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The Concept of Prehandling as Direct
Preconditioning for Poisson-like Problems

Dustin Ruda, Stefan Turek, Peter Zajac and Dirk Ribbrock

Abstract To benefit from current trends in HPC hardware, such as increasing avail-
ability of low precision hardware, we present the concept of prehandling as a direct
way of preconditioning and the hierarchical finite element method which is excep-
tionally well-suited to apply prehandling to Poisson-like problems, at least in 1D and
2D. Such problems are known to cause ill-conditioned stiffness matrices and there-
fore high computational errors due to round-off. We show by means of numerical
results that by prehandling via the hierarchical finite element method the condition
number can be significantly reduced (while advantageous properties are preserved)
which enables us to obtain sufficiently accurate solutions to Poisson-like problems
even if lower computing precision (i.e. single or half precision format) is used.

1 Motivation

When PDEs are solved numerically by the finite element method, the resulting
error u — il can be subdivided into two different types of errors by means of the
identity u — i, = (u —up) + (up — i), whereby u,u;, and i) denote the exact
solution, the exact solution to the discrete problem and the actual numerical solution
respectively. On the one hand, one obtains the discretization error u# — uj, depending
on the smoothness of the exact solution u and the choice of the finite element space.
If (bi)linear shape functions are used (P1 or Q1), the discretization error satisfies
lu —upl| = O (hz) with respect to the L2-norm. On the other hand, roundoff errors
cause the computational error uj — ii;, depending on the data error, that is at least
equal to the machine accuracy (TOL), amplified by the condition number of the
stiffness matrix k(A). To be more precise, it follows from perturbation theory of
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linear systems that we have ||uj, —ii|| = k(A) - TOL which holds true sharply. It
is known that in the case of Poisson’s equation the condition number of the related
stiffness matrix satisfies k(A) = O (h™2).

Consequently, we face a dilemma: The finer the grid the lower the discretization
error the higher the computational error. Indeed, if the grid width falls below a
certain value, the total error increases because the computational error becomes
dominant as shown in Fig. 1. This value is roughly reached at the intersection of the
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discretization and the computational error at & ~ y/k(A) - TOL, yielding 4 ~ VTOL
if we substitute the condition number by its approximate value 4 ~2. Thus, in order to
make sensible use of lower, i.e. single or even half precision (accelerator) hardware,
it is indispensable to utilise sophisticated methods to decrease the condition number.
Our approach, the method of prehandling, is presented in the following sections.

2 The Concept of Prehandling

By ‘prehandling’ we denote a method of directly manipulating linear systems of
equations inspired by but different from conventional preconditioning. The central
idea consists in transforming the original linear system, given as Ax = b, into an
equivalent form A% = b, B¥ = x with more advantageous properties. The difference
between preconditioning and prehandling can be easily shown by the example of the
Richardson iteration. The preconditioned version is

I =yl _ (Ax’ - b) , (1)
whereas by applying prehandling one obtains

x =yl - (C”Axl —Cilb) =xl - (Ax] —l;) . ()
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Thus, prehandling can be seen as an explicit form of preconditioning. Assuming
exact arithmetic and using the exact application of C~!, both methods yield the same
iteration vectors x! for all I. However, the methods (1) and (2) can yield significantly
different results when finite precision arithmetic is applied, especially if the matrix
A is ill-conditioned.

As mentioned in Section 1, finite element stiffness matrices arising from Poisson’s
equation are highly ill-conditioned. Yet, an advantageous property is their sparse
structure. Via prehandling we intend to reduce the condition number while preserving
the sparsity of the matrix. A lower condition number is desirable because it enables
us to obtain relevant solutions using fast lower precision hardware and reduces the
number of iterations when solving the linear system. To sum up, the three central
requirements for the prehandled system are:

1. Strong decrease of the condition number, k(A) < k(A).

2. The matrix A is only moderately less sparse than A.

3. There is an efficient transformation (in O(nlog n) operations for n unknowns) to
A, b and the solution to the original system x (via x = BX).

A common method is approximating the inverse of A by a matrix C ~ A~!
and computing A = CA. For this purpose, one can use e.g. matrix splitting
(C = D7',(D + L)™"), incomplete LU-Decomposition (ILU) or the Sparse Ap-
proximate Inverse (SPAI) but the requirements 1. and 2. are not satisfied by any of
these methods.

A promising technique to meet the demands (at least in 1D and 2D) is the
hierarchical finite element method presented in the following section.

3 The hierarchical Finite Element Method

The hierarchical finite element method (also referred to as hierarchical basis multi-
grid method, abbr.: HFEM) has been known since the 1980s and was developed and
analysed by H. Yserentant et al. in [1], amongst others. The main idea and aspects
of the realisation as well as the properties that make this method a proper choice for
prehandling are shortly outlined.

