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ON THE THRESHOLD CONDITION FOR
DÖRFLER MARKING

LARS DIENING AND CHRISTIAN KREUZER

Abstract. It is an open question if the threshold condition θ < θ?
for the Dörfler marking parameter is necessary to obtain optimal
algebraic rates of adaptive finite element methods. We present a
(non-PDE) example fitting into the common abstract convergence
framework (axioms of adaptivity) and which is potentially converg-
ing with exponential rates. However, for Dörfler marking θ > θ?
the algebraic converges rate can be made arbitrarily small.

1. Introduction

In the pioneering work [Ste07] of Stevenson proved rate optimality of
the standard adaptive finite element method for the Poisson problem.
In contrast to the prior result [BDD04], which used optimal coarsening
based on fast tree approximation [BD04], Stevenson proved optimality
of the refinement based on Dörfler marking totally avoiding coarsen-
ing as is standard for stationary problems. One main ingredient of
the proof is a local estimate, which bounds the distance of discrete
solutions on nested meshes relative to the refined elements only. As a
consequence each refinement that ensures some error reduction must
satisfy a Dörfler marking condition. This is the key in the optimality
proof of [Ste07], since it allows to compare the adaptive refinement
strategy with optimal refinements when the adaptive marking parame-
ter is below a certain threshold depending on the ratio of the efficiency
and reliability constants of the a posteriori estimator.

During the last decade, the approach of Stevenson became very pop-
ular and was further developed e.g. in [CKNS08, DK08, BDK12, CN11,
KS11, FFP14, FKMP13, CPR13, BN10, Gan13]. For and overview of
the topic see e.g. the monographs [NV12, NSV09] and for a more
exhaustive list of related works, we refer the reader to [CFPP14].

2010 Mathematics Subject Classification. 65N50, 65N15, 41A25.
Key words and phrases. Adaptive finite element methods, optimal complexity,

convergence, Dörfler marking.
The research of Lars Diening was partially supported by the DFG through the

CRC 1283.
1



2 L. DIENING AND C. KREUZER

It is, however, still open whether or not the threshold for the mark-
ing is sharp in general or if it is only a technical artefact. In [CFPP14],
Carstensen, Feischl, Page, and Praetorius presented an unifying ax-
iomatic approach for proving rate optimality of adaptive finite element
methods. Therein, the threshold is obtained with a slightly different
technique (compare with Section 2.4) and it is stated that

. . . the upper bound for adaptivity parameters which guarantee
quasi-optimal convergence rates, is independent of the efficiency
constant. Such an observation might be a first step to the math-
ematical understanding of the empirical observation that each
adaptivity parameter 0 < θ ≤ 0.5 yields optimal convergence
rates in the asymptotic regime.

In this work, we present an example, which satisfies the abstract axioms
of adaptivity from [CFPP14, CR17] but also efficiency, whichs allows
to apply the original techniques from [Ste07]. However, for any θ ∈
(0, 1), we can adjust the parameters such that, although exponential
convergence is possible, the adaptive loop with Dörfler marking fails
to have arbitrary bad algebraic rates. It turns out that, the threshold
parameter of [CFPP14, CR17] not involving efficiency suggests for our
example values, which are slightly too conservative. The threshold
parameter of [Ste07] however, which is the ratio of the reliability and
efficiency constant, is sharp.

We emphasise that the example is not within the context of finite
element discretisations of partial differential equations (compare also
with Remark 9). Therefore, technically speaking, we cannot claim any
conclusions for the relevant practical cases, however, we clarify that
the threshold condition can neither be avoided nor significantly im-
proved within the axiomatic framework of [CFPP14, CR17] even when
relying on efficiency as in [Ste07]. Notice that our example also con-
firms the result of [DKS16, KS16] that the maximum marking strategy
is more robust in the sense that it provides optimal convergence rates
without restriction on the maximum marking parameter; compare with
Section 3.4.

