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A B S T R A C T

In this thesis, a contribution to explainable artificial intelligence is made. More specifi-
cally, the aspect of artificial intelligence which focusses on recreating the human percep-
tion is tackled from a previously neglected direction. A variant of human perception is
building a mental model of the extents of semantic objects which appear in the field of
view. If this task is performed by an algorithm, it is termed image segmentation. Recent
methods in this area are mostly trained in a supervised fashion by exploiting an as exten-
sive as possible data set of ground truth segmentations. Further, semantic segmentation
is almost exclusively tackled by Deep Neural Networks (DNNs).

Both trends pose several issues. First, the annotations have to be acquired somehow.
This is especially inconvenient if, for instance, a new sensor becomes available, new do-
mains are explored, or different quantities become of interest. In each case, the cumber-
some and potentially costly labelling of the raw data has to be redone. While annotating
keywords to an image can be achieved in a reasonable amount of time, annotating ev-
ery pixel of an image with its respective ground truth class is an order of magnitudes
more time-consuming. Unfortunately, the quality of the labels is an issue as well be-
cause fine-grained structures like hair, grass, or the boundaries of biological cells have
to be outlined exactly in image segmentation in order to derive meaningful conclusions.
Second, DNNs are discriminative models. They simply learn to separate the features of
the respective classes. While this works exceptionally well if enough data is provided,
quantifying the uncertainty with which a prediction is made is then not directly possi-
ble. In order to allow this, the models have to be designed differently. This is achieved
through generatively modelling the distribution of the features instead of learning the
boundaries between classes. Hence, image segmentation is tackled from a generative
perspective in this thesis. By utilizing mixture models which belong to the set of gen-
erative models, the quantification of uncertainty is an implicit property. Additionally,
the dire need of annotations can be reduced because mixture models are conveniently
estimated in the unsupervised setting.

Starting with the computation of the upper bounds of commonly used probability
distributions, this knowledge is used to build a novel probability distribution. It is based
on flexible marginal distributions and a copula which models the dependence structure
of multiple features. This modular approach allows great flexibility and shows excellent
performance at image segmentation. After deriving the upper bounds, different ways to
reach them in an unsupervised fashion are presented. Including the probable locations
of edges in the unsupervised model estimation greatly increases the performance. The
proposed models surpass state-of-the-art accuracies in the generative and unsupervised
setting and are on-par with many discriminative models. The analyses are conducted
following the Bayesian paradigm which allows computing uncertainty estimates of the
model parameters. Finally, a novel approach combining a discriminative DNN and a
local appearance model in a weakly supervised setting is presented. This combination
yields a generative semantic segmentation model with minimal annotation effort.
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K U R Z FA S S U N G

In dieser Arbeit wird ein Beitrag zur Interpretierbarkeit von künstlichen Intelligenzen
vorgestellt. Der Teilaspekt der künstlichen Intelligenz, der sich der Nachbildung der
menschlichen Wahrnehmung widmet, wird von einer bisher vernachlässigten Richtung
aus neu betrachtet. Die menschliche Wahrnehmung erstellt ein mentales Modell der
Größe von semantischen Objekten, die ein Mensch sieht. Wird diese Aufgabe von einer
Maschine durchgeführt spricht man von einer Bildsegmentierung. Aktuelle Ansätze in
diesem Bereich nutzen nahezu ausschließlich tiefe neuronale Netze, die mit riesigen
Mengen an annotierten Daten überwacht trainiert werden.

Dies hat jedoch zur Folge, dass sobald neue Sensoren, neue Domänen oder schlicht
andere Größen von Interesse sind, das mühsame Annotieren der Daten erneut durchge-
führt werden muss. Eine Annotation durch Schlüsselwörter kann unter Umständen
in einem zeitlich vertretbaren Rahmen durchgeführt werden. Allerdings werden zum
Trainieren von Segmentierungsnetzen Annotationen für jedes Pixel eines Bildes benötigt.
Außerdem ist die Qualität der Annotation im Auge zu behalten, da nur so feine Struk-
turen wie Haare, Gras oder die genauen Grenzen biologischer Zellen erhalten bleiben.
Weiterhin sind tiefe neuronal Netze diskriminative Klassifikatoren und lernen die Daten
der unterschiedlichen Klassen zu trennen. In der Praxis funktioniert dieser Ansatz sehr
gut, wenn genug Trainingsmaterial vorhanden ist. Allerdings ist in diesem Szenario
keine Angabe von Unsicherheiten bei der Klassifikation möglich. Um dies zu erreichen
muss die Verteilung der Daten aller Klassen geschätzt werden. Eine Methode, die das
ermöglicht sind Mischverteilungsmodelle, die generativ die Verteilung der Daten im
Raum mit Wahrscheinlichkeitsverteilungen nachbilden. Zusätzlich kann in diesem Fall
auf Annotation verzichtet werden.

In dieser Arbeit werden zunächst die oberen Schranken der Genauigkeiten beim
Segmentieren von Bildern mit verschiedenen Wahrscheinlichkeitsverteilungen berech-
net. Dieses Wissen wird anschließend genutzt um eine Wahrscheinlichkeitsverteilung
einzuführen, die auf flexiblen Randverteilungen und einer Copula basiert, die die Ab-
hängigkeiten von mehreren Merkmalen modelliert. Dieser modulare Ansatz ermöglicht
es sehr flexibel Verteilungen zu kreieren und zeigt eine sehr hohe Genauigkeit beim Seg-
mentieren von Bilddaten. Im Anschluss werden Ansätze präsentiert wie die überwacht
gelernte obere Schrank im unüberwachten Fall erreicht werden kann. Hier hat sich vor
allem das probabilistische Modellieren für das Auftreten von Kanten als äußerst wichtig
herausgestellt. Die vorgestellten Modelle übertreffen den aktuellen Stand der Technik
vergleichbarer Modelle und werden im Sinne der Bayes-Statistik geschätzt. Dieses Vorge-
hen ermöglicht die Angabe von Unsicherheiten in der Schätzung der Modellparame-
ter. Abschließend wird in dieser Arbeit eine Methode vorgestellt, die es ermöglicht ein
diskriminativ trainiertes tiefes neuronales Netz mit einem lokalen Model zur Beschrei-
bung der visuellen Erscheinung zu kombinieren. Das tiefe Netz wird dabei nur mit
schwacher Überwachung trainiert. Die Kombination beider Ansätze ermöglicht es Bilder
mit minimalem Annotationsaufwand semantisch zu segmentieren und außerdem Un-
sicherheiten in der Segmentierung anzugeben.
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I N T R O D U C T I O N

Partitioning an image into coherent regions is an ongoing area of research in computer
vision and the study of artificial intelligence in general. In contrast to scene or object
recognition, not only the presence or absence of objects is predicted but also their full
extent. In fact, every pixel in an image is classified. This enables us to know not only
where an object appears but also to which extent an object occupies an image. This is, for
instance, important when autonomous systems try to perceive their surroundings as in
autonomous driving, when geologists build maps, or when physicists analyse medical
images.

Nowadays, these problems are mostly solved with Deep Neural Networks (DNNs)
like [RFB15; LSD15; BHC15]. However, such techniques impose some limitations as well.
For instance, they usually require a large amount of labelled training data [BV16a]. Ac-
quiring them is especially challenging in the case of image segmentation because every
pixel has to be annotated by a ground truth class. According to [Bea+16] annotating
every pixel of an image takes roughly ten times longer (240 seconds compared to 20
seconds on average per image) than simply annotating the presence or absence of a
set of object classes. The high effort makes creating datasets at best cumbersome, but
mostly expensive. Another limitation of the DNN-based approach is the absence of use-
ful uncertainty estimates, because the data are not modelled generatively, but only the
decision boundary between classes is learned. This is a major drawback since the pre-
diction of autonomous systems should be explainable. In fact, this is currently a major
topic in politics and one of the central targets for artificial intelligence made in Europe1.

In this thesis, a contribution towards explainable artificial intelligence is made by fo-
cussing on generatively modelling the observed data. This is achieved by utilizing a
statistical concept termed mixture models. They are chosen because they offer uncertainty
estimates through generatively modelling the observed data in the feature space with
probability distributions. Essentially, the model does not only learn to decide but to
accompany a decision with a probability which can be interpreted as a measure of con-
fidence. Additionally, mixture models can directly be used in an unsupervised setting
where the algorithms are only equipped with the raw data without any ground truth
information. Mixture models then proceed at estimating the probability density func-
tion (pdf) of the observed data by building a mixture of multiple probability distribu-
tions. In this setting, it is assumed that every region is well described by one probability
distribution.

In general, generatively modelling the data is harder than learning the decision bound-
ary because the classes’ densities have to be learned as well. Naturally, this imposes
several challenges, like the suitability of the data and the used probability distributions.
Further, in an unsupervised setting, the number of different regions in an image is a-

1 The European Commission’s high-level expert group on artificial intelligence, “Draft Ethics
guidelines for trustworthy AI” https://ec.europa.eu/digital-single-market/en/news/

draft-ethics-guidelines-trustworthy-ai Retrieved June 23, 2020

1

https://ec.europa.eu/digital-single-market/en/news/draft-ethics-guidelines-trustworthy-ai
https://ec.europa.eu/digital-single-market/en/news/draft-ethics-guidelines-trustworthy-ai
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priori unknown and has to be estimated. All these challenges are tackled in this thesis
from a probabilistic perspective.

1.1 contribution

The contributions depicted in this thesis consist of three major parts. In the first part,
the suitability of various probability distributions and image features are analysed in a
supervised way. This successfully establishes an upper bound of the reachable segmen-
tation accuracy. Additionally, a novel probability distribution is presented which shows
an excellent performance. Using different distributions and their impacts are rigorously
tested on predefined data sets and the impacts are assessed with statistical significance
tests. The results have been previously presented in [WW16] and [WW17b]. This thesis
additionally includes more probability distributions, an analysis regarding the used fea-
tures, and an analysis regarding the expressiveness of various probability distributions.

In the second part, different ways to reduce the computational burden are examined
and the mixture estimation is tackled from an unsupervised perspective. The major goal
is to reach the previously defined upper bound. It is shown that one of the most limit-
ing factors in an unsupervised estimation is the maximization of the model’s likelihood.
By including an additional model of the probable locations of region boundaries into
the estimation, the performance is significantly increased. As a result, the gap between
the upper bound and the unsupervised estimation is reduced. Again, the experiments
are conducted on predefined data sets and accompanied by significance testing. The re-
sults have been previously presented in [WW17a] and [WW17c]. This thesis additionally
includes in-depth experiments regarding the estimation of the number of mixture com-
ponents in the unsupervised setting. Further, previously unpublished results yielding
the current state-of-the-art in generative image segmentation are presented.

Lastly, a probabilistic image model is combined with a DNN. The concept of class acti-
vation maps is leveraged to get a generative segmentation model from a discriminatively
trained DNN. The results have been previously presented in [Wil+17].

1.2 outline

Following the introduction, the remainder of this thesis is structured as follows: Chap-
ter 2 reviews image segmentation from a general perspective, important terms and con-
cepts are introduced, a review of different approaches is given, the benefits of generative
models are discussed, and the requirements of a good segmentation model are defined.
Additionally, relevant data sets used throughout this thesis are presented. This is fol-
lowed by an explanation of the segmentation metrics used in this thesis to quantitatively
asses the quality of the segmentations.

Chapter 3 presents a concise summary of the relevant statistical concepts used in this
thesis. Beginning with an explanation of the Bayesian paradigm, different probability
distributions are introduced. Further, Markov chain Monte Carlo (MCMC) is explained
and significance testing in the context of image segmentation is briefly discussed. Build-
ing on the previously introduced concepts, the suitability of various probability distribu-
tions in the context of image segmentation is analysed in Chapter 4. The novel Sinh-asinh
Copula Mixture Model (SCMM) is introduced and the upper bound of the segmentation
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metrics of various probability distributions are computed. While the estimation of the
upper bound has been conducted in a supervised fashion, in Chapter 5 the best way to
reach the upper bound in an unsupervised way are examined. Afterwards, the gained
knowledge about generative image segmentation is used in Chapter 6 to build a gen-
erative segmentation model from a discriminatively trained DNN. The experiments are
conducted in the challenging weakly supervised setting. In the last chapter the results
are summarized and possible future research directions are sketched.
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I M A G E S E G M E N TAT I O N

The goal of image segmentation is to divide an image into regions. Each region is a
set of pixels which share a specific trait. Depending on the analysed images these traits
can vary. Typical traits are, among others, colour (e. g., [CM02]), texture (e. g., [JF91]), or
semantic meaning (e. g., [Eve+15]).

Image segmentation is, for instance, applied in autonomous driving (e. g., [Cor+16]).
The car needs to perceive its surroundings accurately in order to drive safely. One part
of this perception is to know the extents of all occurring objects in the car’s field of view.
Typical objects which appear in a street scene are, among others, cars, persons, or street
signs. In terms of image segmentation, the goal is to automatically divide the pixels
of an image into disjoint sets where each region includes only one type of object. For
instance, all pixels which depict a car are grouped into one region.

Creating maps is also a similar task. Like geologists build maps from remotely sensed
data, image segmentation algorithms build regions from analysing the provided data
(see e. g., [Zhu+17]). Depending on the features these results may differ and depending
on which model is used the interpretation changes. Another example of image seg-
mentation in practice is assisting physicians in analysing medical image data (see e. g.,
[Lit+17]) where they are trying to detect anomalies in the sizes of cells or organs. In
every case, every pixel of an image needs to be given a label which indicates the re-
gion membership. Despite the possible semantic interpretation of a region, the question
arises what is a good segmentation and how can it be defined. This is especially relevant
if a semantic interpretation is not directly available or desired. In the literature, several
properties are listed which characterize a good segmentation. For instance, according to
[HP17] a segmentation of an image should have:

1. uniform and homogeneous regions according to some criterion,

2. significantly different adjacent regions,

3. simple regions without holes,

4. simple and accurate boundaries.

In image segmentation, a boundary is the set of pixels which have more than one region
in its direct vicinity. While all these properties are worth following, in this thesis, two
additional goals are followed. A segmentation should additionally have:

5. sensible uncertainty estimates,

6. been computed with an as small amount of expert knowledge as possible.

One of the major goals of this thesis is to additionally provide meaningful uncertainty
measures regarding the affinity with which pixels belong to the regions of an image.
This is a helpful tool when communicating segmentation results to domain experts, like
physicians in medical image analysis or geologists in remote sensing applications.

5
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Another key aspect is to develop methods which solve the image segmentation prob-
lem by using as few human annotations as possible. This is important because acquiring
human annotations is at best cumbersome but mostly expensive. For instance, accord-
ing to [Bea+16] annotating every pixel of an image takes roughly ten times longer than
simply stating if an object is present or not. When creating annotations of everyday
scenes this work can be crowdsourced (e. g., [Rus+15]) or brought by citizen scientists
(e. g., [Swa+15]). However, in other fields, like medical image analysis or when analysing
remotely sensed surfaces of planets, domain experts are needed to annotate data.

This chapter starts with a short treatise of the fundamentals of probability theory in
Section 2.1 because the remainder of this thesis heavily relies on it. Depending on the
used data (see Section 2.2), image segmentation can be done with the help of different
levels of supervision (see Section 2.3). In Section 2.4 model-based approaches are re-
viewed in the context of image segmentation. Distance-based approaches are reviewed
in Section 2.5, and approaches based on detecting contours in Section 2.6. This is fol-
lowed by a small treatise of superpixels (see Section 2.7), which can be considered as
a special case of image segmentation. Semantic segmentation, which is another special
case of image segmentation, and Deep Neural Networks (DNNs) are discussed in Sec-
tion 2.8. Afterwards, scene and object detection tasks (see Section 2.9) and segmentation
tasks (see Section 2.10) are presented. The chapter concludes with a discussion of com-
mon evaluation metrics used in image segmentation (see Section 2.11).

2.1 fundamentals of probability theory

Probabilities are a key concept in machine learning in general and in image segmen-
tation in particular. In this section, the elementary notations and concepts are briefly
introduced. Detailed introductions can, among others, be found in [Bis06; Mur12; BH14].

Following [Ly+17], a statistical model is a function f
(︁
xi|θ

)︁
which relates the potential

outcomes xi of a random variable x through a set of parameters θ. The potential out-
comes are elements of an output space X which is the set of all possible events or values
the random variable can take. If X is a finite set of discrete events, like the result of a
coin toss, the random variable x is termed discrete. Further, the function f

(︁
xi|θ

)︁
is known

as the probability mass function (pmf). In Section 3.2.1, some commonly used pmfs are
presented. If X is continuous, the random variable x is termed continuous and f(xi|θ)
is known as the probability density function (pdf). In Section 3.2, relevant pdfs used in
this thesis are presented.

The probability of observing the outcomes of two random variables together is known
as the joint probability of x and y denoted by p(x,y). For instance, two dice may be
thrown simultaneously. The joint probability of both dice is then the Cartesian product
of the respective sample spaces [BH14, p. 545]. Commonly, this is visualized as a matrix
representation of all possible outcomes. However, all combinations are equally probable,
because the two dice are unconditionally independent [Mur12, p. 30], that is, one die does
not influence the outcome of the other. Formally, this is expressed as

p(x,y) = p(x) · p(y). (2.1)

If, however, the two random variables are not independent, this simplification is not
valid. The concept of conditional probability, denoted by p(x|y), expresses the probability
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of a random variable x after another random variable y has been observed first. It is
defined through the joint probability of x and y occurring together and the probability
of y alone and computed as [Mur12, p. 29]

p(x|y) =
p(x,y)
p(y)

. (2.2)

In the case of continuous random variables, the probability that a value x lies in an
interval (a,b) is computed as [Bis06, p. 17]

p(x ∈ (a,b)) =
∫︂b
a

p(x)dx (2.3)

with p(x) as the pdf. Since probabilities are always non-negative, the following two
conditions have to be met such that p(x) is a valid probability distribution [Bis06, p. 18].

p(x) ⩾ 0, (2.4)∫︂∞
−∞ p(x)dx = 1. (2.5)

The first condition simply enforces that probabilities cannot be negative, and the second
condition enforces that the chance of observing x somewhere on the real line is always
true. Actually, the relation in Equation 2.3 is used to define the cumulative distribution
function (cdf) of a random variable and is defined as [Mur12, p. 32]

P(z) =

∫︂z
−∞ p(x)dx. (2.6)

Further, p(x) is the derivative of P(x). The cdf is used in answering questions of how
probable it is to observe an outcome which exceeds a certain value. This is, for instance,
important when using the cdf in conjunction with a copula [Nel06]. In this thesis, copulas
are used to derive a highly flexible class of multivariate distributions which show an
excellent performance at image segmentation. See Section 3.6 and Chapter 4 for further
details.

Another important aspect of this thesis is Bayes’ law [Bay63] and the implications of
interpreting it as a sensible way to tackle image segmentation in a fully probabilistic
way. In general, Bayes’ law is a simple result of the foundations of probability theory,
also known as Kolmogorov axioms (see [Fah+07, p. 182]), and the rules of probability
derived from them (see [Fah+07, p. 185]). However, the law which was credited to the
reverend Thomas Bayes has been discovered before Kolmogorov set out the foundations
of probability theory. Bayes’ law is expressed in the continuous case through several
probability distributions as [Gel+13, p. 7]:

p(θ|x) =
p(θ, x)
p(x)

=
p(x|θ)p(θ)

p(x)
=

p(x|θ)p(θ)∫︁
θ p(x|θ)p(θ)dθ

, (2.7)

with θ as the model parameters, p(θ|x) as the posterior, p(x|θ) as the likelihood, p(θ) as
the prior, and p(x) as the evidence [Bis06, p. 22]. The posterior distribution is the ultimate
result of the analysis. It is a probability distribution over the parameters of the model
conditional on the observed data. The likelihood describes the model which is fitted to
the data.
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Note that the posterior is, in contrast to the likelihood, conditioned on the data. There-
fore, it expresses the uncertainty of the parameters conditioned on the observed data.
The likelihood is defined conversely and quantifies the uncertainty of the data condi-
tional on the parameters. However, this is not the quantity we are interested in. We are
interested in quantifying the uncertainty with which we have estimated the parameters
of our model and this can only be assessed by consulting the posterior distribution. This
fundamental change of perspective is a key feature of Bayesian statistics.

In this thesis, several probability distributions are used to describe the observed im-
age as well as possible. Each model consists of of parameters θ and the prior belief of
the model parameters is expressed through the prior. An in-depth review of prior dis-
tributions and the implications of using them in a Bayesian framework are discussed in
Section 3.1. Finally, the evidence is the probability of observing the data x. Since there
is usually no sensible way to compute this quantity, it is commonly rewritten as an inte-
gral over the parameters θ of the joint probability distribution. As a result, closed form
expression for the posterior can only be given analytically if certain conditions are met
(see Section 3.1). Otherwise, the computation of the evidence is intractable and samples
of the posterior have to be drawn. One powerful class of methods for drawing samples
from arbitrary probability distributions is Markov chain Monte Carlo (MCMC) which is
explained in Section 3.4.

2.2 the data

Image segmentation is a special case of pattern recognition. The goal is to find patterns
in image data by looking at local similarities and grouping pixels into regions. The
data themselves consist of instances [Zhu+09, p. 2]. In a general setting, an instance is,
for example, one specific animal. It can be described by its characteristics, like height
and size, or, as shown later, by a photograph. Formally, one instance x of the data is
a representation of one specific object. It is represented by a D-dimensional vector x =

(x1, x2, . . . , xD) ∈ RD. Each element of this vector is termed a feature of the instance
[Zhu+09, p. 2]. Depending on the problem domain these features are measured, like
height or weight, or they are derived from measurements, like the body mass index.

In this work, the measurements are images which have been captured by a photogra-
pher. Therefore, the measurements are matrices instead of vectors. One instance of the
data is an image I which consists of a set of colour channels. Formally this is expressed
as I =

{︁
I1, . . . , INc

}︁
. Each channel has the same size as the others. One colour channel

Ic of the size H×W equals

Ic =

⎡
⎢⎢⎢⎢⎢⎣

xc1,1 xc1,2 . . . xc1,W

xc2,1 xc2,2 . . . xc2,W
...

...
. . .

...

xcH,1 xcH,2 . . . xcH,W

⎤
⎥⎥⎥⎥⎥⎦

with H as the height and W as the width of an image. Commonly, an image consists of
three colour channels R, G, and B which represent the intensity of the captured light in
the red, green, and blue wavelengths.
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Figure 2.1: Image of a bear cub (left), the corresponding gradient magnitude (middle), and gra-
dient orientation (right). Image taken from the Berkeley Segmentation Data Set and
Benchmarks 500 [Arb+11].

The CIE 1976 L*a*b* Colour space (Lab) [Rob77] is an often used alternative to the
RGB colour space. Colours in Lab are computed through a nonlinear transformation
of the RGB colour space. The key idea behind Lab is to better resemble the human
perception of colour, that is, colour differences perceived by humans behave similar to
distances in the Euclidean space. Colour spaces which exhibit this property are termed
perceptually uniform. See, for instance, [Pas01] for an overview of common colour spaces
and a performance evaluation of images in different colour spaces in a supervised clas-
sification setting. While in [Pas01] the Hue Saturation Value (HSV) colour space (see,
e. g., [GW02, pp. 295-301]) performs best, Lab and RGB are almost exclusively used in
image segmentation. In Chapter 4 different colour spaces are analysed regarding their
suitability in image segmentation tasks and the question if perceptually uniform spaces
are better at image segmentation is tried to be answered. In a recent study, [GY19] con-
ducted an analysis where the influence of choosing different colour spaces on DNNs is
studied.

Besides colour alone, a plethora of image features exist in computer vision. The most
famous variants are probably the Scale-invariant Feature Transform (SIFT) descriptor
[Low99] and the Histogram of Oriented Gradients (HoG) descriptor [DT05]. Both meth-
ods are based on gradients [GW02, p. 577]. They look at a local area around an interest
point inside the image, termed image patch, and examine the orientations of the gradi-
ents in this area. Computing the gradients of an image can be interpreted as a simple
version of edge detection. In Chapter 5 an edge detector plays an important role when
increasing the quality of the computed segmentations. Formally, the image gradient is
the derivative of a real multivariate function f in x and y dimension.

∇f =

[︄
gx

gy

]︄
=

[︄
∂f
∂x
∂f
∂y

]︄

In practice, the real multivariate function f is the image I. Since an image commonly
consists of multiple colour channels, it is converted to greyscale first. Afterwards, the
gradient is approximated numerically by finite differences. The orientation and the mag-
nitude of the gradient at a given pixel are then calculated as [GW02, p. 577]

orientation = tan−1

(︃
gy

gx

)︃
, magnitude =

√︂
g2x + g2y.

HoG and SIFT then proceed by quantizing the gradient information inside an image
patch around a query point into a histogram representation. The query point at which



10 image segmentation

Figure 2.2: Visualization of the 48 filters used in [LM01] for recognizing different textures. The
filter bank consists of first and second order Gaussian derivatives at six orientations
and three scales, eight Laplacian of Gaussian filters, and four Gaussian filters.

this descriptor is computed can be estimated from potentially relevant key points, as in
the original SIFT paper [Low99], or they may be extracted on a dense grid, for instance
at every n-th pixel [BZM06]. This approach is also known as Dense SIFT.

A single image is thus described by a possibly large set of descriptors. This represen-
tation can then be used to infer the scene of an image or to detect the objects which
are present in an image. In the original SIFT paper, this amounts to a 128-dimensional
feature vector per key point. A possible extension of this is the Bag-of-Features (BoF)
approach, where a visual codebook is generated by clustering a large set of descriptors
from a large set of images. The key idea behind the BoF approach is to find a codebook
which consists of discriminative descriptors. An image can then be described by a his-
togram of the occurrences of the codebook entries. While this approach originates from
the Bag-of-Words model used in document analysis, it is successfully applied in image
and scene classification tasks [FFP05; LSP06; OD11].

While the Bag-of-Words model can be considered as a precursor of the BoF approach,
the idea to create a histogram representation through clustering was previously intro-
duced in [Sch01] as an approach to image retrieval and in [LM01] as a way to discrimi-
nate between images with different textures. The latter name their approach textons. The
main difference between BoF and the texton approach are the features which are clus-
tered to form the codebook. Textons are computed by convolving the image with a filter
bank and clustering the computed responses [LM01]. The used filter bank consists of a
set of Gabor filters [FS89], which have a long tradition in texture recognition. These filters
respond to different spatial frequencies like edges or stripe patterns. Commonly, filter
banks not only consist of Gabor filters, but also of Gaussian filters. Additionally, their
first and second derivatives are used. The primary goal of the Gaussian filters is having
high responses at image structures which are not edges. Figure 2.2 depicts a typical filter
bank used for recognizing images with different textures [LM01]. Due to their success-
ful application in texture recognition, the use of textons has been extensively studied in
image segmentation tasks as well [JF91; Mal+99; SJC08; Arb+11].

2.3 levels of supervision

Image segmentation can be formulated as a machine learning problem. In machine learn-
ing, different levels of supervision are distinguished in order to describe how much
information the human expert provides such that algorithms learn to solve a problem.
Conversely, different levels of supervision are necessary depending on the chosen algo-
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Figure 2.3: Image of a bear cub (top left) and the corresponding ground truth annotations. The
ground truth images are colour coded by the mean RGB value of the correspond-
ing regions. While the similarities across different annotations are evident, they vary
strongly in the level of abstraction, especially in the background. Images taken from
the Berkeley Segmentation Data Set and Benchmarks 500 [Arb+11].

rithm. Estimating the parameters of a model is also known as learning [Bis06, p. 2]. In this
thesis, four levels of supervision are distinguished: supervised learning, unsupervised
learning, semi-supervised learning, and weakly-supervised learning.

The image segmentation problem can be learned in a fully supervised framework,
where each instance of a set of images is accompanied by a labelled ground truth im-
age. It is of the same size as the training image and each pixel is annotated with the
desired prediction of the algorithm. They are the associated classes or objects visible in
an image. Figure 2.3 provides a sample from the Berkeley Segmentation Data Set and
Benchmarks 500 [Arb+11] (BSDS500) and depicts how different annotators perceive the
regions of an image differently. This illustrates that there is sometimes not one single
correct solution, but often a set of probable solutions. In this thesis, we tackle this issue
by modelling the number of regions probabilistically (see Section 3.5.1 and Chapter 5).

