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Abstract. In this work we present a new approach for coupled CFD-
Optics problems that consists of a combination of a Finite Element
Method (FEM) based flow solver with a ray tracing based tool for op-
tic forces that are induced by a laser. This is a setup that is mainly
encountered in the field of optical traps. We combined the open-source
computational fluid dynamics (CFD) package FEATFLOW with the ray
tracing software of the LAT-RUB with this task in mind. We benchmark
and analyze the solver first based on a configuration with a single spher-
ical particle that is subjected to the laser forces of an optical trap. The
setup is based on an experiment which is then compared to the results
of our combined CFD-Optics solver. As an extension of the standard
procedure to simulate such problems we present a method with a time-
stepping scheme that contains a macro step approach. The results show
that this macro time-stepping scheme provides a significant acceleration
of the standard procedure while still maintaining good accuracy. A sec-
ond configuration is analyzed that involves non-spherical geometries such
as micro rotors. We describe a procedure that is able to efficiently and
accurately calculate optical forces with surface triangulations as input
geometries. Then we proceed to compare simulation results of the final
angular velocity of the micro rotor with experimental measurements.

Keywords: FEM - Optical Traps - Ray tracing - Multi-Grid Solvers -
CFD - Micro-Scale.

1 Introduction

The main topic in this work is the implementation, benchmarking and numeri-
cal analysis of a combined CFD-Optics solver for problems that involve a fluid
component, a rigid body component and an optics component that usually is a
laser used as i.e. an optical trap. Optical traps or optical tweezers are devices
that use a laser to manipulate an object (usually on a micro-scale). The range
of application for these devices is from biological and medical applications to
their use in micro technology. As one can easily infer from these applications a
simulation with any real world relevance should be able to handle geometries
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that are non-spherical and can in principle be of any geometrically complex
shape. Therefore, in the following sections we show how non-spherical geometry
can be included in the proposed solver. A typical application example of optical
tweezers with non-spherical geometry is the combination of several differently
shaped parts in a micro-assembly process. Furthermore, optical traps can be
used to induce rotation of micro rotors or to power micro pumps. The analyzed
phenomena in this work appear on a micro-scale to up to 20 microns. In this
kind of small scale environment it is advisable to take a look at the validity
of the underlying theory of the employed Navier-Stokes fluid solver. In recent
studies [I] it could be shown that Navier-Stokes solvers can still produce accu-
rate results in a range of 80 nanometers given certain side conditions regarding
the Reynolds number and the domain dimensions. In another publication [4]
the FEATFLOW solver has already proven its ability to accurately predict fluid
phenomena on a scale of several hundreds of microns. Concerning the general
fluid flow configurations we are dealing with low Reynolds number, laminar flow
setups for which the FEATFLOW solver also has been shown to produce accu-
rate results for various fluid [6I7J5] phenomena as well as for the prediction of
hydrodynamic forces flow in the context of sedimentation problems or particu-
late flow simulations [2]. The coupling of the CFD solver with the ray tracing
optics solver was done in order to enhance existing numerical simulation proce-
dures for optical traps or tweezers. Often simulations for these kind of problems
are done in a vacuum whereas in real applications of the technique the objects
are always embedded in a surrounding medium (i.e. a fluid such as water). The
downside of this approach is that the dampening friction forces of the fluid are
not taken into account which would result in such a simulation overestimating
i.e. the velocities of the particles involved. A simple improvement technique for
this simulation approach would be to estimate the hydrodynamic forces based on
the Stokes model which in case of laminar flows with spherical particles expresses
the hydrodynamic friction as F;, = 6wnRv, where 7 is the fluid viscosity, R the
radius of the sphere and v the flow velocity relative to the particle. This method
of introducing hydrodynamic forces into the simulation has severe limitations
though. The restriction to spherical geometries prohibits the application to ad-
vanced configurations where more complex geometries are common and where
not only translational displacement is induced by the optic forces, but also rota-
tion. In case of a rotating non-spherical geometry the resulting velocity will be
different over the surface of the geometry so that the simple Stokes model is not
applicable in this case. Furthermore, a hydrodynamics simulation component
that is based on the Stokes model would be a one-way interaction where the
fluid force has an influence on the particle, but the particle motion would have
no influence on the fluid flow. This is why in our approach a two-way coupling
is established that is based on the direct numerical evaluation of the hydrody-
namic forces. Apart from the two-way interaction of fluid and laser forces other
advantages of using the Fictitious-Boundary Method (FBM) are the ability to
include non-spherical geometry and to resolve flow features which allows to gain
a better understanding of the involved microfluidics.
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2 Methodology

