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Abstract

The K-sign depth (K-depth) of a model parameter θ in a data set is the relative number
of K-tuples among its residual vector that have alternating signs. The K-depth test based on
K-depth, recently proposed by Leckey et al. (2019), is equivalent to the classical residual-based
sign test for K = 2, but is much more powerful for K ≥ 3. This test has two major drawbacks.
First, the computation of the K-depth is fairly time consuming, and second, the test requires
knowledge about the quantiles of the test statistic which previously had to be obtained by
simulation for each sample size individually. We tackle both of these drawbacks by present-
ing a limit theorem for the distribution of the test statistic and deriving an (asymptotically
equivalent) form of the K-depth which can be computed efficiently. For K = 3, such a limit
theorem was already derived in Kustosz et al. (2016a) by mimicking the proof for U -statistics.
We provide here a much shorter proof based on Donsker’s theorem and extend it to any K ≥ 3.
As part of the proof, we derive an asymptotically equivalent form of the K-depth which can be
computed in linear time. This alternative and the original implementation of the K-depth are
compared with respect to their runtimes and absolute difference.

MSC 2010 Subject classifications: Primary 62E20; secondary 62F05, 62F35

Keywords: distribution-free test, K-depth test, K-sign depth, linear runtime, outlier robustness,
residual-based test

1 Introduction

Let R1(θ), . . . , RN (θ) be real-valued residuals for a model with model parameter θ satisfying
P(Rn(θ) = 0) = 0 for the true underlying parameter. For K ∈ N \ {1}, the K-sign depth (K-
depth) of R1(θ), . . . , RN (θ) is defined as

dK(R1(θ), . . . , RN (θ)) (1)

=
1(
N
K

) ∑
1≤n1<...<nK≤N

(
K∏
k=1

1{Rnk
(θ)(−1)k > 0}+

K∏
k=1

1{Rnk
(θ)(−1)k < 0}

)
,

where 1{} denotes the indicator function. Hence, the K-depth is the relative number of K-tuples
of the residuals with alternating signs. In several models for time series and several generalized
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linear models, it can be assumed that the residuals R1(θ), . . . , RN (θ) are independent with median
Med(Rn(θ)) = 0 if θ is the true underlying parameter. Under such assumptions, the K-depth can be
used for testing hypotheses of the form H0 : θ ∈ Θ0 where Θ0 is an arbitrary subset of the parameter
space: the so-called K-depth test rejects H0 if the maximum K-depth of R1(θ), . . . , RN (θ) with
θ ∈ Θ0 is smaller than a critical value, i.e. there are not enough sign changes in the residuals of the
null hypothesis. Leckey et al. (2019) showed that this K-depth test is equivalent to the classical
residual-based sign test for K = 2 and is much more powerful for K > 2. Since it is based on signs,
it is outlier robust.

Moreover, a two-sided version can be used to test simultaneously the independence of the resid-
uals and Med(Rn(θ)) = 0 since a too large K-depth, i.e. too many sign changes in the resid-
uals, indicates negatively correlated residuals, whereas a too small K-depth indicates not only
Med(Rn(θ)) 6= 0 but also positively correlated residuals. In particular, Leckey et al. (2019) noted
that a modification of the two-sided version can be considered as a generalization of the runs test
given by Wald and Wolfowitz (1940), see e.g. Gibbons and Chakraborti (2003), pp. 78-86.

An important condition for a powerful K-depth test is an appropriate ordering of the residuals
R1(θ), . . . , RN (θ). For time series or for generalized linear models with one quantitative explanatory
variable, the natural ordering is appropriate. If no natural ordering exists, appropriate orderings
can be defined as Horn and Müller (2020) demonstrated for multiple regression.

There has been two open problems: One is the determination of the critical values of the test
for large sample sizes N and the other problem is the Θ(NK) time complexity when calculating
the K-depth. Both are solved in this paper.

At first note that K-depth for residuals belongs to the big class of depth notions developed
after Tukey (1975) introduced the half space depth. Many of these depth notions concern the
deepness of data points in Rp like Oja depth (Oja, 1983; Chen et al., 2013), simplical depth (Liu,
1988, 1990), Mahalanobis depth (Liu and Singh, 1993; Hu et al., 2011), projection depth (Zuo,
2003, 2006), or zonoid depth (Mosler, 2002; Liu et al., 2019). Other depth notions concern the
depth of distributions as considered by Dong and Lee (2014) or of functional data as considered by
López-Pintado and Romo (2007, 2009); Claeskens et al. (2014); López-Pintado et al. (2014); Nagy
and Ferraty (2019).

However, the K-depth for residuals belongs to the depth notions for model parameters first
introduced by Rousseeuw and Hubert (1999). They defined the regression depth of a regression
parameter θ ∈ Rp via the residuals given by θ. Instead of residuals, other quality measures like
general likelihood functions can be used as proposed by Mizera (2002); Mizera and Müller (2004);
Müller (2005); Denecke and Müller (2011, 2012). Unfortunately, the complicated computation of
the regression depth and their extensions is a crucial drawback.

The K-depth first appeared as a simplification of the so-called simplicial regression depth. This
depth notion is a combination of the regression depth of Rousseeuw and Hubert (1999) and the
simplicial depth of Liu (1988, 1990). It defines the depth of a p-dimensional parameter θ as the
relative number of (p+ 1)-tuples of residuals that have a positive regression depth. Under certain
conditions given in Kustosz et al. (2016b), a positive regression depth of a (p+ 1)-tuple of residuals
is equivalent to alternating signs. Hence the simplicial regression depth coincides with the (p+ 1)-
depth given by (1) in many applications. Note that the K-depth in its general form also works for
other choices than K = p+ 1 when considering a p dimensional parameter θ.

When using the K-depth for testing, a critical value is needed. For small sample sizes N , the
critical value of the K-depth test can be calculated by determining the K-depth for all of the 2N

possible sign constellations. For larger sample sizes, it is way more efficient to use the quantiles of an
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asymptotic distribution of the K-depth. The derivation of asymptotic distributions of depth notions
and depth estimators is not easy, see e.g. Bai and He (1999); Wang (2019). However, almost all
simplicial depth notions have the advantage that the depth statistic is a U-statistic which was used
in Dümbgen (1992); Arcones and Gine (1993); Arcones et al. (1994). Unfortunately, the U-statistic
is degenerated in several cases which makes it harder to derive limit theorems, see Müller (2005);
Wellmann et al. (2009); Wellmann and Müller (2010b,a). Some simplicial depth notions based on
likelihood depth are not degenerated U-statistics but with the price of providing biased estimators,
see Denecke and Müller (2012). The statistic given by the K-depth has the additional disadvantage
that it is not a classical U-statistic since it is influenced by the order of the residuals and thus its
kernel is not symmetric for K ≥ 3. In the particular case of an explosive AR(1) regression with two
unknown parameters, Kustosz et al. (2016a) provide a limit theorem for the 3-depth by mimicking
the classical proof for U-statistics. The resulting asymptotic distribution is given as an integrated
two-dimensional Gaussian process. Note that the limit theorem provided by Kustosz et al. (2016a)
is not restricted to AR(1) models since the proof only relies on having independent residuals with
signs that are uniformly distributed on {−1, 1}. However, the proof is restricted to the 3-depth,
i.e. K-depths with K 6= 3 are not covered.

