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Abstract. This paper is concerned with necessary optimality conditions for
optimal control problems governed by variational inequalities of the second
kind. So-called strong stationarity conditions are derived in an abstract frame-
work. Strong stationarity conditions are regarded as the most rigorous ones,
since they imply all other types of stationarity concepts and are equivalent
to purely primal optimality conditions. The abstract framework is afterwards
applied to four application-driven examples.
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1. Introduction

This article is concerned with optimal control problems governed by variational
inequalities (VIs) of the second kind. Optimal control problems of this type arise in
various applications, for instance in the optimization of elastoplastic deformation
processes, type-II-semiconductors or rheological fluids, see [7, 13, 29].

Optimal control problems governed by VIs provide the particular challenge
that the control-to-state mapping, i.e., the solution mapping of the VI under con-
sideration, is frequently not Gâteaux-differentiable. Therefore, the standard ad-
joint approach for the derivation of Karush-Kuhn-Tucker (KKT) conditions that
is widely used in optimal control is not applicable when it comes to optimization
problems constrained by VIs. For this reason, the derivation of qualified optimality
systems involving dual variables is all but elementary in the context of optimal
control of VIs. There are multiple strategies to overcome this issue, among them
various smoothing and exact penalization techniques. We only refer to [8] and
the various references therein for a broad overview. All these approaches yield
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necessary optimality conditions of different strength, see [15] for a survey of the
multiple stationarity concepts. The most rigorous notion of stationarity is called
strong stationarity. The characteristic feature of a system of strong stationarity is
that it implies all the other stationarity conditions and is moreover equivalent to
a purely primal optimality condition, called Bouligand(B)-stationarity.

To the best of our knowledge, there are in principle two ways to establish
strong stationarity conditions for optimal control problems governed by VIs. Both
approaches presume that the control-to-state map is at least directionally differ-
entiable. The first approach was initiated by [19] and is to some extent based on
the idea to take the “linearized” states as variations and not feasible controls as
usually done in the derivation of first-order conditions. The alternative approach
for the derivation of strong stationarity conditions originates from finite dimen-
sional programs with complementarity constraints and works as follows: First one
“linearizes” the optimal control problem by means of the directional derivative
of S. Then, one defines auxiliary problems by fixing variables in the “linearized”
problem. The latter are standard optimal control problems, which, under suitable
assumptions, allow the derivation of KKT conditions. The latter then imply the
desired strong stationarity conditions. For details on this approach, we refer to
[14, 26, 27].

Here, we follow the first approach of [19] and generalize it for the optimal
control of VIs of the second kind. Mignot’s approach has mostly been applied to
optimal control of VIs of the first kind, see, e.g., [1, 16, 20]. However, it turns out
that the method of proof is essentially based on a particular structure of the direc-
tional derivative of the control-to-state mapping, which is also frequently observed
in case of VIs of the second kind. Therefore, by slightly generalizing Mignot’s ap-
proach, we construct a general framework for the derivation of strong stationarity
conditions. We then apply this general result to four application driven problems.
First we show that the obstacle problem fits into our general framework, which
allows us to deduce the classical results by Mignot. As a second example, we con-
sider the optimal control of static elastoplasticity in primal formulation, which is
a VI of the second kind. As in case of the obstacle problem, the control-to-state
map of the VI of static elastoplasticity provides a directional derivative with the
desired structure without any further assumptions. This differs from our last two
examples, which cover VIs of the second kind in the Sobolev space H1(Ω) involv-
ing L1-norms. Here, we need additional assumptions that ensure the existence of
directional derivatives with certain properties in order to apply our general frame-
work. In case of the so-called (generalized) lasso problem, these assumptions can
be directly verified once a solution of the VI is given. In contrast to this, in our
last example, which stems from an application in rheological fluid mechanics, these
assumptions are of rather intrinsic nature and may be hard to verify in practice.

It should be mentioned that this article is based on the PhD-thesis of Con-
stantin Christof, which was written within project P16 of the DFG priority pro-
gram 1962.
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Notation

The dual of a linear normed space X is denoted by X∗. If x ∈ X and g ∈ X∗,
we write for the dual pairing g(x) = 〈g, x〉X . In case that the context is clear, we
sometimes neglect the index and simply write 〈·, ·〉 for a dual pairing. If X is a
Hilbert space, we denote the corresponding scalar product by (·, ·)X . The space of
linear and bounded operators from X to another linear normed space Y is denoted
by L(X,Y ). IfX is continuously embedded in Y in the sense of [22, Definition 4.19],
then we write X ↪→ Y . If this embedding is dense, we write X ↪→d Y .

2. Strong Stationarity in an Abstract Framework

Throughout this section, we consider the following abstract optimal control prob-
lem:

min J(y, u)

s.t. (y, u) ∈ Y × U,
y = S(u), u ∈ Uad.

 (P)

On the data in (P), we impose the following

Assumption 2.1 (Standing Assumptions). For the data in (P), we assume the
following:

• U is a Hilbert space,
• Y is a linear normed space,
• the objective J : Y × U → R is Fréchet-differentiable,
• S : U → Y is a continuous mapping,
• the set of admissible controls Uad ⊂ U is non-empty, closed, and convex.

For the rest of this section, we tacitly assume that the above assumption
is fulfilled without mentioning it every time. Moreover, in all what follows, let
(ȳ, ū) ∈ Y × Uad with ȳ = S(ū) be an arbitrary, but fixed local minimizer of (P).

As indicated in the introduction, we are interested in the derivation of neces-
sary optimality conditions. The particular challenge in case of (P) is that we do not
assume S to be Gâteaux-differentiable. Therefore, standard techniques cannot be
applied to establish an optimality condition involving dual variables. In contrast
to this, purely primal optimality conditions can be derived by classical arguments:

Proposition 2.2 (Bouligand Stationarity). Suppose that S is directionally differen-
tiable at ū. Then there holds

〈∂yJ(ȳ, ū), S′(ū;h)〉Y + 〈∂uJ(ȳ, ū), h〉U ≥ 0 ∀h ∈ cone(Uad − ū), (2.1)

where cone(Uad − ū) := {α(u − ū) : u ∈ Uad, α > 0} denotes the conic hull of
Uad − ū.

