformation according
to

{GRAD(F )}∗ = Q ·GRAD(F ). (7.99)

In order to fulfill the principle of objectivity, or to be more precise the principle of
material covariance, the Helmholtz energy density has to be of the form

Ψ = Ψ(JuK·JuK,F ·JuK,GRAD(F )·JuK,F
T ·F , F

−1·GRAD(F ),GRAD
T
(F )·GRAD(F )).

(7.100)

The contributions in (7.100) are then analysed in detail. Since the focus is on bending
effects, the influence of JuK-terms is neglected. Following standard notation in bulk
materials and as already introduced in Subsection 5.2.4, the first term in Eq. (7.100)
that does not depend on JuK is the Cauchy-Green surface tensor, i.e.,

C = F
T · F = (gα · gβ)G

α ⊗Gβ = gαβ G
α ⊗Gβ. (7.101)
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7.3 Gradient of surface deformation gradient

The contribution F
−1 ·GRAD(F ) is sometimes referred to as configuration tensor, c.f.

Bertram [11], in bulk materials. It can be rewritten as

Ksur = F
−1 ·GRAD(F )

=
(
gα,β · gγ

)
Gγ ⊗Gα ⊗Gβ +Gα ⊗Gα

, β ⊗Gβ. (7.102)

In order to derive the forth order tensor arising from the last contribution, GRAD
T
(F )

is introduced in index notation as

(
GRAD

T
F
)
nmi

=
∂F im

∂Xn

. (7.103)

This leads to representation

GRAD
T
(F ) ·GRAD(F ) =

(
gα,β · gγ,δ

) [
Gβ ⊗Gα ⊗Gγ ⊗Gδ

]

+
(
gα,β · gγ

) [
Gβ ⊗Gα ⊗G

γ
,δ ⊗Gδ

]

+
(
gα · gγ,δ

) [
Gβ ⊗Gα

,β ⊗Gγ ⊗Gδ
]

+
(
gα · gγ

) [
Gβ ⊗Gα

,β ⊗G
γ
,δ ⊗Gδ

]
. (7.104)

7.3.4 Symmetry properties of GRAD (F )

Following Steinmann [95], in the case of convective coordinates the deformation gradient
of the bulk deformation gradient F can be expressed as

GRAD(F ) =
(
γi
jk − Γi

jk

)
gi ⊗Gj ⊗Gk, (7.105)

where γi
jk and Γi

jk denote Christoffel symbols defined as

γi
jk = gj,k · gi and − Γi

jk = Gi
,j ·Gk. (7.106)

Since GRAD(F ) maps tensors in the θ1 − θ2 − θ3-space it holds that

GRAD(F ) : A = GRAD(F ) : AT ∀A, AT ∈ span{Gi}. (7.107)

In analogy to (7.105), an equivalent representation of GRAD (F ) is introduced as

GRAD (F ) = γk
αβ gk ⊗Gα ⊗Gβ − Γ

α

βk gα ⊗Gk ⊗Gβ. (7.108)

Here, the Christoffel surface symbols are denoted as

γk
αβ = gα,β · gk and − Γ

α

βk = Gα
,β ·Gk. (7.109)
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7 Higher-order interfaces

Since GRAD(F ) maps tensors in the θ1-θ2-plane, respectively superficial tensors, defi-
nition (7.108) simplifies to

GRAD (F ) = γk
αβ gk ⊗Gα ⊗Gβ − Γ

α

βδ gα ⊗Gδ ⊗Gβ. (7.110)

To be more precise, it holds that

dx = F · dX dx ∈ span{gα} , dX ∈ span{Gα}
dF = GRAD(F ) : dX. (7.111)

Regarding the symmetry properties of GRAD (F ) it holds that

GRAD (F ) : A = GRAD(F ) : A
T ∀ A, A

T ∈ span{Gα}. (7.112)

Here, A = AαβGα ⊗ Gβ is an arbitrary tensor. A detailed derivation is given in Ap-
pendix D.1.

7.3.5 On the relation between the mean curvature and GRAD (F )

The goal of this subsection is to show that the mean curvature h of the current config-
uration of a manifold can be represented as a covariant function of F and GRAD (F ).
Thereby, it is ensured that an energy depending of h automatically fulfills the principle
of material covariance and equivalently the balance of angular momentum. Through-
out the literature many different curvature terms and definitions exist, cf. for instance
Kühnel [53], Steinmann [95]. Here, the mean curvature is defined as the arithmetic mean
of the principal curvatures. To be more precise the reference mean curvature is defined
as

H =
1

2
(K1 +K1) (7.113)

while for the current configuration it follows that

h =
1

2
(k1 + k2). (7.114)

Here, K1, K2, k1 and k2 denote the principle curvatures in the reference, respectively
in the current configuration. Furthermore, the Laplacian operator applied to manifolds,
also known as Laplace-Beltrami operator, is introduced as

∆X(X) = DIV
(
GRAD(X)

)
= −2HN . (7.115)
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7.3 Gradient of surface deformation gradient

Thus, ∆X yields the reference mean curvature H of a surface, where N denotes the
unit normal vector at the considered point. Likewise, the current mean curvature is
calculated by

∆x = div
(
grad(x)

)
= −2 hn. (7.116)

Hence, the current mean curvature h follows as

‖ − hn‖ =
1

2
‖div

(
grad(x)

)
‖ = h (7.117)

In order to see the relation between the Laplace-Beltrami operator and GRAD (F ) the
following transformed equation is introduced:

div
(
grad(x)

)
=

[
GRAD(F ) · F−1

]
: F

−1
+ F ·

[
GRAD(F

−1
) : F

−T
]
. (7.118)

A detailed derivation of Eq. (7.118) can be found in Appendix D.2. By doing so, the
current mean curvature h follows as

h =
1

2
‖
[
GRAD(F ) · F−1

]
: F

−1
+ F ·

[
GRAD(F

−1
) : F

−T
]
‖. (7.119)

In order to further simplify Eq. (7.119), identity

GRAD
(
F

−1 · F
)
= GRAD

(
I
)

(7.120)

holds in general. It bears emphasis that

GRAD
(
I
)
6= 0 (7.121)

Equation (7.120) allows the expression of term GRAD(F
−1
) as

GRAD
(
F

−1
)
·̄ i = GRAD(I) ·̄F−1 − F

−1 ·GRAD(F ) ·̄F−1
, (7.122)

where

[A ·̄B]iml = [A]ijl [B]jm . (7.123)

A detailed derivation is given in Appendix D.3. Furthermore, due to the symmetry

properties of GRAD
(
F

−1
)
it holds that

[
GRAD

(
F

−1
)
·̄ i
]
: F

−T
= GRAD

(
F

−1
)
: F

−T
, (7.124)
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7 Higher-order interfaces

cf. Appendix D.4. By inserting relations (7.122) and (7.124), Eq. (7.119) transforms to

h =
1

2
‖
[
GRAD(F ) · F−1

]
: F

−1
+F ·

[(
GRAD(I) ·̄F−1 − F

−1 ·GRAD(F ) ·̄F−1
)
: F

−T
]
‖.

