Supplementary data to:

THE EFFECTS OF OVARIAN CANCER CELL-DERIVED EXOSOMES ON VASCULAR ENDOTHELIAL GROWTH FACTOR EXPRESSION IN ENDOTHELIAL CELLS

Mohammad Ghorbanian¹, Sadegh Babashah^{1,*}, Farangis Ataei²

- ¹ Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- ² Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- * **Corresponding author:** Sadegh Babashah, PhD, Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran, Tel.: +98 21 8288 4468, Fax: +98 21 8288 4717, E-mail: <u>sadegh.babashah@gmail.com; babashah@modares.ac.ir</u>

http://dx.doi.org/10.17179/excli2019-1800

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<u>http://creativecommons.org/licenses/by/4.0/</u>).

Supplementary Figure 1: RT-qPCR efficiencies. To determine the amplification efficiency, standard curves via plotting the logarithmic amount of serially diluted cDNA input against the corresponding Ct values was exploited. The efficiency (E) of RT-qPCR was calculated according to the slope of the standard curve and the following equation: $E = 10^{[-1/slope]}$. All slopes were approximately equal with high linear correlation.

Supplementary Figure 2: Uniqueness and specificity of the RT-qPCR products. Dissociation curve analysis performed on PCR products obtained from amplification reactions for NF-κB, VEGF, and GAPDH. The curves featured by a single and sharp peak at expected Tm.

VEGF, Vascular endothelial growth factor; NF-kB, Nuclear factor kappa-light-chain-enhancer of activated B cells; GAPDH, Glyceraldehyde 3-phosphate dehydrogenase

Supplementary Figure 3: ELISA standard curve

Supplementary Figure 4: Bovine Serum Albumin (BSA) standard curve; in equation (x) stands for sample concentration and (y) stands for absorbance at 595 nm. The data are fit with linear regression by the line y = 0.0025x + 0.0198 with R² value of 0.9906.

Gene	Slope	Efficiency
VEGF	-3.2771	1.02
NF-ĸB	-3.3786	0.98
GAPDH	-3.2057	1.05

Supplementary Table 1: Slope and efficiencies of standard curves for each primer set

Supplementary Table 2: Enzyme-linked immunosorbent assay (ELISA) data reduction for plotting a standard curve. Table lists data of standard concentrations, absorbance values, and corrected absorbance value. Absorbance of standards are corrected by subtracting OD of blank well (0.174).

	Concentration (pg/ml)	OD1	OD2	OD Average	OD Corrected
Blank	0.0	0.172	0.176	0.174	0.000
Standard 1	7.8	0.275	0.276	0.275	0.101
Standard 2	15.6	0.313	0.314	0.314	0.140
Standard 3	31.2	0.513	0.517	0.515	0.341
Standard 4	62.5	1.013	0.991	1.002	0.828
Standard 5	125.0	1.233	1.215	1.224	1.050
Standard 6	250.0	1.429	1.389	1.409	1.235
Standard 7	500.0	1.592	1.539	1.566	1.392
Standard 8	1000	1.849	1.822	1.835	1.661
Standard 9	2000	2.189	2.145	2.167	1.993
Standard 10	4000	2.569	2.442	2.506	2.332
Standard 11	8000	3.163	2.972	3.067	2.893

Supplementary Table 3: Standards preparation scheme and resulted absorbance. Absorbance at 595 nm (after subtraction of blank absorbance (0.238) for eleven standards

µg/ml	0	10	20	40	60	80	100	120	140	160	180	200	sample
Blank	0.238	0.291	0.312	0.348	0.417	0.442	0.502	0.539	0.592	0.642	0.698	0.722	0.547
OD595	0	0.053	0.074	0.11	0.179	0.204	0.264	0.301	0.354	0.404	0.46	0.484	0.309