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Abstract 
In 1761, the German demographer Johann Peter Süßmilch published a simple population growth 
model that starts with a couple, in the eighth chapter of his book Die göttliche Ordnung. With the help 
of the Swiss mathematician Leonhard Euler, he projected the population for 300 years. He 
demonstrated that after that time the population will be growing approximately geometrically. In this 
paper, the population projection of Euler and Süßmilch is reanalyzed using matrix algebra. Graphs and 
tables show the time series of the population and its growth rates. Age structures of selected years are 
presented. The solution of the projection equation is derived. It is shown that the projection model can 
be described by a geometric trend model which is superimposed by six cyclical components. In the 
long run, the population time series can be explained quite well by the sum of only two components, 
the trend component and one component with explosive cycles of a period of about 24 years. In the 
very long run, the influence of the cyclical component diminishes, and the series can be solely 
explained by its geometric trend component, as has been also recognized by Euler and Süßmilch.  
 
Keywords: Population Projection, Matrix Model, Historical Demography. 
 

1. Introduction 

Johann Peter Süßmilch (1707–1767) was a German Protestant pastor in Berlin, statistician and 
demographer. His most important publication, Die göttliche Ordnung (1741), is regarded as a 
pioneering work in demography and the history of population statistics. He is sometimes called the 
“father of demography and statistics in Germany”, which can be read on a Berlin memorial plaque, for 
example. As an apologist of the Christian doctrine, Süßmilch wanted to prove in the second edition of 
Die göttliche Ordnung (1761) that the population is descended from a couple and that high population 
levels in antiquity are compatible with the Christian calendar, even in view of the Flood. For this task, 
he needed mathematical help, and he turned to one of his colleagues at the Berlin Academy of 
Sciences, Leonhard Euler (1707–1783), the famous Swiss mathematician. Euler calculated the 
doubling time of the population and carried out a population projection which starts with a couple. 
Given this growth model, Euler seeked to understand the long-term behavior of the growing 
population superimposed by cycles. He noted that the tripling time is finally about 24 years, which 
corresponds to an annual growth rate of 4.7 percent. The collaboration between Süßmilch and Euler is 
described in detail in the essays by Girlich (2007) and Klyve (2014). 
 

2. Population statistics in Süßmilch’s chapter eight 

Euler calculated for Süßmilch, in Chapter 82 of his revised edition of Die göttliche Ordnung from the 
year 1761, the doubling time of the population assuming geometric growth (§ 152 and § 156) and a 
population projection without information of the analytical methods (§ 160).  
The assumptions are: 
 
A1. The projection begins with one married couple, and each person is 20 years old. 
A2. Marriage age 20 years. 
A3. Each pair should give birth to one daughter and one son at the age of 22, 24 and 26 years. 
A4. Everyone reaches the age of 40 and dies afterwards. 

                                                        
1 Paper presented at the XV CLAPEM  (Congreso Latinoamericano de Probabilidad y Estadística Matemática), 
2 December 2019, Mérida, Yucatán, Mexico; a shortened version of the essay (without mathematical details)  
was presented at the St. Petersburg Historical Forum, St. Petersburg, Russia, 29 October -3 November 2019. 
 
2 The eighth chapter, “Von der Geschwindigkeit der Vermehrung und von der Zeit der Verdopplung”, is heavily 
inspired by Euler, and the paragraphs 147 to 161 were regarded by Du Pasquier as the intellectual property of 
Euler in his Opera Omnia (Euler, Du Pasquier, Leipzig, 1923), pp. 507–534. 
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The projection steps are biennial (occurring every two years), which is important for the stability of 
the model (see 4.4). 
 

Table 1: Recalculated numerical results of Euler and Süßmilch’s population growth model  
(see also Süßmilch’s original table in 

https://reader.digitale-sammlungen.de/de/fs1/object/display/bsb11283119_00325.html) 
Year Births Total Births Deaths People alive 

0 0 2 0 2 
2 2 4 0 4 
4 2 6 0 6 
6 2 8 0 8 
8 0 8 0 8 

10 0 8 0 8 
12 0 8 0 8 
14 0 8 0 8 
16 0 8 0 8 
18 0 8 0 8 
20 0 8 2 6 
22 0 8 2 6 
24 2 10 2 8 
26 4 14 2 12 
28 6 20 2 18 
30 4 24 2 22 
…     