Here, we provide a much shorter proof by using Donsker’s theorem (see e.g. Billingsley, 1999,
Theorem 14.1). This also yields a slightly different representation of the asymptotic distribution
based on a standard Brownian motion rather than the two-dimensional Gaussian process in Kus-
tosz et al. (2016a). Moreover, we extend this proof to any K ≥ 3. Finally, our proof yields an
asymptotically equivalent form of K-depth which can be computed in linear time for all K ≥ 3
instead of the Θ(NK) time needed for any simplicial depth based on subsets with K observations.

The paper is organized as follows. Section 2 provides the derivation of this asymptotic distri-
bution. In Section 3, the asymptotically equivalent form, which can be computed in linear time, is
derived and the exact K-depth is compared to the asymptotically equivalent form. The comparison
is based on the absolute differences between the two statistics and their runtimes when considering
randomly generated signs as an input. In Section 3.2, we present a plot of the densities of the
asymptotic distributions for K = 3, 4, 5 and describe how the quantiles can be computed.

Notation. 1A(t) = 1{t ∈ A} denotes the indicator function, i.e. 1A(t) = 1 if t ∈ A and 1A(t) = 0
if t /∈ A. For real numbers x, y, let x∧y := min{x, y} and x∨y := max{x, y}. Moreover, the sign of a
real number x is denoted by ψ(x) = 1{x > 0}−1{x < 0}. We use the standard Bachmann-Landau
symbols: For sequences (an)n≥1 and (bn)n≥1, an = O(bn) denotes the existence of a constant C > 0
and an integer n0 such that |an| ≤ C|bn| for all n ≥ n0. Moreover, an = o(bn) denotes that
an/bn → 0 as n→∞. Finally, an = Θ(bn) denotes that both an = O(bn) and bn = O(an).

2 The asymptotic distribution of K-sign depth

Since only the asymptotic distribution of the residuals for the true underlying parameter θ is needed
for the critical value of the K-depth tests, we now use the notation En = Rn(θ) for n = 1, . . . , N .
Hence we have the following assumptions:

E1, . . . , EN are independent, (A1)

P(En > 0) = P(En < 0) =
1

2
for all n ∈ N. (A2)
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The main goal of this article is to derive a limit theorem for the K-depth of E1, . . . , EN as N tends
to infinity. As already stated in (1), the K-depth, K ≥ 2, is defined as

dK(E1, . . . , EN ) =

1(
N
K

) ∑
1≤n1<...<nK≤N

(
K∏
k=1

1{Enk
(−1)k > 0}+

K∏
k=1

1{Enk
(−1)k < 0}

)
.

Section 2.1 provides the main theorem (Theorem 2.2) with the asymptotic distribution and a
second theorem (Theorem 2.3) from which Theorem 2.2 is deduced. Since the proof of Theorem 2.3
needs several lemmas, its proof is given in Section 2.2.

Remark 2.1. Note that a well defined ordering of the residuals is crucial for the definition of the
K-depth. The chosen ordering has a large impact on the power of the resulting test and thus should
be adjusted to the model. For time series, usually the chronological ordering of the observations in
the process is the canonical choice. If a regression model is given only by one univariate explanatory
variable then often the ordering with respect to this variable is a good choice. If the explanatory
variable is multi-dimensional then data driven orderings as proposed by Horn and Müller (2020)
can be used.

2.1 Asymptotic distribution

A limit theorem for the normalized K-depth can be achieved under fairly general assumption on
the residuals. Our limit theorem holds for random variables (residuals) (En)n≥1 satisfying the
assumptions (A1) and (A2) from the previous section:

Theorem 2.2. Let K ≥ 3. If E1, . . . , EN satisfy (A1) and (A2) then, as N →∞,

N

(
dK(E1, . . . , EN )−

(
1

2

)K−1)
d−→ ΨK(W )

where W = (Wt)t∈[0,1] denotes a standard Brownian motion and

Ψ3(W ) =
3

4

(
1−

∫ 1

0

(W1 − 2Wt)
2dt

)
,

ΨK(W )

= − K!

4(K − 4)!

∫ 1

−0.5

∫ t+0.5

t∨0

(
1

2
+ t− s

)K−4 (
(Ws∧1 −Wt∨0)2 − ((s ∧ 1)− (t ∨ 0))

)
dsdt

− K!

2(K − 4)!

∫ 1

0.5

∫ t−0.5

0

(
1

2
+ s− t

)K−4
Ws (W1 −Wt) dsdt, K ≥ 4.

The proof of Theorem 2.2 is done in two steps. In a first step, we rewrite the normalized K-depth
as a function of the associated random walk given by

WN
t :=

1√
N

btNc∑
n=1

ψ(En), ψ(En) = 1{En > 0} − 1{En < 0}, t ∈ [0, 1], (2)
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with the convention WN
t = 0 for t < 1/N . Afterwards we apply Donsker’s invariance principle in

combination with the continuous mapping theorem to obtain the limit law of the K-depth. Since
the first step is much more tedious, we only state the resulting representation in the theorem below
and defer its proof to the next section.

Theorem 2.3. Let E1, . . . , EN be random variables with P(En 6= 0) = 1 and let WN be as in (2).
Moreover, let ΨK be as in Theorem 2.2. Then, almost surely,

N

(
d3(E1, . . . , EN )− 1

4

)
=

N2

(N − 1)(N − 2)
Ψ3

(
WN

)
.

If E1, . . . , EN satisfy (A1) and (A2) then, for all K ≥ 4, as N →∞,

N

(
dK(E1, . . . , EN )−

(
1

2

)K−1)
=
NK(N −K)!

N !
ΨK

(
WN

)
+ oP (1),

where oP (1) denotes a random variables which converges to zero in probability.

We end this section by deducing Theorem 2.2 from Theorem 2.3. Some potential generalizations
of the limit theorem are given in Remark 2.4 at the end of the section.

Proof of Theorem 2.2. Recall that W = (Wt)t∈[0,1] denotes a standard Brownian motion. By The-
orem 2.3 and Slutsky’s Theorem, it is sufficient to show that

ΨK(WN )
d−→ ΨK(W ), as N →∞,

where WN = (WN
t )t∈[0,1] is defined as in (2). First note that Donsker’s invariance principle for

càdlàg processes (Billingsley, 1999, Theorem 14.1) yields that

WN d−→W, as N →∞,

with respect to the Skorokhod topology. By the continuous mapping theorem and the fact that W
is almost surely continuous, it is therefore sufficient to show that the function ΨK : D[0, 1]→ R is
continuous in f for all f ∈ C[0, 1], where D[0, 1] denotes the set of all càdlàg functions on [0, 1] and
C[0, 1] denotes the set of all continuous functions on [0, 1].