2. Axioms of adaptivity

In this section, we recall the axiomatic approach in [CFPP14, CR17]
of the proof of optimal convergence rates for adaptive finite element
methods. The presentation mainly follows [CR17] neglecting the addi-
tional refinement indicators but is simplified tailored to our needs, i.e.,
we do not cover the full generality of [CFPP14, CR17]. In particular,
we consider the most simple case of dimension d = 1 and let Ω ⊂ R be
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a non-empty open interval. Before we state the axioms, we first verify
the refinement conditions.

2.1. Refinement by bisection. Let T0 be an initial partition of Ω
into closed intervals (called macro elements) and denote by T the set
of its possible refinements. To be more precise, we introduce bisection
of a closed interval [a, b], a < b by

BISECT([a, b]) = {[a, a+b
2

], [a+b
2
, b]}.

We say that T? is a refinement of T (or T? ≥ T ) iff there exist a finite
sequence of partitions {Tn}Nn=1 and Tn ∈ Tn, n = 1, . . . , N − 1, such
that T? = TN and T1 = T as well as

Tn+1 = (Tn \ {Tn}) ∪ BISECT(Tn), n = 1, . . . , N − 1.

With this definition (T,≤) becomes a lattice and we can define for
Ta, Tb ∈ T

Ta ∧ Tb := arg max{T ′ ∈ T : T ′ ≤ Ta and T ′ ≤ Tb}

and

Ta ∨ Tb := arg min{T ′ ∈ T : Ta ≤ T ′ and Tb ≤ T ′};

i.e. the finest common coarsening respective the coarsest common re-
finement. Moreover, we have

#(Ta ∨ Tb) = #Ta + #Tb −#(Ta ∧ Tb) ≤ #Ta + #Tb −#T0.

Thanks to the bisection rule, we can also recursively assign to each
T ∈ T , T ∈ T, a generation by

g(T ) = 0 if T ∈ T0 and g(T ) = g(T ′) + 1 if T ∈ BISECT(T ′).

Defining for T ∈ T and M⊂ T the refinement procedure

REFINE(T ;M) := arg min{T ′ ∈ T : T ≤ T ′ and M∩ T ′ = ∅},

we obviously have

REFINE(T ;M) = (T \M) ∪ BISECT(M)(2.1)

with BISECT(M) :=
⋃
{BISECT(T ) : T ∈ M}. Obviously, we thus

have T? = REFINE(T ;M) ∈ T and

#T? −#T = #M.

We conclude that our refinement framework satisfies the require-
ments in [CFPP14, Section 2.4].
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2.2. Adaptive algorithm with Dörfler marking. In the following
we formulate the basic conditions from [CFPP14, CR17] sufficient for
optimal convergence rates of the adaptive Dörfler marking strategy.
The precise algorithm and the optimality result is stated in section 2.3
below.

We assume that for any T ∈ T, and any element T ∈ T , we have
nonnegative indicators ηT (T ) available and set

η2T (M) =
∑
T∈M

η2T (T ) for any M⊂ T .

Moreover, we assume that there is a nonnegative distance measure on
T denoted by δ(T , T?) for T , T? ∈ T. This distance measures in the
application the error between to discrete solutions.

Based on the above indicators, we can formulate the adaptive algo-
rithm.

Algorithm 1 (AFEM with Dörfler marking). Let T0 be an initial tri-
angulation of Ω and θ ∈ (0, 1) a given marking parameter. Set k := 0
and iterate

• Compute the indicators {ηTk(T ) : T ∈ Tk}.
• Choose Mk ⊂ Tk such that

θη2Tk(Tk) ≤ η2Tk(Mk)(2.2)

with quasi-minimal cardinality, i.e., #Mk ≤ CDM #M for some fixed
constant CDM ≥ 1 and all M⊂ Tk with θηTk(Tk) ≤ ηTk(M).

If the set Mk has minimal cardinality (i.e. CDM = 1) then (2.2) is
called optimal Dörfler marking.
• Construct the refinement

Tk+1 = REFINE(Tk;Mk)

and set k := k + 1.

