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Abstract

The increasing use of electric vehicles (EV) brings up the need to invest in the charg-

ing infrastructure and extend the number of charging sites and stations. Especially

the integration of fast charging sites increases the convenience for the user. The

growing utilization of charging sites is also a chance to learn about charging be-

haviour and future needs. In this thesis, usage data of a charging site in Norway

is processed by a self-developed modelling tool, to create charging profiles based

on the measured energy data. Additionally an optimized peak-shaving approach is

examined. The capabilities and influence of an integrated battery electric storage

(BES) system and a photovoltaic (PV) system on the charging profiles are anal-

ysed. The peak-shaving reaches values between 30 % and 60 % depending on the

BES and PV configuration. Based on the results, differences and patterns in the

charging behaviour are visible on a weekly and monthly basis. The results of the

peak-shaving indicate a correlation of higher peak-shaving with a increasing BES

capacity. The PV system introduces more flexibility to the charging site that implies

more independence of the grid.
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1. Introduction

The key targets for 2020 in the EU climate action are "20% less greenhouse gas

emissions compared with 1990, a total of 20% energy consumption from renewable

energy, 20% increase of energy efficiency" [1]. These goals embrace the annually

growing consumption of electrical energy world wide [2]. The European society

failed the 2020 goals in transportation sector by increasing by 26% [3], and those for

2040 are higher: at least 40% less emissions (1990), 32% renewable energy of the

total consumption, and 32.5% more energy efficiency. [1]

To reach the 2040 targets the development and research of new technologies is

ongoing as well as the combination of existing technologies. Those energy solu-

tions need to be more sustainable, efficient, and produce less emissions. Around

24.6% percent of the total emissions are from the transportation sector [3]. To reduce

the amount caused by transportation one of the most emerging technologies is the

electric vehicle (EV).

Used as transportation in cities EVs reduce the emission of pollution caused by

traffic. This is mostly desirable in large cities where huge amounts of people live

and many cars are used. This does not only include private cars but also taxis and

buses. To reduce the carbon dioxide (CO2) and nitrogen oxides (NOx) emissions

EVs are interesting for Germany as well. They reduce the CO2 and NOx emissions

in cities so the legal limits are satisfied. Of course the fine dust by tire abrasion is

still existent. [4]

EVs are of interest because they do not have a combustion engine. Basically a

battery supplies a most often gear-less DC-motor, which drives the vehicle. Electric-

ity is the fuel, and it has the advantage that it is possible to use renewable energy

sources (p.e. Solar, Wind, Water). The reduction of pollution during driving an EV

makes it more sustainable and environmentally friendly than driving with combustion

engines. On the down site most electricity is still generated in conventional power

plants that are burning fossil fuels to produce electric energy. When an EV charges

this conventionally generated electricity, another conversion step is added instead

of directly using fossil fuel. This reduces the overall efficiency and the energy that is
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gained from the fossil fuel. It also eliminates the advantage of less CO2 emission.

Conventional generated electricity has higher CO2 emissions than renewable gen-

erated electricity and results therefore in higher emissions mitigation costs. [5]

Due to this fact it is preferable to use renewable sources to produce the charging

power of EVs. This adds another problem: The power grid can suffer under high

penetration of renewable sources. Changing weather conditions (solar, wind) are

causing an intermittent energy supply. A difference between supplied energy and

load causes an power imbalance in the grid. This imbalance causes frequency sta-

bility problems in the power grid. To prevent such an imbalance between demand

and supply due to the intermittent renewable generation an energy buffer is needed

in the grid. This can flatten the intermittent power. Such an energy buffer is an en-

ergy storage system. There are many different systems (see sec. 2.2).

The development and research in the field of EVs impacts the research and im-

provement of larger-scale battery systems. One objective to improve the efficiency

of EVs is to develop lighter batteries and/or increase capacity. The development of

more efficient batteries is forwarding the research on battery electric storage (BES)

in general. The increasing efficiency and capacity in batteries of EVs leads to in-

creasing efficiency and capacity in stationary battery systems as well. The price of

the technologies is related. Due to higher production margins of each component

EVs battery prices are decreasing. The price of the components for similar energy

systems of different size than the EVs battery decreases as well.

Instead of gas stations the EV is ’refuelled’ at a charging station. There are dif-

ferent kinds of charging stations. The two categories of charging possibilities are:

DC (fast, medium) and AC (slow, medium) charging. In each category are several

charger types, charging power or possible locations for charging sites (see. chap.

2.1).

A limitation of EVs compared with combustion engines is the range an EV is able

to drive with one charge. The maximum range can differ between 60 to 610 km de-

pending on the manufacturer, the model, and the installed battery [6]. The range

that can be reached maximally is also dependent on the temperature. The outside

temperature influences the charging energy of the battery.

A solution to determine the range issue of EVs is the use of a range extender in

the vehicle itself or to have a Plug-in-hybrid vehicle. Both types still use an amount

of gasoline to extend the range. The dependency on fossil fuel is continuing. The

extension of the range can be up to 500 km. The charging of the battery is still re-

quired. alternating current (AC) charging is often related with long charging times
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when charging at home or at work. This is another drawback compared to the short

time of refilling a conventional vehicle. The longer charging times are inconvenient

especially for long-distance travels.

One approach to have a full battery within several minutes is a battery swap at a

swapping station. This idea is only working when there is an economical battery

recycling system that is in the best case also environment friendly and resource

saving. [7, 8]

Another approach is direct current (DC) fast charging. The most common fast charg-

ing types are CHArge de MOve (CHAdeMO) and Combined Charging System (CCS)

(see. chap. 2.1). To make this more attractive for the user an increasing number

and density of DC fast charging sites is needed. Those charging stations can charge

between 120 and 480V [9]. This is resulting in charging times of 40min to 80% with

480V fast charging, and more than 11.5h to charge to 100% for 240V charging or

less. The range limitation forces the driver to stop for a break. Breaks during long

distance travels are anyway necessary for the driver to ensure safe driving. Fast

charging enables to reduce the break to under one hour.

The location of those charging sites can be in city centres to offer a public fast

recharge of EVs. These are useful for people who do not have access to EV charg-

ing at home or at work. Those fast charging sites can be located outside the cities

as well. Next to the highways they provide charging to people who need to travel

distances beyond cities. It is not needed to be present while the EV charges. This

enables the EV user to spent the time on different purposes during the charging

process. One concrete example is grocery shopping after work in a store next to the

charging site. Therefore it is more attractive to users if there are places nearby the

charging station where the charging time can be spent usefully.

There is a problem with fast charging sites and charging sites in general. The

amount of energy consumption is adding up with other loads located in the grid.

Charging sites are mostly needed and can be economically feasible in areas where

many people live or passing by. The grid in highly populated areas may have trans-

former capacity additionally to the daily load. In rural areas for example near high-

ways where many people are passing by the capacity of the transformers may not

be enough to supply also the charging of EVs. [10]

If many EVs are charged, it can cause an additional peak time that causes stress to

the grid. In addition to the previous daily consumption the EV load stresses the grid

and its components to its voltage and frequency limits. This can cause overloads of

transformers and cables.



4

If a transformer is not able to deliver the demanded energy without overloading, the

grid suffers under great stress and assets may be destroyed. If there is an imbalance

between demanded and supplied energy, it can cause an instability in the grid. If the

caused frequencies are below 49.9Hz, the primary operating reserve in the grid is

fully activated. The overall grid stability would be in danger if the other reactions to

restore the frequency stability failed. [11]

If there is an increasing number of charging sites, the impact on the grid may not be

in a desired way. To prevent an instability one solution is to make costly investments

in transformers with a higher capacity and cables that are designed for higher power.

This makes sure that the demanded energy can be transported by the grid without

a bottleneck.

Most of the time the demanded energy is within the components limits, but there is a

peak time every day. To cover this peak, a transformer with higher capacity may be

needed, but the surplus capacity is unnecessary during non-peak time. There are

components which can make the grid more flexible.

Those components are for example decentralized energy generation systems. En-

ergy generation systems can be small-scale combustion engines like micro turbines

or fuel cells. The generation systems have often a higher efficiency when they are

used in combined heat and power (CHP). In CHP systems the waste heat is used

from the combustion systems. One example for an application is the heating of a

building that is co-located to the charging site. If there are charging sites without

any co-located buildings that need to be heated, a CHP system is less efficient and

therefore infeasible. The combustion engines are using mostly fossil fuels or hydro-

gen, which is also mostly produced from fossil materials. [12]

Another technology that provides flexibility to a power grid is a stationary energy stor-

age systems. They are flexible in the sense that they can store energy in times of low

utilisation of the station and can supply the charging site during high peaks. This is

called "peak-shaving". The most know storage system is the electro-chemical, which

has the operational principle like a conventional battery used as power source for

small electronic devices. [13]

For supportive systems, battery systems may be most feasible. There are different

solutions (see sec. 2.2). The most used kind of battery system is the Lithium-Ion

battery. They are available in different sizes. They are used for mobile electric de-

vices as well as for EVs. There are several other types of battery storage systems.

Another system used in power grids are Redox-Flow battery systems (see sec. 2.2)
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1.1. Goal of the thesis

In this thesis the main objectives are to develop a tool in Python (see Sec. 2.4) that

is able to model charging profiles from real measurement data of a DC fast charg-

ing site for EVs1 and a peak shaving optimization to show the impacts of integrated

energy sources on the charging profiles.

The real data is processed by the developed tool from the single energy values into

the charging profiles over the given charging time. This enables an overview how

much energy is charged at each time of the day. Monthly and weekly observations

are possible as well. In this shape the charging data can be analysed and used for

further applications. For charging site operators it is helpful to know what kind of

charging profile each station has, to plan the operation and also know the impact of

a site on the grid. The less a fast charging site impacts the power grid the cheaper

is the operation of the site. This charging profile modelling (CPM) Tool is completed

with the peak-shaving optimization that integrates a photovoltaic (PV) and a BES

system into the charging site. This shows how both systems impact the grid de-

mand of the charging site regarding peak-shaving. Both tools are evaluated (Chap.

5) and validated (Chap. 6)later on with examples from the real charging data kindly

provided by Fortum Charge & Drive. Finally the results are concluded (Chap. 7) and

future perspectives are suggested (Chap. 8).

The thesis is based on the idea from [14]. In that thesis a tool is implemented to

model the charging profiles in Java. He also implemented a peak-shaving optimiza-

tion with a BES system in Matlab. He also approached to add a PV system to the

site. In contrast, in this thesis the approach is the development of a holistic tool

set in Python. The tool set includes modelling of the charging profiles, optimizing

the peak-decrease, and plotting the results in a general way. The tool set is imple-

mented as scripts and classes so that they could be easily used as back-end for a

GUI application.

1In the context of the thesis the EV means a electric vehicle that contains only a battery system as energy
source.
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2. State-of-the-art

Today new technologies are developing fast. To give an overview on EV charging

this chapter presents the state of the art of related topics. Firstly charging of EV and

different architectures of charging sites are presented. In the second section battery

types are compared and their different applications examined. Furthermore opti-

mization technologies are evaluated and presented how they are used to improve

power systems. Finally programming in Python is introduced firmly.

2.1. Electric vehicle charging and design of a charging Site

There are two options to charge a EV. The first option is the charging via AC. The

advantage with AC charging is that it is possible at normal plugs in households. The

batteries inside the EV need DC. During charging, the AC from the plug is converted

to DC inside the EV. AC is transmitted in today’s meshed grids. The transport over

long distances is possible with a small amount of losses due to the high voltage (HV)

levels in the transmission grid. This method of charging usually takes several hours

depending on the battery size of the EV. The AC chargers require power between

16A(3.7kWh) and 63A(43kWh). This method is suitable for places where the car

is parked longer than 20min for example next to offices and accommodations. The

installation and operational costs are lower which is reflected in the charging price.

[15]

The alternative is DC charging also often referred to as "fast charging". The AC from

the grid is converted inside the charging station into DC. 1 A DC charging station re-

quires around 125A. With a voltage level of around 400V a station can provide 50kW

power in one hour to the EV. This enables a quick recharge especially interesting

for long-distant trips. Their location is most feasible next to highways. The charging

costs are in general higher due to higher operational and installation costs. [15]
1The term "charging station" in this context means a single charging station (pole). To draw a difference to

more than one charging station respectively a group of charging stations, which is comparable to a classic
filling station for fossil fuel, the term "charging site" is used.



2.1. ELECTRIC VEHICLE CHARGING AND DESIGN OF A CHARGING SITE 7

DC

Fast

Charger

Battery Electric Vehicles

Charging SiteGrid Connection

Figure 2.1.: Setup of a common charging site containing several chargers, electric
vehicles (EV) as well as a grid connection

The different types of charger are listed in Table 2.1. There are basically four regions

with different charger types: Japan, America, Europe (and other countries) as well

as China. The typical charger types depend on the standards in the countries as

well as on the regional manufacturers of EVs. EVs from Japan have AC charger of

"Type 1" and DC charger of type "CHAdeMO". In America it is common to use for AC

charging also "Type 1" but for DC charging "CCS1" is used. It looks similar to "Type

1" but has added the DC connection below. In Europe and the rest of the world the

commonly used charger is "Type 2" for AC charging and "CCS2" for DC charging.

Here is also a similarity to the "Type 2" charger and also to "CCS1". In China the

charger for both charging types is called "GB/T" although they have a different struc-

ture. This thesis focusses on the public DC fast charging. A structural example of

an charging site is given in Figure 2.1. Depending on the number of chargers, one or

more EV can charge at a DC fast charging station. It is also possible to have different

charger types (see Tab. 2.1) at one charging station. This enables more flexibility for

the operator as well as for the customer. The customer can charge independently

despite which model his EV is and from which manufacturer. The operator supplies

as many customers as possible by providing them flexibility and convenience.

The fast charging can be used for a few minutes, to charge energy to reach the



2.1. ELECTRIC VEHICLE CHARGING AND DESIGN OF A CHARGING SITE 8

Region
Current
type

Japan America Europe, rest of world China

AC
Plug
name

Type1 (or J1772) Type1 (or J1772) Type2 (or Mennekes) GB/T

DC
Plug
name

CHAdeMO CCS1 CCS2 GB/T

Table 2.1.: Charger types for direct current (DC) and alternating current (AC)
charging of electric vehicles (EVs) listed by region

destination or it can be used to fully charge the EV. This can take up to an hour de-

pending on the state of charge (SoC) and the model of the EV. Every model has its

own charging profile, which depends on the used battery and the charging control.

As power supply fast charging sites are often connected to the medium voltage (MV)

grid that is operated between 10kV and 30kV and can handle maximum power up to

1000kV A [16]. Such an afford is needed to make sure the grid can supply the high

power demand. Normally the MV grid supplies large grid customers as industry,

which have a constant and high demand of energy every working day, and the low

voltage (LV) grid. The LV grid is the lowest voltage level and supplies the rest of the

cities as households, public services and businesses.

Obtain an access to the MV grid, the customer must get an usage authorisation

from the grid operator. To establish the connection, a fee has to be paid for the

construction as well as connection charges. There are possible expenses for grid

extensions that guarantee the security of supply. Those grid extensions can be the

replacement of a transformer that is one of the most expensive assets in a power

grid. At the same time it is one of the most likely assets that need an upgrade to mit-

igate the impact of fast-charging on the power grid stability. [10] Additionally to the

grid connection, it is also possible to supply the charging station with different kinds

of electrical energy sources. The additional source enables the charging station to

operate temporarily independent of the grid or it contributes in the charging station
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at least supportive. That can have a positive impact for the operator regarding the

grid connection. If the operator is able to generate some of the energy on-site at the

charging site, it will influence the needed power grid modifications. [13] A problem

is that the most feasible locations for consumers are not the best options from a grid

utility perspective, because in city centres and areas with a high population density

is also a high grid utilisation. That is especially high, when EVs users charge their

vehicles at home. If fast charging sites are built in areas with high grid capacity, the

high stress of the grid in certain areas can be relocated, so the stress is significantly

reduced. [10]

Possible sources are different kinds of storage systems, fossil driven generators

as well as renewable sources [13, 10]. Most interesting are storage systems and

renewable sources because fossil driven generators are still depending on fuel. Re-

newable sources like PV power plants are feasible in small-scale like on roof tops

of residential or commercial buildings. Storage systems have the advantage that

energy can be stored during low utilisation of the charging site and the grid, when

the price is usually lower than during high-peak times. During high utilisation of the

station the storage system can release the stored energy to the charging stations

to support or avoid charging from the grid. This leads to peak-shaving. [13] This

combined system is especially advantageous for the operator if the operation of the

charging site would cause a change to a higher power transformer. In theory a stor-

age system will enable the operator to avoid a transformer replacement if the storage

is has enough capacity to cover the exceed peak-demand at high utilisation of the

charging site. Also during operation there are significant savings for the charging

site operator if a combination of storage system and PV system is used [10].