(7.125)

It now becomes apparent that

h = h(F , GRAD(F ), GRAD(I)) with GRAD(I) = const. (7.126)

As a consequence, h indeed depends on F and GRAD (F ). Essentially, Eq. (D.17) can
be interpreted as a push forward of H .

The next step is to show that mean curvature (D.17) is a covariant function. To be
more precise it has to be shown that

h(F , GRAD(F ), GRAD(I)) = h(C, F
−1 ·GRAD(F ),GRAD(F )T ·GRAD(F ), ...).

(7.127)

For that purpose mean curvature h is re-written as

h =
1

2
‖a + b− c‖ =

1

2

√
(a+ b− c) · (a+ b− c) (7.128)

with

a =
[
GRAD(F ) · F−1

]
: F

−1
, (7.129)

b = F ·
[(

GRAD(I) ·̄F−1
)
: F

−T
]

and (7.130)

c = F ·
[(

−F
−1 ·GRAD(F ) ·̄F−1

)
: F

−T
]
. (7.131)

Now it is investigated if the coefficients arising from (7.128) are covariant. For that
purpose one has to show that

a · a = a · a(C, F
−1 ·GRAD(F ),GRAD(F )T ·GRAD(F ),GRAD(I)), (7.132)

a · b = a · b(C, F
−1 ·GRAD(F ),GRAD(F )T ·GRAD(F ),GRAD(I)), (7.133)

a · c = a · c(C, F
−1 ·GRAD(F ),GRAD(F )T ·GRAD(F ),GRAD(I)), (7.134)

b · b = b · b(C, F
−1 ·GRAD(F ),GRAD(F )T ·GRAD(F ),GRAD(I)), (7.135)

b · c = b · c(C, F
−1 ·GRAD(F ),GRAD(F )T ·GRAD(F ),GRAD(I)) (7.136)

and

c · c = c · c(C, F
−1 ·GRAD(F ),GRAD(F )T ·GRAD(F ),GRAD(I)) (7.137)
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7.3 Gradient of surface deformation gradient

with GRAD(I) = const. It is shown in detail in Appendix D.5, that all coeffi-
cients (7.132) - (7.137) fulfill the requirement for material covariance and thereby, the
mean curvature h is indeed a covariant function. This is exemplarily demonstrated here
for the first coefficient a · a:

a · a =

[ [
GRAD(F ) · F−1

]
: F

−1

]
·
[ [

GRAD(F ) · F−1
]
: F

−1

]

= C
−1

:
(
GRAD

T
(F ) ·GRAD(F )

)
: C

−1
. (7.138)

Hence, it follows that it is possible to define a Helmholtz energy depending on the current
curvature that fulfills the requirements of the material covariance principle. Accordingly,
such a model automatically fulfills balance of angular momentum. Motivated by the
incorporation of curvature effects leading to additional size effects it seems to be very
promising to further investigate the proposed framework and for instance to define a
particular energy combining JuK, F and GRAD (F ).
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8 Conclusion and Outlook

8.1 Concluding remarks

8.1.1 Inconsistencies in classic cohesive zone models

The main focus of this thesis is the elaboration of a consistent interface framework
that fulfills all fundamental physical requirements. In order to reveal the necessity for
the extension of classic cohesive zone models, their possibilities and restrictions were
reviewed in Chapter 3. As highlighted, only a few cohesive zone models are derived
in a thermodynamically consistent way. Especially classic anisotropic cohesive models
exhibit thermodynamical inconsistencies due to non-vanishing dissipation in the case
of elasticity. Here, the term classic cohesive zone indicates that the stress power only
considers a contribution related to the change of the displacement jump and not to
the change of structural tensors such as the normal vector. Furthermore, it has been
underlined that the traction vector has to point in the same direction as the displacement
jump in order to fulfill balance of angular momentum. This is equivalent to isotropy
which means that classic cohesive zone models can be interpreted as fiber models. To be
more precise, a fiber between two fixed points (the same point in material coordinates)
connects the upper and lower surface of the interface. The direction of the fiber is
prescribed by the displacement jump and the traction has to point into this direction.
It has also been shown that an extension of cohesive models to isotropic damage is
straightforward while the incorporation of plasticity leads to further problems due to
the principle of material frame indifference. In summary, Chapter 3 provides sufficient
arguments for the derivation of a novel interface framework.

8.1.2 Generalised interface framework

Two different novel frameworks for non-coherent interfaces have been presented in Chap-
ter 4 and 5.

Chapter 4 has provided a cohesive framework that abandons the classic fiber concept.
To be more precise, the fiber connecting the upper and lower surface of the interface is
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8 Conclusion and Outlook

no longer defined by two points having the same material coordinates, but the fiber’s
corner points are allowed to slide along the surface when plasticity evolves. The direction
of the fiber is thereby redefined. It has been shown that this redefinition is only active
in the case of plasticity, and that for elastic interface opening the classic framework
is unaffected. From a physical point of view the interface may be seen as a web of
interconnecting fibers. When the interface opens inelastically some of the initial fibers
break. This can be interpreted as a reorientation of an effective fiber.

Furthermore, the unloading behaviour of the fiber has been of special interest in
Chapter 4. In the case of bulk elastoplasticity further unloading from the stress free
configuration would classically lead to negative strains. In the case of interfaces this
would lead to unphysical self penetration for which a novel unloading behaviour has
been proposed. The key idea is to assign a vanishing bending stiffness to the fibers
which buckle when compressive stresses arise. It has been pointed out that this un-
loading behaviour shows similarities to the wrinkling of membranes. Furthermore, the
variational structure of the novel interface framework has been shown, i.e., the yield
function and the wrinkling condition (the interface cannot capture compressive stresses)
can be derived my minimising a potential. The global unloading behaviour presented
within the numerical examples in Chapter 4 shows that a superposition of local wrinkling
unloading and elastic unloading leads to a damage-like behaviour.