216 13530 92444 17828 74616 
218 16700 109144 18838 90306 
220 17906 127050 19388 107662 
…     

294 404378 3806204 534612 3271592 
296 346580 4152784 555314 3597470 
298 273884 4426668 589546 3837122 
300 214370 4641038 646724 3994314 

 
Notes: The number of deaths is the cumulative number of deaths. Euler undercalculated ten births in 218. (See 
also Euler, Du Pasquier, 1923, p. 529). Instead of the correct number of 16700 births, Euler’s table lists only 
16690 births. This mathematical error affects the other results. For example, in the year 300, the number of 
living persons in his table is 3993954 (360 persons too low). In the years 172, 190, and 298, there are obvious 
literal errors in the numbers of the “total births” (172, 190) and the "people alive" (298). 
 
The number of births and deaths increases, strongly fluctuating, while the number of the living persons 
increases, moderately fluctuating, as can be seen in Table 1. Süßmilch interprets the results as follows 
(§ 161): “It can be seen from this that at any time after 24 years the number of the living persons 
becomes almost exactly three times greater, from which after 1000 and more years an astonishing 
increase must grow.” 
 
A note at the end of § 161 in smaller fonts than the rest of the chapter, probably written by Euler 
himself, is: 
 

“The great disorder that seems to prevail (in Euler’s table) does not prevent the number of 
births from following a kind of progression that one calls recurrent series […] Whatever the 
initial disorder of these progressions, they turn into a geometric progression if they are not 
interrupted and the disorders of the beginning fade little by little and vanish almost 
completely.” (Translation adopted from Bacaër, 2011, p. 17) 
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The chapter does not say more about the mathematics of this population model. However, Euler wrote 
a manuscript entitled “On the multiplication of the human race”3, which stayed unpublished during his 
lifetime. This manuscript contains the mathematical background. 
 
Euler has assumed the following recursion equation, which is a variant of his high fertility model II 
(10 children) in Section 2 of his manuscript (see also Girlich, p. 13 or Chapter 4.2 of this paper), 
 
Bn = Bn−11 + Bn−12 + Bn−13 
 
with the charcteristic equation 
 
13 − 2 −  – 1 = 0. 
 
The (dominant) solution is  ≈ 1.0961 with a tripling time of 23.94 years and a doubling time of 15.1 

years. The annual growth rate is  1.0961 1 100% 4.7%r     . 

 
 
Gumbel (1917) has analytically shown, for Euler and Süßmilch’s model, that in the long run the 
population will grow geometrically with the factor  = 1.0961. He remarks also that the model is 
similar to that of Fibonacci from the year 1202.  
 
Bacaër (2011) shows that the total population is about ten times the number of births 
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However, if the age at death tends to infinity, then the factor is only 19% higher:  
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Age at death does not have an important influence on population size, if the population growth rate is 
so high. 
  

3. Matrix population model of Euler and Süßmilch 

3.1 Presentation and results 

The matrix representation of the female part of the model is given by 
 

1t tn A n   , 0,1,2,3,...t   

or 

0
t

tn A n  , 0,1,2,3,...t   

with the population vector 
 

0 (0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0)Tn   

 
and the projection matrix 
 
                                                        
3 “Sur la multiplication du genre humain”, first published in: Euler, L; Du Pasquier, L. G.: Leonhardi Euleri 
opera omnia, Serie I, Vol. 7, Leipzig 1923, pp. 545–552. The manuscript is in notebook H6, probably written 
between 1750 and 1755 (see comments in Euler, Du Pasquier, 1923, p. 534). 
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We describe the biennial projection step with t. The population vector of the total population is given 
by 
 
pt = 2·nt. tt n2p  . 

 
The 20×20 projection matrix L is a special case of the Leslie matrix, which is well known in 
demography. Now, we can apply methods of matrix algebra, projecting the population and analyzing 
the ergodic characteristics of the growth model. The results of Table 1 have been calculated with the 
above matrix population model. 
 
