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Abstract

Due to the growing share of “green” electricity generated by renewable energy
technologies, the frequency of negative price spikes has substantially increased in
Germany. To reduce such events, in 2012, a market premium scheme (MPS) was intro-
duced as an alternative to feed-in tariffs for the promotion of green electricity. Draw-
ing on hourly day-ahead spot prices for the time period spanning 2009 to 2016 and
employing a nonparametric modeling strategy called Bayesian Additive Regression
Trees, this paper empirically evaluates the efficacy of Germany’s MPS. Via counterfac-
tual analyses, we demonstrate that the introduction of the MPS decreased the number
of hours with negative prices by some 70%.
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1 Introduction

Almost all over the world, policy-makers foster for the deployment of renewable en-
ergy technologies, such as solar and wind power, as a means to reduce carbon emissions.
The European Union (EU), for instance, aims at raising the share of “green” electricity,
produced by renewable energy technologies, in electricity consumption from about 29%
in 2015 to 56% by 2030 (Agora, 2019). To achieve this target, the majority of Member States
has established promotion schemes for enewable energy sources (RES) that are based on
subsidies (IEA and IRENA, 2018).

In Germany, for example, since the beginning of the new millennium, green electricity
has been promoted via technology-specific feed-in tariffs (FITs) that guarantee fixed pay-
ments per kilowatthour (kWh) to the plant operators for up to 21 years. Moreover, grid
operators are obliged to give priority dispatch to RES (Andor et al., 2017). In the after-
math of the introduction of the feed-in tariff system, Germany has been very successful
in increasing RES capacities, yet their massive increase has come at high cost: Currently,
the annual promotion costs amount to more than 25 billion euros, equaling about 1% of
the German GDP (Andor et al., 2018).

In addition to the substantial cost due to the unconditonal payment of fixed tariffs
irrespective of demand levels, the steadily growing amount of green electricity has further
adverse economic effects: it tends to increase both grid balancing costs and the frequency
of negative prices (Weber, 2010; Nicolosi, 2010). In fact, while RES plants are not obliged
to contribute to grid stability, abundant green electricity production may lead to negative
prices when a high electricity supply coincides with a low demand, thereby inducing
welfare losses (Andor et al., 2010).

Gerster (2016), for instance, demonstrates that the growing feed-in of green electricity
raises the probability of negative price spikes and thus threatens the financial viability of
conventional plants. Negative prices primarily arise because conventional power plants

face substantial ramp-up costs (Gerster, 2016) and, hence, are most often not shut down
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despite negative revenues due to negative prices. Not least, numerous studies argue
that there is a negative link between green electricity generation and the wholesale price,
commonly referred to as the merit-order effect (Cludius et al., 2014; de Lagarde and Lantz,
2018; Paschen, 2016; Praktiknjo and Erdmann, 2016; Wiirzburg et al., 2013).

To avoid such adverse effects and to align the production of green electricity with
market signals, many countries have implemented market premium schemes that pay
operators of renewable plants a variable bonus on top of the wholesale electricity price,
rather than guaranteeing fixed feed-in-tariffs (RES, 2018). Germany, for example, intro-
duced such a market premium scheme (MPS) in January 2012 and revised it in August
2014.

Using hourly day-ahead spot prices for the time period spanning January 2009 to De-
cember 2016, this paper empirically evaluates the efficacy of the German MPS, particu-
larly with respect to reducing the frequency of negative price spikes. To this end, we
employ a nonparametric modeling strategy called Bayesian Additive Regression Trees
(BART), which is highly appropriate for identifying nonlinear interactions between co-
variates (Hill, 2011) and for predicting those electricity prices that would have emerged in
the counterfactual scenario without the MPS. Our results indicate that the BART method
is very successful in replicating past electricity prices, as we are able to replicate those
roughly 470 hours in which negative prices occurred within the sample period of 2009 to
2016.

Moreover, our results suggest that the introduction of the MPS led to less hours with
negative prices, particularly in the morning, and less positive price peaks relative to the
counterfactual situation of an absent MPS. By comparison with this counterfactual, we
demonstrate that negative electricity prices were avoided by some 70%, in more than
560 hours. Based on these empirical results, we conclude that the MPS turned out to
be effective in increasing the market integration of renewable energy technologies and,

hence, in reducing the costs of their promotion.



The subsequent sections describe Germany’s electricity market and its MPS, as well as
the data base underlying our research. Section 4 briefly introduces the BART modeling
method, while Section 5 presents our empirical results. The last section summarizes and

concludes.