The current research is already exploring the combination of charging sites with dif-

ferent kinds of (renewable) energy sources and storage systems. In the following a

selection of studies is presented briefly.

One example for a charging system with on-site generation is presented in the study

[17] from California. They created a nano-grid that is consisting of several charging

stations, a PV system and a BES system. Those are combined with a smart-inverter

and several control algorithms to optimise the operation. However in contrast to this

thesis the study did not consider DC fast charging but AC charging. Another exam-

ple for an micro-grid with integrated charging site for EV is given in [18]. The system

consists of a PV and a wind generation unit, a Diesel generator, a charging site, a

load, the grid connection, which can be set off, and a voltage controller. The main

focus here lays on the control algorithms of the voltage controller to gain the voltage
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stability in the micro-grid. In [19] the focus is on the "design of an EV fast-charging

station". Those stations also include renewable sources (PV and wind generation

units) as well as a storage system. The charging energy and time is modelled with

the Monte Carlo method. Later on the installation and operation of the system is

optimised based on the charging model and economic factors. In contrast this the-

sis uses real world charging data. The behaviour of the charging profile is modelled

and the optimisation used for peak-shaving is linear instead of non-linear. In [20] a

modelled charging system is presented that contains a BES system, a Diesel gen-

erator, PV panels, and a grid connection. The charging site contains fast, medium

and slow charging facilities. It is demonstrated that the hourly power model and

the optimisation successfully reduce the costs and the peak-load. In this thesis the

model and optimisation can have various time intervals from seconds to hours. No

cost optimisation is done.

In most papers the design of charging sites is done from an economic point of

view based on modelled charging data. The objective of this thesis is to explore

the technological feasibility in connection with real world charging data. The peak-

shaving optimisation problem (4) for the BES system and the combination with a

PV is quadratic. It shows the impact on the real charging data. Summed up the

charging site design proposed in this thesis is already proven by various models in

combination with economic feasibility. In the chapters 3 and 4 the real charging data

processing and the optimization are presented. In Chapter 5 the results of the real

data processing and the influence of the optimized peak-shaving operation of BES

system and thePV system are presented.

2.2. Comparison of common battery types and their

application and operation

Nowadays many people are emerged by the climate change and its probable am-

plifiers CO2 and other greenhouse gases produced also by humans. The politicians

try to agree on climate goals to stop the critical temperature rise. That include lim-

its and goals of reducing the production of greenhouse gas emissions. The use

of renewable and sustainable energy sources becomes the focus of attention once

again. The power plants that harvest those energy resources do not emit green-

house gases during the production of energy. Popular sources are solar, hydro,

geothermal and wind power. Those sources are not needed to be grown as for ex-
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ample the sources for biomass power plants.

Hydro power is used preferably because there is either the chance to store energy

or the power plant is based on a constant flow of water that provides energy at

all time. The storage is in form of potential energy by keeping an water reservoir

filled that is located in a high position. Hydro power plants are highly dependent on

the the geological structure. This is the reason why Germany has not many hydro

power plants. The regions with those geological structures are already utilized. Nor-

way on the other hand has a huge geological advantage which they used since the

70’s. Nowadays Norway has around 95% of their energy demand covered by hydro

power.[21]

As constant the use of hydro power can be as intermittent solar and wind power

are due to the not constant availability. Both sources are dependent on weather.

That makes the power production unpredictable on longer term and harder to plan

in advance. It is not available on demand.

2.2.1. Renewable energy on demand by using energy storage systems

In the recent years the idea of combining energy storage systems with renewable

and intermittent energy sources made progress. A large-scale energy storage that

can provide a grid with enough power on demand should be efficient, reliable, con-

trollable, and affordable. It does not always has to be one large-scale storage sys-

tem. Also a combination of small-scale storages can be feasible if the control is

implemented in a desirable way.

Distributed energy generation is another topic that comes with renewable energies.

Since many private house owners installing small solar power plants on roofs there

is a distributed generation besides the centralised generation by huge power plants.

Distributed generation has the advantage of lesser transmission losses but comes

with challenges. The grid system in Germany for example is build for centralized

generation that is delivered from the highest voltage level to the lowest. The PV

power plants used by house owners not delivering power from the lowest level

against the usual power flow. This makes it harder to control the stability of the

grid system [22]. [23, 24, 17]

For those solar systems there is already a solution with storage systems which make

it possible for the owner to store the surplus power that is produced by the PV sys-

tems. This makes it possible to store the power produced during the day and use

it by night. This results in a lower export of energy to the grid system as well as
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less importing back power from the system. This makes the PV power plant system

more efficient for the owner. [23, 25]

2.2.2. Diversity of energy storage systems

The diversity of energy storage systems on the market or currently in research are

huge. For storing electrical energy in most cases it is converted into other types of

energy. This means there are different ways to store energy. So in the following the

different possibilities are shortly explained.

Mechanical energy storages use potential energy, angular momentums or utilize

compression. Chemical energy storage use the energy within chemical reactions.

For example the production of hydrogen via electrolyse, that split up water (H2O)

into oxygen (O2) and hydrogen H2 by using electrical energy. If the two components

are brought back together in a fuel the used energy to split the chemical binding

is released as electrical and thermal energy. Thermal energy storages using heat

energy. The electrical energy is converted into heat. There are currently three

ways how it is done. One way is to stored the energy in a phase shift of the storing

material. Another is heating the storage material that is keeping the heat or store the

heat in a thermochemical reversible reaction. With electrostatic or electromagnetic

storage systems the energy is stored in electric fields. This does not need a energy

conversion. Besides the other storage possibilities electrochemical energy storages

are known by everybody. They are basically batteries therefore also called BESs.

2.2.3. Electrochemical energy storages

Electrochemical energy storages are used in the daily life as energy sources for

smart-phones, cameras, laptops but also for EVs. The electric energy is stored in

electrochemical energy. [22, 24]

Lead-acid battery

The oldest version is the lead-acid battery. It was invented in 1859. Those tech-

nology is cheaper than other BESs. The low energy and power densities with

50 − 80Wh/kg and 150 − 300W/kg is a huge disadvantage for mobile applications

that require a lot of energy or static applications in limited spaces. The charging time

is long as well. [22, 24, 7]
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Lithium-ion battery

The most common system today is the lithium-ion battery. It is deployed in almost

every portable electronic device. In larger scale the application are EV and station-

ary storage systems in power system. The energy density (100 − 200Wh/kg) and

the power density (1000 − 2000W/kg) are larger compared with lead-acid batteries.

This makes it possible to find a compromise between weight and energy supply.

The charging cycle is fast and the self-discharge is very low. The energy efficiency

is between 85% − 95%. Besides a disadvantage is poor heat handling that leads to

premature ageing. With increasing scale the economic viability decreases. There-

fore a large-scale application is costly with lithium-ion batteries. [22, 24]

Flow battery energy storage systems

A flow battery is not a battery in the classical way that they are consisting of two

electrodes that are immersed in an electrolyte medium. When there is a closed

circuit between the electrodes the energy stored in the electrochemical reaction

is released. In flow batteries there are two electrodes but also two liquid elec-

trolytes. Those are stored in two separate tanks. In between the electrodes is a

membrane to separate the electrolytes. To release or to store the energy the elec-

trolytes are pumped through the system. A negative electrolyte on the negative

electrode and a positive electrolyte at the positive electrode. One type of flow bat-

tery is the reduction-oxidation (redox) flow battery. The vanadium redox battery for

example utilises dissolved vanadium ions in different state pairs as electrolyte.

Their energy density is 35− 60Wh/kg. The energy that can be provided varies with

the size of the electrolyte tanks. The power density is 75− 150W/kg. It is connected

to the design of the electrochemical cell where the chemical process takes place.

Due to the electrical pumps needed to move the electrolytes the efficiency lies only

by 85%. The self-discharge is low. In contrast to Lithium-ion batteries redoxf-flow

batteries can be discharged fully without harming the functionality of the system.

The electrolyte is maintenance-free but the membrane needs to be replaced two to

three times in a life-span of 15 to 20 years. This membrane is costly due to low

commercialization this leads to an economic disadvantage. Less costly membranes

are in development stage.[24, 7, 26, 22]
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2.3. Optimization technologies in power systems

Energy is a high demanded good and will become more and more valuable and on

demand in the future. The amount of technology and machines is growing which

leads to a higher energy consumption as well as the use of EV. Research is fo-

cussing on energy efficiency in different ways. In the past the optimization was

more based on experience and assumptions than on mathematical calculations.

The computation of mathematical problems becomes faster with the evolving com-

puter technology. The optimization of complex problems with fitting algorithms is

state-of-the-art in many disciplines.

2.3.1. Optimization problems

There is a broad variety of optimization algorithms. The goal of every optimization

algorithm is to get the optimal solution to a problem. The optimal solution is often

the result of weighting different needs and demands to a problem. [27] The optimal

solution is mostly defined as a minimum or a maximum of an objective function. The

objective function also called cost function describes what has to be optimized. So

it is a model of the real-world problem. One easy example is to minimize a cost of

sweets. There are three kinds of sweets that have three different prices and you

want the most sweets for the least cost. So it needs to be found out how many of

each sweet can be bought to have the lowest price.

The design parameters give the values, that can be changed during the optimiza-

tion to reach the optimal solution. They describe real-world parameters that can be

changed and that are not fixed. In the example the number of each sweet are the

design parameters. In the simplest case a optimal solution is to buy the cheapest

sweet.

There are constraints and boundaries in an optimization. Constraints are require-

ments that need to be fulfilled in the optimal solution. In the sweets example, one

constraint is that the number of sweets is greater 10 and less than 20. Those are

inequality constraints. There are also equality constraints. It is a possible equality

constraint that the number of sweets shall equal 15. Constraints makes it more diffi-

cult to find a solution with the least cost.

Boundaries give the limits for the design parameters. There are lower boundaries

and upper boundaries for each parameter. Those are the minimal and maximum

values that each design parameter shall have in the optimal solution. In the sweets
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example possible boundaries are that sweet type 1 needs to be bought at least 1

time and at most 5 times. The boundaries can have individual ranges and units all

depending on the design parameters and the real-world problem.

There are basically three types of optimization problems: Linear, quadratic and non-

linear programming. All types are described in the following three subsections. All

decision variables are continuous. For discontinuous decision variables there are

mixed-integer programs. Those are not elaborated in this thesis. Afterwards three

of the most used solving algorithms approaches in the energy section are explained

briefly.

Linear Programming

When the objective function and all constraints are linear the optimization problem

is called a linear programming (LP) problem. Such a problem has usually a form like

in Equation 2.1. [28]

min
x
f(x) = cTx

Ax ≤ b;x ≥ 0
(2.1)

The vectors c and b are real and have different sizes. c is n-size and b is m size.

The matrix A is real and has the size m× n. [27, 28]

f(x) is the objective function, x is hereby a possible solution. Ax ≤ b are the

(in)equality constraints and x ≥ 0 depicts the boundaries. Solutions of linear prob-

lems are easier to determine and the computations are based on less complex math-

ematics than non-linear problems. The formulation and analysis of a problem has in

many cases naturally a linear form. It is possible to solve LP problems analytical but

there are also numerical solving algorithms that are also used for LP. [27, 28, 29]

Quadratic Programming

For quadratic programming (QP) the objective function is quadratic and the decision

variables and constraints are all linear. It is a special form of a Non-Linear Pro-

gramming (NP) problem. A general quadratic problem formulation with boundaries

is presented in 2.2. [28, 30]

min
x
f(x) =

1

2
xTAx+ bTx+ c

Cx ≤ d
(2.2)
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Non-Linear Programming

When the objective functions or the constraints are non-linear the optimization prob-

lem is a NP. NP problems are not solvable by analytical calculations but need to

be approximated by the solving algorithms. In many cases NP problems can be

linearised and solved like LP problems. [27, 28, 29]

2.3.2. Common optimization problem solving algorithms and their
applications

There are various optimization algorithms but in the following only the common al-

gorithms used recently in the power system field are used are described. To those

count evolutionary algorithms, dynamic programming (DP) and gradient-based al-

gorithms. [31]

Dynamic Programming

Dynamic Programming is a gradient free optimization method. It was developed by

the mathematician Bellman [32]. In the DP approach a complex problem is broken

down into smaller parts of the original problem. It works with discrete values of time,

state and decision variables. In every stage a new optimum for the next stage is cho-

sen depending on the objective function and the decision variables. The method is

not sensitive to linearity, continuity or the absence of both. It cannot be trapped into

a local minimum which means it always finds the global minimum. One downside is

that it is more calculation intensive for complex problems. One application Bellman

itself thought of was adaptive control. [32, 33, 34]

In energy generation systems DP is used for decision making in the operation and

control of the system. In [34] it is proposed to use DP for real-time energy manage-

ment. This application targets optimal energy efficiency by using the DP solution to

find the optimal distribution of the demanded power to the generation units. In [35]

DP is used for the optimal management of CHP power plants. In this case backward

DP is used to determine the optimal state of the plant from an economical point of

view. To increase the efficiency of the distribution grid they approach in [36] to add

energy storage devices into the grid. The optimal placement of the storage devices

and their control strategy is determined by Dynamic Programming.
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Gradient-based algorithms

As the name says they use derivatives to solve an optimization problem. They have

two sub-problems to solve. A search direction in the n-space needs to be computed,

along which the search starts or continues in each iteration. The step size, which is

a positive scalar, needs to be computed as well. There are various algorithms. They

are efficient but complex algorithms, that can be trapped in local optima. Not always

are information of derivates available. In the following there are two of the interior

point methods and the trust region method explained briefly. [32]

Interior point methods are often used for convex problems that have only one global

minimum. The Steepest Descent Method the gradient vector is calculated at each

point of the function. In each iteration the gradient is used as the search direction.

At each point the search direction is also where the rate of change reaches its max-

imum. [27, 37, 38, 39]

Newton’s Method differs to the Steepest Decent Method only in the calculation of

the search direction. Newton’s Method is using as a second-order information of

the function the second-order Taylor series expansion. This means the objective

function is approximated by a quadratic function. This approximation is minimized

exactly. The Newton’s Method converges quadratically for a non-linear function. It is

also possible that the method does not guarantee convergence for some non-linear

functions. This method has another disadvantage. It not not only needs the gradi-

ent calculated but also the Hessian to compute the search direction. The Hessian

must be symmetric and positive definite. Advanced methods based on the Newton’s

method are the Davidon-Fletcher-Powell (DFP) Method and the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) Method. It is problem depending what method performs

better. [27, 29, 37, 38, 39]

Trust Region Methods are a different approach. It tries to remove the drawbacks of

the Newton’s method. They are originating from highly non-linear functions or the

restrictions for the Hessian. The problem that occurs is that the region, where the

quadratic approximation is suitable, is left during the optimization steps. This can be

resolved by minimizing the quadratic function. This is done in a region around the

design variables. In this region the quadratic model can be trusted so this is called

the trust region. In every iteration the trust region is calculated again depending on

the accuracy of the quadratic model. [27, 37, 38, 39]

Newton-like algorithms are popular in the field of energy dispatch optimization [35].