Proof. Since S is directionally differentiable and J is Fréchet-differentiable and
thus Hadamard directionally differentiable, we can apply the chain rule, which
immediately gives the assertion (see [2, Prop. 2.47]). �
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Throughout this article, the condition in (2.1) is termed B-stationarity and,
accordingly, a point ū ∈ Uad fulfilling this condition is called B-stationary.

As indicated above, our aim is to deduce an optimality system containing
dual variables from (2.1). Since h 7→ S′(ū;h) is in general not linear, the stan-
dard adjoint calculus cannot be applied from the shelf. In order to cope with this
challenge, we need the following additional assumption on the structure of the
directional derivative of S at ū:

Assumption 2.3 (Directional Differentiability of the Control-to-State Map). The
map S is directionally differentiable in ū in every direction h ∈ cone(Uad− ū) and
its directional derivative δ = S′(ū;h) in direction h ∈ cone(Uad−ū) is characterized
as the solution of the following VI of the first kind:

δ ∈ K(ȳ), 〈A(ȳ)δ, v − δ〉Vȳ ≥ (h, v − δ)U ∀ v ∈ K(ȳ), (2.2)

where

• Vȳ is a Hilbert space such that Vȳ ↪→ Y and Vȳ ↪→d U ,
• A(ȳ) ∈ L(Vȳ, V

∗
ȳ ) is a strongly monotone operator,

• K(ȳ) ⊂ Vȳ is a non-empty, closed, and convex cone.

As indicated by the subscript, Vȳ as well as A(ȳ) and K(ȳ) may well depend on
ȳ = S(ū).

In the following, we will identify U with its dual (by the Riesz theorem),
which gives rise to the Gelfand triple:

Vȳ ↪→ U ∼= U∗ ↪→ V ∗ȳ .

In this spirit, we will frequently interpret elements in Vȳ as elements in U without
mentioning the respective embedding operator. Similarly, we neglect the embed-
ding operator, when U ∼= U∗ is treated as a subset of V ∗ȳ . In addition, an element
g of Y ∗ is considered as an element of V ∗ȳ via E∗g, where E ∈ L(Vȳ, Y ) is the
embedding operator from Assumption 2.3. For ease of notation, we will also omit
E∗ in the following.

Unfortunately, strong stationarity conditions are in general not necessary for
local optimality, as the counterexamples in [18, 25] show. Therefore, additional
conditions are required and, in our case, we rely on the following

Assumption 2.4 (Critical Constraint Qualification). The conic hull cone(Uad − ū)

is dense in U , i.e., cone(Uad − ū)
U

= U .

Remark 2.5. Assumption 2.4 is rather restrictive. For instance, it does in general
not allow us to consider classical box constraints for the control, unless additional
assumptions are fulfilled, which cannot be checked a priori (as usual for constraint
qualifications), see, e.g., [25]. Note that, in case of box constraints, Assumption 2.4
is fulfilled, if ū does not touch the bounds a.e. in the domain.

Since A(ȳ) is strongly monotone, the VI in (2.2) does not only possess a
solution for every right-hand side in cone(Uad − ū), but also for inhomogeneities
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in V ∗ȳ . We denote the associated solution operator by Gȳ : V ∗ȳ → Vȳ so that
Gȳ|cone(Uad−ū)(·) = S′(ū; ·). Due to the strong monotonicity of A(ȳ), this solution
operator is globally Lipschitz continuous, i.e.,

‖Gȳ(g)−Gȳ(h)‖Vȳ
≤ L ‖g − h‖V ∗

ȳ
∀ g, h ∈ V ∗ȳ (2.3)

with a Lipschitz constant L > 0, whose potential dependency on ȳ is suppressed
for ease of notation.

As indicated above, we cannot define an adjoint state by means of the adjoint
operator associated with the derivative of the control-to-state map, since the latter
is nonlinear w.r.t. the direction. Instead, we introduce an adjoint state by extending
the partial derivative ∂uJ(ȳ, ū) to the dual of Vȳ, which implies that the gradient
equation coupling adjoint state and optimal control is automatically fulfilled.

Lemma 2.6. There exists p ∈ Vȳ such that

(p, h)U + 〈∂uJ(ȳ, ū), h〉U = 0 ∀h ∈ U. (2.4)

Moreover, for all h ∈ V ∗ȳ , it holds

〈∂yJ(ȳ, ū), Gȳ(h)〉Vȳ
− 〈h, p〉Vȳ

≥ 0. (2.5)

Proof. From (2.1), we know that

〈∂yJ(ȳ, ū), Gȳ(h)〉Vȳ
+ 〈∂uJ(ȳ, ū), h〉U ≥ 0 ∀h ∈ cone(Uad − ū) (2.6)

and, consequently, the global Lipschitz continuity of Gȳ implies in view of Gȳ(0) =
S′(ū; 0) = 0 that

〈−∂uJ(ȳ, ū), h〉U ≤ 〈∂yJ(ȳ, ū), Gȳ(h)〉Vȳ
≤ c ‖∂yJ(ȳ, ū)‖Y ∗ ‖h‖V ∗

ȳ

for all h ∈ cone(Uad − ū). Since this set is V ∗ȳ -dense in U by Assumption 2.4 and
U ↪→ V ∗ȳ , this implies the existence of a constant c > 0 so that

|〈−∂uJ(ȳ, ū), h〉U | ≤ c ‖h‖V ∗
ȳ
∀h ∈ U.

