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Abstract

The classical sign test usually provides very bad power for certain alternatives. We present

a generalization which is similarly easy to comprehend but much more powerful. It is based on

K-sign depth, shortly denoted by K-depth. These so-called K-depth tests are motivated by

simplicial regression depth, but are not restricted to regression problems. They can be applied

as soon as the true model leads to independent residuals with median equal to zero. Moreover,

general hypotheses on the unknown parameter vector can be tested. Since they depend only

on the signs of the residuals, these test statistics are outlier robust. While the 2-depth test, i.e.

the K-depth test for K = 2, is equivalent to the classical sign test, K-depth test with K ≥ 3
turn out to be more powerful in many applications. As we will brie�y discuss, these tests are

also related to runs tests. A drawback of the K-depth test is its fairly high computational e�ort

when implemented naively. However, we show how this inherent computational complexity can

be reduced. In order to see why K-depth tests with K ≥ 3 are more powerful than the classical

sign test, we discuss the asymptotic behaviour of its test statistic for residual vectors with only

few sign changes, which is in particular the case for some non�ts the classical sign test cannot

reject. In contrast, we also consider residual vectors with alternating signs, representing models

that �t the data very well. Finally, we demonstrate the good power of the K-depth tests for

quadratic regression.

Keywords: K-sign depth, sign test, runs test, outlier robust, distribution free, quadratic regres-
sion

1 Introduction

We consider stochastic models where a parameter θ ∈ Θ ⊂ Rp, p ∈ N, is unknown and where
residuals R1(θ), . . . , RN (θ) of N observations in R are independent with

Pθ(Rn(θ) > 0) =
1

2
= Pθ(Rn(θ) < 0). (1)

This assumption is ful�lled by every continuous distribution with median zero. Examples of such
models are linear and nonlinear regression models with additive errors En where the observations are
of the form Yn = g(xn, θ)+En with xn ∈ Rq leading to residuals Rn(θ) = Yn−g(xn, θ). Generalized
linear and nonlinear models are further examples if the link function can be expressed by the median
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of the observations Yn, i.e. if med(Yn) = g(xn, θ). More examples are given by stochastic processes
with i.i.d. increments such as AR(p) processes given by Yn = g(Yn−1, . . . , Yn−p, θ) + En.

In models given by (1), the classical sign test can be used for testing hypotheses H0 : θ = θ0

and for deriving con�dence sets. This test counts the number of positive (or negative) residuals and
rejects the null hypothesis if the number of positive signs is too small or too large. In particular, it
does not reject the null hypothesis H0 : θ = θ0 if half of the residuals Rn(θ0) are positive and half
of them are negative. However, this can also happen for alternatives with parameters far away from
θ0, see Figure 1, p. 9. Hence this test has a very bad power for such alternatives. This can also be
seen in the simulation studies of Kustosz et al. (2016a,b) where the classical sign test is compared
to tests based on simplicial regression depth for linear and nonlinear regression and autoregression
with two unknown regression parameters.

Simplicial regression depth is a modi�cation of the regression depth introduced by Rousseeuw
and Hubert (1999) to generalize the depth notion to regression. Originally, the halfspace depth of
Tukey (1975) was used to obtain a generalization of the median for multivariate data. Liu (1988,
1990) extended this to simplicial depth. Simplicial depth can be expressed by counting the number
of all p+ 1-tupels of the p-dimensional data set with positive halfspace depth. Replacing halfspace
depth by regression depth leads to simplicial regression depth.

For de�ning regression depth, Rousseeuw and Hubert (1999) introduced the concept of non�t.
They de�ned the non�t via residuals. However, Mizera (2002) extended this for arbitrary qual-
ity functions and Mizera and Müller (2004); Müller (2005); Denecke and Müller (2011) used it
for likelihood functions. This also led to depth concepts for scatter as proposed by Mizera and
Müller (2004); Paindaveine and Van Bever (2018); Wang (2019) although most depth concepts
concern central parts of a data set as those of Zuo and Ser�ing (2000); Mosler (2002); Agostinelli
and Romanazzi (2011); Lok and Lee (2011); Paindaveine and Van Bever (2013); Dehghan and
Faridrohani (2019). In this context, datasets consisting of functional data were considered as well,
see e.g. López-Pintado and Romo (2009); Claeskens et al. (2014); López-Pintado et al. (2014);
Cuesta-Albertos et al. (2017); Nagy and Ferraty (2018).

Simplicial depth has the advantage that it is a U-statistics although it is often a degenerated U-
statistic so that more e�ort is necessary to derive the asymptotic distribution, see Dümbgen (1992);
Müller (2005); Wellmann et al. (2009); Wellmann and Müller (2010). Moreover, for its calculation,
Rousseeuw and Hubert (1999) and Müller (2005) noted that the regression depth of a p-dimensional
parameter vector within p + 1 observations is greater than zero if and only if the residuals have
alternating signs. Su�cient conditions for this equivalence and a proof of this property are given
by Kustosz et al. (2016b). One of the su�cient conditions is that the observations are given by a
natural order as this is the case for time series. This was the reason that the proof of the asymptotic
distribution of the simplicial regression depth for p = 2 was given by Kustosz et al. (2016a) for
AR(1) regression. However, the proof is not restricted to AR(1) regression since it uses only the
alternating signs of p + 1 = 3 residuals. In particular, the derived asymptotic distribution can be
used as soon as there is an approriate ordering of the observations and the median of the residuals
is zero. This leads to the idea to de�ne simplicial depth not via regression depth but via alternating
signs of residuals.

We call this depth notion K-sign depth or shortly K-depth where K stands for the number of
residuals used in the simplicial depth. In contrast to the regression depth, it is not necessary to
choose K = p + 1 if the unknown parameter vector is p-dimensional. Tests based on this depth
notion are called K-depth tests. They can be used to test arbitrary null hypotheses of the form
H0 : θ ∈ Θ0. We show in this paper that the K-depth test with K = 2 is equivalent to the classical

2



sign test, hence K-depth tests with K ≥ 2 are indeed generalizations of this test. Moreover, we
demonstrate that K-depth tests with K > 2 are much more powerful. In particular, in contrast to
the classical sign test, they do not have the drawback of not rejecting alternatives for which (nearly)
half of the residuals are positive. Furthermore, these tests are robust against outliers caused by
heavy-tailed errors since they are based only on signs of residuals.

In Section 2, we introduce the K-depth and the K-depth tests, discuss a relationship to the runs
test, and show how the computational complexity can be reduced by block implementation. Basic
properties of the K-depth are derived in Section 3. This concerns a strong law of large numbers
for the K-depth, the behaviour at alternating signs of residuals and the behaviour when only few
sign changes occur. In particular, it is shown that the expected value is asymptotically an upper
bound for K-depth and is not reached in situations of few sign changes for K ≥ 3 which provides an
explanation for the good power of the K-depth tests for K ≥ 3 at alternatives that lead to only few
sign changes. A comparison between the K-depth tests for di�erent values of K is given in Section
4. At �rst, for K = 2, the equivalence of the K-depth test and the classical sign test is derived
formally. Afterwards, the K-depth tests with K = 3, 4, 5, 6 are compared by p-values in some worst
case scenarios with few sign changes which were derived in Section 3. Section 5 demonstrates the
good power of the K-depth tests for K = 3 and K = 4 via simulations for quadratic regression.
Finally, a discussion of the results and an outlook is given in Section 6. All proofs can be found in
the appendix.

