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Abstract

Building on recent advances in the analysis and design of algebraic flux correction (AFC)
schemes, new differentiable limiter functions are constructed for efficient nonlinear solution
strategies. The proposed scaling parameters are used to limit artificial diffusion operators
incorporated into the residual of a high order target scheme to produce accurate and bound-
preserving finite element approximations to hyperbolic problems. Due to this stabilization
procedure, the occurring system becomes highly nonlinear and the efficient computation of
corresponding solutions is a challenging task. The presented regularization approach makes
the AFC residual twice continuously differentiable so that Newton’s method converges
quadratically for sufficiently good initial guesses. Furthermore, the performance of each
nonlinear iteration is improved by expressing the Jacobian as the sum and product of
matrices having the same sparsity pattern as the Galerkin system matrix. Eventually, the
AFC methodology constructed for stationary problems is extended to transient test cases
and validated numerically by applying it to several numerical benchmarks.

Keywords. Algebraic flux correction, Newton-like methods, Jacobian, linearity preservation,
regularization

1 Introduction

The algebraic flux correction (AFC) methodology introduced by Kuzmin [Kuz07] is a well-
established and promising approach for calculating bound-preserving finite element (FE)
solutions to (steady) hyperbolic problems. The technique is based on an algebraically defined
artificial diffusion operator which is incorporated into a high order target discretization to
provably guarantee the validity of discrete maximum principles (DMPs). The so defined low
order scheme is very diffusive and calls for a nonlinear correction to remove redundant diffusivity
and to improve the accuracy of the resulting AFC solution. For this purpose, antidiffusive
fluxes are multiplied by solution dependent scaling parameters and added to the residual of the

∗This research was supported by the German Research Association (DFG) under grant KU 1530/23-1.
†Institute of Applied Mathematics (LS III), TU Dortmund University, Vogelpothsweg 87, D-44227 Dortmund,

Germany (christoph.lohmann@math.tu-dortmund.de)

1

christoph.lohmann@math.tu-dortmund.de


low order scheme. These so called correction factors are defined in such a way that the high
order target discretization is recovered in regions where the solution is smooth. Whenever the
discrete solution attains a local extremum, the method is designed to fall back to the low order
scheme which prevents the occurrence of unphysical overshoots and undershoots. Furthermore,
the validity of local and global discrete maximum principles is preserved [Bar+18; Loh19b]
and guarantees bound-preserving numerical solutions.
In recent years, the AFC approach has received an increased interest and its theoretical

foundations have been laid. For example, Barrenechea et al. [Bar+16] proved the existence of
a solution and some a priori error estimates in the context of the convection-diffusion-reaction
equation. An improved convergence result was shown in [Bar+18] for linearity preserving
limiters which are designed to recover the high order target whenever the exact solution is
(globally) linear. Representatives of this class of correction factors were constructed and
successfully applied, e.g., in [BB17; Bar+17b; Bar+17a; Kuz+17]. Extensions of the AFC
methodology to nonlinear systems of hyperbolic problems can found, e.g., in [Kuz07; Bad+19;
Mab+18; Kuz20].
Solution dependent correction factors are mandatory for the construction of accurate and

bound-preserving finite element schemes. However, they also make the corresponding system
of equations highly nonlinear and extend the local domain of dependence. Therefore, robust
iterative solution techniques as well as good preconditioners are desirable to prevent inordinately
high computational costs for solving the resulting problems. First investigations in this direction
were accomplished by Möller [Möl07; Möl08] who used finite differences to approximate the
‘exact’ Jacobian of the non-differentiable AFC residual. In [BB17], second order of convergence
was locally achieved by exploiting the exact Jacobian of a regularized residual. Recently, Jha
and John [JJ18; JJ19] observed that a low order approximation of the Jacobian was most
efficient with respect to computing times, at least for the preconditioners considered in their
numerical studies.
As pointed out above, the theoretical analysis of algebraic flux correction schemes and

its application in different areas of computational fluid dynamics have imposed several new
requirements on the design of correction factors. In particular, convergence of nonlinear solvers
is a prerequisite for a numerical scheme to produce physics-compatible solutions. In what
follows, we present a new way of defining the correction factors and discuss existing relationships
to other AFC schemes. The proposed limiter combines several benefits and is well suited
to calculate accurate and bound-preserving FE solutions to steady problems or when using
implicit time integrators in the context of transient evolution equations. In particular, we are
focusing on the following design criteria:

• Linearity preservation property on general meshes for accurate solutions;

• Unique regularization for efficient solution strategies;

• Lipschitz continuity of the residual to guarantee well-posedness;

• Validity of discrete maximum principles even for regularized problem;

• Efficient calculation of correction factors and corresponding Jacobian;

• Straightforward extension to time dependent problems.
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This work is organized as follows: Section 2 presents the main idea of the AFC methodology
for the steady advection-reaction equation and summarizes some notational conventions. In
Section 3, the new approach to defining the nodal correction factors is presented. Furthermore,
several properties are discussed to reduce the number of (optional) parameters. Then an
efficient way to determine the exact Jacobian of the AFC residual is summarized in Section 4.
A brief outlook into the calculation of bound-preserving finite element solutions to the transient
advection equation is given in Section 5. Finally, some numerical results are presented to
illustrate the potential of the proposed technique in Section 6.

2 Preliminaries

In this section, we outline the main idea of the algebraic flux correction methodology and
introduce some symbols to be used throughout this work. For this purpose, we consider the
steady hyperbolic model problem in which the solution u : Ω → R satisfies the advection-
reaction equation in non-conservative form

v · grad(u) + cu = s in Ω, (1a)
u = uin on Γin :=

{
s ∈ ∂Ω

∣∣ n(s) · v(s) < 0
}
, (1b)

where uin : Γin → R is the inflow boundary data and Ω ⊂ Rd, d ∈ {1, 2, 3}, denotes a polyhedral
domain with outward normal vector n : ∂Ω→ Rd. Furthermore, the velocity field is given by
v : Ω̄→ Rd while c : Ω→ R and s : Ω→ R are the reactivity parameter and external source,
respectively. In the weak formulation of problem (1), a solution is sought so that∫

Ω
ϕv · grad(u) +

∫
Ω
cϕu+

∫
Γin

|v · n|ϕu =

∫
Ω
sϕ+

∫
Γin

|v · n|ϕuin ∀ϕ (2)

is valid, where the inflow boundary condition is prescribed in a weak manner. Then the
Galerkin discretization of (2) using continuous and linear finite elements reads: Find a solution
uh =

∑N
j=1 ujϕj s.t.

N∑
j=1

aijuj = gi ∀i ∈ {1, . . . , N}, (3)

where u = (uj)
N
j=1 is the vector of degrees of freedom and ϕ1, . . . , ϕN : Ω → R denote the

linear Lagrange basis functions corresponding to the nodes x1, . . . ,xN of the triangulation Th.
Furthermore, the entries of the system matrix A = (aij)

N
i,j=1 and right hand side vector

g = (gi)
N
i=1 are given by

aij :=

∫
Ω
ϕiv · grad(ϕj) +

∫
Ω
cϕiϕj +

∫
Γin

|v · n|ϕiϕj ∀i, j ∈ {1, . . . , N},

gi :=

∫
Ω
sϕi +

∫
Γin

|v · n|ϕiuin ∀i ∈ {1, . . . , N}.