A different approach for an extended interface model was discussed in Chapter 5. In
the literature this framework is denoted as general imperfect interface. It combines the
theory of classic cohesive zones where the displacement shows a jump across the inter-
face with surface elasticity theory where a traction jump across the interface is allowed.
Both the cohesive zone model as well as the surface elasticity model can be understood
as two limits of the novel interface framework. The Helmholtz free energy density of
such general interface models contains the displacement jump and the surface deforma-
tion gradient or respectively structural tensors. In order to guarantee thermodynamical
consistency of the model, a stress contribution has been introduced that is energetically
conjugated to the change of the structural tensors – in contrast to classic cohesive zone
models where only the traction vector is considered. Thereby, the novel framework con-
tains membrane-like forces and out-of-plane shear forces acting within the interface, and
the traction continuity across the interface is not required in order to fulfill balance of
linear momentum. Only a few recent models actually consider these additional stresses,
cf. [41, 50, 68, 77]. It has been highlighted that the presented framework indeed fulfills
balance of angular momentum for an anisotropic interface.

8.1.3 Size effect due to material interfaces

In order to analyse the interface’s influence on the macroscopic stress response of a
body, an extended homogenisation scheme has been summarised in Chapter 6. It has
been highlighted that the classic volume average theorems known from bulk continuum
mechanics have to be extended in order to account for interface contributions due to
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JuK and the interface stress tensor P . The associated numerical implementation was
provided and the novel interface framework was incorporated into numerical simulations
with a representative volume element. Based on this numerical framework a cubic RVE
with a spherical inclusion was investigated. The presented homogenisation scheme allows
the analysis of the influence of the novel interface model on the resulting macroscopic
(effective) material response.

First, the possibility of accounting for material anisotropies was underlined. The
novel framework can capture different fracture properties for normal and tangential,
respectively mode I- and mode II/III-separation. This is an interesting feature of the
model, since experiments indeed show that many materials provide different fracture
energies in normal and tangential direction.

Furthermore, it has been shown in Chapter 6 that the interaction of bulk energies
and interface energies leads, in a very natural manner, to a size effect due to the area-to-
volume ratio. The size effect becomes more pronounced for smaller length scales. The
influence of the area increases with decreasing volume of the RVE. It has been shown
that for classic cohesive zones the resistance of the interface opening within a small RVE
is much lower than for large RVEs. While on small scales the RVE acts as though it
has a pore, the large scale simulations approach the behaviour of a homogeneous cube
without interface. This corresponds to the observed

”
the smaller the softer“ effect in

classic cohesive zones.

In contrast thereto, the surface elasticity theory exhibits a
”
the smaller the stiffer“

relation. While for large RVE dimensions the response once more approaches one of a
homogeneous cube without interfaces, for small scales the cube deforms as though it has
a rigid inclusion.

However, since the overall response is usually a superposition of both relations, the
effective properties cannot generally be characterised by one of the aforementioned limit-
ing relations. The novel interface framework can model a more complex non-monotonic
size effect. Thereby, numerical simulations can be used in order design new materials
with new properties.

8.1.4 Higher-order interfaces

In order to investigate the incorporation of higher gradients into the interface theory,
two different approaches were presented in Chapter 7. On the one hand the gradient of
the displacement jump JuK was considered. This consideration was motivated by means
of homogenisation approaches. It was shown that, for a quadratic energy potential, the
resulting novel model is equivalent to a classic cohesive zone model only depending on
the length of the displacement jump, if this model is integrated over a finite spatial
domain. Furthermore, it was shown that this equivalence no longer holds true if higher
order terms of JuK are considered in the interface energy. Hence, the enhancement with
the gradient of JuK enables the description of further physical modes.
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The second part of Chapter 7 dealt with the incorporation of bending and curvature
effects that influence the material behaviour especially at small length scales. It was
shown that the mean curvature can be represented as a covariant function of F and
GRAD(F ). The incorporation of the mean curvature into the Helmholtz energy of the
interface thereby automatically fulfills the principle of material frame indifference and
thereby also fulfills balance of angular momentum.

8.2 Outlook

This thesis dealt with the elaboration and the investigation of novel material models
describing non-coherent interfaces. As pointed out, the material models presented in
Chapter 4 and 5 eliminate the most serious inconsistencies known from the classic co-
hesive zone theory. Nevertheless, they still leave space for further improvements. Some
of which are discussed below.

The generalised interface framework presented in Chapter 5 does not yet contain
plasticity. However, especially elastoplastic in-plane deformations or stretches within
the interface seem to be physically relevant in many materials. This could be interesting
for instance for the debonding process of fiber reinforced composites. Furthermore, only
scalar-valued damage has until now been included in the anisotropic interface. One
possible next step could be the inclusion of a damage tensor instead of scalars.

The higher order models presented in Chapter 7 have so far been restricted to hyper-
elasticity. Since interfaces should capture inelastic material behaviour like cracking as
well, the framework has yet to be extended to dissipative material behaviour.
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A Differential geometry for fiber
sliding

A.1 Derivation of quantity j according to the relation

between the upper and lower tractions (Eq. (4.13))

In this part of the appendix an explicit expression for quantity j in Eq. (4.13) is given.
The derivation is taken from [75]. Starting from Nanson’s formula it follows that

n+ds+ = J+F
−T
+ ·N+dS+, (A.1)

where n+ andN+ are the unit normal vectors in the current respectively in the reference
configuration, J+ = detF+ and dS+ is the infinitesimal area element in the reference
configuration. Denoting the cofactor of F+ as cofF+, Eq. (A.1) can be rewritten as
n+ds+ = cofF+ ·N+dS+ which leads to

ds+ = ‖cofF+ ·N+‖ dS+ and ds− = ‖cofF− ·N−‖ dS−. (A.2)

With Ei being the fixed Cartesian base vectors it follows that dX = dX iEi. By
combining this with its curvilinear counterpart, decomposition dX i

+ = ∂hi/∂θα+dθ
α
+, i.e.,

dX+ = dX1
+ + dX2

+, (A.3)

results in

dX1
+ =

∂hi

∂θ1+
dθ1+Ei and dX2

+ =
∂hj

∂θ2+
dθ2+Ej . (A.4)

As a consequence, it follows that

dS+ = ‖dX1
+ × dX2

+‖ = a+ dθ1+ dθ2+ with a+ =

∣∣∣∣
∣∣∣∣
∂hi

∂θ1+

∂hj

∂θ2+
Ei ×Ej

∣∣∣∣
∣∣∣∣ (A.5)
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and likewise

dS− = ‖dX1
− × dX2

−‖ = a− dθ1− dθ2− with a− =

∣∣∣∣
∣∣∣∣
∂hi

∂θ1−

∂hj

∂θ2−
Ei ×Ej

∣∣∣∣
∣∣∣∣. (A.6)