2.3.1 Unsupervised Learning

This thesis deals mainly with approaches to unsupervised learning and how these can
be used to solve the image segmentation problem. In general, unsupervised learning
is concerned with describing the structure of the data and how different features or
instances are grouped in the feature space without using any expert knowledge.

Formally, we are working with a set of instances X = {x1, . . . , xN} and try to build
models which resemble the unknown generating distribution as closely as possible.
Therefore, the models are of the form p(xj|θ), with θ as the set of model parameters.
Each xj is assumed to be drawn i. i. d. (independently and identically distributed) [Bis06,
p. 26] from an unknown generating distribution. Assuming i. i. d. instances is of great
importance because this enables us to independently evaluate the likelihood of all in-
stances. This means that we can neglect possible correlations among the instances and
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evaluate the likelihood of multiple instances as a product of the likelihoods of the sin-
gle instances. Formally, the likelihood of N instances conditioned on a set of model
parameters can be expressed as [Bis06, p. 26]:

p (X |θ) =

N∏︂
j=1

p
(︁
xj|θ

)︁
. (2.8)

The independence assumption is of central importance for many machine learning al-
gorithms. For instance, predictions about previously unseen instances would not be
possible without it [GBC16, p. 109]. However, the independence assumption is rather
limiting in practice, because one can easily assume cases where instances are correlated.

Algorithms which are especially suited for unsupervised image segmentation are pre-
sented in Section 2.4. They include, among others, the well-known Gaussian Mixture
Model (GMM). Further details about mixture models are presented in Section 3.2.4.

2.3.2 Supervised Learning

Unlike unsupervised learning, supervised learning uses additional information. Every
instance xj of the data is accompanied by a desired prediction yj ∈ R which is also
known as a label or ground truth. In the case of a continuous desired prediction, the
problem is termed a regression. In the case of a discrete desired prediction yj ∈ N+, the
problem is termed a classification. In both cases, the set of instances X is accompanied
by a set of desired predictions Y = {y1, . . . ,yN} which are assumed to be drawn from a
joint probability distribution p(x,y).

The goal of parameter inference is to learn a model which predicts the correct label
given an instance. Therefore, the model is not only conditioned on the parameters of
the model, as in Equation 2.8, but also on the instances xj. In a generative framework for
classification, Bayes’ theorem (see Section 2.1) is used to condition the joint probability
distribution p(xj,yj) on the C labels and estimate the respective density [Bar12, p. 300]:

p(yj|xj,θ) =
p(xj,yj|θ)∑︁C
c=1 p(xj, c|θ)

=
p(xj|yj,θ)p(yj|θ)∑︁C
c=1 p(xj|c,θ)p(c|θ)

. (2.9)

This approach explicitly models the generation of an instance through p(xj|yj,θ). In
Chapter 6 this relation will be used to compute a semantic segmentation. Again,
i. i. d. instances are assumed such that the relation for all instances can be expressed
as

p(Y |X ,θ) =
N∏︂
j=1

p(yj|xj,θ). (2.10)

Equation 2.10 expresses supervised learning from a probabilistic perspective. However,
it is sufficient to learn a function f which maps the observed instances to the desired
predictions. Formally, this relation is expressed as f : X ↦→ Y . Often, this mapping is
done by dividing the feature space into cells. The boundaries of the cells are described
by classifiers, like the Support Vector Machine [CV95] or a neural network (see Sec-
tion 2.8.1). As a result, discriminative approaches model the boundaries between classes
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and generative approaches model the distribution of the different classes in the feature
space. While a generative model is more complex than a discriminative model, it allows
the computation of uncertainty estimates.

Unlike unsupervised learning, supervised learning is more about predicting than ex-
plaining the data generation process. Further, supervised learning makes use of labelled
instances explicitly. If those labels are available, supervised algorithms are supposed
to yield better results in terms of prediction accuracy. However, the labels need to be
acquired somehow in practice. Depending on the type of problem, this comes with ex-
ceptional human effort. For instance, in the case of image segmentation every single
pixel has to be annotated by an expert. Depending on the problem domain even finding
suitable experts is challenging.

2.3.3 Semi-Supervised Learning

Semi-supervised learning is the bridge between supervised and unsupervised learning.
Instead of having a label for every instance, as in supervised learning, only a subset
of all instances is annotated. Methods from the semi-supervised learning literature use
the unlabelled data to improve supervised learning on the available subset of labelled
instances.

Formally, the set of all instances X consists of a set of unlabelled instances Xu =

{x1, . . . , xU} and a set of labelled instances Xl = {x1, . . . , xL}. By assuming that knowl-
edge about p(Xu) can be used to improve the model of the labelled instances p(Y |Xl),
both sets are used during training. For instance, in a generative framework (cf. Equa-
tion 2.9) this knowledge can be directly incorporated into the estimation of a GMM
[Zhu+09, pp. 25-28]. Semi-supervised learning is especially well suited if numerous in-
stances are available, but labelling is tedious or expensive.

In terms of image segmentation, semi-supervised learning can be done by partially
annotating an image by an expert. For instance by painting brush strokes, called scribbles
(see e. g., [Lin+16; HKH17]), or by annotating single points in an image [Bea+16]. Then,
the algorithm does not only know how many regions the expert expects but is also
equipped with a first set of labelled instances Xl.

2.3.4 Weakly-Supervised Learning

In computer vision, weakly supervised methods are concerned with recovering the ex-
tent of an object by only knowing the presence or absence of an object in an image
[HKH17]. Especially in image segmentation, acquiring annotated ground truth data is
cumbersome [Bea+16; Cor+16], because every single pixel needs to be annotated by a hu-
man expert. One way of reducing the annotation effort is by asking experts to annotate
only parts of an image, as in semi-supervised learning. Another approach is to increase
the annotation’s level of abstraction. Instead of annotating at pixel-level, the images are
annotated at image-level. For instance, the image is then only annotated by keywords.
The exact extent of an object inside an image, as in supervised learning, is not part of
the annotation and thus remains unknown to the algorithm. This significantly increases
the complexity of the learning problem, because the algorithm needs to derive the look
and shape of objects on its own. Further, it needs to learn common features of, for ex-
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ample, persons without knowing how persons look like or where to find them in an
image. Commonly, DNNs are used for this kind of tasks [HKH17]. They learn these re-
lations from a large collection of training images. An overview of current approaches in
weakly-supervised image segmentation is presented, for instance, in [HKH17]. In Chap-
ter 6 a generative approach towards weakly supervised object detection and semantic
segmentation is presented.

2.4 model-based approaches

Assuming a model for the data is one approach to image segmentation. In the context
of colour images, this means that each region of an image is associated with a specific
colour or distribution of colours. However, this neglects the spatial arrangement of the
pixels inside an image. Pixels in close vicinity should have a higher probability to be-
long to the same class. Therefore, the x- and y-position of the pixels can be included
as additional features [CM02] or, as suggested in the related work, modelled as well
[SNG08]. In the following, several model-based approaches are presented and reviewed
in the context of their use of labelled data.

2.4.1 Thresholding

One of the simplest approaches to segment a greyscale image into a set of regions is
thresholding [Sze10, p. 284]. A user defines the levels at which the regions are separated
by observing how adjusting the thresholds change the segmentation until a satisfactory
result is achieved. In terms of the previous section, this is a supervised approach. How-
ever, a rather simple model is used.

Since determining suitable thresholds for a collection of images is tedious, algorithms
exist which return suitable thresholds based on some criteria. Among others, Otsu’s
method [Ots79] is one of the commonly used methods. It determines suitable thresh-
olds by looking at the variance of the values inside the regions. If this intra-class variance
is minimal the optimal thresholds are reached. This follows the assumption that each
region is associated with a unique mode of the histogram. In principle, Otsu’s method
computes the parameters of a one-dimensional GMM (see Section 3.2.4) by exhaustively
searching for the combination which minimizes the intra-class variance of the compo-
nents.

However, Otsu’s method was developed for thresholding greyscale images. Although
thresholds for every colour channel can be computed, this neglects the common appear-
ance of data points in the feature space, because each dimension is treated indepen-
dently of the others. An approach to respect common appearances in the feature space,
is partitioning the feature space by solving the K-means problem.

2.4.2 K-Means Clustering

Originating from the clustering literature, solving the K-means problem has a long tradi-
tion in many scientific fields [Jai10]. Lloyd’s algorithm [Llo82], better known as K-means
clustering, is the typical approach for solving the K-means problem. While K-means
clustering is an unsupervised algorithm, it is limited to finding spherical groups in the
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feature space. Note that K-means clustering is able to group non-spherical data to some
extent but the underlying model assumes spherical groups.

Starting from an initial solution with K means, the data points are iteratively assigned
to the region where the increase in variance is minimal, that is, the points are assigned
to the regions where the reconstruction error (see Equation 2.11) is minimal. Commonly,
the Euclidean distance is chosen [Mur12, p. 354]. Afterwards, the mean value of ev-
ery region is updated. This procedure is repeated until convergence is reached. The
grouping can only be performed flawlessly if the groups in the data are arranged in
circular shapes, because the points are assigned to the nearest cluster centre. For differ-
ent shapes, a different assignment strategy would be required. Since Lloyd’s algorithm
greedily searches for a partition of the input image, the final solution heavily depends on
the initial mean values. Further, K, the number of clusters, has to be set by a user or fur-
ther estimated, for instance, through cluster validation criteria (see Section 3.3). Setting
K strongly influences the outcome of the clustering and is one of the major challenges
in clustering with K-means [TK09, p. 744].

The main benefit of K-means compared to a simple thresholding approach is that
spherical distributions at arbitrary positions in the features space can be handled. There-
fore, pixels which share similar features across all three colour channels can be grouped.
Further, K-means can be used in conjunction with an arbitrary number of features. Com-
mon choices include the incorporation of positional features, for example, x- and y-
position of the pixels or texture features, for example, derived from filter responses
[Mal+99]. Further, the computational simplicity is low and many data points and clus-
ters can be processed in a reasonable amount of time [TK09, p. 743]. Formally, the recon-
struction error [Bis06, p.430]

f (X) =
N∑︂
j=1

K∑︂
k=1

rj,k
⃓⃓⃓⃓

Xj − µk
⃓⃓⃓⃓2
2

(2.11)

is minimized with N as the number of data points, K as the number of clusters, µk as
the cluster means, and rj,k as a binary cluster indicator. It is set to true if the j-th data
point belongs to the k-th cluster.

The main drawbacks of K-means originate from the assumption of spherical clusters
in the feature space which all have the same size and variance [TK09, p. 743]. Therefore,
K-means can only cluster data flawlessly if the clusters are spherical. But even then the
clustering heavily depends on the initial cluster centres [TK09, p. 743]. Further, a degree
of association or a measure of uncertainty is not used in Lloyd’s algorithm. The points
are either in or out. Besides other approaches to quantify uncertainty, like the fuzzy
variants of K-means (see [Bez81, pp. 65-79]), K-means can be considered as a mixture
of K isotropic normal distributions. An isotropic normal distribution has a diagonal co-
variance matrix where the diagonal elements are equal in every dimension. Further, the
variance is shared among all components of the mixture model. As a result, correlation
among features cannot be modelled. The resulting GMM is then of the following form
[Bar12, p. 415]:

p(x|Θ) =

K∑︂
k=1

ωkNormal(x|µk,σ21). (2.12)
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Note that σ2 and ωk are not subject to optimization (cf. Equation 2.11), but simply a re-
sult of the cluster assignments rj,k. Through interpreting the result of Lloyd’s algorithm
as a GMM, uncertainty estimates can be given and a probabilistic perspective can be
derived.

In practice, K-means is commonly used in image segmentation. In [Mig08; KM17] im-
ages are clustered with K-means in various colour spaces. The resulting segmentations
are then fused into one final segmentation. K-means is also used to compute a seg-
mentation from the eigenvalues of a graph in normalized cuts (see Section 2.5.2) [SM00].
Further, it is used to find representative feature vectors in a regression framework for im-
age segmentation [YWL12] or as an intermediate step inside a larger framework [Li+18].
Additionally, K-means is widely applied in other fields of computer vision. For instance
when computing textons [Mal+99] or Bag-of-Features models [FFP05].

2.4.3 Gaussian Mixture Models

Gaussian Mixture Models (see also Section 3.2.4) solve nearly all problems of the afore-
mentioned K-means approach at the cost of a more complex parameter estimation. In
fact, K-means and Otsus’ method both estimate a GMM, but with different restrictions
and assumptions. In the general case, the pdf of a multivariate GMM equals

p (x|Θ) =

K∑︂
k=1

ωkNormal (x|µk,Σk) .

The assumption of spherical clusters from K-means clustering which is formally ex-
pressed by the diagonal covariance matrix σ2I (cf. Equation 2.12) is relaxed in the GMM
setting. The covariance matrices Σk are now neither tied to a single value σ2 nor re-
stricted to the diagonal elements. Therefore, they can model correlations among differ-
ent features and, as a result, the set of shapes the distribution can represent now includes
ellipses. However, the parameter estimation is different from K-means. Commonly, the
parameters of a GMM are estimated by Expectation Maximisation (EM) [DLR77]. In fact,
EM is generalization of Llyod’s algorithm [Bar12, p. 415].

In a first step, the cluster assignments are computed. However, the decision is not
binary, as in Lloyd’s algorithm, but probabilistic. Therefore, each data point contributes
to the parameter estimation of every cluster. The probabilities of each data point belong-
ing to every cluster are termed responsibilities and are computed by evaluating [Bis06,
p. 432]

p (k|x) =
ωkNormal (x|µk,Σk)∑︁K

k ′=1ωk ′Normal (x|µk ′ ,Σk ′)
. (2.13)

In the EM framework, this assignment is termed the expectation step or short E-step.
Afterwards, the parameters are updated according to the computed responsibilities (see
[Bar12, pp. 410-411]). This is termed the maximization step or short M-step. Again, the
E- and M-step are alternated until convergence is reached. EM is often chosen for es-
timating the parameters of a GMM because it directly enforces certain constraints on
the parameters. For instance, the covariance matrix needs to be symmetric and positive
definite in order to be a valid covariance matrix. Simple gradient-based optimization or
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MCMC can still be used, but require a re-parametrisation of the problem or an adequate
error handling such that invalid covariance matrices are not estimated.

However, Gaussian Mixture Models share one of K-means’ drawbacks. The number
of clusters K needs to be set by a user or further estimated. Besides cluster validation
criteria (see Section 3.3.2), more sophisticated statistical approaches can be followed,
like the infinite mixture model (see Section 3.5). In Chapter 5 different approaches for
estimating the number of mixture components in the image segmentation setting are
reviewed.

In practice, GMMs are frequently used in image segmentation. For instance, for the
computation of superpixels [BLC18] (see Section 2.7), in conjunction with a random walk
on a graph to improve the spatial extent of the regions [Des14], in the context of spatially
varying mixture weights [SGH98; SNG08; Sfi+10], as a feature to asses the similarity of
regions in a graph cut framework [ZZW13], as a model for texture [Yan+08], or as a
baseline to measure the influence of improvements [Sfi+10; Des14].

In the remaining parts of this work, the GMM is chosen as the baseline method as
well. In Chapter 4 the influence of various probability distributions on their suitability
at accurately recovering a ground truth segmentation is evaluated. In Chapter 6 GMMs
are used as a generative classifier in weakly supervised object detection and semantic
segmentation.

In summary, at the cost of more complex parameter estimation, the GMM generalizes
K-means through relaxing the assumption of equal sized spherical cluster shapes to el-
liptical shapes with varying variances and correlations. Further, by explicitly estimating
the mixture weights ωk unevenly dense clusters can be handled better. Additionally, by
solving image segmentation in a generative framework, uncertainty estimates regarding
the affinity with which a pixel belongs to a region can easily be quantified and visual-
ized.

2.4.4 Mixture of t-Distributions

Although Gaussian Mixture Models can model a variety of shapes, outliers can easily
fool a GMM [Pri12, p. 115]. This property is inherited from the normal distribution
(see Section 3.2.2). One way to deal with outliers is a preprocessing of the data where
possibly occurring outliers are deleted. However, in a Bayesian framework, it is more
natural to include such behaviour in the modelling process. Therefore, the need for an
extensive preprocessing can be circumvented by using a robust probability distribution
instead. Probability distributions are termed robust if the tails of the distribution are
able to place probability mass on infrequently occurring instances—the outliers. Further
details about the t-distribution and the properties of other distributions can be found in
Section 3.2.

The multivariate t-distribution has been used in image segmentation tasks as well. For
instance as a substitute for a GMM [SNG07], in medical image segmentation [NW12], in
conjunction with an edge preserving smoothness prior [SNG08], or as a region descrip-
tor [Yan+13].

The parameters of a mixture of t-distributions can be estimated with EM. However,
there is no closed form solution for the degrees-of-freedom ν of every component. There-
fore, a root-finding problem has to be solved in every iteration to update them. Detailed
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steps can be found, among others, in [Pri12, pp. 117-120] or [PM00]. Again, gradient-
based optimization or MCMC can be used as well, but they require special treatments
of the covariance matrices and the mixture weights.

Through introducing an additional parameter to the model and at the cost of a more
complex estimation the model is made robust against outliers. Similar to GMMs the
individual components of the mixture can model elliptic shapes only. If more complex
shapes are desired, different distributions need to be chosen. Conversely, the question
arises if more complex models are advantageous at modelling image data in practice.
Chapter 4 provides an in-depth analysis of various probability distributions for the task
of image segmentation.

2.5 distance-based approaches

While all previously mentioned approaches to image segmentation assume some type
of model, methods exist which do not assume a specific type of distribution. Where
GMMs assume that each region is associated with a specific behaviour of the features—
characterized by a mean vector and a covariance matrix—distance-based methods in-
stead build their clusters through local proximities in the features space—the nearest
neighbours.

2.5.1 Mean-shift

Mean-shift [FH75; Che95; CM02] is an iterative procedure which aims at finding modes
in an unknown probability distribution. In image segmentation, each mode is then as-
sumed to correspond to a specific region in an image. The assignment of the pixels
to the regions depends on the mode each pixel is attracted to. In contrast to model-
based approaches, like K-means or GMMs, where the unknown probability distribution
is assumed to belong to a specific parametric form, mean-shift is not making such an
assumption. Instead, the gradient of the underlying pdf is used to traverse the surface
of the pdf to the nearest mode. Since the pdf of the underlying distribution is unknown,
it is approximated by the gradient of a local neighbourhood. The local neighbourhood
at every data point is defined through a kernel function K.

The width and the shape of the kernel function define the size of the local neighbour-
hood. Common choices include the Epanechnikov kernel, which has a parabolic shape,
and the Gaussian kernel [Sze10, p. 294]. Formally, the gradient of the underlying pdf is
given by [Sze10, p. 293]

∇f(x) = −

N∑︂
j=1

(︁
Xj − x

)︁
k ′
(︃
||x − Xj||

2
2

h2

)︃
, (2.14)

with x as the current instance, X as the points of the local neighbourhood, h as the
bandwidth of the kernel, and k ′(·) as the first derivative of the kernel function. The
kernel bandwidth h has an indirect influence on the number of modes because it controls
the volume of the local neighbourhood which is used to compute the gradient. The larger
the width of the kernel the smaller the number of modes, because the computed mean
is more consistent. However, if the kernel size is too large nearby modes may be merged
unintentionally [Che95].
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Mean-shift is an iterative procedure which starts from a single point in the feature
space and converges towards the nearest mode in the feature space. In order to find all
local modes of the underlying probability distribution, the algorithm has to be started
from every point in the feature space. While this is computationally demanding, it has
the advantage that the number of modes only depends on the kernel size and does not
have to be known a priori. However, determining the form of the kernel and the size of
the kernel is rather heuristic, although some principled approaches exist [Sze10, p. 293].

Mean-shift is used in [Li+18] as a baseline algorithm on which subsequent groupings
are performed and in [Liu+14] as a drop-in replacement for a hierarchical segmentation
technique (see Section 2.6) for saliency detection (see e. g., [IKN98; Zha+15]). Saliency
detection can be considered as a special case of image segmentation in which the goal
is to find the most salient object in an image and recover its outlines.

2.5.2 Normalized Cuts

While all previously mentioned approaches directly operated on the provided feature
spaces, graph-based methods like normalized cuts [SM00] operate on a graph-based
representation of an image. The graph captures the similarity of pairs-of-pixels in an
image. Therefore, high dimensional representations of the pixels can be used to compute
a similarity without the need to generatively model the probability of the observed data.
However, the benefits of a generative model—the interpretability and the uncertainty
estimates—are lost as well.

Contrary to the previously mentioned approaches, normalized cuts is a discrimina-
tive method. Instead of modelling the generation of an image through a probabilistic
distribution, the image is simply subject to a partition. The division into regions is math-
ematically modelled by a graph partition. Which results, as shown in [RR04], in finding
a hyperplane which minimizes a weighted squared distance between the hyperplane
and the data points. In [Zha+18] and [TK09, p. 779] normalized cuts is linked to man-
ifold learning [Bar12, p. 311]. Further, normalized cuts itself is a hyper-parameter free
method, because the resulting segmentation only depends on the computed affinities.
However, computing the affinities is usually accompanied by a set of hyperparameters
(cf. [Mal+99; SM00; Arb+11; Zha+18]), and the resulting segmentation heavily depends
on the affinity matrix. Contrary to all previously mentioned methods, it is not based on a
probabilistic interpretation of the observed data. It is an engineered approach where the
probabilistic viewpoint is set aside in favour of a discriminative view, which is usually
easier to model.

In practice, normalized cuts are widely used in the field of image segmentation. The
major differences among various approaches originate from different ways of building
the affinity matrix W. In the original work [SM00] different features are used depending
on the characteristics of the input image. In the case of greyscale images, the intensity
value of each pixel is used, in the case of colour images, the HSV colour space is used,
and in the case of textured images, the activations of a filter bank are used to compute
the affinity matrix. In [Zha+18] the mean-values of a local neighbourhood in the Lab
colour space and the diagonal elements of the covariance matrix of the local neighbour-
hood in the RGB space are used to compute the entries of W. In [Mal+99], textons are
used in conjunction with boundary information derived from the image brightness.
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One of the major difficulties is to find a suitable combination of the used cues. For
instance, if texture and contour features are used to build the affinity matrix, the fea-
tures have to be weighted differently in different areas. Texture features are less im-
portant at boundary regions and contour features are less important inside homoge-
neous regions. In [BM98] texture and intensity cues are merged through concatenating
histogram representations of greyscale intensities and texture features. Further, the his-
tograms are approximately scaled to the same dynamic range before concatenation and
a custom weighting function is proposed. In subsequent work the cue combination is ex-
tended with further cues and the weighting is learned from human annotations [MFM04;
Arb+11] (see also Section 2.6).

From an image segmentation perspective, normalized cuts is reported to have issues
with large uniform regions [Arb+11] and to suffer from a weak alignment at contrast
boundaries [Tan+18b]. From a clustering perspective, normalized cuts suffer from a sen-
sibility to outliers and a tendency of splitting elongated clusters [RR04]. In [Tan+18b]
normalized cuts are combined with regularization techniques such as a Markov Ran-
dom Fields (MRFs) [Sze10, p. 180-192] to solve some aforementioned issues. Recently, a
soft version of normalized cuts has been used as a part of a DNN’s loss function for im-
age segmentation [XK17] and for weakly supervised semantic segmentation [Tan+18a].

2.6 contour detection

Another approach to image segmentation is detecting contours which separate the re-
gions of an image. From this, the regions can be recovered. One of the earliest ap-
proaches is active contours, also known as snakes [KWT88]. Starting from an initial solu-
tion set by a user, the algorithm minimizes an energy function to move a contour in an
image. Common energies include the internal energy of the snake, that is how strong it
is deformed, and an external energy which attracts the snake towards edges in an image.
Many modifications of this basic approach exist and are, for instance, summarized in
[Sze10, pp. 270-284].

The segmentation method presented in [Arb+11], which is based on contour detection,
is among the best performing supervised methods and can be considered as a central step
to advance image segmentation. Details of this approach are presented in the following
paragraphs. The algorithm consists of three major blocks, that are, feature computation
and cue combination, contour detection and region building, and hierarchical segmen-
tation.

2.6.1 Feature Computation and Cue Combination

In [MFM04] a contour detection algorithm is presented which uses multiple local image
features, like brightness, colour, and texture. The key idea is to combine multiple cues
to accurately detect contours in natural images. Using, for example, only brightness to
compute contours will produce a high number of false positives in textured regions.
Hence, texture is a central feature to discriminate different regions in an image. Then
again, texture alone is not able to distinguish regions with different colours or intensities.
Therefore, all cues need to be combined. However, all features have different scales,
dimensionality, or types, for example, ordinal and continuous. Combing these cues is
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not straightforward. Some approaches have been discussed in the context of normalized
cuts. However, in [MFM04] the cues are combined in a supervised way, that is, the
used image features are linked through human annotations. The model learns to predict
contours at the same places as humans based on the provided features.

As a first step, a circular neighbourhood around a pixel—a patch—is split in half
along an angle. Afterwards, both halves are compared in terms of their similarity using
different cues, that are, brightness, colour, and texture. Brightness is modelled by the
L-channel of the Lab colour space, colour is modelled by channels a and b, and texture
is modelled by textons (see Section 2.2). Further details about the specific choices can be
found in [MFM04].

In order to measure the similarity of all cues, histogram representations are computed
of every half disc in every cue. Afterwards, the histograms are compared by the χ2 dis-
tance [PHB97]. Varying the radius is equal to changing the scale of the detector and
varying the angle of the separation is equal to detecting edges along different orienta-
tions. Although various combinations are possible, [MFM04] use eight orientations and
three scales. However, in [MFM04] no benefit of including multiple scales is observed.
Successful integration of multiple scales was later presented in [Arb+11] and [Arb+14].

While the gPB approach presented in [Arb+11] shows excellent performance in detect-
ing contours in natural images, the computed contours are not always closed. However,
a meaningful segmentation can only be computed from closed contours. Therefore, an
additional step is required.

2.6.2 Enforcing Closed Contours

A general method to compute a segmentation with closed contours hierarchically is pre-
sented in [Arb+11]. It builds on combing a variant of the watershed transform [NS96]—
the Oriented Watershed Transform (OWT) [Arb+11]—with a hierarchical representation
of the contours—the Ultrametric Contour Map (UCM)1 [Arb06]. Details of the algo-
rithms can be found in the corresponding papers. In short, OWT computes a bound-
ary mask which consists of small line segments—the arcs—and is essentially an over-
segmentation of the initial image. Each arc is associated with a specific edge strength
which matches the orientation of the underlying edge signal. This reduces artefacts
which would otherwise occur at arcs which are in the vicinity of strong edges but do
not share the same orientation as the arc. Afterwards, UCM is used to build a hierarchy
of the over-segmentation computed by the OWT. It is based on a graph representation
which is then iteratively reduced by merging neighbouring regions based on a similarity
measure until all regions are merged. The resulting hierarchy can then be thresholded
at a specific level to generate a segmentation. Again, these thresholds need to be learned
from human annotations. The combination of all methods, that are, gPB, OWT, and
UCM, is termed gPB-owt-ucm. Alternatively, they are termed *-owt-ucm, where the as-
terisk is a place holder for the name of the contour detection method.

Improvements to the owt-ucm approach are presented in [KLL13] where the com-
putation of the affinity matrix W is improved by considering full pairwise affinities. A

1 The term ultrametric stems from modifying the triangle inequality which takes an essential part in defining
a valid metric between two sets. In fact, the triangle inequality is not relaxed but strengthened. Further
details on ultrametricity can be found, for example, in [RTV86].
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related approach is presented in [SWW17] which focuses on the merging part and uses
additional features to build the affinity matrix. In [XK17] the UCM is combined with a
DNN for contour detection and in [YFL15] an embedding is proposed to improve the
contour generation. Recent methods to improve contour detection on the BSDS500 in-
clude, among others, structured forests [DZ15], combinatorial grouping [Arb+14], and
various approaches based on DNNs [KWH14; She+15; Kok15].

However, all methods based on contour detection are fully supervised, because the
algorithms are trained on ground truth boundary images. In contrast, the methods pre-
sented in this thesis refrain from using supervised information as good as possible. See
Chapter 5 for further details.