2.1 Coupling of the CFD and Ray Tracing Solvers

The first step in the implementation of the combined solver is to define an
interface that allows us to use the result of either solver in the other so that they
are coupled in both directions. Thus, we chose an interface that communicates
the result of the optics solver to the CFD solver where it is included as an
additional force term F, in the Newton-Euler equations which are solved in the
particle motion step of the CFD solver. In a single step of this coupling approach
we first step the fluid solver, then we update the hydrodynamic forces F; with
the new fluid solution, then in a step of the ray tracing solver the current optic
forces are computed so that we can apply the total force from this time step
to the particle and update its velocity. This velocity we then set as a Dirichlet
boundary condition in the CFD solver which establishes the two-way coupling.
Formally, the approach can be described as follows:

Jdu
pf<at+u-Vu>—V-0:O (1)
After execution of a Navier-Stokes step (see [I) we evaluate the hydrodynamic
forces (see[2)) that are acting on the particle in the current time step:

Fh:—/QO"VOZd.Q7 Th:—/g(x—xp)x(a-Va) ds. (2)

For further details on how to solve eq. 2| numerically we refer to the publication
[2]. The next step of the combined solver is the calculation of the optic forces
by the ray tracing method which gives us the optic force F, and the torque T,
as a result. With these quantities we can compute the motion of the particle by
the Newton-Euler equations:

ov
M=—-F = (AM) g+ Fp + Fo+ Fey
ow
1 8tp +wp x (Iwy) = Th + Ty + Teor (3)

We can introduce the force terms F;, for the hydrodynamic force, T}, for the
hydrodynamic torque as well as their analogons for the optics contribution F,
and T, into , additionally we can add any forces F.,;, T, that may arise
from particle collisions here. Thus, we can update the velocity v, and the angular
velocity w, of the particle in the next step of the solver :

Fh + Fo + Fcol)

t+1 _ ot
v, =v,+ At ( m,
Wit = w! + AL [T (Th + To + Teal)] (4)

After this step of the solver the coupling to the fluid solver is established by
setting the updated linear and angular velocity of the particle as a Dirichlet
boundary condition:

u(x) = vy, + wp X (x —xp) (5)
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2.2 Computational Aspects of the Coupling

In this particular case of coupling two separate software packages, we were deal-
ing with a MPI-parallel code based on domain decomposition in case of the
CFD-solver and in case of the ray tracing solver for optic forces — a serial code.
Although there exist several efficient methods for parallelization of ray tracing
codes we opted to use the serial state of the software. The reason for this choice
being that although plenty of parallelization schemes exist it is hard to find
a scheme that truly harmonizes well with the domain decomposition approach
used by the CFD-solver which means a scheme that uses the given resources
in an effective manner where the used compute resources do not remain (par-
tially) idle while one of the other components does its work. Furthermore, we
realized that in a step of the combined solver the CFD-solver clearly requires
the bigger share of the total computation time. Quantitatively this would be at
least 90% of the total time for a time step, of course depending on the amount
of cores used in the parallel computation, but for the usual size of a compute
job in the scenarios investigated in this work this relation holds true. Because of
this we considered the use of a serial computation step in the combined solver
an acceptable circumstance that does not pose a significant performance hit to
the overall simulation procedure. In the practical realization this was done by
introducing the serial computation step after the hydrodynamics calculation and
then distributing the solution of the ray tracing solver to the MPI-processes of
the CFD-solver.