If positions θα+ and θα− are known, a+ and a− are known.
Only coordinate θ1+ changes along the tangential vector dX1

+. According to [75], this
yields

dθ1+ =

(
1 +

∂c1

∂θ1

)(
1 +

∂c2

∂θ2

)
− ∂c1

∂θ2
∂c2

∂θ1

1 +
∂c2

∂θ2

dθ1 (A.7)

and likewise

dθ2+ =

(
1 +

∂c1

∂θ1

)(
1 +

∂c2

∂θ2

)
− ∂c1

∂θ2
∂c2

∂θ1

1 +
∂c1

∂θ1

dθ2. (A.8)

Combination of Eq. (A.7) and Eq. (A.8) results in

dθ1+ dθ2+ =

[(
1 +

∂c1

∂θ1

)(
1 +

∂c2

∂θ2

)
− ∂c1

∂θ2
∂c2

∂θ1

]2

(
1 +

∂c1

∂θ1

)(
1 +

∂c2

∂θ2

) (A.9)

and analogously it follows that

dθ1− dθ2− =

[(
1− ∂c1

∂θ1

)(
1− ∂c2

∂θ2

)
− ∂c1

∂θ2
∂c2

∂θ1

]2

(
1− ∂c1

∂θ1

)(
1− ∂c2

∂θ2

) . (A.10)

Finally, applying all the derived relations leads to the quantity j as

j =

‖cofF+ ·N+‖ a+

[(
1 +

∂c1

∂θ1

)(
1 +

∂c2

∂θ2

)
− ∂c1

∂θ2
∂c2

∂θ1

]2 (
1− ∂c1

∂θ1

)(
1− ∂c2

∂θ2

)

‖cofF− ·N−‖ a−

[(
1− ∂c1

∂θ1

)(
1− ∂c2

∂θ2

)
− ∂c1

∂θ2
∂c2

∂θ1

]2 (
1 +

∂c1

∂θ1

)(
1 +

∂c2

∂θ2

) .

(A.11)
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B Implementation of generalised
interfaces

B.1 Vector of internal forces and stiffness matrix of the

prototype model according to Table 5.1

In this appendix, all derivatives necessary for the implementation of general interface
models are presented. For instance, the derivatives of the prototype model summarised
in Tab. 5.1 which is based on Helmholtz energy

Ψ = (1− d(n)n )(1− d(t)n ) Ψ0
n(JuK, gα) + (1− d

(n)
t )(1− d

(t)
t ) Ψ0

t (JuK, gα) (B.1)

read

∂Ψ

∂JuK
= (1− d(n)n )(1− d(t)n )

∂Ψ0
n

∂JuK
+ (1− d

(n)
t )(1− d

(t)
t )

∂Ψ0
t

∂JuK
,

∂Ψ

∂gα

= (1− d(n)n )(1− d(t)n )
∂Ψ0

n

∂gα

+ (1− d
(n)
t )(1− d

(t
t )

∂Ψ0
t

∂gα

. (B.2)

In order to compute Eqs. (B.2), the involved partial derivatives are required. However,
the most general case will be considered in this appendix. Accordingly, the Helmholtz
energy may depend on the following invariants:

I1 = JuK · JuK, I2 = JuK · (g1 ⊗ g1) · JuK, I3 = JuK · (g2 ⊗ g2) · JuK (B.3)

and

C = F
T · F = (gα · gβ)G

α ⊗Gβ. (B.4)
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Following Ottosen et al. [77], the partial derivatives of the co- and the contravariant
base vectors can be written as

∂gα

∂gβ

= δαβ I and
∂gα

∂gβ

= −gβ ⊗ gα + gαβg3 ⊗ g3. (B.5)

Alternatively, by linearising the well known relation gβ = F
−T ·Gβ, together with with

∂F
−1

ij

∂F kl

= −F
−1

ik F
−T

jl + F
−1

imF
−T

ml g3j g3k, (B.6)

(see Javili et al. [50]), one obtains

dgα = Gα · ∂F
−1

∂F
:
(
dgβ ⊗Gβ

)
. (B.7)

A straightforward computation shows that this is equivalent to Eq. (B.5).

Considering the most general Helmholtz energy Ψ = Ψ(I1, I2, I3,C,α), partial deriva-
tives ∂JuKΨ and ∂gα

Ψ can be expanded as

∂Ψ

∂JuK
=

3∑

i=1

∂Ψ

∂Ii

∂Ii
∂JuK

,

∂Ψ

∂gα

=

3∑

i=1

∂Ψ

∂Ii

∂Ii
∂gα

+
∂Ψ

∂C
:
∂C

∂gα

. (B.8)

The non-trivial (non-vanishing) derivatives involved in Eqs. (B.8), in turn, result with
Eqs. (B.3) and (B.4) in

∂I1
∂JuK

= 2JuK,

∂I2
∂JuK

=
(
JuK · g1

)
g1 + (JuK · g1)g

1,

∂I2
∂g1

=
(
JuK · g1

)
JuK + (JuK · g1)

[
−
(
JuK · g1

)
g1 + g11

(
JuK · g3

)
g3
]
,

∂I2
∂g2

= (JuK · g1)
[
−
(
JuK · g2

)
g1 + g12

(
JuK · g3

)
g3
]
,

∂I3
∂JuK

=
(
JuK · g2

)
g2 + (JuK · g2)g

2,

∂I3
∂g1

= (JuK · g2)
[
−
(
JuK · g1

)
g2 + g21

(
JuK · g3

)
g3
]
,
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∂I3
∂g2

=
(
JuK · g2

)
JuK + (JuK · g2)

[
−
(
JuK · g2

)
g2 + g22

(
JuK · g3

)
g3
]
,

∂C

∂g1

=
[
G1 ⊗Gα ⊗ gα

]
+
[
Gβ ⊗G1 ⊗ gβ

]
,

∂C

∂g2

=
[
Gα ⊗G2 ⊗ gα

]
+
[
G2 ⊗Gβ ⊗ gβ

]
, (B.9)

where gαβ = gα · gβ and gαβ = gα · gβ are the components of the co- and contravariant
metric tensor. Clearly, the derivatives of the Helmholtz energy with respect to the
invariants depend on the choice of Ψ. For instance, in the case of the prototype model,
the derivatives of Ψ0

n and Ψ0
t with respect to invariants I1, I2 and I3 take the format (for

quadratic Helmholtz energies Ψ0
n and Ψ0

t according to Tab. 5.1)