To this end, let (fn)n≥1 be a convergent sequence in D[0, 1] with a continuous limit f . Note
that if f is continuous then the convergence to f in the Skorokhod topology implies (Billingsley,
1999, p. 124)

lim
n→∞

‖fn − f‖∞ = 0, where ‖fn − f‖∞ = max
t∈[0,1]

|fn(t)− f(t)|.

Since f is a bounded function, ‖fn‖∞ ≤ C for some constant C > 0 and all sufficiently large n. In
particular, the dominated convergence theorem implies

lim
n→∞

∫ 1

0

(fn(1)− 2fn(t))2dt =

∫ 1

0

lim
n→∞

(fn(1)− 2fn(t))2dt =

∫ 1

0

(f(1)− 2f(t))2dt

and hence Ψ3(fn)→ Ψ3(f) as n→∞. Essentially the same arguments yield ΨK(fn)→ ΨK(f) as
n→∞ for K ≥ 4. Therefore ΨK is continuous in f for f ∈ C[0, 1] and the assertion follows.
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Remark 2.4. Note that the first identity in Theorem 2.3 for K = 3 holds without assuming (A1)
and (A2). Hence, if (En)n≥1 is an arbitrary sequence of random variables such that

P (En 6= 0) = 1 for n ≥ 1,

WN d−→ W̃ as N →∞

with WN as in (2) and a process W̃ with continuous paths, then the convergence in Theorem 2.2

still holds for K = 3 after replacing Ψ3(W ) with Ψ3(W̃ ). In particular, we may discard the assump-
tion (A1) and may consider a stationary process (En)n≥1 with some (sufficiently fast decreasing)
dependence structure. Then WN still converges to a Brownian motion under suitable assumptions,
see (Billingsley, 1999, Theorem 19.1 and 19.2) for more details. Hence the limit quantiles are still
a fairly good approximation in applications where some local dependence structure between errors
(En)n≥1 can occur. Note that a correct approximation might require a proper rescaling by a factor
σ2 though, see (Billingsley, 1999, Theorem 19.1).

2.2 Proof of Theorem 2.3

This section contains the missing proof of Theorem 2.3, that is the transformation of the rescaled
K-depth to a function of the associated random walk. We start with an outline of the proof. Recall
that the rescaled K-depth is given by

N

(
dK(E1, . . . , EN )−

(
1

2

)K−1)
. (3)

Step 1. Rewrite the rescaled K-depth as a polynomial in (ψ(E1), . . . , ψ(EN )). This part of the
proof is fairly easy when observing that 1{x > 0} = (ψ(x) + 1)/2 for all x 6= 0. The resulting
representation is given in Lemma 2.5.

Step 2. Show that all terms of the polynomial (Step 1) with degree larger than two are asymp-
totically negligible as N → ∞. This reduces the representation to a sum of pairs ψ(En1)ψ(En2)
over n1, n2. The convergence of the higher degree monomials is stated in Lemma 2.6 whereas the
resulting representation in terms of a degree two polynomial is given in Lemma 2.7.

Step 3. After simplifying the polynomial from the previous step (Lemma 2.8), it only remains to
transform ∑

1≤n1 6=n2≤N

(
1

2
− |n2 − n1|

N

)K−2
ψ(En1

)ψ(En2
)

N

into a function of the associated random walk WN . This mainly involves transforming the leading

factor
(

1
2 −

|n2−n1|
N

)
in order to split the double sum into a product of two sums (which can be

represented viaWN ). More precisely, we rewrite this leading factor using an integral representation
stated in Lemma 2.12. This leads to a new representation (Corollary 2.13 for K ≥ 4 or (12) for
K = 3) in which the integrand can be expressed in terms of WN , yielding the assertion stated in
Theorem 2.3.

The remainder of this section contains the full proof details of the outline above. Some calculations
(for steps 1 and 2) coincide with proofs in Leckey et al. (2019). In that case, proof details are
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omitted. Rewriting the K-depth in terms of the signs (ψ(E1), . . . , ψ(En)) is based on the following
identity.

Lemma 2.5. For every K ≥ 2 and x1, . . . , xK ∈ R \ {0},

K∏
k=1

1{xk(−1)k > 0}+

K∏
k=1

1{xk(−1)k < 0} −
(

1

2

)K−1

=

(
1

2

)K−1 bK
2 c∑

L=1

∑
1≤i(1)<...<i(2L)≤K

(−1)i(1)+...+i(2L)
2L∏
j=1

ψ(xi(j))

where ψ(x) denotes the sign of x, that is ψ(x) := 1{x > 0} − 1{x < 0}.

Proof. The identity is based on 1{x > 0} = (ψ(x) + 1)/2 and ψ(−x) = −ψ(x) for all x 6= 0. The
full proof for Lemma 2.5 is given in (Leckey et al., 2019, Lemma 2).

Note that if P(En 6= 0) = 1 for all n ∈ N then Lemma 2.5 yields almost surely

N

(
dK(E1, ..., EN )−

(
1

2

)K−1)

=
N

2K−1
(
N
K

) bK
2 c∑

L=1

∑
1≤i(1)<...<i(2L)≤K

(−1)i(1)+...+i(2L)
∑

1≤n1<...<nK≤N

2L∏
j=1

ψ(Eni(j)
).

(4)

The next step is to show that the summands for L ≥ 2 are asymptotically negligible (note that
these summands only occur for K ≥ 4).

Lemma 2.6. Let K ≥ 4. If (En)n≥1 satisfy (A1) and (A2) then, as N →∞,

N

2K−1
(
N
K

) bK
2 c∑

L=2

∑
1≤i(1)<...<i(2L)≤K

∑
1≤n1<...<nK≤N

(−1)i(1)+...+i(2L)
2L∏
j=1

ψ(Eni(j)
)

P−→ 0.

Proof. The proof is based on computing the variance and using Chebyshev’s inequality to obtain
the convergence in probability. A full proof is given in (Leckey et al., 2019, Theorem 1). Also see
Lemma 2.9 below for a similar proof strategy.

Lemma 2.6 in combination with (4) yields the following representation:

N

(
dK(E1, ..., EN )−

(
1

2

)K−1)

=
N

2K−1
(
N
K

) ∑
1≤i(1)<i(2)≤K

∑
1≤n1<...<nK≤N

(−1)i(1)+i(2)ψ(Eni(1)
)ψ(Eni(2)

) + oP (1).

Note that for K = 3, this equation holds almost surely even without the oP (1) term. We continue
the proof by replacing the sum over n1 < . . . < nK with a double sum involving only ni(1) and
ni(2). This can be done by counting the number of choices for {nj ; j /∈ {i(1), i(2)}} when ni(1) and
ni(2) are fixed. We obtain the following identity.
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1 2 . . . ni(1) − 1 ni(1) ni(1) + 1 . . . ni(2) − 1 ni(2) ni(2) + 1 . . . N︸ ︷︷ ︸(
ni(1) − 1

i(1)− 1

)
choices

︸ ︷︷ ︸(
ni(2) − ni(1) − 1

i(2)− i(1)− 1

)
choices

︸ ︷︷ ︸(
N − ni(2)
K − i(2)

)
choices

Figure 1: Number of possible choices for {nj ; j < i(1)} (left), {nj ; i(1) < j < i(2)} (middle), and
{nj ; j > i(2)} (right) for fixed i(1), i(2), ni(1), ni(2).