Notation. Throughout the article, r1(θ), . . . , rN (θ) denote realisations of R1(θ), . . . , RN (θ). If
the choice of the parameter θ is clear, we also use the abbreviations rn := rn(θ) and Rn := Rn(θ) for
n = 1, . . . , N . The sign of a real number x is denoted by ψ(x) = 1{x > 0} − 1{x < 0}, where 1{·}
denotes the indicator function. In some asymptotic calculations we make use of the O-Notation:
For real-valued sequences (an)n≥1 and (bn)n≥1, we write an = O(bn) if there is a constant C > 0
and an integer n0 with |an| ≤ C|bn| for all n ≥ n0. Furthermore, an = Θ(bn) denotes that both
an = O(bn) and bn = O(an).

2 K-depth tests and reduction of their computational com-

plexity

In this section, we introduce the K-depth of a vector and how to use the K-depth notion as a test
statistic. We also brie�y discuss the issue of a fairly high computational complexity when working
with K-depth tests. This issue can be resolved by using alternative representations of the original
de�nition of the K-depth.

2.1 K-depth and K-depth tests

The K-sign depth or shortly K-depth dK(r1, . . . , rN ) of r1, . . . , rN is the relative number of
K-element subsets with alternating signs, i.e. for K ≥ 2,

dK(r1, . . . , rN ) :=
1(
N
K

) ∑
1≤n1<n2<...<nK≤N

( K∏
k=1

1
{

(−1)krnk > 0
}

+

K∏
k=1

1
{

(−1)krnk < 0
})

.

(2)
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Remark 2.1. Note that the de�nition of theK-sign depth depends on the chosen order and therefore
this choice is a crucial aspect. If xn ∈ Rq for q > 1 then various multivariate orderings can be used.
Not all of them provide powerful tests. However, a paper is in preparation where we derive data
based orderings which lead to powerful tests. The following arguments hold also for this multivariate
case. In the applications of this paper, we focus on the univariate case q = 1 and choose the canonical
order on R.

In order to obtain a non-degenerate limit distribution, the K-depth test is based on the
following test statistic:

TK(θ) := TK(R1(θ), . . . , RN (θ))

:= N

(
dK(R1(θ), . . . , RN (θ))−

(
1

2

)K−1
)
.

(3)

A test based on (3) requires the α-quantiles of the distribution of the test statistic. If N is
small, the �nite sample distribution for any K can be easily simulated since the determination of
the K-depth with an underlying C++ algorithm computing Formula (2) is fairly fast for small N .
For larger N , see Subsection 2.2.

With the quantiles at hand, the K-depth test, K ≥ 2, is de�ned as in Müller (2005): A
hypothesis of the form H0 : θ ∈ Θ0 shall be rejected if the K-depth dK(r1(θ), . . . , rN (θ)) of θ or
TK(θ) is too small for all θ ∈ Θ0. Hence, if qα is the α-quantile of the distribution of TK(θ) under
θ then the K-depth test for H0 : θ ∈ Θ0 is given by

reject H0 : θ ∈ Θ0 if sup
θ∈Θ0

TK(θ) < qα. (4)

Remark 2.2. The K-depth test can also be used in a two-sided version:

reject H0 : θ ∈ Θ0 if sup
θ∈Θ0

TK(θ) < qα
2
or inf

θ∈Θ0
TK(θ) > q1−α2 .

This test also rejects H0 if too many sign changes occur in the residual vector, which is an indicator
for negatively correlated residuals. While the one-sided version is mostly focused on detecting
deviations from 0 in the median and can detect only strong positive correlation in the residuals,
the two-sided version is the preferable choice when testing simultaneously whether the residuals are
independent and have median zero. The hypothesis of independent residuals can also be tested with
the runs test of Wald and Wolfowitz (1940), see e.g. Gibbons and Chakraborti (2003), pp. 78-86.
In fact, there is a simpli�ed version of the K-depth which can be considered as a generalization
of the runs test: This simpli�ed K-depth uses only subsequent residuals and can be de�ned as in
Kustosz et al. (2016b) for K ≥ 2 by

dSK(r1, . . . , rN ) :=
1

N −K + 1

N−K+1∑
n=1

( K∏
k=1

1
{

(−1)krn+k−1 > 0
}

+

K∏
k=1

1
{

(−1)krn+k−1 < 0
})

.

(5)

If K = 2 then this simpli�ed K-depth counts the number of sign changes and thus the number
of runs. Kustosz et al. (2016b) used the simpli�ed versions because they are faster to compute and
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their asymptotic behaviour is easy to derive. However, since the simpli�ed K-depth only considers
N −K + 1 subsets instead of

(
N
K

)
, tests based on it are usually less powerful than tests based on

the full K-depth, in particular if the independence of the residuals is ensured. This can be clearly
seen from the examples in Kustosz et al. (2016a) and Falkenau (2016) for AR(1)-models. Since our
main interest lies in testing whether the median of the �tted residuals is zero, neither the two-sided
version nor the simpli�ed version is used here.

2.2 Runtime and block-implementation

A major drawback of the K-depth test is its slow runtime when using an algorithm based on the
de�nition (2). This de�nition requires the consideration of all increasing K-tuples in {1, . . . , N},
hence leading to an algorithm with runtime Θ(NK). Such an algorithm is clearly impractical in
applications with fairly large sample sizes. Fortunately, the derivation of a limit theorem of the
test statistic TK(θ) leads to an asymptotically equivalent form of (2) which can be computed in
linear time for all K ≥ 3. Such a limit theorem is given in Kustosz et al. (2016a) for K = 3 and a
generalization to arbitrary K is currently submitted elsewhere.

We will not go into detail on how this algorithm with runtime Θ(N) works since it requires a
major part of the computation necessary to obtain the limit theorem and this is beyond this paper.
Instead, we discuss a di�erent approach which leads to an algorithm useful for residual vectors with
only few sign changes. We refer to this approach as block-implementation. Aside from speeding
up the implementation based on (2), this approach will be useful do derive some of the properties
presented in Section 3.

Block-implementation. Let r := (r1, . . . , rN ) be a vector of residuals and let ψ (x) denote
the sign of a real number x, i.e. ψ (x) := 1{x > 0} − 1{x < 0}. The vector r is decomposed into
blocks by letting a new block start at index j if and only if rj−1 and rj have di�erent signs. More
formally, we de�ne the number B(r) of blocks and their starting positions s1(r), . . . , sB(r)(r) via
s1(r) := 1 and

B(r) := 1 +

N∑
n=2

1 {ψ (rn−1) 6= ψ (rn)} ,

sb(r) := min {` > sb−1(r); ψ (r`) 6= ψ (r`−1)} , b = 2, . . . , B(r).

For convenience, we de�ne sB(r)+1(r) := N + 1. The block sizes are de�ned as

qb(r) := sb+1(r)− sb(r), b = 1, . . . , B(r).

Example 2.1. The vector r = (1, 2,−1, 3) consists of B(r) = 3 blocks with starting positions 1, 3, 4.
The block sizes are q1(r) = 2 and q2(r) = q3(r) = 1.

We say that the nth residual rn belongs to block j if and only if sj(r) ≤ n < sj+1(r). The sign
of a block j is de�ned as the sign of the �rst (and thus any) element rsj(r) belonging to that block.
Blocks j1 < . . . < jk are called alternating if and only if the signs of the blocks are alternating,
i.e. the signs of block ji and ji+1 are di�erent for all i = 1, . . . , k − 1. Note that two blocks j1 and
j2 have di�erent signs if and only if j1 is even and j2 is odd or vice versa. In particular, the blocks
j1 < . . . < jk are alternating if and only if ji+1 − ji is odd for all i = 1, . . . , k − 1.