∂Ψ0
n

∂I1
=

1

2
cn,

∂Ψ0
n

∂I2
= −1

2
cn,

∂Ψ0
n

∂I3
= −1

2
cn,

∂Ψ0
t

∂I1
= 0,

∂Ψ0
t

∂I2
=

1

2
ct,

∂Ψ0
t

∂I3
=

1

2
ct. (B.10)

By inserting derivatives (B.9) and (B.10) into Eq. (B.8) and the resulting equation into
Eq. (B.2), the vector of internal forces

R
(i)
± =

∫

I0


±N (i) ∂Ψ

∂JuK
+

1

2

∂N (i)

∂ξβ
∂Ψ

∂gα︸ ︷︷ ︸
Summation over α


 dA (B.11)

can be computed.
Next, the derivatives necessary for computing the stiffness matrix are derived. The

general structure of the respective linearisation is given by

∆R
(i)
± =

∫

I0

[
±N (i)(ξ)∆

(
∂Ψ

∂JuK

)
+

1

2

∂N (i)(ξ)

∂ξβ
∆

(
∂Ψ

∂gβ

)]
dA. (B.12)

For the prototype model summarised in Tab. 5.1, this linearisation takes the format

∆R
(i)
± =

∫

I0

(1− d(n)n )(1− d(t)n )

[
±N (i)(ξ)∆

(
∂Ψ0

n

∂JuK

)
+

1

2

∂N (i)(ξ)

∂ξβ
∆

(
∂Ψ0

n

∂gβ

)]
+

−∆d(n)n (1− d(t)n )

[
±N (i)(ξ)

(
∂Ψ0

n

∂JuK

)
+

1

2

∂N (i)(ξ)

∂ξβ

(
∂Ψ0

n

∂gβ

)]
+

−∆d(t)n (1− d(n)n )

[
±N (i)(ξ)

(
∂Ψ0

n

∂JuK

)
+

1

2

∂N (i)(ξ)

∂ξβ

(
∂Ψ0

n

∂gβ

)]
+
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(1− d
(n)
t )(1− d

(t)
t )

[
±N (i)(ξ)∆

(
∂Ψ0

t

∂JuK

)
+

1

2

∂N (i)(ξ)

∂ξβ
∆

(
∂Ψ0

t

∂gβ

)]
+

−∆d
(n)
t (1− d

(t)
t )

[
±N (i)(ξ)

(
∂Ψ0

t

∂JuK

)
+

1

2

∂N (i)(ξ)

∂ξβ

(
∂Ψ0

t

∂gβ

)]
+

−∆d
(t)
t (1− d

(n)
t )

[
±N (i)(ξ)

(
∂Ψ0

t

∂JuK

)
+

1

2

∂N (i)(ξ)

∂ξβ

(
∂Ψ0

t

∂gβ

)]
dA.

(B.13)

Again, considering the most general case Ψ = Ψ(I1, I2, I3,C,α), linearisations

∆

(
∂Ψ

∂JuK

)
=

∂2Ψ

∂JuK ⊗ ∂JuK
·∆JuK +

∂2Ψ

∂JuK ⊗ ∂gβ

·∆gβ +
∂2Ψ

∂JuK ⊗ ∂α
·∆α,

∆

(
∂Ψ

∂gβ

)
=

∂2Ψ

∂gβ ⊗ ∂gα

·∆gα +
∂2Ψ

∂gβ ⊗ ∂JuK
·∆JuK +

∂2Ψ

∂gβ ⊗ ∂α
·∆α (B.14)

entering linearisation (B.12) can be computed. To be more explicit and by using the
chain rule, the derivatives involved in Eqs. (B.14) are given by

∂2Ψ

∂JuK ⊗ ∂JuK
=

3∑

i

[
∂Ψ

∂Ii

∂2Ii
∂JuK ⊗ ∂JuK

+

3∑

j

∂2Ψ

∂Ii∂Ij

(
∂Ii
∂JuK

⊗ ∂Ij
∂JuK

)]
,

∂2Ψ

∂JuK ⊗ ∂gβ

=

3∑

i

[
∂Ψ

∂Ii

∂2Ii
∂JuK ⊗ ∂gβ

+
∂Ii
∂JuK

⊗
[

∂2Ψ

∂Ii∂C
:
∂C

∂gβ

]

+
3∑

j

∂2Ψ

∂Ii∂Ij

(
∂Ii
∂JuK

⊗ ∂Ij
∂gβ

)]
=

[
∂2Ψ

∂gβ ⊗ ∂JuK

]T
,

∂2Ψ

∂gα ⊗ ∂gβ

=
3∑

i

{[
3∑

j

∂2Ψ

∂Ii∂Ij

(
∂Ii
∂gα

⊗ ∂Ij
∂gβ

)]
+

∂Ψ

∂Ii

∂2Ii
∂gα ⊗ ∂gβ

+

[
∂C

∂gα

]T
:

∂2Ψ

∂C∂Ii
⊗ ∂Ii

∂gβ

+

[
∂C

∂gα

]T
:

∂2Ψ

∂C ⊗ ∂C
:
∂C

∂gβ

+
∂Ψ

∂C
:

∂2C

∂gα ⊗ ∂gβ

}

(B.15)

in terms of the second derivatives of invariants I1, I2, I3 and C. Based on Eqs. (B.9),
the non-trivial (non-vanishing) second derivatives are

∂2I1
∂JuK ⊗ ∂JuK

=2 1,
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∂2I2
∂JuK ⊗ ∂JuK

=g1 ⊗ g1 + g1 ⊗ g1,

∂2I2
∂JuK ⊗ ∂g1

= JuK ⊗ g1 +
(
JuK · g1

)
1+

[
−
(
JuK · g1

)
g1 + g11

(
JuK · g3

)
g3
]
⊗ g1+

(JuK · g1)
(
−g1 ⊗ g1 + g11g3 ⊗ g3

)
=

[
∂2I2

∂g1 ⊗ ∂JuK

]T
,

∂2I2
∂JuK ⊗ ∂g2

=
[
−
(
JuK · g2

)
g1 + g12

(
JuK · g3

)
g3
]
⊗ g1+

(JuK · g1)
[
−g1 ⊗ g2 + g12g3 ⊗ g3

]
=

[
∂2I2

∂g2 ⊗ ∂JuK

]T
,

∂2I2
∂g1 ⊗ ∂g1

= JuK ⊗
[
−
(
JuK · g1

)
g1 + g11

(
JuK · g3

)
g3
]
+
[
−

(
JuK · g1

)
g1+

g11
(
JuK · g3

)
g3
]
⊗ JuK + (JuK · g1) ·

[ (
JuK · g1

)
g1 ⊗ g1−

g11
(
JuK · g3

)
g1 ⊗ g3 +

(
JuK · g1

) (
g1 ⊗ g1 − g11g3 ⊗ g3

)
−

2
[
g11

(
JuK · g3

)
g3 ⊗ g1

]
− g11

(
JuK · g1

)
g3 ⊗ g3 − g11

(
JuK · g3

)
g1 ⊗ g3

]
,

∂2I2
∂g2 ⊗ ∂g2

= (JuK · g1)
[
g1 ⊗

[(
JuK · g2

)
g2 − g22

(
JuK · g3

)
g3
]
−

(
JuK · g2

)