Hence, by the Hahn-Banach theorem, −∂uJ(ȳ, ū) can be extended to an element
of V ∗∗ȳ , which we identify with an element p ∈ Vȳ by the reflexivity of Vȳ. Since p
is the extension of −∂uJ(ȳ, ū), we immediately deduce (2.4). Inserting this in (2.6)
and using that cone(Uad− ū) is V ∗ȳ -dense in U and U is dense in V ∗ȳ by Lemma A.1
then gives the second claim. �

Based on the previous lemma, we are now in the position to state our main
result.

Theorem 2.7 (Strong Stationarity). Let ū ∈ U be locally optimal for (P) with
associated optimal state ȳ = S(ū). Suppose that the Assumptions 2.3 and 2.4 are
satisfied at ū. Then there exist p ∈ Vȳ and µ ∈ V ∗ȳ so that the following optimality
condition is fulfilled:

p+ ∂uJ(ȳ, ū) = 0 in U∗ (2.7a)

A∗(ȳ)p+ µ = ∂yJ(ȳ, ū) in V ∗ȳ , (2.7b)

p ∈ K(ȳ), 〈µ, v〉Vȳ
≥ 0 ∀ v ∈ K(ȳ). (2.7c)
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Proof. From Lemma 2.6, we already know that there exists a p ∈ Vȳ such that
(2.7a) holds. Let us now show that p ∈ K(ȳ). For this purpose, define η :=
Gȳ

(
A(ȳ)p

)
and ζ := Gȳ

(
A(ȳ)(p− η)

)
, i.e., η and ζ solve

η ∈ K(ȳ), 〈A(ȳ)η, v − η〉Vȳ
≥ 〈A(ȳ)p, v − η〉Vȳ

∀ v ∈ K(ȳ), (2.8)

ζ ∈ K(ȳ), 〈A(ȳ)ζ, v − ζ〉Vȳ ≥ 〈A(ȳ)(p− η), v − ζ〉Vȳ ∀ v ∈ K(ȳ). (2.9)

Since K(ȳ) is a closed cone by assumption, we can insert 0 ∈ K(ȳ) and 2η ∈ K(ȳ)
as test functions in (2.8), which results in

〈A(ȳ)(p− η), η〉Vȳ = 0 and 〈A(ȳ)(p− η), v〉Vȳ ≤ 0 ∀ v ∈ K(ȳ). (2.10)

The latter inequality implies for (2.9) tested with v = 0 that 〈A(ȳ)ζ, ζ〉Vȳ ≤ 0,
which, thanks to the strong monotonicity of A(ȳ), in turn gives ζ = 0. Next, we
insert h = A(ȳ)(p−η) ∈ V ∗ȳ as a test function in (2.5), which, due to Gȳ(A(ȳ)(p−
η)) = ζ = 0, results in

〈A(ȳ)(p− η), p〉Vȳ ≤ 0.

Together with the first equation in (2.10), this yields 〈A(ȳ)(p− η), p− η〉Vȳ ≤ 0 so
that the strong monotonicity of A(ȳ) gives p = η ∈ K(ȳ) as claimed.

Next, we simply define µ ∈ V ∗ȳ by setting µ := ∂yJ(ȳ, ū) − A(ȳ)∗p ∈ V ∗ȳ so
that (2.7b) is fulfilled, too. It remains to verify the last condition in (2.7c). To this
end, let v ∈ K(ȳ) be arbitrary. Then, by construction of Gȳ, the feasibility of v
yields v = Gȳ(A(ȳ)v). Therefore, if we insert h = A(ȳ)v in (2.5), then

〈µ, v〉Vȳ = 〈∂yJ(ȳ, ū), v〉Vȳ − 〈A(ȳ)v, p〉Vȳ ≥ 0

follows. Since v ∈ K(ȳ) was arbitrary, this completes the proof. �

Proposition 2.8. Let Assumption 2.3 hold at a (not necessarily locally optimal)
point ū ∈ Uad and assume that p ∈ Vȳ and µ ∈ V ∗ȳ exist such that (2.7) is fulfilled.
Then ū satisfies the B-stationarity condition in (2.1).

Proof. Let h ∈ cone(Uad − ū) be arbitrary and write again δ = S′(ū;h). Similarly
to the beginning of the proof of Theorem 2.7, we test the VI in (2.2) with v = 0
and v = 2δ to obtain

〈A(ȳ)δ, v〉Vȳ
≥ (h, v)U ∀ v ∈ K(ȳ).

Due to p ∈ K(ȳ), this inequality also holds for v = p, which, in combination with
the adjoint equation in (2.7b), gives

〈∂yJ(ȳ, ū), S′(ū;h)〉Y = 〈∂yJ(ȳ, ū), δ〉Vȳ

= 〈A(ȳ)∗p+ µ, δ〉Vȳ

= 〈A(ȳ)δ, p〉Vȳ + 〈µ, δ〉Vȳ ≥ (h, p)U .

In view of (2.7a), this gives the assertion. �

Remark 2.9. Theorem 2.7 and Proposition 2.8 demonstrate that, under Assump-
tion 2.3 and the constraint qualification in Assumption 2.4, the optimality system
in (2.7) and the B-stationarity condition in (2.1) are equivalent. We have thus
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found an optimality system involving dual variables, which is equivalent to the
purely primal optimality condition. This motivates the notion strong stationarity
for the optimality condition in (2.7).

Remark 2.10. The result of Theorem 2.7 can be substantially generalized by allow-
ing for a more general structure of the directional derivative of S, see [3, Section 6].