2.7 superpixels

Commonly, pixels form the building blocks of an image. However, close-by pixels are
often very similar in terms of their appearance, like colour or brightness. Often, it is
desirable to group sets of very similar pixels into superpixels [RM03] during a prepro-
cessing step. For instance, in order to reduce the computational burden of an algorithm.
Superpixels can be considered as a special case of image segmentation where the focus
does not reside on segmenting object-like instances in an image, but to group pixels to-
gether which share the same vicinity and are similar in appearance. The main objective
is to compute an over-segmentation where the true boundaries of the regions are kept
and the true regions itself are split into multiple groups of pixels. The groups should
have roughly the same size, resemble a grid-like structure, and should be fast to com-
pute [Ach+12].

Simple linear iterative clustering [Ach+12] (SLIC) is a typical representative of the su-
perpixel methods and is widely used in various applications. As shown in [SHL18] it is
among the top performing methods in terms of boundary recall and produces a prede-
fined number of clusters. As the name suggests, simple linear iterative clustering is an
iterative procedure which is closely related to K-means (see Section 2.4.2). SLIC uses the
coordinates of the Lab colour space (see Section 2.2) and the (x,y) position of the pixels
inside an image as features. They are compared by using a custom distance which in-
cludes a hyperparameter. It is used to control the importance of colour versus positional
features. As the positional features become more and more important, the superpixels
become more and more uniform in size and shape. In contrast to K-means, SLIC does
not use the whole image for distance computations, but only a local neighbourhood. The
size of the local neighbourhood is defined through the number of superpixels SLIC is
set to find. As in K-means, each pixel is then assigned to the nearest cluster centre and
all cluster centres are updated in every iteration. The algorithm terminates if the change
in the cluster centres falls below a threshold.

In the case of SLIC, the user is able to directly set a desired number of superpixels.
In contrast, other approaches like the previously mentioned GMM superpixels [BLC18]
only allow rough steering through hyperparamters. Further details about superpixels
itself, a performance evaluation, and an overview of recent advances can be found in
[SHL18]. How superpixels, in this case, SLIC can be used to improve the segmentation
models presented in this thesis at unsupervised image segmentation is shown in Chap-
ter 5.
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2.8 semantic segmentation

Besides the contour-based approaches to image segmentation which are trained on hu-
man annotations, another big branch of image segmentation exists. In semantic segmen-
tation, the regions in an image belong to a specific class. Therefore, algorithms not only
need to predict the outlines of every region in an image but also predict the class every
region belongs to. This is far more challenging because algorithms now need to learn
how given objects like cars look like in various images. Therefore, similarities across
several images can be exploited. This type of problems is seldom solved by generative or
unsupervised methods, but by DNNs. However, weakly supervised approaches exist. A
contribution to this field using the combination of a DNN and a generative image model
is presented in Chapter 6.

2.8.1 History of Deep Neural Networks

As of now, DNNs are commonly used to solve semantic segmentation problems, because
they show the best performance given enough training data. For a better understanding,
a brief overview of some trends in DNN research is given. Starting with a short historical
excursion, the development of modern architectures, including architectures especially
designed for image segmentation, is sketched. The reader may refer to the rich deep
learning literature, for example, [GBC16], for further information and in-depth discus-
sion of architectures and applications of DNNs.

Commonly, an artificial neural network consists of an input layer, an output layer,
and in the case of multilayer perceptrons or deep architectures of one or many more
hidden layers. Every layer consists of a specific number of neurons and every neuron
is connected via a weight to all neurons of the previous layer. The output of a single
neuron is the weighted sum of all incoming connections, followed by applying a non-
linear activation function (see e. g., [Bis06, Ch. 5]).

Starting in the late fifties, the perceptron [Ros58] can be considered as the first artificial
neural network which was able to learn from labelled examples. However, only prob-
lems which are linearly separable could be solved [MP69]. Extending the perceptron to
multiple layers solved this problem. Actually, it can be shown that a neural network
with one hidden layer and non-polynomial activation functions can approximate any
function [HSW89; Les+93].

In the early sixties, the first work regarding convolutional neural networks was made
by observing cells in the visual cortex of cats [HW62]. These cells correspond to ori-
entation selective receptive fields. The neocognitron [Fuk80] can be considered as one
of the first models employing a hierarchical structure similar to current Convolutional
Neural Networks, albeit trained differently than nowadays [LKF+10; Sch15]. Currently,
Deep Neural Networks are trained through back-propagation [GBC16, p. 203]. Convolu-
tional architectures [GBC16, Ch. 9] have been rediscovered in the late nineties [LeC+98]
and celebrated their most recognized breakthrough in 2012 by the invention of AlexNet
[KSH12]. Another important milestone was the use of Rectified Linear Units (ReLUs)
[GB10], which are considered as today’s standard activation function in deep learning
[GBC16, p. 173]. ReLU solved the vanishing gradient problem in a DNN (see [Nie15,
Ch. 5]). During back-propagation, the magnitudes of the gradients become smaller and
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smaller and eventually vanish. Therefore, no efficient training of the network is possible.
Prior to ReLU this issue was circumvented by using pre-trained networks. More about
the historical developments, along with further references, can be found in [LKF+10;
Sch15; GBC16].

2.8.2 Deep Neural Networks in Semantic Segmentation

Parallel to the development and the success of the aforementioned networks in classi-
fication tasks, networks have been developed which did not only predict one class per
image but made a prediction for every pixel in an image to get a semantic segmentation
as an output.

One of the major issues in bridging from pure classification, that is, predicting one
label per image, to semantic segmentation, that is, predicting one label for every pixel, is
the intrinsic reduction of resolution in a Convolutional Neural Network (CNN) through
layer-wise pooling. Starting with patch-based approaches [MH10], architectures espe-
cially suited for pixel-wise predictions have been developed. Among the first was the
U-Net [RFB15] developed for biomedical applications. The key idea was to build a U-
shaped architecture which has a contracting path—an encoder—used for discrimination
and an expanding path—a decoder—for accurate localization [RFB15]. Intermediate re-
sults of the same resolution are shared such that the network can learn accurate and
correct segmentations.

A similar approach is followed in [KWH14] by using Fully Convolutional Networks
(FCNs). By transferring the internal representations at different layers to the output
layer, localizing information at the beginning of the network can be combined with the
discriminative power at the end of the network. This is achieved by scaling the feature
maps at intermediate layers to the resolution of the input image and combining them
for predicting the segmentation. Further, common network architectures, like AlexNet
[KSH12] or VGG [SZ14], which are pre-trained on a classification task can easily be
adapted to the new semantic segmentation setting by this approach.

In [BHC15] the SegNet is proposed. The key idea is to use a network which consists of
an encoding and a decoding part. In order to reduce the amount of learnable weights,
the pooling indices of the encoder part are reverted in the decoder part. Therefore, the
network can learn discriminative representations in the encoder part which are then
upsampled in the decoder part. Further, the upsampling does not need to be learned
but is simply a result of the operations in the encoder part.

However, DNNs have one drawback and that is their need for vast amounts of anno-
tated training material. Acquiring images is not difficult but labelling every pixel in an
image, like it is needed in image segmentation, is at best tedious but mostly expensive
because human labour needs to be done [Cor+16]. In some fields, for instance, when cre-
ating annotations of everyday scenes this work can be crowdsourced [Rus+15]. However,
in some fields, like medical image analysis or when analysing remotely sensed surfaces
of planets, domain experts are needed to annotate data. Further details about semantic
segmentation using deep architectures can, for instance, be found in [HKH17; LDY18].
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2.8.3 Class Activation Maps

Class activation maps are one way to visualize the predictions of a CNN. However, the
network has to be designed in a special way to achieve this. The aim of class activation
maps is to learn one filter for every occurring class [Zho+16]. This is achieved by intro-
ducing a global pooling layer which replaces the fully connected layers at the end of
common DNN architectures. This approach was first introduced in [LCY13] as a form
of regularization in order to prevent overfitting in the fully connected layer and forcing
the network to learn confidence maps. This concept was then applied to weakly super-
vised object detection in [Oqu+15] and [Zho+16]. In [Oqu+15] a global max pooling is
used and in [Zho+16] and [LCY13] a global average pooling. Global average pooling is
better at localizing the full extent of objects than global max pooling, because global max
pooling often only learns to detect the most discriminative parts [Zho+16]. This claim is
verified by experimental results on the ImageNet database in [Zho+16].

In both cases, the basic idea is to learn a filter that detects which parts of an image
are discriminative for every class. Due to the specific design of the convolutional layers
before the global pooling layer, a class activation map is computed which indicates at
which parts in an image the respective classes are likely to be present. Details on the
computation of class activation maps can be found in [Zho+16]. Note that, by modelling
each class by its own filter, multiple objects can be detected at once. Therefore, the DNN
is not trained on one hot encoded vectors, but on vectors in which the presence of
multiple classes can be encoded.

However, class activation maps only indicate the presence or absence of image parts
at areas where a DNN thinks class relevant information is present. Since there is no
supervisory signal, like bounding boxes which guide the DNN, errors can easily occur.
One can easily assume that the class train can be learned by recognizing rails only be-
cause the visual variability of rails is smaller. Additionally, trains seldom appear without
rails. Further examples in a general setting of explaining the predictions of DNNs are
presented, among others, in [Lap+19].

Therefore, class activation maps do not necessarily coincide with the true objects. Fur-
ther, it can be observed that class activation maps often have high activations at specific
parts of an object. For instance, in the case of a person, especially at the head and
the hands. Some examples are presented in Chapter 6. While these two cues might be
enough to discriminate between persons and other objects, it makes it difficult to recon-
struct the full extent of persons in an image. However, the results in this challenging task
are encouraging. The network is able to localize objects in images, although it has never
been told how they look like or even where to find them in an image. Based on this rea-
soning, in Chapter 6 a method is presented which combines class activation mapping
with a generative image model to improve the detection accuracy and further present a
way to learn a weakly supervised segmentation model.

2.9 scene and object detection tasks

In this section, a short overview of commonly used benchmark tasks to asses the quality
of vision algorithms is given. In Chapter 6 two tasks of the PASCAL Visual Object
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Figure 2.4: Three sample images of the detection task in the PASCAL Visual Object Classes Chal-
lenge 2012 [Eve+15] (VOC). The ground truth annotations are depicted by green
bounding boxes. Multiple objects per image are possible.

Classes Challenge 2012 [Eve+15] (VOC) are used to measure the performance of the
proposed weakly supervised object detection and semantic segmentation framework.

VOC is considered as one of the standard benchmarks [Eve+15; Rus+15] and is com-
monly used to asses the quality of computer vision algorithms in an everyday setting.
The 19 737 images of the dataset are not designed for a specific case, like autonomous
driving, but resemble everyday objects commonly occurring in natural images. Starting
in 2005 with a classification and a detection task, VOC developed into a set of vision
tasks, ranging from the already mentioned tasks to semantic segmentation and action
recognition. Especially relevant for this thesis are the object detection and semantic seg-
mentation task (see Chapter 6).

The object detection task contains twenty different object classes which are annotated
by bounding boxes. Sample images along with ground truth bounding boxes are pre-
sented in Figure 2.4. Nowadays, The ImageNet Large Scale Visual Recognition Challenge
[Rus+15] and the corresponding data set with 1 000 categories and 1 461 406 images is
used to asses the quality of object classification. Further details about ImageNet and a
comparison to VOC can be found in [Rus+15].

2.10 image segmentation tasks

In this section, various benchmarks used in assessing the quality of segmentation algo-
rithms are presented. Two cases can be distinguished. The first case is segmenting an
image into a set of regions where no information about the semantic meaning of regions
is used or available. A typical example is the BSDS500 which is presented in the follow-
ing section. In this scenario, the images of the benchmark do not share semantic classes
among images. Instead, each image is treated independently of the others.

The second case is semantic segmentation. Here, the semantic classes are shared
among images and frequently reoccur. As a result, only the fixed semantic classes, like
bikes, cars, or cows, are annotated in the data set. An example is presented in Figure 2.5.
Semantic segmentation is nowadays mainly tackled by approaches related to deep learn-
ing, which can efficiently make use of rich annotations. Tasks which need to be solved
without labelled regions are mostly tackled by non-deep learning methods since the
number of annotations is usually not sufficient to train deep networks. In this thesis, the
BSDS500 (see Section 2.10.1) is the standard benchmark used to asses the performance of
the proposed segmentation methods. The approach towards weakly supervised seman-
tic segmentation presented in Chapter 6 is evaluated on the semantic segmentation task
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Figure 2.5: Three sample images (top row) of the segmentation task in the PASCAL Visual Object
Classes Challenge 2012 [Eve+15] (VOC). The ground truth annotations (bottom row)
are depicted by colour coded regions. Multiple objects per image are possible and
the boundaries are surrounded by a five pixel margin which is not considered during
evaluation.

of VOC. Further, additional data sets used in the related work are presented to provide
an overview over current trends and briefly sketch possible future research directions.

2.10.1 BSDS300 and BSDS500

Prior to 2001, segmentation algorithms have usually been evaluated by looking good
[Mar+01]. The Berkeley Segmentation Data Set and Benchmarks 300 [Mar+01] (BSDS300)
was the first publicly available data set for image segmentation and consists of 300 im-
ages with at least four human segmentations per image. Further details on the con-
struction of the database can be found in [Mar+01]. In [Arb+11] the BSDS300 has been
extended with 200 additional images, resulting in a new test set. The images of the
BSDS300 form the training and validation set of the extended version—the BSDS500.

Image segmentation suffers from ambiguity because different annotators might inter-
pret regions differently. This might be resolved in an object detection framework—a car
is a car—but it is challenging in the non semantic setting—a car consists of multiple
parts. In the BSDS300 and BSDS500 this ambiguity is tackled by providing multiple hu-
man annotations per image. Figure 2.3 provides an example of a sample image along
with ground truth segmentations by humans. In practice, the average over all ground
truth segmentations is computed to account for variability.

The BSDS500 is almost always used to asses the quality of superpixels and non se-
mantic image segmentation, see, for instance, [Arb+14; SWW17; SHL18; Tan+18b; Li+18;
Zha+18]. Therefore, the BSDS500 is chosen as the standard benchmark in this thesis as
well.
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2.10.2 VOC2012

The semantic segmentation task of The PASCAL Visual Object Classes Challenge 2012
[Eve+15] contains twenty different classes of everyday objects. Sample images along
with ground truth segmentations are presented in Figure 2.5. The annotations are not
perfect, but by design coarse. A margin of five pixels is introduced at every region bor-
der to account for an easier annotation. Therefore, accuracy was traded off for the speed
of annotating samples. The boundaries are marked as void and are not considered dur-
ing evaluation. The segmentation task of VOC is considered as the standard benchmark
in (weakly supervised) semantic segmentation [HKH17].

2.10.3 LeafSnap Field Data Set

The LeafSnap field data set [Kum+12] is a semantic segmentation data set consisting of
two classes, leaf and background. The aim is to segment each image as accurately as
possible. Since the outline of a leaf contains valuable information about the leaf genera
[Kum+12], special care should be taken to accurately reconstruct the border between leaf
and background. However, especially at the border regions shading makes an accurate
separation difficult. Further, leaves are subject to specularities because their reflectance
behaviour is not uniform. It is therefore of great interest to study the influence of differ-
ent generative models at their capability of modelling these influences. As there are only
two classes, leaf and background, in the data set, there is no need to select the number of
regions on a per image basis, but it can be fixed at two. Therefore, computing a segmen-
tation is independent of the number of classes and the resulting segmentation mainly
depends on the chosen generative model. Sample images along with ground truth anno-
tations are depicted in Figure 2.6. Note that stems are excluded from the ground truth
as they are not providing useful information for plant phenotyping.

2.10.4 Others

Semantic segmentation is an active area of research. Specialised data sets for au-
tonomous driving [Gei+13; Cor+16; Hua+18; Yu+18], plant phenotyping [Kum+12;
Min+16], medical image analysis [Maš+14; Set+17], or object segmentation in different
scenes [LYT09; Sil+12; Zho+17; CUF18] exist. Other special cases of image segmentation
are foreground-background segmentation [Alp+07] or salient object detection [Bor+15],
that is, detecting the most salient object in image.

2.11 measuring the performance of image segmentation

The chapter concludes with a summary of current approaches to asses the quality of
computed segmentations and discusses the advantages and disadvantages of the mea-
sures. Note that all the following interpretations are for a supervised evaluation, that
is, a ground truth is available. However, there exist unsupervised evaluation metrics
as well. See, for instance, [ZFG08] for a survey. In summary, unsupervised evaluation
metrics focus on computing measures which summarize the quality of the segmenta-
tion by computing (weighted) distances between the segmentation and the input im-
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Figure 2.6: Three sample images (top row) of the LeafSnap Field data set [Kum+12]. The ground
truth annotations (bottom row) are binary and the stems are intentionally excluded
from the ground truth, because they do not contribute strongly to distinguishing
different genera.

age. This includes, among others, the mean squared error between the data and the
cluster centres or more sophisticated criteria which punish non-homogeneous regions
or over-segmentations. While this can be considered as a more objective measure to
segmentation accuracy [HP17], the resulting “optimal” segmentations seldom coincide
with an object-based interpretation. Especially, if regions in an image show shading, tex-
ture, specularities, or a gradient. Therefore, a supervised evaluation of segmentations is
performed in this thesis, because this is more in line with an object-based interpretation
followed throughout this thesis.

Following [PTM16], two general types of supervised measures can be distinguished.
There are object-based measures, which assume a ground truth with fore and background,
that is, a two-class problem, and partition-based methods, which partition an image into
an arbitrary number of regions, that is, a multiclass problem. For this thesis, the partition-
based measures are most relevant because the algorithms developed in the remaining
part of this thesis can handle an arbitrary number of regions. One exception is the study
of the LeafSnap field data set (see Section 2.10.3 and Chapter 4) which only consists of
two regions.

2.11.1 Object-based Measures

The object-based measures can be subdivided into two cases. In the first case, the focus
resides on all pixels associated with both classes, and in the second case, the focus
resides on the boundary between foreground and background. The boundary-based
measures are discussed in Section 2.11.3.

In the first case, three sets are used to compute a measure in image segmentation.
The true positives (T P) are those pixels that are labelled in the ground truth and the
segmentation as foreground. False positives (FP) are those pixels which are detected
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as foreground in the segmentation, but are labelled as background in the ground truth.
False negatives (FN ) are those pixels which are labelled as foreground but are classified
as background by the segmentation.

The F measure is the harmonic mean between precision and recall. It is commonly
used and realizes a trade-off between precision, that is, the number of items in T P over
the total number of foreground pixels in the segmentation and the recall, that is, the
number of items in T P over the total number of foreground pixels in the ground truth.
Trading off these measures is essential because both metrics alone can be fooled easily
[PTM16]. Formally, the F measure is computed as [PTM16]:

F =
2 · |T P |

2 · |T P |+ |FP |+ |FN |
(2.15)

with | · | as the cardinality of a set, that is, the number of elements inside it. The Fmeasure
is used as a metric in conjunction with the LeafSnap field data set (see Chapter 4). The
F measure is also known as Dice coefficient, or Spatial Overlap Index [PTM16].

Another commonly used metric is the segmentation accuracy [PTM16] or Intersection
over union (IoU):

IoU =
|T P |

|T P |+ |FP |+ |FN |
. (2.16)

The IoU is used as a metric in conjunction with the segmentation task of VOC (see
Chapter 6). It is also known as the Jaccard Similarity Coefficient, overlap score, spatial
support score, ratio of intersection, or simply overlap [PTM16]. In fact, it can be shown
that the Fmeasure and IoU are closely related and if used to derive a ranking, equivalent
[PTM16].

2.11.2 Partition-based Measures

The partition-based measures can be subdivided into three interpretations [PTM16], that
are, region-based, pairs-of-pixels-based, and boundary-based.

2.11.2.1 Region-based Measures

The partition S = {R1, ...,RK} of an image I with N pixels into K regions R is compared
to another partition S ′ into K ′ regions R ′. Based on this, several measures can be defined.
Among others, the Segmentation covering [PTM16]:

C(S → S ′) =
1

N

∑︂
R∈S

|R| · max
R ′∈S ′

|R∩R ′|

|R∪R ′|
, (2.17)

with A ∪ B as the union of two sets, that is, the set that includes all elements which
are either in A or B, and A ∩ B as the intersection of two sets, that is, the set that
includes all elements which are members of both A and B Segmentation covering is
one of the three metrics introduced along with the Berkeley Segmentation Data Set
and Benchmarks 500 [Arb+11] and is therefore commonly used when assessing the
segmentation performance on the data set.
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While all previously mentioned measures originate from a set perspective, the
Variation of Information (VoI) measure looks from an information theoretic perspective.
The VoI is defined as [Mei05]

VoI(S ,S ′) = H(S) +H(S ′) − 2 · I(S,S ′). (2.18)

with entropy H(·) and mutual information I(·, ·). VoI is the second of the standard mea-
sures when evaluating the BSDS500. The smaller the value the better the agreement.

2.11.2.2 Pairs-of-Pixels Measures

Pairs-of-pixels measures are based, as the name suggests, on looking at all possible pairs
of pixels in a partition S and comparing this to another partition S ′ [PTM16]. The set of
all pairs of pixels P is divided into four sets based on the partitions S and S ′. The first
set P11 are all those pairs which are in the same region in S and S ′, the second set P10

are all those pairs which are in the same region in S but different in S ′, the third set P01

are all those pairs which are in the same region in S ′ but different in S, and the last set
P00 are all those pairs which are in different regions in S and S ′ [PTM16]. These sets
are then summarized in the Rand Index [Ran71]

RI(S,S ′) =
|P00|+ |P11|

|P |
(2.19)

as a measure of how coherent the two partitions are. The key idea behind the Rand
index is to define a measure which is independent of the region labels since they can
be arbitrarily exchanged and have no semantic meaning in non-semantic segmentation.
Depending on the values of the sets, the RI is one, if all pairs agree, and zero, if no pairs
agree.

In [UH05] the Probabilistic Rand Index (PRI) is introduced which can be used to
compare a segmentation S to a set of G ground truth segmentations G = {G1, . . . ,GG}.
According to [Arb+11] it is computed as:

PRI(S,G) = 1

|P |

∑︂
i<j

[︁
cij · pij + (1− cij)(1− pij)

]︁
(2.20)

where cij indicates if pixels i and j are from the same region, and pij is the correspond-
ing probability of observing this. If the pij are estimated empirically, that is, by comput-
ing how often pixels i and j share the same region in all ground truth segmentations,
the PRI simplifies to [UPH07]:

PRI(S,G) = 1

|G|
∑︂
i

RI(S,Gi) (2.21)

and is thus simply the average of the Rand indices over all ground truth segmentations.
The PRI is said to have a low dynamic range [Arb+11]. Therefore, in [UPH07] a normal-
ized version is introduced which normalizes the PRI by an expected value. However,
this measure is seldom used to asses the quality of images in practice and the simpler
variant—the PRI—is used instead. The PRI is the last of the three standard measures
when evaluating the BSDS500.
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2.11.3 Boundary-based Measures

All the aforementioned measures neglect spatial dependencies among pixels. However,
they are quite common in segmentations, because neighbouring pixels have a high prob-
ability of being from the same region. Following [PTM16] the set of all neighbouring
pixels is clustered to define a set of boundary pairs, that is, a boundary segment can
be constructed by connecting them. Therefore, the problem is transformed into a two-
class problem and this way a precision-recall framework can be constructed. However,
ground truth and segmentation seldom coincide exactly. In order to be robust against
small deviations, a threshold is introduced which is used to tolerate small differences.
Further details can be found in [PTM16].

The boundary-based measure is today’s standard evaluation scheme for contour de-
tection algorithms on the BSDS500 and often used to asses the quality of segmentation
algorithms as well. The major benefit of the boundary-based measures is its easy integra-
tion of multiple ground truth segmentations and the precision-recall framework itself,
which is indicative of how the algorithm can be improved.

2.11.4 Summary

In [PTM16] the boundary-based precision-recall accuracy assessment in conjunction
with the object-and-parts-based precision-recall framework (see [PTM16]) is suggested
as the best way to compare different segmentation algorithms.

However, as reported in [Arb+11], segmentation frameworks which are supervised,
for example, because they are based on contour detection, have an advantage over
clustering-based approaches, like the mixture models used in this thesis, when evalu-
ated in a boundary-based framework. Simply because contour detection methods not
necessarily produce closed contours. However, in this thesis, the focus resides on gen-
eratively modelling the regions in an image. Therefore, the region-based criteria are
weighted stronger than the boundary-based criteria. Further, one of the major goals of
this thesis is to reliably quantify the uncertainty of the probability that a specific pixel
belongs to a region, something not really possible in a boundary-based evaluation. Fol-
lowing this, the partition-based measures are used to make inferences.

In general, VoI and PRI are mostly used to asses segmentation quality when com-
paring different approaches, and are therefore the primary measures in the following
chapters. Design choices can, however, be evaluated on all the aforementioned mea-
sures or any other segmentation metric. An extensive list of other metrics is presented,
among others, in [PTM16].



3
F U N D A M E N TA L S O F B AY E S I A N I N F E R E N C E

The content of this chapter has been adapted and/or adopted from [WW16], [WW17c],
[WW17b], [WW17a], [Wil+17].

The methods developed in the following chapters heavily rely on concepts and meth-
ods from the statistics literature. Therefore, common statistical concepts are introduced
in this chapter. Starting with the key concepts of Bayesian statistics in Section 3.1, several
probability distributions which are important in the remaining parts of the thesis are dis-
cussed in Section 3.2. This is followed by an explanation of model selection in Section 3.3,
and Markov chain Monte Carlo (MCMC) in Section 3.4. Afterwards, non-parametric ap-
proaches to density estimation are presented in Section 3.5, and the concept of copulas
is introduced in Section 3.6. The chapter concludes with a short treatise of significance
testing in Section 3.7.

3.1 the prior - subjectivism in data analysis

In this thesis, one of the major goals is to derive uncertainty estimates of the computed
models. This is easily possible in the Bayesian setting (see e. g., [Gel+13, Ch. 1]). There-
fore, the focus does not reside on including prior information itself, but on the proba-
bilistic interpretation of the parameter estimation.

As already mentioned, the prior distribution (see Section 2.1) is the central element
which separates Bayesian statistics from classical statistics. In [Gel+13, p. 34], the prior
is interpreted as a population of reasonable values. What is reasonable depends on the
available knowledge prior to the experiment. Following [Gel+13, p. 34], two extreme
types of prior distributions can be distinguished. They are either informative or uninfor-
mative. Naturally, everything between the two extremes is possible as well.

An informative prior is a prior distribution which conveys information about a pa-
rameter [Gel+13, p. 34]. For instance, the knowledge that the sky is commonly blue can
be used in estimating the parameters of an image segmentation model. In this case, by
using the prior for modelling a strong relationship between the colour blue and the re-
gions which depict sky in an image. An uninformative prior would instead refrain from
including such strong information into the estimation and would instead favour a vague
relation.

Another benefit of prior distributions is their ability to impose constraints on the
values of parameters [Gel+13, p. 84]. For instance, if a parameter is physically restricted
to positive values, this is easily realized by using a probability distribution which is
only defined on the positive real line. Depending on the available prior information,
the hyperparameters, that are, the parameters of the prior distribution, are adjusted
accordingly.

33
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Conjugate prior [Gel+13, p. 35] play an important role in Bayesian statistics, because
they enable the practitioner to get a closed form solution. In this case, the posterior is of a
known parametric distribution. Therefore, the quantities like the maximum a-posteriori
estimate and the confidence regions can directly be derived from the known parametric
form. In fact, there are lists summarizing known conjugate prior likelihood relations
(see, e. g., [Lun+12, pp. 46-47]). Historically, the use of conjugate distributions stems
from the work presented in [RS61]. At that time, it enabled a broader use of Bayesian
statistics, because the computationally demanding sampling can be circumvented. This
is comparable to the rise of potent graphical processing units (GPUs) and the success
of Deep Neural Networks (DNNs). Without the help of massively parallel computation
on GPUs, DNNs would need way more time for training and testing. However, through
the general rise of computational power, the demanding computations which have been
limiting Bayesian statistics in the sixties, are possible today. Further information about
prior distributions can be found in [Gel+13].

