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OPTIMAL CONTROL OF PERFECT PLASTICITY1

PART I: STRESS TRACKING∗2

CHRISTIAN MEYER† AND STEPHAN WALTHER†3

Abstract. The paper is concerned with an optimal control problem governed by the rate-4
independent system of quasi-static perfect elasto-plasticity. The objective is to optimize the stress5
field by controlling the displacement at prescribed parts of the boundary. The control thus enters6
the system in the Dirichlet boundary conditions. Therefore, the safe load condition is automatically7
fulfilled so that the system admits a solution, whose stress field is unique. This gives rise to a well8
defined control-to-state operator, which is continuous but not Gâteaux-differentiable. The control-to-9
state map is therefore regularized, first by means of the Yosida regularization and then by a second10
smoothing in order to obtain a smooth problem. The approximation of global minimizers of the11
original non-smooth optimal control problem is shown and optimality conditions for the regularized12
problem are established. A numerical example illustrates the feasibility of the smoothing approach.13

Key words. Optimal control of variational inequalities, perfect plasticity, rate-independent14
systems, Yosida regularization, first-order necessary optimality conditions, Dirichlet control problems15
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1. Introduction. We consider the following optimal control problem governed17

by the equations of quasi-static perfect plasticity at small strain:18

(P)



min J(σ, `) := Ψ(σ, `) +
α

2
‖
.

`‖2L2(Xc),

s.t. − div σ = 0 in Ω,

σ = C(∇su− z) in Ω,
.
z ∈ ∂IK(Ω)(σ) in Ω,

u = uD on ΓD,

σν = 0 on ΓN ,

u(0) = u0, σ(0) = σ0 in Ω.

and uD = G`+ a, `(0) = `(T ) = 0.

19

Herein, u : (0, T )×Ω→ Rn, n = 2, 3, is the displacement field, while σ, z : (0, T )×Ω→20

Rn×n are stress tensor and plastic strain. The boundary of Ω is split in two disjoint21

parts ΓD and ΓN with outward unit normal ν. Moreover, C is the elasticity tensor22

and K(Ω) denotes the set of feasible stresses. The initial data u0 and σ0 are given23

and fixed. The Dirichlet data uD arises from an artificial control variable ` through24

a linear operator G in combination with a given offset a. In principle, G could be an25

arbitrary linear operator (fulfilling certain assumptions, see below), but in section 626

it is chosen to be the solution operator of linear elasticity which is the reason for27

calling ` pseudo forces. Finally, Xc is a suitably chosen control space and α > 0 a28

fixed Tikhonov regularization parameter. The objective Ψ only contains the stress29

field and neither the displacement nor the plastic strain. This is why the optimal30
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2 C. MEYER AND S. WALTHER

control problem (P) is termed stress tracking problem. A mathematically rigorous31

version of (P) involving the functions space and a rigorous notion of solutions for the32

state equation will be formulated in section 4 below. The precise assumptions on the33

data are given in section 2. Regarding to a detailed description and derivation of the34

plasticity model, we refer to [19].35

Let us shortly comment on our choice of the control variable `. It is well known36

that the system of perfect plasticity only admits a solution under a certain additional37

assumption, also known as safe load condition, see e.g. [21, 5]. This condition roughly38

says that the applied loads must allow for the existence of a stress field that fulfills39

the balance of momentum and at the same time stays in the interior of the feasible40

set K(Ω). Thus, if one uses exterior loads as control variables, the safe load condi-41

tion arises as additional constraint in the optimal control problem, but, at least up42

to our knowledge, it is an open question how to deal with this additional constraint.43

We therefore choose the Dirichlet displacement as control variables and set the ex-44

terior loads in the balance of momentum to zero. Then the safe load condition is45

automatically fulfilled, but we are faced with a Dirichlet boundary control problem.46

Problems of this kind provide a particular challenge, since “standard” L2-type spaces47

lead to regularity issues, see e.g. [3, 15]. To overcome this challenge, we introduce the48

Dirichlet data as the trace of an H1-function in the domain Ω, as also proposed e.g. in49

[4, 7]. In our approach, the H1-function arises as a solution of another linear elliptic50

equation hidden behind the operator G. The inhomogeneity in this equation, i.e., the51

pseudo force `, then serves as control variable. By the last constraints in (P), it is52

forced to vanish at the beginning and in the end time. These additional constraints53

are motivated by the application we have in mind: in practice, one is often interested54

in reaching a desired shape and, at the same time, optimizing the stress distribution55

at end time (e.g., keeping it as small as possible). The desired shape is given in form56

of the offset a and the condition `(T ) = 0 ensures that it is indeed reached at end57

time. At the beginning of the process, control variable is also assumed to vanish58

(`(0) = 0), but in between it is allowed to alter the process in order to optimize the59

stress distribution. More general control constraints are possible as well and can eas-60

ily be incorporated into our analysis, but, to keep the discussion concise, we restrict61

ourselves to this particular setting.62

The present paper is the first of two papers. In a companion paper [17], we draw63

our attention to the displacement tracking problem. While the stress tracking may64

be seen more important from an application point of view and allows a comparatively65

comprehensive analysis, the displacement tracking is mathematically more interesting66

and by far more challenging. This is due to the lack of uniqueness and regularity of67

the displacement field in case of perfect plasticity, see e.g. [21, 22].68

Let us put our work into perspective. Optimal control of elasto-plastic defor-69

mation has been considered from a mathematical perspective in various articles, in70

particular concerning the static case, see e.g. [12, 14] and the references therein. When71

it comes to the (physically much more reasonable) quasi-static case however, the lit-72

erature becomes rather scarce. The only contributions in this field we are aware of73

are [23, 24, 25, 26, 16]. However, all of these works deal with problems involving74

hardening, which essentially simplifies the analysis. Quasi-static elasto-plasticity falls75

into the class of rate-independent systems. The mathematical properties of such a76

system strongly depend on the underlying energy functional. If the latter is uniformly77

convex, then the system admits a unique and time-continuous (differential) solution78

in the energy space. This however changes, if the energy lacks convexity, and it is even79

not clear how to define a solution in this case. For an overview over rate-independent80
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OPTIMAL CONTROL OF PERFECT PLASTICITY 3

processes and the various notions of solutions, we refer to [18]. Hardening leads to a81

uniform convex energy functional. In contrast to this, perfect plasticity may be seen82

as limit case in this respect, since the energy is convex, but not uniformly convex.83

Therefore, as already mentioned above, parts of the solution, namely displacement84

and plastic strain, lack uniqueness and regularity, whereas the stress is unique and85

provides the regularity expected for the uniformly convex case. This behavior carries86

over to the optimal control problem. It turns out that, as long as the stress tracking87

is considered, the optimal control problem can be treated by similar techniques as in88

case with hardening and one obtains comparable results concerning existence of opti-89

mal solution and their approximation via regularization. For the case with hardening,90

this has been elaborated in [24, 25, 26]. This however changes, if the displacement91

tracking is considered, as we will see in the companion paper. To the best of our92

knowledge, our two papers are the first contributions dealing with optimal control of93

perfect plasticity, and it is remarkable that the stress tracking allows for similar re-94

sults as in the case with hardening, whereas the non-uniform convexity of the energy95

takes its full effect when it comes to the displacement tracking.96

The paper is organized as follows: After introducing our notation and standing97

assumptions in section 2, we turn to the analysis of the state system in section 3.98

We establish the existence of a solution by means of the Yosida regularization of the99

convex subdifferential ∂IK(Ω), which is afterwards also used for the regularization of100

the optimal control problem. The underlying analysis follows the lines of [21], but101

we slightly extend the known results and therefore present the arguments in detail.102

Section 4 is then devoted to the proof of existence of an optimal solution and its103

approximation via Yosida regularization. The regularized optimal control problems104

are still not smooth, since the control-to-state map is not Gâteaux-differentiable in105

general. Therefore, we show for the special case of the von Mises yield condition how106

to obtain a differentiable problem by means of a second smoothing. This allows us to107

derive optimality conditions involving an adjoint equation in section 5. In section 6,108

we first specify the operator G and deduce the particular form of the gradient of109

the objective functional reduced to the control variable only. Based on that, we110

have implemented a gradient descent method. The paper ends with an illustrative111

numerical example.112

2. Notation and Standing Assumptions. We start with a short introduction113

in the notation used throughout the paper.114

Notation. Given two vector spaces X and Y , we denote the space of linear and115

continuous functions from X into Y by L(X,Y ). If X = Y , we simply write L(X).116

The dual space of X is denoted by X∗ = L(X,R). If H is a Hilbert space, we117

denote its scalarproduct by (·, ·)H . For the whole paper, we fix the final time T >118

0. For t > 0 we denote the Bochner space of square-integrable functions on the119

time interval [0, t] by L2(0, t;X), the Bochner-Sobolev space by H1(0, t;X) and the120

space of continuous functions by C([0, t];X) and abbreviate L2(X) := L2(0, T ;X),121

H1(X) := H1(0, T ;X) and C(X) := C([0, T ];X). When G ∈ L(X;Y ) is a linear and122

continuous operator, we can define an operator in L(L2(X);L2(Y )) by G(u)(t) :=123

G(u(t)) for all u ∈ L2(X) and for almost all t ∈ [0, T ], we denote this operator also124

by G, that is, G ∈ L(L2(X);L2(Y )), and analog for Bochner-Sobolev spaces, i.e.,125

G ∈ L(H1(X);H1Y ). Given a coercive operator G ∈ L(H) in a Hilbert space H, we126

denote its coercivity constant by γG, i.e., (Gh, h)H ≥ γG‖h‖2H for all h ∈ H. With127

this operator we can define a new scalar product, which induces an equivalent norm,128

by H × H 3 (h1, h2) 7→ (Gh1, h2)H ∈ R. We denote the Hilbert space equipped129
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4 C. MEYER AND S. WALTHER

with this scalar product by HG, that is (h1, h2)HG = (Gh1, h2)H for all h1, h2 ∈ H. If130

p ∈ [1,∞], then we denote its conjugate exponent by p′, that is 1
p + 1

p′ = 1. Finally, by131

Rn×ns , we denote the space of symmetric matrices and c, C > 0 are generic constants.132

Standing Assumptions. The following standing assumptions are tacitly as-133

sumed for the rest of the paper without mentioning them every time.134

Domain. The domain Ω ⊂ Rn, n ∈ N, n ≥ 2, is bounded with Lipschitz boundary135

Γ. The boundary consists of two disjoint measurable parts ΓN and ΓD such that136

Γ = ΓN ∪ΓD. While ΓN is a relatively open subset, ΓD is a relatively closed subset of137