But gradient based algorithms are also used for solar power plants to reach the opti-
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mal design and the optimal management [31]. Interior-point methods in general are

also used for state estimation when it comes to power grids [40]. In [41] LP is used to

obtain an optimal schedule for Distributed Engery Resources including a BES sys-

tem. The objective function is dual and combines economics and peak-shaving. It is

said that the LP solver of Matlab is used which can be a Simplex or an Interior-Point

algorithm [42].

Evolutionary algorithms

Evolutionary Algorithms draw inspiration from phenomena in nature. This method

does not need information about the gradient. They are easy to implement and have

a higher chance of reaching the global optimum and do not get trapped in local op-

tima. They also hold diversity during the optimization process [43]. Evolutionary

Algorithms seem suitable to find solutions for multi-objective optimization problems

as well because of the simultaneous processing of possible solutions [44]. There are

also drawbacks. The computational cost are high [28] and the constraint-handling is

difficult. The solutions are usually bases on stochastic so every time the algorithm

is executed the result is different. [32]

In Genetic Algorithms a solution to a specific problem depicts a chromosome. A

group of chromosomes is called a population. This population represents a part

of the solution space. The optimal solution is assumed to be in the search space,

which is defined as the solution space. Each possible solution is represented by an

chromosome. The initial set of randomly chosen chromosomes is the first genera-

tion, the initial population. All chromosomes are compared based on their fitness.

This is measured by the objective function of the optimization problem. At the end

of every iteration genetic search operators are applied on the chromosomes. The

operators are selection, mutation and crossover. A new generation of chromosomes

is created and be expected to have over all a better quality than the previous gener-

ation. The fittest chromosome in the last generation is the obtained solution. When

the termination criteria is met the process is stopped. [45]

Particle Swarm algorithms are another evolutionary approach. They are also pop-

ulation base, and stochastic as well as heuristic. Particle Swarm does not imitate

evolution but it copies the concept of schooling. Possible solutions to the optimiza-

tion problem are depicted as particles. Those particles move through the solution

space with each velocity and a moving direction. All particles are attracted by the

best global solution of the last iteration and move towards it. Additionally each par-
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ticle has a kind of a memory that recognises regions that where found to have a

positive impact. This influences the way of the particle as well. The iterations go

on until certain criteria are met to stop the process. Those criteria are for example

stalling of the particles or reaching the number of iterations that were set as maxi-

mum. [45, 46]

In [47] a Genetic Algorithm has been used to coordinate the charging of EV taking

into account the limits of the charging and grid infrastructure. The aim is to cre-

ate optimal load pattern to ensure reliability of the charging site. In the study the

resulting algorithm is applied in a low-voltage charging system. The results show

a positive effect of smart charging on the load profile. In [48] a Genetic Algorithm

and a Particle Swarm Optimization is used to optimize control parameters of a SoC

feed control scheme. It is used to control the output power dispatch of a PV farm

to charge a BES system. To find the optimal design of an EV fast-charging site a

Genetic Algorithm is used in [49]. It optimizes the installation of charger, renewable

generation units and a storage system. The fitness function is here the profitabil-

ity which takes installing costs, energy incomes and cost as well as maintenance

costs into account. In [31] there are several applications of Evolutionary Algorithms

listed which mostly try to minimize the operational costs. The design parameters are

depending on the energy system that is optimized. Mostly those systems contain

renewable power plants that need to be scaled. In [50] a multi-objective optimization

problem is solved with an Evolutionary Algorithm. The energy management of an

CHP is optimised so that total operational cost are minimized.

Hybrid approaches

Hybrid approaches mean that different optimization methods are combined. The

aim is to eliminate drawbacks and create an algorithm that has the strength of each

method. Not only algorithms of different solving method types mentioned above are

joined together but also from the same type. For example in [45] the two evolution-

ary optimization techniques, Particle Swarm Optimization and Genetic Algorithms,

are combined. The aim is to create an algorithm that finds the global minimum more

reliably than each of the both algorithms alone. A combination of a Genetic Algo-

rithm and Dynamic Programming is purposed in [51]. The Dynamic Programming

is used to obtain the optimal control rules for a combined ultra-capacitor-battery-

storage system. The optimal parameters under different load cycles are gained by

the Genetic Algorithm.



2.4. PROGRAMMING IN PYTHON 20

2.4. Programming in Python

Python is a programming language that is often used for scientific programming and

data analysis but it is also a powerful scripting language [52]. The project is Open-

Source. This means the download and use of the programming language is free of

charge. [53] Furthermore it is available on the operating systems Windows, Unix

and Mac OS X. Python is a high-level language that has a high abstraction level

compared with low-level and hardware-related languages like Assembler. Python

is also an interpreted language. This means the code is translated at run time by

an interpreter to machine code. [54] This makes development faster but it is also a

downside of Python. Interpreting at runtime is slower than executing a pre-compiled

program. Such fully-compiled languages are C and C++. [55]

Python belongs to the object-oriented (OO) programming languages. Similar ex-

amples are Java, Perl, Ruby or Scheme. As typical for OO programming, Python

supports classes, polymorphism as well as multiple inheritances. [53, 54, 56, 57]

Basic data types are numbers (int, float, long and complex), sequence

types (string, list) and containers (dictionary). Advanced features are gen-

erators and list comprehensions. There are additional data types available in mod-

ules and packages. Those can be installed in addition to the basic Python distribu-

tion. This features also enable more functionality in form of methods and functions.

[53][56][54] Python has a syntax that is easy to read and to write. That makes it

easier to learn and faster to develop applications than in languages like C or C++.

Never the less Python has modules that makes it possible to interface C code and it

is possible to write extension modules in C. [58][53][54]

For this thesis Python version 3.7 is used on Windows with the IDE PyCharm Com-

munity Edition.
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3. Charging Profile Modelling tool

In many countries all over the world the utilization of EV is desired instead of driving

vehicles with combustion engines that consume fossil fuel. It is desired because it is

one step to reach the countries climate goals by reducing the CO2 emissions in the

transport sector. Another effect is the reduction of smog in cities if the density of EV

is high enough.

To supply the rising amount of EV with energy the charging infrastructure is en-

hanced. Either the amount of chargers in an existing charging sites increase or the

density of charging sites rises in high populated areas. Nowadays many assets in

power grids have a measurement systems on-board to establish a connection with

the central unit via communication technologies. This enables the operators of those

assets to have a real-time monitoring system. This makes statistical data about the

power grid available and helps to improve the operators planning and business.

Predictions based on real data are more precise than predictions that are based on

artificial models. Those artificial data sets are created with the assumption that they

are realistic. The amount of gathered data is growing together with the number of

observed assets. In the case of charging sites the amount of data grows with every

charger, every site, and every charging event. That means the operator needs to

invest more time in editing the gathered data to use the advantage of having real

data.

As part of this thesis a tool is developed that eases the process of editing the data.

It enables the user to create a modelled charging profile from charging data that

includes only start and end time as well as the consumed energy over the charg-

ing duration. Additionally information about the charging point and the charger type

are available. Those modelled load curves improve the gain of information about

charging behaviour of the customers in a visual way.
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3.1. Used Python modules

Python has many built-in functions which cover a wide field of possible applications.

In many cases an application needs additional data types or methods which exceed

the built-in functions. Those functionalities are brought to Python by modules, li-

braries and packages. Those are not necessarily programmed in Python but also in

C/C++. The use of those extensions lead to faster execution, less code and more

readability in many cases. This can be very useful and time efficient. The modules

contain elements that obviate the need for implementing such functionality yourself

and extend the possibilities of Python.

The modules that are used in this thesis are listed and explained in the following.

All modules are known in different fields of expertise like data science, data analy-

sis, numeric modelling or scientific programming [28, 46]. This is also seen in the

comprehensive documentations that contain different examples of application. The

modules are capable of operating together. They often have special functions to

provide better compatibility to other modules, libraries and packages. [53, 57, 58]

3.1.1. matplotlib

matplotlib is a library in Python that uses NumPy (see chap. 3.1.2) and other mod-

ules as well. The objective of this library is to enable the user to create 2D plots

based on Python arrays. Originally the library was implemented for emulating Mat-

lab graphic commands. Although it is fully independent of Matlab and can be used

in the object oriented way that is typical for Python.

The documentation provides many examples how to display diagrams and modify

the kind and appearance of the plot. Examples for diagram types are line plots, bar

charts, scatter plots, contour plots, box plots, pie charts and 3D plots. It is possible

to plot two and more diagrams in one figure which is a so called subplot.

Each plot can be configured in a wide range. It ranges from none to an advanced

degree of modification depending on purpose and demand of the figures. With mat-

plotlib the generated plots can be stored as graphical images in different file types

like Scalable Vector Graphics (SVG), Portable Network Graphics (PNG) or Portable

Document Format (PDF) to mention the most common ones. [59]

In this thesis matplotlib is used to plot the figures for presenting the results which are

acquired from the real charging data by the CPM . This includes creating, modifying

and saving the plots in figures.
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3.1.2. NumPy

NumPy is a package for scientific programming. Beside the detailed reference the

documentation provides a guide for Matlab users. It explains the main differences

as well as the equivalents to NumPy. This supports easy migration to NumPy for

developers with Matlab experience. In general NumPy can be used for similar ap-

plications as Matlab. Like Python itself, NumPy is open source and free of charge.

In context of this work the most useful functionality of this package is the introduction

of the multi-dimensional (N-dim) array object. It is a N-dim container that enables

nesting of arrays. The N-dim array enables linear algebra operations in N-dims as

well as other routines like polynomial operations, statistics and Fourier transforma-

tions to mention a few possibilities.

The creation of N-dim arrays is almost as easy as the creation of conventional

Python arrays and lists. The access to each element of the N-dim array is com-

parably easy. The basic operations include slicing, indexing reshaping, repeating,

sorting, adding and various others [60].

The use of a N-dim array has limitations. It emerges that all items in the array must

have the same data-type. Data types are for example integers or floating point num-

bers. Including a column of integer type and floating point type in one array is not

viable. That prevents the bundling of the measurement data series in one N-dim

array when the data types differ. [60]

In this thesis NumPy is used for calculation and internally processing the data within

different classes.

3.1.3. pandas

pandas is an open source package for Python. It provides additional data struc-

tures that are called DataFrame and Series. Those enable the user to have

heterogeneously-typed columns in one data structure. The library also includes

data analysis tools for use in Python.

The primary used data structure in this thesis is DataFrame. It is a two-dimensional

data structure and can be compared with a table. The DataFrame has columns and

rows as well. Each row has an index. All elements are accessible by column and

row identifiers, which makes it easy to access elements. It is possible to import data

to DataFrames from Structured Query Language (SQL) data bases, EXCEL sheets

and other common types. The original data types are converted to the correspond-
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ing pandas data type. [52]

In this thesis pandas is used for processing the huge amount of measuring data

and writing this data to SQLite data bases directly without using the sqlite3 module

(see chap. 3.1.5). The advantage with pandas is that it can load/store whole pandas

data frames filled with the measurement data from/to SQLite data bases without any

adding of column headers, data conversions or modification in the table structure.

3.1.4. SciPy

SciPy is built on the NumPy module (see chap. 3.1.2). The user can use high-level

commands and classes to manipulate and visualise data. It encloses various math-

ematical algorithms for example in the optimization and clustering sub-packages. So

called convenience functions appear in signal processing or statistical sub-package.

The functionality can compete with Matlab or Octave, both strong scientific tools for

data-processing and system-modelling. It is beneficial that SciPy is based on the

language Python because it enables the user to create specialized applications by

making use of the open source and efficient development in Python. SciPy has a

detailed documentation with examples and tutorials which makes it easily accessible

for beginners in SciPy and Python as well. [61]

In this thesis the optimize sub-package of SciPy is used for the optimization of the

BES and PV systems. The optimization process is explained in 4.3.

3.1.5. sqlite3

sqlite3 is a module that is based on the C library SQLite. SQLite is a database that

is disk-based which means that it does not require a server to run on. It enables the

user to access the database with a version of the SQL query language.

The module provides methods to connect with a database, create databases and

execute SQL queries and get data from the database by fetching it. There are more

methods for advanced use as well. Important is that SQLite natively supports five

types to store data (NULL, INTEGER, REAL, TEXT, BLOB). The sqlite3 library

automatically maps the following Python data types: None, int, float, str,

bytes. Other data types in Python must be adapted into a matching type. [62]

In this thesis the module is used for minor tasks related to the SQLite database.

It is used for reading and returning the column names for further usage. There is

a method that changes the decimal format from ”, ” to ”.” because the notation for
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decimal numbers in Python is a dot. This differs from the usual European convention

to use a comma for decimal numbers and thus needs to be changed in the database

with the measurement data before the database is read by the CPM .

3.2. Process in the Charging Profile Modelling tool

In the following the process within the CPM tool will be explained. The process is

divided into three parts: The pre-processing, the main process, and the plot process.

Figure 3.1 depicts the process from pre-processing the input measurement data to

plotting the output data.

The input data is a SQLite database. An example for the database schema is

Database 

Pre-

processing

Read Input 

Data

Pre-
Process 

Input Data

Plot

Output 

Data

Simulate 

with Data

Create

Output 

Data

Main ProcessPre-Process

Plot Process

Figure 3.1.: Process in the Charging Profile Modelling divided into three parts: the
pre-process, the main process, the data visualization

given in Table 3.1. The database contains the DC charging measurement data. The

flow in Figure 3.1 is interrupted before and after the main process to show that it is

independent of the first step, the pre-processing and the last step, the plotting.

The main process starts with reading the measurement data from the pre-processed

SQLite database. Before the actual modelling of the charging profile begins, the

input data needs to be pre-processed internally. That means every charging event

is assigned to an object which has the attributes of an EV that charges at the time

of the event.
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Every charging station that appears in the charging events is assigned to an object

with the attributes of a charging station. With this data the charging profiles for each

event and therefore each day are modelled. The acquired charging profiles are

exported to a SQLite database. Different formats and time resolutions are possible

(see Tab. 3.2).

In the last step it is possible to plot the output data if needed. It is not necessary and

can be left out or done from the output data later as well. There are different kinds

of plots possible. The main process is completed when the results are written.

3.2.1. Properties of measurement database

The DC charging measurement database has a special format that is explained

in the following. It contains the start and end time of the charging pro-

cess, the charged energy during this event, the charging point and the charger

type (CCS, CHADEMO). The format of the time is a time stamp DD.MM.YYYY

hh:mm:ss:uuuu and the unit of the energy is Wh.

In Table 3.1 at index 1 is a general charging event with start and end time as time

index start time end time energy [Wh] charging point charging type

1
10.10.2010
10:10:10:1000

10.10.2010
11:11:11:1100

1234
Charging Point
007

CHADEMO

2
10.10.2010
23:10:10:1000

11.10.2010
01:11:11:1100

... ... ...

3
10.10.2010
23:10:10:1000

11.10.2010
00:00:00:0000

... ... ...

4
11.10.2010
00:00:00:0000

11.10.2010
01:11:11:1100

... ... ...

... ... ... ... ... ...

Table 3.1.: Examples for input database entries. Charging event at index 1) general,
2) until after midnight, 3), and 4) split of 2)

stamp, the energy, as well as the information about the charger. At index 2 it is

shown how charging events until after midnight looks like in the original data set. It

appears as one charging event. This is problematic because the results are required

to be in a period of 24 hours. Those start at midnight and end 24 hours later as well

at midnight. Each day needs to be separately observable.

The solution is to split the charging event at midnight. How this looks like is shown

at index 3 and 4 of Table 3.1. The start time at index 3 is the same as at index 2.

At index 3 the end time changes to midnight of the following day. The start time at
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index 4 equals the end time of index 3. The end time in 4 equals the end time from

index 2. Finally there are two charging events from start time to midnight and from

midnight to end time.

Furthermore it is problematic if charging events appear more than once in the

database with the exact same values in all columns. This would mean to have

two cars charging in one time interval that is exactly the same up to microseconds.

In reality it is very unlikely to have such a situation. This is often resulting from an

error while saving the measurement data at the charging station.