2.3. The axioms. In this section, we present the axioms of adaptivity
from [CFPP14, CR17] in a simplified version tailored to our needs. We
assume that the indicators and the distance measure from the previous
section 2.2 satisfy the following conditions:

(A1) Stability. For all T , T? ∈ T with T? ≥ T , we have

|ηT (T ∩ T?)− ηT?(T ∩ T?)| ≤ δ(T , T?)

(A2) Reduction. There exists ρ ∈ [0, 1) such that for all T , T? ∈ T
with T? ≥ T , we have

ηT?(T? \ T ) ≤ ρηT (T? \ T ).
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(A3) Discrete reliability. There exists C3 > 0, such that for all
T , T? ∈ T with T? ≥ T , we have

δ(T , T?)2 ≤ C3η
2
T (T \ T?).

(A4) Quasi-orthogonality. There exists C4 > 0, such that for any
sequence {Tk}k ⊂ T of nested partitions (i.e. T1 ≤ T2 ≤ . . .),
we have for all ` ∈ N that

∞∑
k=`

δ(Tk+1, Tk)2 ≤ C4η
2
T`(T`).

Remark 2. We note that (A1)–(A4) correspond to the respective con-
ditions in [CR17] with

Λ1 = 1(A1)

ρ2 = ρ, Λ2 = 0(A2)

Λref = 1, Λ3 = C3, and Λ̂3 = 0(A3)

Λ4 = C4.(A4)

The conditions (B1) and (B2) in [CR17] do not apply since we assume
µ` ≡ 0 for the second indicator in [CR17]. Note that therefore also the
quasi-monotonicity (QM) condition in [CR17] is satisfied automatically

since we may chose Λ̂3 = 0 in [CR17, Theorem 3.2].

We recall the following main theorem from [CFPP14, CR17].

Theorem 3. Suppose that (A1)–(A4) hold and define the threshold

θ? :=
1

1 + C3

.

Then Algorithm 1 is rate optimal if θ < θ?, i.e., in this case we have
for all s > 0 there exists C > 0 with

sup
k∈N

(
(#Tk −#T0)sηTk(Tk)

)
≤ C sup

N∈N

(
N s min{ηT (T ) : #T −#T0 ≤ N}

)
.

The original approach of Stevenson is slightly different in that it
utilizes also the efficiency of the estimator. This allows to show con-
vergence rates for the error rather than for the estimator; compare with
Remark 5. To work in the framework of Stevenson we modify/sharpen
two of the axioms.

We replace the stability (A1) by the following efficiency condition.
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(A1’) Efficiency. For all T ∈ T, we have

C1η
2
T (T ) ≤ δ(T )2

for some constant C1 > 0.

Typically, δ(T ) measures the error, e.g. in applications the distance
between the discrete solution and the exact solution of the PDE. In
our example, δ(T ) is the distance to the ‘finest’ partition

δ(T ) := inf{δ(T?, T ) : T? ∈ T with T ≥ T }.(2.3)

As a consequence of the lattice structure of (T,≥), we have that the
definition (2.3) is unique when δ(·, T ) : T → R is non-increasing un-
der refinement. This property is immediate when replacing the quasi-
orthogonality condition (A4) by the following orthogonality property;
compare also with Remark 5 below.

(A4’) Orthogonality. For all T , T?, T◦ ∈ T with T ≤ T? ≤ T◦, we
have

δ(T◦, T?)2 + δ(T?, T )2 = δ(T◦, T )2.

Then Stevenson proved in [Ste07] the following version of Theorem 3
with a different threshold.

Theorem 4. Suppose that (A2)–(A3) and assume in addition (A1’)
and (A4’). Define the threshold

θ̃? :=
C1

C3

.

Then Algorithm 1 is rate optimal if θ < θ̃?, i.e., in this case we have
for all s > 0 there exists C > 0 with

sup
k∈N

(#Tk −#T0)sδ(Tk)

≤ C sup
N∈N

N s min{δ(T ) : #T −#T0 ≤ N}.

Remark 5 (δ(T ) vs. ηT (T )). We remark that in [Ste07] optimal con-
vergence rates are proved for δ(T ) in contrast to [CFPP14, CR17],
which focus on ηT (T ). Let us compare these two approaches.