The advantage of decomposing the residuals into blocks is that it helps to identify the K-tuples
with alternating signs: A tuple (rn1

, . . . , rnK ) with 1 ≤ n1 < . . . < nK ≤ N has alternating signs if
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and only if rn1 , . . . , rnK belong to alternating blocks j1 < . . . < jK . In summary, we therefore have
the following alternative representation of (2):

Lemma 2.2. Let 2N0 + 1 denote the set of all odd positive integers and let

AK,B :=
{

(i1, . . . , iK) ∈ {1, . . . , B}K ; ik − ik−1 ∈ 2N0 + 1 for k = 2, . . . ,K
}
,

dK,N,B(q1, . . . , qB) :=
1(
N
K

) ∑
(i1,...,iK)∈AK,B

K∏
k=1

qik for B ∈ N, q1, . . . , qB > 0.

Let q1(r), . . . , qB(r)(r) be the block sizes of a residual vector r = (r1, . . . , rN ). Then

dK(r1, . . . , rN ) = dK,N,B(r)(q1(r), . . . , qB(r)(r)). (6)

Remark 2.3. Note that the size of AK,B is Θ(BK). Also note that the e�ort to compute the
block sizes q1(r), . . . , qB(r)(r) of a vector r = (r1, . . . , rN ) is Θ(N). Hence, an algorithm based
on the expression in Lemma 2.2 has computational complexity Θ(N + BK) if B = B(r) is the
number of blocks in r. This is a signi�cant improvement to a direct implementation of (2) if the
number of blocks is much smaller than N . Since, even in the worst case B(r) = N , the complexity of
computing (6) never exceeds the complexity of (2), one should always use the block-implementation
rather than (2).

3 Basic properties of the K-depth

This section contains some of the basic properties of the K-depth. In particular, we discuss the
typical behaviour in terms of a law of large numbers in Section 3.1. Sections 3.2 and 3.3 contain
extremal cases where the test statistic is close to its maximal or minimal value, respectively.

3.1 Law of large numbers

Let R1 := R1(θ), . . . , RN := RN (θ) be independent random variables satisfying (1). Then the
expectation of the K-depth is given by

Eθ (dK(R1(θ), . . . , RN (θ)))

=
1(
N
K

) ∑
1≤n1<n2<...<nK≤N

((
1

2

)K
+

(
1

2

)K)
=

(
1

2

)K−1

.
(7)

A convergence of the K-depth towards this expectation can be shown by rewriting the summands
in (2) using the identity in the next lemma. In order to avoid triple indices, we write i(j) instead
of ij .

Lemma 3.1. If En1 , ..., EnK are random variables with P (Eni 6= 0) = 1 for i = 1, ...,K and
K ∈ N \ {1} then we have

K∏
k=1

1{Enk(−1)k > 0}+

K∏
k=1

1{Enk(−1)k < 0} −
(

1

2

)K−1

=
1

2K−1

bK2 c∑
L=1

∑
1≤i(1)<...<i(2L)≤K

2L∏
j=1

(−1)i(j)ψ
(
Eni(j)

)
P -almost surely,

(8)
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where ψ (x) := 1{x > 0} − 1{x < 0}.

Studying the variance of the expression (8) reveals that it converges to zero as N →∞, which
is shown in detail in appendix. Hence Lemma 3.1 leads to a law of large numbers for K-sign depth:

Theorem 3.2. Let K ≥ 2. If R1(θ), . . . , RN (θ) are satisfying (1) then

dK(R1(θ), . . . , RN (θ)) −→
(

1

2

)K−1

Pθ-almost surely as N →∞.

3.2 K-depth for alternating signs

In this section we study the behaviour of the K-depth of residuals with alternating signs, i.e. of
residuals r1, . . . , rN with ψ (rn) = −ψ (rn+1) for n = 1, . . . , N − 1. Alternating signs indicate a
good �t and the K-depth attains its maximum value in this situation. Therefore it is of interest
what exactly this maximum value is. This is given by the following theorem. As usual, we use the
convention

(
n
k

)
= 0 for n < k.

Theorem 3.3. Suppose r1, . . . , rN have alternating signs. Then, for 2 ≤ K ≤ N ,

dK(r1, . . . , rN ) =
1(
N
K

) ((b(N +K)/2c
K

)
+

(
d(N +K − 2)/2e

K

))
.

Note that Theorem 3.3 can also be used to determine the size of the index set AK,B in the
block-implementation:

Corollary 3.4. Let B,K ≥ 2 be integers and let AK,B be as in Lemma 2.2. Then

|AK,B | =
(
b(B +K)/2c

K

)
+

(
d(B +K − 2)/2e

K

)
,

where |AK,B | denotes the size of AK,B.

Theorem 3.3 implies that the K-depth of residuals with alternating signs converges to the
expected value (1/2)K−1 as N → ∞. In conjunction with Corollary 3.4, we may extend this
property to the following more general class of alternating vectors:

De�nition 3.5. Let M ∈ N and let r = (r1, . . . , rN ) be a vector of residuals. The residuals
r1, . . . , rN are alternating in blocks of size M if N is a multiple of M and if

qj(r) = M for all j = 1, . . . , B(r),

where the number B(r) of blocks and the size qj(r) of block j are de�ned in Section 2.2. In particular,
residuals have alternating signs if they are alternating in blocks of size 1.

With Corollary 3.4, it is not hard to compute the K-depth of such residuals explicitly:
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Lemma 3.6. Let M,N ∈ N with B := N/M ∈ N. Furthermore, let 〈x〉J =
∏J−1
j=0 (x− j) for x ∈ N

and x ≥ J . If r1, . . . , rN are alternating in blocks of size M and if B ≥ K, then

(a) dK(r1, . . . , rN ) =
〈B+K−2

2 〉K−1

BK−1
· N

K

〈N〉K
if K +B is even,

(b) dK(r1, . . . , rN ) =
2〈B+K−1

2 〉K
BK

· N
K

〈N〉K
if K +B is odd.

An asymptotic analysis of the K-depth based on Lemma 3.6 reveals that the K-depth test
statistic of residuals that alternate in blocks of size M converges to its maximal value:

Theorem 3.7. Let M be a �xed integer. If the residuals r1, . . . , rN are alternating in blocks of size
M , then

lim
N→∞

N

(
dK(r1, . . . , rN )−

(
1

2

)K−1
)

=
K(K − 1)

2K
.

Remark 3.1.

(a) Theorem 3.7 yields that the maximal value of the test statistic (i.e. the value for residuals
with alternating signs) is asymptotically K(K − 1)/2K . Since the minimal K-depth is zero,
the minimal value of the test statistic is −N/2K−1 which diverges as N → ∞. Hence the
(asymptotic) distribution of the test statistic TK(θ) is bounded from above but unbounded
from below. In particular, its distribution is not symmetric.

(b) Since the test statistic converges to its maximal value if the residuals are alternating in blocks
of size M ≥ 1, the (one-sided) K-depth test will not reject the model when such residuals are
observed and N is su�ciently large. This can often be desirable in practice where alternating
residuals indicate a good �t and a systematic alternation (in blocks of �xed size) can be caused
by some vibration behaviour which is di�cult to �lter out.

(c) If the independence of the residuals is questionable and of additional interest then alternating
residuals are indicating dependence. In such situations, the two-sided K-depth test as proposed
in Remark 2.2 can be used. Since alternating residuals yield the maximal possible value, the
two-sided test will always reject the model when such residuals are observed and N is su�ciently
large.