Γ with positive measure. In addition, the set Ω∪ΓN is regular in the sense of Gröger,138

cf. [6].139

Spaces. Throughout the paper, by Lp(Ω;M) we denote Lebesgue spaces with140

values in M , where p ∈ [1,∞] and M is a finite dimensional space. To shorten141

notation, we abbreviate142

Hp := Lp(Ω;Rn×ns ) and H := H2.143

Given p ∈ [1,∞], the Sobolev space of vector-valued functions with values in Rn is144

denoted by145

Vp := W 1,p(Ω;Rn) and V := V2.146

Furthermore, set147

(2.1) VpD := {ψ|Ω : ψ ∈ C∞0 (Rn), supp(ψ) ∩ ΓD = ∅}
W 1,p(Ω;Rn)

, VD := V2
D.148

Moreover, we assume that X is a real Banach space, Xc is a Hilbert space and149

that Xc is compactly embedded into X . The elements in X and Xc are called pseudo150

forces. Based on these spaces, the control space is defined by151

H1
0 (Xc) := {` ∈ H1(Xc) : `(0) = `(T ) = 0}.152153

Coefficients. The elasticity tensor and the hardening parameter satisfy C,B ∈154

L(Rd×dsym) and are symmetric and coercive, i.e., there exist constants c > 0 and b > 0155

such that156

(Cσ, σ)Rn×ns
≥ c ‖σ‖2Rn×ns

and (Bσ, σ)Rn×ns
≥ b ‖σ‖2Rn×ns

157
158

for all σ ∈ Rn×ns . In addition we set A := C−1 and note that (Aσ, σ)Rn×ns
≥159

c
‖C‖2 ‖σ‖

2
Rn×ns

for all σ ∈ Rn×ns holds. Let us note that C and B could also depend160

on the space, however, to keep the discussion concise, we restrict ourselves to this161

setting.162

Initial data. For the initial stress field σ0, we assume that σ0 ∈ Hp, where p > 2163

is specified in Lemma 3.12 below. The initial displacement will be given by the initial164

Dirichlet data (at least in the regularized case), see subsection 3.2 below.165

Operators. Throughout the paper, ∇s := 1
2 (∇ + ∇>) : Vp → Hp denotes the166

linearized strain. Its restriction to VpD is denoted by the same symbol and, for the167

adjoint of this restriction, we write −div := (∇s)∗ : Hp′ → (VpD)∗.168

Let K ⊂ H be a closed and convex set. We denote the indicator function by169

IK : H → {0,∞}, τ 7→

{
0, τ ∈ K,
∞, τ /∈ K.

170
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OPTIMAL CONTROL OF PERFECT PLASTICITY 5

By ∂IK : H → 2H we denote the subdifferential of the indicator function. For λ > 0,171

the Yosida regularization is given by172

Iλ : H → R, τ 7→ 1

2λ
‖τ − πK(τ)‖2H,173

174

where πK is the projection onto K in H, and its Fréchet derivative is175

∂Iλ(τ) =
1

λ
(τ − πK(τ)).176

177

When λ = 0 we define Iλ = I0 := IK. For a sequence {λn}n∈N ⊂ (0,∞) we abbreviate178

In := Iλn .179

Optimization Problem. By180

J : H1(H)×H1(Xc)→ R, J(σ, `) := Ψ(σ, `) +
α

2
‖
.

`‖L2(Xc)181

we denote the objective function. We assume that Ψ : H1(H)×H1(Xc)→ R is weakly182

lower semicontinuous, continuous and bounded from below and that the Tikhonov183

paramenter α is a positive constant. Finally, G is a linear and continuous operator184

from X to V and a ∈ H1(V) is given.185

3. State Equation. We begin our investigation with the state equation. At first186

we give the definition of a reduced solution, that is, a notion of solutions involving only187

the stress. Then we provide some results concerning this definition. In subsection 3.2188

we prove the existence of such a solution by regularization.189

The formal strong formulation of the state equation reads190

−div σ = 0 in Ω,(3.1a)191

σ = C(∇su− z) in Ω,(3.1b)192
.
z ∈ ∂IK(Ω)(σ) in Ω,(3.1c)193

u = uD on ΓD,(3.1d)194

σν = 0 on ΓN ,(3.1e)195

u(0) = u0, σ(0) = σ0 in Ω.(3.1f)196197

Herein, equation (3.1a) is the balance of momentum, (3.1b) is the additive split of the198

symmetric gradient of the displacement (the strain) into an elastic part e = Aσ and199

a plastic part z. The inclusion (3.1c) is the flow rule, saying that the plastic part of200

the strain only changes when the stress σ has reached the yield boundary, that is, the201

boundary of K(Ω).202

3.1. Definitions and Auxiliary Results. The definition of a reduced solution203

of (3.1) consists of two parts, the equilibrium condition and the flow rule (resp. flow204

rule inequality). The equilibrium condition is the weak formulation of (3.1a) and205

(3.1e), while the flow rule can be seen as a weak formulation of (3.1c).206

Definition 3.1 (Equilibrium condition). We define the set of stresses which ful-207

fill the equilibrium condition as208

E(Ω) := ker(div) = {τ ∈ H : (τ,∇sϕ)H = 0 ∀ϕ ∈ VD}.209210

Definition 3.2 (Admissible stresses). Let K ⊂ Rn×ns be a closed and convex211

set. We define the set of admissible stresses as212

K(Ω) := {τ ∈ H : τ(x) ∈ K f.a.a. x ∈ Ω}.213214
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6 C. MEYER AND S. WALTHER

For the rest of this section, we impose the following215

Assumption 3.3 (Dirichlet data and initial condition).216

(i) We fix the Dirichlet displacement uD ∈ H1(V) and assume that the initial217

condition fulfills σ0 ∈ E(Ω) ∩ K(Ω).218

(ii) The sequence {uD,n}n∈N ⊂ H1(V) fulfills uD,n ⇀ uD in H1(V), uD,n → uD219

in L2(V) and uD,n(T )→ uD(T ) in V.220

We are now in a position to give the definition of a reduced solution to (3.1).221

Definition 3.4 (Reduced solution of the state equation). A function σ ∈ H1(H)222

is called reduced solution of (3.1) (with respect to uD), if, for almost all t ∈ (0, T ),223

it holds224

σ(t) ∈ E(Ω) ∩ K(Ω),(3.2a)225 (
A .
σ(t)−∇s .

uD(t), τ − σ(t)
)
H ≥ 0 ∀τ ∈ E(Ω) ∩ K(Ω),(3.2b)226

σ(0) = σ0.(3.2c)227228

The inequality in (3.2b) will be frequently termed as flow rule inequality.229

Note that the definitions above correspond to [13, Plasticity Problem II] and230

the definition given in [21, 1.4 Formulations. Résultats]. In order to formally derive231

the flow rule from (3.1c), one replaces z by ∇su − Aσ and use the definition of the232

subdifferential to obtain the variational inequality233 (
A .
σ(t)−∇s .

u(t), τ − σ(t)
)
H ≥ 0 ∀τ ∈ K(Ω) and f.a.a. t ∈ [0, T ].234235

Restricting now the test functions to E(Ω)∩K(Ω), one can exchange ∇s .
u with ∇s .

uD,236

which eliminates the unknown displacement.237

We also mention that in [5] the problem of perfect plasticity was analyzed in the238

context of quasistatic evolutions, also called energetic solutions of rate-independent239

systems. The definition given therein is equivalent to the one in [21, 1.4 Formulations.240

Résultats] (cf. also [5, Theorem 6.1 and Remark 6.3]) and thus equivalent to ours. This241

definition was also used in [1].242

Let us proceed with some results concerning the definition above. We start with243

the uniqueness of the stress.244

Lemma 3.5 (Uniqueness of the stress). Assume that σ1, σ2 ∈ H1(H) are two245

reduced solutions of (3.1). Then σ1 = σ2.246

Proof. This can be easily seen as in [13, Theorem 1] by testing (3.2b) with σ1247

respectively σ2, adding both equations and integrating over time.248

Lemma 3.6. Let σ ∈ H1(H) be a reduced solution of (3.1). Then249

‖ .σ(t)‖2HA
=
(
∇s .
uD(t),

.
σ(t)

)
H250251

holds for almost all t ∈ [0, T ].252

Proof. There exists a set N ⊂ [0, T ] with measure zero, such that253

lim
h→0

σ(t+ h)− σ(h)

h
=

.
σ(t) and

(
A .
σ(t)−∇s .

uD(t), τ − σ(t))
)
H ≥ 0254

255

for all t ∈ [0, T ] \ N and all τ ∈ K(Ω) ∩ E(Ω) (for the first property we refer to [23,256

Theorem 3.1.40]). Testing this inequality with σ(t± h) for a fixed t ∈ (0, T ) \N and257

a sufficient small h, dividing by h and letting h→ 0, we obtain the desired equation.258
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OPTIMAL CONTROL OF PERFECT PLASTICITY 7

Since the conditions in K(Ω) and E(Ω) are pointwise in time and independent of259

the time, one immediately deduces the following260

Lemma 3.7 (Time dependent flow rule inequality). Let σ ∈ H1(H). Then261 (
A .
σ −∇s .

uD, τ − σ
)
L2(H)

≥ 0

∀τ ∈ L2(H) with τ(t) ∈ E(Ω) ∩ K(Ω) f.a.a. t ∈ [0, T ]
(3.3)262

263

holds if and only if (3.2b) holds.264

We end this section with a continuity result for reduced solutions (supposed they265

exists, which will be shown in the next section by means of regularization). For this266

purpose, we need two auxiliary results.267

Lemma 3.8. Let {an}n∈N ⊂ R and {τn}n∈N ⊂ H1(H) such that τn(0) = σ0268

for all n ∈ N and an → a in R and τn ⇀ τ in H1(H). Moreover, assume that269

an ≤ −
(
A .
τn, τn

)
L2(H)

for all n ∈ N. Then a ≤ −
(
A .
τ , τ
)
L2(H)

holds.270

Proof. Using the lower weakly semicontinuity of ‖ · ‖HA and the linear and con-271

tinuous embedding H1(H) ↪→ C(H), we deduce272

lim inf
n→∞

(
A .
τn, τn

)
L2(H)

=
1

2
lim inf
n→∞

‖τn(T )‖2HA
− 1

2
‖σ0‖2HA

273

≥ 1

2
‖τ(T )‖2HA

− 1

2
‖σ0‖2HA

=
(
A .
τ , τ
)
L2(H)

,274
275

which immediately gives the claim.276

Lemma 3.9. Let H be a Hilbert space, v, τ ∈ H1(H) and {vn}n∈N, {τn}n∈N ⊂277

H1(H) such that τn ⇀ τ in H1(H), τn(0) → τ(0), vn → v in L2(H), vn(0) ⇀ v(0)278

and vn(T )→ v(T ) in H. Then
( .
vn, τn

)
L2(H)