2 Germany’s Market Premium for RES

Germany stipulated ambitious targets for the expansion of RES, aiming at increasing
the share of RES-based electricity in consumption to 35% by 2020 and to 80% by 2050.
As more than 35% of electricity consumption was covered by RES technologies in 2019,
compared to less than 7% in 2000 (BMWi, 2017), Germany has already reached its 2020 tar-
get. Clearly, the key driver of this rapid expansion is the Renewable Energy Sources Act
(Erneuerbare-Energien-Gesetz, EEG), which came into force in 2000. Its key characteristic
is a set of technology-specific FITs that are granted for up to 21 years in an intertemporally
fixed amount. While exceeding the average generation cost of conventional electricity, in
many cases substantially, these technology-specific tariffs are paid for each kWh fed into
the grid irrespective of the level of demand for electricity. In addition, electricity based on
RES enjoys preferential access to the grid. Both features, FITs and priority of green over
conventional electricity, were established to shield plant operators from adverse market
signals (Andor and Voss, 2016).

In terms of RES capacity expansion, Germany’s FIT system proved highly successful:
Between 2000 and 2016, RES capacities increased ten-fold to reach 104 Gigawatt (GW),
thereby exceeding the capacity of conventional power plants for the first time (BMWj,
2017). Above all, photovoltaic (PV) capacities skyrocketed, most notably in the boom
years 2010 to 2012: In each of these years, almost 8 GW were newly installed, with the
sum of PV capacities installed in this period being equivalent to almost 60% of the total PV

capacity in 2016 (Table 1). With an increment of about 4 GW in 2016, prior to Germany’s



introduction of auctioning systems for the installation of new renewable energy plants in

2017, onshore wind has experienced a strong push as well.

Table 1: Electricity Generation Capacity (in Megawatt) in Germany Prior to the Introduc-
tion of a Tendering System in 2017

Hydro, Wind Wind  Photo- Total Total

Bio, Geo Onshore Offshore voltaic Renewables Conventional
2000 5,534 6,097 0 114 11,745 107,500
2001 5,658 8,738 0 176 14,572 106,800
2002 5,967 11,976 0 296 18,239 100,900
2003 6,381 14,381 0 435 21,197 99,400
2004 6,873 16,419 0 1,105 24,397 100,900
2005 7,562 18,248 0 2,056 27,866 98,900
2006 8,203 20,474 0 2,899 31,576 98,400
2007 8,532 22,116 0 4,170 34,818 99,800
2008 8,848 22,794 0 6,120 37,762 101,800
2009 10,219 25,697 35 10,566 46,517 101,200
2010 10,878 26,823 80 18,006 55,787 104,100
2011 12,057 28,524 188 25,916 66,685 98,100
2012 12,379 30,711 268 34,077 77 A35 97,300
2013 12,656 32,969 508 36,710 82,843 94,600
2014 12,873 37,620 994 37,900 89,387 100,200
2015 13,090 41,297 3,283 39,224 96,894 97,600
2016 13,308 45,460 4,132 40,716 103,616 96,800

Source: BMWi (2017).

The expansion of RES capacities causes numerous problems for the electricity system,
in particular with respect to grid stability. For instance, because grid operators are obliged
by law to treat green electricity preferentially, conventional power plants have to adjust
their production downward when demand is low (Romer et al., 2012). In contrast, RES
technologies are not obliged to contribute to the balancing of supply and demand, thereby
undermining grid stability due to their intermittent electricity generation. In fact, prior to
the introduction of the MPS in January 2012, operators of renewable power plants, such

as wind turbines and PV systems, had no monetary incentive to cease their electricity
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generation even when prices were negative, as they earned a fixed FIT for each kWh of
green electricity that was fed into the grid. This producer behavior is often described by
the formula “produce and forget”, indicating that producers of green electricity can be
completely oblivious to market signals and electricity demand.

To better align green electricity production with demand, Germany’s FIT system for
RES promotion was supplemented in 2012 by the MPS to increase the incentives for a
demand-orientated generation of green electricity. The aim of this scheme was to encour-
age operators of RES plants to sell their green electricity to the market, rather than feeding
it into the grid at any time, thereby obtaining fixed FITs per kWh. While taking part in
the MPS was voluntary and operators of RES plants could switch back and forth between
the MPS and the FIT system on a monthly basis, risk-averse RES operators could always
stay in the traditional FIT system.!