To solve this issue the first appearance is recognised and all following ’exact copies’

are deleted. Empty rows or entries with missing values are removed from the

database as well. This is done in order to guarantee that only relevant charging

events appear in the pre-processed database.

Those problems are handled in the pre-processing with the Python script Clean-

DataBaseAndSplit.py. This script belongs to the developed CPM but it is executed

independently. This is shown by the gap between the pre-process and the main pro-

cess in Figure 3.1. The script is only required when the database is used as input

data for the first time. The script creates a database where the above mentioned

problems are corrected.

To ensure that the original database is available in an unchanged state the pre-

processed database is named differently. After using the script the pre-processed

database is ready to be used as input for the developed Python.

The main process starts by reading the input data. In the beginning the developed

tool establishes a connection to the pre-processed SQLite database. When this is

completed all data is gathered from the database and sorted into three packages of

information.

Filtering information about the charging event and the shape of the modelled charg-

ing curve is the first step. Afterwards information of the chargers are obtained from

the charging event data. Lastly the information about the dates when an charging

event occurs are extracted from the event data as well.

The event data looks similar to the database entries 1, 3 and 4 in Table 3.1. The

names of all charging points (Tab. 3.1 column 5) are extracted from the event data

as information about the charger. The start times in column 2 of Table 3.1 are used

to get a collection of all dates where charging events occurred.
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3.2.2. Modelling of the charging profiles

When the second step of the main process is finished and all required data is col-

lected, the modelling of the charging profiles begins. There are different options for

format and time resolution which are shown in Table 3.2.

Three formats are possible with each of them having three of the most feasible

Format Monthly Weekly Daily
Time Resolution
(24h) 1 h 15 min 5 min 1 h 15 min 5 min 5 min 1 min 1 s

Table 3.2.: Possible output format and the time resolution of 24 hours

time resolutions of the measurement interval of 24 hours. The first row named "For-

mat" describes how the database is structured. If the option "Monthly" is chosen the

database has one table for one month. For "Weekly" every week is in a separate

table in the data base and for "Daily" every day has its own table. In the last format

the table consists of one column for the profile of each charger and one column in

the end where all chargers are summed up.

The profile data of each charging event is described by start and end time. The data

in each format is arranged in the 24 hours time interval. The correct time arrange-

ment of the event data is always made with a resolution of 1s. This ensures that the

accuracy of the profile modelling is maximized.

When the chosen resolution differs from 1 s and is for example 15min the mean

over each 15min interval is calculated and the number of values is reduced from

60 · 60 · 24 = 86.400 to 86.400
60·15 = 96. The reduction of the resolution leads to a reduc-

tion of the number of values that are written into a database. Saving the database

with less entries reduces the computation time so the overall execution time of the

developed tool is shorter.

Before the resolution is reduced the first step is the modelling of the energy profile.

The model is based on the energy value that is given in the charging event data and

a base charging curve that was measured in another work [14]. This is shown in

Figure 3.2.

It shows the time on the x-axis and the amount of energy respective the power

factor in percent on the y-axis. In this figure the time interval is limited to 120s

to show the ramp up of the profile. Each event is modelled as time interval with

duration = endtime − starttime number of seconds. That base profile determines

the amount of energy used in each second during the charging event.
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Figure 3.2.: Measured charging profile of a Tesla Model S for modelling charging
profiles from energy data

The actual energy value is the limit of how much power can be charged per second.

Because the charging profile is reaching 100% of the charging power after 60s the

the EV is charged with the maximum power value (see Fig. 3.2).

The internal charging electronics of the EV allow a 100% power flow from the charg-

ing station into the car after those 60 s. This behaviour is modelled realistically. When

the model curve reaches 100% the value remains until the cars charging time is over.

This behaviour is assumed in the model but it is not realistic.

In reality many EV slow down the charging process after a specific SoC is reached.

Mostly the limit for fast charging lies around a SoC of 80% [63][64]. This is neglected

in the charging profile model, because the actual SoC is not obtainable from the

given data (Tab. 3.1).

Those information are either not collected from the station or not provided by the

EVs to the charger. When the charging power is reduced, depends on the charger

type as well as on the maximum charging power the station can provide.

Once all charging events are modelled as charging profiles they are written into the

output database. For each charger all charging profiles are collected and summed

up depending on the start and end time of the charging event. For one charger it is

illustrated by Table 3.3.

The first row contains the time that might have one resolution as explained in Table
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Time 1 2 3 4 5 6 7 8 9 10 11 12 13 ...
EV 1 - - x1 x2 x3 x4 x5 - - - - - - ...
EV 2 - - - - - y1 y2 y3 y4 y5 y6 y7 - ...

Charger 0 - - x1 x2 x3 x4 + y1 x5 + y2 y3 y4 y5 y6 y7 - ...

Table 3.3.: Example for the SQLite database regarding the merging of two charging
events at one charging station

3.2. One charging event is shown in each row labelled with EV. Both EVs charge

at the given charger "Charger 0". The charging events occur at different times. "EV

1" charges in time interval [3, 7] and "EV 2" in [6, 7]. The values xn and yn signify the

charging profile values at the time of the charging event.

The last row depicts how the charging profile values of the charger look like. It ex-

plains that charging parallel at one charger leads to a summation of the two above

charging values in that time slot. A similar procedure (see Tab. 3.4) is carried out

when the formats "Monthly" and "Weekly" are chosen for the output file. Additionally

all chargers in one charging site are summed up. More charging events appear then

because the charging profile of each charger contains every charging event of that

charger.

Time 1 2 3 4 5 6 7 8 9 10 11 ...
Charger 1 a7 - - x1 x2 x3 x4 - - - c1 ...
Charger 2 - - - - - y1 y2 y3 y4 y5 y6 ...

Charging Site a7 - - x1 x2 x3 + y1 x4 + y2 y3 y4 y5 c1 + y6 ...

Table 3.4.: Example for the SQLite database regarding the merging of two charging
stations at one charging site

3.2.3. Writing charging profiles to a database

After finishing the evaluation of the charging profiles depending on the format and

the resolution, the data is finally ready to be written to the database. The data is

written one table at a time. That is because of how SQLite databases are written.

Table by table is the easiest way to do that.

All data that should be contained in one table is exported simultaneously with one

command. Beforehand the table names are specified after the date, week or month

of the event dates depending on the format. This finishes the main part of the whole

tool process (see Fig. 3.1).

The last step of the process in the developed tool is the presentation of the charging
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profiles. There are two possible ways. Either the developed tool plots the profile

figures in the process directly after writing the output database or a special plotting

script is used to plot the profile results from already existing output data.

3.3. Structure of the Charging Profile Modelling tool

In the following the structure of the CPM will be explained. As it is stated in Section

3.1 the developed tool implemented in Python makes use of several modules. The

most important modules used within different parts of the tool will be mentioned as

well as their task are exhibited this section.

The program structure of the main part of the modelling process (see Fig. 3.1) is

briefly explained in this section. Figure 3.3 depicts the structure.

Python is object oriented so a program is usually based on objects that are instances

of classes. Classes describe the behaviour of their objects. Each class contains

properties created during the initialisation (_init_()).

Properties are variables that are made available to all class methods. During cre-

ation of an object it is possible to hand over parameters. Those parameters can be

assigned to the properties. In this way they can be used in class methods. Class

methods describe the actions an object is able to perform during runtime.

The classes used in this tool are DBSQLite, BatteryElectricVehicle, DCCharger and

ChargingStationBatteryElectricVehicle. The last three classes have a special rela-

tionship to each other (see Fig. 3.3). ChargingStationBatteryElectricVehicle is a

child class and inherits from the parent classes BatteryElectricVehicle and DCCha-

rger. This means that the child class is able to use and overwrite methods from their

parent classes. This has the advantage that methods that are already implemented

in one of the parent classes do not need to be implemented again in the child class.

This saves time and keeps the code more clear.

A disadvantage is that it is possible to overwrite the parent’s methods in a child class.

This overwriting can cause errors that arise unexpected and are hard to find. In this

work the inheriting of classes is used but not the overwriting functionality to avoid

unexpected behaviour during execution.

Main and ChargingProcess are scripts and in the top of the prom structure in Figure

3.3. A script is a file that contains a Python program. This is another way to develop

in Python besides the object oriented programming.

Those two scripts in this thesis are used to start and head the charging process. All
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Figure 3.3.: Structure of the Charging Profile Modelling

the functionality from the classes are used to set up the main program process, to

start the pre-processing of the received charging event data, to execute the mod-

elling of the charging profiles, and to create the output database.

An additional script, ResultPlotting handles the plotting of the output charging pro-

files. In the scripts the implemented classes are used to connect the data with the

functionality.

BatteryElectricVehicle and DCCharger classes are the parent classes. They repre-

sent the basic objects used to model the charging profile. The properties of the

classes are shown in Table 3.5.

The BatteryElectricVehicle class models the charging profile of a EV. It contains all

properties and parameters needed for the charging profile. Every EV has a unique

numeric identifier to simplify the relation between charging event and resulting EV.

Depending on the charging event data every EV object has a maximum available

power and maximum available energy. This limits the values for the charging profile.

The date as well as the start and the end time of the charging event are also given

by the event data. The date is in date stamp format. The start and end time are
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Object Properties and Parameter

EV

Unique numeric Identifier
Maximum available power (kW )
Maximal available energy (kWh)
Charging date (Y Y Y Y −MM −DD)
Charging start time (s)
Charging end time (s)
Base charging profile (array, 3.2)
Charging values (array, charging duration)
Charger name

DCCharger

Charger name
Maximal available power supply (kW )
Charging power at time X (kW )
Charger occupied (boolean array, 24h interval)
Energy charged (numeric array, 24h interval)

Table 3.5.: Properties of the parent classes BatteryElectricVehicle and DCCharger

calculated to seconds. It indicates how many seconds from midnight the EV starts

charging. The base charging profile (see Fig. 3.2) is recorded in every EV object.

The array of charging values contains a row with every second of the charging du-

ration, a row with the values of the charging profile from start to end time as well as

the energy calculated from the charging curve for every second. The name of the

charger point is the identifier and marks where the EV charges.

The DCCharger class describes a DC charger. The charger name in this class is the

same as in the BatteryElectricVehicle class. The maximum available power supply

describes how much power the charger can possibly provide to a EV. The maximum

available power of the EV object cannot exceed this value. The charging power at

time X describes the value the charger provides to all EV.

If the charger is occupied at a given time (in s) this is noted in an array. This array

contains every second of a 24h interval that represents one day. For each day an

array is used that is initialized with zeroes. The array contains boolean values and

has the value 0 if no EV charges in a time slot and 1 if the charger is occupied. The

energy that is charged over the occupied time is stored in an array with the same

size as the array that shows if and when the charger is occupied.

The methods in the BatteryElectricVehicle class calculates the charging duration

from the charging times, the sum of the charged energy as well as creating the ar-

ray for the charging values and calculate the content of this array. The methods in

the DCCharger class check if the charger is free for charging at the requested time

interval, set the charger occupied for the charging duration of one EV and calculate
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the charged energy at each second.

Both parent classes use Numpy (see chap. 3.1.2) to handle and calculate the differ-

ent arrays. Each EV charging values array is used to define how much energy each

charger charged and at what time. One example is given in Table 3.3. The result is

saved in the energy charged array.

ChargingStationBatteryElectricVehicle class depicts a charging station respectively

a charging site with X chargers and Y EVs, which have to be charged. The proper-

ties and parameters are shown in Table 3.6.

The chargers contained in the charger list originate from the charging event data

Object Properties and Parameter

ChargingStationBatteryElectricVehicle

List of DCCharger objects
List of BatteryElectricVehicle objects
Station power provided (kW )
Any charger available (boolean)

Table 3.6.: Properties of the child class ChargingStationBatteryElectricVehicle

which is explained in 3.2. The EVs in the EV list correspond to the charging events.

One EV object equals one charging event.

The provided station power is containing the power that each EV takes from the

charging site. If any charger is available at the time a EV tries to charge at the

station this is provided by the last property of the ChargingStationBatteryElectricVe-

hicle class. The value is true if a charger is available and false if not. This parameter

is especially useful if there is no real charging data but modelled random charging

data is given. That kind of charging data may have many EVs charging at the same

time.

If there are not enough free chargers available the surplus EVs are not supplied.

Besides the parameters and properties in Table 3.6, the ChargingStationBattery-

ElectricVehicle class contains all properties and methods of their parent classes.

The methods in ChargingStationBatteryElectricVehicle depict adding a charger to

the site, adding an EV to the site and to a charger, initialise the charger objects

and their arrays, initialise the charging values array for each BatteryElectricVehicle

object, charging the EV at a charger and changing the resolution of the calculated

charging profiles.

The class uses the parent classes BatteryElectricVehicle and DCCharger as well as

the Numpy package (see chap. 3.1.2) to handle the arrays used in the methods.
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DBSQLite class contains the properties in Table 3.7 and methods to read a SQLite

database in simple form with the sqlite3 module (see sec. 3.1.5) or by using pandas

(see sec. 3.1.3) for more advanced use-cases (chap. 3.1). The most important

methods are the establishing of a connection with the database, getting table and

column names, change the decimal format from ”, ” to ”.” and writing a database.

Those methods are used in the beginning and the end of the main process for read-

ing the database and output the calculated results in a database as well (chap. 3.2).

Object Properties and Parameter

DBSQLite

Path of database
Read in data
Database in pandas DataFrame format

Table 3.7.: Properties of the DBSQLite class including a pandas DataFrame (see
sec. 3.1.3)
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4. Extension of the Charging Profile
Modelling tool with a peak-shaving
optimization of a BES and a PV
system

The energy system has new challenges to go through due to the electrification of

traffic by EVs. The charging of EVs needs a lot of power especially when it is thought

about a future where all cars are electrified. It can be difficult to find the optimal

place for a charging station where the grid assets are resilient enough to handle the

additional load without overloading. One solution to provide a part of the additional

energy is the integration of renewable sources and/or an energy storage system in

the charging site.

In the following part of the thesis two combinations of a DC fast charging site are

suggested as a solution. In the first suggestion, the charging site is connected to

a BES system and in the second one a PV power plant is combined with the BES

system. Both suggestions result in a fast charging site that relies less on the grid

system. The aim of the peak-shaving optimization is to enable the user to find

the best sizing of the BES system and the PV system out of a number of different

configurations and to show the influence of the additional sources on the resulting

charging profiles.

Firstly in this chapter the concept for each the added BES and the combination of

BES and PV is explained briefly. The optimization problem with constraints and

boundaries is explained for each configuration as well as the modelling of the PV

power output is described. Finally the connection to the developed CPM (see chap.

3) is drawn and the used solving algorithm is explained. In Chapter 5 the results of

the optimization are presented as well as the influence of the PV power plant on the

system behaviour.
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4.1. Optimization problem for using a BES system to

supply a DC charging site

The proposed system is depicted in Figure 4.1. The charging site is connected to

the power grid. The charging site contains the DC fast chargers as well as a BES

system. For this optimization the precise BES and PV systems are not relevant. It is

investigated how the extended charging site behaves with an integrated BES system

of various capacity and output power as well as an PV system with various output

power.

In the following the optimization problem is explained. It is formulated as

DC

Fast

Charger

Battery Electric Vehicles

Charging SiteGrid Connection

BES System

Figure 4.1.: Setup of a charging site containing several chargers, several EVs, a grid
connection, and a battery energy storage (BES) system

Quadratic Programming problem. As explained in Section 2.3 the objective func-

tion is quadratic and the constraints and boundaries are linear. The aim of the

optimization is to minimize the peak load of the EVs charging. With the optimization

the behaviour of the charging and discharging is modelled so the high peak-load is

shifted to times with lower load within the charging site. This minimizes the impact

on the grid but also has an economical advantage for the owner. As explained in

Section 2.1 the price during off-peak times is expected to be lower than during high

peak-load. Furthermore the use of a BES is expected to reduce the peak-load. The
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need of upgrading the grid infrastructure because of the high peak-load should be

reduced by the BES system added to the charging site. The BES system needs

to have enough capacity and output power to satisfy the peak-load. To show the

impact of the BES system and the comparison of different sizes, the peak-shaving

optimization is done.