3. Application to Concrete Settings

3.1. The Obstacle Problem

To keep the discussion concise, we restrict ourselves to the classical obstacle prob-
lem governed by the Laplacian, i.e.,

y ∈ K,
∫

Ω

∇y · ∇(v − y) dx ≥ 〈u, v − y〉 ∀ v ∈ K. (3.1)

Herein, Ω ⊂ Rd, d ≥ 1, is a bounded domain and

K := {v ∈ H1
0 (Ω) : ψ1 ≤ v ≤ ψ2 a.e. in Ω},

with two given functions ψ1, ψ2 ∈ H1(Ω) such that K 6= ∅. Clearly, for every
u ∈ H−1(Ω), (3.1) admits a unique solution y ∈ H1

0 (Ω) and the associated solution
operator S : H−1(Ω) → H1

0 (Ω) is globally Lipschitz continuous. Moreover, there
holds:

Proposition 3.1 ([19, Théorème 3.3]). The solution operator S of (3.1) is direction-
ally differentiable from H−1(Ω) to H1

0 (Ω). Its directional derivative at u ∈ H−1(Ω)
in direction h ∈ H−1(Ω) is given by the unique solution of the following VI of the
first kind:

δ ∈ K(y),

∫
Ω

∇δ · ∇(v − δ)dx ≥ 〈h, v − δ〉 ∀ v ∈ K(y), (3.2)

where y = S(u) and K(y) ⊂ H1
0 (Ω) is the closed and convex cone defined by

K(y) := {v ∈ H1
0 (Ω) : v ≤ 0 q.e., where y = ψ2, v ≥ 0 q.e., where y = ψ1,

〈∆y + u, v〉 = 0}.
(3.3)

Note that the pointwise properties in the definition of K(y) are required
quasi-everywhere, i.e., the quasi-continuous representative satisfies the respective
property up to sets of zero H1(Rd)-capacity. The proof of the above proposition is
based on the polyhedricity of the set K, which means that, for all v ∈ H1

0 (Ω) and
all g ∈ H−1(Ω), there holds

cone(K − v)
H1

0 ∩ ker(g) = cone(K − v) ∩ ker(g)
H1

0
,

see [19, 28] and [3, Section 3.3].
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Our optimal control problem governed by the obstacle problem now reads as
follows:

min J(y, u)

s.t. (y, u) ∈ H1
0 (Ω)× L2(Ω),

(y, u) satisfy (3.1), u ∈ Uad,

 (Pobst)

where J : H1
0 (Ω) × L2(Ω) → R is a given Fréchet-differentiable objective and

Uad ⊂ L2(Ω) is a non-empty, closed, and convex set. Again, we consider a fixed,
but arbitrary local minimizer of (Pobst), denoted by (ȳ, ū) ∈ H1

0 (Ω)×L2(Ω). Then,
by setting

U := L2(Ω), Y = Vȳ := H1
0 (Ω), A(ȳ) := −∆,

and K(ȳ) as defined in (3.3) (with y = ȳ), problem (Pobst) fits into our general
setting. Hence, the general theory from Section 2 can be applied to this example:

Theorem 3.2. 1. Suppose that ū ∈ L2(Ω) is locally optimal for (Pobst) with
associated state ȳ = S(ū). Moreover, let the critical constraint qualification
in Assumption 2.4 be fulfilled, i.e.,

cone(Uad − ū)
L2

= L2(Ω). (3.4)

Then there exist p ∈ H1
0 (Ω) and µ ∈ H−1(Ω) such that

p+ ∂uJ(ȳ, ū) = 0 a.e. in Ω, (3.5a)

−∆p+ µ = ∂yJ(ȳ, ū) in H−1(Ω), (3.5b)

p ∈ K(ȳ), 〈µ, v〉 ≥ 0 ∀ v ∈ K(ȳ). (3.5c)

2. Assume that ū ∈ Uad with associated state ȳ = S(ū) is such that p ∈ H1
0 (Ω)

and µ ∈ H−1(Ω) exist so that the system in (3.5) is fulfilled. Then ū is
B-stationary for (Pobst).

Remark 3.3. The first assertion of Theorem 3.2 concerning the necessary optimal-
ity condition was already proven in [20]. There, the critical constraint qualification
(3.4) is ensured by simply setting Uad = U = L2(Ω).

Another rather implicitly given condition is the assumption that Vȳ = H1
0 (Ω)

must embed into U = L2(Ω). The injectivity of the embedding operator thus pre-
vents the derivation of strong stationarity conditions in case of boundary controls,
where U = L2(∂Ω), as the counterexample in [18] demonstrates. Similarly, controls
that only act on parts of the domain Ω can also not be treated by our analysis. This
shows that the assumptions concerning the set of admissible controls are indeed
rather restrictive.

3.2. Static Elastoplasticity

Now we turn to a VI of the second kind and consider an optimal control problem
governed by the system of static elastoplasticity with linear kinematic hardening.
Strictly speaking, the problem of static elastoplasticity is physically not mean-
ingful, but it may be regarded as the stationary problem that has to be solved
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in one time step of an implicit time discretization of the quasi-static elastoplas-
tic evolution. The model under consideration is the primal formulation of static
elastoplasticity with linear kinematic hardening and the von Mises yield condition
and reads as follows:

(u, p) ∈ V ×P,∫
Ω

(ε(u)− p) : C
(
ε(v − u)− (q − p)

)
+ p : H(q − p) dx

+ σ0

∫
Ω

|q|F dx− σ0

∫
Ω

|p|F dx

≥ 〈`, v − u〉+

∫
Ω

L : (q − p) dx ∀ (v, q) ∈ V ×P.


(3.6)

Herein, Ω ⊂ Rd, d = 2, 3, is a given bounded Lipschitz domain, whose boundary
is split into two disjoint parts ∂Ω = ΓD ∪ ΓN . The part ΓD is assumed to have
positive measure. Moreover, u : Ω → Rd denotes the displacement field, while
p : Ω→ Rd×d

dev is the plastic strain tensor. Herein, Rd×d
dev is the space of symmetric

matrices with zero trace, equipped with the Frobenius norm, which is denoted by
|·|F . The associated scalar product is denoted by Rd×d×Rd×d 3 (a, b) 7→ a : b ∈ R.
The spaces in (3.6) are defined as follows:

P := L2(Ω;Rd×d
dev ), V := {v ∈W 1,2(Ω;Rd) : v = 0 a.e. on ΓD}.