Yet, switching to the MPS is attractive, as the remuneration per kWh may be higher
than under the FIT system (Figure 1). Under the MPS, in addition to the spot market
price SP, plant operators receive a variable premium, called market premium ()M PR).
It is calculated ex post on a monthly basis as the difference between the feed-in-tariff
FIT and the electricity’s technology-specific average market value MV in the previous
month.> Not least, RES operators receive a fixed management premium MM P that is
intended to cover the costs arising from participating in the market. Thus, under the MPS,
total revenues R are given by the sum of three components: R := SP + MPR + MMP,
the spot price, the market and the management premium.

Unlike the FIT system, revenues are not guaranteed under the MPS, but are primarily
determined by the market. Hence, RES plant operators are exposed to price risks, which

in times of high demand may turn out to be positive: If the spot market price SP exceeds

LA prerequisite for participating in the MPS is that plants can be curtailed via remote control.

2The market values of electricity generated by various RES technologies differ because of distinct pro-
duction peaks. For instance, solar electricity production peaks at noon in the summer months, thereby
coinciding with high electricity demand and, thus, high prices, whereas wind power frequently peaks at
winter nights when demand and prices tend to be lower.
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the average market value MV of the previous month, the revenues emerging from the
MPS are higher than those from the FIT system (see Figure 1). However, while in the
FIT system green electricity production always yields positive revenues, under the MPS,
the generation of green electricity may not only yield lower revenues than under the FIT
system, but might even turn out to be unprofitable. In fact, recognizing that the marginal
cost of production is negligible for renewable technologies such as wind and solar power,
if spot market prices are negative, green electricity production is only profitable under
the MPS as long as the sum of the market premium M PR and the management premium

M M P exceeds the magnitude of the negative spot market price SP.

Figure 1: Revenues under Germany’s Feed-in Tariff (FIT) System and its Market Premium
Scheme (MPS)

MMP

MPR
MPR
MMP

MPR

HT

SP > MV

M MMP
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Feed-in Tariff Market Value Larger Revenues Smaller Revenues
from Direct from Direct
Marketing Marketing

Sp<<0

Losses from
Direct Marketing

Hence, operators stop feeding green electricity into the grid when the spot market
price is substantially below zero so that the losses from direct marketing exceed the pre-

mia paid to the operators: SP + M PR + MMP < 0. Therefore, as was intended with
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establishing the MPS, RES plant operators would curtail their production in response to
significantly negative prices. In case of moderately negative prices, however, even under
the MPS, producers still have an incentive to feed their green electricity into the grid. In
other words, negative electricity prices cannot be entirely avoided by the MPS.

In August 2014, Germany revised the MPS by mandating participation of all new RES
plants with a capacity of more than 500 kilowatt (kW), whereas operators of RES plants
that were installed prior to August 2014 remained free to choose between the MPS and
the FIT system.® To further diminish the frequency of negative prices at the wholesale
market, an additional disincentive was established in this MPS reform: If electricity prices
are negative for at least six consecutive hours, the market premium for RES plants that
came into operation after January 1, 2016, and whose capacity exceeds 500 kW (3,000 kW
in the case of wind power) is defined to equal zero during the entire period with negative
prices.

With another reform of its feed-in tariff system that came into force at the outset of
2017, the German government aimed at further increasing the economic efficiency of the
RES promotion. To this end, technology-specific tender schemes were established, where
participants bid on the intertemporally constant subsidy amount per kWh that they re-
ceive when feeding green electricity into the grid. Yet, alternatively, RES operators can
still opt for selling their electricity at the market via the MPS. While the reform of 2017
thus should not have affected the occurrence of negative electricity prices, we neverthe-
less have deliberately restricted our sample to observations prior to this new promotion
regime.

As Figure 2 reveals, prior to 2012, just a few operators sold their green electricity at the
market. After the introduction of the MPS, though, the share of green electricity that was
sold at the market and remunerated via the MPS rapidly increased. Most notably, many

operators of onshore wind farms and biomass plants switched immediately to the MPS

3The capacity threshold of 500 kW for obligatory participation in the MPS was reduced soon: Since
January 1, 2016, all new RES plants with a capacity higher than 100 kW must participate in the MPS.
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in 2012, most likely because of the generous management premium M M P. By contrast,
only a minority of the PV plant operators opted for the MPS, which is due to the fact that
the overwhelming majority of PV systems are installed on the roofs of private houses.*

Figure 2: RES Capacities (in Gigawatt, GW) Participating in Germany’s Market Premium
Scheme (MPS)

*1 Period 1 ‘ Period 2 ‘ Period 3
Jan 2009 - Dec 2011 Jan 2012 - Jul 2014 Aug 2014 - Dec 2016
Onshore-Wind
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’§ Market premium introduction
§
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—— Other
ol L _
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Year

Source: TSO (2018).