4.1.1. Objective function

As explained before the aim is to shave the peak of the load profile. The design pa-

rameter x is equal to the charging and discharging power of the BES system PBESS.

The objective function in Equation 4.1 is quadratic. Quadratic functions have the ad-

vantage that they weight variations like extrema more than linear functions do. This

is important because the peaks of a EV fast charging site are strong variations from

the average that need to be flatten.

PEV load is the modelled EV data from the CPM in Chapter 3 that presents the charg-

ing profile of EV in an 24h interval. The output of the optimization is the charging

or discharging power of the BES for every time step i. Where N =
24h

τ
with τ as

resolution of the simulated time.

f(x) =
N

Σ
i=1

(x(i) + PEV load(i))
2,∀i ∈ [1, N ],

x(i) = PBESS(i),

PEV load(i) = Pmodelled(i)

(4.1)

4.1.2. Constraints and boundaries

The constrains are linear. The inequality constraint is presented in Equation 4.2.

The SoC after charging or discharging cannot exceed the maximum or the minimum

SoC of the BES system.

QBESS is the capacity of the BES system. The output power of the BES system is

given by PBESS(i) at time step i. The initial SoC is SoCBESS,init(i) and it varies with

every time step i.

SoCBESS,max ≥ SoCBESS,init(i) + τ ·

N

Σ
i=1
PBESS(i)

QBESS

SoCBESS,min ≤ SoCBESS,init(i) + τ ·

N

Σ
i=1
PBESS(i)

QBESS

(4.2)
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The equality constraint is shown in 4.3. It says that the SoC from the beginning of

the time interval must be the same as at the end of interval. This predefined SoC is

a capacity reserve that ensures that the BES is already able to react to a load-peak

at the beginning of the time interval. This ensures that the BES can operate all the

time. The full potential of the BES is used because the system has to inject the

exceeding power to the grid at the end of the time interval to satisfy the constraint.

SoCBESS,d(n) = SoCBESS,d+1(1) (4.3)

The boundaries in Equation 4.4 limit the power that can be provided by or charged

to the BES at time i.

x(i) ≤ PBESS,max

x(i) ≥ PBESS,min

(4.4)

4.2. Optimization problem for using a PV and BES system

to supply a DC charging site

In Figure 4.2 it is depicted how the PV system is connected to the proposed charging

site. The figure is very similar to Figure 4.1.

The solar system can be pictured as panels on the roof of the house of the BES or

on a carport’s roof that shelters the EV from rain, snow and sunlight. This additional

benefit of the site makes it more attractive to the user.

If it snows in the winter and the EV is parked for a full fast charging time of about an

hour without a roof, snow and ice would cover the EV. This is a disadvantage for the

user because the car needs to be scraped again.

In summer times when a EV is standing therefore the same period of time in the full

sun, not only the passenger cabin but also the battery and the motor is heating up.

The EV battery is already stressed by the charging process.

A roof has not only the possibility to carry a PV system but also has a purpose for

convenience. This makes it useful in the winter time even when the sun radiation is

lower.

Firstly in this section is optimization described with the objective function as well

as the constrains and boundaries. Finally the model of the power output of the PV

system is described.
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DC

Fast

Charger

Battery Electric Vehicles

Charging SiteGrid Connection

BES System

PV Panels

Figure 4.2.: Setup of a charging site containing several chargers, EV, a grid
connection, a BES system, and photovoltaic (PV) panels

4.2.1. Objective function

The objective function needs a modification to consider the PV power additionally to

the BES system. The modelled power generated from the PV panels is set by the

irradiance and is no design parameter. The only design parameter stays the power

stored in the BES. As it is shown in Equation 4.5 the PV power generation is added

in the quadratic term.

f(x) =
N

Σ
i=1

(x(i) + PEV load(i) + PPV gen(i))2, ∀i ∈ [1, N ],

x(i) = PBESS(i),

PEV load(i) = Pmodelled(i),

PPV gen(i) = PirragianceModel(i)

(4.5)

4.2.2. Boundaries and constraints

The first inequality function is the same as in 4.2 but instead of the equality func-

tion 4.3 there is another inequality function added. The second inequality function

enables that the maximum potential from the PV system is used but still a minimum

reserve remains in the BES. It makes the capacity reserve flexible within 20% and
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80% of the maximum capacity the BES has.

SoCBESS,max ≥ SoCBESS,init(i) + τ ·

N

Σ
i=1
PBESS(i)

QBESS

,

SoCBESS,min ≤ SoCBESS,init(i) + τ ·

N

Σ
i=1
PBESS(i)

QBESS

,

SoCBESS,d(N) ≤ QBESS,max ∗ 0.8,

SoCBESS,d(N) ≥ QBESS,max ∗ 0.2

(4.6)

4.2.3. Modelling of the solar power output

The used model is ideal which means only direct irradiance is modelled so no clouds,

reflections or other disturbances are considered. The basis is a Gaussian distribu-

tion (see eq. 4.7). The distribution is over time and has the highest point around

noon, that is depicted by the mean µ. It is calculated by the sunset and the sunrise

of the interval. The times of sunset and sunrise are based on the data from Oslo,

Norway in 2018 1. Four cases are evaluated depicting the four seasons of a year.

They are represented by the dates of the spring and autumn equinox (20. March,

23. September) as well as the summer and winter solstices (21.June, 21. Decem-

ber) for the year 2018.

f(x) =
p

σ
√

2π
e−

1
2
(x−µ
σ

)
2

with µ = tsunraise +
tsunset − tsunraise

2

(4.7)

The factor p is added to the Equation 4.7 because the irradiance on the earth’s sur-

face is not the same around the year due to the earth’s axial tilt. The factor is based

on the average solar insolation for Oslo, Norway (see Tab. 4.1). The maximum in-

solation is in summer. This depicts a factor of 1. The other factors are the isolation

values referred to the maximum insolation.

The resulting Gaussian distributions are presented in Figure 4.3. The x-axis shows

the time interval of 24h and the y-axis the factor p. It can be seen that the time of

the highest point varies around noon. The start and end time of the radiation is con-

trolled by the choice of σ, the variance. The given variances are chosen by trying

out.

The irradiance in the summer is shown in green, and blue in the winter. The irradi-

1https://www.timeanddate.com/sun/norway/oslo?month=6&year=2018
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Season Average Solar insolation in kWh/m2/day a Factor p Variance σ
Spring (medium 1) 3.7 0.67 7

Summer (high) 5.5 1 10
Autumn (medium 2) 4.1 0.75 7

Winter (low) 1.4 0.25 4.3

Table 4.1.: Calculation of Factor p to model the solar irradiance seasonally

ance in autumn and spring is shown in red and orange. It is noticeable that maximum

point of irradiance varies in the time for the four seasons.

To get the assumed power output from the PV system at each time the irradiance
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Figure 4.3.: Parameter for the solar irradiance model

model is multiplied with the maximum power output of the system. This is either at

20kW for a small-sized or 40kW for a larger sized PV panel. All cases examined in

the peak-decrease optimization are shown in Table A.1 in the appendix.
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4.3. Developed optimization for peak-shaving and the used

algorithm in Python

The purposed optimization is based on a function developed in Matlab for the project

ideal grid for all2, a 3-year demonstration project funded by European Commission

[65]. In the project they used the solver fmincon. It optimizes the constraint objective

function by minimizing it.

The aim is to extend the developed CPM with an optimization that is following the

output of the CPM is generated (see Fig. 4.4). This expands the CPM process (Fig.

3.1) conveniently with the modelling of a charging site with integrated, and optimized

BES and PV systems as a peak-shaving application. As explained in Section 3.1.4,

Database 

Pre-

processing
…Read Input 

Data

BESS and/or PV

Peak-Shaving 

Optimization

Create

Output 

Data

Main ProcessPre-Process

Plot Process

Plot

Output 

Data

Optimization Process

Figure 4.4.: Program process extended with the Optimization of PV and/or BES
system as well as plotting the output

Python has a module named SciPy which is specialized for scientific programming

and optimization problems. Because of the compatibility of all Python modules, there

is no problem to combine the CPM tool and the optimization.

The general optimization process can be started in the main script like the plotting

of the output (see Fig. 3.3). The optimization can be used as own script as well.

Each optimization which is presented in the sections 4.1 and 4.2, has an own Python

2http://ide4l.eu/
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function. They have a similar program flow (see Fig. 4.5) but they differ in bound-

aries, constraints, and the objective function.

Charging 
profiles

d = 1…M

Shape c and d for optimization Setup Cases

c = 1…W

All c 
optimized?

All d 
optimized?

No

c+1

d+1

No

Start optimization

Define boundaries, constraints 
and objective function

Optimization with 
scypy.optimize.minimize

Save and plot results for 
every case and current 

profile

END

START

Figure 4.5.: Optimization flow diagram with the charging profiles as input database

Both optimization approaches have a similar input and output. The SQLite

databases contain the charging profiles. Those are one of the inputs for the opti-

mization. The setup cases are the second input. The PV and BES optimization has
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many setup cases because not only the different capacity sizes and output powers

of the BES have to be considered but also different radiation cases that depict dif-

ferent weather and season conditions and therefore have different power outputs.

Figure 4.5 shows the general flow diagram of the optimization process. There are

two for-loops in this optimization. The outer loop goes over every charging profile

in the input database. The inner loop runs through every setup case that is consid-

ered. The setup cases are chosen configurations for the BES system capacity and

maximum output power as well as the maximum output power of the PV system.

The inputs are arrays. Every d has the size kx1(rowsxcolumns) where k = 24
stepsize

is the number of time steps in the 24h interval that is used to create the charging

profiles. M is the number of charging profiles that are about to be optimized. c has

the shape 1xW where W = p · q with p as number of different power outputs and q

as number of capacity sizes. Before the optimization starts a 2-dim array filled with

zeroes of the shape kxW is created. After the optimization the 2-dim array contains

the optimization results for one d. This result is stored into a SQLite database table.

Then the process continues until all charging profiles are optimized.

The actual optimization with the Python module SciPy (see chap. 3.1.4) takes place

in the inner loop. There the boundaries, constraints and objective function are de-

fined. The boundaries and constraints need to have vector and matrix shapes. This

is done by using the Numpy n-dim arrays (see chap. 3.1.2). The boundaries, con-

straints, and the objective function, that are used in the optimizations are explained

in sections 4.1 and 4.2. Boundaries, constraints, and the objective function change

for every c so they need to be set up in every loop again. From the module SciPy

the method scipy.optimization.minimize is used with the Sequential Least Squares

Programming solver. It is a constraint minimization method that wraps a part of the

’Software package for sequential Quadratic Programming’3 [66].

When all setup cases are optimized, the results are saved and plotted. It contin-

ues with the next charging profile. When all charging profiles are looped through

the optimization method has reached its end and stops running. The user has the

possibility to chose the best setup case for each charging profile. To do that visu-

ally plots can be created. The results from the gathered charging profiles which are

based on real data are presented in Chapter 5.

3Kraft, D. A software package for sequential quadratic programming. 1988. Tech. Rep. DFVLR-FB 88-28,
DLR German Aerospace Center - Institute for Flight Mechanics, Colone, Germany
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5. Use Case: Evaluation of Charging
Profile Modelling tool and three DC
charging sites in Norway

In this chapter the evaluation and result presentation of the real charging data from

Norway is presented. The original data set is kindly provided by Fortum Charge &

Drive. In Section 3.2 the database structure is explained detailed as well as the fil-

tering of charging events. The specifics of the provided data are presented in Table

5.1. Three charging sites with a different number of charging events and charging

stations are evaluated. The charging sites are named A, B, and C. Each charging

Charging Site Charging Site A Charging Site B Charging Site C
Number of Charging
Events

1, 400 8, 500 30, 700

Number of Charging
Stations

2 5 10

Observation Period
23.05. - 31.12.2018
(223 days)

22.05. - 31.12.2018
(224 days)

22.05. - 31.12.2018
(224 days)

Runtime of CPM
(sec)
(Weekly/Monthly)

∼ 280/ ∼ 320 ∼ 1, 550/ ∼ 1, 600 ∼ 6, 200/ ∼ 6, 300

Time per Charging
Event (sec)
avg.Runtime(s)
ChargingEvents

∼ 0.21 ∼ 0.19 ∼ 0.20

Runtime of
optimization (sec)
(BES/BES&PV)

∼ 580/ ∼ 3, 800 ∼ 730/ ∼ 4, 500
∼ 2, 100/ ∼
12, 200

Time per
optimization Case
(sec)

avg.Runtime(s)
ChargingEvents ·Case

∼ 0.02 ∼ 0.022 ∼ 0.024

Table 5.1.: Key data of the analysed charging sites that are located in Norway
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site has one databases of charging data. The databases are named each after the

charging sites a, b, and c.

Each station has N chargers, where N is not given in the data. The number of

charging events for site C is the highest as well as the number of charging stations.

All sites have at least two of the DC chargers mentioned in Table 2.1 (exclude Amer-

ica).

The observation period differs in one day. It begins in the end of May and ends with

the last day of December. The first month of the 2018 are no measured and are

therefore not in the observable time period. The analysis will concentrate on the full

month (June to December) so this does not have an effect on the results.

The runtime is measured by a built-in module time that provides a function to start

and stop a counter. The time counter is started at the beginning of the main process

in the CPM tool and stopped before the plotting process. For the CPM tool the run-

time is given for each database for the monthly and the weekly format with 15min

resolution. There is a slight difference between the weekly and the monthly format.

The runtime counter for the optimization is started before the optimization process

begins and ends after the results are written to the database.

Significant is the increasing runtime for an increasing number of charging events.

The time of execution per charging event is similar for all charging site. The runtime

is not only dependent on the number of charging events but also on the performance

the hardware1.

In the following sections the Python and the gathered data is evaluated. First output

of the charging profile modelling tool is examined. The charging energy is presented

on weekly and monthly bases.

Afterwards the optimization including the BES and PV system is evaluated. There-

fore the mean charging power of three month represent a low, a medium and a

high demand scenario. They are studied in detail for the BES-only optimization.

This enables a comparison of different challenges for each BES configuration case.

The optimization of the combined PV and BES system is presented for the medium

demand scenario and three different solar irradiance scenarios representing low,

medium and high irradiance.

1Device information: Windows 7 64bit. Intel i5-2410 CPU. 10GB Ram. PyCharm IDE 2019.1.3
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5.1. Evaluation of the results of the Charging Profile

Modelling tool

In the following section the results from the CPM tool are presented. The results for

charging site C from Table 5.1 are described in detail. The results for the charging

sites A and B are in the appendix A.2.

Firstly the results are evaluated by weekdays in a 24h resolution. Afterwards the

results are evaluated on a monthly basis with two different types of presentation.

Type one is a monthly overview of the charging on each day. The second type is

the 24h charging profile of each month. The months are evaluated in detail for both

types to investigate possible seasonal changes and other influences to validate the

developed CPM tool.

5.1.1. Evaluation of the results on each weekday

Figure 5.1 shows an overview of the weekdays from Monday to Friday. The time

resolution is 15min in a 24h interval. The mean of all values of a 15min interval is

calculated and plotted in a bar plot in dark green. The maximum values of the par-

ticular 15min interval from all observed weeks are given as well. The mean value

between 02 : 00 and 06 : 00 is almost zero at every weekend. At those weekdays

the charging stations are rarely used in those four hours. The highest mean value is

marked in light green. It appears on Mondays to Wednesdays between 16 : 30 and

17 : 15 and on Thursdays and Fridays between 14 : 45 and 15 : 15. From 06 : 00

to the maximum value the energy is increasing in a slower rate than it decreases

from the maximum value to 02 : 00, except on Fridays. On Fridays after 15 : 15 the

charging energy stays around 10kWh until midnight.