3.3 Behaviour in situations of few sign changes

Residual vectors with only few sign changes usually indicate a bad choice for the modelling param-
eter, see, e.g., Figure 1 for so-called non�ts in a quadratic regression model. A non�t is de�ned as
in Rousseeuw and Hubert (1999):

De�nition 3.8. A parameter θ is called a non�t if there exists another parameter θ̃ such that
|rn(θ̃)| < |rn(θ)| for all n = 1, . . . , N .

The 2-depth test can struggle rejecting such bad choices since this test, as we will formally show
in Section 4.1, is equivalent to the classical sign test. In particular, it does not reject the model if
nearly half of the residuals are positive, regardless of how many sign changes the residuals have.
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Figure 1: 12 observations generated by Yn = g(xn, θ
0)+En with g(x, θ0) = 30−6x+0.5x2 (dashed

line, θ0 = (30,−6, 0.5)>) and En ∼ N (0, 1.52). The solid lines correspond to parameters that yield
non�ts with either one or two sign changes: θ1 = (120,−24, 1)> yielding g(x, θ1) = 120− 24x+ x2

on the left hand side and θ2 = (3, 6,−0.5)> yielding g(x, θ2) = 3 + 6x − 0.5x2 on the right hand
side.

K-depth tests with K ≥ 3 are much more powerful in this regard since they immediately reject
models that lead to few sign changes. More precisely, the following lemma is easy to show for
residuals vectors r = (r1, . . . , rN ) where the number B(r) of blocks (see Section 2.2) is small:

Lemma 3.9. Let K ≥ 3. Then dK(r1, . . . , rN ) = 0 if and only if B(r) ≤ K − 1.

Note that a K-depth of zero is the smallest possible value of the K-depth. Hence this will always
lead to a rejection of the null hypothesis by the K-depth test if the sample size is high enough that
a rejection at level α is possible. Usually a non�t of a p-dimensional parameter is expressed by at
most p− 1 sign changes. Hence a K-depth test with K = p + 1 will protect against bad power at
non�ts, see also Kustosz et al. (2016b). However, choices K < p+ 1 can also lead to a good power
of the K-depth test at alternatives for which the expected depth of (1/2)K−1 is not reached. More
precisely, since all α-quantiles of the asymptotic distribution of the K-depth test statistic TK(θ)
are �xed values greater than −∞, we have the following property for growing sample size N : The
strict inequality

lim
N→∞

sup
θ∈Θ0

dK(r1(θ), . . . , rN (θ)) <

(
1

2

)K−1

(9)

implies limN→∞ supθ∈Θ0 TK(θ) = −∞ so that H0 : θ ∈ Θ0 is rejected if N is su�ciently large.
Condition (9) is in particular satis�ed if the relative number of either the positive or negative

residuals is tending to 1. This is often the case when the region of explanatory variables is growing
to in�nity as N converges to in�nity. This was used in Kustosz et al. (2016a) to show the consistency
of a test based on simplicial depth for explosive AR(1) regression.

Assuming a bounded, �xed support for the explanatory variables, the relative number of posi-
tive/negative residuals usually does not tend to one for alternatives, e.g. in polynomial regression.
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However, one at least expects only few sign changes then; see Figure 1 for examples with only one
or two sign changes. We therefore end the section with a discussion on the K-depth of residual
vectors where the number of blocks/sign changes is bounded.

For the remainder of the section, we will use the alternative representation of the K-depth based
on the block-implementation (see Section 2.2). Recall that the K-depth of residuals r1, . . . , rN with
B blocks and block sizes q1, . . . , qB is given by

dK,N,B(q1, . . . , qB) =
1(
N
K

) ∑
(i1,...,iK)∈AK,B

K∏
k=1

qik .

Although q1, . . . , qB are integers in practice, it will be more convenient in the subsequent analysis
to let q1, . . . , qB be positive real numbers. In order to see that the K-depth test always rejects the
null hypothesis if B is su�ciently small, we need to consider the input q1, . . . , qB with maximal
K-depth. While it is arguably quite intuitive to assume that this maximum is attained at qj = N/B
for all j = 1, . . . , N , a formal proof to determine the maximum is challenging. We therefore state
the following conjecture which we only checked for some particular choices of K and B:

Conjecture 3.10. Let K ≥ 3, B ≥ K and N ≥ B. Consider the set

MK,N,B := arg max

{
dK,N,B(q1, . . . , qB); (q1, . . . , qB)∈(0, N)B ,

B∑
b=1

qb = N

}
.

Then the following holds:

(a) If K +B is even then

MK,N,B =

{(
N

B
, . . . ,

N

B

)}
.

(b) If K +B is odd then

MK,N,B =

{(
βN

B − 1
,

N

B − 1
, . . . ,

N

B − 1
,

(1− β)N

B − 1

)
; β ∈ (0, 1)

}
.

The necessity of a case distinction between K + B even/odd might be a bit surprising at �rst.
But in fact it is not hard to check that the function dK,N,B has the following property:

Lemma 3.11. Let K ≥ 2 and B ≥ K. If K +B is odd then

dK,N,B(q1, . . . , qB) = dK,N,B−1(q1 + qB , q2, . . . , qB−1).

Hence we may assume w.l.o.g. that K + B is even and use Lemma 3.11 to cover the odd case.
Before stating the general result, we consider the special cases B = K and B = K + 1. In these
cases, Conjecture 3.10 is easy to verify since, by de�nition,

dK,N,K(q1, . . . , qK) =
1(
N
K

) K∏
j=1

qj ,

dK,N,K+1(q1, . . . , qK+1) =
1(
N
K

) (q1 + qK+1)

K∏
j=2

qj .

10



In particular, we have the following theorem for the maximal K-depth among all valid block sizes
q1, . . . , qB . The set of these valid block sizes is denoted by

QN,B :=

(q1, . . . , qB) ∈ NB ;

B∑
j=1

qj = N

 , N,B ∈ N. (10)

Theorem 3.12. Let K ≥ 2, B ∈ {K,K + 1} and let QN,B be as above. Then

lim
N→∞

sup {dK,N,B(q1, . . . , qB); (q1, . . . , qB)∈QN,B} =
K!

KK
≤
(

1

2

)K−1

, (11)

where the inequality in (11) is strict for K ≥ 3.

For the general case B ≥ K+ 2, we will only consider the input q1 = . . . = qB = N/B since this
is assumed to yield the maximal depth according to Conjecture 3.10 if K +B is even. Lemma 3.6
yields the following result on the asymptotic K-depth.

Theorem 3.13. Let K ≥ 2 and B ≥ K be �xed. If K +B is even then

lim
N→∞

dK,N,B

(
N

B
, . . . ,

N

B

)
=

∏K−1
k=1

(
B+K

2 − k
)

BK−1
≤
(

1

2

)K−1

. (12)

The inequality in (12) is strict for K ≥ 3.

Remark 3.2. If K +B is odd then Lemma 3.11 and Theorem 3.13 yield for all β ∈ (0, 1)

lim
N→∞

dK,N,B

(
βN

B − 1
,

N

B − 1
, . . . ,

N

B − 1
,

(1− β)N

B − 1

)
=

1

2K−1

∏K−1
k=1 (B − 1 +K − 2k)

(B − 1)K−1
≤
(

1

2

)K−1 (13)

with a strict inequality for K ≥ 3. Moreover, if we assume that Conjecture 3.10 is true, then (12)
and (13) imply for any �xed number B of blocks

lim
N→∞

sup {dK,N,B(q); q ∈ QN,B}

=
1

2K−1

∏K−1
k=1 (B − 1{K +B odd}+K − 2k)

(B − 1{K +B odd})K−1
≤
(

1

2

)K−1

with QN,B de�ned as in (10). Moreover, the inequality above is strict for K ≥ 3. Hence, H0 :
θ ∈ Θ0 is rejected at an alternative for su�ciently large sample sizes N if the number of blocks in
(r1(θ), . . . , rN (θ)) is uniformly bounded for all θ ∈ Θ0 as N →∞.