3 Data

To gauge the impact of the MPS on electricity prices, our research draws on data
that covers the period from January 2009 to December 2016 and originates from two

sources: the websites of Fraunhofer (2018) and the European Energy Exchange (EEX,

“The kink in participation in the MPS in early 2015 is due to the obligation to dispose of a remote control
that was introduced in 2015. As of 2015, plants operators who did not install such a device were not allowed
to sell their electricity directly anymore.



https:/ /www.eex.com). From the EEX, we retrieved the price of the EU emission al-
lowances, which represents an important control variable, as well as the Physical Elec-
tricity Index (Phelix). This index serves as the dependent variable in our analysis and
measures the hourly electricity spot market price.

The key explanatory variables are the hourly electricity generation of wind and solar
power plants. Additional control variables are, among others, the hourly demand load
and the electricity generation from conventional sources. Not least, we control for various
patterns of seasonality by including the hour of the day, the day of the week, the day of
the year, and the calendar month.

In line with the timing of the launch of Germany’s MPS in 2012 and its reform in
August 2014, we divide our data base into three disjunct periods: Period 1 spans from
January 2009 to December 2011, that is, the time period prior to the introduction of the
MPS. Period 2 ranges from January 2012 to July 2014, that is, the period between the in-
troduction and the reform of the MPS, and Period 3 spans from August 2014 to December
2016, that is, the time period after the reform of the MPS and the launch of the tendering
system for PV and wind power installations in Germany in 2017.

In the period spanning from January 2009 to December 2016, about 17% of Germany’s
electricity demand load was covered by wind and solar power plants, with capacities av-
eraging 6,412 and 3,174 Megawatt (MW), respectively (Table 2). Yet, there was substantial
inter-temporal variation due to the intermittent character of both technologies. For in-
stance, 25,643 hours elapsed without any feed-in from solar power plants, while another
665 hours saw solar electricity production exceeding that of power plants fired by lignite
and hard coal.

Between January 2009 and December 2016, hourly electricity prices averaged 38.5 eu-
ros per Megawatthour (MWh), but exhibited substantial volatility, as they ranged from
-500 to 210 euros. In 464 hours, negative prices emerged, 98 hours in Period 1, 146 hours

in Period 2, and 220 hours in Period 3. Given the total number of 61,320 hours in the



Table 2: Summary Statistics for the Time Period January 2009 to December 2016

Observation

Variable Mean Std. Dev.  Min Max #Obs. Frequency
Phelix (EUR/MWh) 38.54 16.67 —500.0 210.0 69,527 hourly
Allowance price (EUR/t CO2)  9.10 4.06 3.02 16.84 2,511 daily
Solar power plants (MW) 3,174 5,171 0 28,323 60,434 hourly
Wind power plants (MW) 6,412 5,798 0 34,078 60,434 hourly
Lignite power plants (MW) 15,760 2,169 0 20,940 60,434 hourly
Hard coal power plants (MW) 11,539 5,436 0 22,298 60,434 hourly
Nuclear power plants (MW) 11,096 2,640 0 18,506 60,765 hourly
Load (MW) 56,095 10,383 29,201 81,109 60,765 hourly

period spanning 2009 to 2016, the occurrence of negative prices was rather seldom, yet
clearly increasing over time (Figure 3). Negative prices most likely occur when electricity
demand is low, primarily at holidays (Figure 3) and in the early morning hours (Figure

5). In fact, around half of the number of hours with negative prices fell between midnight

and 5 a.m.

Figure 3: Hourly Spot Market Electricity Prices for Germany between 2009 and 2016 Reflected by

the Physical Electricity Index (Phelix)
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Figure 4: Daily Spot Market Electricity Prices for Germany between 2009 and 2016 given
by the Physical Electricity Index (Phelix)

60 -

50-

Phelix [EUR /MWh]

30-

Period 1
Jan 2009 - Dec 2011

2010

Period 2

Jan 2012 - Jul 2014

Period 3
Aug 2014 — Dec 2016

2012
Year

2014

2016

Figure 5: Within-Day Distribution of the Frequency of Hours with Negative Prices in

Percent
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From Period 1 to Period 3, there was a declining trend in electricity prices (Figure 4):

Prices peaked at about 55 euros per MWh in mid-2011 due to the sudden shutdown of
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about half of Germany’s nuclear power plants in the aftermath of the accident in Japan’s
Fukushima, then fell to 25 euros per MWh at the outset of 2016, but recovered afterwards.
In fact, the period after the launch of the MPS and before its reform in August 2014 (Period
2) is characterized by a downward drift in prices. Overall, in Period 3, electricity prices

were lowest and their distribution was tightest (Figure 6).