Moreover, C,H ∈ L∞(Ω;L(Rd×d,Rd×d)) are two given symmetric and uniformly
coercive mappings (the elasticity and hardening tensor). In addition ε = 1

2 (∇+∇>)
denotes the linearized strain. Furthermore, σ0 > 0 is the uni-axial yield stress, a
constant material parameter. There are other equivalent formulations of the system
in (3.6), for instance in terms of a VI of the first kind via convex duality, which
leads to the so-called dual formulation. A more detailed description of the model
can be found in [11].

The variables ` ∈ L2(Ω;Rd) and L ∈ P serve as controls in our setting.
While ` has a well defined physical meaning as the loads applied to the body
occupying Ω, the physical interpretation of L is rather critical. It may be seen
as a pre-strain, but it is mainly motivated by the mathematical analysis, since it
allows us to fulfill Assumption 2.3 in this case, as we will see below.

The optimal control problem considered in this subsection reads as follows:

min J(u, p, `,L )

s.t. (u, p, `,L ) ∈ V ×P × L2(Ω;Rd)×P,

(u, p, `,L ) satisfy (3.6)

 (Pplast)

with a Fréchet-differentiable objective J : V ×P × L2(Ω;Rd) ×P → R. We
could also consider additional control constraints (and would then again need an
additional assumption of the form in Assumption 2.4), but, in order to keep the
discussion concise, we restrict to the case without control constraints.
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Thanks to Korn’s inequality and the coercivity of C and H, the VI in (3.6)
admits a unique solution in V ×P for every right-hand side in V ∗×P, see, e.g.,
[11]. The next result shows that the associated solution mapping is directionally
differentiable and was established in [3, Section 4.3]:

Proposition 3.4 ([3, Corollary 4.3.5]). The solution operator of (3.6), denoted by
S : (`,L ) 7→ (u, p), is directionally differentiable from V ∗ ×P to V ×P. Its
directional derivative at (`,L ) ∈ V ∗ ×P in direction (h,G) ∈ V ∗ ×P is given
by the unique solution (u′, p′) of

(u′, p′) ∈ V ×K(u, p),

〈A(p)(u′, p′), (v, q)− (u′, p′)〉

≥ 〈h, v − u′〉+

∫
Ω

G : (q − p′) dx ∀ (v, q) ∈ V ×K(u, p),

where (u, p) = S(`,L ),

Pp :=
{
q ∈P :

∫
{p 6=0}

|p|−3
F

(
|p|2F |q|2F − (p : q)2

)
dx <∞

}
,

K(u, p) := {q ∈Pp :
(
L + Cε(u)

)
: q = σ0|q|F a.e., where p = 0},

and

A(p) : V ×Pp → V ∗ ×P∗
p

〈A(p)(w, r), (v, q)〉 :=

∫
Ω

(ε(w)− r) : C
(
ε(v)− q

)
+ r : Hq dx

+ σ0

∫
{p6=0}

|p|−3
F

(
|p|2F r : q − (p : r)(p : q)

)
dx.

(3.7)

The directional differentiability of the solution operator associated with the
(equivalent) dual formulation of (3.6) was investigated in [1, 14]. Via convex du-
ality, one shows that these results are in accordance with the above proposition.

Let us now again consider a fixed, but arbitrary local minimizer of (Pplast),
denoted by (¯̀, L̄ ) ∈ L2(Ω;Rd) ×P with associated state ȳ := (ū, p̄) = S(¯̀, L̄ ).
Then with the setting

U = L2(Ω;Rd)×P, Y = V ×P, Vȳ := V ×Pp̄,

K(ȳ) := V ×K(ū, p̄), A(ȳ) := A(p̄),

the problem of static elastoplasticity fits into our general framework, as we will
see in the following. Equipped with the scalar product(

(w, r), (v, q)
)
Vȳ

:= (w, v)V + (r, q)P +

∫
{p̄ 6=0}

|p̄|−3
F

(
|p̄|2F r : q − (p̄ : r)(p̄ : q)

)
dx,

the space Vȳ becomes a Hilbert space as required. Since Pp̄ is a dense subset of
P, Vȳ is dense in U . We point out that the presence of the additional (and rather
artificial) control variable L is crucial for the embedding of Vȳ in U (with the
injective pointwise identity as embedding operator). Furthermore, by using Korn’s
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inequality, one shows that A(ȳ) = A(p̄) as defined in (3.7) is strongly monotone.
Therefore, all conditions in Assumption 2.3 are fulfilled. Since, in addition, As-
sumption 2.4 is trivially satisfied as Uad = U , one deduces the following

Theorem 3.5 ([3, Corollary 6.1.13]). 1. Let (¯̀, L̄ ) ∈ L2(Ω;Rd) ×P with asso-
ciated state ȳ = (ū, p̄) ∈ V ×P be locally optimal for (Pplast). Then there
exist an adjoint state (w, r) ∈ V ×Pp̄ and a multiplier µ ∈P such that

w + ∂`J(ū, p̄, ¯̀, L̄ ) = 0 a.e. in Ω, (3.8a)

r + ∂L J(ū, p̄, ¯̀, L̄ ) = 0 a.e. in Ω, (3.8b)

〈A(p̄)(w, r), (v, q)〉

= 〈∂uJ(ū, p̄, ¯̀, L̄ ), v〉V +

∫
Ω

∂pJ(ū, p̄, ¯̀, L̄ ) : q dx

−
∫

Ω

µ : q dx ∀ (v, q) ∈ V ×Pp̄

 (3.8c)

(
L + C(ε(ū)− p̄)−Hp̄

)
: r = σ0|r|F a.e., where p̄ = 0, (3.8d)

µ = 0 a.e., where p̄ 6= 0, (3.8e)

µ : q ≥ 0 ∀q ∈ Rd×d
dev with

(
L + C(ε(ū)−p̄)−Hp̄

)
: q = σ0|q|F

a.e., where p̄ = 0.