[
−g2 ⊗ g1 + g12g3 ⊗ g3

]
+
(
JuK · g3

)
g3 ⊗

[
−
(
g2 · g2

)
g1 −

(
g1 · g2

)
g2
]
−

g12
(
JuK · g2

)
g3 ⊗ g3 + g12

(
JuK · g3

) [
−g2 ⊗ g3

] ]

∂2I2
∂g1 ⊗ ∂g2

= −
(
JuK · g2

)
JuK ⊗ g1 + g12

(
JuK · g3

)
JuK ⊗ g3+

(JuK · g1)
[ (

JuK · g2
)
g1 ⊗ g1g12

(
JuK · g3

)
g1 ⊗ g3 +

(
JuK · g1

)
g2 ⊗ g1−

g12
(
JuK · g1

)
g3 ⊗ g3 − g11

(
JuK · g2

)
g3 ⊗ g3−

g11
(
JuK · g3

)
g2 ⊗ g3 + 2

(
JuK · g3

)
g3 ⊗

[
−g12g1

]
=

[
∂2I2

∂g2 ⊗ ∂g1

]T

∂2I3
∂JuK ⊗ ∂JuK

=g2 ⊗ g2 + g2 ⊗ g2,

∂2I3
∂JuK ⊗ ∂g1

=
[
−
(
JuK · g1

)
g2 + g21

(
JuK · g3

)
g3
]
⊗ g2+

(JuK · g2)
(
−g2 ⊗ g1 + g21g3 ⊗ g3

)
=

[
∂2I3

∂g1 ⊗ ∂JuK

]T
,

∂2I3
∂JuK ⊗ ∂g2

= JuK ⊗ g2 +
(
JuK · g2

)
1+

[
−
(
JuK · g2

)
g2 + g22

(
JuK · g3

)
g3
]
⊗ g2+
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(JuK · g2)
(
−g2 ⊗ g2 + g22g3 ⊗ g3

)
=

[
∂2I3

∂g2 ⊗ ∂JuK

]T
,

∂2I3
∂g1 ⊗ ∂g1

= (JuK · g2)
[
g2 ⊗

[(
JuK · g1

)
g1 − g11

(
JuK · g3

)
g3
]
−

(
JuK · g1

)

[
−g1 ⊗ g2 + g21g3 ⊗ g3

]
+
(
JuK · g3

)
g3 ⊗

[
−
(
g1 · g2

)
g1 −

(
g1 · g1

)
g2
]
+

g21g3 ⊗
[
−
(
JuK · g1

)
g3
]
+ g21

(
JuK · g3

) [
−g1 ⊗ g3

] ]
,

∂2I3
∂g2 ⊗ ∂g2

= JuK ⊗
[
−
(
JuK · g2

)
g2 + g22

(
JuK · g3

)
g3
]
+

[
−
(
JuK · g2

)
g2 + g22

(
JuK · g3

)
g3
]
⊗ JuK+

(JuK · g2) ·
[ (

JuK · g2
)
g2 ⊗ g2 − g22

(
JuK · g3

)
g2 ⊗ g3+

(
JuK · g2

) (
g2 ⊗ g2 − g22g3 ⊗ g3

)
−

2
[
g22

(
JuK · g3

)
g3 ⊗ g2

]
− g22

(
JuK · g2

)
g3 ⊗ g3 − g22

(
JuK · g3

)
g2 ⊗ g3

]
,

∂2I3
∂g1 ⊗ ∂g2

= −
(
JuK · g1

)
g2 ⊗ JuK + g21

(
JuK · g3

)
g3 ⊗ JuK + (JuK · g2)

[ (
JuK · g2

)
g2 ⊗ g1 − g12

(
JuK · g3

)
g2 ⊗ g3 +

(
JuK · g1

)
g2 ⊗ g2−

g22
(
JuK · g1

)
g3 ⊗ g3 − g21

(
JuK · g2

)
g3 ⊗ g3 − g21

(
JuK · g3

)

g2 ⊗ g3 −
(
JuK · g3

) [
g12g3 ⊗ g2 + g22g3 ⊗ g1

]]
=

[
∂2I3

∂g2 ⊗ ∂g1

]T
,

∂2C

∂g1 ⊗ ∂g1

=2
[
G1 ⊗G1 ⊗ gβ ⊗ gβ

]
,

∂2C

∂g1 ⊗ ∂g2

=
[
G1 ⊗G2 ⊗ gβ ⊗ gβ

]
+
[
G2 ⊗G1 ⊗ gβ ⊗ gβ

]
=

∂2C

∂g2 ⊗ ∂g1

,

∂2C

∂g2 ⊗ ∂g1

=2
[
G2 ⊗G2 ⊗ gβ ⊗ gβ

]
. (B.16)

By inserting Eqs. (B.16) into Eqs. (B.15), Eqs. (B.14) can be computed. As a con-
sequence, the only remaining unknown linearisations entering linearisation (B.13) are
those related to internal variable α. Focusing, as an example, again on the prototype
model according to Tab. 5.1, damage variables d

(j)
i are connected to internal variables

κj by d
(j)
i = d

(j)
i (κj). Furthermore, κj = κj(Ψ

0
j) in the case of loading. For this reason,

∆d(n)n =
∂d

(n)
n

κn

∆Ψ0
n,

∆d
(n)
t =

∂d
(n)
t

κn

∆Ψ0
n,
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∆d(t)n =
∂d

(n)
n

κt

∆Ψ0
t ,

∆d(n)n =
∂d

(t)
t

κt

∆Ψ0
t . (B.17)

Clearly, the terms are zero in the case of unloading. The linearisations of d
(j)
i are

completed by linearisations

∆Ψ0
n =

∂Ψ0
n

∂JuK
·∆JuK +

∂Ψ0
n

∂gα

·∆gα,

∆Ψ0
t =

∂Ψ0
t

∂JuK
·∆JuK +

∂Ψ0
t

∂gα

·∆gα (B.18)

where α is a summation index. The partial derivatives involved in Eqs. (B.18) have
already been given in Eqs. (B.8). As a result, all derivatives necessary for computing
stiffness relation (B.13) are known.
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C Derivation of contributions
concerning the gradient of JuK