It is well known that the finite element function uh corresponding to the solution of (3) is
possibly polluted by spurious oscillations even if the exact solution to (1) may be smooth. In
particular, overshoots and undershoots can violate physical bounds and result in unrealistic, or
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even unstable, simulations. To stabilize the solution of (3), we introduce an artificial diffusion
operator D = (dij)

N
i,j=1 so that A−D is a so called M-matrix under some coercivity condition

[Loh19b]. The entries of D are given by

dij :=

{
max{aij , 0, aji} : j 6= i,

−∑k 6=i dik : j = i
∀i, j ∈ {1, . . . , N} (4)

and guarantee that the solution to

(A−D)u = g (5)

satisfies some discrete maximum principles. However, the low order method (5) is very diffusive
by construction and calls for some nonlinear antidiffusive correction. For this purpose, the
AFC problem based on some solution dependent correction factors αij = αji : RN → [0, 1]
reads: Find u ∈ RN s.t.

R(u) := Au− f̂(u)− g = 0, (6)

where the entries of f̂ = (f̂i)
N
i=1 are given by

f̂i = f̂i(u) =

N∑
j=1,j 6=i

(
1− αij(u)

)
dij(uj − ui)︸ ︷︷ ︸

=:fij

=

N∑
j=1,j 6=i

(1− αij)fij ∀i ∈ {1, . . . , N}. (7)

In what follows, we restrict ourselves to edge-based correction factors αij which are given by
the product of two auxiliary quantities βi and βj , i.e.,

αij := βiβj ∀i, j, i 6= j. (8)

These nodal correction factors βi : RN → [0, 1] are responsible for the validity of discrete
maximum principles in node i and, for this, should vanish whenever ui is a local extremum.
Otherwise, they are designed to be as close as possible to one to produce accurate results. In
the literature, one can find different improvements of (8) which still suffice to guarantee that
the AFC scheme (6) is bound-preserving. For example, the correction factor αij might be
chosen as the minimum of the nodal quantities or depend on the sign of ui − uj and/or aij .
However, we only focus on the definition of the nodal correction factors βi and do not consider
further specializations.
For the analysis of the algebraic flux correction scheme (6), we introduce the index sets

Ni :=
{
j ∈ {1, . . . , N}

∣∣ supp(ϕi) ∩ supp(ϕj) 6= ∅
}
∀i ∈ {1, . . . , N},

Ei := {e ∈ {1, . . . , E} | supp(ϕi) ∩Ke 6= ∅} ∀i ∈ {1, . . . , N},
N e := {j ∈ {1, . . . , N} | supp(ϕj) ∩Ke 6= ∅} ∀e ∈ {1, . . . , E},

where Ke ⊂ Ω̄, e ∈ {1, . . . , E}, are the elements of the triangulation Th under consideration.
Thus, the support of the Lagrange basis function ϕi is given by the patch of elements containing
node i, i.e., $i :=

⋃
e∈Ei K

e, and aij = dij = 0 for all j /∈ Ni.
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3 Nodal correction factors

In this section, we introduce a new way of defining nodal correction factors and show that
for certain values of the involved free parameters the result is bounded above and below by
the limiting functions of two approaches known from the literature. After explaining the
ramifications of this relationship, we present an efficient way to calculate the weights which
are responsible for the linearity preservation property. Finally, a suitable regularization is
considered which preserves the validity of discrete maximum principles and guarantees the
Lipschitz continuity of the residual no matter how the regularization parameter is chosen.

3.1 Definition

The AFC schemes considered in [Bar+17a; KS17; Kuz+17] use nodal correction factors of the
form

β
(1)
i =


1−

(∣∣∑
k∈Ni\{i} wik(ui−uk)

∣∣∑
k∈Ni\{i} wik|ui−uk|

)2(p+1)

:
∑

k∈Ni\{i}wik|ui − uk| > 0,

1 :
∑

k∈Ni\{i}wik|ui − uk| = 0,

(9)

where p ∈ {−1
2 , 0,

1
2 , 1, . . .} is a parameter that controls the accuracy of the AFC solution.

The weights (wik)k∈Ni\{i} are chosen to be not smaller than one and can be determined so
that the limiter is linearity preserving [Bar+17a; KS17; Kuz+17]. The special treatment of a
vanishing denominator in the definition of β(1)

i is only required to prevent division by zero. For
all j ∈ Ni \ {i} s.t. ui = uj , we have αijfij = αijdij(uj − ui) = 0 no matter how αij is chosen.
Therefore, we omit this special case in what follows and, without loss of generality, consider

β
(1)
i = 1−

(∣∣∑
k∈Ni\{i}wik(ui − uk)

∣∣∑
k∈Ni\{i}wik|ui − uk|

)2(p+1)

(10)

instead of (9). Practically, the same behavior can be achieved by adding a small positive
constant to the denominator of the ratio.
Denoting the nonnegative part of x ∈ R by |x|+ = max(0, x) and using

s+
i =

∑
k∈Ni\{i}

wik|ui − uk|+, s−i =
∑

k∈Ni\{i}
wik|uk − ui|+,

the correction factor β(1)
i can be equivalently expressed by

β
(1)
i = 1−

((∑
k∈Ni\{i}wik(ui − uk)

)2(∑
k∈Ni\{i}wik|ui − uk|

)2
)p+1

= 1−
(

1−
4
(∑

k∈Ni\{i}wik|ui − uk|+
)(∑

k∈Ni\{i}wik|uk − ui|+
)(∑

k∈Ni\{i}wik|ui − uk|
)2

)p+1

= 1−
(

1− 4s+
i s
−
i

(s+
i + s−i )2

)p+1

. (11)
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We can easily see that the ratio in (11) vanishes whenever

ui = umax
i := max

j∈Ni\{i}
uj or ui = umin

i := min
j∈Ni\{i}

uj

and, hence, we have β(1)
i = 0 if ui is a local extremum. Therefore, the validity of discrete

maximum principles is satisfied as proved in [Loh19b, Section 4.5.1]. In contrast to (10), this
property holds true if a different quantity ũ is used to evaluate the denominator of the fraction.
We will exploit this property in Section 5 for the construction of a bound-preserving AFC
scheme for time dependent problems. Additionally, quantity β(1)

i can be augmented by another
parameter q > 1 to control the accuracy of the AFC scheme:

β
(2)
i = 1−max

(
0, 1− q 4s+

i s
−
i

(s+
i + s−i )2

)p+1

(12)

Actually, we have β(2)
i > β

(1)
i and the nodal correction factor increases monotonically with q if

s+
i s
−
i > 0. Furthermore, the correction factors coincide with the non-regularized quantities

presented in [Loh19a, Section 7.2] if the weights wik are set to dik for all k ∈ Ni \ {i}.
Next, we establish a relation between β(2)

i and the correction factors considered in [Bar+17b,
Section 4] which are defined by

Q+
i := q′i|dii|(umax

i − ui), Q−i := q′i|dii|(ui − umin
i ) ∀i ∈ {1, . . . , N},

P+
i :=

∑
j∈Ni

dij max(0, ui − uj), P−i :=
∑
j∈Ni

dij max(0, uj − ui) ∀i ∈ {1, . . . , N},

β
(3),+
i := min

(
1,
Q+
i

P+
i

)
, β

(3),−
i := min

(
1,
Q−i
P−i

)
∀i ∈ {1, . . . , N},

β
(3)
ij :=


β

(3),+
i : ui > uj ,

1 : ui = uj ,

β
(3),−
i : ui < uj

α
(3)
ij := min(β

(3)
ij , β

(3)
ji ) ∀i, j ∈ {1, . . . , N}, j 6= i

for some q′i > 0. Without loss of generality, let us assume that ui > uj is valid. Then the
auxiliary quantity β(3)

ij satisfies

β
(3)
ij = β

(3),+
i = min

(
1,

q′i|dii|(umax
i − ui)∑

k∈Ni\{i} dik|ui − uk|+

)

> min

(
1,
q′i
∑

k∈Ni\{i} dik|uk − ui|+∑
k∈Ni\{i} dik|ui − uk|

)

> min

(
1, q′i

∑
k∈Ni\{i} dik|uk − ui|+∑
k∈Ni\{i} dik|ui − uk|

∑
k∈Ni\{i} dik|ui − uk|+∑
k∈Ni\{i} dik|ui − uk|

)

and, hence, is bounded below by β(2)
i for p = 0, q′i = 4q, and wik = dik for all k ∈ Ni \ {i}.