2.3 Test Case for Spherical Particles and Comparison with
Experimental Data

As a validation case for the combined solver described in the preceding section
we decided to start with a simple case of a spherical particle. We conducted an
experiment and measurements as basis for the validation case. In the experiment
we analyzed the behavior of a particle on a scale of several microns under the
influence of optical forces that are applied by an optical trap. We trapped a
particle in the optical trap and then released it by turning off the laser. Without
the optical trap holding the particle in place it begins to slowly move away from
the center of the trap because of several factors of the surrounding fluid medium
i.e. Brownian motion. As soon as the particle had moved away a micron from
the center of the trap, the laser was again turned on and we measured the time
it takes until the particle reaches the center of the optical trap again. This setup
we then replicated in the combined CFD-Optics solver and we compared the
simulated results with the experimental data (see section [3)).

2.4 Ray Tracing for Non-Spherical Particles

Apart from configurations with spherical micro-particles we aimed at presenting
a method that is capable of handling configurations involving geometrically more
complex objects because for many practically relevant applications a restriction
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to spherical shapes is not sufficient. Although it is possible to describe a lot
of geometries used in i.e. micro-assemblies by an analytical description a more
general approach to handling geometries is desirable. Because of this we chose to
use surface triangulations as geometry description which are employed widely in
ordinary (graphics related) ray tracing application and are well studied. Apart
from a basic algorithm for optic force computation via the ray tracing approach,
we added an extended procedure that makes use of an octree decomposition of
the geometry/domain as an acceleration structure. With an octree data structure
it is possible to reduce the number of expensive ray-triangle intersection tests
by first testing the ray for intersection with the surrounding hull box of the
geometry. In case of an intersection the hull box is recursively refined in an
octree fashion until we only need to test a minimal number of triangles for
intersection with the ray. For our purposes a recursive refinement of 5 levels was
found to be most effective, for details we refer to section [3].

2.5 Non-Spherical Test Case: Micro Rotors

Finally, we put our solver to the test in a realistic application with non-spherical
geometry. As with the first test configuration we set up an experiment to that
we could compare our simulation results. In the experiment a micro-rotor was
placed in a surrounding fluid medium. An optical tweezer was used to induce a
rotation of the micro-rotor. We then measured the final angular velocity winar of
the rotor. The final angular velocity wyinq Will vary depending on the power of
the laser. Another way to influence the final angular velocity is by changing the
rotor geometry. To introduce this geometry aspect into the experimental config-
uration, micro rotors with different rotor blade angles were used. We measured
for different power settings of the optical tweezer the final angular velocities that
the rotor would achieve. The process was then repeated for a micro rotor with a
different rotor blade angle. For the simulation micro rotors were modeled by sur-
face triangulations and the angle of the rotor blades was adjusted in accordance
to the experiment.

3 Results

3.1 Spherical Particle Test Case and Comparison with Experiments

For the first test case introduced in the previous section we conducted an exper-
iment with a spherical particle to which we applied an optical force. The particle
was made of polymethyl methacrylate (PMMA), a material which has a density
pp = 1.18 [ g 3} The particle was embedded in a surrounding medium of water

which was modeled in the simulation as a fluid with density py = 103 {%} and

viscosity i = 1073 [Pa - s]. The radius of the particle was 2 [um] and the dimen-
sions of computational domain were 20 x 20 x 20 [um, um, um]. As boundary
conditions for the simulation we applied symmetry boundary conditions to all
sides of the domain. For the simulation the computational domain was covered



6 R. Miinster, O. Mierka, S. Turek, T. Weigel, A. Ostendorf

with 262144 hexahedral cells which in the FEM-discretization are realized using
the Q2P1-Element pair. In accordance to the experiment the particle was placed
one micron away from the center of the optical trap which in the simulation
coincides with the center of the optical trap. The exact setup of the case is sum-
marized in table [I, The particle traveled a total distance of 1.0978 microns in
the experiment in a time of 0.0292 seconds where the 1 micron distance was
passed in 0.0259 seconds. The laser used in the experiment was modeled as a
Gaussian ray with a wave length A of 532 [nm], a numerical aperture of 1.2, an
index of refraction of 1.33 for the surrounding medium and the power of 0.2 [W].
A summary of the optics parameters is given in table [2| The time step size was

set to AT = le — 7 in both simulation components.