In Figure 5.2 Saturdays and Sundays are examined in the same way as before. It

is noticeable that shape of Saturdays and Sundays charging profile is similar. The

maximum values have a sinus curve shape with a significant peak in the early after-

noon. On Saturday there is also a peak around 22 : 30. Between 02 : 00 and 08 : 00

the demand at the charging site is very low. It increases fast up to 13 : 00 and is

over 10kWh until 19 : 00. On Saturdays the highest value is at 19 : 00 on Sundays it

is already at 17 : 00. Compared with the weekdays the demanded energy between

00 : 00 and 02 : 00 is higher on Saturdays and Sundays. Significant is that Sunday

is the only day when there are neither in the mean nor in the maximum values is

a gap of charging. A gap in the maximum value means that there is no charging
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event in the whole database for this time interval and the minimum, the mean and

the maximum value equal zero. It is noticeable that the maximum charging values

by night are significantly lower than by day.
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Figure 5.1.: Mean of all Mondays to Fridays in the observation period from
charging site C
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Figure 5.2.: Mean of all Saturdays and Sundays in the observation period from
charging site C

Table 5.2 gives a summary of statistical values for the presented results in the figures

5.1 and 5.2. The calculated values are:

• the mean value

• the standard deviation from the mean value

• the minimum value

• the maximum value

• the 50% percentile also known as median

This means one half of the mean charging profile values are less than this and the

other half is above this value. All values have the same unit as the data itself, kWh.

For the analysis the mean values of each month is analysed. Most noticeable is

that the minimum value on Sundays is not equal to zero like on the other days. This

portends that in average the charging site is used around the clock on Sundays.

Sunday also has the largest values for all other columns as well.

in kWh Mean Standard Deviation Min. Value 50% Percentile Max. Value
Monday 5.81 3.94 0 6.77 13.28
Tuesday 5.80 4.16 0 5.82 14.37
Wednesday 6.39 4.17 0 6.68 14.42
Thursday 5.62 3.93 0 5.24 14.61
Friday 6.69 4.46 0 7.68 15.02
Saturday 6.45 4.64 0 6.04 15.51
Sunday 7.29 4.89 0.56 7.76 17.32

Table 5.2.: Statistical analysis of the mean value of charging profiles per weekday,
in kWh
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5.1.2. Evaluation of the results on monthly basis

Figure 5.3 shows an overview of six full month of the observed period. This month

include June, July, August, September, November and December. The month May

and October are left out. In May only the last week was observed and in October

was an construction nearby so the station was not accessible as usual. That leads

to a significantly lower charging demand that is not representative. The measure-

ment data is from charging site C. The plots show the mean charging energy and the

maximum charging energy of each day. Every 7th day is marked, to make it easier

to analyse the data. The marked day is Monday.

It can be seen that in July the charging energy is lower than in June or August. In

the last week of September the charging energy decreases on a daily basis. In the

first two weeks of November the charging energy increases. But it decreases again

in the last week of November. A low charging energy per day is observable in De-

cember. In the last week the energy is again increasing per day.

Overall there is no significant pattern noticeable during the observed weeks. It is

noticeable that the charging energy on Sundays is almost always equal or greater

than the charging energy on Mondays.

Figure 5.4 shows the average daily charging energy per 24h in each month. The

maximum value that is charged during one 15min interval is shown as well as the

mean value. These charging profiles are similar to the ones discussed in Section

5.1.1. The mean energy is highest in August, September and November. The high-

est maximum value is charged in August. The time where in average almost no

charging takes place are between 02 : 00 and 06 : 00 in the morning. December

is different because the charging time is almost twice as long between 01 : 00 and

08 : 00.

The maximum values are showing, that in June, July, and September the charging

stations are used also by night. Only half an hour long there took no charging place

in all events of that month.

In August, November and December the amount of time where no charging at all

took place equals the gaps in the maximum value of the day. It is more than an hour.

Noticeable is that the normal charging decrease in November starts around 07 : 00

and in December around 08 : 00. That is a difference of 1 hour. In July the charging

increases from 09 : 00 until the afternoon. After the night there is a peak between

06 : 00 and 07 : 00.

In Table 5.3 the statistical summary is also presented for the 24h charging profiles
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in kWh Mean Standard Deviation Min. Value 50% Percentile Max. Value
June 7.29 4.52 0 7.22 15.64
July 5.39 3.62 0 5.55 13.72
August 8.14 5.41 0 7.46 19.19
September 9.69 6.18 0 9.24 22.61
November 8.8 6.23 0 9.5 21.18
December 4.58 3.52 0 4.12 12.21

Table 5.3.: Statistical analysis of the mean value of charging profiles per month, in
kWh

in each month. The highest mean is in September as well as the highest maximum

value. The median is highest for November that has the second highest maximum

value and also the highest deviation from the mean. It is noticeable that the mini-

mum value is zero for each month which means in every month is a at least one time

step when no charging at all is done. This is confirmed by the plots in 5.4



5.1. RESULTS OF THE CHARGING PROFILE MODELLING TOOL 53

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Time [d]

0

10

20

30

40

50

60

70

80

90

En
er

gy
 [k

W
h]

Maximum Value Of Day
Mean Value Of Day

(a) June

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Time [d]

0

10

20

30

40

50

60

70

80

90

En
er

gy
 [k

W
h]

Maximum Value Of Day
Mean Value Of Day

(b) July

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Time [d]

0

10

20

30

40

50

60

70

80

90

En
er

gy
 [k

W
h]

Maximum Value Of Day
Mean Value Of Day

(c) August

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Time [d]

0

10

20

30

40

50

60

70

80

90

En
er

gy
 [k

W
h]

Maximum Value Of Day
Mean Value Of Day

(d) September

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Time [d]

0

10

20

30

40

50

60

70

80

90

En
er

gy
 [k

W
h]

Maximum Value Of Day
Mean Value Of Day

(e) November

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Time [d]

0

10

20

30

40

50

60

70

80

90

En
er

gy
 [k

W
h]

Maximum Value Of Day
Mean Value Of Day

(f) December

Figure 5.3.: Monthly evaluation of the charging profiles on a daily basis (Charging
Site C)
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Figure 5.4.: Monthly evaluation of the charging profiles on a 24h basis (Charging
Site C)
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5.2. Evaluation of the results of the peak-shaving

optimization

The developed optimization tool includes two possibilities for peak-shaving. The

first one uses only a BES system and the second one uses a BES in combination

with a PV system. In both methods the desired charging and discharging profile of

the system is calculated by the optimization algorithm. In this section the results

from the peak-shaving with help of the optimization are evaluated. The results for

charging site C (see Tab. 5.1) are described in detail. The results for the charging

sites A and B are in the appendix A.2.

Firstly the results of the BES system optimization are evaluated for three month. The

basis are 24h charging profiles as they are presented in Figure 5.4. Three month

are each evaluated to have three different charging demand scenarios which can be

compared:

• low demand scenario: The maximum peak demand is less 50 kW , the mean

value is around 20 kW .

• medium demand scenario: The maximum peak demand is around 75 kW , the

mean value is around 30 kW .

• high demand scenario: The maximum peak demand is 90 kW , the mean value

is around 40 kW .

Afterwards the optimization with the combined BES and PV system is applied for

medium demand scenario. The used values for the BES power and capacity cases

as well as the size and irradiance cases of the PV system are depicted in Table A.1.

5.2.1. Evaluation of the results of the BES-only system optimization for
peak-shaving

In the following the results are presented for the peak-shaving with help of a BES.

With the developed optimization tool the desired and optimised BES behaviour is

calculated for each use case. The data is output to a database as well as the results

are plotted for a 24h interval. The power output of the BES is presented and the

resulting demand is calculated by adding the BES power to the requested charging

power to achieve a resulting charging profile.

Those profiles are evaluated in this section. The original and the resulting charging

profiles are compared regarding the peak-decrease. This gives a hint on the impact
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that a BES can have on the grid consumption of the charging station. By comparing

different BES system sizes in mean of capacity and power it is evaluated which size

might have the biggest influence. It is also beneficial to know what BES system size

is preferable for different charging demands.

In general the aim of peak-shaving is to reduce the maximum peak occurring in a

time interval. This is done by shifting the load from the peak with help of the BES.

The BES stores the energy in times of lower or off-peak phases. When the demand

arises the power is released from the BES to reduce the peak. This can prevent over

sizing grid assets if there is no further reason but the occurring high-peak during a

short time of the day.

The examined charging profiles are displayed in the following figures:

• low demand scenario: 25 & 50 kWh in Figure 5.5 and 100 & 150 kWh in Figure

5.6

• medium demand scenario: 25 & 50 kWh in Figure 5.7 and 100 & 150 kWh in

Figure 5.8

• high demand scenario: 25 & 50 kWh in Figure 5.9 and 100 & 150 kWh in Figure

5.10.

Firstly each charging scenario will be explained. Afterwards the three scenarios are

compared with each other.

As it can be seen each figure contains two plots and two figures belong to each

scenario. Each plot handles one of the chosen capacities for the BES. The order of

plots is ascending of the capacity for all the three scenarios. The y-axis describes

the power that is charged at each moment of time, which is on the x-axis.

The resolution to create the charging profile is 15min and the time steps in the plot

are from 00 : 00 to 23 : 45. The original charging demand which is created by the

CPM is plotted in green. The storage power is plotted for each charging power

variation in a different shade of violet. The resulting charging profiles are orange.

Low demand scenario

In Figure 5.5 a) the peak decrease is about 37 %. This means the maximum value

of the resulting profile is 63 % of the peak without any BES support. It is also visible

that the charging profile with the peak-shaving is narrower.

When the BES power is lesser than zero this means the discharging starts. When

the power is above zero, the BES charges. At zero the BES system is neither pro-

viding nor charging energy. It is noticeable that all BES and resulting profiles are
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congruent. The variance of the BES power has no effect on the result when the

BES capacity is at 25 kWh.

A similar congruent behaviour can be seen in Figure 5.5 b), and in Figure 5.6 a), b)

as well. In Figure 5.6 b) there is a spike for the first case at the time of the high-peak

value. It seems that the charging profile flattens with increasing battery capacity. It

can be seen that the load is shifted from the peak time to times with almost no peak.

For Figure 5.6 b) this means that the BES system charges from midnight to 09 : 00

in the morning. From 13 : 00 to 23 : 30 it is discharging.

A summary of the peak-decreases is given in Table 5.4. The peak decreases are

42 %, in Figure 5.5 b), Figure 5.6 a) 49 %, and in Figure 5.6 b) over 51 %.

The peak-decrease seems to increase with the BES capacity. The values over the

different power cases for the same capacity are equal except for the highest capacity

case. There is a difference of three percentage points between 25 kW and greater

or equal 50 kW BES power.
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Figure 5.5.: Evaluation of the peak-shaving optimization with the BES system in a
low demand scenario (Charging Site C; 25 & 50 kWh)
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Figure 5.6.: Evaluation of the peak-shaving optimization with the BES system in a
low demand scenario (Charging Site C; 100 & 150 kWh)
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Medium demand scenario

The figures 5.7 and 5.8 show the medium charging demand scenario. The maximum

peak is around 15 : 00 with a value of 76 kW . The different BES power case profiles

in Figure 5.7 a) are almost congruent, except for the first case, the 25 kW . There

is a spike at the low-peak directly next to the maximum value. The charging and

discharging times are very intermittent so there is no time when the BES is mainly

charged or discharged. The peak-decrease is at 32 %. Case 5.7 b) is similar to 5.7

a) in having congruent resulting charging profiles. There again a spike appears in

the first case, but it is now at the high peak time. The peak-decrease is between

33 %− 36 %. In 5.8 a) there are again spikes. This time it is more visible at the time

of the maximum peak and at time of the second highest peak. The amplitude is the

same as before. It is visible that the spikes correlate with a small divergence in the

amplitude of the power of the BES. The time of charging the BES is again mainly

in the early morning and stops at 09 : 00. The discharging is between 12 : 00 and

22 : 00 with short intermittences. The peak-decrease is between 33 % − 41 %. For

150 kWh the peak-decrease lies between 33 % − 44 %. Considering only the higher

value the peak-decrease decreases with the battery capacity. The lower value is

caused in all cases by the peak that arises in the resulting power. The amplitude of

this spike is the same for all cases. Although the capacity is greater than Figure in

5.7 b) the peak-decrease for case one is the same for the figures 5.8 a) and 5.8 b)

too. With a BES power of greater or equal 50 kW the peak decrease is higher.
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Figure 5.7.: Evaluation of the peak-shaving optimization with the BES system in a
medium demand scenario (Charging Site C; 25 & 50 kWh)
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Figure 5.8.: Evaluation of the peak-shaving optimization with the BES system in a
medium demand scenario (Charging Site C; 100&150 kWh)
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High demand scenario

The high demand scenario is depicted in the figures 5.9 and 5.10. The maximum

power of 90 kW occurs around 20 : 00 in the evening. In the first capacity case 5.9 a)

the resulting charging profile has still noticeable steps, but the peaks are smoothed.

At time of the peak occurs again a spike for case one as described before for the

medium demand scenario. The peak-decrease is around 28 %− 30 %. For case 5.9

b) the resulting profile is similar to 5.9 a). The peak-decrease is between 28 %−34 %.

Case 5.10 a) is significantly different to the cases before. The resulting charging

profile is significantly lifted in the first half of the day and decreased in the second half

compared to the cases before. There are spikes in the resulting power at the times

of the highest peaks again for case one. The peak-decrease is between 28 %−40 %.

For the first case it is again limited because the desired discharging power exceeds

the power that can be provided by the BES of 25 kW size. In 5.10 b) more spikes

occur at the time of the highest peaks for case one. The increased capacity of the

BES makes it possible that more energy can be charged and discharged. The main

charging time is again in the first half of the day between 00 : 00 and 07 : 00. There

is also a comparable long period of 2h in the late evening. Discharging mainly

takes place between 12 : 00 and 21 : 00. In this case the peak-shifting is highly

noticeable. The resulting charging profile in case 5.9 a) has a difference between

maximum value and minimal value of almost 50 kW . This difference is half in case

5.10 b). The peak decrease is between 28 % − 45 %. Compared with the first case

of 25 kWh the peak is a third more decreased with a 150 kWh BES capacity and a

power greater or el to 50 kW .
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Figure 5.9.: Evaluation of the peak-shaving optimization with the BES system in a
high demand scenario (Charging Site C; 25 & 50 kWh)
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Figure 5.10.: Evaluation of the peak-shaving optimization with the BES system in a
high demand scenario (Charging Site C; 100 & 150 kWh)
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Comparison of all scenarios

In all cases the capacity of the BES has a significant impact on the peak-decrease.

Besides in the first case with 25 kW power of the BES all other power cases have

produced a peak-decrease between 44 %− 55 %. Where as the capacity of 150 kWh

may be oversized for the low demand case it has also shown great performance for

the high demand case. In Table 5.4 it is visible that the peak-decreases for the low

demand scenario are the greatest of all scenarios. The peak-decreases are similar

when the medium and high demand scenarios are compared. It is most noticeable

that the peak-decrease for the 25 kW BES power only increases during the low de-

mand scenario.

in % low demand
25 kW 50 kW 100 kW 150 kW

25 kWh 37 37 37 37
50 kWh 42 42 42 42
100 kWh 49 49 49 49
150 kWh 51 55 55 55

medium demand
25 kWh 32 32 32 32
50 kWh 33 36 36 36
100 kWh 33 41 41 41
150 kWh 33 45 45 45

high demand
25 kWh 28 30 30 30
50 kWh 28 34 34 34
100 kWh 28 40 40 40
150 kWh 28 45 45 45

Table 5.4.: Peak-decrease with the BES system in different sizes of Capacity and
power for each demand scenario (Charging site C)

5.2.2. Evaluation of the results of the combined BES and PV system
optimization for peak-shaving

Here the results of the peak-shaving with help of the developed optimization tool is

presented in the following sections. This sections deal with the results for the peak-

shaving with a combined system of a BES and a PV system. Those systems are

topics in the actual research. The developed optimization tool uses a highly ideal
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model for the solar power output based on a Gaussian distribution. The model pa-

rameters and the modelled power profile is shown in Section 4.2.3.