Lemma 2.7. Let K ≥ 3. Then∑
1≤i(1)<i(2)≤K

∑
1≤n1<...<nK≤N

(−1)i(1)+i(2)ψ(Eni(1)
)ψ(Eni(2)

)

= −1

2

∑
1≤n1 6=n2≤N

ψ(En1
)ψ(En2

)

K−2∑
J=0

(−1)J
(
|n1 − n2| − 1

J

)(
N − |n1 − n2| − 1

K − 2− J

)
.

Proof. In the first part of the proof, we fix 1 ≤ i(1) < i(2) ≤ K. The aim is to reduce the inner
sum over n1, . . . , nK to a sum with only two indices of the following form:∑

1≤n1<...<nK≤N

ψ(Eni(1)
)ψ(Eni(2)

) =
∑

1≤ni(1)<ni(2)≤N

κ(ni(1), ni(2))ψ(Eni(1)
)ψ(Eni(2)

)

with suitable constants κ(ni(1), ni(2)) := κ(N,K, i(1), i(2), ni(1), ni(2)). These constants can be
obtained by counting the possible choices for {nj ; j /∈ {i(1), i(2)}} when ni(1) and ni(2) are fixed.
After counting these possibilities as depicted in Figure 1, we obtain using J = i(2)− i(1),

κ(ni(1), ni(2)) =

(
ni(1) − 1

i(1)− 1

)(
ni(2) − ni(1) − 1

i(2)− i(1)− 1

)(
N − ni(2)
K − i(2)

)
=

(
ni(1) − 1

i(1)− 1

)(
ni(2) − ni(1) − 1

J − 1

)(
N − ni(2)

K − i(1)− J

)
. (5)

Recall that x ∧ y = min{x, y} and x ∨ y = max{x, y} for x, y ∈ R. Then (5) implies∑
1≤n1<...<nK≤N

(−1)i(1)+i(2)ψ(Eni(1)
)ψ(Eni(2)

)

=
∑

1≤ni(1)<ni(2)≤N

(−1)i(1)+i(2)
(
ni(1) − 1

i(1)− 1

)(
ni(2) − ni(1) − 1

J − 1

)
×

(
N − ni(2)

K − i(1)− J

)
ψ(Eni(1)

)ψ(Eni(2)
)

=
(−1)J

2

∑
1≤n1 6=n2≤N

(
(n1 ∧ n2)− 1

i(1)− 1

)(
|n1 − n2| − 1

J − 1

)(
N − (n1 ∨ n2)

K − i(1)− J

)
ψ(En1

)ψ(En2
),

where the last equation holds by symmetry between n1, n2 and by (−1)a+b = (−1)a−b for a, b ∈ N.
It remains to sum this result over i(1) < i(2) to obtain the assertion. Note that rather than
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summing over i(2) directly, we may sum over J = 1, . . . ,K − 1 and i(1) = 1, . . . ,K − J and set
i(2) = i(1) + J . We obtain∑

1≤i(1)<i(2)≤K

∑
1≤n1<...<nK≤N

(−1)i(1)+i(2)ψ(En1
)ψ(En2

)

=

K−1∑
J=1

K−J∑
i(1)=1

(−1)J

2

∑
1≤n1 6=n2≤N

(
(n1 ∧ n2)− 1

i(1)− 1

)(
|n1 − n2| − 1

J − 1

)
×

(
N − (n1 ∨ n2)

K − i(1)− J

)
ψ(En1

)ψ(En2
).

To simplify this expression, note that Vandermonde’s convolution (see e.g. Gould and Srivastava,
1997) yields (

m+ n

r

)
=

r∑
k=0

(
m

k

)(
n

r − k

)
, for all integers m,n, r ≥ 0. (6)

After changing the order of summation by swapping the sum over n1 6= n2 with the sum over i(1),
we obtain for any fixed J, n1, n2 as an inner sum

K−J∑
i(1)=1

(
n1 ∧ n2 − 1

i(1)− 1

)(
|n1 − n2| − 1

J − 1

)(
N − (n1 ∨ n2)

K − i(1)− J

)
ψ(En1

)ψ(En2
)

=ψ(En1
)ψ(En2

)

(
|n1 − n2| − 1

J − 1

) K−J∑
i(1)=1

(
(n1 ∧ n2)− 1

i(1)− 1

)(
N − (n1 ∨ n2)

K − i(1)− J

)

=ψ(En1
)ψ(En2

)

(
|n1 − n2| − 1

J − 1

)(
N − (n1 ∨ n2) + (n1 ∧ n2)− 1

K − J − 1

)
,

in which the last equality uses (6) and the substitution k = i(1)− 1. Since (n1 ∨ n2)− (n1 ∧ n2) =
|n1 − n2|, the summation over J and n1, n2 yields that∑

1≤i(1)<i(2)≤K

∑
1≤n1<...<nK≤N

(−1)i(1)+i(2)ψ(En1)ψ(En2)

=

K−1∑
J=1

(−1)J

2

∑
1≤n1 6=n2≤N

ψ(En1)ψ(En2)

(
|n1 − n2| − 1

J − 1

)(
N − |n1 − n2| − 1

K − J − 1

)
.

The assertion follows after substituting J̃ = J − 1 and swapping the order of summation.

The next step is to simplify the inner sum over J in Lemma 2.7. To this end, let the K-th
falling factorial of N be denoted by 〈N〉K , that is

〈N〉K =
N !

(N −K)!
.

The previous transformations and the asymptotic
(
N
k

)
= Nk

k! +O(Nk−1) for bounded k as N →∞
yield the following representation of the normalized K-depth:
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Lemma 2.8. Let K ≥ 3. If (A1) and (A2) hold then, as N →∞,

N

(
dK(E1, ..., EN )−

(
1

2

)K−1)

= − NK

〈N〉K
K(K − 1)

4

∑
1≤n1 6=n2≤N

(
1

2
− |n2 − n1|

N

)K−2
ψ(En1

)ψ(En2
)

N
+ oP (1). (7)

For K = 3, equation (7) holds for any sequence (En)n≥1 with P(En 6= 0) = 1 and is an almost sure
equality without the oP (1) term.

Proof. First recall that a combination of (4), Lemma 2.6, and Lemma 2.7 yields

N

(
dK(E1, ..., EN )−

(
1

2

)K−1)

= − N

2K
(
N
K

) ∑
1≤n1 6=n2≤N

ψ(En1)ψ(En2)×

K−2∑
J=0

(−1)J
(
|n1 − n2| − 1

J

)(
N − |n1 − n2| − 1

K − 2− J

)
+ oP (1).

Note that
(
N
k

)
= Nk/k! + O(Nk−1) for bounded k. This can be seen, e.g., after rewriting

(
N
k

)
=

〈N〉k/k! and using Nk ≥ 〈N〉k ≥ (N − k)k, and, by Bernoulli’s inequality (Carothers, 2000, p. 9),

(N − k)k = Nk(1− k/N)k ≥ Nk(1− k2/N) = Nk − k2Nk−1.