Fluid density py [

kg ] Particle density pys [ﬁ]

Fluid viscosity u[Pa - s]|Radius [pm)]

m3.
1000 1.18 0.001 2
Table 1: Fluid and particle parameters
NA|Index of Refraction|Wave length [nm]|Power [W]
1.2 1.33 532 0.2
Table 2: Optics parameter
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Fig. 1: Position change induced by optical forces

0.04

In figure [I] the simulation trajectory of the spherical particle over time is
shown. The point of arrival at the center of the optical trap is highlighted with a
marker. While in the simulation the particle arrived at the center of the trap af-
ter 0.0266 seconds whereas this time in the experiment was 0.0259 which gives a
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relative error of 2.7%. Although we were satisfied with the accuracy of the result,
we considered improvements with regard to the computation time necessary. The
difficulties regarding the computation time can be explained by the micro-scale
and the low Reynolds number configuration of the case. These circumstances
made it necessary to use a very small time step of At = le — 7 in order to pre-
vent convergence problems of the solver and inaccuracies in the hydrodynamic
force computation. This means that although the simulated time in this case
was only ~ 0.03s it took 300000 time steps of the solver to complete the task.
This actual simulation time in our parallel computation depends on the num-
ber of MPI-processes used and on the number of elements in the computational
domain. When using a job size of 16 MPI-processes this would result in a final
computation time of over a week. As an improvement to the usual time stepping
method we tried a macro time-stepping scheme. The laminar flow property of
the case and similar cases of microfluidics allows us to assume that there will not
be rapid jumps in the velocity profile of the flow field and consequently of the
hydrodynamic forces. This makes it possible to take a larger time step with the
current particle velocity for the particle simulation in the Newton-Euler equa-
tions and then computing updated hydrodynamics for the new position of the
particle. Thus, the macro time step is a step of just the particle solver component
of the CFD-solver with a larger time step. Following the macro time step is a
series of iterations of the regular combined CFD-Optics solver with the smaller
time step in order to compute the current forces acting on the particle and its
velocity more accurately and then doing another macro step. In the iterations of
the combined CFD-Optics solver the velocity of the particle gets corrected, but
another question is how many steps of the regular solver need to be performed
before another macro step can be made. We employed two criteria in our simula-
tions, the first one is a fixed number of iterations between the macro time steps.
As a second criterion, we kept the solver iterating until the change in the hy-
drodynamic forces from one time step to the next fell below a certain tolerance.
The results of the simulation using the macro time step are shown in figure [2] In
the macro time step case the particle reached the center of the optical trap after
0.0253 seconds using 77 macro time steps and a number of 200 iterations of the
regular solver with a time step of AT = le — 7. With the knowledge that the
particle moves faster in the beginning of the simulation and slower towards the
end, we adapted a smaller macro time step in the beginning of the simulation
and a larger one during the flatter movement curve of the particle. The range
of the macro step size was chosen adaptively in the range of [0.0001,0.0005].
A total number of 23100 time steps were computed using the macro time step
scheme which resulted in a significant improvement with regard to the overall
computation time (using the same number of MPI-processes) compared to the
standard time stepping scheme where 300000 time step were needed. Concern-
ing the accuracy of the macro time stepping scheme we refer to figure 2l We
see that in the curve of the macro time stepping scheme the center of the trap
is reached in 0.0253 seconds. With regard to the experiment this would be a
relative error of 2.3%. This however warrants a closer inspection as we know
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that with decreasing size of the macro time step the solution converges against
the solution of the regular time stepping scheme. As the regular time stepping
scheme showed a slightly higher value than the experiment, we know the nom-
inally smaller error of the macro time stepping scheme is not due to superior
accuracy, but due to the fact that a larger time step is taken for performance
reasons, so that the macro time step approach results in a solution that is smaller
than the experimental value and incidentally closer. It remains to note that both
approaches produced results within 2 — 3% of the experiment. The macro time
stepping scheme can be classified as an explicit Euler stepping scheme and thus
shares the advantages and disadvantages of these kind of methods. As can be
seen from the trajectory curve the method overestimates the actual velocity in
the steep part of the curve which can be compensated by reducing the macro
time step size and it also shows a steeper drop of velocity in the dropping part
of the curve. Furthermore, despite of the particle remaining at the center of the
optical trap with the macro time stepping scheme the particle slightly oscillates
around the center of the trap.