}
(3.8f)

2. If a couple (¯̀, L̄ ) ∈ L2(Ω;Rd)×P together with its associated state (ū, p̄) =
S(¯̀, L̄ ), an adjoint state (w, r) ∈ V ×Pp̄ and a multiplier µ ∈ P satisfies
the system (3.8), then it is B-stationary for (Pplast).

Remark 3.6. It is noteworthy that, in this example in contrast to the previous one
in Section 3.1, the space Vȳ as well as the operator A(ȳ) differ from the original
state space Y and the “smooth part” in the VI in (3.6) associated with the control-
to-state map. This effect will also appear in the following two examples in the next
sections.

Let us finally remark that a strong stationarity system for optimal control
of static plasticity in dual, i.e., stress-based formulation is derived in [14] under
slightly more restrictive assumptions.

3.3. The Lasso Problem in Sobolev Spaces

This subsection is devoted to an optimal control problem governed by the following
VI of the second kind:

y ∈ H1
0 (Ω),∫

Ω

∇y · ∇(v − y)dx+ ‖v‖L1(Ω) − ‖y‖L1(Ω) ≥ 〈u, v − y〉 ∀ v ∈ H1
0 (Ω),

(3.9)

where Ω ⊂ Rd, d ≥ 2, is a bounded Lipschitz domain in the sense of [10, Def-
inition 4.4]. In finite dimensions, VIs of this type arise in the context of sparse
linear regression and are occasionally called lasso problem, see, e.g., [24]. By the
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direct method of the calculus of variations, one shows that, for every right-hand
side u ∈ H−1(Ω), there exists a unique solution y ∈ H1

0 (Ω) of (3.9) and the associ-
ated solution operator, denoted by S : H−1(Ω)→ H1

0 (Ω), is globally Lipschitz. Its
differentiability properties however constitute a delicate issue. Via convex duality,
one can transform the VI in (3.9) into an equivalent obstacle problem in H−1(Ω).
However, its feasible set given by

Λ :=
{
λ ∈ H−1(Ω) : ∃ q ∈ L∞(Ω) such that |q| ≤ 1 a.e. in Ω

and 〈λ, v〉 =

∫
Ω

q v dx
}

is in general not polyhedric, as the counterexamples in [5, 6, 28] demonstrate. If one
assumes that this set is polyhedric, then the analysis of [12, 19] can be adapted
to prove the directional differentiability of S, see [17, 23]. In [9] comparatively
restrictive conditions are established which guarantee that this set behaves like a
polyhedric set. Another approach that goes without polyhedricity is pursued in [5]
and yields the following result:

Proposition 3.7 ([5], [3, Theorem 5.2.15]). Let u ∈ H−1(Ω) be given with associated
state y = H1

0 (Ω) and suppose that the following assumptions are fulfilled:

• (Regularity) It holds y ∈ C1(Ω) ∩H1
0 (Ω).

• (Structure of the Active Set) There exists a set C ⊆ ∂{y 6= 0} ∪ ∂Ω such that
1. C is closed and has H1(Rd)-capacity zero,
2. (∂{y 6= 0}∪∂Ω) \C is a (strong) (d− 1)-dimensional Lipschitz subman-

ifold of Rd,
3. the sets

N+ := {∇y = 0} ∩ ∂{y > 0} \ C, N− := {∇y = 0} ∩ ∂{y < 0} \ C

are relatively open in (∂{y 6= 0} ∪ ∂Ω) \ C.

Then S is directionally differentiable at u in every direction h ∈ H−1(Ω) and the
directional derivative δ = S′(u;h) is given by the unique solution of the following
VI of the first kind:

δ ∈ K(y),∫
Ω

∇δ · ∇(v − δ)dx+ 2

∫
M

τ(δ) τ(v − δ)
‖∇y‖2

dHd−1 ≥ 〈h, v − δ〉 ∀ v ∈ K(y),
(3.10)

where M := {y = 0} ∩ {∇y 6= 0} and τ is the associated trace operator. Further-
more, the convex cone K(y) is given by

K(y) :=
{
v ∈ H1

0 (Ω) : τ(v)− = 0 a.e. on N+, τ(v)+ = 0 a.e. on N−,

|v| = λ v a.e. in {y = 0},
∫
M

τ(v)2

‖∇y‖2
dHd−1 <∞

}
,

(3.11)

where λ ∈ L∞(Ω) is the unique element of ∂‖ · ‖L1(Ω)(ȳ) that satisfies λ = u+ ∆y.
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Note that the sets C, N±, and M depend on the solution y = S(u), but we
suppress this dependency in order to simplify the notation.

Remark 3.8. It is to be noted that, in contrast to the previous examples in Sec-
tions 3.1 and 3.2, there is—to the best of our knowledge—no result available in
the literature that guarantees the directional differentiability of the solution op-
erator to (3.9) without further assumptions. The assumptions in Proposition 3.7
are on the one hand easily verifiable, once the solution y is known (in contrast to
the polyhedricity of Λ), and on the other hand substantially less restrictive com-
pared to the assumptions in [9]. Proposition 3.7 therefore can be seen as the most
rigorous differentiability result for the solution operator of (3.9).

Remark 3.9. The lack of polyhedricity of Λ is also illustrated by the integral
over the set M in (3.10), which does not appear, if the set Λ is polyhedric, see
[9, 17]. This integral is closely related to the pull-back of the second distributional
derivative of the absolute value function, see [3, Section 5.2.2] for details.