In this thesis, mainly non-informative prior distributions or weakly informative prior
distributions are used. A notable exception is the inclusion of prior information about
the probable location of edges. They are integrated into a probabilistic segmentation
model to improve the performance. Further details are presented in Chapter 5.

3.2 probability distributions

In the following chapters, the image segmentation problem will be tackled from a prob-
abilistic perspective. Therefore, each region of an image will be associated with a prob-
ability distribution which describes how probable specific characteristics of the regions
are. Starting with discrete distributions which only constitute a minor but important
aspect in this thesis, a variety of continuous univariate and multivariate distributions
are introduced.

3.2.1 Discrete Probability Distributions

Discrete probability distributions are used to model discrete events, that is, the outcomes
are from a finite set of events, for instance, the throw of a die which falls on one of its six
sides or a coin toss. In the following, four discrete distributions are shortly introduced.
While the fourth distribution, the categorical distribution, is used in this thesis, the first
three help to understand it.

3.2.1.1 Binomial and Bernoulli Distribution

A typical example of a Binomial distribution is modelling the outcome of a sequence
of coin tosses. In this case, the set of discrete events are the two possible events that a
coin either lands on heads or tails. If tossing the coin is repeated Nt times a random
sequence of the same length is observed indicating if a coin landed heads or tails. The
probability mass function (pmf) is then given by [Mur12, p. 34]:

Bin (Nt|Ns, τ) =
(︃
Nt

Ns

)︃
τNs (1− τ)Nt−Ns (3.1)
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with τ as the probability of observing heads, and Ns as the number of successes, that is,
how often heads is observed. A special case emerges if the number of trials Nt equals
one. In this case, the pmf simplifies to [Mur12, p. 34]:

Ber (x|τ) =

⎧⎨⎩τ if x = 1

1− τ if x = 0
(3.2)

and the random variable is termed to follow a Bernoulli distribution. In the context of
computer vision and machine learning the Bernoulli distribution is for instance used to
build a probabilistic model for classifying handwritten digits [Bis06, pp. 444-448].

3.2.1.2 Multinomial and Categorical Distribution

In the case of a set with more than two discrete events, for instance, when rolling a
D-sided die Nt times, the multinomial distribution is used for modelling. The pmf of
the multinomial distribution is given by [Mur12, p. 35]:

Multin (x|Nt,τ) =
(︃

Nt

x1, . . . , xD

)︃ D∏︂
i=1

τxi

i , (3.3)

with τ = (τ1, . . . , τD) as the vector of probabilities of every possible outcome, x =

(x1, . . . , xD) as a vector of counts how often an outcome is observed, and
(︃

Nt

x1, . . . , xD

)︃
=

Nt!∏︁D
i=1 xi!

(3.4)

as the multinomial coefficient. Again, a special case emerges if the number of trials Nt

equals one. In this case, the pmf simplifies to [Mur12, p. 34]:

Cat (x|τ) =
D∏︂
i=1

τxi

i , (3.5)

and the resulting distribution is termed categorical distribution. The categorical distri-
bution plays a small but important role in this thesis and is used to model the latent
component memberships in Bayesian mixture models (see Section 3.2.4).

3.2.2 Continuous Distributions

Starting with distributions which can be used to model the regional distribution of
grey values, special distributions commonly used to define prior believe in Bayesian
inference are presented in the following. The distributions are distinguished by their
flexibility which is itself assessed by how many moments [Was13, Ch. 3] of a random
variable a distribution can model compared to the normal distribution. For instance,
in the case of the normal distribution only the first and second moment—mean and
variance—can be modelled. The third and fourth moment—skew and kurtosis—are a
result of the variance and can therefore not be controlled actively [AS64, p. 930]. How-
ever, other distributions are able to model different behaviours with reference to the
normal distribution by introducing additional parameters.
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(a) Normal distribution
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(b) t-distribution

Figure 3.1: Probability density function of a normal distribution (left) and Student’s t-
distribution (right). In both cases, various shapes are depicted. In the case of a nor-
mal distribution, by varying the standard deviation σ, and, in the case of Student’s
t-distribution, by varying the degrees-of-freedom ν. By comparing the distributions
depicted in solid lines, which are both computed with σ = 1 the modified tail be-
haviour of Student’s t-distribution is visible.

3.2.2.1 Normal Distribution

The normal distribution, also known as Gaussian distribution [Bar12, p. 166], is a ubiq-
uitous choice in nearly all scientific domains when modelling the density of data. It is
a symmetric distribution which is defined on the whole real line. It has a bell-shaped
curve and a unique mode (see Figure 3.1a). The mode of a distribution is the point with
the highest probability. The probability density function (pdf) of a normal distribution,
see Equation 3.6, is described by two parameters, the mean µ and the standard deviation
σ.

Normal(x|µ,σ) =
1

(2π)1/2σ
exp

(︄
−
1

2

(︃
x− µ

σ

)︃2
)︄

(3.6)

Additionally, the square of the standard deviation is known as the variance and the
inverse of the variance is known as the precision [Bis06, p. 24]. In this thesis, the normal
distribution is expressed through the standard deviation, because it has the advantage of
having the same unit as the mean. This can be important when interpreting the results.
The precision parametrization of the normal distribution is commonly used in Bayesian
statistics (see, e. g., [Gel+13, p. 40]). The normal distribution is able to control the first
and second moment of a random variable.

3.2.2.2 Student’s t-Distribution

Real data are often corrupted by noise and outliers. While the former is often assumed
to behave like a normal distribution, the latter seldom does. One reason is that outliers
are not frequent enough to truly behave like a normal distribution. In order to model
such deviations William Sealy Gosset developed the Student’s t-distribution [Stu08] un-
der his synonym Student1. In this thesis, the parametrization presented in [Mur12, p. 39]

1 William Sealy Gosset has been working for the Guinness brewery at that time. The company prohibited
his employees to publish in scientific journals, because secret parts of the brewing procedure had been
published unintentionally in the past [Sal01, p. 27].
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(a) Modifying skew.
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(b) Modifying kurtosis.

Figure 3.2: Probability density functions of a generalized hyperbolic distribution with modified
skew (left) and modified tail behaviour (right) with respect to a normal distribution
(solid line).

is used. In contrast to the normal distribution, Student’s t-distribution has an additional
parameter ν, termed the degrees-of-freedom. In the limiting case ν → ∞ the normal
distribution is recovered. Therefore, Student’s t-distribution (see Equation 3.7) is a gen-
eralization of the normal distribution. Again, µ and σ model the mean value and the
standard deviation. Through ν the tail behaviour of the distribution can be adjusted.
This is illustrated in Figure 3.1b. By lifting the tails of the distribution, infrequent values
far from the mean receive more probability mass. Therefore, infrequent data points—the
outliers—can be modelled better as they would otherwise shift the mean unintentionally.

t(x|µ,σ,ν) =
Γ
(︁
ν+1
2

)︁

Γ
(︁
ν
2

)︁
(νπ)1/2 σ

(︄
1+

1

ν

(︃
x− µ

σ

)︃2
)︄−ν+1

2

(3.7)

Γ(x) denotes the Gamma function. Student’s t-distribution is able to control the first,
second, and fourth moment of a random variable.

3.2.2.3 Generalized Hyperbolic Distribution

The two aforementioned distributions are both symmetric. Therefore, skewed data can-
not be modelled adequately. One way to model skewness is to use the generalized hyper-
bolic distribution introduced in [BN77]. The pdf of a generalized hyperbolic distribution
is presented in Equation 3.8.

Ghd(x|µ,σ,χ,γ,η) =
(ϖ/σ)η

(2π)1/2Kη(σϖ)

Kη−1/2

(︂
χ
√︁
σ2 + (x− µ)2

)︂

(︂√︁
σ2 + (x− µ)2/χ

)︂1/2−η
exp

(︁
γ(x− µ)

)︁

(3.8)

ϖ =
√︁
χ2 − γ2

By introducing three additional parameters compared to the normal distribution, that
are, χ, γ, and η, the flexibility of the distribution is greatly increased. The parameter γ
is used to steer the skew of the distribution, χ and η are used to steer the tail behaviour
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(a) Modifying skew.
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(b) Modifying kurtosis.

Figure 3.3: Probability density functions of a sinh-asinh distribution with modified skew (left)
and modified tail behaviour (right) with respect to a normal distribution (solid line).

of the distribution. The parameter σ is closely related to the variance of the distribution
and Kn(·) is the modified Bessel function of the second kind which is defined as [AS64,
p. 375]:

Kv(z) =
π/2

sin(vπ)
(︁
I−v

(︁
z
)︁
− Iv (z)

)︁
, (3.9)

with Iv(z) as the modified Bessel function of the first kind [AS64, p. 375]:

Iv(z) = (z/2)v
∞∑︂

k=0

(︁
z2/4

)︁k

k!Γ (v+ k+ 1)
(3.10)

The generalized hyperbolic distribution is a favourable choice compared to other dis-
tributions with the ability to model the third moment of a random variable because it
has added the ability to control the fourth moment as well. Further, the generalized
hyperbolic distribution includes the normal distribution and Student’s t-distribution as
special cases.

Albeit its flexibility, the generalized hyperbolic distribution has one major drawback.
It heavily relies on the use of Bessel functions. Since the Bessel function of the sec-
ond kind is defined by a definite integral, a closed form expression of the derivative is
not available. Therefore, only derivative-free optimization schemes or MCMC (see Sec-
tion 3.4) are possible for parameter estimation. Further, advanced MCMC schemes are
not possible, because they often rely on derivatives as well. The generalized hyperbolic
distribution is able to independently control the first, second, third, and fourth moment
of a random variable. Possible shapes of the distribution are depicted in Figure 3.2.

3.2.2.4 Sinh-asinh Distribution

As mentioned in the previous paragraph, the generalized hyperbolic distribution suf-
fers from extensive use of Bessel functions, which are defined by definite integrals. An
alternative distribution which is as flexible as the generalized hyperbolic distribution is
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the sinh-asinh distribution introduced in [JP09]. The probability density function of the
sinh-asinh distribution is presented in Equation 3.11.

Sha(x|µ,σ, ϵ, δ) =
1

(2π)1/2σ

δCϵ,δ
(︁
x−µ
σ

)︁
(︃
1+

(︂
x−µ
σ

)︂2)︃1/2
exp

(︄
−
1

2
S2ϵ,δ

(︃
x− µ

σ

)︃)︄
(3.11)

Cϵ,δ(x) = cosh
(︂
δ sinh−1(x) − ϵ

)︂

Sϵ,δ(x) = sinh
(︂
δ sinh−1(x) − ϵ

)︂

The pdf is defined by the mean µ, standard deviation σ, skewness parameter ϵ, and tail
parameter δ. Instead of Bessel functions, the pdf is defined by hyperbolic functions and
their inverses which have closed form derivatives.

Similar to the generalized hyperbolic distribution, the sinh-asinh distribution contains
several distributions as special cases. Among others, the normal distribution is recovered
if ϵ = 0 and δ = 1 [JP09]. Additionally, the sinh-asinh distribution not only models
heavier tails than the normal distribution but also lighter tails. A range of possible
shapes is depicted in Figure 3.3. Further, the sinh-asinh distribution pairs nicely with
a Gaussian copula (see Section 3.6) when constructing a multivariate distribution. The
sinh-asinh distributions is able to control the first, second, third, and fourth moment of a
random variable. Further details and an application in image segmentation is presented
in Chapter 4 and Chapter 5.

3.2.2.5 Gamma Distribution

While all previously mentioned distributions have been presented as possible distribu-
tions for modelling the observed pixel values in an image region, special distributions
exist which are commonly used to model the prior belief of parameters in a Bayesian
framework. A typical representative is the gamma distribution [GH06, p. 44]. The pdf is
presented in Equation 3.12.

Gamma(x|a,b) =
ba

Γ (a)
x−(a+1) exp (−bx) (3.12)

Two hyperparameters a and b are used to control the shape of the distribution. Both hy-
perparameters have to be positive [Bar12, p. 164]. A range of possible shapes is depicted
in Figure 3.4a. In contrast to the previously mentioned distributions, the gamma distri-
bution is only defined on the positive real line. Therefore, it is suitable for modelling
parameters which are supposed to be positive by definition and is commonly used as a
prior distribution for the precision of a normal distribution. The gamma distribution is
able to model the first and second moment of a random variable defined on the positive
line.

3.2.2.6 Beta Distribution

While the gamma distribution is defined on a half-open interval, that is, the positive real
line, the beta distribution is defined on the closed interval [0, 1] [Bar12, p. 165]. Therefore,
the beta distribution is especially well suited for parameters which are restricted to this
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(a) Gamma distribution
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(b) Beta distribution

Figure 3.4: Probability density function of a gamma distribution (left) which is only defined on
the positive real line and the pdf of a beta distribution which is only defined on the
interval [0, 1].

range. This includes, among others, proportions and probabilities. The pdf of the beta
distribution is presented in Equation 3.13.

Beta(x|α,β) =
Γ (α+β)

Γ (α) Γ (β)
xα−1 (1− x)β−1 (3.13)

The beta distribution is defined by two hyperparameters α and β. Both have to be
positive. A range of possible shapes is depicted in Figure 3.4b. The beta distribution is
able to control the first, second, third, and fourth moment of a random variable defined
on the interval [0, 1].

3.2.2.7 Uniform Distribution

If a parameter is known to lie in an interval and all values in it are equally probable,
the uniform distribution [Mur12, p. 32] is used as a model . For instance, to express
ignorance, that is, assuming all values from an interval are equally likely observed. The
pdf of a uniform distribution is presented in Equation 3.14.

Uniform(x|u, v) =

⎧⎨⎩ 1
v−u for u ⩽ x ⩽ v,

0 for x < u or x > v
(3.14)

The distribution is characterized by two hyperparameters u and v which define the start
and the end of an interval. The height of the resulting rectangle is computed such that it
has an area of one and is thus a valid probability distribution. The uniform distribution
controls the first and second moment of a random variable from a closed interval.

3.2.2.8 Others

Besides the already mentioned distributions, a plethora of other distributions exist.
While the previously mentioned distributions are relevant in this thesis, that is, they are
used in the experiments presented in the following chapters. Other distributions may
be alternative choices. For instance, the normal distribution and Student’s t-distribution
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can be skewed by the relation introduced in [Azz85]. By expressing a probability distri-
bution p(x) through a symmetric density f(x) and its cumulative distribution function
F(x) with additional parameter s, a valid distribution is expressed by:

p(x) = 2 f(x) F(s · x). (3.15)

As a result, a skewed variant of the distribution f(x) is recovered by modifying s. How-
ever, in the case of the normal distribution and Student’s t-distribution the respective
cumulative distribution functions do not have closed form expressions, but are de-
fined through definite integrals or infinite sums similar to the Bessel functions (cf. Sec-
tion 3.2.2.3).

Besides, generalized variants of the normal distribution exist which either allow to
model the kurtosis of a random variable, see, for instance, [Nad05], or skew, see, for
instance, [HW05, p. 197]. Another distribution which is based on the normal distribution
is the log-normal distribution. Similar to the gamma distribution it is defined on the
positive real line and has two hyperparameters, the mean and the variance. A variable
is said to follow a log-normal distribution if it is normally distributed on a logarithmic
scale.

Another class of distributions which exhibit great flexibility and include many dis-
tributions as special cases are stable distributions (see, e. g., [Nol03]). However, stable
distributions are defined through characteristic functions and the Fourier transforma-
tion which makes them computationally expensive when evaluated.

Lastly, the skewed generalized t-distribution [The98] is another five parameter dis-
tribution which offers great flexibility. It is similar to the generalized hyperbolic dis-
tribution and the sinh-asinh distribution and includes many parametric distributions
as special cases. However, only a univariate variant is presented and no cumulative
distribution function (cdf) is presented. Therefore, it is not possible to integrate the dis-
tribution in the proposed copula framework presented in Chapter 4 where multivariate
distributions are generated from flexible marginal distributions.

3.2.3 Multivariate Distributions

In the previous section, univariate distributions have been discussed. However, data of
colour images is multivariate, because colour is commonly described by three colour
channels. Therefore, the distributions in the previous section are only useful for mod-
elling regions in grey scale images. If the regions of a colour image are to be modelled,
multivariate distributions need to be considered. Of course, every colour channel can
be treated independently of the others such that every colour is modelled by a univari-
ate distribution. However, this neglects possible correlations among the colour channels.
These correlations are very important in image segmentation. In Chapter 4 experiments
regarding this aspect are presented.

In the following, the multivariate extensions of the normal distribution, Student’s t-
distribution, and generalized hyperbolic distribution are discussed. Additionally, a more
flexible variant of the multivariate Student’s t-distribution is reviewed and an important
prior distribution in the context of mixture models, the Dirichlet distribution, is pre-
sented.
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3.2.3.1 Normal Distribution

The multivariate formulation of a D-dimensional normal distribution is presented in
Equation 3.16. The distribution is parametrized by a vector of means µ and a covariance
matrix Σ.

Normal(x|µ,Σ) =
1

(2π)D/2|Σ|1/2
exp

(︃
−
1

2
(x − µ)TΣ−1(x − µ)

)︃
(3.16)

The diagonal elements of the covariance matrix Σ are the variances in the respective
dimension and the off-diagonal elements are used to describe correlations among dif-
ferent dimensions. The multivariate normal distribution is symmetric and has elliptic
contours. Further properties of the multivariate normal can, for instance, be found in
[Bis06, pp. 78-102].

3.2.3.2 Student’s t-Distribution

Following the same reasoning as in the univariate case, the multivariate equivalent of
Student’s t-distribution is used if the observed multivariate data are corrupted by out-
liers. Again, robustness is achieved by modifying the tail behaviour of the distribution
with the help of an additional parameter. By increasing the probability in the tails of
the distribution it is able to assign higher probabilities to points which are far from the
mode of the distribution. Further, by increasing the tail weights, the weight of the mode
is flattened, which may help to better model near uniform distributions. The pdf of a
multivariate t-distribution can be written as [Bis06, pp. 105]:

t(x|µ,Σ,ν) =
Γ
[︁
ν+D
2

]︁

(νπ)D/2
|Σ|1/2Γ

[︁
ν
2

]︁
(︄
1+

(x − µ)T Σ−1 (x − µ)

ν

)︄−ν+D
2

(3.17)

with µ as the mean vector, Σ as a description of the covariance structure, and ν as the
degrees-of-freedom used to steer the tail behaviour.

3.2.3.3 Multiple Scaled t-Distribution

One drawback of the previously described t-distribution is that the tail behaviour is
modified equally in every dimension because ν is a scalar. However, one may easily as-
sume a situation where this behaviour may not be desired because not every dimension
might be corrupted equally. In those cases, a multiple scaled variant of the t-distribution
[Tor+14] can be used. The pdf of the multiple scaled t-distribution is presented in Equa-
tion 3.18.

tms(x|µ,λ, V,ν) =
D∏︂
i=1

Γ
(︂
νi+1

2

)︂

(λiνiπ)1/2Γ
(︁
νi

2

)︁
[︄
1+

(︁
VT [x − µ]i

)︁2

λiνi

]︄−νi+1

2

(3.18)

The distribution is parametrized by a mean vector µ, the matrix of eigenvectors V, the
vector of eigenvalues λ, and ν as the number of degrees of freedom in every dimension.
In comparison to the t-distribution (cf. Equation 3.17), the multiple scaled variant uses
an eigenvector and eigenvalue decomposition of the covariance matrix Σ to define the
distribution. The t-distribution is a special case of the multiple scaled variant if all νi
are equal and the normal distribution is recovered if all νi → ∞.
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3.2.3.4 Generalized Hyperbolic Distribution

None of the previously described distributions is able to model skewed data in the mul-
tivariate case. The generalized hyperbolic distribution is, as in the univariate case, a
parametric distribution which is able to model skewness in every dimension indepen-
dently. Further, the distribution is able to model different tail behaviours, which makes it
a very flexible distribution in the multivariate case. The general form (see [MFE15, p. 78])
is not uniquely defined in the multivariate case, because it is identical under certain pa-
rameter combinations. Therefore, several reparametrizations exist [MFE15, p. 79]. In this
thesis, the parametrization by [BM15] is used. The pdf of the generalized hyperbolic
distribution then equals:

Ghd(x|µ,Σ,γ,χ,η) =

(︁
χ+ γTΣ−1γ

)︁(D/2−η)/2

(2π)D/2
|Σ|1/2 Kη (χ)

×

Kη−(D/2)

(︃(︂(︁
χ+ δ(x)

)︁(︁
χ+ γTΣ−1γ

)︁)︂1/2)︃

(︁
χ+ δ (x)

)︁(D/2−η)/2
×

exp
(︂
(x − µ)T Σ−1γ

)︂
(3.19)

with µ as the mean vector, Σ as the covariance matrix, tail parameters χ and η, skewness
vector γ, D as the dimension of the model space, and

δ (x) = (x − µ)T Σ−1 (x − µ)

as the squared Mahalanobis distance. Again, Kn (·) is the modified Bessel function of
the second kind (see Equation 3.9). Further details about the distribution and different
parametrizations can, for instance, be found in [BM15; MFE15].

3.2.3.5 Dirichlet Distribution

The Dirichlet distribution is a multivariate extension of the beta distribution [Mur12,
p. 47]. While the beta distribution can be used to model a random variable coming from
the interval [0, 1], the Dirichlet distribution is used if the random variable comes from
a simplex, that is, the single realizations of the random variable each come from the
interval [0, 1] and additional sum to one. The pdf of the Dirichlet distribution can be
expressed as [Bis06, p. 76]:

Dirich(x|ζ) =
Γ (ζ)∏︁D

i=1 Γ (ζi)

D∏︂
i=1

xζi−1
i , ζ =

D∑︂
i=1

ζi. (3.20)

with ζ as the distribution’s hyperparameters. The Dirichlet distribution is commonly
used as a prior distribution in Bayesian statistics [Mur12, p.79]. It is especially well
suited in cases where a set of random variables is modelled which all come from the
interval [0, 1] and additionally sum to one. This includes, among others, the mixture
weights of a mixture model or proportions which are positive and sum to one.
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Figure 3.5: Probability density function (solid line) of a Gaussian mixture model with means
µ = [1.5, 2.0, 3.5], standard deviations σ = [0.6, 0.4, 0.4], and mixture weights
ω = [0.3, 0.4, 0.3]. Although the mixture consists of three components, only two
unique modes are visible. The first two components form a skewed shape. The pdfs
of the individual components (dashed lines) and the component means (dotted lines)
are additionally presented. Further, 500 random draws from the mixture model are
illustrated by a “+”-sign. For a better visibility the samples are modified by uniform
noise and a constant offset in the y-direction.

3.2.4 Mixture Models

Mixture models are a class of especially flexible probability distributions and are a cen-
tral part of the approaches developed in this thesis. The pdf of an exemplary mixture
model with three components is illustrated in Figure 3.5. In general, the probability dis-
tribution of a mixture model is built by a linear combination of two or more independent
probability distributions. In order to enforce that the result is still a valid probability dis-
tribution, that is, it integrates to one and is strictly positive, the weights are taken from
the interval [0, 1] and have to sum to one (cf. Section 3.2.3.5), that is, a convex combination.
Formally, this is expressed as [Gre17]:

p (x|Θ) =

K∑︂
k=1

ωkϕk (x|Θk) ,
K∑︂

k=1

ωk = 1. (3.21)

with ω as the mixture weights, K as the number of mixture components, and ϕk(X|Θ)

as any probability distribution. Note that, the distributions do not necessarily need to be
of the same parametric form. A mixture of, for instance, two normal distributions and a
gamma distribution is possible.

By interpreting the individual probability distributions in a mixture model differently,
two application scenarios can be distinguished. In the first case, known as an indirect
application of mixture models in [Tit+85] or as an analytic point of view in [Gre17], the
K components are not assumed to convey any information about possible subgroups
in the data. In this case, the mixture model is simply used to derive a probabilistic
description of the data without interpreting the individual components. It is, therefore,
more focused on the density estimation itself and not on the latent structure of the
components.
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In the second case, known as the direct application of mixture models in [Tit+85] or as
the synthetic view in [Gre17], the opposite is true. Here, the components are interpreted
as subgroups or subpopulations of the complete data. Therefore, it is assumed that each
of the occurring K subgroups is appropriately described by one distribution. Formally,
this is realized as a two-stage procedure. First, a group is selected with a probability
which is proportional to the mixture weights ω. This latent group variable, commonly
denoted by z, then indicates to which of the K components a sample “belongs”. Af-
terwards, a realization of the distribution is drawn conditional on z, that is, based on
the probability distribution z is associated with. Formally, the relation is expressed by
[Gre17]:

xj|zj ∼ p(·|θzj), with p(zj = k) = ωk. (3.22)

Note that, this interpretation does not change the general equation of a mixture model
(Equation 3.21), it is just a different interpretation. In fact, this interpretation is of utmost
importance when deriving some methods to estimate the parameters of a mixture model.
This includes, among others, the Expectation Maximisation (EM) [DLR77] algorithm
which can be considered as today’s standard approach for estimating the parameters of
mixture models based on normal distributions. Further details about EM are provided
in Section 2.4.3.

In a Bayesian framework, both interpretations are easily realized. In the second case—
the direct application—the synthetic generation of samples is completely modelled by
probability distributions. This explicitly includes the latent variables zj which are not
directly observed [MMR05]. The latent variables zj are modelled through a categorical
distribution, the mixture weights as a Dirichlet distribution, and the parameters of the
components by appropriate prior distributions. For instance, a common choice for the
mean and the variance of a normal distribution are the normal distribution and the
Gamma distribution. During parameter inference through Markov chain Monte Carlo
(MCMC) (see Section 3.4) the estimation of the latent variables and the parameters are
alternated. First, the latent variables are drawn based on the current estimates of the
parameters and afterwards the parameters of the components are updated with respect
to the computed latent variables. Each component is updated one after each other using
only those points where the latent variable equals the component index. Therefore, the
estimation can be thought of as treating the different components separately and using
only those points which probably belong to the respective components to update the
parameters. Further details can, for instance, be found in [Gel+13, Ch. 22] or [MMR05].
A complete probabilistic description of the mixture models used in this thesis can be
found in Chapter 5.

In the first case—the indirect application—the model is estimated as is in Equa-
tion 3.21 and the latent variables are not directly modelled. This is also known as a
marginalized mixture model because the latent variables z which are used to indicate the
component memberships are marginalized out of the estimation [Gel+13, p. 522]. In this
case, this is possible by not separating the components from each other when modifying
the parameters of the distribution. Therefore, the likelihood function [Gre17]

p(x|Θ) =

N∏︂
j=1

K∑︂
k=1

ωkϕk

(︁
xj|Θk

)︁
, (3.23)
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withN as the number of data points, is evaluated completely. The single components are
not treated individually but as a whole. Therefore, in a fully Bayesian treatment, prior
distributions and a model for the latent variables do not need to be assumed. As a result,
however, no uncertainties regarding the latent variables can be computed. Commonly,
marginalizing parameters out of a model leads to a better and faster sampling with
MCMC, because the chain has to traverse a smaller parameter space.

In this thesis, the direct application is followed. For computing a segmentation, each
region is assumed to correspond to one component of a mixture model. In order to
model the various distributions occurring in natural images as good as possible, it is
of utmost importance that the distribution of each component is as flexible as possible.
An analysis regarding this aspect using different parametric probability distributions is
presented in Chapter 4.

A typical representative of the class of mixture distributions is the Gaussian Mixture
Model (GMM) which is a mixture of K normal distributions. The pdf of a GMM with K
components is written as:

p(x|µ,σ,ω) =

K∑︂
k=1

ωkNormal (x|µk,σk) (3.24)

with µ as the vector of means and σ as the vector of standard deviations. The pdf of a
mixture model with three components is illustrated in Figure 3.5. Although the mixture
consists of three components, only two modes can be distinguished. In fact, two of
the components form a skewed shape. Following the direct interpretation, it would be
beneficial to model these two components by one distribution which can also model
skewed data. In the indirect interpretation, this would not matter because the density
itself has the priority.

Further details about the GMM and how it is used in image segmentation has already
been presented in Section 2.4.3. One of the major challenges in working with mixture
models is how to decide on the number of mixture components K. Several approaches
are presented in the following section. Another approach, where the number of mixture
components is treated as a random variable as well is presented in Section 3.5.1. An
evaluation of their suitability in image segmentation is presented in Chapter 5.