→
( .
v, τ
)
L2(H)

holds true.279

Proof. This follows immediately from integration by parts:280 ( .
vn, τn

)
L2(H)

= −
(
vn,

.
τn
)
L2(H)

+ (vn(T ), τn(T ))H − (vn(0), τn(0))H281

→ −
(
v,

.
τ
)
L2(H)

+ (v(T ), τ(T ))H − (v(0), τ(0))H =
( .
v, τ
)
L2(H)

,282
283

where we used the linear and continuous embedding H1(H) ↪→ C(H) to see that284

τn(t) ⇀ τ(t) in H for t ∈ {0, T}.285

Proposition 3.10 (Continuity properties of reduced solutions). Let us assume286

that σn ∈ H1(H) is the reduced solution of (3.1) with respect to uD,n for every n ∈ N.287

Then there exists a reduced solution σ ∈ H1(H) of (3.1) with respect to uD and288

σn ⇀ σ in H1(H). Moreover, if uD,n → uD in H1(V), then σn → σ in H1(H).289

Proof. According to Lemma 3.6 (and σn(0) = σ0), σn is bounded in H1(H),290

hence, there exists a subsequence, again denoted by σn, and a weak limit σ such that291

σn ⇀ σ in H1(H). Thanks to the linear and continuous embedding H1(H) ↪→ C(H),292

we have σn(t) ⇀ σ(t) in H for all t ∈ [0, T ], therefore, since E(Ω) and K(Ω) are weakly293

closed, σ(t) ∈ E(Ω) ∩ K(Ω) for all t ∈ [0, T ] and σ(0) = σ0.294

In order to prove that σ fulfills the flow rule inequality, we use Lemma 3.7. To295

this end we choose an arbitrary τ ∈ L2(H) with τ(t) ∈ E(Ω) ∩ K(Ω) for almost all296

t ∈ [0, T ]. Defining297

an :=
(
∇s .
uD,n, σn

)
L2(H)

+
(
∇s .
uD,n − A .

σn, τ
)
L2(H)

298
299
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8 C. MEYER AND S. WALTHER

we see that an ≤ −
(
A .
σn, σn

)
L2(H)

holds for all n ∈ N. Thus, using Lemma 3.9 to300

see that
(
∇s .
uD,n, σn

)
L2(H)

→
(
∇s .
uD, σ

)
L2(H)

(here we need in particular uD,n(T )→301

uD(T )), Lemma 3.8 implies that (3.3) holds. Thanks to Lemma 3.5 we obtain the302

convergence σn ⇀ σ in H1(H) for the whole sequence by standard arguments.303

If uD,n → uD inH1(V), then we obtain ‖ .σn‖L2(HA) → ‖
.
σ‖L2(HA) from Lemma 3.6,304

which gives the strong convergence.305

Remark 3.11. It is also possible to consider perturbations in the initial condition,306

that is, σn in Proposition 3.10 is a reduced solution of (3.1) with respect to the initial307

condition σ0,n (and the Dirichlet displacement uD,n), where {σ0,n}n∈N ⊂ E(Ω)∩K(Ω)308

is a sequence such that σ0,n → σ0 in H. In this case Lemma 3.8 can be proven309

analogously and the proof of Proposition 3.10 does not change.310

3.2. Regularization and Existence. In this section, we establish the existence311

of a reduced solution by means of regularization. We underline that similar results312

have already been obtained in the literature, see e.g. [21, 1.4 Formulations. Résultats,313

Problème quasi statique en plasticité parfaite]. However, since we slightly extend314

these results (as explained in Remark 3.23 below), we present the full proofs for the315

convenience of the reader.316

We consider the following regularized version of the state equation (3.1):317

−div σn = 0 in Ω,(3.4a)318

σn = C(∇sun − zn) in Ω,(3.4b)319
.
zn ∈ ∂In(σn − εnBzn) in Ω,(3.4c)320

un = uD,n on ΓD,(3.4d)321

σnν = 0 on ΓN ,(3.4e)322

un(0) = uD,n(0) σn(0) = σ0 in Ω,(3.4f)323324

where the sequence {(εn, λn)}n∈N ⊂ R2 \ {0} fulfills εn, λn ≥ 0, (εn, λn)→ 0 and325

(σ0 − εnB(∇suD,n(0)− Aσ0)) ∈ K(Ω),(3.5)326327

whenever λn = 0. We emphasize that the following settings are possible328

λn > 0, εn = 0 (vanishing viscosity),329

λn = 0, εn > 0 (vanishing hardening),330

λn > 0, εn > 0 (mixed vanishing viscosity and hardening).331332

Let us recall that In = Iλn and In = I0 = IK(Ω) when λn = 0. When λn > 0333

the inclusion a ∈ ∂In(b) is simply an equation, a = ∂In(b), for a, b ∈ H. In section 5334

below, we aim to apply the results of [16, section 5] to derive first-order optimality335

conditions. For this purpose, because of differentiability reasons, a norm gap is needed336

and therefore, we define solutions to (3.4) in Lp-type spaces (although, in this section,337

we only need p = 2). The following result of [10] serves as a basis therefor:338

Lemma 3.12. There exists p > 2, such that for all p ∈ [p′, p], ` ∈ (Vp
′

D )∗ and339

uD ∈ Vp, there exists a unique u ∈ Vp of the following linear elasticity equation:340

(C∇su,∇sζ)H = 〈`, ζ〉 ∀ζ ∈ Vp
′

D , u− uD ∈ VpD.341

We define the associated solution operator342

(3.6) T : (Vp
′

D )∗ × Vp → Vp, (`, uD) 7→ u,343
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which we denote by the same symbol for different values of p. For every p ∈ [p′, p], it344

is linear and continuous.345

Proof. For the case p ≥ 2, the claim is a direct consequence [10, Theorem 1.1 and346

Remark 1.3]. The case p < 2 then follows by duality.347

Given the integrability exponent p, our definition of a solution to (3.8) reads as348

follows:349

Definition 3.13. Let n ∈ N and p ∈ [2, p], where p is from Lemma 3.12, when350

λn > 0 and p = 2 when λn = 0. Moreover, assume that uD,n ∈ H1(Vp). Then a351

tuple (un, σn, zn) ∈ H1(VpD × Hp × Hp) is called solution of (3.4), if, for almost all352

t ∈ (0, T ), it holds353

−div σn(t) = 0 in (Vp
′

D )∗,(3.7a)354

σn(t) = C(∇sun(t)− zn(t)) in Hp,(3.7b)355
.
zn(t) ∈ ∂In(σn(t)− εnBzn(t)) in Hp,(3.7c)356

un(t)− uD,n(t) ∈ VpD,(3.7d)357

(un, σn)(0) = (uD,n(0), σ0) in Vp ×Hp.(3.7e)358359

In order to analyze (3.4) we will apply the results from [16, section 3].360

Definition 3.14. Let p be as in Definition 3.13. We define the linear and con-361

tinuous operator362

Qn : Hp → Hp, z 7→ (C + εnB)z − C∇sT (− divCz, 0),363

where T is the solution operator from (3.6).364

Let us note again that for this section only the case p = 2 is needed. However,365

the following holds also when p 6= 2, which we will use in section 5 below.366

Proposition 3.15 (Transformation into an EVI). Let p again be as in Defini-367

tion 3.13 and T the solution operator from (3.6). Then (un, σn, zn) ∈ H1(Vp ×Hp ×368

Hp) is a solution of (3.7) if and only if zn is a solution of369

.
zn ∈ ∂In

(
C∇sT (0, uD,n)−Qnzn

)
, zn(0) = ∇suD,n(0)− Aσ0,(3.8)370371

and un and σn are defined through un = T (−div(Czn), uD,n) and σn = C(∇sun−zn).372

Moreover, if εn > 0, then Qn is coercive.373

Proof. In view of the definition of Qn and T , we only have to verify that the374

initial conditions are fulfilled. Clearly, if (un, σn, zn) is a solution of (3.7), zn(0) =375

∇suD,n(0) − Aσ0 follows immediately from (3.7b). On the other hand, if zn is a376

solution of (3.8), then σ0 ∈ E(Ω) implies377

un(0) = T (− div(Czn(0)), uD,n(0)) = T (−div(C∇suD,n(0)), uD,n(0))378379

hence, un(0) = uD,n(0) and σn(0) = C(∇suD,n(0)− zn(0)) = σ0.380

Let us now investigate the coercivity of Qn. Using the definition of T one obtains381

(C(zn −∇sT (−div(Czn), 0)), zn)H = ‖zn −∇sT (−div(Czn), 0))‖2HC
,382383

which immediately yields the coercivity of Qn when εn > 0.384
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We are now in the position to deduce existence and uniqueness for (3.7). When385

λn = 0, Proposition 3.15 allows us to apply [16, Theorem 3.3] (where we set R =386

T (0, ·); note that all requirements for [16, Theorem 3.3] can be easily checked by using387

Proposition 3.15 and the fact that RuD,n(0)−Qnzn(0) = σ0−εnB(∇suD,n(0)−Aσ0) ∈388

K(Ω), see (3.5)). In case of λn > 0, existence and uniqueness follows immediately by389

Banach’s contraction principle applied to the integral equation associated with (3.8)390

(so that, in this case, (3.5) is not needed). Altogether we obtain391

Corollary 3.16. For every n ∈ N there exists a unique solution (un, σn, zn) ∈392

H1(V × H × H), of (3.7). In the rest of this section we tacitly use this notation to393

denote the solution of (3.7).394

Remark 3.17. We note that the existence of a solution for (3.7) is a classical395

result that can also be found in the literature, see e.g. [8]. However, since we need396

the transformation from Proposition 3.15 later anyway in Propositions 4.9 and 5.6397

and the existence of a solution is an immediate consequence thereof, we presented the398

above corollary for convenience of the reader.399

Remark 3.18. We moreover point out that, in case of λn > 0, the global Lipschitz400

continuity of ∂In allows to establish the existence of a unique solution to (3.7) for less401

regular data. Since this does however not hold for the limit problem (3.2), we cannot402

make any use of this in the upcoming analysis.403

Having proved the existence of a solution to (3.4) we proceed with the analysis404

for the limit case n→∞. For this purpose we need the following result, which is an405

immediate consequence of [2, Lemme 3.3].406

Lemma 3.19. Let λ ≥ 0 and τ ∈ H1(H). Then407

ˆ b

a

(
ξ(t),

.
τ(t)