C.1 Representation of local energy including higher

order displacement jump contributions

In the case of a quadratic local interface energy and a spatial distribution of the stiff-
ness parameter, integration of the local model and the extended gradient model are
equivalent, i.e.,

∫
Ψ(JuK · JuK) dA ⇔ Ieff

(JuKM , GRADMJuK) A. (C.1)

However, already the extension of the left side to contributions of type (JuK(i) ·
JuK(j)) (JuK(k) · JuK(l)) requires further investigations, i.e.,

∫
Ψ
(
(JuK · JuK)2

)
dA

?⇔ Ieff
(JuKM , GRADMJuK) A. (C.2)

Due to 21 possible combinations of node scalar products (JuK(i) · JuK(j)) (JuK(k) · JuK(l)),
the stiffness ael

II , cf. Eq. (7.31), is discretised with shape functions of order 5 in the
natural coordinates ξ and η as

ael
II(X) =

21∑

m=1

N̂ (m)ĉ(m), (C.3)

where

N̂ = [1, ξ, η, ξ2, ξ η, η2, ξ3, ξ2 η, ξ η2, η3, ξ4, ξ3 η,

ξ2 η2, ξ η3, η4, ξ5, ξ4 η, ξ3 η2, ξ2 η3, ξ η4, η5]. (C.4)
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Insertion of these shape functions, together with the affine functions representing the
displacement jump, yields

∫

∆

Ψ
(
(JuK · JuK)2

)
dA ≈ 1

2
A JuK(ijkl) · D · ĉ (C.5)

with

JuK(ijkl) =




(
JuK(1) · JuK(1)

)2
(
JuK(1) · JuK(1)

) (
JuK(1) · JuK(2)

)
(
JuK(1) · JuK(1)

) (
JuK(1) · JuK(3)

)
(
JuK(1) · JuK(1)

) (
JuK(2) · JuK(2)

)
(
JuK(1) · JuK(1)

) (
JuK(2) · JuK(3)

)
(
JuK(1) · JuK(1)

) (
JuK(3) · JuK(3)

)
(
JuK(1) · JuK(2)

) (
JuK(1) · JuK(2)

)
(
JuK(1) · JuK(2)

) (
JuK(1) · JuK(3)

)
(
JuK(1) · JuK(2)

) (
JuK(2) · JuK(2)

)
(
JuK(1) · JuK(2)

) (
JuK(2) · JuK(3)

)
(
JuK(1) · JuK(2)

) (
JuK(3) · JuK(3)

)
(
JuK(1) · JuK(3)

) (
JuK(1) · JuK(3)

)
(
JuK(1) · JuK(3)

) (
JuK(2) · JuK(2)

)
(
JuK(1) · JuK(3)

) (
JuK(2) · JuK(3)

)
(
JuK(1) · JuK(3)

) (
JuK(3) · JuK(3)

)
(
JuK(2) · JuK(2)

)2
(
JuK(2) · JuK(2)

) (
JuK(2) · JuK(3)

)
(
JuK(2) · JuK(2)

) (
JuK(3) · JuK(3)

)
(
JuK(2) · JuK(3)

) (
JuK(2) · JuK(3)

)
(
JuK(2) · JuK(3)

) (
JuK(3) · JuK(3)

)
(
JuK(3) · JuK(3)

)2




, ĉ =




ĉ1

ĉ2

ĉ3

ĉ4

ĉ5

ĉ6

ĉ7

ĉ8

ĉ9

ĉ10

ĉ11

ĉ12

ĉ13

ĉ14

ĉ15

ĉ16

ĉ17

ĉ18

ĉ19

ĉ20

ĉ21




(C.6)

and

D =




∫
∆
N̂ (1)

[
N (1)

]4
dA

∫
∆
N̂ (2)

[
N (1)

]4
dA · · ·

∫
∆
N̂ (21)

[
N (1)

]4
dA

∫
∆
N̂ (1)

[
N (1)

]3
N (2) dA

∫
∆
N̂ (2)

[
N (1)

]3
N (2) dA · · ·

∫
∆
N̂ (21)

[
N (1)

]3
N (2) dA

...
...

. . .
...

∫
∆
N̂ (1)

[
N (3)

]4
dA

∫
∆
N̂ (2)

[
N (3)

]4
dA · · ·

∫
∆
N̂ (21)

[
N (3)

]4
dA




.

(C.7)
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C.1 Representation of local energy including higher order displacement jump contributions

A straightforward computation shows detD = 0 since

∫

∆

N̂ (m)

[
N (1) N (2)

]2
dA =

∫

∆

N̂ (m)

[
N (1)

]2[
N (2)

]2
dA. (C.8)
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D Derivation of curvature
contributions

D.1 Symmetry properties of GRAD (F )

In this appendix it is shown that

GRAD (F ) : A = GRAD(F ) : A
T ∀ A ∈ span{G1,G2}. (D.1)

In the following, general representation

A = A11 G1 ⊗G1 + A12 G1 ⊗G2

+ A21 G2 ⊗G1 + A22 G2 ⊗G2 (D.2)

is considered. By applying representation

GRAD (F ) = γk
αβ gk ⊗Gα ⊗Gβ − Γ

α

βδ gα ⊗Gδ ⊗Gβ, (D.3)

Eq. (D.3) can be rewritten as

[
γk
αβ gk ⊗Gα ⊗Gβ − Γ

α

βδ gα ⊗Gδ ⊗Gβ
]
: A

=
[
γk
αβ gk ⊗Gα ⊗Gβ − Γ

α

βδ gα ⊗Gδ ⊗Gβ
]
: A

T
. (D.4)

Since Gα ⊗Gα is a priori symmetric, Eq. (D.4) is equivalent to

[
γk
αβ gk ⊗Gα ⊗Gβ

]
: (G1 ⊗G2)

!
=

[
γk
αβ gk ⊗Gα ⊗Gβ

]
: (G2 ⊗G1) and (D.5)

[
Γ
α

βδ gα ⊗Gδ ⊗Gβ
]
: (G1 ⊗G2)

!
=

[
Γ
α

βδ gα ⊗Gδ ⊗Gβ
]
: (G2 ⊗G1). (D.6)