Figure 6: Distribution of the Physical Electricity Index (Phelix, in Euro per
Megawatthour) by Periods
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The effect of green electricity generation on electricity prices has been typically esti-
mated on the basis of time series models — see, for instance, Fanone et al. (2013); Gerster
(2016); Ketterer (2014); de Lagarde and Lantz (2018); Paschen (2016). This approach neces-
sitates the specification of a functional form that models the relationship between prices
and key variables, such as hour of the day, as well as a set of covariates. In contrast, we

apply a nonparametric method called Bayesian Additive Regression Trees (BART) that
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requires less guess-work in model fitting. Actually, a key advantage of the BART method
is that there is no necessity to specify a parametric form for the conditional expectation
E[p;|z] of the dependent variable, where in our example p; denotes the price of electricity
in hour ¢ and z, designates the vector of covariates.

Furthermore, BART methods are particularly appropriate for identifying complex in-
teractions between covariates and, hence, effect heterogeneity (Hill, 2011). This is most
relevant in the context of determining the effect of the MPS on on electricity prices given
that electricity demand load, as well as green electricity generation, highly vary over time,
making dummies for the day of the week and the hour of the day, as well as interaction
terms of these variables, indispensable model ingredients. Another advantage is that,
owing to the high flexibility of the model, predictions from BART models are highly pre-
cise — see for instance the empirical examples provided by Hill (2011), as well as our own
results presented below. Not least, rather than estimating numerous separate models,
for instance for each hour of a day individually, for both peak- and off-peak hours (see
e. g. Gerster, 2016), a single BART model suffices for our analysis.

The basic idea of the BART modeling strategy is to explain the outcome variable, in

our cases electricity prices p;, by a large number L, say L = 200, of regression trees:

L
Dr = Zf(zth) + Uy, (1)
=1

where u; ~ N(0,0%). f(20,) is called tree function and 6, denotes a parameter vector
that describes tree [ — see Breiman (2001) for an introduction to tree- and forest-based
methods. Each tree [ explains a part of the variation in the dependent variable p, using
only a subset of the covariates. If a tree refers to a single covariate, it captures a main
effect, otherwise a tree reflects the effects of two or more covariates and their interaction.
The high flexibility of BART results from the potentially large number of trees with which

any sort of interaction between covariates can be modeled.
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As an illustration, Figure 7 presents an example of a single tree, where at the first
interior node n, all observations with z; < 0.4 are attributed to the left branch, ending in
terminal node n,. The right branch divides observations further according to the decision
rule z; < 0.7, resulting in terminal nodes n, and n;. Formally, a tree of size s is defined
by a node vector n = (ny,...,n;,...,ns) consisting of both interior and terminal nodes.
To each interior node, a threshold c; is associated that implies a decision rule on how to
traverse the tree: If 2;, < ¢;, observation z; is sent left, if z;; > ¢;, it is sent right in the tree.
Thresholds are determined a posteriori on the basis of the observations on the covariates.
Each terminal node is associated with a parameter ji;, representing the mean outcome of
the subgroup of observations that are attributed to that terminal node. Gathering mean
outcomes in vector p = (py,...,ps)", where f is the number of terminal nodes, and
defining ¢ = (¢, ..., cg)T, where g indicates the number of internal nodes, the parameter

vector 6, .= (¢/,n/,u)" determines the tree function f(z,|6;) of tree I.

Figure 7: [llustration of a Regression Tree

1.004
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The illustration depicts a tree of size 3 for function f(z1,22) = 0.3I[z1 < 0.4] + 91[z1 > 0.4]I[z2 < 0.7] — 4I[z1 > 0.4]I[z2 > 0.7],
where I[.] equals one if the condition in brackets is met. The left panel shows the tree in terms of nodes, where with each interior
node n1 and n3, a decision rule is associated. The terminal nodes n2, n4, and ns are associated with mean outcomes, displayed in the
partition in the right panel.
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To provide intuition for the BART modeling approach, consider taking the fit f(z;|6,)
from the first tree and subtracting it off from the observed outcome p; to form residuals.
Then imagine fitting the next tree to these residuals, each tree contributing to the overall
fit. This process would be performed many times, thereby ever improving the overall fit.
While improving the overall fit by adding tree by tree, however, one wants to avoid over-
titting. To counter overfitting, Chipman et al. (2010) propose regularization priors, such
as prior distributions to penalize the number of nodes and the means of each component
tree. For instance, the prior for the number of nodes puts most probability mass on trees
with two interior nodes, while still allowing larger trees if it is necessitated by the data.
The typical prior for the thresholds assigns each observed value the same probability.