In combination with |n1 − n2| ≤ N , we thus obtain(
|n1 − n2| − 1

J

)
=

(|n1 − n2| − 1)J

J !
+O(NJ−1),(

N − |n1 − n2| − 1

K − 2− J

)
=

(N − |n1 − n2| − 1)K−2−J

(K − 2− J)!
+O(NK−3−J),

(8)

for all J = 0, . . . ,K− 2 and n1, n2 = 1, . . . , N . Note that the constant in the O-term can be chosen
to be, e.g., K2 and hence does not depend on J, n1, n2. In particular, (8) implies(

|n1 − n2| − 1

J

)(
N − |n1 − n2| − 1

K − 2− J

)
=

(|n1 − n2| − 1)J

J !

(N − |n1 − n2| − 1)K−2−J

(K − 2− J)!
+O(NK−3)

=
1

(K − 2)!

(
K − 2

J

)
(|n1 − n2| − 1)J(N − |n1 − n2| − 1)K−2−J +O(NK−3).

10



Plugging this approximation back into the sum over J yields

K−2∑
J=0

(−1)J
(
|n1 − n2| − 1

J

)(
N − |n1 − n2| − 1

K − 2− J

)

=
1

(K − 2)!

K−2∑
J=0

(
K − 2

J

)
(−(|n1 − n2| − 1))

J
(N − |n1 − n2| − 1)K−2−J +O(NK−3)

=
(N − 2|n1 − n2|)K−2

(K − 2)!
+O(NK−3),

in which the last equality holds by the binomial theorem. Thus

N

(
dK(E1, ..., EN )−

(
1

2

)K−1)

= − N

2K
(
N
K

) ∑
1≤n1 6=n2≤N

ψ(En1
)ψ(En2

)
(N − 2|n1 − n2|)K−2

(K − 2)!
+RN + oP (1) (9)

where

RN =
∑

1≤n1 6=n2≤N

ψ(En1
)ψ(En2

)εN (n1, n2) with εN (n1, n2) = O(N−2).

As proven formally in Lemma 2.9 below, one can bound the variance of RN to show that RN
P→ 0

as N →∞. Equation (7) then follows from (9) after rewriting(
N

K

)
=
〈N〉K
K!

and (N − 2|n1 − n2|)K−2 = 2K−2NK−2
(

1

2
− |n1 − n2|

N

)K−2
.

Finally note that for K = 3, all equalities hold almost surely (without the oP (1) error) since only
the summand for L = 1 in (4) occurs (hence we do not need to apply Lemma 2.6) and since (8)
holds without the O-terms if K = 3 and J ∈ {0, 1}.

Lemma 2.9. Let {εN (n1, n2);N ∈ N, n1, n2 ∈ {0, . . . , N}} be a family of real numbers and let

RN =
∑

1≤n1 6=n2≤N

ψ(En1
)ψ(En2

)εN (n1, n2)

If εN (n1, n2) = O(N−2) and (En)n≥1 satisfies (A1) and (A2), then RN
P→ 0 as N →∞.

Proof. First note that (A1) and (A2) imply E[ψ(En1)ψ(En2)] = 0 for n1 6= n2. Hence

E[RN ] = 0.

Thus, by Chebyshev’s inequality it is sufficient to show that

lim
n→∞

Var(RN ) = 0. (10)
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To this end, note that (A1), (A2) and (ψ(x))2 = 1 imply for n1 6= n2 and ñ1 6= ñ2 that

E[ψ(En1
)ψ(En2

)ψ(Eñ1
)ψ(Eñ2

)] =

{
1, if {n1, n2} = {ñ1, ñ2},
0, otherwise.

Hence, εN (n1, n2) = O(N−2) implies εN (n1, n2)2 = O(N−4) and thus

E[R2
N ] = 2

∑
1≤n1 6=n2≤N

(εN (n1, n2))2 → 0, as N →∞.

Therefore (10) holds and Chebyshev’s inequality yields the assertion.

For K = 3, the identity in Theorem 2.3 can be deduced from (7) in the same way it is done
in Kustosz et al. (2016a). We will end the section by first summarizing how the case K = 3
works. Afterwards, we prepare some additional transformations in Lemma 2.12 and Corollary 2.13
to finally prove Theorem 2.3 for K ≥ 4.

To this end, recall that the associated random walk WN is defined as

WN
t :=

1√
N

btNc∑
n=1

ψ(En), t ∈ [0, 1], (11)

and that the statement of Theorem 2.3 for K = 3 is as follows:

Theorem 2.10. Let WN be as above and let

Ψ3(WN ) =
3

4

(
1−

∫ 1

0

(WN
1 − 2WN

t )2dt

)
.

Furthermore, let E1, . . . , EN be random variables with P(En 6= 0) = 1. Then

N

(
d3(E1, . . . , EN )− 1

4

)
=

N2

(N − 1)(N − 2)
Ψ3(WN ) almost surely.

Proof. By Lemma 2.8 it is sufficient to show that, almost surely,

−3

2

∑
1≤n1 6=n2≤N

(
1

2
− |n2 − n1|

N

)
ψ(En1

)ψ(En2
)

N
= Ψ3(WN ).

First note that since (ψ(En))2 = 1 almost surely for all n,∑
1≤n1 6=n2≤N

(
1

2
− |n2 − n1|

N

)
ψ(En1

)ψ(En2
)

N

=

N∑
n1,n2=1

(
1

2
− |n2 − n1|

N

)
ψ(En1)ψ(En2)

N
− 1

2
.

In order to separate the sum over n1 and n2, note that for all n1, n2 ≤ N

|n1 − n2|
N

= 1−
∫ 1.5

−0.5
1[−0.5,0.5)(t− n1/N)1[−0.5,0.5)(t− n2/N)dt, (12)

12



see also Kustosz et al. (2016a). Plugging this identity into the sum and exchanging sum and integral
yields

N∑
n1,n2=1

(
1

2
− |n2 − n1|

N

)
ψ(En1

)ψ(En2
)

N

= −1

2

(
WN

1

)2
+

∫ 1.5

−0.5

N∑
n1,n2=1

1[−0.5,0.5)(t− n1/N)1[−0.5,0.5)(t− n2/N)
ψ(En1)ψ(En2)

N
dt.

Finally note that 1[−0.5,0.5)(t− n1/N)1[−0.5,0.5)(t− n2/N) = 1 if and only if

b((t− 0.5) ∨ 0)Nc+ 1 ≤ n1 ≤ b((t+ 0.5) ∧ 1)Nc,
b((t− 0.5) ∨ 0)Nc+ 1 ≤ n2 ≤ b((t+ 0.5) ∧ 1)Nc.