Since δ(T?, T ) ≥ 0 for T?, T ∈ T with T? ≥ T , we conclude from (A4’)
that δ : T → R≥ is monotone decreasing under refinement. Moreover,
recalling (2.3), it follows from (A3) that

δ(T ) ≤ C3ηT (T ).

This is an upper bound or equivalently (A4) with C4 = C3.
Combining this with the efficiency (A1’), we have equivalence of the

error and the estimator, i.e. C1η
2
T (T ) ≤ δ(T )2 ≤ C3η

2
T (T ).
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As a consequence, we have that δ(T ) converges iff ηT (T ) converges
and both converge then with the same rates. Taking the setting (A1)–
(A4) of [CFPP14, CR17], however, the convergence behavior of δ and
η may differ. In particular, in view of (A3), the convergence rate of δ
may be better than the one of η.

2.4. The origin of the thresholds. We start with discussing the
threshold θ? from Theorem 3. Let Tk ∈ T be from Algorithm 1 for
some k ∈ N and assume T? ≥ Tk with

ηT?(T?) ≤ κηTk(Tk)(2.4)

for some arbitrarily fixed κ ∈ (0, 1). Then from ηT?(T? ∩ Tk) ≤ ηT?(T?)
and (A1) for 0 < γ < 1

κ2
− 1 in Youngs inequality we conclude that

(1− (1 + γ)κ2)η2T (Tk) ≤ η2Tk(Tk)− (1 + γ)η2T?(T?)
≤ η2Tk(Tk)− (1 + γ)η2T?(T? ∩ Tk)

≤ η2Tk(Tk \ T?) +
1

1 + γ−1
δ(T?, Tk)2.

Now applying (A3), we obtain

1− (1 + γ)κ2

1 + C3

1+γ−1

η2Tk(T ) ≤ η2Tk(Tk \ T?).(2.5)

In other words, the set of elements Tk \ T? from Tk which are refined in
T? satisfies a Dörfler marking property. When

θ ≤ 1− (1 + γ)κ2

1 + C3

1+γ−1

,(2.6)

then the quasi minimal cardinality of Mk in Algorithm 1 implies

#(Tk \ T?) ≤ C#Mk,

which is the key in the proof of the rate optimality Theorem 3; compare
e.g. with [Ste07, CKNS08, CFPP14]. By choosing κ > 0 small, we
observe that (2.6) can only hold if

θ < θ? =
1

1 + C3

.(2.7)

In order to discuss the threshold θ̃? from Theorem 4, instead of sat-
isfying the estimator reduction (2.4), we assume that T? ∈ T, T? ≥ Tk
reduces the distance

δ(T?) ≤ κδ(T )
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for some κ ∈ (0, 1) arbitrarily fixed. We then have

(1− κ2)C1 η
2
T (T ) ≤ (1− κ2)δ(T )2

≤ δ(T )2 − δ(T?)2 = δ(T?, T )2

≤ C3η
2
T (T \ T?).

Arguing as before, there exists κ > 0 such that the above computation
implies a Dörfler condition θη2Tk(Tk) ≤ η2Tk(Tk \ T?) only if θ ≤ θ̃? = C1

C3
.

3. Dörfler marking with suboptimal convergence rates

For a given marking parameter θ ∈ (0, 1), and s0 > 0, we construct
an example with an exponential optimal convergence rate that satisfies
the axioms of adaptivity (A1)–(A4) and also (A1’)+(A4’) with δ(T ) =
ηT (T ), T ∈ T (i.e. C1 = 1) and local reliability constant C3 = K > 0.

Thus, in this situation 1
K

= θ̃? ≥ θ? = 1
1+K

, i.e. the threshold of
Theorem 4 is less conservative than the one in Theorem 3. In partic-
ular, thanks to the possible exponential convergence, if θ ≤ θ̃? then
Algorithm 1 converges with any possible algebraic rate s > 0.

However, we will see that for any θ ∈ (0, 1), the example can be ad-

justed with arbitrary close θ̃? < θ, such that the adaptive Algorithm 1
will not converge with rate s0, more precisely

sup
k∈N

(#Tk −#T0)s0ηTk(Tk) = sup
k∈N

(#Tk −#T0)s0δ(Tk) =∞.