3.1 Idea and Realisation

In order to apply this method, a nested sequence of refinements of an initial triangu-
lation is required. The general idea is the usage of a hierarchical instead of a nodal
basis. This means that basis functions of coarser grids are reused in the course of
the refinement. Fig. 2 shows nodal compared to hierarchical bases in one dimension.
This concept can be straightforwardly applied to higher dimensions, too.
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It seems more complicated to assemble the stiffness matrix with respect to a
hierarchical basis since many basis functions have a greater support, but it is in fact
not necessary to compute the matrix itself in the first place if the stiffness matrix
with respect to a nodal basis is known. Instead, we can transform the nodal basis
representation to a hierarchical basis representation via a matrix S. It is computed
as the product § = §;8;_1--- Sy, whereby each factor is associated with one step
of refinement. More precisely, multiplying by Si yields the values of level £ — 1
basis functions at the new nodes of level k if the values on the coarser grid are
known. In other words, the matrix S; corresponds to the prolongation regarding
multigrid methods. The matrices Sk are concretely computed as follows: They are
identity matrices with additional entries in the rows that belong to the newly added
nodes of level k. When using a triangular mesh with linear basis functions (P1) and
uniform refinement (subdividing each triangle into four congruent triangles), each
newly added node of level k with index i has two neighbouring nodes on level k — 1,
which are denoted by n (i), n2(7), and the ith row of Sy is adjusted according to

$¢m () = Sl ma(@) = 3 0

When using a rectangular 2D mesh with bilinear basis functions (Q1), however,
uniform refinement generates two different types of new nodes, namely midpoints
of edges with two and midpoints of faces with four neighbouring nodes (7). In this
case one needs to apply

“)

. . ,j=1,2 if x; is midpoint of edge
Sk i, nj(i) ={ j | £ Tmep &

A==

...,4, if x; is midpoint of face

to achieve a correct interpolation.
Due to this construction, S is a very sparse block unit lower triangular matrix.
If by At = b we denote the system with respect to the nodal basis, we obtain
the representation with respect to the hierarchical basis Au = b by means of the
transformation
A=STAS, b=S"b, ii="5Su. )

Fig. 2 Nodal bases (left) and
hierarchical bases (right) in the
one-dimensional case assum-
ing homogeneous Dirichlet
boundary conditions. Note
that for the hierarchical bases
only the newly added basis
functions of the respective /\/\/\/\
meshes are depicted. W

Source: [2]
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3.2 Properties

The remarkable property about the hierarchical finite element method is that the
condition number of the emerging matrix is significantly lower in comparison to
standard finite elements. It was shown in [1] that the spectral condition number of
the matrix with respect to the hierarchical basis satisfies

2
«(A) =0 ((log %) ) ©)

in the one- and two-dimensional case which is a strong improvement compared to
(0] (h_z). Furthermore, the matrix A is obviously denser than A, but the number
of nonzero entries per row is low enough to be referred to as sparse and due to
the sparse structure of the matrix S, the transformation can be realised efficiently.
Numerical results that show the reduction of the condition number and the sparsity
of the transformed matrix (approx. 16 nonzero entries per row - if an orthogonal
mesh is used - compared to 9 without prehandling) are given in Section 4, Table 1.

In conclusion, the hierarchical finite element method, if used according to the
concept of prehandling, satisfies the required properties, at least in one and two di-
mensions. In the three-dimensional case, though, the same improvement of the con-

dition number cannot be achieved. Instead, it is shown in [3] that k(A) = O (% log %)

respectively O (%) if further prehandling is used.

3.3 Additional Prehandling via Partial Cholesky Decomposition

If Poisson’s equation with a discontinuous coefficient o
-V - (oVu) = f inQ, @)

whereby o(x,y) = 1 in a subdomain Q; c Q and o(x,y) = 0 > 1in Q\ Q,
is considered, the condition number of the stiffness matrix with respect to a nodal

basis additionally depends on the ratio ﬁ?r’:((g)) (denoted by Ap) in the form of

k(A)=0 (Ao~ h_z). Especially in this case but also in the case of standard Poisson’s
equation (o = 1) there is a powerful way for further prehandling using a partial
Cholesky decomposition presented in [1, 2].

By Ao we denote the part of the matrix A (which is assumed to be represented
with respect to a hierarchical basis) that corresponds to the coarse grid and the rest
of it by A and compute the following Cholesky decomposition

AO O _ T
(o diag(A))‘LL : ®




6 D. Ruda, S. Turek et al.

Consequently, we get the additionally prehandled matrix and right hand side as
L~'AL™T respectively L~!h. Note that the solution needs to be transformed to the
nodal basis representation by multiplication with SLT.