Hence we obtain∫ 1.5

−0.5

N∑
n1,n2=1

1[−0.5,0.5)(t− n1/N)1[−0.5,0.5)(t− n2/N)
ψ(En1)ψ(En2)

N
dt

=

∫ 1.5

−0.5

b((t+0.5)∧1)Nc∑
n1,n2=b((t−0.5)∨0)Nc+1

ψ(En1
)ψ(En2

)

N
dt

=

∫ 1.5

−0.5
(WN

(t+0.5)∧1 −W
N
(t−0.5)∨0)2dt

=

∫ 1

0

(
WN
t

)2
+
(
WN

1 −WN
t

)2
dt

in which the last equality holds by splitting the integral into the ranges [−0.5, 0.5] and [0.5, 1.5],
substituting t̃ = t + 0.5 in the first part and t̃ = t − 0.5 in the second part. In summary, we have
shown that

− 3

2

∑
1≤n1 6=n2≤N

(
1

2
− |n2 − n1|

N

)
ψ(En1

)ψ(En2
)

N

=
3

4
+

3

4

(
WN

1

)2 − 3

2

∫ 1

0

(
WN
t

)2
+
(
WN

1 −WN
t

)2
dt

=
3

4

(
1−

∫ 1

0

2
(
WN
t

)2
+ 2

(
WN

1 −WN
t

)2 − (WN
1

)2
dt

)
.

Therefore it only remains to show that

2
(
WN
t

)2
+ 2

(
WN

1 −WN
t

)2 − (WN
1

)2
=
(
WN

1 − 2WN
t

)2
, t ∈ [0, 1].

This equality can be obtained by simplifying the left-hand-side using the binomial theorem.

It remains to prove Theorem 2.3 for K ≥ 4. Recall that the statement for K ≥ 4 is as follows:
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Theorem 2.11. Let WN be as in (11) with (En)n≥1 satisfying (A1) and (A2). Let

ΨK(WN )

= − K!

4(K − 4)!

∫ 1

−0.5

∫ t+0.5

t∨0

(
1

2
+ t− s

)K−4 (
(WN

s∧1 −WN
t∨0)2 − ((s ∧ 1)− (t ∨ 0))

)
dsdt

− K!

2(K − 4)!

∫ 1

0.5

∫ t−0.5

0

(
1

2
+ s− t

)K−4
WN
s

(
WN

1 −WN
t

)
dsdt, K ≥ 4.

Then, for all K ≥ 4, as N →∞,

N

(
dK(E1, . . . , EN )−

(
1

2

)K−1)
=
NK(N −K)!

N !
ΨK

(
WN

)
+ oP (1).

The only major difference in the proof compared to K = 3 is that a transformation of (0.5 −
|n2 − n1|/N)K−2 based on (12) becomes more tedious if K ≥ 4. We will therefore replace (12) by
another identity based on the following observation.

Lemma 2.12. Let c < d and let J ≥ 2. Then, for all a, b ∈ [c, d],

(b− a)J = J(J − 1)

∫ d

c

∫ t

c

(t− s)J−21{s ≥ a}1{t < b}+ (s− t)J−21{s ≥ b}1{t < a}dsdt.

Proof. We first consider the case a ≤ b. By computing the integral on the right hand side it is easy
to check that

(b− a)J = J(J − 1)

∫ b

a

∫ t

a

(t− s)J−2dsdt. (13)

Note that 1{s ≥ b}1{t < a} = 0 for all s ≤ t since a ≤ b. Hence∫ d

c

∫ t

c

(t− s)J−21{s ≥ a}1{t < b}+ (s− t)J−21{s ≥ b}1{t < a}dsdt

=

∫ d

c

∫ t

c

(t− s)J−21{s ≥ a}1{t < b}dsdt

=

∫ b

a

∫ t

a

(t− s)J−2dsdt

and the assertion for a ≤ b follows from (13). Now consider the case a > b. Then 1{s ≥ a}1{t <
b} = 0 for all s ≤ t and thus∫ d

c

∫ t

c

(t− s)J−21{s ≥ a}1{t < b}+ (s− t)J−21{s ≥ b}1{t < a}dsdt

=

∫ d

c

∫ t

c

(s− t)J−21{s ≥ b}1{t < a}dsdt

=(−1)J
∫ a

b

∫ t

b

(t− s)J−2dsdt.

The assertion once again follows from (13) after exchanging the roles of a and b and noting that
(b− a)J = (−1)J(a− b)J .
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Corollary 2.13. Let N ∈ N, n1, n2 ∈ {1, . . . , N} and J ≥ 2. Then(
1

2
− n2 − n1

N

)J
= J(J − 1)

∫ 1

−0.5

∫ t+0.5

0

(0.5 + t− s)J−2 1{s ≥ n2/N}1{t < n1/N}dsdt

+ J(J − 1)

∫ 1

0.5

∫ t−0.5

0

(0.5 + s− t)J−2 1{s ≥ n1/N}1{t < n2/N}dsdt.

Proof. Let b = 0.5 + n1/N and a = n2/N . Since a, b ∈ [0, 1.5], Lemma 2.12 yields(
1

2
− n2 − n1

N

)J
= J(J − 1)

∫ 1.5

0

∫ t

0

(t− s)J−2 1{s ≥ n2/N}1{t− 0.5 < n1/N}dsdt

+ J(J − 1)

∫ 1.5

0

∫ t

0

(s− t)J−2 1{s− 0.5 ≥ n1/N}1{t < n2/N}dsdt.

The assertion follows after substituting t̃ = t− 0.5 in the first integral and s̃ = s− 0.5 in the second
integral and adjusting the integration limits to areas where the integrand is nonzero.

Proof of Theorem 2.11. By Lemma 2.8 it is sufficient to study the sum in (7), that is it only remains
to show that

−K(K − 1)

4

∑
1≤n1 6=n2≤N

(
1

2
− |n2 − n1|

N

)K−2
ψ(En1

)ψ(En2
)

N
= ΨK(WN ) + oP (1).

Note that by (a) symmetry and (b) Corollary 2.13∑
1≤n1 6=n2≤N

(
1

2
− |n2 − n1|

N

)K−2
ψ(En1

)ψ(En2
)

N

(a)
= 2

∑
1≤n1<n2≤N

(
1

2
− n2 − n1

N

)K−2
ψ(En1)ψ(En2)

N

(b)
= 2(K − 2)(K − 3)

∫ 1

−0.5

∫ t+0.5

0

(0.5 + t− s)K−4 SN1 (s, t)dsdt (14)

+ 2(K − 2)(K − 3)

∫ 1

0.5

∫ t−0.5

0

(0.5 + s− t)K−4 SN2 (s, t)dsdt (15)

where

SN1 (s, t) =
∑

1≤n1<n2≤N

1{s ≥ n2/N}1{t < n1/N}
ψ(En1

)ψ(En2
)

N
,

with − 0.5 ≤ t ≤ 1, 0 ≤ s ≤ t+ 0.5,

SN2 (s, t) =
∑

1≤n1<n2≤N

1{s ≥ n1/N}1{t < n2/N}
ψ(En1)ψ(En2)

N
,

with 0.5 ≤ t ≤ 1, 0 ≤ s ≤ t− 0.5.
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Next note that SN1 (s, t) = 0 for s ≤ t and that for 0 ≤ t < s ≤ 1, again using symmetry in (a) and
using ψ(En)2 = 1 a.s. in (b),

SN1 (s, t) =

bsNc∑
n1=btNc+1

bsNc∑
n2=btNc+1

1{n1 < n2}
ψ(En1

)ψ(En2
)

N

(a)
=

1

2

bsNc∑
n1=btNc+1

bsNc∑
n2=btNc+1

1{n1 6= n2}
ψ(En1

)ψ(En2
)

N

(b)
=

1

2

bsNc∑
n1=btNc+1

bsNc∑
n2=btNc+1

ψ(En1
)ψ(En2

)

N
− bsNc − btNc

2N
.