Therefore, the nodal correction factor β(2)
i is bounded above and below by two previously

published limiters and the resulting AFC scheme can be analyzed in the same way. In what
follows, it turns out that definition βi := β

(2)
i complies with all design criteria written down in

the introduction.
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3.2 Linearity preservation

In this section, we define the weights of the correction factors so that the limiter under
investigation is linearity preserving no matter how the parameters p ∈ N0 and q > 1 are chosen.
The values of (wik)k∈Ni\{i} are defined in an a priori manner by geometric interpretations
similar to the ones considered in [BB17, Section 3]. For the special case of a two dimensional
domain, we also present a formula which only depends on the location of the nodes and does not
require any further information regarding the triangulation. We will see that the construction
of positive weights guaranteeing the linearity preservation property is only possible for nodal
correction factors which are not associated to nodes located on the boundary. Therefore, all
other weights are set to one, the value which is attained at interior nodes of a symmetric mesh.
To derive conditions for the linearity preservation property, let us assume that the finite

element function uh is (locally) linear, but not constant to avoid divisions by zero. Then the
AFC scheme (6) coincides with its high order counterpart (3) if all nodal correction factors βi
are equal to one. This is the case if

1 6 q
4s+
i s
−
i

(s+
i + s−i )2

= 1 +
4(q − 1)s+

i s
−
i

(s+
i + s−i )2

− (s+
i − s−i )2

(s+
i + s−i )2

= 1 +
4(q − 1)s+

i s
−
i

(s+
i + s−i )2

−
(∑

k∈Ni\{i}wik(ui − uk)
)2(∑

k∈Ni\{i}wik|ui − uk|
)2

= 1 +
4(q − 1)s+

i s
−
i

(s+
i + s−i )2

−
(
∇uh ·

∑
k∈Ni\{i}wik(xi − xk)

)2(∑
k∈Ni\{i}wik|ui − uk|

)2
(13)

because ui − uk = ∇uh · (xi − xk) for all k ∈ Ni \ {i} due to the fact that uh is linear. Thus,
we have βi = 1 if (wik)k∈Ni\{i} solves [Bar+17a, (2.14)]

0 =
∑

k∈Ni\{i}
wik(xi − xk). (14)

It is easy to verify that this problem possesses at least one solution with positive weights if

ρi := min
x∈∂$conv

i

‖x− xi‖2 > 0, $conv
i :=

{∑
j∈Ni

λjxj

∣∣∣ ∑
j∈Ni

λj = 1, λj > 0 ∀j ∈ Ni
}
. (15)

In particular, condition (14) is satisfied for wik = 1, k ∈ Ni \ {i}, if the considered mesh is
symmetric, i.e., ∀j ∈ Ni \ {i} ∃kj ∈ Ni \ {i} s.t. xkj = 2xi − xj . However, if node xi is located
on the boundary, condition (15) might be violated and there must not exist a solution to (14)
with positive entries. Therefore, we set wik = 1 for all i ∈ {1, . . . , N} s.t. xi ∈ ∂Ω and all
k ∈ Ni \ {i}.
In the literature, one can find different approaches to define some weights satisfying (14).

For example, the use of an optimization problem was mentioned in [Bar+17a, (2.16)] while
Kuzmin et al. [Kuz+17, Section 7] defined wik using reconstructed gradients that depend on
the unknown degrees of freedom. Inspired by the reconstruction technique considered in [BB17,
Section 3], we determine the values of wik > 1 for all k ∈ Ni \ {i} by

wik = 1 + λ−1
i ϕk(xi + λiyi) ∀k ∈ Ni \ {i}, yi :=

∑
k∈Ni\{i}

(xi − xk), (16a)
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where the parameter λi > 0 is defined as follows (see Fig. 1):

λi =

{
1 : yi = 0,

max{λi > 0 | xi + λiyi ∈ ∂$i} : yi 6= 0
(16b)

Indeed, the weights given by (16) solve (14) because∑
k∈Ni\{i}

wik(xi − xk) = yi + λ−1
i

∑
k∈Ni\{i}

ϕk(xi + λiyi)(xi − xk)

= yi + λ−1
i xi

∑
k∈Ni

ϕk(xi + λiyi)︸ ︷︷ ︸
=1

−λ−1
i

∑
k∈Ni

ϕk(xi + λiyi)xk︸ ︷︷ ︸
=xi+λiyi

= 0

due to the fact that xi + λiyi ∈ $i and∑
k∈Ni

ϕk(x) = 1,
∑
k∈Ni

ϕk(x)xk = x ∀x ∈ $i

holds for the (multi-)linear Lagrange basis functions ϕ1, . . . , ϕN .
Note that ϕk(x) = 0 whenever x /∈ $k and, hence, the weight wik can only be greater

than one if k ∈ N ei for some ei ∈ Ei s.t. xi + λiyi ∈ Kei . In two dimensions, the quantity
xi + λiyi is located on an edge with endpoints xk+i

and xk−i
, k+

i , k
−
i ∈ Ni \ {i}, whenever

yi 6= 0. Therefore, we have ϕk(x + λiyi) = 0 for all k ∈ Ni \ {i, k+
i , k

−
i } and, hence, at most

two weights can be greater than one (see Fig. 1). If $i is star-shaped with respect to xi, the
corresponding indices k+

i , k
−
i ∈ Ni \ {i} can be determined by

k±i := arg max
j∈Ni\{i}

(±zij), zij =

{
3 +

yi·(xj−xi)
‖yi‖‖xj−xi‖ : yi,2(xj,1 − xi,1) > yi,1(xj,2 − xi,2),

1− yi·(xj−xi)
‖yi‖‖xj−xi‖ : yi,2(xj,1 − xi,1) < yi,1(xj,2 − xi,2)

(17)

and maximize/minimize the angle between the edges given by xi and xk as well as xi and
xi + yi (measured counterclockwise). According to this observation, we have

yi =
∑

k∈Ni\{i}
(xi − xk) =

∑
k∈Ni\{i}

wik(xi − xk)− (1− wik+i )(xi − xk+i
)− (1− wik−i )(xi − xk−i

)

= (wik+i
− 1)(xi − xk+i

) + (wik−i
− 1)(xi − xk−i

)

and the weights given by (16) satisfy

wik = 1 ∀k /∈ Ni \ {i, k+
i , k

−
i }, (wik+i

− 1)(xi − xk+i
) + (wik−i

− 1)(xi − xk−i
) = yi. (18)

Therefore, the values of (wik)k∈Ni\{i} can be determined by (17) and (18) without using the
definition of the basis functions ϕ1, . . . , ϕN or the connectivity graph of the triangulation. In
particular, there is no need to compute λi and an associated element index ei ∈ Ei which makes
the computation very efficient.
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xi

xk+i

xk−i

xi + yi

xi + λiyi

Kei

zij = 2

zij = 2−
√
2
2

zij = 1

zij = 1−
√
2
2

zij = 3

xi

xk+i

xk−i

xi + yi

Figure 1: Calculation of weights (wik)k∈Ni\{i} illustrated in two dimensional domain.