With the developed optimization tool the desired and optimised BES behaviour is

calculated for each use scenario and case. The data is output to a database as

well as the results are plotted for a 24h interval. The power output of the BES is

presented and the resulting demand is calculated by adding the BES and the PV

output power to the requested charging power to achieve a resulting power profile.

Those profiles are presented in this section. The original and the resulting charging

profiles are compared based on the peak decrease. This gives an idea how big is

the impact of the BES and the PV system on the grid consumption of the charging

station.

To simulate different seasons the PV output power varies in shape and amplitude.

To evaluate if a larger or a smaller PV panel is more desirable the output power is

scaled with two different sizes, 20 kW and 40 kW . The maximum output power is

given for the summertime and is therefore the high power case.

By comparing different BES system sizes additionally in mean of capacity and power

it is evaluated which size has the biggest influence. It is also beneficial to know what

BES system size is preferable to handle different charging demands and PV power

outputs.

In general the aim of the peak-shaving is to reduce the maximum peak value occur-

ring in a time interval. This is done by shifting the load from the high peak time with

help of the BES to the low peak time. A negative power peak can be added By the

PV system, if the PV power excesses the demanded charging power and creates a

power peak by feeding the surplus power to the charging site. In this case the BES

is additionally charging that energy to minimize the grid injection of the PV power.

This can prevent over-sizing grid assets and makes the handling of the PV system

easier for the grid because there is as least grid injection as possible and the power

flow is still most of the time in the usual direction.

The examined charging profiles are based on the medium demand case from Sec-

tion 5.2.1. The irradiance scenarios are displayed in the following figures:

• low irradiance scenario: BES: 25 kWh and PV: 20 kW & 40 kWh in Figure 5.11,

BES: 150kWh and PV: 20 kW & 40 kWh in Figure 5.12

• medium irradiance scenario: BES: 25 kWh and PV: 20 kW & 40 kWh in Figure

5.13, BES: 150 kWh and PV: 20 kW & 40 kWh in Figure 5.14

• high irradiance scenario: BES: 25 kWh and PV: 20 kW & 40 kWh in Figure
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5.15, BES: 150 kWh and PV: 20 kW & 40 kWh in Figure 5.16.

Firstly each irradiance scenario will be explained. Afterwards the three scenarios

are compared with each other. As there are 128 cases for the irradiance only the

most significant cases are described in the following sections.

As it can be seen in the figures 5.11 and 5.12 they are divided into two plots a) and

b). Each plot handles one of the chosen capacities for the BES. The order is the

same for all the three scenarios. The y-axis describes the power that is charged

at each moment of time, which is on the x-axis. The resolution used to create the

charging profile is 15min and the time steps in the plot are from 00 : 00 to 23 : 45.

The original charging demand which is created by the CPM is plotted in green. The

PV output is blue. The storage power is plotted for each charging power variation in

a different shade of violet. The resulting charging profiles have different shades of

orange. Only two different BES capacity cases are examined in detail: the 25 kWh

and the 150 kWh.

Low irradiance scenario

In the figures 5.11 and 5.12 the low PV irradiance scenario is examined with a factor

of 0.25 on the output PV power. This means only a quarter of the installed PV output

power is reached. In Figure 5.11 the BES system with a 25 kWh capacity is shown

with different the PV power values 20 kW and 40 kW . Figure 5.12 shows the system

with a BES capacity of 150 kW .

It is noticeable that the maximum value of the PV power occurs on an earlier time

than the charging peak. It is about three hours earlier. The time of the power injec-

tion to the charging site by the PV system is four hours long. The additional power

from the PV system is barely noticeable in the power cases. The peak-decrease is

around 32 %.

In Figure 5.11 b) in comparison the impact on the charging of the BES can be seen

mostly during the PV peak time. This does not effect the peak-decrease, it is still

32 %. With the BES higher capacity in Figure 5.12 a) the peak decrease is between

33 % − 50 %. Here the peak-decrease is with 50 % around five percentage points

higher in comparison to the same BES configuration in the medium demand sce-

nario without PV. The peak-decrease is at 51 % when the PV power is doubled in

Figure 5.12 b). The difference of the peak-decrease is not significant between the

different power injections in the low irradiance scenario. Only the 25 kW BES power

cases is an exception again.
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Figure 5.11.: Evaluation of the peak-shaving optimization with the BES combined
with a PV system in a low irradiance scenario (Charging Site C;

25 kWh, 20 & 40 kW )
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Figure 5.12.: Evaluation of the peak-shaving optimization with the BES combined
with a PV system in a low irradiance scenario (Charging Site C;

150 kWh, 20 & 40 kW )
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Medium irradiance scenario

In the figures 5.13 and 5.14 the factor that limits the PV power is 0.67. The PV injects

power between 08 : 00 and 16 : 00. There is a PV injection during the charging

demand peak time.

The peak-decrease is 34 %. It is noticeable that the BES discharges less during the

PV power injection. The opposite occurs and the BES charges more in the time

of the peak than in the low irradiance scenario. This happens not the whole time

in Figure 5.13 b) because around 09 : 00 the BES discharges more than in Figure

5.13 a). The peak-decrease is around 35 %. In Figure 5.14 a) the peak-decrease

is between 39 % − 53 %. This is significantly higher than in Figure 5.13 b) but not

compared with in the same case in the low irradiance scenario. The peak in the first

case is reduced about five percentage points. This is more than in the low irradiance

scenario. The discharging power is higher than in the figures 5.13 a) and 5.13 b).

In case 5.14 b) the peak-decrease is between 42 %− 56 %. The charging of the BES

during the PV injection is now about the same as the discharging during that period.

In the resulting charging profile is a step visible of 10 kW difference. Compared to

the BES-only the PV has a positive impact of ten percentage points on the peak-

decrease.
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Figure 5.13.: Evaluation of the peak-shaving optimization with the BES combined
with a PV system in a medium irradiance scenario (Charging Site C;

25 kWh, 20 &40 kW )
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(b) BES Capacity: 150 kWh, PV Power: 40 kW

Figure 5.14.: Evaluation of the peak-shaving optimization with the BES combined
with a PV system in a medium irradiance scenario (Charging Site C;

150 kWh, 20 & 40 kW )
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High irradiance scenario

In the figures 5.15 and 5.15 the high irradiance scenario causes the highest possible

output power of the PV system. It reaches the given values of 20 kW respectively

40 kW because the factor is 1 (see Sec. 4.2.3). The power injection is between

07 : 00 and 16 : 00. The highest output power is shortly past noon. In this scenario is

also a power injection during the highest charging demand. In between the highest

injection peaks and the highest demand peak are still two hours difference.

In Figure 5.15 a) the peak decrease is at 39 %. Noticeable is that the highest result-

ing power is neither during the highest demanding power nor during the highest PV

power injection. In the same time the charging and discharging power of the BES is

equal in absolute value. There is a great difference between the resulting charging

profiles in comparison to the medium high irradiance case of almost 10 kW during

the charging peak time. And this even with the 25 kWh BES configuration.

The peak-decrease is 42 % in Figure 5.15 b). This is a huge difference to case 5.15

a) in comparison to the difference between the PV power cases in the other two

scenarios. The resulting power during the PV power injection is in Figure 5.15 b)

different compared with Figure 5.15 a) and also the other scenarios. There is more

charging of the BES, but about the same amount of discharging compared to Figure

5.15 a).

In Figure 5.16 a) the peak-decrease is between 49 % − 59 %. Around 11 : 00 there

is an almost linear increase of resulting power from 20 kW to 30 kW . It is noticeable

that more spikes in the lowest BES power case occur. In this case the BES dis-

charges much more between 16 : 00 and 22 : 00 in comparison to case 5.15 a) and

b).

In Figure 5.16 b) this effect is even more noticeable. Compared with Figure 5.16

a) the BES discharges less during the maximum charging demand peak time. The

charging of the BES is more visible between 09 : 00 and 12 : 00 even more than in

the medium irradiance case. The peak decrease is between 49 %− 66 %. The over-

all resulting power decreases except for the 25 kWh BES configuration. As before

there are more spikes in the resulting charging profile. The amplitude of the peaks

shifted. It is less during the time of the PV power injection in the figure 5.16 d) but

higher after the injection. The spikes there have the same amplitude as in a), but

seem higher in comparison to the average resulting power in this time period. The

step between the two visible power level is around 13 : 00 and is seems to happen in

between two 15min time steps, so the increase is almost like a step. In Figure 5.16
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a) this increase is more like a ramp.
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Figure 5.15.: Evaluation of the peak-shaving optimization with the BES combined
with a PV system in a high irradiance scenario (Charging Site C;

25 kWh, 20 & 40 kW )
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Figure 5.16.: Evaluation of the peak-shaving optimization with the BES combined
with a PV system in a high irradiance scenario (Charging Site C;

150 kWh, 20 & 40 kW )
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Comparison of all irradiance scenarios

The shape of all resulting charging profiles in comparison differs much. The maxi-

mum value of the resulting charging profile shifts the time depending on the irradi-

ance case.

It is noticeable in Table 5.5 that the differences between the PV power cases re-

garding the peak-decreases are increasing with the irradiance scenarios. In the low

irradiance scenario the difference is maximum one percentage point. In the medium

irradiance it is from one to three percentage points and in the highest irradiance

scenario it is from three to six percentage points.

Peak-decrease in %
Irradiance Low
BES capacity 25kWh 150kWh
PV power 20kW 40kW 20kW 40kW
25kW 32 32 33 33
50kW 32 32 50 51
100kW 32 32 50 51
150kW 32 32 50 51
Irradiance Medium
BES capacity 25kWh 150kWh
PV power 20kW 40kW 20kW 40kW
25kW 34 35 39 42
50kW 34 35 53 56
100kW 34 35 53 56
150kW 34 35 53 56
Irradiance High
BES capacity 25kWh 150kWh
PV power 20kW 40kW 20kW 40kW
25kW 39 42 49 49
50kW 39 42 59 66
100kW 39 42 59 66
150kW 39 42 59 66

Table 5.5.: Peak-decrease with BES and PV system over the examined scenarios



79

6. Discussion

The first goal of the thesis is to develop a accurate modelling tool in Python for

charging profiles that are based on real measurement data. Furthermore these

modelled charging profiles are used to show used and impact of peak-shaving. The

used assets to get the peak-shaving are firstly a BES only-system and secondly a

BES combined with a PV system. In Chapter 5 the output data of the CPM tool and

the peak-shaving are presented.

In this chapter these results are discussed. Firstly the results from the CPM tool

are discussed on a weekly and a monthly basis. Afterwards the results of the peak-

shaving optimization are talked over.

6.1. Discussion of the results of the Charging Profile

Modelling tool

The following section discusses the findings from Section 5.1.2 and 5.1.1. Firstly the

weekly results are discusses, followed by the monthly results. Finally the findings

are summarized.

6.1.1. Discussion of the results on each weekday

On Fridays (see Fig. 5.1) the charging energy has a level of around 10 kWh from the

afternoon until midnight. This is unusual compared to the other days. This implies

that the EVs are charged more on Friday evenings. This can mean that more EVs

are charged so more EV owners drive and charge their cars. Or each EV charges

more energy which implies the same amount of EV owners as usual travel more

during Friday evenings and each EV has a higher demand.

It is also noticeable that the charging energy during the night is significantly smaller

than by day. This can be interpreted as low demand by night so either less people

charge their EV or each EV is charged for a shorter time period.
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The result of the statistical comparison of all weekdays (see Tab. 5.2) show that on

Sundays are the largest values in all categories. At that weekday is no charging gap

either (see Fig. 5.2). This implies that the charging on Sundays is in average more

utilized by the users compared to other days. The assumptions are that the users

have more time on Sundays and they have more need of charging at the end of the

week to prepare their car for the next week.

6.1.2. Discussion of the results on monthly basis

To explain the monthly results a consideration of the public holidays can be useful.

The school holidays in 2018 were from the mid of June to the mid of August in Nor-

way. It is likely that many people are on vacation in this period and are therefore not

at home. It can be seen that in July the charging energy is lower than in June or

August. It is assumed that the vacation season and the lower charging energy are

correlating.

A not certainly explainable behaviour is seen in December. The charging energy is

very low in this month except for the last week. It is possible that less people use

electric cars during the winter time. It is also possible that the station was not acces-

sible as usual during this time due to constructions, similar to October. This is the

most likely explanation because in the last week of November there is a decrease

of energy from Monday to Sunday. An increase takes place in the last week of De-

cember. A similar pattern can be observed end of September and in the beginning

of November. The increase at the end of December can also result from a higher

traffic after the Christmas Days and before New Years Eve.

Another assumption is that the length of daylight correlates with the charging be-

haviour of the EV owners. It is based on the findings that in November and Decem-

ber the number of hours with no charging during the night is higher than in June,

July and September. From May to August there is daylight from 14 to maximum 19

hours a day. During September the time of daylight decreases from 14 hours to 11.5

hours. From November to December the day length decreases from 8.75 hours to

6 hours. This would also explain why it seems that the charging in December (see

Fig. 5.4) mainly begins around 08 : 00 one hour later than in the other month except

July. In December the sun rises between 08 : 50 and 09 : 20. It seems that also the

sunrise in Winter has an influence on the charging behaviour.

The impact of the summer holidays in July is visible because the charging increases

from 09 : 00 until the afternoon. This indicates that most people start charging later
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as usual probably related to the lack of duty to be at work early. Between 06 : 00 and

07 : 00 is a peak which indicates that there are still people charging as regular. The

majority seems to start charging after 09 : 00.

6.2. Discussion of the peak-shaving optimization

In the following section the findings from Section 5.2.1 are discussed. Firstly the

peak-shaving with the BES system is discussed. Afterwards the findings of the

combined BES and PV system are discussed. It is closed with a summary of the

findings.

6.2.1. Discussion of the results of the BES system optimization for
peak-shaving

In all scenarios it is noticeable that the peak-decrease is higher when the BES sys-

tem has a higher capacity. These findings imply that there is a correlation between

the capacity of the BES system and the peak-decrease.

Another finding is that the peak-decrease for the 25 kW BES case is not above 33 %

for the medium and the high demand scenario. This limitation results in the limited

output power of the BES that is at 25 kW . This power limit is reached at the time

of the highest load peaks. This is noticeable because the storage profile stops at

a discharging power of 25 kW for this first case. The charging profiles of the BES

for the other cases in 5.8 and 5.10 reach beyond that value because their limit is

at 50 kW and higher. This provides evidence that the peak-decrease also depends

on the power of the BES. This occurs when the requested charging power at one

time is higher than the power that can be supplied at once by the BES to reach the

desired peak-decrease.

Which power size is preferable seems to highly depend on the maximum amplitudes

of the charging profile. The capacity size of the BES seems to depend on the av-

erage power of the original charging profile. The higher the mean of the charging

profile the higher is the needed of more capacity to reach the same peak-decrease.

The mean of the low demand scenario is about the half of the mean of the high

demand scenario. The difference in the mean between medium and high demand

scenario is around 10 %. The medium and high demand scenarios gain a similar

peak-decrease. The low demand scenario has a peak-decrease that is five percent-
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age points higher in every case (see Tab. 5.4).

6.2.2. Discussion of the results of the combined BES and PV system
optimization for peak-shaving

In the combined peak-shaving the additional power of the PV system influences the

charging behaviour of the BES. In the 25 kWh capacity case the peak decrease

is between 32 % − 42 %. The higher the irradiance scenario the higher is the peak

decrease.

This leads to the conclusion that the 25 kWh capacity size of the BES is highly sup-

ported by the PV system in the desired manner. The additional power output of the

PV system extents the limited power output of the BES so a higher peak-decrease

is possible even for the maximum peak and the smallest BES capacity. This implies

that the additional PV is compared to a PV with a higher output power. The peak-

decrease for the 150 kWh BES capacity is as well increasing with the irradiance.

The additional power of the PV system has a positive impact on the system. If the ir-

radiance case is low the combined system behaves similar to the BES-only system.

This means worst case of the peak-decrease is the same behaviour as without the

PV system. In the selection of the size of the BES this finding should be considered.

This selection depends also on the charging behaviour during low irradiance.