)
H dt = Iλ(τ(b))− Iλ(τ(a))408

409

holds for all ξ : [0, T ]→ H such that ξ(t) ∈ ∂Iλ(τ(t)) for almost all t ∈ [0, T ] and all410

0 ≤ a ≤ b ≤ T .411

Now we will establish a priori estimates and then turn to the existence of a solution412

to the state equation (3.1).413

Lemma 3.20 (A priori estimates). The inequalities414

‖ .σn‖2L2(HA) + εn‖
.
zn‖2L2(HB) ≤

( .
σn,∇s

.
uD,n

)
L2(H)(3.9)415

416

and417

In(σn(t)− εnBzn(t)) ≤ ‖ .σn‖L2(H)‖∇s
.
uD,n‖L2(H)(3.10)418419

hold for all n ∈ N and all t ∈ [0, T ].420

Proof. We use the fact that σn(t) ∈ E(Ω) (thus
.
σn(t) ∈ E(Ω)) to obtain421 (

A .
σn(t),

.
σn(t)

)
H + εn

( .
zn(t),B .

zn(t)
)
H +

( .
zn(t),

.
σn(t)− εnB

.
zn(t)

)
H422

=
(
A .
σn(t) +

.
zn(t),

.
σn(t)

)
H =

(
∇s .
un(t),

.
σn(t)

)
H =

(
∇s .
uD,n(t),

.
σn(t)

)
H423424

for almost all t ∈ [0, T ]. Integrating this equation with respect to time, applying425

Lemma 3.19 and using (σ0 − εnBzn(0)) ∈ K(Ω) yields426

(3.11)
‖ .σn‖2L2(0,t;HA) + εn‖

.
zn‖2L2(0,t;HB) + In(σn(t)− εnBzn(t)) =

( .
σn,∇s

.
uD,n

)
L2(0,t;H)

427
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for all t ∈ [0, T ]. The inequalities (3.9) and (3.10) now follow from this equation428

(using In ≥ 0 to get (3.9)).429

Lemma 3.21. Let w ∈ H and {wn}n∈N ⊂ H such that wn ⇀ w in H and assume430

that the sequence In(wn) is bounded. Then w ∈ K(Ω).431

Proof. Clearly, the mapping H 3 τ 7→ ‖τ − πK(Ω)(τ)‖2H ∈ R is convex and con-432

tinuous and thus weakly lower semicontinuous, hence,433

0 ≤ ‖w − πK(Ω)(w)‖2H ≤ lim inf
n→∞

‖wn − πK(Ω)(wn)‖2H = lim inf
n→∞

2λnIn(wn) = 0,434
435

which implies w = πK(Ω)(w).436

Theorem 3.22 (Existence and approximation of a reduced solution). Under437

Assumption 3.3, there exists a unique reduced solution σ ∈ H1(H) of (3.1) and it438

holds σn ⇀ σ in H1(H). Furthermore, if uD,n → uD in H1(V), then σn → σ in439

H1(H).440

Proof. The proof basically follows the lines of the one of Proposition 3.10. Ac-441

cording to Lemma 3.20, the sequences {σn}n∈N and {√εnzn}n∈N are bounded in442

H1(H) (note that σn(0) = σ0 and
√
εnzn(0) =

√
εn(∇suD,n(0)− Aσ0)→ 0). There-443

fore there exists a subsequence, again denoted by σn, and a weak limit σ ∈ H1(H)444

such that σn ⇀ σ and σn + εnBzn ⇀ σ in H1(H). Due to the linear and continuous445

embedding H1(H) ↪→ C(H) we arrive at σn(t) ⇀ σ(t) and σn(t) + εnBzn(t) ⇀ σ(t)446

in H for all t ∈ [0, T ]. Hence, since E(Ω) is weakly closed and σn(t) ∈ E(Ω) for all447

n ∈ N, we obtain σ(t) ∈ E(Ω) for all t ∈ [0, T ]. Moreover, according to Lemma 3.20,448

In(σn(t) − εnBzn(t)) is bounded and thus, Lemma 3.21 gives σ(t) ∈ K(Ω) for all449

t ∈ [0, T ].450

As in the proof of Proposition 3.10, we again employ Lemma 3.9 to verify the451

flow rule in the form (3.3). To this end we choose an arbitrary τ ∈ L2(H) with452

τ(t) ∈ E(Ω) ∩ K(Ω) for almost all t ∈ [0, T ] and obtain453

0 =

ˆ T

0

In(τ(t))dt
(3.7c)

≥
ˆ T

0

In(σn(t)− εnBzn(t))dt+
( .
zn, τ − σn + εnBzn)

)
L2(H)

454

(3.7b)

≥ εn
2

(zn(T ),Bzn(T ))H −
εn
2

(zn(0),Bzn(0))H +
(
∇s .
un − A .

σn, τ − σn
)
L2(H)

455

≥ −εn
2

(zn(0),Bzn(0))H +
(
∇s .
uD,n − A .

σn, τ − σn
)
L2(H)

,456
457

where we have used the monotonicity of the subdifferential, the positivity of In, the458

coercivity of B, the fact that τ, σn ∈ E(Ω), and
.
un−

.
uD,n ∈ L2(VD). This time we set459

an := −εn
2

(zn(0),Bzn(0))H +
(
∇s .
uD,n, σn

)
L2(H)

+
(
∇s .
uD,n − A .

σn, τ
)
L2(H)

460
461

and observe that, by means of
√
εzn(0)→ 0 and Lemma 3.9,462

−
(
A .
σn, σn

)
L2(H)

≥ an → a :=
(
∇s .
uD, σ

)
L2(H)

+
(
∇s .
uD − A .

σ, τ
)
L2(H)

463
464

as n → ∞. Hence, Lemma 3.8 implies that the weak limit σ indeed satisfies (3.3).465

Since the reduced solution is unique by Lemma 3.5, a standard argument gives the466

weak convergence of the whole sequence.467

If uD,n → uD in H1(V), then Lemma Lemma 3.20 and Lemma 3.6 imply468

‖ .σ‖2L2(HA) ≤ lim inf
n→∞

‖ .σn‖2L2(HA) ≤ lim sup
n→∞

‖ .σn‖2L2(HA) ≤ lim sup
n→∞

( .
σn,∇s

.
uD,n

)
L2(H)

469

=
( .
σ,∇s .

uD
)
L2(H)

= ‖ .σ‖2L2(HA),470
471
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which yields the desired strong convergence.472

Remark 3.23. In contrast to Theorem 3.22, the results in [21] only cover the case473

of constant Dirichlet data uD and λn > 0, εn = 0 (i.e., without hardening) and only474

prove weak convergence of the stresses for this case.475

Remark 3.24. In case of the strong convergence uD,n → uD in H1(V), one addi-476

tionally obtains
√
εnzn → 0 in H1(H), In(σn − εnBzn)→ 0 in L2(Ω) and In(σn(t)−477

εnBzn(t))→ 0 for all t ∈ [0, T ]. This follows from (3.11) by similar arguments as used478

at the end of the proof of Theorem 3.22.479

4. Existence and Approximation of Optimal Controls. We now turn to480

the optimization problem (P). Let us first give a rigorous definition of our optimal481

control problem based on our previous findings. Relying on Theorem 3.22, the rigorous482

counterpart of (P) reads as follows:483

(P)


min J(σ, `) := Ψ(σ, `) +

α

2
‖
.

`‖L2(Xc),

s.t. ` ∈ H1
0 (Xc), σ ∈ H1(V)

and σ is a reduced solution of (3.1) w.r.t. uD = G`+ a.

484

For the rest of the paper, we impose the following assumption on the data in (P):485

Assumption 4.1 (Initial condition and pseudo force). We assume that the486

initial condition fulfills σ0 ∈ E(Ω) ∩ K(Ω) and fix a “Dirichlet-offset” a ∈ H1(V).487

4.1. Existence of Optimal Controls. According to Theorem 3.22 there exists488

for every uD ∈ H1(V) a unique reduced solution σ ∈ H1(H) of (3.1) (we can simply489

choose εn = 0 and uD,n = uD for every n ∈ N). This leads to the following490

Definition 4.2 (Solution operator for the state equation). For a given ` ∈ H1
0 (Xc)491

there exists a unique reduced solution σ of (3.1) with respect to uD = G` + a. We492

denote the associated solution operator by493

S : H1
0 (Xc)→ H1(H), ` 7→ σ.494495

Corollary 4.3 (Continuity properties of the solution operator). The solution496

operator S : H1
0 (Xc)→ H1(H) is weakly and strongly continuous, that is,497

(i) `n ⇀ ` in H1
0 (Xc) =⇒ S(`n) ⇀ S(`) in H1(H) and498

(ii) `n → ` in H1
0 (Xc) =⇒ S(`n)→ S(`) in H1(H).499

Proof. Let us assume that `n ⇀ ` in H1
0 (Xc) ⊂ H1(Xc). Since Xc is compactly500

embedded into X , H1(Xc) is compactly embedded into C(X ) and hence, G`n → G`501

in L2(V) and (G`n)(t) → (G`)(t) in V for all t ∈ [0, T ], in particular for t = T .502

We conclude that the sequence uD,n := G`n + a fulfills (ii) in Assumption 3.3 with503

uD := G`+ a. The claim then follows from Proposition 3.10.504

Given the (weak) continuity properties of S, one readily deduces the following505

Theorem 4.4 (Existence of optimal solutions). There exists at least one global506

solution of (P).507

Proof. The assertion follows from the standard direct method of the calculus of508

variations using the coercivity of the Tikhonov term in the objective with respect to509

`, the weakly lower semicontinuity of J , and the weak continuity of S. Note that510

H1
0 (Xc) is weakly closed due to the continuous embedding H1(Xc) ↪→ C(Xc).511
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Remark 4.5. Corollary 4.3 and Theorem 4.4 also hold when H1
0 (Xc) is replaced by512

any other weakly closed subset of H1(Xc). The set H1
0 (Xc) is motivated by practical513

applications (as explained in the introduction) and will be used in our numerical514

experiments in section 6.515

4.2. Convergence of Global Minimizers. Let us proceed with the approx-516

imation of global solutions to (3.1). Additionally to Assumption 4.1 we impose the517

following assumption for the rest of this section.518

Assumption 4.6 (Regularization parameters). Let {(εn, λn)}n∈N ⊂ R2\{0} be a519

sequence such that εn, λn ≥ 0, (εn, λn)→ 0 and (σ0+εnB(Aσ0−C∇sT (0, a))) ∈ K(Ω),520

whenever λn = 0.521

Definition 4.7 (Solution operator for the regularized state equation). Accord-522

ing to Corollary 3.16, for every (εn, λn), there exists a unique solution (un, σn, zn) ∈523