Finally note that SN1 (s, t) = SN1 (1, t) for s > 1 and SN1 (s, t) = SN1 (s, 0) for t < 0. Hence, we obtain

SN1 (s, t) = 1{s > t}1

2

((
WN
s∧1 −WN

t∨0
)2 − ((s ∧ 1)− (t ∨ 0))

)
+ o(1). (16)

For SN2 (s, t) note that s < t, n1/N ≤ s and n2/N > t already imply n1 < n2. Hence,

SN2 (s, t) =

bsNc∑
n1=1

N∑
n2=btNc+1

ψ(En1
)ψ(En2

)

N
=WN

s

(
WN

1 −WN
t

)
. (17)

Plugging (16) and (17) back into (14) and (15) yields the assertion.

3 Implementation and quantiles

This section focuses on practical aspects of the K-depth. Firstly, we present an algorithm that
computes the asymptotic equivalent version of the K-depth in linear time and compare the run-
times of this algorithm and a “naive” implementation. In the second part, we describe the limit
distribution and explain how its quantiles can be computed for tests based on the K-depth. We
use the software R in the following computational applications, see R Core Team (2019).

3.1 Implementation of the K-depth in linear time

A major drawback of the K-depth is its high computational effort when implementing the sum over
1 ≤ n1 < . . . , nK ≤ N directly using K nested loops, hence leading to a runtime of order Θ(NK).
This implementation will be referred to as the naive implementation.

The representation in Theorem 2.3 can be used to speed up the computation significantly:
Instead of computing the depth dK(E1, . . . , EN ) or its rescaled version in (3) directly, it is sufficient
to compute ΨK(WN ) instead and obtain the K-depth (asymptotically) using the equality stated
in Theorem 2.3. The value for ΨK(WN ), however, can be computed in linear time as discussed
below. We start with the case K = 3 to keep the implementation as simple as possible.

First note that the random walk WN is piecewise constant by definition. Hence, the integral in
Theorem 2.10 becomes ∫ 1

0

(WN
1 − 2WN

t )2 dt =
1

N

N−1∑
k=0

(WN
1 − 2WN

k/N )2.
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The remaining sum can be computed in linear time as follows. At first, compute the vector
(WN

k/N )k=0,...,N which is essentially the cumulative sum of ψ(E1), . . . , ψ(Ek) and thus can be de-

rived in linear time. Then compute (WN
1 − 2WN

k/N )k=0,...,N and finally take the sum of the squared

entries of that vector. Each step requires a total of O(N) operations, adding up to an algorithm
with linear runtime. Since Ψ3(WN ) can be computed from this integral in constant time, we thus
obtain an algorithm for Ψ3(WN ) (and hence d3(E1, . . . , EN )) with linear runtime.

Linear implementation of the K-depth (general K). For K ≥ 4, the calculations in
this paper can be used to compute an asymptotically equivalent form of the K-depth in linear
time. We first summarize how such an algorithm can be implemented and discuss its correctness
afterwards. When neglecting the oP (1)-term in Lemma 2.8, an asymptotically equivalent value of

N
(
dK(E1, . . . , EN )− (1/2)

K−1
)

can be computed as follows:

1. For j = 0, . . . ,K − 2, compute:

Sj = (Sj(1), . . . , Sj(N)) with Sj(n) :=

n∑
i=1

(
i

N

)j
ψ(Ei) for n = 1, . . . , N.

2. Compute: S̃ :=

K−2∑
j=0

N∑
n=2

(
K − 2

j

)(
1

2
− n

N

)j
ψ(En)SK−2−j(n− 1).

3. Return: − NK−2∏K−1
n=1 (N − n)

· K(K − 1)

2
· S̃.

Note that computing Sj for all j = 1, . . . ,K − 2 in advance enables us to compute S̃ in Step 2
in linear time and thus leads to an algorithm with time complexity O(N). Due to its linear time
complexity, we refer to this implementation as the linear implementation. In order to see that

this algorithm indeed yields N
(
dK(E1, . . . , EN )− (1/2)

K−1
)

asymptotically, we first recall that if

E1, . . . , EN satisfy (A1) and (A2) then, according to Lemma 2.8, N
(
dK(E1, . . . , EN )− (1/2)

K−1
)

is asymptotically equivalent to

d̃K(E1, . . . , EN ) := − NK

〈N〉K
K(K − 1)

4

∑
1≤n1 6=n2≤N

(
1

2
− |n2 − n1|

N

)K−2
ψ(En1)ψ(En2)

N
. (18)

We claim that the calculations in Steps 1-3 indeed yield d̃K(E1, . . . , EN ). By symmetry, the sum
over all n1 6= n2 is equal to twice the sum over all n1 < n2, hence

d̃K(E1, . . . , EN ) = −N
K−1

〈N〉K
K(K − 1)

2

∑
1≤n1<n2≤N

(
1

2
− n2 − n1

N

)K−2
ψ(En1

)ψ(En2
).

Since the leading factor coincides with the factor in Step 3 of the algorithm (note that 〈N〉K =

N ·
∏K−1
n=1 (N − n)), it only remains to show∑

1≤n1<n2≤N

(
1

2
− n2 − n1

N

)K−2
ψ(En1

)ψ(En2
) = S̃.
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This can be done by summing over n1 and n2 separately and by using the binomial theorem to

expand
(
1
2 −

n2−n1

N

)K−2
:

∑
1≤n1<n2≤N

(
1

2
− n2 − n1

N

)K−2
ψ(En1

)ψ(En2
)

=

N∑
n2=2

n2−1∑
n1=1

K−2∑
j=0

(
K − 2

j

)(
1

2
− n2
N

)j (n1
N

)K−2−j
ψ(En1

)ψ(En2
),

which equals S̃ after rearranging the order of summation. Hence the algorithm based on Steps 1-3
indeed returns d̃K(E1, . . . , EN ) and thus approximates the rescaled K-depth.

The runtimes of the K-depth are compared under various sample sizes up to 100 for K ∈ {3, 4, 5}
in Figure 2. The median of the runtimes (in milliseconds) from one hundred measured repetitions are
considered. Since (nested) loops are extremely inefficient when using the software R, we implemented
the naive algorithm in C++ and only used a wrapper function to call this code in R. However, even
with this speedup via a C++ implementation, the difference between the performances of the naive-
and the linear implementation is still immense. Therefore, the runtimes presented in Figure 2 are
given on a logarithmic scale (with base 10). The three plots representing the 3-, 4-, and 5-depth
each contain the logarithmic runtime of the naive implementation in black (solid lines) and the one
of the linear implementation in red (dashed lines). As expected from an algorithm with runtime
Θ(NK), the effort to calculate the K-depth with the naive implementation increases significantly
as K gets larger. On the one hand, the graphics show this increase. On the other hand, differences
between the log-runtimes from the linear implementation can barely be seen since it has linear time
complexity for all K. The linear implementation should be chosen especially for high sample size.
These results confirm our theoretical analysis of the time complexity.