To estimate the effect of the introduction of the MPS in 2012, as well as of its reform
in August 2014, we split the data set into the three time periods described in the previous

section and define the following potential outcomes in terms of prices:

;

p;(1) Regime 1: Absence of the MPS,

pi(r) = p;(2) Regime 2: Prevalence of the MPS, (2)

p;(3) Regime 3: Prevalence of the Revised MPS,
\

where p;(r) denotes the price of electricity in hour ¢t under Regime r in Period s. As pre-
sented in Definition (2), there are three regimes that emerge in a natural way due to the
launch and revision of the MPS. Given our focus on the frequency with which negative
prices occur, to estimate the effect of the MPS, in principle, we would like to calculate the
difference between the actual frequency of negative prices in Period 2 and the hypotheti-
cal frequency in the counterfactual situation of an absence of the MPS (Regime 1).

When employing BART to estimate the effect of the MPS, we follow Imbens and Rubin
(2015) and, for each draw 6,, from the posterior distribution of tree parameter vector 6,

we simulate potential outcomes for the prices p{(r) that pertain to all nine combinations of
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regimes and periods. Altogther, we draw M = 3,000 parameter vectors 61, ..., 0, from
the posterior distribution, noting that our empirical results remain largely unchanged
when M is larger than 3,000. Based on these price simulations, we then compute the

number of hours with negative prices in Period s under Regime 7:

> Ipir) <0,

t€Period s

where indicator function I [pj(r) < 0] indicates the occurrence of a negative price in hour
t. Taking respective differences in the number of negative hours across regimes yields the

effects 7 of introducing and revising the MPS. For instance,

2= Y IR0 <0~ Y TR <]

tePeriod 2 tePeriod 2

reflects the effect of the MPS (Regime 2) relative to Regime 1 (absence of MPS). A positive
value of 72(1) would indicate that the introduction of the MPS is associated with less
hours with negative prices. Repeating this exercise M = 3,000 times, we ultimately get an
estimate 7'/(\1) = M~'SM_ 72(1) of the effect of the introduction of the MPS in Period
2 by taking the mean of the differences 72(1). Finally, the lower and upper bounds of the
posterior intervals of the BART estimator are given by the 2.5th and 97.5th percentiles of

the sequence of M = 3,000 estimates 7£(1), ..., 75,(1).

5 Results

Figure 8 indicates that our empirical approach, for which we have used the R package
BART (McCulloch et al., 2018), is highly appropriate: the within-sample predictions of
electricity spot prices on the basis of BART are dramatically better than those based on a
standard OLS regression model, most notably with respect to extremely high prices and

negative price spikes (see Figure 8). This comparison highlights the value added of using
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BART for our analysis, where the primary interest is on the occurrence of negative prices.
Along with the quite high fit of R? = 0.94, this prediction performance is all the more
remarkable, as the share of hours with negative prices is less than 1% in the period 2009
to 2016.

Figure 8: Comparison of the Within-sample Predictions of Electricity Spot Prices of the
Bayesian Additive Regression Tree (BART) Method with those of a Standard OLS Regres-

sion

BART Linear regression
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Given the time trends appearing from Figure 4, in what follows, we eliminate such

—

trends by subtracting a smooth time trend f(¢), estimated using regression splines, from
the observed values w;: W, = w; — f/(t\), where w stands for the dependent or any explana-
tory variable. Figure A2 of the appendix illustrates that the detrended covariates overlap
much more than the original covariates (see Figure Al). Moreover, in accord with Figure
8, Figure A3 of the appendix demonstrates that the BART model with the detrended vari-
ables also outperforms a standard linear OLS model with respect to the within-sample
prediction of negative prices.

Figure 9 presents further evidence on the high accuracy of BART predictions. The

predicted number of hours with negative prices amounts to some 153 and 226 for Period
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2 and 3, respectively, while the actual numbers amount to 146 and 220, respectively (see
the horizontal lines in Figure 9). The efficacy of the MPS with respect to avoiding neg-
ative prices is strongly corroborated by the effect estimate of Tg(\l) = 561 hours, which
is accompanied by a relatively tight 95% posterior interval of [512, 609]. In other words,
Germany’s MPS helped to avoid 561 hours with negative prices. This corresponds to
some 70% of the almost 790 hours with negative prices that would have occurred in Pe-
riod 3 in the absence of the MPS — see the prediction for Regime 1 in the right panel of
Figure 9.