4 Comparison of K-depth tests for di�erent K

A proper choice for K is a crucial aspect to obtain a K-depth test with high power. This section
contains some basic observations for the cases K ≤ 6, in particular in terms of power when only few
sign changes are observed. A more profound comparison in applications will be done in Section 5.
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As we will see in Section 4.1, the 2-depth test is usually a bad choice since it is equivalent to
the classical sign test. This test struggles to reject the null hypothesis at alternatives that lead to
a nearly equal amount of positive and negative residuals. K-depth tests with K ≥ 3 can correctly
identify and reject such alternatives as long as the number of sign changes in the residual vector
is fairly low. A discussion on the p-values of the K-depth tests, K = 3, . . . , 6, for several di�erent
sample sizes can be found in Section 4.2.

4.1 Equivalence of the 2-depth test and the classical sign test

The test statistic of the classical sign test is given by

Tsign(θ) :=
N+(θ)−N/2√

N/2
where N+(θ) :=

N∑
n=1

1{Rn(θ) > 0}

denotes the number of residuals with positive signs among (R1(θ), . . . , Rn(θ)). Assuming (1), this
test statistic converges in distribution to the standard normal distribution. Hence the classical sign
test (in its asymptotic version) is de�ned via

reject H0 : θ ∈ Θ0 if for all θ ∈ Θ0 : Tsign(θ) < uα
2
or Tsign(θ) > u1−α2 ,

where uα denotes the α-quantile of the standard normal distribution. Equivalently, one can de�ne
the classical sign test via

reject H0 : θ ∈ Θ0 if inf
θ∈Θ0

Tsign(θ)2 > χ2
1,1−α,

where χ2
1,α is the α-quantile of the χ

2
1 distribution. Note that Tsign(θ)2 is minimized if N+(θ) = N/2.

Hence the test will not reject the null hypothesis if half of the residuals are positive.
To see the relationship to the 2-depth test, note that a pair of residuals has alternating signs

if and only if one of them is positive and the other one is negative. Since we have N+(θ) positive
and N −N+(θ) negative residuals (assuming Rn(θ) 6= 0 Pθ-almost surely for all n = 1, . . . , N), the
2-depth satis�es Pθ-almost surely:

d2(R1(θ), . . . , RN (θ)) =
1(
N
2

) N+(θ) (N −N+(θ)).

The 2-depth can be transformed into Tsign(θ) by using the identity

x(N − x) = −(x−N/2)2 +N2/4, x ∈ R,

for x = N+(θ). A straightforward calculation based on this identity reveals that the test statistic
(3) satis�es for K = 2,

T2(θ) =
N

2(N − 1)
− N

2(N − 1)
Tsign(θ)2 Pθ-almost surely.

Hence the 2-depth test and the classical sign test are equivalent.
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4.2 Comparison of K-depth tests for K ≥ 3

As we have seen in Section 3.3, K-depth tests with K ≥ 3 are capable of rejecting non�ts that lead
to a small number of sign changes, at least as long as the sample size N is su�ciently large. We
will now take a closer look at the performance for small samples sizes up to N = 160.

Recall that, according to Conjecture 3.10, we assume that the maximal K-depth of a residual
vector r = (r1, . . . , rN ) with B blocks is given by

ηK,N,B :=

{
dK,N,B

(
N
B , . . . ,

N
B

)
, if K +B is even,

dK,N,B

(
N

2(B−1) ,
N
B−1 , . . . ,

N
B−1 ,

N
2(B−1)

)
, if K +B is odd.

Hence, the test statistic (3) for a residual vector with B blocks can be at most

η̃K,N,B := N

(
ηK,N,B −

(
1

2

)K−1
)
.

Figure 2 contains the p-values when observing a value of η̃K,N,B for B = 3, 4, 5, 6 blocks or 2,3,4,5
sign changes, respectively, i.e. the probabilities

Pθ (TK(R1(θ), . . . , RN (θ)) ≤ η̃K,N,B)

are plotted for samples sizes N between 10 and 160 and K = 3, 4, 5, 6. Recall that if a residual
vector has B block, i.e. B − 1 sign changes, then K-depth tests with K > B will automatically
reject the null hypothesis as soon as the sample size is large enough to make a rejection possible
for the test. Figure 2 thus only contains K-depth tests with K ≤ 4 for situations with two sign
changes to highlight that the p-value of the 4-depth test indeed becomes 0 if N is su�ciently large.
The same applies to the 5-depth test when three sign changes occur. The other two plots (four and
�ve sign changes) do not contain the corresponding 6- and 7-depth tests since their p-values behave
similarly.

All four sub�gures of Figure 2 indicate that the p-values of all considered K-depth tests are
decreasing to zero for growing sample size. They decrease more slowly forK = 3, 4 than forK = 5, 6,
but even the p-value of the 3-depth test reaches 0.1 for a sample size greater than N = 150. It is
remarkable that the p-values of the K-depth tests with K = B − 1 and K = B are always very
similar for all B− 1 = 3, 4, 5 sign changes we considered. However, this does not hold for B− 1 = 2
since the 2-depth test is the classical sign test which always has a p-value of 1 in the case of two
blocks of equal size.

5 Applications

The high power of 3-depth tests in the case of two unknown parameters was already shown for
explosive AR(1) models, namely in Kustosz et al. (2016a) for linear AR(1)-models given by Yn =
θ0 + θ1 Yn−1 +En and in Kustosz et al. (2016b) for nonlinear AR(1)-models given by Yn = Yn−1 +
θ1 Y

θ2
n−1 +En, see also Falkenau (2016). In particular these results showed for normally distributed

errors En that 3-depth tests possess similarly high power compared to classical tests based on least
squares.

Here we will compare the 3-depth test, the 4-depth test, the classical sign test and the classical
t-test in a quadratic regression model with three unknown parameters. Other results for a nonlinear
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Figure 2: Simulated p-values of K-depth tests, K = 3, 4, 5, 6, for two to �ve sign changes (top left
to bottom right) at di�erent sample sizes N .

AR(1)-model and an explosive AR(2)-model, each with three unknown parameters, can be found
in the supplementary material.

Note that the 3- and 4-depth tests require the (α-quantile of the) distribution of their test
statistics. For all applications, we used the exact distribution for the small sample size N = 12
and a simulated distribution for the large sample size N = 96. The simulated distribution of
both depth tests was obtained via 10 000 i.i.d. samples from the distribution. The power at each
alternative is computed based on 100 samples. Note that we also considered an increased number
of 500 repetitions for some cases which, however, did not lead to any visible changes in the plots.
Hence we decided to stick to only 100 repetitions to speed up the computation.

Quadratic regression. In the quadratic regression model given by

Yn = θ0 + θ1 xn + θ2 x
2
n + En, n = 1, . . . , N, θ = (θ0, θ1, θ2)>,

we consider the problem of testing the null hypothesis H0 : θ = (1, 0, 1)> with a test with level
α = 0.05 and samples sizes N = 12 and N = 96. For each simulation, a 41×41 grid of alternatives is
used. The explanatory variables x1, . . . , xN are chosen to be equidistant elements from the interval
[−6, 6].
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Normal distribution, N=12
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Figure 3: Simulated power of the sign test, the F test, the 3-depth test, and the 4-depth test for
normally distributed errors for sample size N = 12 (upper part) and N = 96 (lower part) where
the component θ0 is �xed to 1 (20 grey levels were used, where black corresponds to [0, 0.05] and
white to (0.95, 1]).
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Cauchy distribution, N=96
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Figure 4: Simulated power of the sign test, the F test, the 3-depth test, and the 4-depth test for
errors with Cauchy distributed for sample size N = 96 where the component θ0 is �xed to 1 (20
grey levels were used, where black corresponds to [0, 0.05] and white to (0.95, 1]).