3.3 Regularization

The limiter defined above exploits the nonnegative part of scalar differences to make the scheme
bound-preserving. However, this cut-off function is globally continuous but not in C1 and
prevents the AFC residual from being differentiable. Therefore, iterative solvers may not
converge with the optimal order and the use of regularization techniques is desirable. For this
purpose, smoothed correction factors should be designed to guarantee that the resulting AFC
scheme is still bound-preserving and at least as stable as the original method.
In what follows, we consider correction factors βi,ε which can be written in the form

βi,ε := 1−max

(
0, 1− q 4s+,δi

i s−,δii

(s+,δi
i + s−,δii + γi)2

)p+1

, (19a)

s+,δi
i =

∑
k∈Ni\{i}

wik|ui − uk|+,δi , s−,δii =
∑

k∈Ni\{i}
wik|uk − ui|+,δi , (19b)

where δi, γi > 0 will be defined in terms of the regularization parameter ε > 0 in such a
way that limε↘0 βi,ε = βi =: βi,0. In (19b), the nonnegative part of a scalar quantity | · |+ is
approximated by [Loh19a]

|x|+,δi :=
|x|p̃+1

+

|x|p̃ + δi
∀x ∈ R, (20)

for some p̃ ∈ N. It is easy to verify that | · |+,δi uniformly converges to | · |+ because

|x− δ′i|+ 6 |x|+,δi 6 |x|+ ∀x ∈ R, δ′i := p̃

√
δi(p̃− 1)p̃−1p̃−p̃ 6 p̃

√
δi. (21)

Property (21) also guarantees that the fraction in (19a) vanishes at a local extremum and the
AFC scheme (6) stays bound-preserving when βi is replaced by βi,ε for ε > 0.

Furthermore, the approximation | · |+,δi is p̃-times continuously differentiable due to the fact
that

∂

∂x
|x|p′+1

+ = (p′ + 1)|x|p′+ ∀x ∀p′ ∈ N (22)
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and the first derivative is bounded above and below by

0 6
∂|x|+,δi
∂x

=
|x|p̃+
|x|p̃ + δi

(
1 +

δip̃

|x|p̃ + δi

)
6

1

4
(p̃+ 1)2p̃−1 ∀x. (23)

If γi > δ′i is satisfied, property (23) can be used to show that the AFC residual is Lipschitz
continuous with a Lipschitz constant bounded above independently of δi and γi. For the sake of
simplicity, we only show this result for q = 1 and p = 0 (cf. [Bar+16]). The general statement
can be similarly verified by following the ideas presented in [Loh19b, Lemma 4.76]. The crucial
part of the proof is the use of the lower bound for γi to show the nonnegativity of

Bij := s+,δi
i + s−,δii + γi − |ui − uj |

=
∑

k∈Ni\{i}
wik
(
|uk − ui|+,δi + |ui − uk|+,δi

)
+ γi − |ui − uj |

=
∑

k∈Ni\{i,j}
wik
(
|uk − ui|+,δi + |ui − uk|+,δi

)
+ wij

(
|uj − ui|+,δi + |ui − uj |+,δi

)
+ γi − |ui − uj |

>
(
|uj − ui|+,δi + |ui − uj |+,δi

)
+ δ′i − |ui − uj | > 0 ∀j ∈ Ni \ {i}

by virtue of (21). Then u 7→ A±i (u) := 2s±,δii and u 7→ Bij(u) are nonnegative functions which
satisfy the Lipschitz condition for constants that do not depend on δi and γi because the
first derivative of | · |x,δi is uniformly bounded according to (23). Thus, for all u, ū ∈ RN and
ζ±i := 2s±,δii (s+,δi

i + s−,δii + γi)
−1 6 2, we have

|ζ+
i − ζ̄+

i | |uj − ui| =
∣∣∣ A+

i

Bij + |uj − ui|
− Ā+

i

B̄ij + |ūj − ūi|
∣∣∣|uj − ui|

6
|A+

i − Ā+
i |

Bij + |uj − ui|
|uj − ui|+

Āi
B̄ij + |ūj − ūi|

|Bij − B̄ij |+
∣∣|uj − ui| − |ūj − ūi|∣∣

Bij + |uj − ui|
|uj − ui|

6 |A+
i − Ā+

i |+ 2
(
|Bij − B̄ij |+ |uj − ūj |+ |ui − ūi|

)
,

as well as∣∣∣αij(u)(uj − ui)− αij(ū)(ūj − ūi)
∣∣∣

=
∣∣ζ+
i ζ
−
i ζ

+
j ζ
−
j (uj − ui)− ζ̄+

i ζ̄
−
i ζ̄

+
j ζ̄
−
j (ūj − ūi)

∣∣
6
(
|ζ+
i − ζ̄+

i |ζ−i ζ+
j ζ
−
j + ζ̄+

i |ζ−i − ζ̄−i |ζ+
j ζ
−
j + ζ̄+

i ζ̄
−
i |ζ+

j − ζ̄+
j |ζ−j

+ ζ̄+
i ζ̄
−
i ζ̄

+
j |ζ−j − ζ̄−j |

)
|uj − ui|+ ζ̄+

i ζ̄
−
i ζ̄

+
j ζ̄
−
j

∣∣(uj − ui)− (ūj − ūi)
∣∣

6 23
(
|ζ+
i − ζ̄+

i |+ |ζ−i − ζ̄−i |+ |ζ+
j − ζ̄+

j |+ |ζ−j − ζ̄−j |
)
|uj − ui|+ 24

∣∣(uj − ui)− (ūj − ūi)
∣∣,

where quantities equipped with a bar are evaluated at ū. Combining these two estimates,
it is easy to verify that the Lipschitz constant of the AFC residual R using p = 0 and
q = 1 is bounded above by a value that does not depend on δi and γi under the condition
γi > δ′i. On the hand, the parameter γi should be chosen as small as possible for an accurate
approximation βi,ε ≈ βi. For that reason, we fix the optional parameter γi in the regularization
procedure by setting γi = δ′i.
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Clearly, the AFC scheme (6) using the regularized correction factors βi,ε is not linearity
preserving any longer because the results of Section 3.2 do not hold for ε > 0. However, the
values of q and δi can be determined to guarantee that βi,ε = 1 is still satisfied at least for all
(globally) linear functions uh with ‖∇uh‖2 > η for some η > 0. For this purpose, let us assume
that the condition

δ′i 6
2
(√
q − 1

)
1 + 2wi

√
q
ρiη, wi :=

∑
k∈Ni\{i}

wik, ρi := min
x∈∂$conv

i

‖x− xi‖2 (24)

is valid. Then we have

(1 + 2wi
√
q)δ′i 6 2(

√
q − 1)ρiη 6 2(

√
q − 1)s+

i =⇒ 2s+
i + δ′i 6 2

√
q(s+

i − δ′iwi)

and, by virtue of the fact that wik > 1 for all k ∈ Ni \ {i},

s+
i =

∑
k∈Ni\{i}

wik|ui − uk|+ >
∑

k∈Ni\{i}
|ui − uk|+ > min

x∈∂$conv
i

‖x− xi‖2‖∇uh‖2 > ρiη.

Thus, the validity of condition (24) implies that all correction factors are equal to one by

(s+,δi
i + s−,δii + γi)

2 6 (2s+
i + δ′i)

2

6 4q(s+
i − δ′iwi)2

= 4q
( ∑
k∈Ni\{i}

wik
(
|ui − uk|+ − δ′i

))( ∑
k∈Ni\{i}

wik
(
|uk − ui|+ − δ′i

))
6 4q

( ∑
k∈Ni\{i}

wik|ui − uk|+,δi
)( ∑

k∈Ni\{i}
wik|uk − ui|+,δi

)
6 4qs+,δi

i s−,δii

because the inequality s±,δii 6 s±i holds due to (21) and s+
i = s−i is satisfied for linear functions

by definition of the weights (wik)k∈Ni\{i}.
According to (24), the quantity q seems to have only a minor influence on the accuracy of

the solution while the high order target scheme is recovered for more and more linear functions
if the parameter δ′i is decreased. However, the right hand side of inequality (24) is proportional
to the local mesh size ρi and the value of δ′i should be adapted accordingly to guarantee
that βi,ε = 1 for linear functions uh with ‖∇uh‖2 > η no matter how fine the mesh is chosen.
Therefore, we set