The lowest value of peak-decrease for the first case in each scenario results from

the limitation of the BES power to 25kW like described in the section before. The

charging behaviour of the BES during the PV injection is different compared to the

BES-only system.

It can be seen that the BES is charging the surplus power and keeps the resulting

power as much as possible on the same level without peaks. To keep this power

level, the BES is discharging at time of the demanded power peaks. The surplus

charging and controlled discharging of this energy implies that an additional PV sys-

tem extends the utilization and usefulness of a BES system.

In the highest irradiance scenario more spikes occur in the resulting profile of the

25 kW and 150 kWh BES configuration. This makes very visible that the BES

reaches the power limits more often in that case. One reason is the high amount of

charged surplus power, that needs to be discharged until the end of the day to meet

the optimization constraints. In that case the BES discharges as much energy as

possible to loose more energy over time. The BES reaches more often the power

limit.
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In the other power cases this is not a problem. Compared to the BES-only optimiza-

tion the constraints allow the BES to hold minimum of 20 % and a maximum of 60 %

of its maximum capacity at the end of the day. This broader constraints enable the

BES to discharge the surplus energy until the end of the day if needed. In the 25 kW

case the power limit is reached because the optimization keeps the resulting power

on one level as long as possible. This can result in a problem regarding the spikes

and the noticeable, quick increases of the power in the resulting profile.

In both cases the area of sudden power increase should be evaluated in a smaller

time resolution like 1min. This could clarify if the gradient is critical over time. Criti-

cal would be if the gradient is still that high for a 1min resolution. If this is the case

an evaluation with 1s should be considered. The problem with sudden increases

in a power system is that these can cause harmonics because suddenly increasing

power means that the voltage and/or the current are increasing suddenly too.

6.3. Summary of the discussion

In summary the results for modelling the charging profiles seem realistic, based on

possible user behaviour. On weekdays people have a more structured and timed

daily routine for example they commute to work and home afterwards. This is re-

flected in the results from Monday to Friday. The similarities are for example the

time interval with very low charging. It is plausible that there is almost no charging at

this time because most people are home at night. Therefore EV charging is unlikely.

This is supported by the significantly lower charging energy by night in Figure 5.1.

On the weekend people have another daily routine. Most people leave the house

later because they do not have to commute to work for example. That results in

charging profiles that start increasing later than on weekdays.

The monthly results support this impression. They are explainable and seem to cor-

relate with the circumstances of the real world for example holidays.

Therefore the CPM tool is fully validated. The results already show noticeable pat-

terns although not a full year is observed and the number of charging events is

around 30.000. This speaks for the quality of the modelling and the modelling tool.

Although the results are promising it is unfortunate that no more charging data could

be provided. With more charging data and events the statistic reliability increases

and the analysis regarding the charging behaviour would be more accurate. This

would have also a positive impact on planning the business for the charging site
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operators. It would already be helpful to have a full year to observe so more conclu-

sions could be draw regarding seasonal variation.

The needed execution time of 0.2s per event is also a positive outcome. It seems

possible to process Nevents,th = (16·60·60)s
0.2s

= 288, 000 charging events in a feasi-

ble overnight simulation between 16 : 00 and 08 : 00 theoretically. This means a

database of almost 10 times the size of the used one can be modelled over night.

The CPM is neither optimized for databases with more events nor runtime optimised.

That makes it possible that the tool cannot process so many charging events at once

in its actual form. It is still desired to gain more charging event data so testing the

tool with databases with much more entries is possible. In this way it is possible to

find out more about the charging behaviour of EV drivers, especially from January

to the end of May

The peak-decrease with the lowest configuration in the BES-only scenarios is

around 30 %. The highest configuration has a peak-decrease around 50 % depend-

ing on the demand scenario. The BES is extended by the PV in a desired manner.

The maximum peak-decrease with the highest configuration is 66 %. It needs to be

considered that all conclusions are based on the average charging profile of a day.

To find the best size for the BES capacity and power the mean charging power and

the peak charging power should be known. It is also possible to investigate those

influences further and create a tool that may calculate a feasible BES sizing based

on a charging demand profile. In the current research the sizing is often also deter-

mined by several optimization algorithms but in most cases the economic aspects

dominate the objective function.

Fast increases in the resulting charging profile are not desirable. Step-like increases

are visible in almost all cases also in the BES-only peak-shaving. A high gradient in

the resulting demand that is equal to a step can cause harmonics in the grid. This is

not desired. A more detailed evaluation should be considered for all increases that

are occurring during one 15min time step. The first step could be a 1min resolution

of the demand charging profile. The gradient then can be analysed if the increase is

critical.
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7. Conclusion

From the results gathered in this thesis it can be seen that modelling of charging

profiles is highly useful for the evaluation of the charging behaviour. The evaluation

of the peak-shaving optimization shows the large potential that lies in integrated bat-

tery electric storage (BES) and photovoltaic (PV) systems. A considerable reduction

of the peak power can be expected with a well chosen BES configuration. Despite

of an increasing number of charging sites the operation in a combined system will

be less dependent on the grid.

The further processing of the measured charging events enables a detailed view on

the charging behaviour of the users and reveals more insights on charging patterns.

The analysis of the peak-shaving optimization uncovers a large unused potential for

peak reduction in the operation of charging sites. The power peak is reduced by over

one third even with the smallest BES configuration. The flexibility can be increased

with the increase of the BES capacity, especially regarding an additional PV system.

In the best case the peak-decrease can be about 65 % with the highest irradiance

scenario.

When the BES-only system reduces the peak enough to stay within the performance

limits there is no shortage of energy supply with the integrated PV even during low

irradiance. In high irradiance scenarios this capacity can extend the flexibility and

offers a higher degree of independence of the grid. The results imply that the com-

bination of a charging site with a well controlled BES and PV system is a feasible

solution to prevent a bottleneck in the supply of the charging stations.
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8. Future Work

In this thesis a full tool to evaluate charging site data is developed and new findings

are made. Further there are concepts and ideas that were not considered in this

thesis.

8.1. Analysing more data

With more data to analyse the tool can be validated with a dataset with more charg-

ing events. Further statistical analysis can be started. The charging profiles can

be clustered, which means profiles with similar properties are classified in a group

together. This is done in many fields and is used statistical analysis tool. Clusters

can be the basis for further applications in the field of machine learning. Machine

learning is interesting for the generation of data models based on the measured

charging data. If modelled charging profiles base on real data, realistic data can be

generated artificially. This helps further research because real data is rare and not

every company is open to share their measurement results with research groups.

Researchers would not need to produce their own models based on assumptions,

but can use models based on real data, which can lead to big results and obliterate

wrong assumptions.

Machine learning is used for predictions so it is possible to have an predictive charg-

ing approach based on real data. Based on the trained real charging data the al-

gorithm may predict how the charging profiles will look like in the next time period.

Therefore the generation and storage units in station could be controlled in advance

to satisfy those predicted charging demand.

8.2. Vary the peak-shaving optimization

Clustering can also improve the optimization model by using non-linear approaches

the optimization result becomes more detailed. One possibility is to add non-linear
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losses to the model so they can be taken into account. This does not work in a linear

or quadratic optimization because only linear constraints, boundaries, and linear or

quadratic objective functions are allowed.

Although those non-linear models and optimizations are used much in research they

can be very complex. Most of the problems have to do with investment costs and

minimizing them. In this thesis is no study of economic aspects. Also ecological

impacts are neglected. Those two aspects can be combined with the findings from

this thesis to have a holistic approach on the charging site model with combined

BES and PV that is based on real data. The costs and profits (not only economical)

can be evaluated then.

It would be interesting to study the behaviour of other energy sources but the PV

during the peak-shaving. One possible source could be a fuel cell or another CHP

system. The case of a PV system that has a larger scale is also possible. The

modelling of the PV output power is improvable. It would be more realistic when

there is appropriate modelling that considers clouds and reflections not only the

direct normal irradiation.

8.3. Improving the Charging Profile Modelling

To improve the CPM it is one step to create a GUI so the tool is then not scripts

that are executed but a application that can be handled also by persons with no pro-

gramming experience. The GUI would have simple input dialogues where the user

simply chooses the databases that need to be processed. Parameters as the for-

mat and the resolution need to be chosen as well. Also checkboxes to select which

process shall be performed with the database. Of course the plotting is included as

well. Some general plots are pre-selected for the user to serve their basic need for

visualization of the data. The output is saved and the process should be continuable

after saving the results at any point. There are two modules that can be used for a

GUI implementation: Tkinter and PyQt

It is advised to optimize the tool to handle databases with more charging events.

It is not proofed that there are no runtime or memory issues without a extended

database. This needs to be checked.
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8.4. Accuracy of the charging profiles

To improve the accuracy of the charging profiles the base charging profile needs to

be improved. By analyse statistically which EV model has which type of charger

an own charging profile by charger can be generated. By using different charging

curves of different EV models with the same charger type a mean charging profile

for each charger can be created. Therefore a more accurate and reliable informa-

tion about the chargers is needed. Also how many chargers are at one station. This

helps to detect, if the charging event is possible or if there is a doubled saved charg-

ing event in the database with the same charger type at the same charging station.

Another draw back of the modelled charging curve is that after a short increase

100 % of the maximum power is provided by the charger. Normally the charging

power decreases when the charging EV reaches a certain SoC. The SoC of a EV

is not measured by the charging station so in the gathered charging data there is no

information what was the SoC at the beginning of the event. If there is a communica-

tion between EV and the charging station about the SoC and the power decreasing

the modelling of this decrease should be done. If the charging power is limited inter-

nally in the BES by the charging electronics the charging station provides as much

power as before so there would be no need to model the power decrease. As first

approach the decreasing of the charging profile can be estimated depending on the

charging time. It is assumed that the charging power decreases when the charging

time is mostly over.
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A. Appendix

A.1. Cases for the peak-shaving optimization

PV Irradiance PV Power [kW] BESS Capacity [kWh] BESS Power [kW]

1

Low

20

25

25

2 50

3 100

4 150

5

50

25

6 50

7 100

8 150

9

100

25

10 50

11 100

12 150

13

150

25

14 50

15 100

16 150

17

40

25

25

18 50

19 100

20 150

21

50

25

22 50

23 100

24 150

25

100

25
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26 50

27 100

28 150

29

150

25

30 50

31 100

32 150

33

Medium 1

20

25

25

34 50

35 100

36 150

37

50

25

38 50

39 100

40 150

41

100

25

42 50

43 100

44 150

45

150

25

46 50

47 100

48 150

49

40

25

25

50 50

51 100

52 150

53

50

25

54 50

55 100

56 150

57

100

25

58 50

59 100

60 150

61

150

25
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62 50

63 100

64 150

65

Medium 2

20

25

25

66 50

67 100

68 150

69

50

25

70 50

71 100

72 150

73

100

25

74 50

75 100

76 150

77

150

25

78 50

79 100

80 150

81

40

25

25

82 50

83 100

84 150

85

50

25

86 50

87 100

88 150

89

100

25

90 50

91 100

92 150

93

150

25

94 50

95 100

96 150

97

High

20

25

25
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98 50

99 100

100 150

101

50

25

102 50

103 100

104 150

105

100

25

106 50

107 100

108 150

109

150

25

110 50

111 100

112 150

113

40

25

25

114 50

115 100

116 150

117

50

25

118 50

119 100

120 150

121

100

25

122 50

123 100

124 150

125

150

25

126 50

127 100

128 150

Table A.1.: All cases for BESS and PV optimization of different PV irradiance, PV
Power, BESS capacity and BESS power
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A.2. Results of weekly evaluation of charging sites A&B
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Figure A.1.: Mean of all Mondays to Fridays in the observation period from
charging site A
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Figure A.2.: Mean of all Saturdays and Sundays in the observation period from
charging site A
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Figure A.3.: Mean of all Mondays to Fridays in the observation period from
charging site B
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Figure A.4.: Mean of all Saturdays and Sundays in the observation period from
charging site B
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A.3. results of monthly evaluation of charging sites A&B
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Figure A.5.: Monthly evaluation of the charging profiles on a daily basis (Charging
Site A)
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Figure A.6.: Monthly evaluation of the charging profiles on a 24h basis (Charging
Site A)
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Figure A.7.: Monthly evaluation of the charging profiles on a daily basis (Charging
Site B)
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Figure A.8.: Monthly evaluation of the charging profiles on a 24h basis (Charging
Site B)
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A.4. Results of peak-shaving optimization with the BES for

charging sites A & B
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Figure A.9.: Monthly evaluation of the charging profiles with BES system on a 24h
basis (Charging Site A, low demand)
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Figure A.10.: Monthly evaluation of the charging profiles with BES system on a 24h
basis (Charging Site A, medium demand)
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Figure A.11.: Monthly evaluation of the charging profiles with BES system on a 24h
basis (Charging Site A, high demand)
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Figure A.12.: Monthly evaluation of the charging profiles with BES system on a 24h
basis (Charging Site B, low demand)
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Figure A.13.: Monthly evaluation of the charging profiles with BES system on a 24h
basis (Charging Site B, medium demand)
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Figure A.14.: Monthly evaluation of the charging profiles with BES system on a 24h
basis (Charging Site B, high demand)
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A.5. Results of peak-shaving optimization with BES and

PV system for charging sites A & B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time [h]

100

75

50

25

0

25

50

75

100

Po
we

r [
kW

]

Irrcase = low, PV = 20 kWh

Demand
PV
Storage: 25 kW & 25 kWh
Result of BES: 25 kW & 25 kWh
Storage: 50 kW & 25 kWh

Result of BES: 50 kW & 25 kWh
Storage: 100 kW & 25 kWh
Result of BES: 100 kW & 25 kWh
Storage: 150 kW & 25 kWh
Result of BES: 150 kW & 25 kWh

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time [h]

100

75

50

25

0

25

50

75

100

Po
we

r [
kW

]

Irrcase = low, PV = 20 kWh

Demand
PV
Storage: 25 kW & 150 kWh
Result of BES: 25 kW & 150 kWh
Storage: 50 kW & 150 kWh

Result of BES: 50 kW & 150 kWh
Storage: 100 kW & 150 kWh
Result of BES: 100 kW & 150 kWh
Storage: 150 kW & 150 kWh
Result of BES: 150 kW & 150 kWh

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time [h]

100

75

50

25

0

25

50

75

100

Po
we

r [
kW

]

Irrcase = low, PV = 40 kWh

Demand
PV
Storage: 25 kW & 25 kWh
Result of BES: 25 kW & 25 kWh
Storage: 50 kW & 25 kWh

Result of BES: 50 kW & 25 kWh
Storage: 100 kW & 25 kWh
Result of BES: 100 kW & 25 kWh
Storage: 150 kW & 25 kWh
Result of BES: 150 kW & 25 kWh

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time [h]

100

75

50

25

0

25

50

75

100

Po
we

r [
kW

]

Irrcase = low, PV = 40 kWh

Demand
PV
Storage: 25 kW & 150 kWh
Result of BES: 25 kW & 150 kWh
Storage: 50 kW & 150 kWh

Result of BES: 50 kW & 150 kWh
Storage: 100 kW & 150 kWh
Result of BES: 100 kW & 150 kWh
Storage: 150 kW & 150 kWh
Result of BES: 150 kW & 150 kWh

Figure A.15.: Monthly evaluation of the charging profiles with BES and PV system
on a 24h basis (Charging Site B, low PV power)
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Figure A.16.: Monthly evaluation of the charging profiles with BES and PV system
on a 24h basis (Charging Site B, medium PV power)
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Figure A.17.: Monthly evaluation of the charging profiles with BES and PV system
on a 24h basis (Charging Site B, high PV power)
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Figure A.18.: Monthly evaluation of the charging profiles with BES and PV system
on a 24h basis (Charging Site A, low PV power)
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Figure A.19.: Monthly evaluation of the charging profiles with BES and PV system
on a 24h basis (Charging Site A, medium PV power)
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Figure A.20.: Monthly evaluation of the charging profiles with BES and PV system
on a 24h basis (Charging Site A, high PV power)
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