Figure 3 shows the simulated power of the sign test, the F test, the 3-depth test, and the 4-depth
test for the case where En has a standard normal distribution and the component θ0 is �xed to 1.
The parameters θ1 and θ2 of the null hypothesis are given by the intersection of the two dotted
lines. The results for N = 12 are shown in the upper part of this �gure. The sign test and the
3-depth test both possess an unbounded area of power below α = 0.05, whereas only the F test
and 4-sign test perform fairly well. The main reason for the bad performance of the 3-depth test
(and the fairly good performance of the 4-depth test) is that for small N , the K-sign test mostly
only rejects the hypothesis if the residual vector has less than K blocks (i.e. less than K − 1 sign
changes). More speci�cally, the p-value of the 3-depth for N = 12 and a residual vector with 2
sign changes can be up to 0.758 when considering the worst case scenario from Section 4.2. Now a
quadratic model corresponding to θ2x

2 + θ1x+ 1 and the true model x2 + 1 intersect in x = 0 and
in x = θ1/(1 − θ2) if θ2 6= 1. Since we consider explanatory variables in [−6, 6], a residual vector
for the parameter (1, θ1, θ2) thus tend to have either one or two sign changes depending on whether
|θ1/(1− θ2)| ≤ 6 or not. The sign test performs poorly when only one sign change occurs (since it
typically occurs at a position n with xn ≈ 0 and hence nearly half of the residuals are positive),
whereas the 3-depth test performs poorly if two sign changes occur. The lower part of Figure 3

16



contains the corresponding power levels for N = 96. In this case N is su�ciently large such that
residual vectors with only few sign changes will usually lead to a rejection by the K-depth tests.
For example, the p-value of the 3-depth test for vectors with two sign changes is at most 0.014 and
thus will always lead to a rejection. In summary, Figure 3 indicates that both 3- and 4-depth test
can compete with the F test in quadratic regression models where N is su�ciently large whereas
the sign test always struggles at alternatives which lead to residual vectors where nearly half of the
signs are positive.

Figure 4 shows what happens when the normal distribution for the errors is replaced by the
Cauchy distribution. Then the power of the F test becomes very bad while the power functions of
the 3-depth test and the 4-depth test change only slightly. Hence the 3-depth test and the 4-depth
test are much more robust against outliers than the F test. Furthermore, the depth tests are more
powerful than the sign test.

Similar results where either θ1 or θ2 is �xed can be found in the supplementary material.
Supplementary material. The further simulation results and the R-code can be found under

https://www.statistik.tu-dortmund.de/2273.html.

6 Discussion and outlook

K-sign depths can be used to de�ne robust tests which we refer to as K-depth tests. While the
parameter choice K = 2 essentially leads to the classical sign test and thus has several limitations in
rejecting non�ts, K-depth tests for K ≥ 3 are fairly powerful. They can even outperform classical
approaches such as the t-test, in particular in the presence of outliers. Note that those tests are
not very well-suited for small sample sizes and models where the number of sign changes in the
residual vector is likely to exceed K − 1 at alternatives. However, the K-depth tests perform very
well in our examples once the sample size is su�ciently large. Moreover, it seems like there is no
advantage in using the 4-depth test instead of the 3-depth test once the sample size is large. Note
that this observation may not be true in general and requires further research.

This paper is mainly focused on the one-sided version of K-depth test to detect shifts in the
medians of the residuals. A two-sided version of the K-depth test can also detect dependence
structures within the residuals and may be useful for stationary AR-models and other stationary
processes. Once again, further research is necessary to compare the two-sided K-depth test with
other approaches when testing simultaneously whether residuals are independent and have medians
equal to zero.

To reduce the runtime of Θ(NK) of the de�nition of the K-depth, a faster block implementation
is presented. A linear runtime of an asymptotically equivalent form can be obtained by the deriva-
tion of the asymptotic distribution of the K-depth for K ≥ 3. However, the lengthy derivation will
be published elsewhere.

Finally note that the K-depth depends on the order of the residuals, hence the chosen order is
a crucial aspect to obtain powerful tests. The canonical order of R seems to yield good results for
regression models with real-valued explanatory variables. For Rq with q > 1, several data driven
orderings of the q-dimensional explanatory variables exists which lead to powerful tests as well. A
detailed treatment is currently in preparation.
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Appendix

Proof of Lemma 3.1. In order to simplify the notation, we assume (n1, . . . , nK) = (1, . . . ,K). Note
for x 6= 0

1{x > 0} =
1

2
(ψ (x) + 1) , 1{x < 0} =

1

2
(−ψ (x) + 1) .

It is straightforward to check

K∏
i=1

(ai+1) =

K∑
`=1

∑
1≤i(1)<...<i(`)≤K

∏̀
j=1

ai(j) +1 for arbitrary a1, . . . , aK .

This implies P -almost surely

K∏
k=1

1{Ek(−1)k > 0} =
1

2K

K∏
k=1

(
(−1)kψ (Ek) + 1

)
=

1

2K

 K∑
`=1

∑
1≤i(1)<...<i(`)≤K

(−1)i(1)+···+i(`)
∏̀
j=1

ψ
(
Ei(j)

)
+ 1


Similarly

K∏
k=1

1{Ek(−1)k < 0}

=
1

2K

 K∑
`=1

∑
1≤i(1)<...<i(`)≤K

(−1)i(1)+···+i(`)+`
∏̀
j=1

ψ
(
Ei(j)

)
+ 1


=

1

2K

 ∑
`=1,...,K
` even

∑
1≤i(1)<...<i(`)≤K

(−1)i(1)+···+i(`)
∏̀
j=1

ψ
(
Ei(j)

)
+ 1


− 1

2K

∑
`=1,...,K
` odd

∑
1≤i(1)<...<i(`)≤K

(−1)i(1)+···+i(`)
∏̀
j=1

ψ
(
Ei(j)

)
.
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Therefore

K∏
k=1

1{Ek(−1)k > 0}+

K∏
k=1

1{Ek(−1)k < 0}

=
1

2K−1

 ∑
`=1,...,K
` even

∑
1≤i(1)<...<i(`)≤K

(−1)i(1)+···+i(`)
∏̀
j=1

ψ
(
Ei(j)

)
+ 1


=

(
1

2

)K−1

+
1

2K−1

bK2 c∑
L=1

∑
1≤i(1)<...<i(2L)≤K

(−1)i(1)+···+i(2L)
2L∏
j=1

ψ(Ei(j))

and the assertion follows. 2

Proof of Theorem 3.2. Set Rn = Rn(θ). Lemma 3.1 yields

dK(R1, . . . , RN )−
(

1

2

)K−1

=
1(
N
K

) ∑
1≤n1<n2<...<nK≤N

1

2K−1

bK2 c∑
L=1

∑
1≤i(1)<...<i(2L)≤K

2L∏
j=1

(−1)i(j)ψ
(
Rni(j)

)
with ψ (x) := 1{x > 0} − 1{x < 0}. Set

v :=

bK2 c∑
L=1

∑
1≤i(1)<...<i(2L)≤K

1

for the number of summands in the representation of K alternating signs given by Lemma 3.1. This
number depends only on K and not on N . First of all, we show that each of these v summands is
converging in probability to zero.