γi = δ′i = εhri , hi := max
k∈Ni\{i}

‖xi − xk‖2

for r ∈ N. Actually, the numerical examples presented below illustrate that r > 2 seems to be
necessary to achieve the optimal rate of convergence.
According to the above analysis, the free parameters of the regularized AFC scheme are

given by q > 1, p ∈ N0, p̃ ∈ N, r ∈ N, and ε > 0. These values can be adapted (i) to improve
the accuracy of the corresponding FE solution, (ii) to increase the regularity of the AFC
residual, and (iii) to minimize the numerical effort for solving the nonlinear system of equations.
Unfortunately, the optimal balance between accuracy and numerical effort is not well defined
and difficult to achieve in practice. However, the choice of p = p̃ = 2 suffices to guarantee that
Newton’s method converges quadratically for ε > 0 because then the AFC residual is twice
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continuously differentiable. On the other hand, the parameters q and ε can still be adapted to
improve the accuracy of the scheme. Furthermore, we set r = 2 for an optimal convergence
behavior in terms of accuracy while still keeping γi and δi as large as possible for a smooth
AFC residual. The final regularized nodal correction factors are given by

βi,ε := 1−max

(
0, 1− q 4s+,δi

i s−,δii

(s+,δi
i + s−,δii + δ′i)

2

)p+1

,

s+,δi
i =

∑
k∈Ni\{i}

wik|ui − uk|+,δi , s−,δii =
∑

k∈Ni\{i}
wik|uk − ui|+,δi ,

δ′i = εhri , δi = (p− 1)1−p(pεhri )
p, hi := max

k∈Ni\{i}
‖xi − xk‖2, r = 2, p = p̃ = 2

and depend on the free parameters q > 1 and ε > 0. In the numerical examples presented
below, all other parameters are defined as above if not mentioned otherwise.

4 Jacobian of AFC residual

After regularization of the correction factors as above, the residual of the resulting AFC scheme
becomes twice continuously differentiable and calls for the use of more sophisticated solvers
than simple fixed point iterations. In particular, Newton’s method can be applied and converges
quadratically for sufficiently good initial guesses. However, the exact Jacobian of the residual
must be efficiently computable to benefit from this theoretical advantage. Unfortunately, the
local domain of dependence is extended by definition of the (nodal) correction factors and the
Jacobian becomes more dense than the high order system matrix. Therefore, custom-made
techniques for calculating the Jacobian are required to reduce the total effort of the numerical
solution procedure. In [Loh19a, Section 5.1], the author showed that the Jacobian admits a
decomposition into a sum and a product of matrices having the same sparsity pattern as the
system matrix, at least when the correction factors provide a special nodal representation.
Based on this algebraic manipulation, the Jacobian can be explicitly computed using a matrix-
matrix product or its application can be implicitly performed by means of a few matrix-vector
multiplications.
In what follows, we briefly generalize the decomposition of the Jacobian to AFC residuals

using some edge-based correction factors and present corresponding results for element-based
AFC approaches.

4.1 Edge-based correction factors

In contrast to the assumptions considered in [Loh19a, Section 5.1], we no longer require that
the correction factors αij be the product of two nodal correction factors. Instead, let us
assume that αij = αji is twice continuously differentiable and only depends on some auxiliary
quantities βij and βji with

∂βij
∂uk

=


rijqik + sij,i : k = i,

rijqik + sij,j : k = j,

rijqik : k ∈ Ni \ {i, j},
0 : k /∈ Ni

∀k ∈ {1, . . . , N},

12



where, for the sake of simplicity, all other entries of R = (rij)
N
i,j=1, Q = (qij)

N
i,j=1, and

S(k) = (sij,k)
N
i,j=1, k ∈ {1, . . . , N}, are set to zero. Then the Jacobian J ∈ RN×N of the

residual R defined by (6) satisfies

(J v)i −
∑
j∈Ni

aijvj +
∑

j∈Ni\{i}
dij(1− αij)(vj − vi)

=
∑
k

∑
j∈Ni\{i}

(
(∂βijαij)(vk∂ukβij) + (∂βjiαij)(vk∂ukβji)

)
fij

=
∑

j∈Ni\{i}

(
(∂βijαij)

(∑
k

vk∂ukβij
)

+ (∂βjiαij)
(∑
k

vk∂ukβji
))
fij

=
∑

j∈Ni\{i}
(∂βijαij)

(
visij,i + vjsij,j +

∑
k

vkrijqik
)
fij

+
∑

j∈Ni\{i}
(∂βjiαij)

(
vjsji,j + visji,i +

∑
k

vkrjiqjk
)
fij

=
( ∑
j∈Ni\{i}

(∂βijαij)rijfij

)(∑
k

vkqik
)

+
∑

j∈Ni\{i}
(∂βjiαij)rjifij

(∑
k

vkqjk
)

+
( ∑
j∈Ni\{i}

(
(∂βijαij)sij,i + (∂βjiαij)sji,i

)
fij

)
vi

+
∑

j∈Ni\{i}

(
(∂βijαij)sij,j + (∂βjiαij)sji,j

)
fijvj ∀i ∈ {1, . . . , N} ∀v ∈ RN

and, hence, can be written as
J = A− D̂ + T + PQ, (25)

where the entries of D̂ = (d̂ij)
N
i,j=1, T = (tij)

N
i,j=1, and P = (pij)

N
i,j=1 are given by

d̂ij :=

{
(1− αij)dij : i 6= j,

−∑k∈Ni\{i} d̂ik : i = j
∀i, j ∈ {1, . . . , N},

tij :=

{(
(∂βijαij)sij,j + (∂βjiαij)sji,j

)
fij : i 6= j,

−∑k∈Nj\{j} tkj : i = j
∀i, j ∈ {1, . . . , N},

pij :=

{
(∂βjiαij)rjifij : i 6= j,

−∑k∈Nj\{j} pkj : i = j
∀i, j ∈ {1, . . . , N}

due to the fact that fij = −fji and αij = αji. By definition of the artificial diffusion operator
D, all auxiliary matrices have the same sparsity pattern as the system matrix A and, hence,
can be efficiently generated. If the auxiliary correction factors βij are nodal quantities, i.e.,
βij = βi, and only depend on (uk − ui)k∈Ni

, we can even set rij = 1 as well as sij,i = sij,j = 0
for all j ∈ Ni \ {i}. Then T = 0 and the row sums of Q vanish because

qii = rijqii + sij,i =
∂βij
∂ui

= −
∑

k∈Ni\{i}

∂βij
∂uk

= −sij,j − rij
∑

k∈Ni\{i}
qik = −

∑
k∈Ni\{i}

qik.

For example, the regularized correction factors defined in Section 3 fit into this category and
formula (25) can be employed to determine the exact Jacobian of the nonlinear AFC residual
in an simple and efficient manner.
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4.2 Element-based approach

In Section 1, the AFC methodology was introduced by incorporating nonlinear (diffusive) fluxes
into the high order Galerkin discretization to compute highly accurate and bound-preserving
finite element solutions. As considered, e.g., in [Loh+17; Kuz+17], similar techniques can
also be used to stabilize the high order target method in an element-based manner. For this
purpose, some element contributions fe ∈ RN , e ∈ {1, . . . , E}, are scaled by means of solution-
dependent correction factors αe : RN → [0, 1] and result in diffusive terms like (cf. (7))

f̂i =
∑
e∈Ei

(
1− αe(u)

)
fei ∀i ∈ {1, . . . , N}. (26)

In what follows, we extend the idea of decomposing the Jacobian to the element-based AFC
approach for the sake of completeness. To this end, we again assume that the correction
factor αe is twice continuously differentiable and satisfies

αe = αe
(
(βi)i∈N e

)
∀e ∈ {1, . . . , E}

for some nodal correction factors βi with

∂βi
∂uk

=

{
qik : k ∈ Ni,
0 : k /∈ Ni

∀k ∈ {1, . . . , N}.