Likewise, given that the counterfactual number of hours with negative prices under
Regime 1 is estimated at about 380 and the predicted number for Period 2 is 153 (see the
left panel of Figure 9), the lauch of the MPS in 2012 helped to reduce the number of hours
with negative prices in Period 2 by T?(\l) = 227, with a posterior interval of [182, 266]. In
other words, due to the introduction of the MPS, roughly half of the number of hours with
negative prices could be avoided in Period 2. Lastly, the effect of reforming the MPS in

August 2014 is estimated at 73(2) = 246 hours in which negative prices could be avoided,

with a posterior interval of [213, 279].

Figure 9: Number of Hours with Negative Prices in the Aftermath of the Launch of the
German Market Premium System in 2012 and its Reform of August 2014
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It also bears noting that the MPS helped to avoid strongly negative prices. For in-
stance, Figure 10 indicates that the reform of the MPS was successful in avoiding about
200 negative prices of less than -20 euros per Megawatthour (MWh). In this case, the ef-
fect of the reform, denoted by £3(2) := 3" I [p}(3) < —20] — Y. I [p}(2) < —20], amounts to
5?(5) =196 hours, with a posterior inter\ial of [163, 228]. Accé)rdingly, for the introduction
of the MPS, we estimate an effect of 55(\1) = 32 hours, with [19, 35] being the posterior

interval.

Figure 10: Number of Hours with Prices below -20 Euros per Megawatthour in the Af-
termath of the Launch of the German Market Premium System in 2012 and its Reform of
August 2014
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For illustration purposes, by hours of the day, Figure 11 provides a detailed picture
of the number of hours in which negative prices could have been avoided. This figure,
which results from taking the difference between the counterfactual and the actual num-
ber of hours with negative prices, demonstrates that at 5 a.m., negative prices have been
avoided by the MPS almost 70 times in Period 3 (see the right panel of Figure 11). Fur-
thermore, the panel on the left-hand side of Figure 11 suggests that if the MPS had not
been implemented, Period 2 would have experienced more than 30 additional days with
negative prices at 5 a.m. The panel in the middle of Figure 11 indicates that the reform of

the MPS helped to avoid 27 additional days with negative prices at 5 a.m. This finding
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Figure 11: Number of Hours with Avoided Negative Prices calculated by taking the
Difference between the Counterfactual and the Actual Number of Hours with Negative
Prices, by Hour and Period
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substantiates the above result that the MPS reform has been effective in further aligning
the production of green electricity with market signals.

Finally, we conduct two robustness checks whose results are reported in the appendix.
First, instead of detrending the variables by using regression splines, as in our previous
analysis, we take first differences. Instead of changes in the frequency of negative prices,
the results from this exercise, displayed in Figure A4, reflect short-term price changes.
The results confirm our findings displayed in Figure 11: The differences between coun-
terfactual and actual electricity prices are among the highest in the early hours of a day.
As this is the time period when most negative prices occur (Figure 5), we conclude that
the MPS was successful in avoiding negative prices.

Second, we take into account the integration of Germany into the European electricity

market in November 2010, which may have had a bearing on the occurrence of negative
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electricity prices.” Accordingly, we split Period 1 into two subperiods: Period 1a (January
2009 — October 2010) and Period 1b (November 2010 — December 2011). The results of this
robustness check indicate that if the MPS had not been in operation in Period 2 (January
2012 — July 2014), negative prices would have occurred in about 450 hours, while the ac-
tual value amounts to 146 hours (lower left panel of Figure A5). Even though the point
estimates of the number of negative prices are somewhat higher than in Figure 9, the ab-
sence of differences between Period 1a and Period 1b indicates that this market coupling
event had virtually no impact on the occurence of negative prices.

In addition, if the reform of the MPS had not taken place, we would have observed
even more hours with negative prices in Period 3 (see lower right panel of A5). As the es-
timate of around 800 hours with negative prices from Figure 9 roughly lies in the middle
between the two estimates for Regimes 1a and 1b, we conclude that Germany’s integra-
tion into the European electricity market did not have any bearing on the occurrence of
negative prices. This conclusion is substantiated by the evidence displayed in Figure A6,

where we focus on negative prices below -20 euros per MWh.