This shows that a threshold conditions as in Theorems 3 and 4 can-
not be avoided in the axiomatic framework of [CFPP14, CR17] and,
moreover, can be arbitrarily restrictive.

3.1. The setup. For Ω = (0,M + 1), M ∈ N, consider the initial
partition

T0 = {[0, 1], [1, 2], . . . , [M,M + 1]}(3.1)

and denote the set of admissible refinements according to Section 2.1
by T. For A ⊂ Ω and T ∈ T, we use the notation

T |A := {T ∈ T : T ⊂ A}.
We denote by T0(T ) the element of T that contains zero and by
g0(T ) := g(T0(T )) its generation.

For fixed α, β > 0 and K > 1, we define

η2T (T ) :=


2−αg0(T )−β(g(T )+

m−1
M

) |T | if T ⊂ [m,m+ 1], m ≥ 1
1

K−1 η
2
T (T |[1,M+1]) if T = T0(T ),

0 else.

(3.2)
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The constant K will be the reliability constant, i.e. C3 = K. The
constants α > 0 and M ∈ N, will be chosen later depending on the
convergence rate s0 and the marking parameter θ.

This yields the immediate relation

η2T (T0(T )) =
1

K
η2T (T ).(3.3)

In particular, the estimator of the element T0(T ) is comparable to the
estimator on all of T .

For T∗ ≥ T we define

δ(T?, T )2 := η2T (T )− η2T?(T?) ≥ 0.(3.4)

Thus, δ(T )2 := η2T (T ).
Note that a refinement of T0(T ) decreases all estimators by a factor

of 2−α. Thus, for suitable refinement, the estimator η defined in (3.2)
converges exponentially.

Lemma 6 (Exponential Convergence). Assume that {Tk}k∈N0 is gen-
erated by a repeatedly refinement of T0(Tk), i.e

Ti = REFINE({T0(Ti−1)}; Ti−1).
Then the estimator and the distance converge exponentially, i.e.

δ(Tk)2 = η2Tk(Tk) = 2−αkη2T0(T0) and #Tk −#T0 = k.

In particular, we have for all rates s > 0 that

sup
N∈N

N s min{ηT (T ) : #T −#T0 ≤ N} <∞.

Proof. Observing that

#Tk −#T0 = k = g(T0(Tk)),
the assertion is an immediate consequence of (3.2) and (2.1). �

Remark 7. We are using in our setup the bisection method without
conforming closure. This is just for the sake of a clear presentation.
All observations remain valid if a conforming closure step is included.

3.2. Verifying the axioms. In order to verify the conditions (A1)–
(A4) as well as (A1’) and (A4’), we first observe the estimator defined
in (3.2) is locally non-increasing under refinement.

Lemma 8 (Monotonicity). Let T? ≥ T such that T ∈ T is bisected
into {T1, T2} = BISECT(T ) ⊂ T?, then

η2T?(T1) + η2T?(T2) ≤ η2T (T ).

In particular, for all T? ≥ T , we have ηT?(T?) ≤ ηT (T ).
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Proof. We consider first the case 0 6∈ T , then

η2T?(Ti) ≤ 2−1−βη2T (T ), i = 1, 2.(3.5)

Therefore, we conclude from α ≥ 0 that

η2T?(T1) + η2T?(T2) ≤ 2 2−1−βη2T (T ) = 2−βη2T (T ) ≤ η2T (T ).

Assume now that 0 ∈ T (i.e. T = T0(T )). We first observe for
unrefined elements

T̃ ∈ T ∩ T? ⇒ η2T?(T̃ ) ≤ η2T (T̃ ).(3.6)

W.l.o.g. let 0 ∈ T1, then we have from (3.6) and (3.5), that η2T?(T2) = 0
and thus

η2T?(T1) + η2T?(T2) = η2T?(T1) =
1

K − 1
η2T?(T?|[1,M+1])

≤ 2−α
1

K − 1
η2T (T |[1,M+1])

≤ 1

K − 1
η2T (T |[1,M+1]) = η2T (T0(T ))

(3.7)

This finishes the proof. �

We are now in the position to verify the axioms of adaptivity from
Section 2.3.