MacroStep

0.0000- ® Sm - I

® Exp

—0.0002 -

—0.0004 -

posx[mm]

—0.0006 -

—0.0008 -

—0.0010 ~ ' ' ' ' l '
0.000 0.005 0.010 0.015 0.020 0.025 0.030

Time[s]

Fig. 2: Position change induced by optical forces (macro step and regular stepping
method)
3.2 Ray Tracing Solver for Non-Spherical Geometries

Before the routines for force calculation on non-spherical objects with trian-
gulated surfaces could be integrated into the overall concept, the underlying
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routines first had to be verified. For this purpose, a comparison with wave opti-
cal solutions [3] was carried out. In addition, the results were compared with a
geometric optics approach in which the intersections between beam and surface
were calculated analytically. A comparatively small particle size was chosen to
investigate the validity of the method at its limits . The result is shown in Fig.
For better comparison, the x-component of the trap efficiency

Fa:CO
= 5 (6)
U

o

is depicted. Here cg is the speed of light in vacuum, F, the xz-component of
the force vector, P the power of the laser and ny the index of refraction of
the surrounding medium. The particle was moved perpendicular to the light
ray direction. A good agreement with the wave-optical solution could be shown
despite the fact that the particle radius of 2 is relatively small for a geometric
optics approach. Furthermore, the numerical aperture (NA) of 1.02 can also
be considered relatively small which as a consequence leads to a bigger ray
diameter in the focus. A geometric optics approach produces a more accurate
result the larger the relation of particle radius rp to the beam waist radius wy
is. In the other cases in this work we set a value of NA=1.2 with significantly
higher particle sizes. Considering the influence of the number of triangles on the
result, we see that already for 90 triangles which corresponds to a resolution
of 36° a good agreement with the analytical solution as well as with the wave
optical solution is reached. Furthermore, an important parameter is the number
of rays needed in the optical force computation to achieve an accurate result.
For spherical particles a number of a few thousand rays is sufficient to arrive at
the correct solution. For geometrically more complex shapes the number of rays
used has to be increased. In the case at hand a number of 10.000 rays provided
a basis for accurate and stable computations. An additional consideration is the
number of ray reflections used in the computations. For efficiency reasons the
aim is to keep it as low as possible and for accuracy reasons to keep it as high as
necessary. In our case the beam intensity after three reflections has diminished so
far that further reflections can be neglected. An important application of optical
tweezers could be the use of micro rotors in microfluidics as a way of transporting
fluids. In theoretical considerations analysis of the resulting torque plays a key
role. In figure [d) an exemplary result for a torque computation induced by optical
tweezers on a micro rotor is shown. For this example a more realistic numerical
aperture of 1.2 was assumed. In the figure the three different components of
the torque vector are plotted. As can be expected with incoming rays from z-
direction the z- and y-components of the torque force are near zero when the
rotor is in the center of the optical trap focus. This way in principle a stable
rotor positioning in the focus of the laser is possible which is highly desirable
when used as an active component of a microfluidic system. In the following
we will look at some theoretical considerations of micro rotors in optical traps
and construct a corresponding experiment which we then try to replicate in a
simulation.
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3.3 Numerical Simulation of Micro Rotors