It shows in our numerical test on an orthogonal 2D mesh (see Section 4, Table 2)
that the condition number of L™' AL~ is now virtually independent of A o. The only
condition is that the coefficient o is constant within the interior of the elements of
the coarse grid.

Since the matrix Ay is very small compared to A, the computational cost of the
Cholesky decomposition (8) is low. On the other hand, the further prehandling only
works to the disadvantage of the sparsity, but if the coarse grid is not chosen too fine,
this effect is not excessive (approx. 16 - 25 nonzero entries per row if the coarse grid
width is greater or equal to iy = 1/8) as one can see in Section 4, Tables 1, 2.

4 Numerical Results

In order to validate the presented methods, they were practically applied to the
Poisson-like equation (7) in the unit square Q = [0, 1]> with f = 1 and

_Jeo. it@y e[t 3]
Q(x,y)—{l’ olse . )

Two different widths £ of the fine grid and three widths & of the coarse grid in each
case were chosen and the density measured as the average number of nonzero entries
per row (NNZ/Row) and the spectral condition number of the respective matrix (cond)
as well as the number of CG-iterations (NOI) necessary to reach a relative residual
less than 1076 were determined for the hierarchical method with and without the
additional Cholesky prehandling and the plain finite element method for comparison.
QI finite elements on a grid consisting of squares were used. Table 1 shows the results
in the case o = 1 (which yields the standard Poisson’s equation) and Table 2 in the
case o = 10°.

Table 1 Results for Poisson’s equation (o = 1).

HFEM HFEM + Chol. FEM
h hyg NNZ cond NOI NNZ cond NOI NNZ cond NOI

Row Row Row

/4 | 15,61 2339 27 16,20 20,92 23
/o4 1/8 | 1538 27,51 27 25,25 15,21 20 8,81 829,86 63
/16 | 14,51 8296 32 1100,12 9,62 14
/4 16,68 31,57 32 16,99 28,76 27
/128 1/8 | 16,56 33,30 33 21,79 22,08 24 891 331993 127
/16 | 16,11 92,21 37 65,40 1544 19
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Table 2 Results for the Poisson-like equation (o = 10%).

HFEM HFEM + Chol. FEM
h hy | NNZ cond NOI | NNz cond NOI | NNz cond NOI

Row Row Row

s | 16,03 1,57-107 623 | 1620 2248 21
Yea 13 | 1561 2,01-107 693 | 2526 15,52 21 8,81 7,05-10% 2.331
/16 | 14,61 6,86-107 783 |100,66 9,67 17
/4 [ 17,31 2,23-107 892 | 16,99 30,64 25
128 13 | 16,98 2,44-107 1.042 | 21,77 22,48 25 891 2,82-10° 8.431
/16 | 16,34 7,61-107 1.110 | 65,53 15,52 21

One can observe a vast decrease of the condition number and thus the number
of iterations when the matrix is transformed to a hierarchical basis representation
when Poisson’s equation is considered. The method of further prehandling by a
partial Cholesky decomposition turns out to be very robust with respect to o in sharp
contrast the other listed methods as Table 2 shows.

Furthermore, it was tested if the application of the hierarchical method actually
enables us to lower the error when using single or even half precision floating-
point format. The course of the L>-error depicted in the figures 3 (1D) and 4 (2D)
show that by prehandling via the hierarchical method one achieves more accurate
approximations in single and double precision in the 1D case and in half and single
precision in the 2D case compared to the finite element method. For more detailed
and further numerical results, such as P1 finite elements and rectangular domains
(where the hierarchical method has basically identical effects), we refer to [4].
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Fig. 3 L2-error when solving
Poisson’s equation with pre-
handling by HFEM as a
function of the refinement
level, i.e. h = 271l in 1D
using single, double and quad
precision.

Compare to Fig. 1.
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Fig. 4 L’-error with FEM (left) and prehandling by HFEM (right) as a function of the refinement
level in 2D using half, single, and double precision.

5 Summary and Conclusion

By the concept of prehandling together with the hierarchical finite element method
the requirements of a lower condition number, preservation of sparsity and an efficient
transformation are successfully met in the case of Poisson’s equation in 1D and 2D
as numerical results confirm. This allows us to use low precision hardware without
losing too much accuracy. In the context of technical applications where an error
of 1% is often satisfactory, even the usage of half precision might be appropriate.
Additionally on the plus side, the expense of the iterative solution to the linear
system is reduced if the hierarchical method is applied. By implementing further
prehandling via a partial Cholesky decomposition, we can also deal with the case
of the Poisson-like equation with a jumping coefficient. A central task for future
research is to extend this method to apply prehandling in 3D, too.
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