The projection results in Figs. 1 to 3 show that the initial population is approaching a stable 
population. In fact, the oscillations decrease very slowly. Finally, the typically stable age structure of a 
growing population results, whereby the biennial growth rate roughly tends to 9.6%. The population 
size increases very rapidly after a while, because of the high growth rate. Population sizes are: 456 
(after 100 years), 3,994,314 (after 300 years), 35,161,956,600 (after 500 years), 3.4·1020 or 340 
quintillion (after 1000 years) . Even after 500 years, the stable state has not yet been achieved, where 
the population size is nearly five times higher than today’s world population (see Fig. 3). Probably, 
Euler’s projection ended already after 300 years to avoid publishing unbelievably high population 
numbers. That the model leads to implausible and impossible populations sizes in the long run is 
evident, if one calculates world population densities (people per sq. km of land area) which are, in year 
500, 235 and, in year 1000, 2.2753·1012 (2.3 trillion) or 2,275,313 people per sq. m. 
 



 5

0 20 40 60 80 100

0
2

0
0

4
0

0

Year

P
o

p
u

la
tio

n

0 20 40 60 80 100

-0
.2

0
.2

0
.6

Year

G
ro

w
th

 R
a

te

 
Fig. 1: Total population sizes and biennial growth rates up to the year 100 
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Fig. 2: Total population sizes and biennial growth rates up to the year 300 
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Fig. 3: Age structures after 100, 300, 500 und 1000 years 
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Fig. 4: Comparison of the age structures 
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3.2 Solution of the projection equation 

Since the properties of the projection matrix A do not depend on the post-reproductive age classes, let 
us confine ourselves to the irreducible part of the matrix. This Leslie matrix L consists of the first 13 
age classes. The 13×13 matrix L and the population vector n0 are: 
 
 

0 0 0 0 0 0 0 0 0 0 1 1 1

1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

L

 
 
 
 
 
 
 
 











 













 

 

0 (0,0,0,0,0,0,0,0,0,0,1,0,0)Tn   

 
We regard only the female population. The projection results up to the year 300 are given in the 
appendix.  
 
The eigenvalues i of L are the solution of the characteristic equation  
 
det(L − I) = 0 or 13 − 2 −  – 1 = 0, 
 
where I is the identity matrix. 
 
Since L is an irreducible, primitive matrix, there exists one positive eigenvalue that is greater than any 
of the others in magnitude. This eigenvalue 1 is called the dominant eigenvalue of L. The dominant 
eigenvalue is the growth factor of the population per projection step. The right eigenvector belonging 
to 1 contains only positive elements and reflects the age structure of the stable population. 
 

The solution of the matrix equation  0
t

tn L n   

 
is (see, e.g., Caswell, 2001, p. 76) 
 

1
0

t t
t i i i i i in w n w c w         . 

 
1

i iw and w  are column and row vectors of W and W−1, where W is the matrix of the eigenvalues of L 

and ci is a row vector of W−1n0; nt is the population vector at time t. 
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The dominant eigenvalue4 determines the ergodic properties of the population:  

if λ1 > 1, then  1
1 1 0 1
t

tn w n w     , 1
1 0w n   is a scalar, and  1

1 0 1ä w n w    is the stable 

equivalent population. 
 
Remark: The stable equivalent population for a population with m (13) fertile age classes and k > m 
(20) total age classes with the growth factor  is given by: 
 

1
1

1
1

1
1

k m

mm
Ä ä




    
     

    
  

 

 
The numerical solution of the projection equation for the total population is  

13

2

P =1.6662 1.0961t t
t i i

i

C 


    with i i iC c w   for t = 0, 1, 2, …(see Table 2) 

The index t denotes the (biennial) projection steps. The stable equivalent of the total population is 
1.6662. 
 

Table 2: Numerical solutions of the characteristic equation 

 Ci Eigenvalues i   
i Re(Ci) Im(Ci) Re(i) Im(i) Modulus ri Eigenvector 

w1 
1 1.66624094 0 1.096129 0  0.126 
2 −0.0914849 −0.2673070 0.9404209 0.5461789 1.0875214 0.115 
3 −0.0914849 0.2673070 0.9404209 −0.5461789 1.0875214 0.105 
4 −0.1075009 −0.0831605 0.5258241 0.9196097 1.0593267 0.096 
5 −0.1075009 0.0831605 0.5258241 −0.9196097 1.0593267 0.087 
6 −0.08108108 −0.0135135 0 1 1.0000000 0.080 
7 −0.08108108 0.0135135 0 −1 1.0000000 0.073 
8 −0.00210702 0.0107986 −0.9603462 0.2570448 0.9941513 0.066 
9 −0.00210702 −0.0107986 −0.9603462 −0.2570448 0.9941513 0.060 
10 −0.01414979 0.0296763 −0.6729737 0.6502474 0.9357966 0.055 
11 −0.01414979 −0.0296763 −0.6729737 −0.6502474 0.9357966 0.050 
12 −0.03679678 0.0125678 −0.3809896 0.8056402 0.8911842 0.046 
13 −0.03679678 −0.0125678 −0.3809896 −0.8056402 0.8911842 0.042 

 sum 1 
 
In the long term, the population is growing with declining oscillations around a geometric trend with a 
biennial growth rate of 9.61%. The stable equivalent population is 1.6662. The final age structure is 
given by the eigenvector w1 of the dominant eigenvalue. 
 