H1(V ×H×H) of (3.4) with respect to uD = G`+a ∈ H1(V) for a given ` ∈ H1
0 (Xc).524

We may thus define the solution operator525

Sn : H1
0 (Xc)→ H1(H), ` 7→ σn.526527

With the regularized solution operator at hand, we define the following regularized528

version of (P) for a given tuple (εn, λn) of regularization parameters:529

(Pn) min
`∈H1

0 (Xc)
J(Sn(`), `).530

Definition 4.8. Given the operator G ∈ L(X ,V) and the solution mapping T531

from (3.6), we define the linear and continuous operator532

R ∈ L(X ;H), ` 7→ C∇sT (0,G`).533534

We denote the restriction of this operator to Xc with the same symbol. Moreover, we535

set A := C∇sT (0, a) ∈ H1(H).536

Proposition 4.9 (Existence of optimal solutions of the regularized problems).537

For every n ∈ N, there exists a global solution of (Pn).538

Proof. Using Proposition 3.15 and the definition ofR one obtains that (un, σn, zn) ∈539

H1(V × H ×H) is a solution of (3.4) with respect to uD = G` + a with ` ∈ H1
0 (Xc),540

if and only if zn is a solution of541

.
zn ∈ ∂In(R`+ A−Qnzn), zn(0) = ∇sa(0)− Aσ0(4.1)542543

(where Qn is as defined in Definition 3.14) and un and σn are determined through zn544

via545

(4.2) un = T (−div(Czn),G`+ a) and σn = C(∇sun − zn).546

Note that ` ∈ H1
0 (Xc) implies `(0) = 0, which leads to the initial condition in (4.1),547

and that R`(0) + A(0) − Qnzn(0) = σ0 + εnB(Aσ0 − A(0)) ∈ K(Ω), according to548

Assumption 4.6. We next show the weak continuity of the solution operator of (4.1),549

denoted by S(z)
n , as a mapping from H1(Xc) to H1(H). In case of λn = 0 (and550

thus εn > 0), (4.1) corresponds to an evolution variational inequality with a maximal551

monotone operator as for instance discussed in [16, section 3]. The continuity proper-552

ties thereof are stated in [16, Theorem 3.10]. Since in particular Qn is coercive when553
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εn > 0 as shown in Proposition 3.15, all assumptions of this theorem are fulfilled554

except for the offset A, which is zero in [16]. It is however easily seen that this does555

not affect the underlying analysis such that this continuity result together with the556

compact embedding of H1(Xc) in L1(X ) yields the desired weak continuity of S(z)
n .557

If λn > 0, then ∂In is a Lipschitz continuous mapping from H to H, which,558

together with Gronwall’s inequality, gives the Lipschitz continuity of the solution559

mapping of (4.1) from L2(X ) to H1(H), cf. [16, proof of Proposition 4.4]. Together560

with the compactness of H1(Xc) ↪→ L2(X ), this yields the weak continuity of S(z)
n in561

this case.562

Since all operators in (4.2) are linear (resp. affine) and continuous in their re-563

spective spaces, the weak continuity of S(z)
n carries over to solution mapping Sn from564

Definition 4.7. Now the assertion can be proven analogously to the proof of Theo-565

rem 4.4 by means of the standard direct method of the calculus of variations.566

Proposition 4.10 (Approximation properties of the solution operators). The567

following two properties hold:568

(i) `n ⇀ ` in H1
0 (Xc) =⇒ Sn(`n) ⇀ S(`) in H1(H),569

(ii) `n → ` in H1
0 (Xc) =⇒ Sn(`n)→ S(`) in H1(H).570

Proof. The proof is the same as the proof of Corollary 4.3, except that we employ571

Theorem 3.22 instead of Proposition 3.10.572

Theorem 4.11 (Approximation of global minimizers). Let {`n}n∈N be a se-573

quence of global minimizers of (Pn). Then every weak accumulation point of {`n}n∈N574

is a strong accumulation point and a global minimizer of (P). Moreover, there exists575

an accumulation point.576

Proof. The proof follows standard arguments using the continuity properties in577

Proposition 4.10. Let us nonetheless shortly sketch the proof for convenience of the578

reader. Since Ψ is bounded from below by our standing assumptions, the Tikhonov579

term in the objective together with the constraints in H1
0 (Xc) imply that the se-580

quence {`n} is bounded in H1
0 (Xc). Since Xc is assumed to be a Hilbert space, there581

exists a weakly converging subsequence with weak limit ` ∈ H1
0 (Xc). Due to Propo-582

sition 4.10(i), the associated states Sn(`n) converge weakly to the reduced solution583

σ := S(`), and the weak lower semicontinuity of the objective ensures the global584

optimality of (σ, `).585

From Proposition 4.10(ii), we moreover deduce that Sn(`) → σ in H1(H) such586

that the continuity of Ψ implies587

J(σ, `) ≤ lim inf
n→∞

J(Sn(`n), `n) ≤ lim sup
n→∞

J(Sn(`n), `n) ≤ lim sup
n→∞

J(Sn(`), `) = J(σ, `),588

i.e., the convergence of the objective. Since both components of the objective are589

weakly lower semicontinuous, we obtain ‖
.

`n‖L2(Xc) → ‖
.

`‖L2(Xc), which in turn implies590

strong convergence.591

As the above reasoning applies to every weakly convergent subsequence, we deduce592

that every weak accumulation point is actually a strong one and a global minimizer593

of (P), which completes the proof.594

5. Optimality Conditions. Unfortunately, the Yosida regularization does in595

general not yield a Gâteaux-differentiable control-to-state mapping. We will demon-596

strate this for a particular case of the set of admissible stresses below. Therefore,597

in order to derive an optimality system by the standard adjoint calculus, a further598
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smoothing is necessary, which will be addressed next.599

5.1. Differentiability of the Regularized Control-to-State Mapping. We600

consider now the regularized system (3.4) for a fixed n ∈ N and set (ε, λ) := (εn, λn).601

Accordingly, we also abbreviate Q := Qn (see Definition 3.14).602

For the construction of the smoothing of the Yosida regularization and its differ-603

entiability properties, we impose the following assumption for the rest of this section:604

Assumption 5.1 (Smoothing of the Yosida regularization).605

(i) We fix p ∈ (2, p] in Lemma 3.12.606

(ii) The operator G is linear and continuous from Xc to Vp and the Dirichlet-offset607

satisfies a ∈ H1(Vp).608

(iii) We assume λ > 0 (note that ε = 0 is possible).609

(iv) The set K from Definition 3.2 is given in terms of the von Mises yield con-610

dition, i.e.,611

(5.1) K := {τ ∈ Rn×ns : |τD|F ≤ γ},612

where τD := τ − 1
n tr(τ)I is the deviator of τ ∈ Rn×ns , γ > 0 denotes the613

initial uniaxial yield stress, and | · |F is the Frobenius norm.614

A straightforward calculations shows that, in case of the von Mises yield condition,615

the Yosida-approximation of ∂IK(Ω) is given by616

∂Iλ(τ) =
1

λ
max

{
0, 1− γ

|τD|F

}
τD,617

618

cf. e.g. [9]. Herein, with a slight abuse of notation, we denote the Nemyzki operator in619

L∞(Ω) associated with the pointwise maximum, i.e., R 3 r 7→ max{0, r} ∈ R, by the620

same symbol. In addition, we set max{0, 1− γ/r} := 0, if r = 0. As indicated above,621

we indeed observe that ∂Iλ is still a non-smooth mapping, giving in turn that the asso-622

ciated solution operator of the regularized state equation is not Gâteaux-differentiable.623

We therefore additionally smoothen the Yosida-approximation to obtain a differen-624

tiable mapping:625

(5.2) Aδ : H → H, τ 7→ 1

λ
maxδ

(
1− γ

|τD|F

)
τD,626

where627

maxδ : R→ R r 7→

{
max{0, r}, |r| ≥ δ,
1
4δ (r + δ)2, |r| < δ.

628

for a fixed δ ∈ (0, 1). Again, we denote the Nemyzki operator associated with maxδ629

by the same symbol. One easily checks that maxδ ∈ C1(R) and that630

‖Aδ(τ)− ∂Iλ(τ)‖H ≤
|Ω|γδ

4λ(1− δ)
(5.3)631

632

for all τ ∈ H. Furthermore, we denote the restriction of Aδ to Hp by the same symbol.633

Let us now turn to the smoothed state equation and the associated optimization634
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16 C. MEYER AND S. WALTHER

problem. The smoothed state equation reads635

−div σ(t) = 0 in (Vp
′

D )∗,(5.4a)636

σ(t) = C(∇su(t)− z(t)) in Hp,(5.4b)637
.
z(t) = Aδ(σ(t)− εBz(t)) in Hp,(5.4c)638

u(t)− uD(t) ∈ VpD,(5.4d)639

(u, σ)(0) = (uD(0), σ0) in Vp ×Hp.(5.4e)640641

As in the proofs of Proposition 4.9 resp. Proposition 3.15, in the case uD = G` + a,642

this system can equivalently be transformed into643

.
z = Aδ(R`+ A−Qz), z(0) = ∇sa(0)− Aσ0,(5.5a)644

u = T (− div(Cz),G`+ a), σ = C(∇su− z),(5.5b)645646

where Q, R, and A are defined as in Definition Definition 3.14 and Definition 4.8.647

Again, we used ` ∈ H1
0 (Xc) implying `(0) = 0 for the initial condition in (5.5a). As648

in case of the Yosida regularization in Corollary 3.16, the existence of solutions to649

(5.5) can again be deduced from Banach’s fixed point theorem owing to the global650

Lipschitz continuity of Aδ. This time, we consider the fixed point mapping associated651

with the integral equation corresponding to (5.5a) as a mapping in L2(0, T ;Hp). Note652

in this context that, by virtue of Assumption 5.1(ii) and Lemma 3.12, Q and R are653

mappings from Hp and Xc, respectively, to Hp and A ∈ H1(Hp). This gives rise to654

the following655

Definition 5.2 (Smoothed solution operator). For ` ∈ H1
0 (Xc) there exists a656

unique solution (u, σ, z) of (5.4) with respect to uD = G`+a. We denote the associated657

solution operator by658

Sδ : H1
0 (Xc)→ H1(Hp) ` 7→ σ.659660

Of course, this operator also depends on λ and ε, but we suppress this dependency to661

ease notation.662

Given Sδ, the smoothed optimal control problem reads as follows:663

(Pδ) min
`∈H1

0 (Xc)
J(Sδ(`), `).664

The existence of optimal solution to (Pδ) follows form standard arguments completely665

analogous to Proposition 4.9. Let us shortly interrupt the derivation of optimality666

conditions for (Pδ) in order to briefly address the convergence of global minimizers.667