An experiment was conducted for the final test case of our combined CFD-
Optics solver. In the experiment we triggered rotation of a micro rotor by using
optic forces. The micro rotor was embedded in a surrounding medium of a wa-
ter/tenside mixture. The properties of the mixture are almost identical with
those of water and its viscosity was determined to be p = 1.1 [mPa - s] and in
the corresponding simulation we set the fluid density to py =1 [g/ cm3]. The
material of the micro rotor as well had a density of protor = 1 [g / cm3]. We used
rotor blades that are attached at different angles in order to get a dependency on
the geometry into the configuration. A real micro rotor is shown in figure [f]and a
surface triangulation of a micro rotor used in the simulation is shown in figure [6}
We used attachment angles of 45° and 60° in the experiment as well as in the sim-
ulation. The dimensions of the rotor are 22.7x21.0 x 11.0 [um, um, um] so that it
could be embedded in a computational domain of size 30 x 30 x 15 [um, pm, pm].
The micro rotor was placed in the center of the computational domain and on all
domain boundaries we prescribed symmetry boundary conditions in the CFD-
solver. The computational domain was covered with a hexahedral hierarchical
mesh which on the highest refinement level had a resolution of about one million
elements. Thus, an accurate resolution of the rotor geometry could be achieved
which is crucial to the accuracy of the hydrodynamics force computation and in
capturing the influence of the different rotor blade angles.

Fig. 6: Computational models of the rotors (left: 45°, right: 60°)

We show the results of the simulation compared to the experimental data in
figure m where the final angular velocity wyine depending on the power of the
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laser is displayed. We observe that there is a linear relation between the laser
power and the final angular velocity wyinq. We can see that this linear relation
is reproduced correctly by the simulation. Furthermore, the relation between the
60° rotor and the 45° rotor where the 60° rotor consistently attains a higher final
angular velocity for all power settings of the laser is predicted correctly by the
simulation. When looking at the value of the final angular velocity, we see that
the simulation computes a higher value than was recorded in the experiment.
A possible explanation for the discrepancy is that the surface triangulation of
the rotor was not exactly matching the rotor geometry in the experiment. It is
worth noticing though, that the computed values are consistently higher in the
simulation and the shear relation between the 60° rotor and the 45° curves show
a good agreement. We can conclude from these simulations that in this form a
highly accurate numerical solution could not be computed, but that qualitatively
a good predictor for the relevant phenomena could be computed that was able
to reproduce geometry dependent correlations.

250 -
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=y~ 45° Rotor Exp .
® 60° Rotor Sim
200 - .
® 45° Rotor S5im
.".
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E | ) Y
- =T e L
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Fig. 7: Comparison between experiment and simulation

4 Conclusion

In the presented work we developed a combined CFD-Optics solver for configu-
rations with spherical as well as non-spherical geometries. The coupling between
the CFD-Solver and the ray tracing optics solver was done by injecting a ray
tracing step after the hydrodynamics computation step of the CFD-Solver and
then adding up the forces. The combined solver was put to the test in differ-
ent benchmark configurations for which we generated experimental data. As a
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consequence of our findings in the optic trap setup with a spherical particle
we enhanced our simulation procedure by a macro time stepping scheme which
could greatly reduce computation time while maintaining good accuracy.

Furthermore, we pursued our second goal which was the inclusion of non-
spherical geometries in order to simulate practically relevant configurations. For
the optics component of the combined solver an enhanced ray tracing solver
based on the octree algorithm was implemented. This approach enabled us to
calculate optic forces for surface triangulations with a large number of triangles
in an efficient and accurate manner. As test case for non-spherical geometries
we conducted an experiment with micro rotors. In this benchmark configuration
the solver proved to be able to predict the relevant features and phenomena of
the case.
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