3.3 model comparison

Estimating the number of mixture components is a special case of model comparison
[Gel+13, Ch. 7]. Therefore, model comparison is reviewed in light of selecting a suitable
number of mixture components. Commonly, a mixture model is computed with a dif-
ferent number of mixture components and afterwards the best solution is selected. The
major challenge is to determine what is best in a given context. In this thesis, two views
are described. First, model comparison is reviewed from a statistical perspective (see
Section 3.3.1) and, second, from a clustering perspective (see Section 3.3.2).

Additionally, model selection may be performed during parameter inference. There-
fore, not only the space of parameters needs to be explored but also the space of models.
In the case of mixture models, the number of components is then treated as an addi-
tional random variable and estimated during inference. This approach is also known as
infinite mixture models [Mur12, p. 879] and has the advantage of being the statistically
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most sound way to solve the number of component problem in a Bayesian framework.
Additionally, an uncertainty estimate regarding the number of mixture components can
be given. However, changing from one model to another model includes a change in
dimension, because components are dropped or added. This makes the estimation more
complicated such that additional criteria have to be met. Further details regarding this
approach are presented in Section 3.5.1.

3.3.1 Statistical Approaches

The Akaike Information Criterion (AIC) is derived from the Kullback-Leibler diver-
gence2 between the density of the true model and an estimate of this density [MP00,
p. 202]. Following [MP00, p. 203], the AIC [Aka74] is given after several simplifications
as:

AIC = −2 logL(θ) + 2M, (3.25)

with L(θ) as the likelihood function (see Equation 3.23) and M as the number of esti-
mated parameters. The model with the lowest AIC is chosen as the best fit. The AIC
penalizes the likelihood of the data linearly with the number of estimated parameters.
The formula stems from the asymptotic limit of the posterior distribution. In this limit,
the posterior distribution is assumed to follow a normal distribution and subtracting
the number of estimated parameters correctly adjusts for the possibility that an increase
in prediction accuracy happened by chance. However, if this assumption is violated, for
instance, if the models are non-linear or hierarchical the AIC struggles to give sensible
estimates [Gel+13, p. 172]. In the case of mixture models, the AIC tends to overestimate
the number of mixture components [MP00, p. 203].

A commonly used alternative to the AIC is the Bayesian Information Criterion (BIC).
In contrast to the AIC, the BIC is derived from a concept termed Bayes factors3. A detailed
derivation is presented in [MP00, pp. 208-209]. Following [MP00, p. 209], the BIC [Sch78]
is given as:

BIC = −2 logL(θ) +M logN. (3.26)

Again, the model with the lowest BIC is chosen as the best fit. The BIC penalizes the
complexity of the model through the number of estimated parameters and, in contrast
to the AIC, additionally through the number of data points which are used to compute
the model. As a result, the BIC penalizes more complex models stronger if more data is
considered.

AIC and BIC barely scratch the surface of a broad range of methods found in the statis-
tical literature. However, these two are the most commonly used. Further details about
model comparison can, among others, be found in [MP00; Lun+12; Gel+13]. According
to [MP00, p. 220] the BIC performs better than the AIC when analysing synthetic data,
that is, the model assumption is not violated.

2 The Kullback-Leibler divergence [KL51] measures the similarity of two distributions. In the continuous
case, it is computed as [Bis06, p. 55]: KL(p||q) = −

∫︁
p(x) · log q(x)

p(x)dx.
3 Bayes factors are the ratio of two marginal posteriors of two different models, that is, the posterior distribu-

tions of two models are integrated over the parameters of the respective models and then divided by each
other. Further details can be found, among others, in [Gel+13, Sec. 7.4] or [Lun+12, Sec. 8.7]
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In Chapter 5 the experiments are repeated with real image data where the model as-
sumption is violated. Empirically the best way to choose K in this setting is additionally
presented.

3.3.2 Cluster Validation Criteria

While the statistical approaches utilize the likelihood function to derive criteria, cluster
validation criteria directly look at the result of the estimation—the clustering. Therefore,
they are not generally applicable in terms of model comparison, as the statistical ap-
proaches, but only useful when the data is divided into clusters. Since the direct applica-
tion of mixture models (see Section 3.2.4) conveys a clustering interpretation, clustering
criteria are a valid way to asses the quality of mixture models. However, this neglects
the uncertainty in the affinity which is in the case of mixture models a membership
probability.

3.3.2.1 Silhouettes

Silhouettes by [Rou87] is a clustering criterion where the cluster quality is graded by
mimicking a visual inspection of the clustering. Silhouettes are computed for every da-
tum. If a measure of the overall quality is desired, the average of the silhouettes is
computed. This is termed the silhouette coefficient and denoted by SH in this thesis. A
silhouette is defined as [Rou87]:

s(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1− a(i)/b(i), if a(i) < b(i)

0, if a(i) = b(i)

b(i)/a(i) − 1, if a(i) > b(i)

(3.27)

with a(i) as the average distance between the i-th point in a cluster A and all other points
in A, and b(i) as the average distance between the i-th point to the points in the nearest
cluster other than A. In principle, every distance measure can be used to compute a(i)
and b(i). In the original work, the Euclidean distance has been chosen. A clustering is
supposed to be better if the silhouette coefficient is as close to one as possible.

3.3.2.2 Calinski-Harabasz Criterion

The Calinski-Harabasz criterion [CH74] is based on assuming that a good clustering
has compact clusters which are well separated. This can be measured by computing the
within-cluster variance W and the between-cluster variance B. The Calinski-Harabasz
criterion is then computed as the ratio of those two quantities multiplied by a correction
term which includes the number of clusters K and data points N:

CH =
W

B

N−K

K− 1
. (3.28)

The best clustering is achieved by the model with the highest Calinski-Harabasz crite-
rion.
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3.3.2.3 Davies-Bouldin Index

Another more sophisticated method to asses the quality of a clustering using variances
is the Davies-Bouldin index [DB79]. The key idea is to have an index which measures
the average dissimilarity of each cluster as:

DBI =
1

N

K∑︂
i=1

max
i ̸=j

Si + Sj
Mij

(3.29)

with i and j as two cluster indices, S as the average distance within a cluster, and Mij

as the distance of the characteristic values of two clusters, for instance, the means. The
former is a measure for the dispersion within a cluster and the latter is a measure for the
dispersion of two clusters. If the dissimilarity is high, which is indicated by a low value
of the DBI, a good clustering is achieved. Further details can be found in the original
work.

3.3.2.4 Others

Besides the already mentioned criteria, a plethora of other criteria exist and can, among
others, be found in [TK09, Ch. 16] or [AR13, Ch. 23]. In fact, the previously mentioned
criteria are termed internal cluster validation measures, because they simply look at the
distribution of the data in the feature space. They are solely based on internal informa-
tion. If prior information about a clustering or even a ground truth clustering is available,
other measures exist which are termed external cluster validation measures. They have
been presented in Section 2.11 and are used to asses the quality of the derived image
segmentations in the following chapters (see Chapter 4 and Chapter 5). External valida-
tion criteria are excluded here, because their sole purpose in this thesis is to asses the
quality of a segmentation. Therefore, they are reviewed together with other approaches
to grade the quality of a segmentation with respect to a ground truth annotation. The in-
ternal cluster validation criteria are used to estimate the number of mixture components
in an unsupervised way, that is, without external knowledge.

3.4 markov chain monte carlo

Until now, only one way—conjugate priors—has been presented as a method to per-
form an analysis in a Bayesian setting. However, the use of conjugate priors is limited
to special cases where the used distributions for prior and model exhibit certain prop-
erties. In the general case, conjugate prior might not be known or not even be desired
because the conjugate prior is too restrictive when modelling the prior belief. In those
cases, Bayesian statistics is tackled with Markov chain Monte Carlo (MCMC). MCMC is
a powerful class of methods which can draw samples from arbitrary probability distri-
butions without needing a closed form expression of the distribution. Instead of having
a closed form expression, the unknown distribution is approximated by drawing sam-
ples from it. The more samples are drawn and the better the samples are, the better
the approximation of the unknown probability distribution. In the specific application
scenario of drawing samples from the unknown posterior distribution, it is enough to
know the distribution of the model and the prior which are both set by the practitioner.
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3.4.1 Monte Carlo Integration and Markov Chains

MCMC is a combination of two separate techniques, that are, Monte Carlo integration
and Markov chains. Both methods are briefly introduced. Monte Carlo integration is
a numerical method to solve integrals. While other methods use a deterministic grid,
Monte Carlo integration is non-deterministic, that is, it uses random samples to approx-
imate an integral. The quantities of interest in the Bayesian setting are the moments of
the probability distributions. The mean value of an unknown random variable can be
computed as [Lun+12, p. 8]:

E [x] =

∫︂
x

x p(x)dx ≈ 1

T

T∑︂
t=1

x(t), (3.30)

with E [x] as the expected value of the random variable x, p(x) as the pdf, x(t) as the t-th
sample of p(x), and T as the number of samples used to approximate the expected value
through Monte Carlo integration. In general, any function of x can be used. When esti-
mating the expected value of a posterior distribution E [θ|x] conditional on the observed
data x Equation 3.30 becomes:

E [θ|x] =

∫︂
θ

θ p(θ|x)dθ ≈ 1

T

T∑︂
t=1

θ(t). (3.31)

Still, the major challenge is how to compute the samples θ(1), . . . , θ(T) of the posterior
distribution. In those cases, Monte Carlo integration is combined with a Markov chain.

In general, a Markov chain creates a sequence of random variables x(1), . . . , x(T) where
the current random variable x(t) solely depends on the previous random variable x(t−1).
Therefore, future and past are independent of each other [BH14, p. 460]. Note that,
all derivations are presented for discrete time and discrete state space Markov chains.
However, all concepts are valid for general state spaces but require a more technical
description [GRS95, p. 46].

A Markov chain consists of several states, where the transition probabilities between
two states i and j are described by a matrix Q of the individual transition probabilities
[BH14, p. 461]:

Qij = p
(︁
x(t+1) = j|x(t) = i

)︁
. (3.32)

If the Markov chain meets specific properties, the long run behaviour of the Markov
chain can be described by a stationary distribution and the Markov chain is guaranteed
to reach the stationary distribution from any initial condition [BH14, p. 469]. In order to
have a stationary distribution, a Markov chain has to be [GRS95, p. 46]:

1. irreducible,

2. aperiodic,

3. positive recurrent.

A chain is termed irreducible if every state can be reached from every other state in a
finite number of steps with a positive probability. A chain is aperiodic if no oscillatory
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behaviour is observed, that is, jumping from a specific set of states to another. And
finally, a chain is termed positive recurrent, if once the chain reaches the stationary
distribution all subsequent draws are from the stationary distribution.

The ultimate goal is to create a Markov chain where the stationary distribution ap-
proximates the posterior distribution as good as possible. As a result, samples from the
unknown posterior p(θ|x) can be generated and the sought quantities of the posterior
can be computed through Monte Carlo integration. How this is realized in detail is pre-
sented in Section 3.4.2 with the help of the Metropolis-Hastings algorithm. Further details
about Markov chains in general and in the context of MCMC can be found in [BH14,
Ch. 11] and [GRS95, Ch. 3].

3.4.2 Metropolis-Hastings

Metropolis-Hastings [Has70] is an algorithm which modifies a “normal” Markov chain
into a Markov chain which has the unknown posterior distribution as the stationary dis-
tribution. This modification is implemented by introducing an accept/reject step within
the algorithm. However, Metropolis-Hastings is not restricted to the application scenario
of drawing random variates from a posterior distribution but it can also be used in an
arbitrary setting to create samples from a distribution. In general, the algorithm is used
to draw random variates from a distribution p(x) by sampling from a proposal distribu-
tion q(x → x ′) = q(x ′|x) which creates a new sample x ′ based on the current value x.
Commonly, the normal distribution is chosen as a proposal distribution, because sam-
ples can easily be generated from it. The goal of the sampling is to generate a sequence
x(0), . . . , x(T) of T random draws from the distribution p(x) starting from an initial value
x(0). Metropolis-Hastings proceeds as follows [Ntz11, pp. 42-34]:

1. Set starting value x(0).

2. For t = 1, . . . , T

a) Propose a new value from q(x ′|x),

b) Compute acceptance probability ξ,

ξ = min
(︃
1,
p(x ′)q(x|x ′)

p(x)q(x ′|x)

)︃
,

c) Accept x(t) = x ′ with probability ξ. Otherwise, set x(t) = x = x(t−1).

Regardless of the proposal distribution q(·), the algorithm presented above has p(x) as
its stationary distribution. In practice, the choice of the proposal distribution heavily
influences the speed of MCMC. In terms of Markov chains, the chain generated by q(·)
is a Markov chain which lacks the desired property of sampling from p(x). Metropolis-
Hastings now modifies this Markov chain through an accept/reject step such that the
Markov chain generated with q(·) equals p(x).

If the Metropolis-Hastings algorithm is used in the Bayesian setting, the unknown dis-
tribution from which samples should be generated is the posterior p(θ|x). Unfortunately,
the parametric form is still unknown. In order to create a sequence θ(0), . . . , θ(T) of T
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(a) Probability density of Normal(−2, 0.6) (solid
line) and 100 samples (crosses).
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(b) Trace plots of different proposal distributions.

Figure 3.6: Influence of the proposal distribution in Metropolis-Hastings. 100 Samples of
Normal(−2, 0.6) and the respective pdf (left) are used to estimate the mean value
with different proposal distributions (right). Depending on the chosen proposal dis-
tribution, different behaviours can be observed. While all chains reach the stationary
distribution eventually, the number of accepted samples varies strongly.

samples, Bayes’ law is used to rewrite the computation of the acceptance probability ξ
as:

ξ = min (1,Ξ)

Ξ =
p(θ ′|x)q(θ|θ ′)

p(θ|x)q(θ ′|θ)

Bayes
=

p(x|θ ′)p(θ ′)
p(x) q(θ|θ ′)

p(x|θ)p(θ)
p(x) q(θ ′|θ)

=
p(x|θ ′)p(θ ′)q(θ|θ ′)

p(x|θ)p(θ)q(θ ′|θ)
. (3.33)

The intractable posterior p(θ|x) is expressed through Bayes’ law as the product of like-
lihood and prior divided through the evidence. As a result, the evidence p(x), which
is difficult to compute, cancels from Equation 3.33 and the computation is solely based
on the proposal, likelihood, and prior distributions, which are all set by the practitioner.
Further, if q(·) is a symmetric distribution, like the normal distribution, it cancels from
Equation 3.33 as well.

Choosing the proposal distribution has a major impact on the speed of the Markov
chain. In the case of continuous parameters, the normal distribution is commonly cho-
sen. Formally, one sets q(x ′|x) = Normal(x,σx) and the parameter σx can be adjusted
accordingly. This is illustrated in Figure 3.6. On the one hand, if the standard deviation
is too large, the chance of accepting a new value is small, because it is far from the cur-
rent value. On the other hand, if the standard deviation is too small, this will result in
a bad exploration behaviour, because the samples barely differ. Therefore, the proposal
distribution need to be tuned to match the given problem. In the literature, this is often
achieved by modifying σx until a “good” acceptance rate is reached. In [Ntz11, p. 44]
the acceptance rate is targeted at twenty to forty per cent of the proposed samples as a
good trade-off between exploration and sample generation.

In the multivariate case, Metropolis-Hastings is still possible. If the model has more
than one parameter, the posterior is multivariate as well. Therefore, prior and proposal
distribution become multivariate as well. However, the parameters can also be treated
independently of each other and are thus updated one after another. In this case, prior
and proposal distribution are univariate. However, the posterior is still a multivariate
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distribution. Updating the parameters independently neglects the possibility to exploit
correlations among parameters, but it makes it easier to tune the proposal distribu-
tion. Besides the already mentioned manual tuning of the acceptance rate, automatic
approaches exist which tune the proposal distribution during inference.

3.4.3 Delayed Rejection Adaptive Sampling

Delayed Rejection Adaptive Sampling (DRAM) [Haa+06] is one method to tune the
proposal distribution during parameter inference. Actually, DRAM is a combination of
two methods, that are, delayed rejection [TM99] and adaptive Metropolis [HST01].

In contrast to the accept/reject step in Metropolis-Hastings, delayed rejection proposes
a new value in the same iteration instead of rejecting the proposed value. Therefore, the
new sample may come from a different proposal distribution or even be based on the
rejected sample. The key idea is to use the information from the rejected sample to
create a better proposal. In fact, this procedure can be repeated, for instance, in a fixed
number of steps where the proposal distribution is iteratively scaled. Delayed rejection
does not influence the properties of the Markov chain because past and future are still
independent of each other. The dependence between the samples is only introduced
while proposing the values.

Adaptive Metropolis does instead violate the assumptions of a Markov chain by up-
dating the proposal distribution based on the already accepted samples. For instance, if
the proposal distribution is a normal distribution, the covariance matrix is updated in
every iteration based on the previously drawn samples. This helps the proposal distribu-
tion to automatically tune itself to a suitable scale. However, this uses past information
of the Markov chain and therefore violates the assumption of an independent past and
future. In practice, DRAM works [Haa+06] because a better exploration of the parame-
ter space outweighs the violated assumption. It is especially beneficial in cases where
the posterior distribution has highly correlated parameters. To circumvent the violation
issue, adapting the covariance matrix can be limited to a fixed number of iterations. Af-
terwards, the tuned covariance matrix is used to generate the samples but not updated
any longer. As a result, the assumptions of a Markov chain are no longer violated.

In this thesis, DRAM is used for sampling from the unknown posterior distributions.
Although the assumptions of a Markov chain are violated, the adoption is not stopped
during sampling. As already observed in [Haa+06], no negative implications have been
noticed in practice.

3.4.4 Others

The literature on sampling algorithms is as rich as the literature on univariate probability
distributions. Other commonly used methods for sampling in the context of MCMC are,
among others, Gibbs sampling [GG84], slice sampling [Nea03], or Hamiltonian Monte
Carlo [Dua+87]. Nowadays, a variant of Hamiltonian Monte Carlo—the No-U-turn sam-
pler [HG14]—is the standard technique. For computationally demanding approaches,
the posterior distribution is approximated. For instance, automatic differentiation varia-
tional inference [Kuc+17] is a commonly used variant to turn the iterative sampling into
an optimization by fitting known distributions to the posterior. However, these samplers
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are not considered in this thesis, because the models developed in the following chap-
ters are too complex or too uncommon to be easily integrated into the current software
frameworks, like Stan [Car+17], since essential functions are missing. Being an approach
that can always be applied, the Metropolis-Hastings algorithm and the DRAM extension
are used in this thesis as a trade-off between speed and ease of use.

3.5 non-parametric approaches

Besides the already mentioned parametric approaches at modelling the density of data,
non-parametric approaches exist as well. For instance, the concept of mixture models
(see Section 3.2.4) can be extended to get a non-parametric mixture model. By letting the
number of mixture components K reach infinity, an infinite mixture model is recovered
which can set the number of mixture components autonomously [Mur12, p. 879]. Further
details are presented in Section 3.5.1. While the infinite mixture model increases the
possible number of components to infinity, Kernel Density Estimation (KDE) places a
fixed number of kernel functions in the range of the data. By combining these kernels, a
non-parametric estimate of the density is recovered. See Section 3.5.2 for further details.
Both approaches are important in this thesis. While the infinite mixture model is used
to estimate the unknown number of mixture components (see Section 5.2), the KDE is
utilized as a flexible distribution to model multi-modal data in semantic segmentation
(see Section 6.3).

3.5.1 Infinite Mixture Models

Dirichlet processes [Fer73] are used when the parameters of the model are allowed to
change its dimensionality. In the case of mixture models, the Dirichlet process is used
to model the number of mixture components. Hence, it does not need to be known a-
priori, but is estimated in conjunction with the parameters of the mixture model. In the
following, key concepts of an infinite mixture model are briefly introduced.

In general, a Dirichlet process can be viewed as a distribution over distributions. A
draw from a Dirichlet process is a distribution itself. Formally, a realization G of a Dirich-
let process is a discrete distribution. From such a realization G weights are drawn. Since
the Dirichlet process is unbounded, the number of drawn weights ω1, . . . ,ω∞ is infinite
as well. Since these weights are drawn from a Dirichlet distribution (cf. Section 3.2.3.5),
they additionally sum to one. Depending on the chosen parameters, more or less proba-
bility mass is concentrated on a few weights. Formally, a Dirichlet process is expressed
as [Lun+12, p. 292]:

G ∼ DP(G0, ι) (3.34)

with G0 as the base distribution, and ι as the dispersion parameter. The base distribution
G0 represents the mean distribution and ι steers how close realizations from G are to
G0. Often, the standard normal distribution Normal(0, 1) is chosen as base distribution.
The greater the dispersion parameter is chosen, the greater is the resemblance of the
base distribution and a draw from G. The smaller the dispersion parameter is chosen,
the greater is the dissimilarity and the sampled G places more weight on a few values
ωi.
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The Dirichlet process can be used to model an infinite mixture model by using the pi
from the Dirichlet process as the mixture weights of the mixture model. As a result, the
Dirichlet process models the uncertainty regarding the number of mixture components.

In practice, realizing a Dirichlet process as a prior distribution of the mixture weights
comes at a high computational cost. However, the Dirichlet process has the advantage
of exploring the model and the parameter space at once. Under certain circumstances,
this can even be faster than testing a different number of mixture components [Mur12,
p. 881].

Commonly, a Dirichlet Process Mixture Model (DPMM) is realized as a mixture of
normal distributions. According to [Mur12, p. 886], the simplest way to estimate the
parameters of a DPMM is a collapsed Gibbs sampler. In some cases it is possible, through
a clever choice of distributions, to marginalize some parameters out of the model, that
is, integrating over them (cf. Section 3.2.4). This is termed a collapsed Gibbs sampler.
Actually, in the case of a GMM the parameters µk, Σk, and ωk can all be integrated
from the posterior. As a result, only the latent variables have to be sampled. A detailed
derivation is presented in [Mur12, pp. 842-843]. Therefore, the collapsed variant of the
Gibbs sampler can easily be adapted to integrate a Dirichlet process as a prior of the
mixture weights. Details can be found in [Mur12, pp. 886-887].

In this thesis, the DPMM framework is tested as one variant to estimate the number of
mixture components in an unsupervised way, that is, without external knowledge by an
expert. In theory, this has the following benefits. First, the DPMM allows modelling the
uncertainty in the estimates of the number of mixture components. Second, the DPMM
uses a coherent statistical framework with verified properties. Third, the DPMM does
not rely on unjustified assumptions like common cluster validation criteria or any other
heuristic to estimate the number of mixture components, and last, it solves the problem
in a data-driven way. In practice, the results are presented in Chapter 5 and strongly
favour the DPMM over other variants.

3.5.2 Kernel Density Estimation

While the DPMM is in accordance with the direct interpretation of mixture models (see
Section 3.2.4), kernel density estimation is more in line with an indirect interpretation,
that is, focussing more on the density estimation itself than on the latent interpretation.
Therefore, it is not suitable for image segmentation unless the different regions of an
image are known to some degree. Then, a non-parametric estimation of the density can
be built. This is favourable because the range of possible shapes a KDE can model is
supposed to be more variable than parametric distributions. In general, estimating the
pdf of a distribution with KDE is written as [Mur12, p. 508]:

p̂kde(x) =
1

Nh

N∑︂
j=1

k

(︃
x− xj
h

)︃
(3.35)
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with k(·) as a kernel function, and h as the bandwidth of the kernel. If the kernel is
chosen to be a zero mean normal distribution, KDE is comparable to a mixture of normal
distributions [Mur12, p. 508]. In the univariate case this is expressed as:

p(x) =
1

N

N∑︂
j=1

Normal(xj,σ) (3.36)

where a normal distribution is placed on every datum xi with a fixed standard deviation
σ. Instead of placing a component on each datum, a fixed grid with equal distances is
often used as an alternative. In both cases, the number of components does not depend
on the density of the data but is simply a result of the desired resolution or the number
of data points. Since all points are weighted equally, the mixture weights are equal as
well and result in 1/N.

In general, other kernels are possible as long as they are always positive, have a zero
mean, and integrate to one. The bandwidth h is, among others, set empirically, by cross-
validation [Mur12, p.508], or in the case of normally distributed samples optimally by
using Scott’s normal reference rule [Sco79; Sco15].

Further, it is possible to introduce a weighting of the samples by assuming that not
every sample contributes equally to the unknown probability distribution. The KDE is
then changed to

p̂wkde(x) =
1

h

N∑︂
j=1

ωjk

(︃
x− xj
h

)︃
(3.37)

with ωj as the weight for the j-th sample. All weights have to be positive and sum to
one.

On the one hand, the approach seems favourable for creating flexible semi-parametric
descriptions of the observed density, but, on the other hand, KDE is memory consuming
and computationally demanding [Mur12, p. 508]. For analysing univariate data, KDE is
a viable tool, but in the case of multivariate data, it becomes more and more memory
consuming. In order to keep the same resolution in the multivariate case as in the uni-
variate case, the number of sampling points grows exponentially with the number of
dimensions. As a result, the KDE of multivariate data is either crude or infeasible. How
a distribution can be separated into its marginal distribution and a distribution which
solely describes the correlation among the marginals is subject of the following section.

3.6 copula

Copulas are functions which describe the link between the univariate marginal distri-
butions of a multivariate random variable and its joint multivariate dependence struc-
ture [Joe14]. Essentially, a copula may describe how parameters behave when they are
observed together without necessarily having been observed together. As mixture distri-
butions have two interpretations, copulas can be used in two application scenarios. In
the first scenario, a set of random variables is not observed together, for instance, when
collecting data from separate sources or different features from different persons, and
an artificial correlation among the features is imposed. This model can then be used
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(f) Frank copula

Figure 3.7: Probability density functions of bivariate data with different copulas. While the
marginal distributions p

(︁
x1
)︁

and p
(︁
x2
)︁

are equal in all cases, changing the copula
alters the bivariate behaviour of the distribution.

to make correlated predictions about seemingly uncorrelated quantities. A similar ap-
proach was followed in [Li00], which was the central model eventually leading to the
financial crisis in 2008 [Sal09].

The second approach is to have a flexible way to model multivariate data that are
observed jointly and are correlated. By using copulas the correlation structure and the
univariate marginals can be modelled separately. Unlike the parametric multivariate
distributions, where marginal distributions and correlation are restricted to the current
parametric form, copulas enable the practitioner to combine different univariate prob-
ability distributions with different correlation structures. This can be thought of as a
modular approach to model building which greatly increases the flexibility.

The copula approach is theoretically justified by Sklar’s theorem [Skl59] which states
that every multivariate cumulative distribution function P(x1, . . . , xD) can be expressed
through the cdfs of the marginal distributions and a copula C:

P(x1, . . . , xD) = C
(︁
P1(x1), . . . ,PD(xD)

)︁
. (3.38)

As a result, the pdf of a multivariate distribution can be expressed as:

p(x1, . . . , xD) = c
(︁
P1(x1), . . . ,PD(xD)

)︁
·

D∏︂
i=1

pi(xi), (3.39)
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with c(x) as the density of a copula. Now, the marginal distributions are independent
of each other and Pi(xi) and pi(xi) can be chosen freely, but need to be of the same
parametric family. Mixing the pdf of a normal distribution with the cdf of a beta distri-
bution for the i-th dimension is not possible. However, for different dimensions, different
distributions can be chosen.

Depending on the used copula, different correlation structures can be realised. In
Figure 3.7 two marginal distributions and the resulting bivariate densities with four
different copulas are depicted. While the Gaussian copula recreates a bivariate normal
density, the Gumbel [Nel06, p. 96], Clayton [Nel06, p. 116], and Frank copula [Nel06,
p. 116] show different behaviours. A throughout treatise of copula can, among others,
be found in [Joe14] or [Nel06].

3.6.1 Gaussian Copula

The Gaussian copula is closely related to the multivariate normal distribution (cf. Equa-
tion 3.16) and is in fact derived from it. In contrast to the multivariate normal which is
recovered, if the marginals are chosen as univariate normal distributions, it can handle
different marginal distributions. The pdf of the Gaussian copula corresponds to [Joe14,
p. 163]

c
(︁
P1(x1), . . . ,PD(xD)

)︁
=

1

|C|
1/2

exp
{︃
−
1

2
uT
(︁
C−1 − 1

)︁
u
}︃

, (3.40)

with C as a correlation matrix, and u = (u1, . . . ,uD) as the quantile function of a stan-
dard normal distribution of the cumulative distribution function of every marginal dis-
tribution. The quantile function is the inverse of the cumulative distribution function.
Formally, u is expressed as:

ui = φ
−1
(︁
Pi(xi)

)︁
, (3.41)

with φ−1(·) as the quantile function of a standard normal distribution, and Pi(xi) as the
cumulative distribution function of the i-th marginal distribution.