(A1) Stability. We recall from (3.6) that η2T?(T ) ≥ η2T (T ) for each
unrefined T ∈ T ∩ T?. Moreover, by the local monotonicity
(Lemma 8), we have η2T?(T? \ T ) ≤ η2T (T \ T?) and therefore∣∣η2T (T ∩ T?)− η2T?(T ∩ T?)

∣∣
= η2T (T ∩ T?)− η2T?(T ∩ T?)
≤ η2T (T ∩ T?)− η2T?(T ∩ T?) + η2T (T \ T?)− η2T?(T? \ T )

= η2T (T )− η2T?(T?)
= δ2(T , T?).

This and |a− b| ≤
√
|a2 − b2| for a ≥ b ≥ 0 imply (A1).

(A2) Reduction. Assume first, that T0(T ) is not refined in T? ≥ T .
Then we have

η2T?(T? \ T ) ≤ 2−βη2T (T \ T?).
If on the other hand T0(T ) is refined in T?, then each estimator
is at least reduced by the factor 2−α, and thus similar to (3.7),
we obtain

η2T?(T? \ T ) ≤ 2−αη2T (T \ T?).
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Thus in both cases we conclude (A2) with ρ = 2−
min {α,β}

2 .
(A3) Discrete reliability. Assume first that T0(T ) is not refined in

T? ≥ T , i.e. T0(T ) ∈ T?. Then η2T (T ∩ T?) = η2T?(T ∩ T?) and

δ2(T , T?) = η2T (T )− η2T?(T?)
= η2T (T \ T?) + η2T (T ∩ T?)− η2T?(T? \ T )− η2T?(T ∩ T?)
= η2T (T \ T?)− η2T?(T? \ T )

≤ η2T (T \ T?)

If otherwise T0(T ) ∈ T \ T?, then we obtain with (3.2) that

δ2(T , T?) ≤ η2T (T )

= K η2T (T0(T ))

≤ K η2T (T \ T?).

In other words, we have (A3) with C3 = max{1, K} = K.
(A4) Quasi-orthogonality. For a sequence of nested meshes T1 ≤

T2 ≤ · · · , in T, we have

N∑
k=1

δ(Tk+1, Tk)2 =
N∑
k=1

η2Tk(Tk)− η
2
Tk+1

(Tk+1)

= η2T1(T1)− η
2
TN+1

(TN+1)

≤ η2T1(T1).

Taking the limit N → ∞ and observing from Lemma 8 that
δ(Tk+1, Tk)2 ≥ 0, we conclude (A4) with C4 = 1.

Also (A1’) and (A4’) are satisfied by the error indicators.

(A1’) Efficiency. For T ∈ T, we have from Lemma 6 that

δ(T ) = ηT (T ), i.e., C1 = 1.

(A4’) Orthogonality. Indeed, from (3.4), we have for T , T?, T◦ ∈ T
with T ≤ T? ≤ T◦ that

δ(T◦, T?)2 + δ(T?, T )2 = η2T?(T?)− η
2
T◦(T◦) + η2T (T )− η2T?(T?)

= η2T (T )− η2T◦(T◦) = δ(T◦, T )2.

Concluding, we have that Theorem 3 and Theorem 4 apply with the
thresholds

θ? =
1

K + 1
and θ̃? =

1

K
,(3.8)

respectively.
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Remark 9. We have verified that our indicators η and the distance
function δ satisfies all stated axioms of adaptivity. Nevertheless, we
suspect that our example (3.2) can be realised within the context of
finite elements for differential equations, as is suggested by the following
example.

Let a : Ω = (0,M) → R> piecewise constant with respect to T0. We
consider the following one dimensional problem: For f ∈ H−1(Ω), find
u ∈ H1

0 (Ω) such that

∀v ∈ H1
0 (Ω)

M∫
0

a u′v′dx = 〈f, v〉.