Proposition 5.3. Let {λn} ⊂ R+ \ {0} be a sequence converging to zero and668

assume for simplicity that εn = 0 for all n ∈ N. Suppose moreover that the smoothing669

parameter δn is chosen such that670

(5.6) δn = δ(λn) = o
(
λ2
n exp

(
− T‖Q‖L(H)

λn

))
.671

Let {`n} denote a sequence of solutions of (Pδ) with λ = λn and δ = δn. Then every672

weak accumulation point is actually a strong one and a minimizer of (P). In addition,673

there is an accumulation point.674
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Proof. In principle, we only need to estimate the difference in the solution of (3.4)675

and (5.4). For this purpose, we use the equivalent formulations in (3.8) and (5.5) to676

see that (5.3) gives677

‖ .zλ(t)− .
zδ(t)‖H ≤ ‖∂Iλ(R`(t) + A−Q(zδ(t)))−Aδ(R`(t) + A−Q(zδ(t)))‖H

+ ‖∂Iλ(R`(t) + A−Q(zδ(t)))− ∂Iλ(R`(t) + A−Q(zλ(t)))‖H

≤ |Ω|γδ
4λ(1− δ)

+
1

λ
‖Q‖L(H)‖zδ(t)− zλ(t)‖H

678

such that Gronwall’s inequality in turn implies679

(5.7) ‖ .zλ(t)− .
zδ(t)‖H ≤

(
‖Q‖L(H)

λ
T exp

(‖Q‖L(H)

λ
T
)

+ 1

)
|Ω|γδ

4λ(1− δ)
.680

We observe that the error induced by the additional smoothing is independent of the681

control `. Therefore, if λ and δ are coupled as indicated in (5.6), then the conver-682

gence results from Proposition 4.10 readily carry over to the solution operator with683

additional smoothing and we can use exactly the same arguments as in the proof of684

Theorem 4.11 to establish the claim.685

Remark 5.4. The above proof is completely along the lines of [16, Sections 4.2686

and 7.4], but we have briefly presented it for convenience of the reader. We underline687

that we do not claim that the coupling of λ and δ in (5.6) is optimal.688

The next lemma covers the differentiability of Aδ. Although the function maxδ689

slightly differs from the one in [16, Section 7.4], it is straight forward to transfer the690

analysis thereof to our setting giving the following691

Lemma 5.5 (Differentiability of As, [16, Lemma 7.24 & Corollary 7.25]). The692

operator Aδ is continuously Fréchet differentiable from Hp to H and its directional693

derivative at τ ∈ Hp in direction h ∈ H is given by694

A′δ(τ)h =
1

λ
max′δ

(
1− γ

|τD|F

) γ

|τD|3F
(τD : hD)τD +

1

λ
maxδ

(
1− γ

|τD|F

)
hD.695

Moreover, for every τ ∈ Hp, A′δ(τ) can be extended to an operator in L(H;H), which696

is self-adjoint and satisfies ‖A′δ(τ)‖L(H) ≤ C with a constant independent of τ .697

Proposition 5.6 (Differentiability of the smoothed solution operator). The698

solution operator Sδ is Fréchet differentiable from H1
0 (Xc) to H1(H). Its directional699

derivative at ` ∈ H1
0 (Xc) in direction h ∈ H1

0 (Xc), denoted by τ = S ′δ(`)h, is the700

second component of the unique solution (v, τ, η) ∈ H1(V ×H×H) of701

− div τ(t) = 0 in (VD)∗,(5.8a)702

τ(t) = C(∇sv(t)− η(t)) in H,(5.8b)703
.
η(t) = A′δ(σ(t)− εBz(t))(τ(t)− εBη(t)) in H,(5.8c)704

v(t)− (Gh)(t) ∈ VD,(5.8d)705

(v, τ)(0) = (0, 0) in V ×H.(5.8e)706707

where (u, σ, z) is the solution of (5.4) associated with uD = G`+ a.708

Proof. We again employ the equivalent formulation in (5.5). The operator differ-709

ential equation in (5.5a) has exactly the form as the one investigated in [16, Section 5],710
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except that there is an additional offset A and Q is not coercive, if ε = 0. It is however711

easily seen that these differences have no influence on the sensitivity analysis in [16,712

Section 5]. While it is rather evident that the constant offset does not play any role713

in this context, the coercivity of Q is only needed in [16] to verify the existence of714

solutions, if Aδ is replaced by ∂IK(Ω), and is not used for the sensitivity analysis of715

the smoothed equation. All in all, we see that, thanks to Lemma 5.5, [16, Theorem716

5.5] is applicable giving that the solution mapping of (5.5a) is Fréchet-differentiable717

from H1
0 (Xc) to H1(H) and its derivative at ` in direction h is the unique solution of718

.
η = A′δ(R`+ A−Qz)(Rh−Qη), η(0) = 0.719720

Since all mappings in (5.5b) are linear and affine, respectively, they are trivially721

Fréchet-differentiable in their respective spaces and the respective derivatives are given722

by v = T (−div(Cη),Gh) and τ = C(∇sv − η). In view of the definition of T , R, and723

Q, we finally end up with (5.8).724

5.2. Adjoint Equation. We now choose a concrete objective function, namely725

J : H1(H)×H1
0 (Xc)→ R, (σ, `) 7→ 1

2
‖σ(T )− σd‖2H +

α

2
‖
.

`‖L2(Xc),(5.9)726
727

where α > 0 is a Tikhonov paramenter and σd ∈ H a given desired stress. The transfer728

of the upcoming analysis to other Fréchet-differentiable objectives is straightforward,729

but, in order to keep the discussion concise and since the objective in (5.9) is certainly730

of practical interest, we restrict ourselves to this particular setting. The smoothed731

optimization problem then reads732

(Pδ)
min

`∈H1
0 (Xc)

J(Sδ(`), `).733

In the following, we will derive first-order necessary optimality conditions for this734

problem involving an adjoint equation.735

Definition 5.7 (Adjoint equation). Let (σ, z) ∈ H1(H×H) be given. Then the736

adjoint equation is given by737

−divC∇swϕ(t) = −divCA′δ(σ(t)− εBz(t))ϕ(t) in (VD)∗,(5.10a)738

wϕ(t) ∈ VD,(5.10b)739

.
ϕ(t) = (C + εB)A′δ(σ(t)− εBz(t))ϕ(t)− C∇swϕ(t) in H,(5.10c)740

ϕ(T ) = C(σ(T )− σd −∇swT ) in H,(5.10d)741

−divC∇swT = −divC(σ(T )− σd) in (VD)∗,(5.10e)742

wT ∈ VD.(5.10f)743744

A triple (wϕ, ϕ, wT ) ∈ H1(VD)×H1(H)×VD is called adjoint state, if it fulfills (5.10)745

for almost all t ∈ (0, T ).746

Lemma 5.8. For every (σ, z) ∈ H1(H×H), there exists a unique adjoint state.747

Proof. Thanks to the definition of Q and T in Definition 3.14 and Lemma 3.12,748

the adjoint equation is equivalent to749

(5.11)
.
ϕ = QA′δ(σ− εBz)ϕ, ϕ(T ) = C

[
σ(T )−σd−∇sT (− div(C(σ(T )−σd)), 0)

]
.750
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This is an operator equation backward in time, whose existence again follows from751

Banach’s contraction principle thanks to the boundedness of A′δ(σ − εBz) as an op-752

erator from H to H by Lemma 5.5. Alternatively, the existence of solutions to (5.11)753

can be deduced via duality, cf. [16, Lemma 5.11].754

With the help of the adjoint state we can express the derivative of the so-called755

reduced objective, defined by756

Fδ : H1
0 (Xc)→ R, ` 7→ J(Sδ(`), `),757

in a compact form, as the following result shows:758

Proposition 5.9 (Differentiability of the reduced objective function). The re-759

duced objective Fδ is Fréchet differentiable from H1
0 (Xc) to R. Its directional derivative760

at ` ∈ H1
0 (Xc) in direction h ∈ H1

0 (Xc) is given by761

(5.12) F ′δ(`)h = ∂σJ(σ, `)S′δ(`)h+ ∂`J(σ, `)h = (q, h)L2(Xc) + α
( .
`,

.

h
)
L2(Xc)

,762

where q ∈ L2(Xc) is defined by763

(5.13) q := G∗
[
− divC

(
A′δ(σ − εBz)ϕ−∇swϕ

)]
764

and (u, σ, z) is the solution of (5.4) associated with ` and (wϕ, ϕ, wT ) is the corre-765

sponding adjoint state.766

Proof. We define Ψ : H1
0 (Xc) 3 ` 7→ 1

2‖Sδ(`)(T ) − σd‖2H ∈ R. According to767

Proposition 5.6 and the chain rule, Ψ is Fréchet-differentiable. If we denote by (u, σ, z)768

and (v, τ, η) the solutions of (5.4) and (5.8), respectively, and the adjoint state by769

(wϕ, ϕ, wT ), then we obtain for its directional derivative770

Ψ′(`)h = (σ(T )− σd, τ(T ))H771

= (C(σ(T )− σd −∇swT ),∇sv(T )− η(T ))H (by (5.8a), (5.10f), and (5.8b))772

= (C(σ(T )− σd −∇swT ),∇sGh(T ))H773

− (ϕ(T ), η(T ))H (by (5.10e), (5.8d), and (5.10d))774

= −(ϕ(T ), η(T ))H (since h ∈ H1
0 (Xc)).775776

For the last term we find777

(ϕ(T ), η(T ))H778

= (ϕ(T ), η(T ))H − (ϕ(0), η(0))H (by (5.8e) and (5.8b))779

= (
.
ϕ, η)L2(H) + (ϕ,

.
η)L2(H)780

=
(
(C + εB)A′δ(σ − εBz)ϕ− C∇swϕ, η

)
L2(H)

781

+
(
ϕ,A′δ(σ − εBz)(τ − εBη)

)
L2(H)

(by (5.10c) and (5.8c))782

= −(C∇swϕ, η)L2(H) + (CA′δ(σ − εBz)ϕ,∇sv)L2(H) (by (5.8b))783

= −(C∇swϕ, η −∇sv +∇sGh)L2(H)784

+ (CA′δ(σ − Bz)ϕ,∇sGh)L2(H) (by (5.10a) and (5.8d))785

= (∇swϕ, τ)L2(H)786

+
(
C(∇swϕ −A′δ(σ − εBz)ϕ),∇sGh

)
L2(H)

(by (5.8b))787

= −(q, h)L2(Xc) (by (5.8a) and (5.13)).788789
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Note that A′δ(σ − εBz) ∈ L∞(L(H)) by Lemma 5.5 and G∗ maps V∗ to X ∗c ∼= Xc,790

which give the asserted regularity of q.791

Theorem 5.10 (KKT-Conditions for (Pδ)). Let ` ∈ H1
0 (Xc) be locally optimal792

for (Pδ) with associated state (u, σ, z) ∈ H1(Vp × Hp × Hp). Then there exists an793

adjoint state (wϕ, ϕ, wT ) ∈ H1(VD)×H1(H)×VD such that ` satisfies for almost all794

t ∈ (0, T ) the boundary value problem795

(5.14) α∂2
tt`(t) = q(t) in Xc, `(0) = `(T ) = 0796

with q as defined in (5.13). This in particular implies that ` ∈ H2(Xc).797

Proof. If ` ∈ H1
0 (Xc) is a local minimizer of (Pδ), then Proposition 5.9 implies798

α(
.