 
The following table (Table 3) shows the stable age structure for all 20 age classes and the reproductive 
values. The reproductive value is given by the left eigenvector v1 corresponding to 1. The 
reproductive value is the total number of female offspring, discounted with the population growth rate, 
who can be expected to be born to  an x-year-old woman. The reproductive value has its maximum in 
the age class 20–22, the beginning of the reproductive phase. 
 
 

                                                        
4 Eigenvalues and eigenvectors are calculated with R: eigen$val und eigen$vec. 
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Table 3: Stable age structure of all age classes and reproductive values 

Age 

Age Structure 
in the year 

1000 Stable Age 
Structure 

Reproductive 
Values Age 

Age 
Structure in 

the year 
1000 

Stable Age 
Structure 

Reproductive 
Values 

0–2 0.102 0.104 1 20–22 0.042 0.042 2.504 
2–4 0.093 0.095 1.096 22–24 0.038 0.038 1.745 
4–6 0.084 0.087 1.201 24–26 0.034 0.035 0.912 
6–8 0.078 0.079 1.317 26–28 0.031 0.032 0 

8–10 0.072 0.072 1.444 28–30 0.028 0.029 0 
10–12 0.067 0.066 1.582 30–32 0.026 0.026 0 
12–14 0.062 0.060 1.734 32–34 0.024 0.024 0 
14–16 0.057 0.055 1.901 34–36 0.022 0.022 0 
16–18 0.052 0.050 2.084 36–38 0.021 0.020 0 
18–20 0.047 0.046 2.284 38–40 0.019 0.018 0 

sum 1 1  
 
 
In the long term, the projection results for the model with all 20 age classes can be approximated by a 
geometric trend model, which is in this case  

2 2.010533467 1.096129T t
tP     

with the total female stable equivalent population 2.010533467totÄ   (see Table 4). 

 

Table 4: Geometric and matrix population projection 

Year Projection step t Geometric Trend Pop. T

t
P Projected Pop. Pt

Ratio T

t tP P  
 

log(Ratio)
0 0 4.02 2 2.011 0.6984 

100 50 395.75 456 0.868 −0.1417 
200 100 38950.06 46280 0.842 −0.1724 
300 150 3833464.89 3994314 0.960 −0.0411 
400 200 377289645.09 353041300 1.069 0.0664 
500 250 3.71328E+10 3.51620E+10 1.056 0.0545 
600 300 3.65462E+12 3.66017E+12 0.998 −0.0015 
700 350 3.59687E+14 3.68555E+14 0.976 −0.0244 
800 400 3.54004E+16 3.58201E+16 0.988 −0.0118 
900 450 3.48411E+18 3.46563E+18 1.005 0.0053 

1000 500 3.42906E+20 3.40028E+20 1.008 0.0084 
 
 
The dampening ratios in Figs. 5a and 5b demonstrate the tendency of achieving stability. 
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3.3 Influence of the cyclical components 

The trigonometric form of the solution is5 
6

1

P =1.6662 1.0961t
t i

i

S


   for t = 0, 1, 2, … 

with  

 1( [ ] ) ( [ ] )t
i ii r A cos phi i t B sin iS ph i t       t = 0, 1, 2, 3, … (see Table 5). 