For T ∈ T, we chose V(T ) := {v ∈ H1
0 (Ω) : v|T ∈ Pk, T ∈ T } and

define u ∈ T ∈ V(T ) to be the Galerkin approximation of u in V(T ).
Recalling H1

0 (Ω) ↪→ C0(Ω̄) since d = 1, we have that the Lagrange in-
terpolant is stable. Using this, standard a posteriori techniques readily
show that∫

T

a(u′ − u′T )2dx =
1

a|T
‖f + (au′′T )‖2H−1(T ) ∀T ∈ T .

An error indicator is then typically obtained by estimating the local
residuals on the right hand side in a computable way. However, their
relation to the error is purely local and therefore a dependence of the
local indicators on the generation g(T0(T )) as in (3.2) is not possible.

3.3. Dörfler marking. We recall that K > 1 is just our reliability
constant, i.e. C3 = K, which is related to the threshold by

θ̃? =
1

C3

=
1

K
.

Theorem 10. Let θ ∈ (0, 1) (the Dörfler parameter) and s0 > 0 (the
rate) be given. Then there exist α, β > 0, M ∈ N, and

1

K
= θ̃? < θ arbitrary close,

such that Algorithm 1 with optimal Dörfler marking fails to converge
with rate s0, i.e.

sup
k∈N

(#Tk −#T0)s0ηTk(Tk) = sup
k∈N

(#Tk −#T0)s0δ(Tk) =∞.

Proof. For an arbitrary fixed ε > 0 we will determine parameters
K,α, β and M such that θ̃? = 1

K
satisfies

θ̃? < θ < θ̃? + ε,
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i.e. for some γ ∈ (0, ε)

θ = θ̃? + γ =
1

K
+ γ or equivalently K =

1

θ − γ
.(3.9)

The constants α, β > 0 are related to the rate s0. We fix β = s0 > 0
and determined α at the end of the proof.

In order to introduce the general idea of the proof, we define

Ik :=
[(

(k − 1) mod M
)

+ 1,
(
(k − 1) mod M

)
+ 2
]
.

Therefore, for any j ∈ N, we have that I0+j, I1+j, . . . , IM−1+j represent
the intervals [1, 2], . . . , [M,M + 1] with order shifted by j. Below, we
will adjust the parameters such that in each iteration k = 0, 1, 2, . . .,
the set

Mk = {T0(Tk)} ∪ {T ∈ Tk : T ∈ Ik}(3.10)

satisfies optimal Dörfler marking. In fact, we will have Mk ⊂ Tk such
that #Mk is minimal with the property

η2Tk(Mk) = θη2Tk(Tk).(3.11)

Consider first k = 0. It follows from (3.3) that

η2T0(T0(T0)) =
1

K
η2T0(T0),

η2T0(T0|[1,M+1]) =

(
1− 1

K

)
η2T0(T0).

Moreover, we have from the definition of our indicators (3.2) forM ∈ N,
that

η2T0(T0|Ij) = 2−β
j−1
M η2T0(T0|[1,2]), for j = 1, . . . ,M .(3.12)

Consequently, it follows from (3.3) that

η2T0(T0) = Kη2T0(T0(T0)) =
K

K − 1
η2T0(T0|[1,M+1])

=
K

K − 1

M∑
j=1

2−β
j−1
M η2T0(T0|[1,2]) =

K

K − 1
S(β,M)η2T0(T0|[1,2]),

where

S(β,M) :=
M∑
j=1

2−β
j−1
M =

1− 2−β

1− 2−
β
M

.

In other words

η2T0(T0|[1,2]) =
η2T0(T0|[1,M+1])

S(β,M)
=

1

S(β,M)

(
1− 1

K

)
η2T0(T0),(3.13)
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and thus the Dörfler marking condition (3.11) reduces to finding K > 1
and M ∈ N with

1

K
+

1

S(β,M)

(
1− 1

K

)
= θ

or equivalently (recall (3.9))

S(β,M) =
1− 1

K

θ − 1
K

=
1− θ + γ

γ
=

1

γ
(1− θ) + 1.(3.14)

Since β > 0, we have S(β,M) = 1 and limM→∞ S(β,M) =∞ and thus
there exist M ∈ N and γ ∈ (0, ε) satisfying (3.14).