In this thesis, the Gaussian copula is used in conjunction with the sinh-asinh distribu-
tion (see Section 3.2) as a very flexible model for image segmentation. See Chapter 4 for
further details and a performance evaluation. The Gaussian copula has the advantage of
borrowing the correlation structure from a normal distribution which has been proven
to be suitable in many tasks. Other multivariate copulas often only use one parameter
to model the dependence structure of multiple dimensions. This might be too restrictive
in the context of generative image segmentation.

The Gaussian copula uses almost the same number of parameters as the multivariate
normal distribution. Note that, a correlation matrix C which can be used in a Gaussian
copula can be derived from the covariance matrix Σ of a multivariate normal distribution
by computing

C = D−1ΣD−1, with D =
(︁
diag (Σ)

)︁1/2. (3.42)

As a result, the diagonal elements of C are equal to one and C can be thought of as a
scaled version of the covariance matrix, which only describes the dependences among
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the variables. In the context of copulas, the scales itself—the variances—are modelled
through the marginal distributions. A list of other multivariate copulas can, for instance,
be found in [Ozd+18]. An extensive list of bivariate copulas is presented in [Nel06,
pp. 116-119].

3.7 significance testing

The chapter concludes with a small treatise of hypothesis testing, also known as sig-
nificance testing [Was13, Ch. 10]. Significance testing is a tool from classical statistics
which tries to answer the question if realizations of two random variables come from
the same or from different distributions. This is also termed a two-sample test because
two distributions—two groups—are compared. A one-sample test simply compares one
distribution to a hypothesis, for instance, if the mean is greater than a threshold. Two-
sample tests can be used to compare if the improvements of a model are significant
with respect to another model or if the improvements only happened by chance. Since a
significance test assumes a distribution for a random variable, different tests are used in
different situations. In the simplest case, that is, testing for a difference in means, where
the two random variables are assumed to be drawn from two normal distributions with
known standard deviations, the significance level is computed by a Gauss test [SL15,
p. 400], also known as z-test. If the standard deviations are unknown a t-test is used
[BHH+78, p. 74]. Special tests exist which answer the question if a random variable is
normally distributed. A common test for normality is the Anderson-Darling test [AD52].

If the normal assumption is no longer viable, non-parametric tests are used. These
tests are termed exact, because they are not based on the central limit theorem, that is,
assuming normality in the limit of N→ ∞ [Was13, p. 161]. A permutation test assumes
that the samples in the sets X and Y are exchangeable. In the case of equal distribu-
tions, permuting the groups of the data does not change the distribution. Formally, two
random sequences x(1), . . . , x(N) ∼ Fx and y(1), . . . ,y(M) ∼ Fy are tested for the null
hypothesis H0 that the two sequences are from the same distribution by [Was13, p. 162]:

Ho : Fx = Fy , H1 : Fx ̸= Fy. (3.43)

The test statistic T(x(1), . . . , x(N),y(1), . . . ,y(M)) is, for instance, a difference in means:

T(x(1), . . . , x(N),y(1), . . . ,y(M)) = |x̄− ȳ| = tobs (3.44)

with x̄ and ȳ as the empirical averages of the samples. Following [Was13, p. 163], a
permutation test iterates the following steps:

1. Compute the test statistic T(·) = tobs for the two groups.

2. Randomly permute the group memberships B times, recompute the test statistic T ,
and store it in a vector t.

3. The p-value is then approximated as:

p̂ =
1

B

B∑︂
b=1

tb > tobs (3.45)
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In the case B = (N+M)!, that is, B equals the total number of possible permutations,
the computed p-value is exact. However, even for low sample sizes B quickly grows very
large. In practice, only a subset of the possible permutations is used. An estimate of the
error induced through the reduced set of permutations is computed as [OG10]:

sd =

√︃
p(1− p)

B
(3.46)

with p as the true p-value and B as the number of permutations. In practice, the upper
bound of the variance 1/(4B) is used to define the number of necessary permutations
[OG10]. For a desired error of sd = ±0.001, 250 000 permutations are required.

While the number of permutations is still high, they can be evaluated in a reasonable
amount of time. In practice, a paired t-test is often a viable alternative, but a permuta-
tion test is preferable in general. The Wilcoxon signed rank test [Wil45], which is the
historical predecessor of the permutation test, should not be used any longer [SAC07].

In this thesis, two-sample tests are used to answer the question if the proposed im-
provements are a significant contribution to the field of image segmentation. Note that,
in order to answer this question, it is not sufficient to test for the equality of two dis-
tributions with, for instance, a two-sample Kolmogorov-Smirnov test [Smi39]. With the
help of such tests only the question is answered if two distributions are equal or not.
However, distributions can be different although their means are equal. In those cases,
this would lead to false conclusions when the question is tried to be answered if a model
performs better than another. In order to measure if a model is an improvement over
the other, we need to compare the average performances of the models and answer the
question if the observed differences are significant or happened by chance. The used
metrics are summarized in Section 2.11 and results are presented in Chapter 4.



4
S U I TA B I L I T Y O F VA R I O U S P R O B A B I L I T Y D I S T R I B U T I O N S
I N S I D E A G E N E R AT I V E M I X T U R E M O D E L A P P R O A C H F O R
I M A G E S E G M E N TAT I O N

The content of this chapter has been adapted and/or adopted from [WW16], [WW17c], and
[WW17b]. Using the generalized hyperbolic distribution in the context of image segmenta-
tion has been presented at DICTA-2016 [WW16]. A mixture model based on the multiple
scaled t-distribution has been presented at VISAPP-2017 [WW17c]. An in-depth analysis
of multiple distributions at image segmentation and a model based on the novel combination
of the sinh-asinh distribution and a Gaussian copula have been presented at IVCNZ-2017
[WW17b].

While the previous chapters laid out the foundations of image segmentation and
Bayesian inference in general, this chapter explores the limits of mixture models in gen-
erative segmentation. In this thesis, mixture models are chosen to segment images, be-
cause they can be used in the unsupervised setting where no ground truth annotations
are required or available. Additionally, a generative model quantifies the uncertainty
with which a prediction is made in a coherent statistical framework. This helps to better
understand the limits of a model and is especially helpful in the setting of exploring
a new data set together with a domain expert, for instance, a geologist or a physician.
Uncertainties are then an important tool to communicate and discuss the results.

In the following, the assumptions of different probability distributions are presented
and their implications in image segmentation tested. The impacts of using different
distributions are presented visually and with the help of the segmentation metrics pre-
sented in Section 2.11. In Section 4.1 the model assumptions of a Gaussian Mixture
Model (GMM) are discussed in the light of two common data sets—the Berkeley Seg-
mentation Data Set and Benchmarks 500 [Arb+11] (BSDS500) and the LeafSnap Field
data set [Kum+12]. Afterwards, different colour spaces are tested and the question is
answered if perceptually uniform colour spaces are advantageous in image segmenta-
tion. This is followed by an analysis of different ways to include positional data into
the segmentation model in Section 4.3. Additionally, the importance of keeping the de-
pendence structure between multiple features is discussed in Section 4.4. Building on
these results, a novel probability distribution is introduced in Section 4.5 and the suit-
ability of this model is tested against other distributions. The results are summarized in
Section 4.7 and future research directions are briefly sketched in Section 4.8.

4.1 model assumptions

The simplest approach in order to improve the performance of a generative image seg-
mentation method is to take a well-known basis model and build upon it. In this thesis,
the Gaussian Mixture Model (GMM) (see Section 2.4.3) is chosen as the baseline. Accord-
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ing to the direct interpretation of mixture models (see Section 3.2.4), the GMM assumes
a normal distribution (see Section 3.2.2) for every region. For a high agreement between
the real data and the model assumption, the data of every region has to be as normally
distributed as possible.

In the following sections, two directions are examined to improve the segmentation
model. In the first case, the baseline model is kept and the input data is varied. In the
other case, the model is adapted to better fit the data. The first case is easier, and is,
therefore, conducted first. If a modification of the input data helps a normal distribu-
tion, it helps the other distributions as well, because they include the normal distribu-
tion as a special case. In a first step, however, the model assumptions of a GMM are
tested by taking a segmentation benchmark (see Section 2.10) and evaluating how often
the model assumption is valid. In this thesis, the Berkeley Segmentation Data Set and
Benchmarks 500 [Arb+11] (BSDS500) is the standard benchmark and is used to answer
most of the questions in this chapter.

From a statistical perspective, we can simply test how many of the annotated ground
truth regions in the BSDS500 are normally distributed. In order to ease the testing, only
the marginal distributions of the multivariate data are tested. An Anderson-Darling
test (see Section 3.7) is used for this. Note that, marginal normality does not imply
multivariate normality, because the dependence structure has to be of the same form
as a multivariate normal distribution as well. Therefore, marginal normal distributions
are a necessary but not a sufficient condition. Essentially, the dependence structure of a
multivariate normal is a matrix of correlations. See [Joe14, Sec. 2.6] for further details on
the dependence structure of multivariate normal distributions.

In Figure 4.1 the percentage of marginally normally distributed regions are presented
in various colour spaces. Different spaces are analysed to test if one of them has a the-
oretical advantage over others when using a GMM. In case the percentage of normally
distributed regions is higher, the model should perform better because the assumptions
of it are violated less often. In Section 4.2 this is tested empirically. The analysed colour
spaces are the RGB, YUV, Lab, HSV, and HSV V2 colour space. The coordinates of the re-
spective colour spaces are used as input data for the normality test. The HSV V2 colour
space is a transformed variant of the HSV colour space and computed by [SM00]:

⎡
⎢⎢⎣
h ′

s ′

v ′

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

v

v · s · sin(h)

v · s · cos(h)

⎤
⎥⎥⎦ . (4.1)

It is evident that in comparison to the standard RGB colour space the Lab colour space
has a significantly higher percentage of marginally normally distributed regions. This
is especially visible in the colour channels a and b. The remaining colour spaces are
comparable to the RGB colour space and do not deviate strongly. Therefore, the Lab
colour space is—at least from a theoretical perspective—favourable. In the following
section, this claim is tested experimentally.

The same experiments are repeated on the LeafSnap Field data set. In comparison
to the BSDS500, the LeafSnap field data set has not a single marginally normally dis-
tributed region in all considered colour spaces according to an Anderson-Darling test.
This can be explained, by acknowledging that the chance of a normally distributed
marginal distribution rises if there are more than two regions per image. However, in
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Figure 4.1: Percentage of normally distributed marginal regions on the BSDS500. Different colour
spaces are analysed to test if the coordinates of the respective colour spaces behave
like normal distributions. Each bar represents one dimension of the respective colour
space.

the case of the LeafSnap field data set the images consist of two regions and the depicted
leaves are highly corrupted by shading and other real-world capturing artefacts.

4.2 colour spaces

In this section, the impacts of using different colour spaces for image segmentation with
a GMM are analysed. On the one hand, the Lab colour space is favourable since the
amount of normally distributed regions is significantly higher, but, on the other hand,
experimental results do not verify this claim (see Table 4.1).

The parameters of a GMM are estimated in a supervised fashion based on the pro-
vided ground truth segmentations. The ground truth information is exploited in order
to compute an upper bound of the maximal achievable segmentation accuracy. The de-
rived conclusions are therefore robust against issues in estimating the models due to
local minima.

The BSDS500 and the LeafSnap Field data set are used. In both sets ground truth
segmentations are available. In the BSDS500 multiple ground truth annotations are pro-
vided per image. Each ground truth is treated independently of the others and is used
to estimate the parameters of GMM. The resulting segmentation is then compared to
the respective ground truth. As a result, the 200 images of the test set become a set of
1 063 pairs of ground truth and image. In the LeafSnap Field data set one ground truth
per image is provided. This results in 300 pairs of ground truth and image. The stan-
dard measures of the data sets are used for evaluation. In the case of the BSDS500 these
are the Probabilistic Rand Index (PRI), Variation of Information (VoI), and segmentation
covering. In the case of the LeafSnap Field data set precision, recall, and F-measure are
used. To asses if the observed differences in the metrics are significant, a permutation
test with 250 000 random samples is performed. The results of the RGB colour space are
used as reference distributions. The analysis is summarized in Table 4.1.

Unsurprisingly, the results of the RGB and YUV colour space are identical, because
the conversion is a simple linear transformation. It only shifts the means and scales
the features spaces differently. Both changes can easily be modelled by a GMM. It is,
however, considered as a proof of concept.
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Figure 4.2: Qualitative results of the analysed mixture models on the BSDS500 for different
colour spaces with and without positional features. First row: image, segmentations
using the coordinates of the RGB, HSV, LAB, XYZ, and HSV V2 colour spaces with-
out positional features. Second row: ground truth, corresponding uncertainty maps.
Third row: image, segmentations using the coordinates of the RGB, HSV, LAB, XYZ,
and HSV V2 colour spaces and positional features. Second row: ground truth, corre-
sponding uncertainty maps. All colour spaces appear to be equally well suited and
the differences between colour spaces are barley visible. However, including posi-
tional features has a major impact on the quality and the uncertainties of the segmen-
tations.

Surprisingly, using perceptually uniform colour spaces like Lab is neither increasing
nor decreasing the performance of the GMM significantly. In contrast, the differences of
both HSV spaces are significantly worse on the BSDS500 and HSV is significantly worse
on the LeafSnap field data. This is in direct contrast to the results presented in [Pas01]
which favoured HSV in a retrieval setting. In the case of image segmentation with a
GMM, this claim needs to be objected. The reason for this might lie in the Euclidean dis-
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BSDS500 LeafSnap

no position position no position position

colour PRI ↑ C ↑ VoI ↓ PRI ↑ C ↑ VoI ↓ P ↑ R ↑ F ↓ P ↑ R ↑ F ↓

RGB 0.842 0.605 2.231 0.952 0.890 0.757 0.942 0.994 0.965 0.917 0.998 0.951

YUV 0.842 0.605 2.231 0.952 0.890 0.757 0.942 0.994 0.965 0.917 0.998 0.951

HSV 0.823 0.574 2.351 0.947 0.879 0.819 0.924 0.995 0.955 0.910 0.997 0.947

Lab 0.842 0.604 2.234 0.952 0.890 0.759 0.939 0.994 0.963 0.916 0.998 0.950

XYZ 0.811 0.549 2.462 0.933 0.852 0.929 0.973 0.981 0.975 0.958 0.992 0.973

HSV V2 0.832 0.585 2.312 0.948 0.881 0.803 0.939 0.994 0.963 0.916 0.998 0.950

Table 4.1: Segmentation accuracies of a GMM in different colour spaces with and without po-
sitional features. Significant differences with respect to the RGB colour space—the
baseline—are marked in italic font. The arrows indicate the direction of better results.
Changing the colour space does not significantly alter the accuracies, except in the
XYZ and the HSV colour spaces. While XYZ is significantly better on the LeafSnap
Field data, it is significantly worse on the BSDS500. The HSV colour spaces are on
both data sets significantly worse. Including positional features has a major impact on
the segmentation accuracies.

tance commonly used in retrieval systems where scaling the features has a high impact.
The GMM used to segment the images is robust to scale changes, because it can model
this with the help of the covariance matrices.

The XYZ colour space performs significantly worse on the BSDS500 but significantly
better on the leave images. The reason for this might be a better separation of green
colours which dominate the foreground class. In general, the performance on the Leaf-
Snap Field data set is remarkable. If correctly initialized, a simple GMM allows a near
perfect separation of foreground and background, whereas the results on the BSDS500
are not encouraging. Although the model is estimated from the true regions, the result-
ing segmentation show on average heavy clutter and high uncertainties (see Figure 4.2).

One of the major drawbacks of the current model is the lack of positional informa-
tion. The model cannot distinguish between pixels with similar colours which appear
in different regions of an image. This does not matter on the LeafSnap data where a
clear distinction between fore and background is possible by colour alone. However, on
more complex tasks like the BSDS500 with more than two regions, a unique assignment
of colour and region is not always as easy. Analysing different ways of including this
information is the subject of the following section.

4.3 positional data

In this thesis, we propose to include the position of a pixel inside the image as an addi-
tional feature. This idea is taken from the mean-shift [CM02] and the original work on
normalized cuts [SM00], where a similar approach is followed. However, when using
generative models for image segmentation, this concept has not been explored exten-
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Figure 4.3: Qualitative results of the analysed mixture models on the BSDS500 with a vary-
ing number of mixture components. Top row: image, ground truth segmentations.
Following rows: segmentations using the algorithms presented in Table 4.2 with
K = {3, 5, 7, 15, 20} components. From top to bottom: base, SVGMM, CLP, position.

sively. Instead, spatial relations are modelled by an Markov Random Field (MRF) as
in [SNG08; Sfi+10; Sfi+11; NW13] or included with a post-processing step [Des14]. In
this section, both approaches are compared. Starting with a repetition of the analysis of
the previous section, the inclusion of pixel positions is compared to more sophisticated
methods from the literature.

The results of the previous section are repeated with positional features included and
are also presented in Table 4.1. Note that, the coordinates of the pixel positions do not
really cluster. The distribution is uniform. Therefore, the GMM is not a suitable model.
However, in the case of the BSDS500, the results are far better if the positional features
are included. Again, using different colour spaces does not provide significantly better
results. In the case of the XYZ and HSV colour spaces, the results are significantly worse.

In the case of the LeafSnap field data set, using positional information is not beneficial
and degrades the segmentation accuracy. The reason for this is the central position of the
leave which is entirely surrounded by the background class. This configuration is not
easily modelled by a two-component GMM, because both distributions will probably
share the same mean in the positional features. Separation can only be achieved by the
covariance matrices. In fact, the covariance matrix of the background class has to span
the total image. To improve the results in this setting, the distribution of the background
class should have the ability to spatially model a hole, or be modelled by a mixture
distribution to achieve the same effect. Again, the coordinates of the XYZ colour space
perform significantly better than the RGB coordinates, while the remaining colour spaces
do not provide significantly different results.

Since the inclusion of pixel coordinates provides a significant improvement in all con-
sidered metrics on the BSDS500, the inclusion is compared to the MRF-based approaches
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BSDS500

base [Sfi+10] SVGMM [Sfi+10] CLP [Sfi+10] position

K PRI ↑ C ↑ VoI ↓ PRI ↑ C ↑ VoI ↓ PRI ↑ C ↑ VoI ↓ PRI ↑ C ↑ VoI ↓

3 0.684 0.460 2.449 0.695 0.467 2.456 0.700 0.475 2.448 0.706 0.505 2.209

5 0.735 0.414 2.634 0.740 0.419 2.648 0.741 0.418 2.683 0.763 0.480 2.223

7 0.744 0.369 2.811 0.749 0.372 2.852 0.750 0.370 2.893 0.770 0.443 2.319

10 0.746 0.316 3.075 0.748 0.315 3.110 0.749 0.311 3.163 0.769 0.396 2.449

15 0.743 0.261 3.388 0.743 0.253 3.452 0.742 0.248 3.530 0.761 0.337 2.671

20 0.740 0.224 3.632 0.741 0.254 3.489 0.737 0.247 3.765 0.755 0.301 2.847

Table 4.2: Comparison of different approaches for including positional information in a gener-
ative mixture model. The best values are marked in bold font. All differences are
significant with respect to the best performing model from the literature. A simple
inclusion of the positional features beats MRF-based approaches from the literature in
all considered cases.

presented in the literature. Unlike many other methods, the work of [SNG07] is an ex-
ception and uses positional features as well. However, the reported results appear to
be too good to be true and outperform all other methods on the Berkeley Segmenta-
tion Data Set and Benchmarks 300 [Mar+01] (BSDS300) although the method does not
estimate the number of mixture components on a per image basis, but is fixed for ev-
ery image. One possible reason for the excellent accuracies computed by the boundary
displacement error can be a reduction of the image resolution on which the analysis
is performed. If there are fewer borders, the error is reduced conversely. However, a
change of resolution is not reported. For a better comparison with the related work and
the methods developed in this thesis, the results of [SNG07; SNG08; Sfi+10; Sfi+11] on
the BSDS500 are computed by using the authors’ own implementation1 and evaluated
with the same metrics which are used throughout this thesis to asses the segmentation
quality (see Section 2.11).

The baseline experiment of [SNG07] is repeated using our own implementation of a
GMM with the feature set reported in [Sfi+10], which are reported in [Sfi+10] to yield
the same accuracies. The feature set consists of the coordinates of the Lab colour space
smoothed by the blobworld scale selection [Car+02] and the blobworld texture contrast
which is one of three texture descriptors defined in [Car+02]. The number of clusters K
is not estimated on a per image basis but kept constant across all images [Sfi+10]. After-
wards, the metrics are averaged for all segmentations with the same number of clusters.
In contrast to the original work presented in [Sfi+10], the three standard evaluation met-
rics of the BSDS500—PRI, segmentation covering, and VoI—are used to asses the quality
of the segmentations.

The results are summarized in Table 4.2. Including positional features is compared
to the baseline model of [Sfi+10] denoted by base, a spatially varying GMM (SVGMM)
[SNG08], and a GMM with a continuous line process [Sfi+10]. Note that, the baseline

1 https://github.com/sfikas/duguepes-matroutines Retrieved June 23, 2020.

https://github.com/sfikas/duguepes-matroutines
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BSDS500 LeafSnap

distribution PRI ↑ C ↑ VoI ↓ P ↑ R ↑ F ↑

Normal (full covariance) 0.952 0.890 0.757 0.917 0.998 0.951

Normal (diagonal covariance) 0.897 0.780 1.344 0.935 0.994 0.960

KDE (diagonal covariance) 0.924 0.831 1.086 0.956 0.996 0.975

Table 4.3: Segmentation accuracies of different types of probability distributions using the co-
ordinates of the RGB colour space and the pixel positions as features. The impact of
including correlation is studied. The models are trained in a supervised fashion to
mimic the ground truth segmentation as good as possible.

model does not include positional information in any form. It is included to asses the
improvements by using MRFs.

While using an MRF increases the segmentation accuracy with reference to the base
model, simply including positional features significantly outperforms the other ap-
proaches in all considered metrics. Therefore, the more complex MRF approaches can
be replaced by including the in terms of model complexity simpler pixel positions as a
feature. As a result, the considered feature space becomes greater. On the one hand, this
increases the number of free parameters which have to be estimated. But, on the other
hand, this may additionally help to estimate a better model with an increased separation
of the regions in the feature space.

4.4 univariate vs . multivariate distributions

In the previous section, multivariate distributions have been used to segment images.
However, when using multivariate data the number parameters grows faster than the
additional dimensions. In the case of a multivariate normal distribution, the number
of free parameters for a model of dimension D is computed by D+D(D+ 1)/2. The
first term of the sum corresponds to the number of free parameters of the mean vector
and the second term of the sum corresponds to the number of free parameters of the
covariance matrix. For an increasing dimension of the feature space, the number of free
parameters of the covariance matrix quickly grows. Recall, the covariance matrix models
the probability of observing different features together, that is, it captures the correlation
among the provided features. It is of desirable interest to test if this information is
necessary for image segmentation or if the main information is captured by the marginal
distributions alone.

Further, many flexible probability distributions are only defined in the univariate case,
like the sinh-asinh distribution (see Section 3.2.2.4). It is therefore of great interest to test
if the correlation can be neglected in favour of more flexible marginal distributions. In
this section, the extent to which correlation is of importance when modelling image
data is quantified. A GMM is estimated in a supervised fashion with full covariance
matrices and compared to a GMM where only the diagonal elements of the covariance
matrix are estimated. This corresponds to a mixture model which only uses the marginal
distributions of the multivariate data. As an upper bound to quantify what is possible
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Figure 4.4: Qualitative results of the analysed mixture models on the BSDS500 with and without
correlation included. Top row: image, segmentations by normal mixture model with
diagonal covariance, mixture of univariate kernel density estimates with diagonal
covariance matrices, and normal mixture model with full covariance matrix. Bottom
row: ground truth, uncertainties of the corresponding mixture models. The models
with diagonal covariance matrices struggle to separate the bear from the background.

by using as flexible as possible distributions, a Kernel Density Estimation (KDE) is used.
Note that, the KDE can only be used meaningfully if a ground truth is available or as
presented in Chapter 6 another source of information which aids the KDE is included.
Otherwise, only an indirect interpretation of the mixture model is possible, because the
latent variables have no specific meaning in KDE. Further, a KDE is not conveniently
used in feature spaces with two or more dimensions, because the number of necessary
kernels grows exponentially if the same resolution is kept as in the univariate case.

The results of the analysis are summarized in Table 4.3. By restricting the covariance
matrices of the normal distributions to the diagonal elements—a univariate view on
multivariate data—the segmentation accuracies are significantly degraded. If, however,
a more flexible distribution is used—a KDE in this case—the drop in performance can
be softened. Therefore, more flexible marginal distributions are desirable in general, but
the dependence structure of the features is essential and should not be omitted during
model building. In the next section, different ways to keep the important correlations
and increase the flexibility of the mixture models are discussed. Ultimately, this leads to
a representation where the correlation structure is separated from the marginal distribu-
tions. Both can then be modelled independently of each other while keeping both cues
for building the segmentation model.

4.5 distributions

Recall, roughly eight per cent of the marginal distributions of the BSDS500 are normally
distributed (see Figure 4.1). Conversely, assuming a normal distribution for every re-
gion is insufficient in the vast majority of times. Therefore, exploring different ways to
generatively model the observed image data are presented. The key idea behind this
approach is—in contrast to modifying the observed data—to increase the expressive ca-
pability of the model. The major benefit compared to modifying the feature set is that
the new model better copes with real data and is, therefore, more flexible in different
applications.
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In the literature, Student’s t-distribution (see Section 3.2.2.2) is a commonly used al-
ternative (see, e. g., [SNG07] or [NW12]). In this thesis, we additionally explore the suit-
ability of the multiple scaled t-distribution (see Section 3.2.3.3), and the generalized
hyperbolic distribution (see Section 3.2.2.3). Further, a novel probability distribution
is introduced which is built on combining the univariate sinh-asinh distribution (see
Section 3.2.2.4) and a Gaussian copula (see Section 3.6) for modelling the dependence
structure.

4.5.1 Sinh-asinh Copula

In Chapter 3 the sinh-asinh distribution is described as a very flexible univariate dis-
tribution with pleasing analytical properties. It is created by modifying the probability
density function (pdf) of the univariate normal distribution to more complex shapes by
applying a parametric transformation. In contrast to the univariate normal, two addi-
tional parameters are introduced which can control the skew and the kurtosis of the
distribution.

As already described in Section 3.6, a copula can be used to dismantle a multivariate
probability distribution into a probability distribution which solely describes the depen-
dence structure among the features and the pdfs of the univariate features. This follows
a modular concept and greatly increases the flexibility of the distribution. In this thesis,
we propose to use a Gaussian copula (see Section 3.6) for modelling the dependence
structure and the sinh-asinh distribution for modelling the univariate densities. This dis-
tribution is then used to build a mixture model and will be termed Sinh-asinh Copula
Mixture Model (SCMM).

In general, three steps are taken to build a mixture model in the copula framework.
The first one is choosing a copula. In this case, a Gaussian copula is chosen, because
it closely resembles the dependence structure of a multivariate normal. Further, it has
been shown to greatly improve the segmentation metrics when the dependence struc-
ture is included (see Table 4.3). The second step is choosing the pdfs of the marginal
distributions. In this thesis, all features—position and colour—are modelled by the sinh-
asinh distribution, because it is a very flexible distribution with a convenient parametric
form. How to exploit the parametric form to omit complicated calculations is shown in
the following. Lastly, the newly created probability distribution is used within a mixture
model (see Section 3.2.4) as a model for all regions of an image.