Similarly to the previous examples, we consider an optimal control problem
of the form

min J(y, u)

s.t. (y, u) ∈ H1
0 (Ω)× L2(Ω),

(y, u) satisfy (3.9),

 (Plasso)

where J : H1
0 (Ω)× L2(Ω)→ R is a given Fréchet-differentiable objective. To keep

the discussion concise, we again set Uad = L2(Ω) in order to fulfill the constraint
qualification in Assumption 2.4. As before, we consider a fixed, but arbitrary local
minimizer of (Plasso), denoted by (ȳ, ū) ∈ H1

0 (Ω)× L2(Ω). If we set

U := L2(Ω), Y := H1
0 (Ω), Vȳ :=

{
v ∈ H1

0 (Ω) :

∫
M

τ(v)2

‖∇ȳ‖2
dHd−1 <∞

}
,

〈A(ȳ)w, v〉 :=

∫
Ω

∇w · ∇v dx+ 2

∫
M

τ(w) τ(v)

‖∇ȳ‖2
dHd−1, v, w ∈ Vȳ,

and K(ȳ) as defined in (3.11) (with y = ȳ), then (Plasso) fits into our general
setting. With the obvious scalar product

(w, v)Vȳ∗ := 〈A(ȳ)w, v〉,

Vȳ becomes a Hilbert space and A(ȳ) is clearly strongly monotone in this space.
Moreover, K(ȳ) is closed in this space. Hence, the general theory from Section 2
is applicable and yields:

Theorem 3.10. 1. Suppose that ū ∈ L2(Ω) with associated state ȳ = S(ū) is
locally optimal for (Plasso) and assume moreover that ȳ is such that the as-
sumptions of Proposition 3.7 on the regularity of ȳ and the structure of its
active set are fulfilled (with y = ȳ). Then there exist an adjoint state p ∈ Vȳ



14 Christof, Meyer, Schweizer and Turek

and a multiplier µ ∈ V ∗ȳ such that

p+ ∂uJ(ȳ, ū) = 0 a.e. in Ω, (3.12a)∫
Ω

∇p · ∇v dx+ 2

∫
M

τ(p) τ(v)

‖∇ȳ‖2
dHd−1

= 〈∂yJ(ȳ, ū), v〉H1
0 (Ω) − 〈µ, v〉Vȳ

, ∀ v ∈ Vȳ,

 (3.12b)

p ∈ K(ȳ), 〈µ, v〉Vȳ
≥ 0 ∀ v ∈ K(ȳ). (3.12c)

2. Let ū ∈ L2(Ω) be given such that its state ȳ = S(ū) satisfies the assumptions
in Proposition 3.7 (with y = ȳ). If an adjoint state p ∈ Vȳ and a multiplier
µ ∈ V ∗ȳ exist such that (3.12) holds true, then ū is B-stationary for (Plasso).

Again we observe that the space Vȳ differs from the original state space Y and
the bilinear form of the adjoint equation differs from the one in the VI defining the
control-to-state map, similarly to the elastoplastic system in the previous section.

3.4. Non-Newtonian Fluids – the Mosolov Problem

Our last example arises in the modeling of non-Newtonian fluids. To be more
precise, we consider the so-called Mosolov problem, which models the steady-state
motion of a viscoplastic fluid in a cylindrical pipe of cross-section Ω ⊂ R2 under
no-slip boundary conditions, see [21] for details on the physical background. After
setting all material parameters to one, the model is similar to the lasso problem
and reads

y ∈ H1
0 (Ω),∫

Ω

∇y · ∇(v − y)dx+

∫
Ω

|∇v|dx−
∫

Ω

|∇y|dx ≥ 〈u, v − y〉 ∀ v ∈ H1
0 (Ω),

(3.13)

where Ω ⊂ R2 is a bounded and simply connected Lipschitz domain and |·| denotes
the Euclidean norm of a vector. The state variable y : Ω→ R describes the velocity
of the fluid in direction of the pipe (i.e., perpendicular to Ω) and u : Ω → R is
a volume force acting in this direction. The restriction to the two-dimensional
setting is on the one hand motivated by the application background and on the
other hand essential for the mathematical analysis presented in the following.

Again, the existence and uniqueness for (3.13) follow immediately from the
direct method of the calculus of variations. The associated solution map S is
globally Lipschitz from H−1(Ω) to H1

0 (Ω). However, as in case of the lasso problem,
the directional differentiability of S is a challenging issue. As it turns out, we again
need additional assumptions on the respective state to obtain the existence of a
directional derivative. Unfortunately, these assumptions are not as easily checked
as in case of the lasso problem. In order to formulate these assumptions, we need
to define the following sets. Given the solution y ∈ H1

0 (Ω) of (3.13) and assuming
that this solution admits a continuously differentiable representative, we introduce
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the active, inactive, and biactive sets as follows:

I := {|∇y| > 0}, A := {|∇y| = 0}, A◦ := int(A), B := ∂A ∪ ∂Ω,

B◦ :=
{
x ∈ ∂A : there exists an open neighborhood D ⊆ Ω of x such that

D ∩ ∂A is a one-dimensional C1-submanifold of R2

and such that D ∩ ∂A = D ∩ ∂{y = c} for some c ∈ R
}
.

Of course, these sets depend on the respective solution y, but we suppress this
dependency for the ease of notation. Moreover, given a setM⊂ Ω, we denote the
set of all connected components of M by {Mi}.

Proposition 3.11 ([3, Theorem 5.1.37]). Let u ∈ H−1(Ω) be given and suppose that
the associated state y = S(u) satisfies the following hypotheses:

• (Regularity) It holds y ∈ C1,1(Ω) ∩H1
0 (Ω) and ∆y + u ∈ L∞(Ω).

• (Structure of the Active and the Inactive Set)
1. the collections {Ii}, {Ai}, {A◦i }, {Bi} are finite,
2. the components A◦i and Ii are Lipschitz domains for all i,
3. the components Ai and Bi are Lipschitz connected for all i,
4. the set B◦ \ B◦ is finite and B = B◦ ∪ ∂Ω.

• (Well-Behavedness of the Normalized Gradient Field) There exist a function
ω ∈ C0,1(Ω), a constant C > 0, and an open set D ⊆ R2 with A ∪ ∂Ω ⊆ D
and

ω = 0 on A ∪ ∂Ω, dist(·,A ∪ ∂Ω) ≤ Cω a.e. in I ∩D,(
∇y⊥

|∇y|
· ∇ω
|∇ω|

)2

≤ C|∇y| a.e. in I ∩D,

where, here and in all what follows, (a, b)⊥ = (b,−a) for a, b ∈ R.