Overall, thanks to (3.12) and the fact that #T0|I0 = #T0|I1 = · · · =
#T0|IM−1

= 1, for β = s0 > 0, we have fixed the parameters M ∈ N
and K > 1, such that (3.9) and (3.14) hold. This implies in particular
optimal Dörfler marking (2.2) for k = 0.

We shall now deal with the case k > 0 and let k = `M +m ∈ N with
` ∈ N0 and m ∈ {0, . . . ,M − 1}. It is easy to see from (3.10) that

g(T ) =

{
`+ 1, if T ⊂ Ij for some j ∈ {0, . . . ,m− 1}
`, if T ⊂ Ij for some j ∈ {m, . . . ,M − 1}.

(3.15)

Consequently, we have

η2Tk(Tk|Im+j
) = 2−β

j−1
M η2Tk(Tk|Im), for j = 1, . . . ,M .

Therefore, the relative sizes of the indicators on the intervals Im+j

correspond to a cyclic permutation of the initial situation in (3.12). In
other words we have (3.11). Note that Im = Ik by construction and
thus

η2Tk(Tk|Ik) ≥ η2Tk(Tk|Ij), j ∈ {0, . . . ,M − 1}.

Moreover, it follows from (3.15) that

#Tk|Ik ≤ #Tk|Ij , j ∈ {0, . . . ,M − 1}

and thus the Dörfler marking is again minimal.
We turn now to investigate the rate of the algorithm so to fix α. After

each M iterations in Algorithm 1 each element of [1,M ] is refined once.
Thus, for all ` ∈ N

#T`M −#T0 ≥ 2`M.

Moreover, after M algorithm cycles the element containing zero is M
times refined and all elements in [1,M ] are refined once. Thus, the error
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indicator of the whole partition decreases after M cycles by 2−αM−β,
i.e.

η2T`M (T`M) = 2(−αM−β)`η2T0(T0).
Therefore, we have with β = s0 that

(#T`M −#T0)s0ηT`M (T`M) ≥M s02(s0−α2M−
β
2
)` = M s02(

s0
2
−α

2
M)`.

Choosing α ∈ (0, s0
M

), we have s0
2
− α

2
M > 0 and thus

sup
k∈N

(#Tk −#T0)s0ηTk(Tk) =∞.

This finishes the proof. �

3.4. Maximums Strategy. Another popular refinement strategy is
the maximum strategy. For this the Dörfler marking (2.2) in Algo-
rithm 1 is replaced by

Mk :=
{
T ∈ Tk : η2Tk(T ) ≥ µmax{η2Tk(T

′) : T ′ ∈ Tk}
}
,(3.16)

for some marking parameter µ ∈ (0, 1]. The strategy requires to deter-
mine the maximal local indicator. Then all elements with indicators
that are up to the factor µ maximal are refined. Obviously, the strategy
is getting more selective as closer µ is to one.

The maximum strategy has been analyzed in [DKS16] and it has been
shown that for any µ ∈ (0, 1] the algorithm is instance optimal. The
term instance optimality means that the algorithm produces meshes
with up to a fixed constant optimal cardinality relativ to the achieved
energy error. Different from the Dörfler marking strategy there is no
restriction on the marking parameter µ, i.e., all µ ∈ (0, 1] are admissible
for instance optimality.

Let us briefly analyze how the maximum strategy will perform for the
setup of Subection 3.1. It may actually happen in the first iterations
that elements in [1,M + 1] are refined. However, these elements are
getting then smaller relative to η2Tk(T0(Tk)) due to bisection, thanks to

the fact that |T | = 2−g(T ). Therefore, eventually all elements in [1,M+
1] are smaller than µ η2Tk(T0(Tk)). From that point on only T0(Tk)
will be refined and we obtain exponential convergence similar as in
Lemma 6.

This confirms the expected perfomance of the maximum strategy.
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