
EXCLI Journal 2019;18:1104-1106 – ISSN 1611-2156 
Received: December 19, 2019, accepted: December 20, 2019, published: December 20, 2019 

 

 

1104 

Letter to the editor: 

LIVER FIBROSIS CAUSES PERIPORTALIZATION OF  
LOBULAR ZONATION  

 
Abdellatief Seddek 
 
Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South 
Valley University, Qena, Egypt, E-mail: abdellatief-shakir@vet.svu.edu.eg 
 
 
http://dx.doi.org/10.17179/excli2019-2078 

This is an Open Access article distributed under the terms of the Creative Commons Attribution License  
(http://creativecommons.org/licenses/by/4.0/). 

 

 
Dear Editor, 
 

The human liver consists of approximately one million liver lobules, which are known to 
show metabolic zonation (Braeuning et al., 2006; Halpern et al., 2017; Saito et al., 2013). Zo-
nation is the spatial separation of different metabolic pathways along the porto-central axis of 
the liver lobule (Gebhardt and Matz-Soja, 2014; Kietzmann, 2019; Godoy et al., 2013). For 
example, many phase-I-metabolizing enzymes are located in the center of the liver lobule 
(Schenk et al., 2017; Sezgin et al., 2018; Ghallab, 2017). The advantage of this arrangement is 
that many xenobiotics are detoxified before they are drained into the central vein and reach the 
general circulation (Hewitt et al., 2007; Bartl et al., 2015; Schliess et al., 2014). However, some 
compounds are metabolically activated by pericentrally expressed liver enzymes (Gebhardt et 
al., 2003; Bolt, 2017; Hengstler et al., 2000). This leads to a pericentral pattern of necrosis 
induced by many hepatotoxic compounds that require metabolic activation (Hammad et al., 
2017; Hoehme et al., 2007; 2010).  

Liver fibrosis is caused by chronic liver damage that leads to inflammation and scarring 
(Pimpin et al., 2018; Weiskirchen and Tacke, 2016; Gressner and Weiskirchen, 2006; Leist et 
al., 2017). Currently, little is known how liver fibrosis influences lobular zonation. In a recent 
issue of Cells, a study has been published, demonstrating that liver fibrosis causes ‘periportali-
zation’ of lobular zonation (Ghallab et al., 2019). Periportalization means that the entire liver 
lobule adopts a periportal gene expression pattern, including the pericentral zone. To study this 
phenomenon, RNA-sequencing data were generated using fibrotic livers of mice caused by 
repeated CCl4 administration (Ghallab et al., 2019). Interestingly, pericentral genes were en-
riched among genes downregulated by CCl4, while periportal genes were enriched among the 
upregulated genes. This pattern of periportalization was confirmed by immunostaining. It also 
occurred when liver fibrosis was induced by a mouse model of obstructive cholestasis (Ghallab 
et al., 2019). The advantage of a periportalized lobular zonation is that hepatotoxic xenobiotics 
that require metabolic activation by cytochrome P450 enzymes cause less damage to the liver. 
This has been shown by the authors using the example of acetaminophen (Ghallab et al., 2019). 
However, this advantage is obtained at the expense of suboptimal fine-tuning of physiological 
metabolic functions, e.g. detoxification of ammonia (Ghallab et al., 2016). It will be interesting 
to learn in future, whether periportalization of lobular zonation demonstrated in fibrotic mouse 
livers also occurs in human liver fibrosis.  
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