Under these assumptions, the solution operator S of (3.13) is directionally dif-
ferentiable at u in every direction h ∈ H−1(Ω) and the directional derivative
δ := S′(u;h) is uniquely characterized by the following VI of the first kind

δ ∈ K(y),∫
Ω

∇δ · ∇(v − δ)dx+

∫
I

(∇y⊥ · ∇δ)(∇y⊥ · ∇(v − δ))
|∇y|3

dx ≥ 〈h, v − δ〉 ∀ v ∈ K(y),

where the convex cone K(y) is given by

K(y) :=
{
v ∈ H1

0 (Ω) :

∫
I

(∇y⊥ · ∇v)2

|∇y|3
dx <∞, |∇v| = λ ·∇v a.e. in A

}
, (3.14)

where λ ∈ L∞(Ω;R2) is any element of ∂‖.‖L1(Ω;R2)(∇y) that satisfies div λ =

u+ ∆y in H−1(Ω).

Remark 3.12. Some words concerning the above proposition are in order. First of
all, the existence of λ simply follows from the reformulation of the VI in (3.13) by
means of the chain rule for convex subdifferentials, and it is easily shown that, for
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every such λ, the set K(y) is the same. Moreover, while the regularity assumptions
as well as the structural assumptions on the active and inactive sets can directly
be checked, if a solution y is given, the intrinsic third assumption is hard to verify
in practice, see [3, Section 5.1.5] for details. Finally, for the notion of Lipschitz
connected sets, we refer to [3, Definition 5.1.24].

Similarly to the previous examples, the optimal control problem associated
with (3.13) reads

min J(y, u)

s.t. (y, u) ∈ H1
0 (Ω)× L2(Ω),

(y, u) satisfy (3.13),

 (Pmoso)

where J : H1
0 (Ω) × L2(Ω) → R is a given Fréchet-differentiable objective. Again,

we set Uad = L2(Ω) so that the constraint qualification in Assumption 2.4 is
automatically fulfilled. As before, we consider a fixed, but arbitrary local minimizer
ū ∈ L2(Ω) with associated state ȳ ∈ H1

0 (Ω). This time we set

U := L2(Ω), Y := H1
0 (Ω), Vȳ :=

{
v ∈ H1

0 (Ω) :

∫
I

(∇ȳ⊥ · ∇v)2

|∇ȳ|3
dx <∞

}
,

〈A(ȳ)w, v〉 :=

∫
Ω

∇w · ∇v dx+

∫
I

(∇ȳ⊥ · ∇w)(∇ȳ⊥ · ∇v)

|∇ȳ|3
dx, v, w ∈ Vȳ

and K(ȳ) as defined in (3.14) (with y = ȳ and λ associated with ȳ). As in case of
the lasso problem, Vȳ becomes a Hilbert space if endowed with the scalar product
(v, w)Vȳ

:= 〈A(ȳ)v, w〉 so that A(ȳ) is automatically strongly monotone and K(ȳ)
is closed in this space. Hence, we can again apply the general theory, which results
in the following

Theorem 3.13. 1. Let ū ∈ L2(Ω) be locally optimal for (Pmoso) and assume that
the associated state ȳ = S(ū) satisfies the assumptions in Proposition 3.11
(with y = ȳ). Then there exist an adjoint state p ∈ Vȳ and a multiplier µ ∈ V ∗ȳ
such that the following optimality conditions are fulfilled:

p+ ∂uJ(ȳ, ū) = 0 a.e. in Ω, (3.15a)∫
Ω

∇p · ∇v dx+

∫
I

(∇ȳ⊥ · ∇p)(∇ȳ⊥ · ∇v)

|∇ȳ|3
dx

= 〈∂yJ(ȳ, ū), v〉H1
0 (Ω) − 〈µ, v〉Vȳ

, ∀ v ∈ Vȳ,

 (3.15b)

p ∈ K(ȳ), 〈µ, v〉Vȳ
≥ 0 ∀ v ∈ K(ȳ). (3.15c)

2. If ū ∈ L2(Ω) is such that ȳ = S(ū) fulfills the assumptions in Proposition 3.11
and there exist p ∈ Vȳ and µ ∈ V ∗ȳ , then ū is B-stationary for (Pmoso).

4. Conclusion

Within this article, we constructed a general framework for the derivation of strong
stationarity conditions for optimal control problems governed by VIs. Moreover, we
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demonstrated by means of application-driven examples that our general analysis
also applies in case of VIs of the second kind. However, as our two last examples
show, sometimes additional assumptions, that may even be hard to verify, are
necessary to guarantee that the control-to-state map associated with the VI under
consideration is directionally differentiable and the directional derivatives possess
the desired structure. Under these assumptions, though, our general framework is
applicable and yields stationarity conditions, which are the most rigorous possible
ones.

It is however an open question how to solve these strong stationarity systems
numerically. The reason is that, in neither of our four examples, the adjoint equa-
tion together with the (generalized) sign conditions on the adjoint state and the
multiplier µ forms a VI or a complementarity system, which would be amenable
for numerical computations. Even worse, as the investigations on optimal control
of non-smooth PDEs in [4] show, strong stationarity systems may be potentially
overdetermined. The construction of algorithms for the reliable numerical compu-
tation of strongly stationary points is therefore an ongoing field of future research.

Appendix A. Auxiliary Results

Lemma A.1. Under Assumption 2.3, U is dense in V ∗ȳ .

Proof. Let us assume that U is not a dense subset of V ∗ȳ so that there exists

a g ∈ V ∗ȳ \ U
V ∗
ȳ . Then the strict separation theorem in combination with the

reflexivity of Vȳ implies the existence of a v ∈ Vȳ, v 6= 0, such that

(h, v)U = 0 < 〈g, v〉Vȳ
∀h ∈ U.

Since Vȳ ↪→ U and the embedding is injective, this yields v = 0, which is a
contradiction. �
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