To this end, let L = 1, . . . ,
⌊
K
2

⌋
and 1 ≤ i(1) < . . . < i(2L) ≤ K be arbitrary. We consider the

summand multiplied by the factor 2K−1. Because Eθ (ψ (Rn)) = 0 and R1, . . . , RN are independent,
we get at once for this summand

Eθ

 1(
N
K

) ∑
1≤n1<n2<...<nK≤N

(−1)i(1)+...+i(2L)
2L∏
j=1

ψ
(
Rni(j)

) = 0.

Moreover, ψ (Rn)
2

= 1 Pθ-almost surely implies

Eθ

 2L∏
j=1

ψ
(
Rni(j)

) 2L∏
j=1

ψ
(
Rñi(j)

) =

{
1, if ni(j) = ñi(j) for j = 1, . . . , 2L,

0, else.
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Hence

varθ

 1(
N
K

) ∑
1≤n1<...<nK≤N

(−1)i(1)+...+i(2L)
2L∏
j=1

ψ
(
Rni(j)

)
=

1(
N
K

)2 ∑
1≤n1<...<nK≤N

∑
1≤ñ1<...<ñK≤N

Eθ

 2L∏
j=1

ψ
(
Rni(j)

) 2L∏
j=1

ψ
(
Rñi(j)

)
=

1(
N
K

)2 ∑
1≤n1<...<nK≤N, 1≤ñ1<...<ñK≤N

ni(j)=ñi(j) for j=1,...,2L

1

≤ 1(
N
K

)2 ∑
1≤n1<...<n2L≤N

∑
n2L+1,...,nK∈{1,...,N}

∑
ñ2L+1,...,ñK∈{1,...,N}

1

=

(
N
2L

)
NK−2LNK−2L(

N
K

)2 ≤ (K!)2

(2L)!

N2L+2K−4L

(N − (K + 1))2K

=
(K!)2

(2L)!

1

N2L

1(
1− K+1

N

)2K −→ 0

for N →∞ so that Chebyshev inequality provides the convergence in probability to zero. Further-
more, the convergence in probability is su�ciently quick of order O(N−2L) so that the Borel-Cantelli
lemma implies the convergence to zero Pθ-almost surely. 2

Proof of Theorem 3.3. Let r1, . . . , rN be residuals with alternating signs. First note that ri1 , . . . , riK
are alternating if and only if (i1, . . . , iK) ∈ AK,N with AK,N de�ned as in Lemma 2.2. Hence

dK(r1, . . . , rN ) =
|AK,N |(

N
K

)
where |AK,N | denotes the size of AK,N . Thus it only remains to determine this size.

In the subsequent analysis, we write O for the set of all odd positive integers, i.e. O = 2N0 + 1.
For a vector (i1, . . . , iK) let ∆1 := i1 and ∆k := ik− ik−1 for k = 2, . . . ,K. Note that (i1, . . . , iK) ∈
AK,N if and only if (∆1, . . . ,∆K) is part of the set

DK,N :=

{
(∆1, . . . ,∆K) ∈ N×OK−1;

K∑
k=1

∆k ≤ N

}
.

Hence |AK,N | = |DK,N |. In order to remove the additional condition ∆k ∈ O for k ≥ 2, we will use

the transformation ∆̃k = (∆k + 1)/2. Since this transformation for k = 1 only provides an integer
if ∆1 is odd, we additionally split the set into the two parts

D−K,N := {(∆1, . . . ,∆K) ∈ DK,N ; ∆1 ∈ O} ,
D+
K,N := {(∆1, . . . ,∆K) ∈ DK,N ; ∆1 /∈ O} .
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The elements of D−K,N can be counted by noting that (∆1, . . . ,∆K) ∈ D−K,N if and only if

(
∆̃1, . . . , ∆̃K

)
∈ D̃−K,N :=

{
(n1, . . . , nK) ∈ NK ;

K∑
k=1

nk ≤
N +K

2

}

with ∆̃k = (∆k + 1)/2 for k = 1, . . . ,K. Similarly, (∆1, . . . ,∆K) ∈ D+
K,N if and only if

(
∆1

2
, ∆̃2, . . . , ∆̃K

)
∈ D̃+

K,N :=

{
(n1, . . . , nK) ∈ NK ;

K∑
k=1

nk ≤
N +K − 1

2

}

with ∆̃k as above. In summary, the (bijective) transformations discussed above yield

|AK,N | =
∣∣∣D̃−K,N ∣∣∣+

∣∣∣D̃+
K,N

∣∣∣ . (14)

The sizes of the remaining sets can easily be determined by noting that each element (n1, . . . , nK)

in D̃−K,N corresponds to a K-element subset {m1, . . . ,mK} of the set {1, 2, . . . , b(N + K)/2c} by
letting

mk :=

k∑
i=1

ni for k = 1, . . . ,K.

Hence ∣∣∣D̃−K,N ∣∣∣ =

(
b(N +K)/2c

K

)
.

Essentially the same arguments yield∣∣∣D̃+
K,N

∣∣∣ =

(
b(N +K − 1)/2c

K

)
.

The assertion follows after rewriting b(N +K − 1)/2c = d(N +K − 2)/2e and by plugging the sizes
of the sets back into (14). 2

Proof of Lemma 3.6. First note that if (r1, . . . , rN ) consists of B blocks and each block has size
M = N/B, then Lemma 2.2 and Corollary 3.4 yield

dK(r1, . . . , rN ) = dK,N,B

(
N

B
, . . . ,

N

B

)
=

(
N
B

)K(
N
K

) ((
b(B +K)/2c

K

)
+

(
d(B +K)/2e − 1

K

))
.

Since binomial coe�cients satisfy

(
x

K

)
=
〈x〉K
K!

for x ≥ K, this can be simpli�ed to

dK(r1, . . . , rN ) =
NK

BK〈N〉K
(〈b(B +K)/2c〉K + 〈d(B +K)/2e − 1〉K) . (15)
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If K + B is odd, the assertion follows since b(B +K)/2c = (B +K − 1)/2 = d(B +K)/2e − 1. It
only remains to consider K +B even. For this case, let x = (B +K)/2. Then

〈bxc〉K + 〈dxe − 1〉K = x〈x− 1〉K−1 + 〈x− 1〉K−1(x−K)

= (2x−K)〈x− 1〉K−1.

Since 2x−K = B, the assertion follows after plugging this equality back into (15). 2

Proof of Theorem 3.7. The proof is based on the formula given in Lemma 3.6. Let B = N/M be
the number of blocks and recall that M is �xed and thus B = Θ(N). The key observation to derive
the asymptotic value of the test statistic for residuals which alternate in blocks of size M is the
following asymptotic expansion: For any �xed a, J and as x→∞,

〈x+ a〉J = xJ + J

(
a− J − 1

2

)
xJ−1 +O(xJ−2). (16)

This equality is based on expanding the product in the de�nition of the falling factorial:

〈x+ a〉J =

J−1∏
j=0

(x+ a− j) = xJ +

J−1∑
j=0

(a− j)xJ−1 +O(xJ−2),

which yields (16) using the well-known formula
∑J−1
j=0 j = J(J − 1)/2. Hence, Lemma 3.6(a) and

(16) with x = B/2, a = (K − 2)/2, J = K − 1 yield for even K +B that

dK(r1, . . . , rN ) =
〈B+K−2

2 〉K−1

BK−1
· N

K

〈N〉K
=

((
1

2

)K−1

+O(N−2)

)
NK

〈N〉K
. (17)

Applying (16) for x = N , a = 0 and J = K yields

NK

〈N〉K
=

1

1− K(K−1)
2N +O(N−2)

= 1 +
K(K − 1)

2N
+O(N−2),

where the second equality holds since 1/(1 − x) =
∑∞
j=0 x

j = 1 + x + O(x2) as x → 0. Plugging
this asymptotic expansion back into (17) yields for even K +B that

dK(r1, . . . , rN ) =

((
1

2

)K−1

+O(N−2)

)(
1 +

K(K − 1)

2N
+O(N−2)

)

=

(
1

2

)K−1

+

(
1

2

)K−1
K(K − 1)

2N
+O(N−2).