`,
.

h)L2(Xc) + (q, h)L2(Xc) = 0 ∀h ∈ H1
0 (Xc).799

Thus the second distributional time derivative of ` is a regular distribution in L2(Xc),800

namely q, which is just (5.14).801

Remark 5.11. An optimality condition for the original non-smooth optimal con-802

trol problem (P) could be derived by passing to the limit λ, δ ↘ 0 in the regularized803

optimality system (5.10) and (5.14). This has been done for the case with hardening804

in [26] and for a scalar rate-independent system with uniformly convex energy in [20].805

The optimality systems obtained in the limit are comparatively weak compared to806

what can be derived by regularization in the static case, see [11] for the latter. We807

expect that results similar to [26] can also be obtained in case of (P). This would808

however go beyond the scope of this paper and is subject to future research.809

6. Numerical Experiments. The last section is devoted to the numerical so-810

lution of the smoothed problem (Pδ). We start with a concrete realization of the811

operator G mapping our control variable in form of the pseudo-force ` to the Dirichlet812

data. Given the precise form of the operator G, we can use Proposition 5.9 to obtain813

an implementable characterization of the gradient of the reduced objective, see Algo-814

rithm 6.1 below. We moreover describe the discretization of the involved PDEs and815

report on numerical results.816

6.1. A Realization of the Operator G. Let us recall the assumptions imposed817

on G throughout the paper: G is a linear and continuous operator from X to V and818

from Xc to Vp with some p ∈ (2, p] and a Hilbert space Xc, which is compactly819

embedded in X . In principle, there are various ways to realize such an operator, for820

instance by means of convolution. As we are dealing with a problem in computational821

mechanics anyway, we choose G to be the solution operator of a particular linear822

elasticity problem. For this purpose, we split ∂Ω into two disjoint measurable parts823

ΛD and ΛN , called pseudo Dirichlet boundary and pseudo Neumann Boundary. As824

for ΓD and ΓN , we require that ΛN is relatively open in ∂Ω, while ΛD is relatively825

closed and has positive measure. Moreover, we assume that Ω ∪ ΛN is regular in the826

sense of Gröger. Therefore, according to [10], there is an index p such that, for every827

p ∈ [p′, p], the linear elasticity equation828

(6.1) (C∇sυ,∇sζ)H = 〈b, ζ〉 ∀ ζ ∈ Vp
′

Λ , υ ∈ VpΛ829

admits a unique solution in VpΛ for every right hand side b ∈ (Vp
′

Λ )∗. Herein, VpΛ is830

defined as VpD in (2.1) with ΛD instead of ΓD. Depending on the precise geometrical831

structure, the index p may well differ from the one in Lemma 3.12, but, in order to832

This manuscript is for review purposes only.



OPTIMAL CONTROL OF PERFECT PLASTICITY 21

ease the notation, we assume that both are equal (just take the minimum of both,833

which is still greater two). As in section 5, we fix p ∈ (2, p] in what follows and assume834

in addition that p < 2n/(n−1). Furthermore, we require that ΓD ⊂ ΛN and that ΓD835

and ΛD have positive distance to each other, i.e.,836

(6.2) dist(ΓD,ΛD) = inf
x∈ΛD, ξ∈ΓD

|x− ξ| > 0.837

Similarly to (3.6), we denote the linear and continuous solution operator of (6.1)838

by TΛ : (Vp
′

Λ )∗ → VpΛ. This operator will also be considered as a mapping from839

V∗Λ := (V2
Λ)∗ to VΛ := V2

Λ, which we denote by the same symbol. Since p < 2n/(n−1)840

by assumption, Sobolev embeddings and trace theorems give that the embedding and841

trace operator842

E : Vp
′

Λ → L2(Ω;Rn), tr : Vp
′

Λ → L2(ΛN ;Rn)843

are compact. With these definitions at hand, we define X and Xc by844

(6.3) X := V∗Λ and Xc := L2(Ω;Rn)× L2(ΛN ;Rn)845

so that, due to the compactness of E and tr, we indeed have that Xc is compactly846

embedded in (Vp
′

Λ )∗ ↪→ X . Moreover, considered as an operator from X = V∗Λ to V, we847

simply set G := TΛ, while, with a slight abuse of notation, we define G as an operator848

from Xc to VpΛ by849

(6.4) G := TΛ ◦ (E∗, tr∗),850

i.e., given (f, g) ∈ Xc, G is the solution operator of (6.1) with 〈b, ζ〉 = (f, ζ)L2(Ω;Rn) +851

(g, ζ)L2(ΛN ;Rn). Note that, since Xc ↪→ (Vp
′

Λ )∗, this equation indeed admits a solu-852

tion in VpΛ. Moreover, the following result shows that our control space Xc is “large853

enough”:854

Lemma 6.1. There holds T (0, H2(Ω;Rn)) ⊂ T (0,G(Xc)), where T is the solution855

operator from (3.6).856

Proof. Due to (6.2), there is a function φ ∈ C∞(Rn;R) such that 0 ≤ φ ≤ 1,857

φ ≡ 1 on ΓD and φ ≡ 0 on ΛD. Let uD ∈ H2(Ω;Rn) be arbitrary and define858

ũD := φuD ∈ H2(Ω;Rn) ∩ VpΛ. From construction of φ it follows that such that859

T (0, uD) = T (0, ũD) holds. Moreover, if we define f := − divC∇sũD ∈ L2(Ω;Rn)860

and g := trC∇sũD ∈ L2(ΛN ;Rn), then G(f, g) = ũD and hence, T (0,G(f, g)) =861

T (0, uD), which proves the assertion.862

Let us now investigate the precise structure of the gradient of the reduced objec-863

tive for this particular realization of G.864

Lemma 6.2. Let `, h ∈ H1
0 (Xc) be arbitrary and denote the components of ` and865

h by `Ω, hΩ ∈ H1
0 (L2(Ω;Rn)) and `N , hN ∈ H1

0 (L2(ΛN ;Rn)). Then866

(6.5) F ′δ(`)h =

ˆ T

0

ˆ
Ω

(
.

ψ + α
.

`Ω) ·
.

hΩ dx+

ˆ T

0

ˆ
ΛN

(
.

ψ + α
.

`N ) ·
.

hN ds,867

with ψ ∈ H2(VΛ) ∩H1
0 (VΛ) defined by868

(6.6) ψ(t) :=

ˆ t

0

ˆ s

0

q(r) dr ds− t

T

ˆ T

0

ˆ s

0

q(r) dr ds,869
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where q ∈ L2(VΛ) denotes the solution of870

(6.7) (C∇sq(t),∇sζ)H =
(
C
(
A′δ(σ(t)− εBz(t))ϕ(t)−∇swϕ(t)

)
,∇sζ

)
H
∀ ζ ∈ VΛ.871

Thus the Riesz representation of F ′δ(`) w.r.t. the H1
0 (Xc)-scalar product is (Eψ, trψ)+872

α`.873

Proof. The definition of G in (6.4) yields for q as defined in (5.13)874

(6.8) q = (E, tr)T ∗Λ
[
− divC

(
A′δ(σ − εBz)ϕ−∇swϕ

)]
.875

Now, since ϕ,wϕ ∈ C([0, T ];H×VD) by Lemma 5.8, we have [−divC(A′δ(σ−εBz)ϕ−876

∇swϕ)](t) ∈ V∗Λ for all t ∈ [0, T ]. As TΛ : V∗Λ → VΛ is self adjoint due to the symmetry877

of C, the definition of q via (6.7) thus implies q = (Eq, tr q) and hence, (5.12) becomes878

F ′δ(`)h = α(
.

`,
.

h)L2(Xc) +

ˆ T

0

ˆ
Ω

q · hΩ dx dt+

ˆ T

0

ˆ
ΛN

q · hN ds dt.879

Since ∂2
ttψ = q by construction, integration by parts in time implies the assertion.880

The precise structure of q in (6.8) together with the gradient equation in (5.14)881

immediately gives the following regularity result:882

Corollary 6.3. If G is chosen as in (6.4), then the set of local minimizers of883

(Pδ) is a subset of H2(VΛ) ∩H1
0 (VΛ).884

The characterization of the Riesz representation of the gradient of the reduced885

objective in Lemma 6.2 is of course crucial for the construction of gradient based886

optimization methods. We observe that, if we start with an initial guess for the control887

of the form (E`0, tr `0) with a function `0 ∈ H2(VΛ) ∩ H1
0 (VΛ), then the gradient888

update will preserve this structure, i.e., the next iterate `1 := `0−σ0(ψ0 +α`0) with a889

suitable step size σ0 > 0 will again be an element of H2(VΛ)∩H1
0 (VΛ). Note moreover890

that, due to the additional regularity of locally optimal controls in Corollary 6.3, it891

makes perfectly sense to restrict to control functions in H2(VΛ)∩H1
0 (VΛ). The overall892

computation of the reduced gradient by means of the adjoint approach is given as a893

pseudo-code in Algorithm 6.1.894

Algorithm 6.1 Computation of the Reduced Gradient

Require: control function ` ∈ H2(VΛ) ∩H1
0 (VΛ)

1: Compute the Dirichlet data uD by solving for all t ∈ [0, T ]

(C∇sυ(t),∇sζ)H =

ˆ
Ω

`(t) · ζ dx+

ˆ
ΛN

`(t) · ζ ds ∀ ζ ∈ Vp
′

Λ .

2: Compute the state (u, σ, z) as solution of (5.4) with uD from step 1.
3: Solve the adjoint equation in (5.10) with solution (wϕ, ϕ, wT ).
4: Compute q as solution of (6.7).
5: Integrate q according to (6.6) to obtain ψ.
6: return ψ + α` as Riesz representative of F ′δ(`).