Recall, the pdf of a Gaussian copula equals (see Equation 3.40):
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the computation of u can be simplified as follows:
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As a result of the simplification, the computation of the cdf and the quantile function
is omitted entirely. Note that, this simplification is only possible, because of the spe-
cific combination of marginal distributions and copula. Finally, the pdf of the proposed
SCMM equals:

p (x|Θ) =
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ωkp (x|µk,σk,δk,ϵk, Ck) . (4.4)

4.6 accuracy assessment

In order to qualitatively and quantitatively asses the quality of the different mixture
models, the BSDS500 and the LeafSnap field data sets are utilized. All parameters of the
respective mixture models are estimated with conjugate gradient descent on a suitable
manifold [TKW16] if possible. By using a suitable manifold for every parameter, the
range of possible values is restricted. This is especially useful to tie the covariance matrix
to the manifold of symmetric positive definite matrices. Further details about manifolds
can, among others, be found in [TKW16]. A gradient-based estimation is chosen here
to ensure that the computed set of model parameters is at least a local optimum of the
achievable segmentation metrics.

In the case of the normal distribution, an optimal solution is obtained by empirically
estimating the sample mean, the sample covariance, and the mixture weights from the
ground truth annotations. In the case of the generalized hyperbolic distribution, gradi-
ents cannot be computed analytically because of the Bessel functions used to define the
pdf (see Section 3.2.2.3). Therefore, the mixture model is optimized with a derivative-free
Nelder-Mead method [NM65].

The function subject to minimization is the quadratic difference between a binary
vector indicating the region membership and the responsibilities computed from the
mixture model evaluated at every pixel j. This is a supervised evaluation of the mix-
ture models and establishes an upper bound of the possible segmentation accuracies.
Formally, this is expressed as:

f(X) =
1

2

N∑︂
j=1

⃦⃦
gtj − zj

⃦⃦2
2

(4.5)

withN as the number of pixels in an image, gtj as a one hot encoded vector of the region
membership at pixel j, and zj as the vector of responsibilities at pixel j. The computation



72 suitability of various probability distributions inside a mixture model

BSDS500 LeafSnap

distribution PRI ↑ C ↑ VoI ↓ P ↑ R ↑ F ↑

Normal 0.952 0.890 0.757 0.917 0.998 0.951

t 0.953 0.891 0.762 0.929 0.996 0.956

multiple scaled t 0.954 0.893 0.752 0.927 0.996 0.955

generalized hyperbolic 0.931 0.822 1.180 0.986 0.988 0.987

Sinh-asinh (kurtosis) Gauss Copula 0.966 0.919 0.606 0.988 0.990 0.989

Sinh-asinh (skew) Gauss Copula 0.964 0.913 0.639 0.987 0.989 0.988

Sinh-asinh Gauss Copula 0.977 0.943 0.442 0.982 0.986 0.984

Table 4.4: Segmentation accuracies of different types of probability distribution using the coordi-
nates of the RGB colour space and the pixel positions as features. The model is trained
in a supervised fashion to mimic the ground truth segmentation as good as possible.
Significant differences with respect to the normal mixture model are marked in bold
font (p < 0.05). While the sinh-asinh Gauss copula shows a significantly superior per-
formance, using a t-distribution or a multiple-scaled t-distribution on the BSDS500
does not significantly alter the achievable segmentation accuracy. On the LeafSnap
data, using a t-distribution or a multiple-scaled t-distribution significantly degrades
the recall. The differences in precision and F-measure are, however, not significant.
Again, using the sinh-asinh Gauss copula significantly alters the metrics.

of the zj depends on the pdf of the chosen mixture model. In general, the computation
of the k-th element of zj can be formally expressed as:

zjk =
ωkp

(︁
Xj|θk

)︁∑︁K
k ′=1ωk ′p

(︁
Xj|θk ′

)︁ . (4.6)

Note that, Equation 4.6 is equal to the E-step of the EM algorithm (see Section 2.4.3) if a
GMM is used.

All models are initialized with the empirical estimates of the mean value and the
covariance matrix of a region. Additional parameters with respect to the normal dis-
tribution are initialized such that the distribution resembles the normal distribution as
close as possible. For instance, in the case of the t-distribution the degrees of freedom ν

is initialized with the value 10. Afterwards, the influence of the newly gained flexibility
is analysed by starting the supervised optimization of Equation 4.5.

Qualitative results of a challenging sample image of the BSDS500 are presented in Fig-
ure 4.5. All models except the proposed SCMM fail to compute a sensible segmentation
although the ground truth is known. However, the uncertainty estimates directly show
where the models are uncertain. This is a great benefit of mixture models in general.

Quantitative results of using different distributions are summarized in Table 4.4. To
asses the significance of the changes, the normal mixture model is the reference model
and the null hypothesis is the assumption of equals means, that is, the average perfor-
mance is not affected by changing the model distribution. Significant differences are
marked in bold font. Surprisingly, using a t-distribution or the multiple scaled variant
does not significantly alter the achievable accuracies on the BSDS500. In fact, the null hy-
pothesis of equal means cannot be rejected at the 5 per cent significance level, although a
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small improvement is measurable. The proposed combination of a Gaussian copula and
the univariate sinh-asinh distribution offers the desired flexibility and significantly out-
performs all other models in all considered metrics on the BSDS500. The null hypothesis
of equal means is rejected at p = 4× 10−6.

In the case of the LeafSnap data, using a t-distribution or the multiple-scaled variant
slightly improves precision and F-measure. The differences are not significant at the five
per cent level. However, the sinh-asinh Gauss copula provides a significant improve-
ment over the reference model in terms of precision and F-measure. The null hypothesis
of equal means is rejected at p = 4 × 10−6. The best accuracy on the LeafSnap data
is achieved by the generalized hyperbolic distribution, which appears to be especially
well suited for this task. However, in the multi-class setting of the BSDS500 the perfor-
mance is significantly worse. This can be ascribed to the more complex estimation of the
parameters and is not necessarily a sign of an inability to model the data.

The proposed SCMM yields the current state-of-the-art in generative image segmen-
tation if evaluated in the given setting. The proposed model contributes a significant
improvement over the commonly used normal distribution. Additionally, less common
distributions like the t-distribution and the multiple scaled t-distribution are signifi-
cantly outperformed by the proposed model.

On the one hand, the provided analysis constitutes an upper bound of the maximal
reachable segmentation accuracies. In order to achieve this, the ground truth has to
be known. In this setting, it can be proved that distributions have to be more than
robust to improve the segmentation accuracies. Additionally, the proposed framework
is a modular approach. In future work, different combinations of copula and marginal
distribution can be examined for further improvements. Further, the proposed model is
generative. Sensible uncertainty estimates are a direct result of the analysis.

On the other hand, it is unclear how the results transfer to the unsupervised setting.
The reached improvements might not be achievable if the ground truth information
cannot be exploited. In the following chapter, this aspect is taken up in further detail.

4.7 summary

In this chapter, the foundations of a successful image segmentation in a generative frame-
work are lain out. Starting with the question if a normal mixture model is a suitable
choice for images of natural scenes, different colour spaces are analysed with respect to
the same question. Including positional information in the segmentation model has been
verified as a significant improvement over more sophisticated methods like MRFs. Fur-
ther, the correlation of the analysed features is another important cue for a successful
segmentation model. Afterwards, a method for independently modelling the correla-
tion and the pdf of the marginal distributions is presented and a novel mixture model
is introduced which significantly outperforms all other distributions regarding the used
segmentation metrics.

Using robust distributions like the t-distribution as proposed in [SNG07; NW12] does
not provide a significant improvement over the ubiquitous GMM. Instead, skew and a
lower kurtosis appear to be more beneficial. In this thesis, the Sinh-asinh Copula Mixture
Model is proposed which allows both, modifying skew and kurtosis in both directions.
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Figure 4.5: Qualitative results of the analysed mixture models on the BSDS500. Top row: image,
segmentations by normal mixture model, t mixture model, multiple scaled t mixture
model, generalized hyperbolic mixture model, and sinh-asinh copula mixture model.
Bottom row: ground truth, uncertainties by normal mixture model, t mixture model,
multiple scaled t mixture model, generalized hyperbolic mixture model, and sinh-
asinh copula mixture model.

Still, the major issues of the proposed model are the spatial uncertainty regarding
the region boundaries and the noisiness of the results in challenging image parts. Ad-
ditionally, the proposed model suffers from high processing times due to numerous
parameters which need to be estimated. In the next chapter, both issues are tackled by
using superpixels (see Section 2.7).

4.8 future research directions

Although the expressive capability of the proposed mixture model is already high and a
significant improvement over different approaches towards image segmentation, some
limitations can be tackled in future work. As shown in this chapter, including correla-
tion is important in reaching the highest segmentation accuracies. However, only the
dependence structure of a normal distribution has been considered yet. The statistics
literature (see, e. g., [Joe14]) offers a broad range of possible copula which can be tested
on their suitability at improving the segmentation quality.

Currently, the model does not include textural features. While this can be considered
limiting, generative approaches which include texture features like [SNG07; SNG08;
Sfi+10; Sfi+11] perform significantly worse. Discriminative approaches like [MFM04;
Arb+11] showed, however, that texture is an important cue in image segmentation.
Therefore, the main challenge in generative frameworks appears to be a suitable model
for texture features. Simply including it as another feature, like colour and position, to
be generatively modelled by a probability distribution appears to be insufficient.

Further, maximizing the likelihood of the model might not be the best way to estimate
the parameters in terms of a good segmentation. In the limit of a maximal flexible
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distribution—KDE can be considered as a representative of this class of distributions—a
ground truth is required to estimate a meaningful segmentation. By using a maximal
flexible distribution, one component of the mixture model may be able to model the
probability distribution of the whole image and thus violates the direct interpretation
of a mixture model which is essential when mixture models are used to compute a
segmentation.

In the following chapter, this issue is taken up by generatively including the prob-
ability of boundaries in the segmentation model. However, other approaches can be
explored in the future. To some extent, including texture features or a different set of
features or another model for the positional data might already suffice.





5
S U P E R P I X E L B A S E D I M A G E S E G M E N AT I O N

The content of this chapter has been adapted and/or adopted from [WW16], [WW17c], and
[WW17a]. The idea to use superpixels within a generative framework and learning a relation
between the segmentation metrics and the likelihood of the model has been published at
VISAPP-2017 [WW17c]. Learning a relation between the number of mixture components
and the image characteristics has been published at DICTA-2016 [WW16]. Integrating the
edges of an image in order to improve the unsupervised estimation has been presented at
ICIP-2017 [WW17a].

In the previous chapter, the foundations of a successful generative image segmenta-
tion model have been lain out. However, in image segmentation a large number of data
points have to be considered, because one image usually consists of millions to billions
of data points depending on the resolution of the image. Therefore, the processing times
of the previously presented estimation are high. Additionally, parameter estimation has
been conducted in a supervised fashion. While this successfully establishes an upper
bound on the achievable segmentation metrics, it is unclear how the results transfer to
the unsupervised case. The following sections are engaged in answering this question.

Starting, with an analysis of different ways to reduce the computational burden (see
Section 5.1), different ways to determine the number of mixture components are pre-
sented in Section 5.2. Afterwards, the knowledge gained from all previous experiments
is gathered into defining the final model (see Section 5.3). In order to improve the un-
supervised estimation of the model parameters different ways to include edges as part
of the probabilistic model are presented in Section 5.4. The models are compared to
the current state-of-the-art in Section 5.5, the results are summarized in Section 5.6, and
future research directions are presented in Section 5.7.

5.1 superpixels in generative modelling

Superpixels (see Section 2.7) are a commonly used preprocessing step in computer vi-
sion. In the special case of image segmentation, they have been successfully applied,
among others, in [Yan+08; YQG17; LWC12; Zha+18]. Yet, none of the aforementioned
approaches performs image segmentation in a generative way. They are either based on
iteratively merging adjacent superpixels or on building a graph representation which is
then cut to get a segmentation.

In this thesis, we want to benefit from superpixels thrice. First, superpixels shall re-
duce the number of freckled region assignments at border regions. Second, superpixels
shall reduce the computational burden of the proposed models as a domain-specific
subsampling. And third, the boundaries of each superpixel shall be integrated into the
generative segmentation as an additional cue to enforce that the estimated region bound-
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aries lie at probable places. Further details of the latter approach are presented in Sec-
tion 5.4. However, the primary goal is to reduce the computational demand.

An alternative to superpixels are local windows. They are, among others, used in
[Mig08; YWL12; YWC15; Cho+17]. While they are good at defining a local neighbour-
hood, which can then, for instance, be used to define a measure of texture, the window
boundaries seldom adhere to the true region boundaries. They are, therefore, not suit-
able for integrating an edge model into the probabilistic framework.

An additional alternative to enforcing locality are the Markov Random Field (MRF)
approaches (e. g., [Sfi+10]) mentioned in the previous chapter. While they can be suc-
cessfully used to reduce the high frequency label noise at boundaries, they do not show
a good performance in general (see Section 4.3). Further, they are not suitable for sub-
sampling the input data to reduce the computational burden.

The statistics literature offers different ways to reduce the computational burden dur-
ing model inference with Markov chain Monte Carlo (MCMC). This is for instance
achieved by a subsampling. Then, not all data points are used for likelihood evaluation
but only sub-set [KCW14; BDH14]. Further, it is proposed to compute lower bounds
[MA15] to build a sub-set of the most relevant data. Alternatively, we propose to use a
domain-specific approximation technique. Superpixels will be used to vastly reduce the
computational demand.

The key idea is to use only one instance instead of all pixels which best reflects the
properties of all values. In this thesis, the most probable value within every superpixel
is chosen as a substitute for all pixels.

5.1.1 Subsampling vs. Superpxixels

The primary goal of using superpixels is to reduce the computational burden of the used
mixture models. Hence, the number of data points used in estimating the parameters is
kept minimal. As mentioned in the introductory part of this chapter, subsampling the
data is an often used alternative to the proposed approach. However, a direct application
of subsampling neglects the spatial dependences among neighbouring pixels and simply
takes values from a fixed grid, for instance, every n-th point. In contrast, superpixels
build a representation of neighbouring pixels which are likely very similar. These groups
of pixels are therefore especially well suited to be summarized and excluded from the
analysis.

In this section, both approaches—subsampling and superpixels—are compared and
two variants are additionally tested. The results of the analysis are presented in Table 5.1.
We follow the evaluation scheme presented in [SNG07] (cf. Table 4.2) and evaluate the
proposed approaches in the unsupervised setting and vary the number of clusters K
from three to fifteen. Afterwards, the standard metrics of the Berkeley Segmentation
Data Set and Benchmarks 500 [Arb+11] (BSDS500) are used to asses the quality of the
sampling scheme.

In the case of a superpixel representation, titled “Spx” in Table 5.1, Simple linear iter-
ative clustering [Ach+12] (SLIC) (see Section 2.7) is used to compute 1 602 superpixels.
SLIC is used, because it shows the best performance regarding speed, boundary recall,
and robustness with respect to under-segmentation error [Ach+12]. Only the most prob-
able value of the features within every superpixel is then used to estimate the parameters
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BSDS500

Spx Spx Scaled Sub Sub scaled

K PRI ↑ C ↑ VoI ↓ PRI ↑ C ↑ VoI ↓ PRI ↑ C ↑ VoI ↓ PRI ↑ C ↑ VoI ↓

3 0.709 0.497 2.247 0.700 0.483 2.312 0.700 0.482 2.299 0.691 0.472 2.315

5 0.755 0.457 2.321 0.746 0.440 2.416 0.745 0.438 2.419 0.733 0.421 2.478

7 0.765 0.423 2.404 0.757 0.404 2.525 0.755 0.401 2.540 0.744 0.383 2.624

10 0.765 0.380 2.549 0.758 0.360 2.692 0.754 0.349 2.732 0.746 0.334 2.833

15 0.757 0.320 2.804 0.751 0.299 2.979 0.749 0.292 3.005 0.743 0.278 3.131

20 0.751 0.282 3.000 0.746 0.262 3.190 0.744 0.254 3.208 0.739 0.244 3.352

Table 5.1: Comparison of four different strategies to reduce the computational burden on the
BSDS500. The analysis is conducted in the unsupervised setting with a fixed number
of mixture components using a GMM. As segmentation metrics the Probabilistic Rand
Index (PRI), the segmentation covering C, and the Variation of Information (VoI) are
used. Statistically significant differences are marked in italic font.

of the mixture model. This amounts to a large reduction of the computational demand
depending on the chosen number of superpixels. For instance, a typical image of the
BSDS500 has 321× 481 = 154 401 pixel. If only 1500 superpixels are used, this amounts
to a reduction of the computational burden of roughly ninety-nine percent. In general,
the reduction factor r is computed as:

r = 1−
Nspx

Nimg

with Nspx as the number of superpixels and Nimg as the number of image pixels. Fig-
ure 5.1 illustrates the six feature channels used in the following experiments.

In the case of subsampling, titled “Sub” in Table 5.1, the image resolution is reduced
with a factor of 0.9 which results in 49× 39 = 1617 pixels to roughly match the number
of superpixels. The reduced image is then used to estimate the parameters of a mixture
model. Additionally, two variants titled “scaled” are tested where the parameters of the
mixture models are estimated as before, but the final segmentation is not computed
from the reduced image and scaled accordingly, but from the data in full resolution.

In order to verify that the superpixels approach is best when reducing the computa-
tional demand, the approaches are tested quantitatively. As features, the pixels’ positions
in the image and the coordinates of the RGB colour spaces are used. As mixture model,
a Gaussian Mixture Model (GMM) is chosen where the number of mixture components
is not estimated on a per image basis but kept constant across all images. Further, a
varying number of mixture components are tested. The BSDS500 is used and the results
are summarized in Table 5.1.

In total, the superpixel sampling performs best across all considered metrics and num-
ber of mixture components. This becomes more and more evident if the number of clus-
ters increases. However, estimating the final segmentation on the full resolution after
the parameters have been estimated on the reduced set does more harm than good and
degrades the segmentation metrics.
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If the performance of the superpixel sampling is used as the reference and compared
to the other three approaches, nearly all differences in means of segmentation covering
and VoI are significant. A permutation test with 250 000 combinations has been con-
ducted. Therefore, all remaining experiments in this chapter are carried out with the
superpixel sampling scheme if not stated otherwise. The degradation of the segmenta-
tion metrics compared to using the full resolution for estimation and segmentation is
measurable but not dramatic (cf. Table 4.2).

5.1.2 Building a Texture Feature from Superpixels

Since superpixels define a local neighbourhood, building a texture representation is a
natural next step. Recall, texture can only be defined by looking at the local neighbour-
hood. Therefore, it is difficult to define a meaningful texture feature on a per pixel basis.
Superpixels solve this problem by defining non-overlapping local entities which can be
used to compute a texture feature. In this work, the primary goal of using superpixels is
to reduce the computational burden. Hence, a texture representation with only one di-
mension is desirable. Otherwise, the benefit of a reduced set of data might be consumed
by the necessity to estimate a large amount of additional model parameters.

In order to build the texture feature, SLIC is again used to compute a superpixel
representation of an image in a first step. Histograms are then chosen to describe the
content of the superpixels because they best fit the irregular shape. Further, histogram
representations of image parts are rotationally invariant. In fact, they are invariant to
any permutation of the input data. Other descriptors usually look at square regions,
which would not match the varying shapes of the superpixels. Additionally, we tested
Dense SURF [BTVG06], but the resulting texture maps did not look as meaningful as
the ones obtained by a histogram representation.

The texture feature itself is built by creating a custom distance matrix, which covers
the distance from every superpixel to each other, the distance between the colour his-
tograms of the pixels within the superpixels, and the mean squared difference between
the median colour values inside a superpixel.

DKL(p∥q) =
∑︂
x∈X

p(x) log
p(x)

q(x)
, (5.1)

D
Sym
KL (p,q) = DKL(p∥q) +DKL(p∥q). (5.2)

The RGB colour space is used because—as shown in the previous chapter—the influence
of using different colour spaces is minimal. As a distance measure for the histogram
representations we use the symmetric variant of the Kullback-Leibler divergence for dis-
crete distributions (see Equation 5.2). In order to have a one-dimensional texture feature,
the distance matrix is transformed to a one-dimensional subspace by multidimensional
scaling [BG03]. As a result, an additional texture channel is integrated into the feature
space which is comparable to the RGB colour channels. Further, the position of the pix-
els within an image in the Cartesian coordinate system is used as an additional feature.
This has been proven as a successful way to model neighbourhood relations in a gener-
ative model (see Section 4.3). Figure 5.1 illustrates the six feature channels used for the
following experiments in this chapter.
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Figure 5.1: Overview of the used feature channels for an exemplar image of the training set of
the BSDS500. Due to the proposed superpixel sampling the superpixel structure is
visible in every channel. From left to right: image, x-position, y-position, three colour
channels, and texture channel.

5.2 determining an appropriate number of mixture components

After defining the used feature set, an appropriate way to estimate the number of mix-
ture components has to be determined. Recall, in this chapter an algorithm shall be
developed which uses as few expert knowledge as possible. Therefore, the estimation as
proposed in the previous chapter, where ground truth information has been exploited,
is not possible any longer. However, determining a suitable number of mixture com-
ponents is challenging and heavily influences the results of the algorithm. Commonly,
the number of regions in a segmentation is determined by thresholding a quantity of
the algorithms. In the context of mixture models for image segmentation this topic is
commonly omitted entirely (see e. g., [Sfi+10]).

In this section, we explore several ways of estimating the number of mixture com-
ponents. First, the cluster validation criteria (see Section 3.3.2) are examined regarding
their suitability in image segmentation. Note that in image segmentation, the model as-
sumption of those criteria are almost always violated. Therefore, it is unclear how those
approaches perform. Second, a method to learn a relationship between how textured
an image is and the number of clusters is explored. Additionally, a modified variant
of the Bayesian Information Criterion (BIC) is presented where the relation between a
suitable number of mixture components is tried to be learned by introducing an addi-
tional penalty term. Lastly, an infinite mixture model is used as the representative of the
statistical approaches.

5.2.1 Cluster Validation Criteria

The most straightforward approach to estimate the number of mixture components is to
use the cluster validation criteria presented in Section 3.3.2. They have been developed
for estimating the number of mixture components based on specific traits of the clus-
tering. However, they originally assume that the model assumption is correct. In image
segmentation, this assumption does not hold in the great majority of cases. Even in the
setting of the LeafSnap data where the modes of the classes are well separated, a test for
normality fails every time (cf. Section 4.1).

To test the suitability of cluster validation criteria in image segmentation, we use the
GMM as a surrogate model for more complex models developed in the remaining parts
of this thesis, because the estimation with Expectation Maximisation (EM) is faster than
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computing the results of more flexible distributions with MCMC. Choosing a surrogate
model is valid in this case, because if a GMM profits from a cluster validation criterion,
then a more complex model which includes the GMM as a special case should profit as
well.

Cluster validation criteria choose one segmentation among a set of alternatives with
a varying number of mixture components. The best segmentation is chosen according
to the cluster validation criterion. Here, we use the feature set described in the previ-
ous section including the superpixel approximation which allows computing multiple
segmentations in a reasonable amount of time. The number of mixture components is
varied from two to twenty and should reflect a suitable range of different regions. In
order to asses the overall quality of the approaches, the standard evaluation protocol of
the BSDS500 is followed. The three standard metrics—Probabilistic Rand Index, segmen-
tation covering, and Variation of Information—are computed, averaged over all ground
truth annotations per image, and finally averaged over all images. The results of all
approaches are summarized in Table 5.2.

5.2.2 Regression Based Approaches

In contrast to cluster validation criteria, where the best segmentation among a set of
possible candidates is chosen based on a criterion, we propose a way to learn the relation
between the number of mixture components and the features of an image. Additionally,
a second variant is explored where not the mixture components are predicted, but the
relation between model characteristics and the segmentation metrics is learned.

5.2.2.1 Predicting the Number of Mixture Components

In this section, a way to estimate the unknown number of mixture components based on
a Poisson regression (PR) [GH06, p. 110-116] is presented. In contrast to simple linear
regression, where a linear relationship is assumed between the dependent and inde-
pendent variables, Poisson regression assumes that the relationship is best described
by a Poisson distribution. This is a common choice when dealing with count data. The
regression model is of the following form [GH06, p. 111]:

yj ∼ Poisson(λj) (5.3)

λj = exp(Xjθ) (5.4)

The regression is performed on a logarithmic scale, because λj is supposed to be positive
[GH06, p. 111]. In statistical terms, the model is a generalized linear model with an
exponential link function, it is linear in the predictors, and a Poisson distribution is
assumed for the output. In order to perform a regression, independent variables need
to be chosen for every image. We propose to divide the image I into a set Isub of S× S
sub-images of roughly the same size. For every sub-image summary statistics like the
number of Canny edges [Can86] in every colour channel are computed in order to have
a measure of how textured and how object-like a sub-image is. Additionally, the number
of SURF [BTVG06] and BRISK [LCS11] key points, the number of FAST corners [RD05],
and the number of MSER regions [Mat+04] are used as independent variables. The
resulting values are concatenated into one vector to form the j-th row Xj of the matrix X.
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Figure 5.2: Relation between BIC and VoI for a sample image of the BSDS500. The segmentations
are computed by a GMM with a varying number of mixture components. It is evident
that the minimum of the supervised evaluated VoI, that is, the best segmentation
according to the criterion, and the best segmentation according to the unsupervised
evaluated BIC do not coincide and strongly deviate.

The model parameters are estimated by maximum likelihood and the training set of the
BSDS500. The results of this approach are presented in Table 5.2 in the row titled “PR”
(Poisson regression).

5.2.2.2 Predicting the Segmentation Metrics

Due to the speed-up of using superpixels it is possible to evaluate many clusterings
for one image with different parameters in a reasonable amount of time. This includes,
among others, testing a varying number of mixture components. However, in the given
setting, the ground truth information is not available any longer. Therefore, it can not be
directly assessed which segmentation is best given an image. To circumvent this issue,
we propose to learn the relationship between the computed metrics and the model pa-
rameters from a set of training images. Specifically, we use the likelihood of the models
with a varying number of mixture components and the number of used parameters as
features. We restrict the possible range of mixture components from two to twenty. This
approach can be thought of as an advanced version of the BIC (see Section 3.3) which
uses the same features to predict the number of components. However, the BIC assumes
that the model assumption is correct, but this assumption is not valid when dealing with
images of everyday scenes (cf. Section 4.1). This leads to the result that the BIC favours
models with many mixture components. This is visualized in Figure 5.2, where for an
exemplary image the BIC and the VoI are computed for a varying number of mixture
components. It is clearly evident that the optimal solution with respect to VoI and BIC
widely differ.

In order to generate a mixture model with an appropriate number of classes we pro-
pose the following procedure. First, the parameters of a GMM with K = {2, 3, . . . , 20}
components are computed for every image of the training set. Afterwards, the resulting
likelihood and the number of free parameters are stored in a feature matrix, and the
segmentation metrics for every image are computed from the ground truth annotations
and stored as dependent variables. Both quantities—the features and the dependent
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Figure 5.3: Qualitative results of the analysed methods to choose a number of mixture compo-
nents, applied to an image of the BSDS500. From top left to bottom right: image,
AIC, BIC, DBI, SH, CH, ground truth, PR, GP-PRI, GP-VoI, Dirichlet Process Mixture
Model (DPMM).

variables—are then used to train a regression model in order to learn the relation be-
tween them.

A Gaussian Process (GP) [RW06] is chosen for this task. Broadly speaking, a GP is
a distribution over functions and can be seen as a further generalization of a Gaussian
distribution to the domain of continuous functions. Mathematically, the relation of a
random function Y and a GP is expressed as

Y ∼ GP(m,A). (5.5)

The parameters of the covariance function A and the mean function m are commonly
learned from data. An overview and further details about GP are given in [RW06]. We
use a squared exponential covariance function and estimate the parameters of the Gaus-
sian process model with the training set of the BSDS500. We train two separate GPs,
one with the PRI as the dependent variable and one with the VoI as the dependent
variable, because the measures often deviate in selecting an optimal number of mixture
components. Both measures are standard metrics on the BSDS500 (cf. Section 2.10.1 and
Section 2.11). The results of this approach are presented in Table 5.2 in the rows titled
“GP” (Gaussian process regression).