A straightforward calculation yields

[
γk
αβ gk ⊗Gα ⊗Gβ

]
: (G1 ⊗G2) = γk

αβ gk δ
α
1 δ

β
2 = γk

12 gk (D.7)
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and

[
γk
αβ gk ⊗Gα ⊗Gβ

]
: (G2 ⊗G1) = γk

αβ gk δ
α
2 δ

β
1 = γk

21 gk. (D.8)

Due to the symmetry of the Christoffel symbol γk
12 = γk

21, it follows that Eq. (D.5) is
indeed fulfilled. Likewise it follows

[
Γ
α

βδ gα ⊗Gδ ⊗Gβ
]
: (G1 ⊗G2) = Γ

α

βδ gα δ
δ
1 δ

β
2 = Γ

α

21 gα (D.9)

and

[
Γ
α

βδ gα ⊗Gδ ⊗Gβ
]
: (G2 ⊗G1) = Γ

α

βδ gα δ
δ
2 δ

β
1 = Γ

α

12 gα. (D.10)

Again, by using the symmetry property Γ
α

21 = Γ
α

12 it is evident that Eq.(D.6) holds true.

D.2 Laplace-Beltrami operator

The relation of the Laplace-Beltrami operator and GRAD(F ) is given by

div
(
grad(x)

)
= div

(
GRAD(x) · F−1

)

= div
(
F · F−1

)

= grad
(
F
)
: F

−1
+ F

−1 · div
(
F

−1
)

=
[
GRAD(F ) · F−1

]
: F

−1
+ F ·

[
GRAD(F

−1
) : F

−T
]
, (D.11)

cf. Eq. (7.118).

D.3 Re-derivation of the gradient of the inverse

deformation gradient

Starting from

GRAD
(
F

−1 · F
)
= GRAD

(
I
)
6= 0. (D.12)

and rewriting this equation in index notation

(
F

−1

ij F jk

)
, l
= (GRAD I)ikl

=
∂F

−1

ij

∂θα
Gα

l F jk + F
−1

ij

∂F jk

∂θα
Gα

l
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(
F

−1
)

= (GRADF
−1
)ijl F jk + F

−1

ij (GRADF )jkl.

leads, after multiplication by F
−1

(GRAD I)ikl F
−1

km = (GRADF
−1
)ijl F jk F

−1

km + F
−1

ij (GRADF )jkl F
−1

km

⇔ (GRADF
−1
)ijl ijm = (GRAD I)ikl F

−1

km − F
−1

ij (GRADF )jkl F
−1

km (D.13)

which is equivalent to

GRAD
(
F

−1
)
·̄ i = GRAD(I) ·̄F−1 − F

−1 ·GRAD(F ) ·̄F−1
, (D.14)

where

[A ·̄B]iml = [A]ijl [B]jm .

D.4 Symmetry properties of GRAD
(
F

−1
)

Equation (7.122) can be transformed since

[
GRAD

(
F

−1
)
·̄ i
]
: F

−T
= GRAD

(
F

−1
)
: F

−T
, (D.15)

which follows from
[
GRAD

(
F

−1
)
·̄ i
]
: F

−T

=
[(
Gα, β ⊗ gα ⊗Gβ +Gα ⊗ gα

, β ⊗Gβ
)
·̄
(
gδ ⊗ gδ

)]
: (gγ ⊗Gγ)

=
(
Gα, β ⊗ gα ⊗Gβ +Gα ⊗ gα

, β ⊗Gβ
)
·̄
[(
gδ ⊗ gδ

)
· (gγ ⊗Gγ)

]

=
(
Gα, β ⊗ gα ⊗Gβ +Gα ⊗ gα

, β ⊗Gβ
)
:
(
gγ g

γδ ⊗Gδ

)

= Gα, β g
αβ +Gα(g

α
, β · gβ)

= GRAD
(
F

−1
)
: F

−T
. (D.16)

D.5 Coefficient comparison for the covariant

representation of mean curvature h

Here, it is shown that mean curvature h can be represented as a covariant function
depending on F , GRAD (F ), i.e.,

h = h(F , GRAD(F ), GRAD(I)) with GRAD(I) = const. . (D.17)
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In analogy to Eq. (7.128) the vectors a, b and c are considered and the mean curvature
is written as

h =
1

2
‖a + b− c‖ =

1

2

√
(a · a+ 2a · b+ b · b− 2a · c− 2 b · c + c · c). (D.18)

The involved scalar products can be written as

a · a =

[ [
GRAD(F ) · F−1

]
: F

−1

]
·
[ [

GRAD(F ) · F−1
]
: F

−1

]

= C
−1

:
(
GRAD

T
(F ) ·GRAD(F )

)
: C

−1
, (D.19)

a · b =

[ [
GRAD(F ) · F−1

]
: F

−1

]
·
[
F ·

[(
GRAD(I) ·̄F−1

)
: F

−T
] ]

=
[(

F
T ·GRAD(F )

)
: C

−1
]
·
[
GRAD(I) : C

−1
]

(D.20)

depending on F
T · GRAD(F ) = C ·

(
F

−1 ·GRAD(F )
)
and GRAD(I) = const. The

next coefficients take the form

a · c =

[(
GRAD(F ) · F−1

)
: F

−1

]
·
[
F ·

[(
−F

−1 ·GRAD(F ) ·̄F−1
)
: F

−T
] ]

=

[(
F

T ·GRAD(F )
)
: C

−1
]
·
[(

−F
−1 ·GRAD(F )

)
: C

−1
]
, (D.21)

b · b =

[
F ·

[(
GRAD(I) ·̄F−1

)]
: F

−T

]
·
[
F ·

[(
GRAD(I) ·̄F−1

)
: F

−T
] ]

= C :
[(

GRAD(I) : C
−1
)
⊗

(
GRAD(I) : C

−1
)]

, (D.22)

b · c =

[
F ·

[(
GRAD(I) ·̄F−1

)]
: F

−T

]
·
[
F ·

[(
−F

−1 ·GRAD(F ) ·̄F−1
)
: F

−T
] ]

= −
[
C ·

(
F

−1 ·GRAD(F )
)
: C

−1
]
·
[
GRAD(I) : C

−1
]
, (D.23)

and
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c · c =[
F ·

[(
−F

−1 ·GRAD(F ) ·̄F−1
)
: F

−T
] ]

·
[
F ·

[(
−F

−1 ·GRAD(F ) ·̄F−1
)
: F

−T
] ]

= C :

[ [(
F

−1 ·GRAD(F )
)
: C

−1
]
⊗
[(

F
−1 ·GRAD(F )

)
: C

−1
] ]

. (D.24)

Thus, all coefficients arising from Eq. (D.18) fulfill the principle of material covariance.
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