Since the linear implementation only yields the K-depth up to an asymptotically negligible
error, we end the section with a discussion on how large this error is. To this end, we consider an
input E1, . . . , EN satisfying (A1) and (A2). The aim is to study the absolute difference between
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Figure 2: Logarithms of the runtimes for K-depth with K ∈ {3, 4, 5} (black solid lines: naive C++
implementation, red dashed lines: linear implementation).
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the exact rescaled K-depth given in (3) and the value of the linear implementation given in (18).
More formally, if XN,K denotes the exact rescaled K-depth and YN,K denotes the value of the
linear implementation then the aim is to study the behavior of the random variable |XN,K −YN,K |.
Figure 3 contains box plots of this absolute difference for K ∈ {4, 5} and various values of N
based on one hundred repetitions of XN,K and YN,K . These box plots reveal that, unless N
is fairly small, the absolute difference between the exact K-depth and the value of the linear
implementation is negligibly small. Hence, in order to avoid larger errors, one should only use the
linear implementation for sufficiently large N , e.g. N ≥ 25 for K = 4 or N ≥ 50 for K = 5.

Remark 3.1. An alternative approach to avoid any errors is to directly use

d̃K(E1, . . . , EN ) := − NK

〈N〉K
K(K − 1)

4

∑
1≤n1 6=n2≤N

(
1

2
− |n2 − n1|

N

)K−2
ψ(En1)ψ(En2)

N

as a test statistic rather than the rescaled K-depth itself. This statistic still converges in distribution
to ΨK(W ) if assumptions (A1) and (A2) hold. Hence it has the same asymptotic quantiles as the
rescaled K-depth. Although its usefulness for applications is not immediately apparent, its efficient
computation via the linear implementation makes it more practical to use.

3.2 Quantiles and limit distribution

Unfortunately, it is unclear how to compute the quantiles of the limit distributions ΨK(W ) in
Theorem 2.2 analytically. We therefore add simulations to approximate their quantiles and also
provide estimations of their density functions to highlight some of the properties of ΨK(W ). Since
simulating a Brownian motion and computing the integral of its transformation numerically still
leads to a (small) approximation error, we decided to take the simpler route of simulating the
K-depth of a large number N of residuals E1, . . . , EN instead.

More precisely, for K ∈ {3, 4, 5}, we consider 106 realizations of the K-depth of realizations
from N = 500 uniformly distributed independent random variables in [-1,1] using the linear imple-
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Figure 3: Absolute errors between the exact rescaled K-depth and its approximated version.
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Figure 4: Density plots of the asymptotic distribution of the K-depth for K ∈ {3, 4, 5}.

mentation. Note that the uniform distribution is a somewhat arbitrary choice among distributions
that satisfy (A2). In Figure 4, the estimated densities of ΨK(W ) are presented by using those 106

realizations. The kernel density estimation is done by the R-function density() with the default

settings. The distributions are asymmetric and have the upper bound K(K−1)
2K

, see Leckey et al.
(2019). Also note that the distributions tend to be more concentrated around zero as K increases.

Table 1 shows various α-quantiles of the asymptotic distribution. According to the estimated
densities, the quantiles are closer to zero for higher K. Assuming that N is sufficiently large, these
quantiles can be used as critical values for testing hypotheses with the K-depth, see also Leckey
et al. (2019).

Table 1: α-quantiles qα,K of the limit distribution for K ∈ {3, 4, 5}.

α 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99
qα,3 -2.200 -1.645 -1.222 -0.800 0.557 0.603 0.633 0.658
qα,4 -1.637 -1.234 -0.931 -0.624 0.470 0.525 0.563 0.597
qα,5 -1.122 -0.856 -0.653 -0.445 0.349 0.396 0.430 0.463

Note that for small sample sizes, the asymptotic quantiles can be a poor approximation of the
correct critical values for tests based on the K-depth. In this case, one should rather compute the
exact quantiles of the rescaled K-depth N(dK(E1, . . . , EN ) −(1/2)K−1) by considering all possible
2N sign constellations in order to compute all point masses of the distribution. This can also be
done for the test statistic in Remark 3.1 which has a slightly different distribution than (3) although
both converge to the same asymptotic distribution if (A1) and (A2) hold. In particular if K is large,
we recommend to always use the test statistic in Remark 3.1 instead of the exact K-depth, even
for small sample sizes N , in order to speed up the computation significantly.
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4 Conclusion

The K-depth is a general tool for analyzing residuals where an ordering is possible. It is not limited
to time series and models with univariate regressors since approaches of ordering multivariate data
exist, see Horn and Müller (2020). Due to the fact that the K-depth is distribution-free under
independent residuals with median zero, we do not need additional distributional assumptions on
the errors of the model and thus we can use it for testing hypotheses in many situations. The
sign function in the K-depth robustifies the test statistic against outliers, and moreover, changes
of variances do not effect the test statistic.

For large sample sizes N , there are two problems: the Θ(NK) complexity of calculating the
K-depth, and the asymptotic distribution of the test statistic is necessary to get critical values of
the test. This paper considers a derivation of the limit distribution of the K-depth by improving
and generalizing the proof idea in Kustosz et al. (2016a) for K = 3. Moreover, the derivation of
the asymptotics provides a possibility to compute an asymptotic equivalent version of the K-depth
in linear time. Simulations indicate that the differences between the exact and asymptotic version
of the K-depth are already for medium sample sizes irrelevantly small.

Further research will consider how the parameter K effects the power of the tests depending
on various models. In Kustosz et al. (2016a) and Leckey et al. (2019), we have already done such
simulation studies. Now, we have the possibility for much faster computations.

Note that the sign function ψ in the random walkWN in (2) can be replaced by any other score
function and the convergence of ΨK(WN ) to ΨK(W ) would still hold as long as Donsker’s invariance

principle is still applicable. Hence one could also consider a test statistics ΨK(W̃N ) where W̃N is

defined as in (2) but with a different score function ψ̃ than the sign function ψ. Considering ranks

or other scores for ψ̃ is a work in progress. Moreover, the independence assumption on the residuals
can be weakened, see Remark 2.4. Other aspects, we look ahead to, concern the investigation of
tests for independence based on the K-depth, the influence of the ordering in the multivariate case,
or studies on the robustness, breakdown points etc.

Generally, the idea to define a new depth concept by the asymptotically equivalent representation
in Lemma 2.8 (see Remark 3.1) should be mentioned. This can also lead to other depth concepts

by replacing ΨK with a different functional Ψ̃. This can also be combined with different choices for
the score function ψ̃ as mentioned in the previous paragraph. Hence the test statistic in Remark 3.1
can be considered as an example of a general framework for defining residual-based tests where the
robustness can be adjusted by the choice of the score function ψ̃ and a model-based choice for Ψ̃
can help increasing the power of the test.
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