The case that K + B is odd can be treated in a similar fashion and leads to the same asymptotic
expansion. Hence the K-depth of r1, . . . , rN satis�es

N ·

(
dK(r1, . . . , rN )−

(
1

2

)K−1
)

=
K(K − 1)

2K
+O(N−1)
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and the assertion follows by taking the limit N →∞. 2

Proof of Lemma 3.11. For x ∈ R and w = (w1, . . . , wJ) ∈ RJ let (x,w) = (x,w1, . . . , wJ) and
let (w, x) = (w1, . . . , wJ , x). Recall the de�nition of AK,B and dK,N,B(q1, . . . , qK) in Lemma 2.2.
The key observations to prove Lemma 3.11 are the following: If K + B is odd then, for every
i ∈ {2, . . . , B − 1}K−1,

(a) (1, i) ∈ AK,B if and only if (i, B) ∈ AK,B ,

(b) there is no vector j ∈ {2, . . . , B − 1}K−2 with (1, j, B) ∈ AK,B .

Both (a) and (b) are not hard to check, details are given at the end of the proof. Based on these
properties, we can split the sum in dK,N,B(q1, . . . , qK) in the following way: Let

BK,B =
{
i ∈ {2, . . . , B − 1}K−1; (1, i) ∈ AK,B

}
,

CK,B = AK,B ∩ {2, . . . , B − 1}K .

We may now split AK,B into three parts: The �rst one contains vectors (v1, . . . , vK) in AK,B with
v1 = 1, the second one contains vectors with vK = B and the third part contains vectors with
v1 6= 1 and vK 6= B (vectors with v1 = and vK = B are impossible according to (b)). Then (a)
implies AK,B = ({1} × BK,B) ∪ (BK,B × {B}) ∪ CK,B . Hence

∑
(i1,...,iK)∈AK,B

K∏
k=1

qik = (q1 + qB)
∑

(i1,...,iK−1)∈BK,B

K−1∏
k=1

qik +
∑

(i1,...,iK)∈CK,B

K∏
k=1

qik .

Furthermore, note that AK,B−1 = ({1} × BK,B) ∪ CK,B once again by splitting the set into two
parts based to whether v1 = 1 or not. In particular, if q̃1 = q1 +qB and q̃j = qj for j = 2, . . . , B−1,
then ∑

(i1,...,iK)∈AK,B−1

K∏
k=1

q̃ik = q̃1

∑
(i1,...,iK−1)∈BK,B

K−1∏
k=1

q̃ik +
∑

(i1,...,iK)∈CK,B

K∏
k=1

q̃ik

Hence dK,N,B(q1, . . . , qB) = dK,N,B−1(q̃1, . . . , q̃B−1), which is the assertion.
Proof of (a) and (b). For simplicity, we will subsequently assume that K is odd and B is even.
The other case can be treated similarly. For (a) note that (1, i) ∈ AK,B requires i = (i1, . . . , iK−1)
to start with an even index i1 and continue alternating between odd and even in the subsequent
indices. Since the length K−1 of i is even, the last index iK−1 of the vector has to be odd. Since B
is even, this means that iK−1 and B indeed alternate between odd and even. Hence (i, B) ∈ AK,B .
Similarly, (i, B) ∈ AK,B requires iK−1 to be odd and subsequent indices in the vector to alternate
between odd/even. Hence i1 has to be even and thus (1, i) ∈ AK,B . For part (b) assume for the
sake of contradiction that (1, j, B) ∈ AK,B for a vector j = (j1, . . . , jK−2) ∈ {2, . . . , B − 1}K−2.
Since 1 is odd, this in particular means that j1 is even. Since K − 2 is odd, j1 and jK−2 have the
same parity in a vector j with entries that alternate between even/odd. Hence jK−2 is also even.
However, since B is even, jK−2 has to be odd in order to have (1, j, B) ∈ AK,B , which leads to a
contradiction. 2

Before proving Theorem 3.12, we start with a Lemma that yields the inequalities in Theorem 3.12
and Theorem 3.13.
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Lemma 6.1. Let K,B be integers with B ≥ K ≥ 2. Then∏K−1
k=1

(
B+K

2 − k
)

BK−1
≤
(

1

2

)K−1

with equality if and only if K = 2.

Proof of Lemma 6.1. First note that by rearranging the order of the product one obtains

K−1∏
k=1

(
B+K

2
− k
)

= εK,B

b(K−1)/2c∏
k=1

(
B+K

2
− k
)(

B+K

2
− (K − k)

)
, (18)

with εK,B =

{
1, if K is odd,

B/2, if K is even.

Next note that the quadratic function g(x) = ((B+K)/2− x)((B−K)/2 + x) has a unique global
maximum at x = K/2 and that g(K/2) = B2/4. Hence

b(K−1)/2c∏
k=1

(
B +K

2
− k
)(

B −K
2

+ k

)
≤
(
B2

4

)b(K−1)/2c

in which the inequality is strict if there is at least one factor with k 6= K/2, i.e. if K ≥ 3. In
combination with (18), this upper bound yields∏K−1

k=1

(
B+K

2 − k
)

BK−1
≤ εK,B
BK−1

(
B2

4

)b(K−1)/2c

=

(
1

2

)K−1

where the last equality can easily be checked by a case distinction between K even/odd. The as-
sertion follows since this inequality is strict for K ≥ 3. 2

Proof of Theorem 3.12. We �rst consider the case K = B, i.e. the aim is to compute the maximum
of the function

(q1, . . . , qK) 7→ dK,K(q1, . . . , qK) =
1(
N
K

) K∏
k=1

qk

under the side condition (q1, . . . , qK) ∈ QN,K , i.e. q1, . . . , qK ∈ N and
∑K
k=1 qk = N . When

disregarding the condition q1, . . . , qK ∈ N, this can easily be done, e.g., by using Lagrange multipliers
(considering the function ln(dK,K(·)) instead of dK,K(·) simpli�es the calculations), which reveals
a global maximum at

q1 = . . . = qK =
N

K
.

Hence,

sup {dK,K(q1, . . . , qK); (q1, . . . , qK) ∈ QN,K}

≤dK,K
(
N

K
, . . . ,

N

K

)
=

1(
N
K

) (N
K

)K
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with equality if N/K ∈ N. Thus the limit values of the maximal depth of residual vectors with K
blocks is given by

lim
N→∞

1(
N
K

) (N
K

)K
=

K!

KK
.

The case B = K + 1 can be treated in a similar fashion or can be deduced from B = K and
Lemma 3.11. In particular, the maximal value is attained at q1 + qK+1 = q2 = . . . = qK and its
limit value remains K!/KK . The remaining inequality

K!

KK
<

(
1

2

)K−1

for all K ≥ 3

follows from Lemma 6.1 with B = K. Hence the assertion follows. 2

Proof of Theorem 3.13. The identity for the limit of the test statistic follows from Lemma 3.6 since
NK/〈N〉K → 1 for �xed K as N →∞. The inequality in (12) follows from Lemma 6.1. 2
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