Based on Algorithm 6.1, gradient-based first-order optimization algorithm like895

the classical gradient descent method or nonlinear CG methods can be used to solve896
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the smoothed problem (Pδ). For the computations in subsection 6.4 below, we used897

a standard gradient method with an Armijo line search. As termination criterion, we898

require that the norm of the gradient is smaller than the tolerance TOL = 5e-04. If899

this criterion is not met, the algorithm will stop after 100 iterations. Note that the900

natural scalar product (and associated norm) for the termination criterion as well as901

for the step size control is902

(
.
g,

.

`)L2(Xc) = (
.
g,

.

`)L2(L2(Ω;Rn)) + (
.
g,

.

`)L2(L2(ΓN ;Rn)).903

6.2. Discretization. In order to obtain an implementable algorithm, we need to904

discretize the PDEs in Algorithm 6.1. We follow the “first optimize, then discretize”-905

approach, i.e., we discretize the continuous gradient as given in Algorithm 6.1, see906

Remark 6.4 below.907

Let us begin with the discretization in space. The computational domain is dis-908

cretized by means of a regular triangulation, which exactly fits the boundary (which909

does not cause any trouble in our test scenarios, since our computational domain910

is polygonally bounded). For the displacement-like variables u, wϕ, wT , and q, we911

use standard continuous and piecewise linear finite elements, whereas the stress- and912

strain-like variables σ, z, and ϕ are discretized by means of piecewise constant ansatz913

functions. The state system is reduced to displacement and plastic strain only by elim-914

inating the stress field by means of (5.4b). We are aware that this type of discretization915

will in general lead to locking effects, but we assume that these can be neglected, as916

we do not consider “thin” computational domains. A suitable discretization of state917

and adjoint equation accounting for locking is however essential, especially in case of918

stress tracking, and therefore subject to future research.919

Concerning the time discretization, we apply an implicit Euler scheme to (5.4c)920

and (5.10c). The numerical integration for the computation of ψ and the evaluation921

of the objective is performed by an exact integration of the linear interpolant built922

upon the iterates of the implicit Euler scheme.923

To solve the discretized equations in every iteration of the implicit Euler scheme,924

we use the finite element toolbox FEniCS (version 2018.1.0). The nonlinear state925

equation is solved by the FEniCS’s inbuilt Newton-solver with a relative and absolute926

tolerance of 10−10.927

Remark 6.4. Let us emphasize that our “first optimize, then discretize”-approach928

leads to a mismatch between the discretization of the derivative of the reduced ob-929

jective in function space and the derivative of the discretized objective. Thus, the930

“gradient” computed by means of a discretization of Algorithm 6.1 does not coincide931

with the true discrete gradient. In our numerical experiments, it however turned932

out that, as expected, this mismatch only plays a role for large time step sizes (as933

expected) and small values of λ, see Table 2 below.934

6.3. The Test Setting. For our numerical test, we choose the following data:935

Domain. The two-dimensional computational domain is set to Ω := (0, 4) ×936

(0, 1) ⊂ R2 with the boundaries ΓD := [{0} ∪ {4}] × [0, 1], ΛD := [1, 3] × [{0} ∪ {1}]937

and ΓN := ∂Ω \ ΓD, ΛN := ∂Ω \ ΛD.938
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Elasticity tensor, hardening and smoothing parameters. We choose typical mate-939

rial parameters of steel:940

E = 210
[
kN/mm

2]
(Young’s modulus),941

ν = 0.3 (Poisson’s ratio),942

λ =
Eν

(1 + ν)(1− 2ν)
≈ 121.1538

[
kN/mm

2]
µ =

E

2 + 2ν
≈ 80.7692

[
kN/mm

2] (Lamé parameters),943

γ = 0.45
[
kN/mm

2]
(uniaxial yield stress)944945

and define the elasticity tensor by Cε := λ tr(ε)I + 2µ ε for all ε ∈ Rn×ns .946

In our numerical tests, we set ε = 0 such that there is no hardening. We again947

underline that this case is covered by our analysis, see Assumption 4.6 and 5.1(iii).948

The smoothing parameter δ of the max-function in (5.2) is set to 10−8. During949

the numerical experiments, it turned out that this parameter appears to have only950

little influence on the results and the performance of the algorithm so that we simply951

fix it to this value.952

End time and initial condition. We set T = 1 and σ0 ≡ 0.953

Desired Dirichlet displacement. The offset in the Dirichlet condition is chosen to954

be a(t) := t ae, where ae(x, y) := 1
200 (x− 2, 0) for (x, y) ∈ Ω.955

Optimization problem. We set the desired stress to zero, i.e., σd ≡ 0, and the956

Tikhonov parameter α to 10−4.957

The above setting is motivated by the following application-driven optimization958

problem: The aim of the optimization is to reach a desired displacement of the Dirich-959

let boundary (given by ae) and, at the same time, to minimize the overall stress960

distribution at end time. For this reason, the left and right boundary of the body961

occupying Ω is pulled apart constantly in time. The control ` (respectively uD) can962

alter this process for t ∈ (0, T ), but at the end (and also the beginning) the control963

is zero, hence, the position of the Dirichlet boundary at t = T is predefined, namely964

by the desired ae. The minimization of the stress at end time is reflected by setting965

σd ≡ 0 and choosing a comparatively small Tikhonov parameter.966

6.4. Numerical Results. Let us finally present the numerical results. In order967

to assess the impact of the Yosida regularization, we vary the parameter λ and consider968

the distance of the stress field to the feasible set K(Ω) at the end of the iteration as969

an indicator for the effect of the regularization. To be more precise, given the feasible970

set of the von Mises yield condition in (5.1) and a discrete solution σh, we compute971

distK := ess sup
(t,x)∈(0,T )×Ω

|σDh (t, x)|F − γ
γ

.972

Furthermore, we evaluate the error induced by the inexact computation of the reduced973

gradient caused by the first-optimize-then-discretize approach. It turned out that this974

error is entirely induced by the time discretization while the spatial discretization had975

no effect here (which is to be expected, as we used a Galerkin scheme). Therefore,976

we vary the time step size and use the difference between in the (inexact) directional977

derivative and a difference quotient as error indicator. To describe this in detail, let978

`h denote the (discrete) control variable in the last iteration and denote the inexact979

reduced gradient computed by the discretized counterpart of Algorithm 6.1 by gh.980
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Then we compute981

err =

∣∣∣∣∣ 〈gh,−gh〉H1
0 (Xc) − τ−1

(
Fδ(`h − τ gh)− Fδ(`h)

)
τ−1

(
Fδ(`h − τ gh)− Fδ(`h)

) ∣∣∣∣∣,982

i.e., we compute the relative error of the directional derivative in the anti-gradient983

direction (which is also our search direction). The step size in the difference quotient984

is set to τ = 10−8.985

Table 1 shows the numerical results for different values of λ. For the computations,986

we chose an equidistant time step size by dividing [0, T ] in nt = 128 intervals of the987

same length. The spatial mesh is equidistant, too, with nx = 64 elements in horizontal988

and ny = 16 in vertical direction. Recall that we focus on the last iteration of the989

gradient method, that is, either the norm of the gradient was smaller than TOL = 5e-04990

(i.e., 〈gh,−gh〉H1
0 (Xc) ≥ −TOL2 = −2.5 · 10−7) or the 100th iteration was reached. We

λ iteration 〈gh,−gh〉H1
0 (Xc)

Fδ(`h−τ gh)−Fδ(`h)
τ err distK

0.001 100 -4.7174e-07 -4.8520e-07 0.027751 0.00048
0.01 25 -2.0089e-07 -2.0869e-07 0.037369 0.00192
0.1 33 -2.4687e-07 -2.5552e-07 0.033854 0.01781
1 58 -2.1643e-07 -2.1790e-07 0.006773 0.13652
10 100 -2.0106e-06 -2.0122e-06 0.000833 0.62584
100 62 -2.4884e-07 -2.4876e-07 0.000338 5.31148

Table 1: Comparison of the numerical results for different values of λ.

991
observe that the adjoint approach becomes less accurate for small values of λ reflecting992

the non-smoothness of the limit problem. Furthermore, the relative distance of |σDh |F993

to the yield stress γ decreases when λ decreases, illustrating the efficiency Yosida-994

regularization.995

In Table 2, we analyze the impact of the number of time steps on the last iteration996

of the gradient method. The spatial mesh is again equidistant with nx = 64 and997

ny = 16 and we set λ = 1. We observe that, as expected, the relative error of the

nt iteration 〈gh,−gh〉H1
0 (Xc)

Fδ(`h−τ gh)−Fδ(`h)
τ err distK

4 55 -2.4601e-07 -3.1816e-07 0.226817 0.0502
8 51 -2.3590e-07 -2.8903e-07 0.183828 0.0478
16 52 -2.4577e-07 -2.6541e-07 0.074012 0.0497
32 45 -2.4318e-07 -2.5225e-07 0.035941 0.1066
64 77 -2.4627e-07 -2.5056e-07 0.017121 0.1017
128 58 -2.1643e-07 -2.1790e-07 0.006773 0.1365
256 34 -2.4476e-07 -2.4562e-07 0.003481 0.1417
512 48 -2.2542e-07 -2.2541e-07 0.000045 0.1318
1024 43 -1.9258e-07 -1.9225e-07 0.001736 0.1339
2048 41 -2.3150e-07 -2.3165e-07 0.000662 0.1339

Table 2: Comparison of the numerical results for different numbers of time steps.

998
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directional derivative decreases when the number of time steps increases such that the999

error caused by the first-optimize-then-discretize approach disappears if the time step1000

size goes to zero. Moreover, for larger number of time steps, the time discretization1001

has no effect on the feasibility of the stress (which is of course mainly influenced by1002

the Yosida parameter as seen before).1003

We end the description of our numerical results with the time evolution of the1004

stress field after optimization. For these computations, we set λ = 1, nt = 256,1005

nx = 128, and ny = 32. The result of the optimization after 150 iterations in form of1006

the stress field at selected time points is shown in Figure 2. We observe that until

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 1: Legend; values in
[
kN/mm

2]
.

1007

nt = 84 the norm of the stress increases constantly in time. Afterwards, between1008

nt = 84 and nt = 240, the yield surface is reached and the norm of the stress stays1009

almost constant. Moreover, until nt = 240 the beam is slowly but constantly pulled1010

apart. From nt = 240 on, the beam is fast pressed together and the norm of the stress1011

shrinks to almost zero as desired. Figure 3 shows a zoom to the left Dirichlet boundary.1012

We observe that the optimal displacement of the Dirichlet boundary is not constant1013

in vertical direction. Instead there is a slight curvature of the Dirichlet boundary, i.e.,1014

the optimal Dirichlet displacement pulling the beam in horizontal direction slightly1015

varies in vertical direction during the evolution.1016
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