 
There are three possibilities for the (positive) modulus ri of the cyclical components: 
 
ri > 1 increases the amplitudes of the population cycles over time (explosive cycles); 
ri < 1 decreases the amplitudes of the population cycles over time (damped cycles); 
ri = 1 leads to constant amplitudes and constant population cycles. 
                                                        
5 The trigonometric form of a complex number z = a + bi is z = r(cos θ + isin θ), where r = |a + bi| is the modulus 
of z, and tan θ = b/a. θ is called the argument of z. Normally, we will require 0 ≤ θ < 2π. 
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Table 5: Cyclical components of the population growth model 

i Compo 
nent 

modulus r phi(i) Ai Bi Period 
(double year) 

 Trend 1.0961290     
1 S1 1.0875214 0.5261682 −0.1829698 −0.5346139 11.94 
2 S2 1.0593267 1.0513774 −0.2150018 −0.166321 5.98 
3 S3 1.0000000 1.5707963 −0.1621622 −0.02702703 4.00 
4 S4 0.9941513 2.8800645 −0.00421404 0.02159716 2.18 
5 S5 0.9357966 2.3733678 −0.02829957 0.05935263 2.65 
6 S6 0.8911842 2.0125323 −0.07359357 0.02513567 3.12 

       
 
As seen in Table 5, we have a growing geometric trend model which is superimposed by explosive 
(S1, S2), constant (S3), and damped cycles (S5, S6). The longest period is around 24 years (S1), 
whereas the shortest period is around 4 years (S4). The graphical representations of the six cycles are 
seen in Fig. 6 and Fig. 7. 
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In the long run, the population time series can be explained quite well by the sum of two components: 
ZR1 = Trend + S1. The short term fluctuations are only important at the beginning of the time series. 
In the very long run, the influence of the cycle S1 diminishes, although S1 is an explosive cycle, 
because the ratio S1/Trend tends to zero. The series can be explained solely by its trend component 
(see Fig. 8).  
 

4. Questions 

4.1 How realistic are the assumptions on fertility and mortality? 

The fertility assumptions concerning the gross reproduction rate of 3 are more or less acceptable for 
that period. Completely unrealistic are the assumptions on mortality, which would imply a net 
reproduction of 3, too. Euler probably made these simple assumptions in order to carry out the 
calculations by hand at all. With today’s computing options, we can assume more realistic 
assumptions. Assuming Süßmilch’s life table, we obtain the following projection matrix: biennial 
survivor rates have been calculated from the lx-column of Süßmilch’s life table (see Moser, 1839, pp. 
77–78)  

0 0 0 0 0 0 0 0 0 0 1 1 1

0.661 0 0 0 0 0 0 0 0 0 0 0 0

0 0.897 0 0 0 0 0 0 0 0 0 0 0

0 0 0.956 0 0 0 0 0 0 0 0 0 0

0 0 0 0.965 0 0 0 0 0 0 0 0 0

0 0 0 0 0.973 0 0 0 0 0 0 0 0

0 0 0 0 0 0.983 0 0 0 0 0 0 0

0 0 0 0 0 0 0.985 0 0 0 0 0 0

0 0 0 0 0 0 0 0.984 0 0 0 0 0

0 0 0 0 0 0 0 0 0.984 0 0 0 0

0 0 0 0 0 0 0 0 0 0.984 0 0 0

0 0 0 0 0 0 0 0 0 0 0.980

L 

0 0

0 0 0 0 0 0 0 0 0 0 0 0.979 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
The dominant eigenvalue of this matrix is 1.0311, which corresponds to a yearly growth rate of 1.54%. 
The net reproduction rate decreases from 3 to 1.45.  
 

4.2 Similar models of Euler? 

In “Sur la multiplication du genre humain” (pp. 548–552), Euler proposes a projection with the 
following assumptions (see also Girlich, 2007) 
 
A1. The projection begins with one married couple, and each person is 20 years old. 
A2. Marriage age 20 years 
A3a. Each pair should give birth to one daughter and one son at the age of 22, 24, 26, 28 and 30 years. 
A4a. Everyone reaches the age of 50 and dies afterwards. 
 
Euler calculates the dominant eigenvalue as  = 1.13315. This result corresponds to an annual growth 
rate of 6.4%. He considered this growth rate as probablytoo high, and as a consequence he changed the 
assumptions 3 and 4 for the calculations which he finally made for Süßmilch. 
 

4.3 What is the effect of maximum age? 

With another projection, Euler assumed a maximum age of 50 (see 4.2). If we do not change the 
irreducible part of the projection matrix, then the maximum age has no effect on the eigenvalue or the 
biennial growth rate. The maximum age, however, affects the population size and the stable equivalent 
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population. We can model immortality in the Euler–Süßmilch model with the following matrix 
(Lefkovitch matrix) 

inf

0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1 1

L

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





 



 

 
The ratio of the stable equivalent populations of Linf and L is 2.391441/2.010051 ≈ 1.1898 (see 3.2). 
Thus, in the long run, the population in which immortality occurs is only about 19% higher than the 
population in which all people die at the age of 40. 
 