As above, we set qik = 0 if k /∈ Ni. Then the Jacobian J ∈ RN×N of the residual R satisfies

(J v)i −
∑
j∈Ni

aijvj +
∑
k

∑
e∈Ei

(1− αe)vk(∂ukfei )

=
∑
k

∑
e∈Ei

fei (vk∂ukα
e) =

∑
k

∑
e∈Ei

fei
∑
l∈N e

(∂βlα
e)(vk∂ukβl)

=
∑
e∈Ei

fei
∑
l∈N e

(∂βlα
e)
∑
k∈Nl

(vkqlk) =
∑
l

(∑
e∈Ei

fei (∂βlα
e)
)(∑

k∈Nl

(vkqlk)
)

∀i ∈ {1, . . . , N} ∀v ∈ RN

and can be written as
J = A− D̂ + PQ,

where the entries of the auxiliary matrices D̂ = (d̂ij)
N
i,j=1 and P = (pij)

N
i,j=1 are given by

d̂ij :=
∑
e∈Ei

(1− αe)(∂ujfei ) ∀i, j ∈ {1, . . . , N},

pij :=
∑
e∈Ei

fei (∂βjα
e) ∀i, j ∈ {1, . . . , N}.

5 Time dependent problem

After focusing on the AFC methodology for the steady hyperbolic model problem (1), we now
present the main idea of extending the monolithic limiting technique to its transient counterpart.
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In this case, many beneficial properties like the preservation of discrete maximum principles
should be maintained, at least under some CFL-like time step restriction. Furthermore, we
design the involved correction factors so that the right hand side of the semi-discrete problem
is Lipschitz continuous guaranteeing unique steady state solutions and well-posed problems
when using implicit time integrators.

In this section, the continuous problem under consideration is given by the transient advection-
reaction equation in non-conservative form

∂u

∂t
+ v · grad(u) + cu = s in Ω× (0, T ), (27a)

u = uin on Γin :=
{

(s, t) ∈ ∂Ω× (0, T )
∣∣ n(s) · v(s, t) < 0

}
, (27b)

u(·, 0) = u0 in Ω, (27c)

where T > 0 is the final time and u0 : Ω → R denotes the initial data for the solution
u : Ω× [0, T ]→ R. Furthermore, the functions v, c, s, and uin are time dependent counterparts
of the quantities introduced in Section 2. Then the degrees of freedom of the Galerkin
approximation uh : Ω× [0, T ]→ R solve the semi-discrete problem

∑
j∈Ni

mij
duj
dt

+
∑
j∈Ni

aijuj = gi ∀i ∈ {1, . . . , N},

where the consistent mass matrixM = (mij)
N
i,j=1 is defined by

mij =

∫
Ω
ϕiϕj ∀i, j ∈ {1, . . . , N}.

As in the stationary case, the high order finite element solution is possibly polluted by spurious
oscillations and may violate some discrete maximum principles. Therefore, we consider the
bound-preserving AFC scheme given by [Kuz12]

mi
dui
dt

+
(
F (u, t)

)
i

= 0 ∀i ∈ {1, . . . , N}, (28a)(
F (u, t)

)
i

:=
∑

j∈Ni\{i}
α̇ijmij(u̇j − u̇i) +

∑
j∈Ni

aijuj −
∑

j∈Ni\{i}
(1− αij)dij(uj − ui)− gi, (28b)

where the entries of the lumped mass matrixML = (miδij)
N
i,j=1 are given by mi =

∑
j∈Ni

mij

and u̇i approximates dtui in terms of the dissipation parameter ω ∈ [0, 1]

u̇i = m−1
i

(
gi −

∑
j∈Ni

aijuj +
∑

j∈Ni\{i}
(1− ωαij)dij(uj − ui)

)
∀i ∈ {1, . . . , N}.

For the sake of simplicity, the correction factors αij and α̇ij are given as above by the product
of regularized nodal quantities, i.e., αij = βi,εβj,ε and α̇ij = β̇i,εβ̇j,ε, and should guarantee the
Lipschitz continuity of F : RN → RN . For that reason, the nodal correction factors βi,ε are
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defined as above while β̇i,ε is similarly introduced by

β̇i,ε := β̇+
i,εβ̇
−
i,ε, β̇±i,ε := 1−max

(
0, 1−

√
q̇

2r±,δii

t+,δii + t−,δii + γi

)p
,

r+,δi
i :=

∑
k∈Ni\{i}

wik
∣∣ dik
mik

(uk − ui)
∣∣
+,δi

, r−,δii :=
∑

k∈Ni\{i}
wik
∣∣ dik
mik

(ui − uk)
∣∣
+,δi

,

t+,δii :=
∑

k∈Ni\{i}
wik|u̇k − u̇i|+,δi , t−,δii :=

∑
k∈Ni\{i}

wik|u̇i − u̇k|+,δi ,

where the terms of the sum in the numerator r±,δii are scaled by dik
mik

to obtain a fraction without
units. Note that β̇i,ε is given as the product of two auxiliary quantities β̇+

i,ε and β̇−i,ε which
vanish whenever ui is a local maximum or minimum, respectively. This slight modification is
required because the denominator of the correction factors β̇±i,ε is evaluated by u̇ instead of u
and, hence, r±,δii (t+,δii + t−,δii + γi)

−1 is not bounded above by some C 6= C(u, u̇). By virtue of
this adjustment, the Lipschitz continuity of F can be proved as illustrated in Section 3.3.
Adapting the results of Section 4.1, the exact Jacobian J of F can be written as

J = (A− D̂ + PQ) + ṖQ̇nu − (M̂+ ṖQ̇de)M−1
L (A− (1− ω)D − ωD̂ + ωPQ), (29)

where the rows of Q̇nu = (q̇nu
ij )Ni,j=1 and Q̇de = (q̇de

ij )Ni,j=1 contain the derivatives of β̇i,ε with
respect to the components of u and u̇, respectively, i.e.,

q̇nu
ij := ∂uj β̇i,ε q̇de

ij := ∂u̇j β̇i,ε ∀i, j ∈ {1, . . . , N}.

Furthermore, the auxiliary matrices M̂ = (m̂ij)
N
i,j=1 and Ṗ = (ṗij)

N
i,j=1 are defined by

m̂ij :=

{
α̇ijmij : i 6= j,

−∑k∈Ni\{i} m̂ik : i = j
∀i, j ∈ {1, . . . , N},

ṗij :=

{
β̇i,εmij(u̇j − u̇i) : i 6= j,

−∑i∈Nj\{j} ṗij : i = j
∀i, j ∈ {1, . . . , N}

while D̂, P, and Q are determined as above. Representation (29) involves multiplication of
up to four matrices having the same sparsity pattern as the system matrix and solution of
corresponding linear systems is expensive. Therefore, it might not be worthwhile to employ
Newton’s method in the context of implicit time integrators and simple fixed-point iterations
can be more efficient due to reasonably good initial guesses. However, detailed numerical
studies are required to evaluate different solution strategies and are beyond the scope of this
work.

6 Numerical examples

In this section, we apply the AFC methodology using the proposed nodal correction factors
to some steady and transient two dimensional test problems. The domain of all considered
benchmarks is given by the unit square, i.e., Ω = (0, 1)2, and is decomposed into a structured
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(a) Level 4 with (24)2 = 162 cells. (b) Level 5 with (25)2 = 322 cells. (c) Level 6 with (26)2 = 642 cells.

Figure 2: Illustration of distorted triangulations which are given by transformed Shestakov
meshes [She+90] using a = 0.35.

mesh containing 2l quadrilateral elements in each coordinate direction on level l ∈ N. The
nodes are either uniformly distributed or provide a disturbed mesh as constructed in [She+90]
(cf. Fig. 2).