6 Summary and Conclusion

To reduce greenhouse gas emissions, an overwhelming number of countries promote
renewable energy technologies, most often, as in Germany, in the form of feed-in tariffs
(FITs). These tariffs are paid for each kWh of green electricity produced by renewable
energy technologies irrespective of whether the demand for electricity is low. In terms of
RES capacity expansion, Germany’s FIT system, established in 2000, proved highly suc-

cessful and is thus widely seen as a role model for the promotion of renewable energy

>The coupling of European electricity markets started in 2006 when Belgium, France, and the Nether-
lands connected their electricity markets. Germany and Luxembourg joined this common market area in
November 2010. In the meantime, more countries were connected to the common electricity market, such
that the coupled market area covers more than 20 countries, standing for about 90% of Europe’s electric-
ity consumption (Ringler et al., 2017). The idea behind market coupling is to increase welfare by allowing
electricity to flow from low cost areas to high cost areas, resulting in price convergence (Keppler et al., 2016).

21



technologies. Between 2000 and 2016, RES capacities increased tenfold to reach 104 GW,
thereby exceeding the capacity of conventional power plants in 2016 for the first time
(BMWij, 2017). As a consequence of the increasing RES capacities, prices on the wholesale
electricity market decreased, which is commonly referred to as merit-order effect (Prak-
tiknjo and Erdmann, 2016). In times of low demand, such as on Sundays and public
holidays, the pressure on electricity prices due to a large supply of green electricity may
be so strong that prices turn out to be even negative.

To counteract these adverse effects, numerous countries have implemented premium
schemes with the aim of aligning green electricity generation with market signals. Un-
der premium schemes, rather than getting fixed FITs (RES, 2018), operators of renewable
plants are commonly paid a bonus on top of the wholesale electricity price, thereby pro-
viding incentives to reduce production in times of low electricity demand.

In this paper, using hourly day-ahead spot market prices from 2009 to 2016 and the
nonparametric method of Bayesian Additive Regression Trees, we have analyzed the effi-
cacy of Germany’s MPS in terms of reducing the frequency of hours with negative prices.
This method allows for the straightforward construction of counterfactual situations and
predictions of hypothetical outcomes, such as the electricity prices in the absence of the
MPS. Along with a very high predictive power, this constitutes a distinctive feature of
this method (Hill, 2011).

Based on such counterfactual analyses, we find that the implementation of the MPS
in Germany in 2012 was quite effective in reducing the prevalence of negative electricity
prices. Altogether, the introduction of the MPS and its reform in August 2014 helped to
avoid some 560 hours with negative prices in the period spanning January 2012 to De-
cember 2016, particularly in the morning hours. Without the MPS, negative prices would
have occurred over almost 790 hours, indicating that about 70% of potential hours with
negative prices were avoided. Moreover, the MPS was successful in avoiding about 200

hours with negative prices of less than -20 euros per Megawatthour. Given these results,
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we conclude that, compared to feed-in tariff systems with guaranteed fixed payments per
kilowatthour, the market premium system is the more cost-effective measure to promote
renewable energy technologies.

It bears noting, though, that a comprehensive cost-benefit analysis would also take
into account the implementation and transaction costs that arise due to a MPS. Moreover,
while it is beyond the scope of our analysis to provide any guidance on how to design
optimal promotion systems, Andor and Voss (2016) suggest that if positive externalities
arise from the installation of renewable capacities, capacity-based instruments, such as tax
cuts, should be employed, whereas generation-based instruments, such as FITs, would
be preferable when positive externalities arise from the generation of green electricity.
Yet, although capacity-based subsidies are particularly suited to push new technologies,
such promotion schemes have not been implemented in many countries so far. While
this also holds true for Germany, the country has recently improved the cost efficiency of
the promotion of renewable technologies by introducing a tendering scheme in 2017, in
which participants bid on a fixed remuneration per kilowatthour of green electricity, but

are allowed to gain additional profits by direct marketing.
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A Appendix

Figure A1: Overlap in the Covariates across Time Periods
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Figure A2: Overlap in the Detrended Covariates across Time Periods
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Figure A3: Comparison of the Within-sample Predictions of Electricity Spot Prices of
the Bayesian Additive Regression Tree (BART) Method with those of a Standard OLS

Regression
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Figure A4: Robustness Check using Differenced Variables: Difference between Counter-
factual and Actual Electricity Prices, by Hour of a Day and Period
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Figure A5: Robustness Check Electricity Market Coupling: Number of Hours with
Avoided Negative Prices calculated by taking the Difference between the Counterfactual
and the Actual Number of Hours with Negative Prices, by Hour of a Day and Period
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Figure A6: Robustness Check Electricity Market Coupling: Number of Hours with Prices
below -20 Euros per Megawatthour calculated by taking the Difference between the
Counterfactual and the Actual Number of Hours with Negative Prices, by Hour of a Day

and Period
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