4.4 Annual instead of biennial projection steps? 

Smith; Keyfitz (1977, p. 79) and Pflaumer (1988, p. 12) assume one-year age groups of the Euler–
Süßmilch model and thus implicitly an irreducible 26×26 matrix. The recursion equation is Bn = Bn−22 
+ Bn−24 + Bn−26 with the characteristic equation 26 − 4 − 2 – 1 = 0. But the resulting eigenvalue 1 = 
1.04696 is not dominant. Their statement that the population grows by about 4.7% each year in the 
long term is therefore only correct on average. Over the long term, consecutive annual growth rates of 
0% and 9.61% are occurring with unstable age structures that fluctuate with constant cycles. Although 
the 26×26 matrix is irreducible, it is not primitive. Two non-complex eigenvalues, 1 = 104696 and 2 
= −1.04696, with same magnitude exist. If one wants to project with annual steps, then the first row of 
the projection matrix must be modified: at least two “fertility rates” must be next to each other (see 
Pollard, 1973). This change would have a small effect on the dominant eigenvalue and thus on the 
growth rate  
 
 

5. Concluding remarks 

Although the projection model of Euler and Süßmilch is not realistic, it impressively shows that 
constant fertility and mortality rates lead in the long term to geometric growth and a stable age 
structure of the population. In this view, it is the first (numerical) demonstration of the strong ergodic 
theorem of demography which assumes fixed age-specific birth and death rates: in the long run, the 
population will geometrically grow with a constant growth rate. These findings were important for the 
further development of scientific theories, because until that time it was not obvious that population 
will grow geometrically. Famous researchers adopted the thesis of geometric population growth rates. 
Thomas Malthus’s ideas about geometric population growth in his Essay on the Principle of 
Population (1798) came from the work of Euler and Süßmilch. Darwin, on the other hand, was 
inspired to formulate his theory of natural selection by reading Thomas Malthus’s Essay (Klyve, 
2014).  
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Appendix  
 

Numerical results of the female population up to the age of 26 (13×13 matrix) 
 

Year Population Year Population Year Population Year Population
0 1 76 67 152 2081 228 58555 
2 2 78 76 154 2152 230 59950 
4 3 80 80 156 2180 232 62218 
6 3 82 81 158 2195 234 66574 
8 3 84 81 160 2231 236 74174 

10 3 86 81 162 2336 238 85680 
12 3 88 81 164 2574 240 100795 
14 3 90 82 166 3001 242 118098 
16 3 92 87 168 3624 244 135402 
18 3 94 101 170 4374 246 150529 
20 3 96 127 172 5124 248 162111 
22 3 98 162 174 5747 250 170042 
24 4 100 197 176 6174 252 175499 
26 6 102 223 178 6413 254 180723 
28 8 104 237 180 6527 256 188742 
30 9 106 242 182 6606 258 202966 
32 9 108 243 184 6762 260 226428 
34 9 110 243 186 7141 262 260649 
36 9 112 244 188 7911 264 304573 
38 9 114 250 190 9199 266 354295 
40 9 116 270 192 10999 268 404029 
42 9 118 315 194 13122 270 448042 
44 9 120 390 196 15245 272 482682 
46 10 122 486 198 17045 274 507652 
48 13 124 582 200 18334 276 526264 
50 18 126 657 202 19114 278 544964 
52 23 128 702 204 19546 280 572431 
54 26 130 722 206 19895 282 618136 
56 27 132 728 208 20509 284 690043 
58 27 134 730 210 21814 286 791650 
60 27 136 737 212 24251 288 919517 
62 27 138 764 214 28109 290 1062897 
64 27 140 835 216 33320 292 1206366 
66 27 142 975 218 39366 294 1334753 
68 28 144 1191 220 45412 296 1438376 
70 32 146 1458 222 50624 298 1516598 
72 41 148 1725 224 54493 300 1578880 
74 54 150 1941 226 56994   

 
Geometric trend model: 

Pt = 1.6662·1.0961t for t = 0, 1, 2, 3, …. 
 
Approximation by the geometric trend model for large t, e.g., 
 
Pyear=300 = P150 = 1.6662·1.0961150 = 1582172. 
 