In the stationary case, all nonlinear systems under consideration are solved using a damped
Newton’s method where the solution update is relaxed in terms of an Armijo condition [Arm66].
More precisely, the employed algorithm reads:

0. Set u(0) = (A−D)−1g and m = 0.

1. If
∥∥M−1

L R(u(m))
∥∥

2̃
6 10−8, the approximate solution is given by u(m).

2. Compute ∆u(m+1) = −J (u(m))−1R(u(m)).

3. Determine s ∈ N0 as the smallest integer for which∥∥M−1
L R(u(m) + 2−s∆u(m+1))

∥∥
2̃
6 (1 + 10−22−s)

∥∥M−1
L R(u(m))

∥∥
2̃
. (30)

4. Set u(m+1) = u(m) + 2−s∆u(m+1) as well as m = m+ 1 and go to step 1.

In this solution procedure, the weighted `2-norm ‖ · ‖2̃ : RN → [0,∞) is given by

‖v‖2̃ :=
( N∑
i=1

miv
2
i

) 1
2 ∀v ∈ RN

and approximates the L2-norm of the finite element function vh associated with the degrees
of freedom v ∈ RN . Although the AFC residual is only differentiable for ε > 0, the same
algorithm is also used if the regularization parameter vanishes. In this case, the derivative
of | · |+ is set to

∂|x|+
∂x

:=

{
0 : x 6 0,

1 : x > 0
∀x ∈ R.
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For some steady state results presented below, the Streamline upwind/Petrov-Galerkin
(SUPG) method [BH82] is employed as the high order target of the AFC scheme. In these
cases, we use the weak formulation∫

Ω

(
ϕ+ τv · grad(ϕ)

)
v · grad(u) +

∫
Ω
c
(
ϕ+ τv · grad(ϕ)

)
u+

∫
Γin

|v · n|ϕu

=

∫
Ω
s
(
ϕ+ τv · grad(ϕ)

)
+

∫
Γin

|v · n|ϕuin ∀ϕ

to compute the entries of the system matrix A and right hand side g, where the stabilization
parameter τ = τ(x) is determined by (cf. [JK07])

τ(x) :=
hK(x)

2
∥∥v(x)

∥∥
2

, hK(x) = max
Ke s.t. x∈Ke

diam(Ke)

and diam(Ke) := sup
{
‖y1 − y2‖

∣∣ y1,y2 ∈ Ke
}
. If not mentioned otherwise, the Galerkin

discretization is considered as introduced in Section 2.

6.1 Smooth circular convection

In the first example, the influence of the parameters ε, r, and q on (i) the accuracy of the
AFC scheme and (ii) the required number of damped Newton iterations for computing the
corresponding solution is demonstrated. For this purpose, we focus on the circular convection
benchmark [Hub07]

v · grad(u) = 0 in Ω,

u = uin on Γin := [0, 1]× {0} ∪ {1} × [0, 1]

using the velocity field v(x) = (−x2, x1)> and choose the prescribed inflow boundary data uin

so that the exact solution u ∈ C2(Ω;R) reads (cf. Fig. 3)

u(x) = max
(
0, 3‖x‖2 − 1

2

)3
max

(
0, 5

2 − 3‖x‖2
)3 ∀x ∈ Ω. (31)

As expected, the AFC solution for q = 2 and ε = 0 converges on a uniform mesh with order 2
to the exact solution in L2 because the employed scheme is linearity preserving (cf. Fig. 4). If
the correction factors are regularized, this property is violated and the order of convergence is
affected by the parameter r: While the AFC solution only converges with order 1 for r = 1,
second order of convergence can be observed for r = 2 no matter how ε > 0 is chosen. If the
exponent r is set to 3, the experimental order of convergence can ‘locally’ even be higher than
2. However, this effect vanishes on finer meshes because the AFC solution for ε > 0 cannot be
(significantly) more accurate than the solution of the unregularized AFC scheme.

In this numerical study, the AFC solution for q = 2 and ε = 0 can be computed with less
than 52 damped Newton iterations no matter how fine the mesh is. In contrast to this, the
total number of nonlinear iterations required to solve the regularized AFC problem seems to
increase with the mesh level l. Consequently, the use of regularized correction factors only pays
off on coarse meshes for the considered values of ε and r = 1, 2. However, the total number of
nonlinear iterations can also be halved on finer meshes if the parameter δ′i is sufficiently small.
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(a) Interpolation of exact solution. (b) AFC solution using q = 2, ε = 0.

Figure 3: Smooth circular convection: Different discrete solutions on level 6 of distorted mesh.
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Figure 4: Smooth circular convection: Grid convergence study for L2-error as well as number
of iterations on uniform mesh using Galerkin method as high order target and q = 2.
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Figure 5: Smooth circular convection: Grid convergence study for L2-error as well as number
of iterations on distorted mesh using SUPG method as high order target and q = 2.

The results presented in Fig. 5 are computed analogously to the previous ones on distorted
meshes by employing the SUPG method as the high order target. In this case, the optimal order
of convergence of the unregularized AFC scheme is given by 1.8 and can be again approximately
recovered by using the smoothed correction factors for r > 2. Furthermore, the required
number of nonlinear iterations decreases if the AFC residual is regularized using a parameter δ′i
which is sufficiently small.

So far, the AFC solutions were computed using relatively large regularization parameters to
clearly illustrate the influence of the exponent r. By using smaller values of ε, the accuracy
of the solution obviously improves (cf. Fig. 6 for r = 2, 3) but at the same time the total
number of nonlinear iterations increases. Therefore, the benefit of regularization seems to be
less significant. Especially for r = 3, there is hardly any difference between the L2-error of
the solutions produced by the smoothed and unregularized AFC schemes while the required
number of iterations also behaves similarly. As a consequence, the choice of r = 2 might be
reasonable for further numerical studies and the parameter ε has to be selected appropriately
to achieve the optimal ratio between accuracy and solvability.
In Fig. 7, the influence of the parameter q is illustrated for the unregularized AFC scheme

and the smoothed one using ε = 1. In both cases, the accuracy of the solution improves by
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Figure 6: Smooth circular convection: Grid convergence study for L2-error as well as number
of iterations on distorted mesh using SUPG method as high order target and q = 2.
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Figure 7: Smooth circular convection: Grid convergence study for L2-error as well as total
number of iterations on distorted mesh using SUPG method as high order target and
different values of q.

increasing q and seems to converge to a mesh-dependent value. On the other hand, the total
number of nonlinear iterations grows linearly for ε = 0 so that q = 2 might be the optimal
choice between accuracy and numerical effort. If the AFC residual is regularized using ε = 1,
nearly the same number of damped Newton steps are necessary for all values of q, at least for
level l 6 8. This behavior is caused by the fact that the large regularization parameter ε = 1 is
mainly responsible for the stiffness of the nonlinear system and deteriorates the accuracy of
the solution.

6.2 Discontinuous circular convection

The exact solution of the above test problem is twice continuously differentiable and, particularly,
does not possess any discontinuity. To illustrate the full potential of the AFC scheme for steady
hyperbolic problems, we now replace the exact solution (31) by the composition (cf. [Hub07])

u(x) =


1 : 0.15 6 ‖x‖2 6 0.45,

cos2
(
10π ‖x‖2−0.7

3

)
: 0.55 6 ‖x‖2 6 0.85,

0 : otherwise
∀x ∈ Ω. (32)
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(a) Interpolation of exact solution on uniform mesh. (b) Low order solution on uniform mesh.

(c) AFC solution on uniform mesh. (d) AFC solution on distorted mesh.

Figure 8: Discontinuous circular convection: Different discrete solutions on level 6 of uniform
and distorted mesh. AFC solutions are computed using q = 2 and ε = 0.

In Fig. 8, the pointwise interpolation of u and different bound-preserving finite element
approximations are presented. The low order solution solving (6) for q = 0 is very diffusive
and the prescribed boundary data uin is completely smeared out as the solution profile is
convected away from the inflow boundary. If q = 2 and ε = 0 are used in the definition of
the nodal correction factors, the accuracy improves while the validity of discrete maximum
principles is still preserved. In particular, the discontinuities occurring in the exact solution
are approximated by steep gradients without creating overshoots and undershoots. As the
mesh is distorted, the AFC solution becomes slightly more diffusive. However, this drawback
is due to the deteriorated quality of the mesh and might not be caused by a disadvantage of
the AFC scheme.

To compute these bound-preserving finite element functions, more than 60 nonlinear iterations
are required (cf. Fig. 9). However, AFC solutions with the same accuracy can also be computed
if the correction factors are regularized using ε = 10−1 (solutions not shown here). Actually,
there is hardly any difference between the AFC solutions, but the number of nonlinear iterations
is drastically reduced. The reason for this behavior is the fact that the smoothed AFC residual
is twice continuously differentiable so that Newton’s method converges quadratically after some
initial iterates. The use of larger regularization parameters further reduces the numerical effort
but results in slightly more diffusive solutions.
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Figure 9: Discontinuous circular convection: History of norm of residual during nonlinear
iterations for different values of ε and q on level 7 of uniform and distorted mesh.

6.3 Convection of discontinuity

In the last steady state test case, we focus on the convection of a discontinuity using the
constant velocity field v = (1

2 ,− sin π
3 )> where the exact solution is given by [BB17, Section 9.1]

u(x) =

{
1 : x2 > 0.7− 2x1 sin π

3 ,

0 : otherwise.
(33)

As observed in [Loh19a] for another definition of the correction factors, the AFC solution based
on the Galerkin discretization is polluted by some terracing effect close to the discontinuity
although discrete maximum principles are satisfied (cf. Fig. 10). The author assumed that this
artifact might disappear by incorporating some stabilization term into the high order target
scheme. For this purpose, we replace the Galerkin discretization by the SUPG method which
corresponds to the addition of some high order diffusivity in streamline direction. By doing so,
the solution becomes slightly more diffusive but the artificial terraces disappear no matter if
the mesh is distorted or not.

6.4 Solid body rotation

Finally, the AFC scheme of Section 5 is applied to the solid body rotation benchmark which
goes back to [Zal79; LeV96]. Three solid bodies with radius r = 0.15 initially centered at
x(1) = (0.25, 0.5)>, x(2) = (0.5, 0.25)>, and x(3) = (0.5, 0.75)> are rotated once around the
center of the domain Ω = (0, 1)2 using the velocity field v(x) = (1

2 − x2, x1 − 1
2)> and the

inflow boundary condition uin = 0. At the final time T = 2π, the exact solution coincides with
the initial profile u0 which provides the decomposition (cf. Fig. 11)

u0(x) :=


u(1)

(
(x− x(1))r−1

)
: ‖x− x(1)‖2 6 r,

u(2)
(
(x− x(2))r−1

)
: ‖x− x(2)‖2 6 r,

u(3)
(
(x− x(3))r−1

)
: ‖x− x(3)‖2 6 r,

0 : otherwise

∀x ∈ Ω, (34)

24



(a) Stabilized Galerkin solution on uniform mesh. (b) Stabilized Galerkin solution on distorted mesh.

(c) Stabilized SUPG solution on uniform mesh. (d) Stabilized SUPG solution on distorted mesh.

Figure 10: Convection of discontinuity: Different AFC solutions on level 6 of uniform and
distorted mesh using q = 4 and ε = 0.
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where the shapes of the ‘smooth hump’, ‘sharp cone’, and ‘slotted cylinder’ are determined by

u(1)(x) = 1
4

(
1 + cos(π‖x‖2)

)
,

u(2)(x) = 1− ‖x‖2,

u(3)(x) =

{
1 : |x1| > 1

6 ∨ x2 > 2
3 ,

0 : otherwise

∀x ∈ R2, ‖x‖2 6 1. (35)

The bound-preserving discrete initial profile uh,0 is computed using a lumped L2-projection
and is then evolved in time using the Crank-Nicolson scheme and ∆t ≈ 10−3. This implicit
time integrator requires the solution of a nonlinear system of equations in each time step and,
hence, might not outperform an explicit time discretization. However, the θ-scheme with θ = 1

2
is used to illustrate the possibility of using implicit time integration techniques and the stability
of the semi-discrete problem. In this case, the nonlinear solution update is performed using
the following undamped fixed-point iteration based on a low order preconditioner:

0. Set k(1) = −M−1
L F (un, n∆t), k(2,0) = 0 ∈ RN , and m = 0

1. Set r(2,m) =MLk
(2,m) + F (un + ∆t

2 k
(1) + ∆t

2 k
(2,m), (n+ 1)∆t).

2. If ‖M−1
L r(2,m)‖2̃ 6 10−8∆t−1, set k(2) := k(2,m) and go to step 5.

3. Compute ∆k(2,m+1) = −
(
ML + ∆t

2 (A−D)
)−1

r(2,m).

4. Set k(2,m+1) = k(2,m) + ∆k(2,m+1) as well as m = m+ 1 and go to step 1.

5. Set un+1 = un + ∆t
2 k

(1) + ∆t
2 k

(2).

For the numerical results presented in Fig. 11, the dissipation parameter ω = 0.6 is chosen
to achieve an accurate high order target scheme which only creates some local ripples close to
discontinuities. However, the corresponding finite element solution violates the global bounds
of the exact solution and calls for some nonlinear stabilization. The AFC methodology using
this high order target scheme, q = 2, and ε = 0 prevents the occurrence of local artifacts and
produces a bound-preserving finite element solution which is very accurate for this test problem
although some peak clipping effects can be observed at the summit of the smooth hump and
the sharp cone.

7 Summary

In this work, a new way of defining the correction factors of AFC schemes is proposed to reduce
the numerical effort for solving the resulting nonlinear systems. The regularization technique
introduced for this purpose makes the AFC residual twice continuously differentiable so that
Newton’s method converges quadratically for sufficiently good initial guesses. Although the
advantage of this approach could be observed in numerical examples, the optimal choice of the
regularization parameter balancing accuracy and efficient solvability is a challenging task. On
the other hand, preconditioning the fixed-point iteration using the ‘exact’ Jacobian seems to
work quite well even for the unregularized AFC scheme. A decomposition of the Jacobian is
exploited to efficiently compute its entries and further reduce the numerical effort.
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(a) Initial data using lumped L2-projection. (b) Low order solution using αij = α̇ij = 0.

(c) High order solution using αij = α̇ij = 1 and
ω = 0.6.

(d) AFC solution using ω = 0.6, q = 2, and ε = 0.

Figure 11: Solid body rotation. Different discrete solutions on level 7 of uniform mesh.
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The weights of the limiting function formula are defined so that the unregularized correction
factors vanish if the solution is (locally) linear. Numerical experiments indicate that this so
called linearity preservation property makes the solution second order accurate on uniform
meshes. This order of convergence is preserved if the correction factors are smoothed using an
appropriately chosen regularization technique.
Furthermore, the limiting strategy is extended to the treatment of transient problems. In

this case, the proposed correction factors are designed so that the nonlinear AFC residual
is Lipschitz continuous. This facilitates the use of implicit time integrators and guarantees
well-posedness of steady state problems. If the backward Euler scheme is employed, bound-
preserving solutions can be obtained without any CFL-like time step restriction. However, this
scheme is only first order accurate in time and the use of inordinately large time steps may
cause convergence problems. To achieve higher overall efficiency with implicit AFC schemes,
further effort is worth expending on the development of customized limiting techniques that
lead to nonlinear systems with desirable properties.
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