5.2.3 Infinite Mixture Models

In contrast to the previous approaches, which either originate from the clustering litera-
ture or are based on learning a functional relation between the images and the number
of mixture components, we additionally review the Dirichlet process presented in Sec-
tion 3.5.1. The resulting DPMM is classified as a statistical method, because it relies on
a fully probabilistic formulation of the mixture estimation problem.
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BSDS500

metrics region sizes [px] # mixture components

approach PRI ↑ C ↑ VoI ↓ 5% x̃ 95% 5% x̃ 95%

AIC 0.746 0.265 3.156 1 716 6 857 16 691 19 20 20

BIC 0.747 0.275 3.094 1 911 7 455 17 559 15 20 20

DBI 0.703 0.496 2.284 4 641 21 138 102 627 2 3 13

SH 0.699 0.464 2.387 4 040 20 625 89 097 2 3 13

CH 0.708 0.427 2.515 2 432 12 263 69 193 2 6 18

PR 0.747 0.376 2.665 2 571 11 685 40 062 3 9 20

GP-PRI 0.760 0.394 2.607 3 792 15 071 41 720 4 8 18

GP-VOI 0.709 0.500 2.293 16 305 45 618 97 173 2 3 4

DPMM 0.784 0.482 2.391 108 9 445 52 920 7 10 13

GT - - - 1 729 39 236 3 12 60

Table 5.2: Results of selecting an appropriate number of mixture components. For a quantitative
assessment of the results the three standard metrics of the BSDS500 are presented.
Additionally, the average region size and the average number of mixture components
are presented. For a better assessment of the variability of the approaches, the 5 and 95
percent quantile are also presented. The last row presents the quantities of the ground
truth (GT).

In comparison to the regression based approaches, the DPMM does not use a labelled
set of training images, but can directly be applied to an unseen image and is, therefore,
more in line with the primary goal of this thesis to lessen the necessity of labelled data.

5.2.4 Results

The results of the different approaches are summarized in Table 5.2. Qualitative results
are presented in Figure 5.3. The GMM is chosen as the mixture model for every exper-
iment and the parameters of the mixture models are estimated with EM if not stated
otherwise.

As previously mentioned, the Akaike Information Criterion (AIC) and the BIC both
overestimate the number of mixture components and almost always choose the maxi-
mal number of clusters. This overestimation is reflected in the high values of the VoI
metric. However, the AIC and BIC are among the top performing methods regard-
ing the PRI which does not punish over segmentation as strongly as the VoI. The re-
maining cluster validation criteria—Davies-Bouldin index (DBI), silhouettes (SH), and
Charlinksy-Harabsz (CH)—underestimate the number of mixture components on aver-
age. This leads in term to large regions on average and is especially visible for the DBI
in Figure 5.3.
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The regression based approaches perform on average very well. Surprisingly, the ap-
proach based on Poisson regression performs very well, even though it simply looks at
image statistics. In contrast to the GP approaches, it is independent of the chosen mix-
ture model and, therefore, has never seen a segmentation by the model. The advanced
version of the BIC with the regressed relation between segmentation metrics and model
properties performs better than the BIC. Therefore, the primary goal of having a more
suitable metric is fulfilled. However, in the case of learning to predict the VoI, the num-
ber of mixture components is again underestimated. This leads to the conclusion that
the VoI is easily fooled by a low number of mixture components, although it is consid-
ered as one of the most sound metrics. In general, however, it appears to be difficult to
learn a relation between the model properties and the expected values of the metrics.

In comparison to the ground truth (GT) the DPMM appears to be well suited in terms
of regions sizes and number of mixture components. Additionally, the achieved PRI
is best among the considered approaches. Segmentation covering and VoI are among
the best performing, too. While the competing methods all are estimated with EM, the
DPMM estimates the number of mixture components in a fully Bayesian fashion. The
model itself—a GMM—is equal for every method. In summary, the Bayesian interpre-
tation appears to be beneficial in terms of segmentation metrics. In the following, the
DPMM is chosen as the method to predict the number of mixture components, because
it shows excellent performance and is in line with the initial requirements defined in
Chapter 2 of using as few expert knowledge as possible.

5.3 model definition and parameter estimation

After defining the used feature set, adequately reducing the computational burden, and
analysing the best way to estimate the number of mixture components in the given
setting, the final model can be defined and a way to estimate the parameters can be
developed.

Since one of the primary goals of this thesis is to increase the flexibility of the used
mixture models, we need to switch the parameter estimation scheme. Although an es-
timation with EM is possible, it requires a significant amount of analytical work when
changing the mixture model. Instead, we estimate the parameters of the model with
Markov chain Monte Carlo (MCMC).

One of the major issues of using MCMC in the setting of multivariate mixture models
is ensuring that the covariance matrices of the distributions are positive definite. Recall,
MCMC iteratively proposes new values based on the previous estimate. In the case
of covariance matrices, it has to be ensured that the proposed covariance is positive
definite. Therefore, it is not enough to simply modify the entries of the matrix. In the
previous chapter, this issue has been solved by manifold optimization. Since we want to
use MCMC in this chapter to benefit from the Bayesian framework, a different approach
has to be used.

When dealing with a GMM, the Wishart distribution [Wis28], which is the conjugate
prior of the covariance matrix of a normal distribution, can be used to ensure that only
valid covariance matrices are proposed. If, however, a different distribution is used, like
the multiple scaled t-distribution and sinh-asinh distribution in this thesis, conjugacy is
not available. In such cases, statistical frameworks like Stan [Car+17] propose to separate
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the covariance matrix into a matrix of standard deviations and a correlation matrix.
This is similar to the copula approach presented in Section 3.6. However, this time it is
not used to modify the flexibility of the distribution, but to place a suitable prior over
the covariance matrix. Commonly, the LKJ-prior [LKJ09] is placed over the correlation
matrix and the entries of the matrix of standard deviations are modelled by gamma
distributions.

In this thesis, we explore another possibility. In general, every square matrix can be
decomposed into an eigenvector and eigenvalue representation by:

A = VΛV−1, (5.6)

with V as the matrix of eigenvectors vi and Λ as a diagonal matrix of the correspond-
ing eigenvalues λi. If A is a symmetric matrix, like a covariance matrix, Equation 5.6
simplifies to

A = VΛVT . (5.7)

In this case, the matrix of eigenvectors V is an orthogonal matrix, that is, it describes a
rotation of the feature space. Following this line of thought, proposing a new covariance
amounts to rotating the eigenvectors and scaling the eigenvalues. Note that in this set-
ting the eigenvalues are always real and positive. Therefore, a gamma distribution is a
suitable choice as prior distribution.

While proposing new values for the eigenvalues is straightforward, proposing new
eigenvectors, that is, rotating them, is not. In general, an n-dimensional rotation matrix
is defined as [DB94]

Rkl(ψ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rii = 1, i ̸= k, j ̸= l
rll = cosψ,

rij
rkk = cosψ,

rkl = − sinψ,

rlk = sinψ,

rij = 0, elsewhere

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.8)

with k and l as the axes of the feature space which define the rotation. Note that in
the case of four or more dimensions a rotation is defined with respect to a plane. In the
simplest case, which is defined above, the plane is defined by the unit vectors of the
space. A rotation of the whole space is achieved by multiplying the rotation matrices of
all NR =

(︁
D
2

)︁
possible axis pair combinations.

R(ψ) =

NR∏︂
i=1

Ri(ψi). (5.9)

During inference, R(ψ) can then be used to propose a change in the orientation of the
eigenvectors. Either by rotating the whole space or independently as in componentwise
Metropolis-Hastings by rotating around a single plane. The new eigenvectors V ′ are
computed by

V ′ = R(ψ)V, (5.10)
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with ψ as a vector of random rotation angles. In combination with a new matrix of
eigenvalues Λ ′ the relation described in Equation 5.7 is exploited to propose a new
covariance matrix Σ ′ by

Σ ′ = V ′Λ ′V ′T . (5.11)

As long as the entries of Λ ′ are real and positive, and R(ψ) is a valid rotation matrix, a
positive definite matrix is created.

In the following, two models are tested—the multiple scaled t-distribution and the
sinh-asinh distribution with a Gaussian copula. The multiple scaled t-distribution is
tested because it has been used in the published work [WW17c; WW17a], albeit it does
not increase the performance significantly (see Table 4.4). In the following, this model
is termed Multiple Scaled t-distribution Mixture Model (MTMM). The combination of
a Gaussian copula and the univariate sinh-asinh distribution is tested, because it has
shown superior performance in the previous experiments (see Table 4.4). The resulting
model is termed Sinh-asinh Copula Mixture Model (SCMM).

The following list depicts important relations, the mixture model itself, the used prior
distributions, and the hyperparameters of the prior distribution if the SCMM is used.

Xj=1,...,N,· ∼

K∑︂
k=1

ωk

[︄
ck
(︁
Xj,·|Ck

)︁ D∏︂
d=1

Sha
(︁
Xj,d|µk,d,σk,d, δk,d, ϵk,d

)︁
]︄

,

ω ∼ Dirich(·|β),

zi=1,...,N ∼ Cat(ω),

Ck = VkΛkVT
k ,

Λk = diag(λk,1, . . . ,λk,D),

Vk = [vk,1 vk,2 . . . vk,D] ,

vk,d ∼ Normal(·|µ0,Σ0)

λk,d ∼ Gamma(·|a0,b0),

µk,d ∼ Normal(·|µ0,σ0),

σk,d ∼ Gamma(·|a0,b0),

δk,d ∼ Gamma(·|a0,b0),

ϵk,d ∼ Normal(·|µ0,σ0),

β = [1, . . . , 1]T ,

µ0 = [µ0, . . . ,µ0]T ,

Σ0 = diag(σ0, . . . ,σ0).
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µ0 = 0,σ0 = 100,a0 = 0.001,b0 = 0.001,

As already mentioned, we choose a mixture of univariate sinh-asinh distributions
and a Gaussian copula for modelling the dependence structure as the model for the
observed image data. The prior on the mixture weights is a Dirichlet distribution with
a non-informative hyperparameter choice. Additionally, the probabilistic formulation of
the latent variables z is also included (see Section 3.2.4). The presented eigendecom-
position of the covariance matrix is applied to the correlation matrix of the Gaussian
copula. The eigenvectors itself are modelled by a multivariate normal distribution, and
the eigenvalues, which have to be positive, by a gamma distribution. Again, the hyper-
parameters are chosen such that the priors are vague. The parameters of the sinh-asinh
distribution are modelled by suitable priors which reflect the range of possible values.

When using the multiple scaled t-distribution, the model itself is changed to a MTMM.
Therefore, the model is no longer able to model skewed data. Since the multiple scaled
t-distribution is parametrized through eigenvalues and eigenvectors instead of a covari-
ance matrix, the same priors are used for them. On the elements of the vectors νk,d

which model the degrees of freedom in every dimension a gamma distribution is placed
as a prior distribution because the entries have to be positive.

As mentioned earlier, the parameters of the mixture models are estimated with
MCMC. This enables us to compute uncertainty estimates of the parameters and monitor
the convergence behaviour conveniently. Further, MCMC has—in theory—a guarantee
to reach an optimal configuration and is able to bypass local minima during parameter
inference. In this thesis, we use a special variant of a Markov chain, that is, Delayed
Rejection Adaptive Sampling (see Section 3.4.3).

The main reason behind using Delayed Rejection Adaptive Sampling (DRAM) is to
speed up the parameter estimation. One of the main challenges of using Metropolis-
Hastings is to design a suitable proposal distribution. One of the easiest ways to lessen
the issue is to sample component-wise (see Section 3.4.2) because then the chance of
accepting a proposal solely depends on the change of a single parameter. However, this
leads to a costly evaluation of the likelihood at every single parameter update. Over
the course of iterations, this becomes expensive and slows down the inference. If, how-
ever, all parameters or groups of parameters are proposed to be updated at once, the
chance of accepting such a proposal is lower. Mainly, because the values of all updated
parameters need to be reasonable. This is for instance achieved by exploiting the corre-
lation of different parameters in the sample space. However, manually designing such
an engineered proposal distribution is tedious.

The main benefit of DRAM is its ability to automatically adapt the covariance matrix
of the proposal distribution in common Metropolis-Hastings sampling. As a result, the
chance of accepting multiple samples at once is increased, because the dependence struc-
ture among the parameters can be learned and exploited during inference. Otherwise,
the dependence structure of the parameters has to be guessed or a diagonal matrix with
small variances has to be chosen such that the proposed values do not deviate strongly
from the current estimate. This in turn slows down parameter inference as well (cf. Fig-
ure 3.6).
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Figure 5.4: Exemplar segmentations computed from a superpixel representation, using images
of the BSDS500. From left to right: image, ground truth segmentation, segmentation
computed by an MTMM, and by an SCMM. In both cases, a DPMM is used to esti-
mate the number of mixture components.

With the help of DRAM, the costly likelihood evaluations do not have to be performed
after changing a single parameter, but after changing all parameters or at least a group
of parameters and keeping the chance of accepting a proposal reasonably high while
exploring the parameter space.

For instance, an eight-component mixture of the SCMM and a six-dimensional fea-
ture space yields 8 · 46 = 368 free parameters. Instead of evaluating the likelihood at
least 368 times per iteration, it is only evaluated eight times, because the parameters of
every mixture component are updated at once with the help of K independent proposal
distributions—one for every mixture component. The proposal distributions are mul-
tivariate normal distributions from which random draws can be created conveniently.
The covariance matrices of the proposal distributions are updated with the help of the
already drawn samples. Therefore, a speed-up is achieved while maintaining a high
chance of proposing reasonable samples.

5.3.1 Accuracy Assessment

Qualitative results of the proposed mixture models are presented in Figure 5.4 and
quantitative results are summarized in Table 5.3. On a first glimpse the results of using
a multiple scaled t-distribution and predicting the number of mixture components with
a Gaussian process and the results of using the proposed SCMM and a DPMM are
comparable and the observed errors equal. On a closer look the more flexible sinh-asinh
model adheres better to the true boundaries of the segmentations. However, this comes
at the cost of an oversegmentation of the true regions. The reason for this behaviour is
the unsupervised estimation of the number of mixture components. Since the observed
image data matches the model assumption only to a certain degree, the mismatch is
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BSDS500

PRI ↑ VoI ↓

GP + GMM 0.82 2.20

GP + MTMM 0.82 2.22

DPMM + GMM 0.80 2.35

DPMM + SCMM 0.80 2.22

Table 5.3: Evaluation of the segmentation accuracy of different algorithms on the BSDS500. Proba-
bilistic Rand Index (PRI) and Variation of Information (VoI) are presented. The mixture
models where the number of components is predicted by a trained Gaussian process
(GP) are on average better than the DPMM based approaches. However, the use of the
SCMM greatly improves the GMM baseline if the case of the VoI criterion.

compensated by an overestimation of the number of mixture components. As a result,
boundaries are created although the transition of colour values is smooth, but probably
not well described by the DPMM used to determine the number of mixture components.

The combination of the multiple scaled t-distribution and the Gaussian process pro-
duces fewer mixture components, which is closer to the true number of regions, but the
visual inspection reveals that the region boundaries do not match the true boundaries
well. The Gaussian process has learned to compensate the model’s imperfections to a
certain degree and predicts a lower number of regions than the unsupervised DPMM.
However, the lower flexibility of the multiple scaled t-distribution compared to the sinh-
asinh copula model limits the achievable segmentation accuracies.

In terms of quantitative evaluation, the supervised approach produces better scores
than the unsupervised variants based on the DPMM, although the absolute differences
are small. Surprisingly, the proposed SCMM performs better than the surrogate model—
the GMM—used to determine the number of mixture components. Prior to the analysis,
this could not be taken for granted, because the increased flexibility of the model might
not be beneficial. If the model is solely estimated on the likelihood of the observed image
data, the increased flexibility does not have to coincide with a better segmentation with
respect to the ground truth. However, in the case of image segmentation, it appears to
be true and the proposed SCMM performs better. As a result, we can conclude that
the model assumption itself is one of the most limiting factors in generative image
segmentation and the proposed SCMM is not only the best choice in the supervised
setting but also in the unsupervised setting. However, the overestimation of the number
of mixture components in the unsupervised setting and the low flexibility of the multiple
scaled t-distribution hinder the segmentation accuracies strongly in both cases.

Note that the differences in the computed results presented in Table 5.2 and Table 5.3
regarding the Gaussian process for estimating the number of mixture components are
ascribed to the change in distribution and different parameter estimation. After select-
ing the number of mixture components with the Gaussian process, the parameters of
the mixture model are estimated with MCMC by using the predicted mixture model
as an initialization. This approach appears to be beneficial because the segmentation
accuracies are increased due to a better exploration of the parameter space. This in turn
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Figure 5.5: Visualization of the idea to include edges as a part of the segmentation model, using
an image of the BSDS500. The goal is to reduce the occurring segmentation noise, and
to improve the segmentation by shifting the boundaries to high edge values. From
left to right: image, edges, and segmentation computed by a DPMM.

hints at a parameter space which has multiple local minima which can easily fool EM
and are better explored by MCMC which allows solutions that are worse than the cur-
rent estimate. In the given setting, the better adaptation to the parameter space is also
ascribed to the use of DRAM.

5.4 including edges as a boundary prior

Edges in an image mark areas where the values of the first derivative exceed a certain
threshold. Therefore, they hint at a change in intensity or any other type of feature
from which the derivative is computed. This includes, among others, texture and depth.
Note that, in computer vision, the derivatives are computed with respect to the spatial
position of a pixel (see Section 2.2 for further details).

In general, computing the gradient follows the assumption, that regions are described
by a smooth distribution of values, which abruptly changes when the regions change.
Therefore, the magnitudes of the gradient are small within a region and large at region
boundaries. If we look at the image presented in Figure 5.5, it is evident that the com-
puted edges mark the borders of the regions reasonably well. Note that, the edges are
computed by the method presented in [DZ15]. However, the borders of the segmentation
computed by the DPMM do not match those boundaries completely (see Figure 5.5).

The key idea of the following paragraphs is to create a model where both cues are
combined into one probabilistic model and exploit the boundary information to improve
the quality of the segmentation model. The edges of an image are used as a weak condi-
tion for the mixture model to place its region boundaries at the same positions. In terms
of mixture models, the model aims to place high uncertainties in those regions. Note
that, when mixture models are used in image segmentation, the boundaries are only an
indirect result after computing the responsibilities (cf. Equation 4.6).

In this section, two ways of including edges within a probabilistic image segmenta-
tion framework are proposed. One variant is a Passive Edge Model (PEM) which grades
the segmentation according to a precomputed edge map. The second variant uses this
method in conjunction with an Active Edge Movement (AEM) scheme, where the bound-
ary between two segments is actively shifted. The former rates a change in the segmen-
tation according to an edge model, whereas the latter actively proposes to modify the
current boundaries of the segmentation beneficially. Note that, every pixel has its own
edge model which is independent of the neighbouring pixels.



5.4 including edges as a boundary prior 93

0 0.2 0.4 0.6 0.8 1
0

1

2

3

x

p
(x
)

κ = 3
κ = 5
κ = 7

[ March 9, 2019 at 14:46 – Project Dino version 0.1 ]
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(b) ρ = 0.95
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Figure 5.6: Influence of choosing an appropriate mode for the beta distribution of the edge model.
If the mode ρ is chosen as a value of the edge map (e. g., ρ = 0.2), too much probability
mass is concentrated near zero (a), which means a low probability of an edge. This
misbehaviour can be circumvented if the mode is chosen by the current segmentation.

5.4.1 Passive Edge Model

The proposed PEM weights each resulting region border in the current segmentation of
the Markov chain according to a pre-defined model distribution. The definition of this
model is described in the following paragraphs.

In general, the edge model should fulfil three requirements. First, it should give a high
probability to data points where an edge is probably present and this edge is captured
by the current segmentation. Second, a high probability should be given to data points
where an edge is unlikely and this absence is captured by the current segmentation. And
last, a low probability is given to those parts where the current segmentation does not
match the probable edge map.

In order to obtain an edge map E, the method provided in [DZ15] is used. The values
of the resulting edge map reside in the range of x ∈ [0, 1]. A natural choice in this domain
is the beta distribution (see Section 3.2.2.6). Recall, the probability density function (pdf)
equals

p(x|α,β) =
Γ(α+β)

Γ(α)Γ(β)
xα−1(1− x)β−1. (5.12)

Since the parameters α and β of the beta distribution do not allow an easy interpretation,
a different parametrization can be chosen where the distribution is parametrized by the
mode, that is, the point with the highest density and a concentration parameter which
reflects the spread of the distribution. The mode of the distribution ρ equals

ρ =
α− 1

α+β− 2
,

and the concentration parameter equals

κ = α+β.

It is then possible to use a different parametrization of Equation 5.12 where the param-
eters α and β are expressed in terms of the mode ρ and the concentration parameter
κ:

α = ρ(κ− 2) + 1,

β = (1− ρ)(κ− 2) + 1.
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Figure 5.7: Visualization of the used quantities to build the PEM. From left to right: current
segmentation S(t), current boundary map B(t), and likelihood of the PEM at every
pixel.

With the help of this parametrization, it is easier to define an appropriate edge model
because the values of α and β can now be chosen with respect to the mode of the
distribution.

Due to the flexibility of the beta distribution the edge model can now be built accord-
ing to the aforementioned requirements. In general, the beta distribution can depict a
range of different shapes (cf. Figure 3.4b). The influence of the parameter choices in the
context of this chapter is depicted in Figure 5.6. In contrast to common practice, the
input of the edge model is not the current segmentation, but the edge map E itself. The
reason for this is explained in the following.

With the help of the current segmentation S(t) the resulting boundary mask B(t) at
iteration t is computed. Note that the entries of B(t) are binary. Therefore, it is rather
difficult to compare the edge map E, where all values are from the unit interval, directly
with B(t). As can be seen in Figure 5.5 not all edges are equally probable and not all
pixels around an edge are equally likely an edge.

If an edge has a low probability, say around 0.2, and a beta distribution with mode
ρ = 0.2 and a reasonably high concentration is placed at this edge, the corresponding
probabilities will be low (see Figure 5.6a) because B(t) is binary and the resulting value
is one if an edge is present at this position. Therefore, it would be highly improbable
that an edge is accepted at this position, which contradicts the prior belief of 0.2. Since
this behaviour is undesirable, Ej,i is not a good choice as the mode of the edge model at
pixel coordinates (j, i). However, we define the edge model the other way round. To stick
with our example of a weak edge with probability 0.2, we now choose the value of the
current boundary B(t)

j,i as the mode of the distribution, which results in the distributions
depicted in Figure 5.6b and Figure 5.6c.

If B(t)
j,i = 0, a high probability score can be achieved. However, if B(t)

j,i = 1, a lower, but
still, a reasonable amount of score can be gained by setting this pixel to an edge pixel.
Therefore, B(t)

j,i is chosen as the mode and the concentration parameter is set empirically
to κ = 2.5. This model is termed passive edge model and is used in conjunction with
a mixture model in order to compute the posterior distribution of the segmentation.
While the proposed approach can be used in conjunction with any mixture model, in
this thesis the MTMM and SCMM are studied. The results are summarized in Table 5.4.
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Figure 5.8: Visualization of the idea to include edges as a part of the segmentation model, using
an image of the BSDS500. The goal is to reduce the occurring segmentation noise, and
to improve the segmentation by shifting the boundaries to high edge values. From top
left to bottom right: image, edge map E, current segmentation S(t), corresponding
boundary map B(t), likelihood of individual boundaries, and visualization of the set
of line segments Lseg.

5.4.2 Active Edge Movement

While the use of a passive grading is beneficial (see Section 5.4.3 and Table 5.4), one
can easily assume cases where a simple grading leads to a segmentation where a model
is stuck, because it can not move multiple parts of a boundary at once. Of course, this
movement may happen by chance, but with an increasing length of the border, it be-
comes exponentially more unlikely. Therefore, we additionally propose a variant—the
Active Edge Movement—which shifts parts of the boundaries at once. As a result, an
AEM should speed up the convergence and allow the Markov chain to surpass local
minima, where the passive edge model may get stuck because it is not probable that
complete borders are moved by chance. Additionally, the convergence speed of the algo-
rithm is supposed to rise, because whole boundaries can be moved at once.

In order to build such a movement scheme, it has to be defined what is meant as a
boundary and how we propose to move it such that the proposed movement integrates
into the current framework. As a first step, each appearing line in B(t) gets an appropri-
ate unique label for identification (see Figure 5.8 for a visualization). A line is termed
unique if it is connected by a four-point neighbourhood and the adjacent labels of the
line are equal. As a result, the boundary map B(t) is divided into a set of line segments
Lseg = {L1, . . . ,LNL

} which can be uniquely identified.
After labelling, a score for each line can be computed from the passive edge model

by summing over the log likelihood of the associated pixels. The scores are normalized
and transformed to the unit interval, in order to randomly select one boundary based
on its inverse score. After selection, it will be used to propose a change in the current
segmentation. Therefore, lines with the lowest scores are proposed to be updated more
frequently in the Markov chain.
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After a border is selected, two new segmentations are proposed. Since the current
border has two adjacent labels A and B, the first variant sets the adjacent superpixels of
the border to A and the second variant to B. Therefore, the border is either shrunk or ex-
panded. Finally, the posterior distributions of the resulting segmentations are computed,
the best variant is selected, and then accepted or declined in a common Metropolis-
Hastings acceptance step based on the combined likelihoods of the mixture model and
the edge model. Results of using this approach are summarized in Table 5.4.

5.4.3 Accuracy Assessment

In order to test, the potential benefit of including edges into the probabilistic model, the
model is tested on the BSDS500. For all experiments, 1500 superpixels are computed
by SLIC and the most probable point within every superpixel is used to describe this
superpixel. This amounts to a reduction in the computational burden of roughly 99%
on the BSDS500. Moreover, the position and the colour values in the Lab colour space
are used as features. Two different mixture models are tested. First, a mixture of mul-
tiple scaled t-distributions as a trade-off between model flexibility and complexity, and
second, the proposed Sinh-asinh Copula Mixture Model (SCMM) as a maximal flexible
variant. In both cases, the parameters of the mixture model are estimated with DRAM
and the number of mixture components is determined by a DPMM.

Qualitative and quantitative results of the proposed segmentation methods are pre-
sented in Figure 5.9 and Table 5.4. From a visual inspection, the computed segmenta-
tions are very good and closely resemble the ground truth segmentations. Note that, the
estimation of the model parameters is performed in an unsupervised way. Depending
on the characteristics of the image, occasional single superpixel regions can still be ob-
served. However, the visual quality is greatly improved when compared to the results
without an edge model in Figure 5.4.

Quantitative results are presented in Table 5.4. DPMM indicates the performance of
the initialization without an edge model, and PEM and AEM are the results with the
respective edge models included. Note that, by using the AEM the PEM is always in-
cluded as well. Including the probable location of an edge is beneficial in every case and
significantly improves the metrics in all cases. Simply including the passive grading of
the computed boundaries in every iteration already leads to a significant improvement.
However, as noted previously, the passive grading alone might converge slowly or get
stuck faster in a configuration. Therefore, additionally including an active movement
scheme again increases the performance significantly. By visually analysing the com-
puted results of both approaches it can often be observed in the computed segmentation
that regions with the same region label are disconnected. The model has then found a
solution, where the colour appearance across different parts of the image is compara-
ble. This happens for instance when background regions are occluded by objects. In the
ground truth segmentations, these regions are then split into different regions because
they are not connected any longer. In order to account for this behaviour, we additionally
perform a post-processing where the region labels are generated anew. Connected com-
ponent analysis is performed on every region label. If the regions are disconnected, they
receive new unique labels. As a result, performance can be increased further. Note that
the boundaries of the post processed variant remain the same and only the region labels
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Figure 5.9: Qualitative results of the proposed models including the probable locations of edges
on the BSDS500. From left to right: image, ground truth, SCMM + PEM, SCMM +
AEM.

are changed. In the next section, the proposed model is compared to the state-of-the-art
approaches in image segmentation.

5.5 comparison to other approaches

After introducing the proposed generative framework, we compare it to competing
methods from the literature. The results are summarized in Table 5.5 where the ap-
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BSDS500

PRI ↑ C ↑ VoI ↓

DPMM 0.80 0.51 2.35

MTMM + PEM 0.83 0.54 1.94

MTMM + PEM + post processing 0.84 0.55 1.88

MTMM + AEM 0.83 0.55 1.90

MTMM + AEM + post processing 0.84 0.54 1.87

SCMM 0.80 0.51 2.22

SCMM + PEM 0.82 0.53 1.92

SCMM + PEM + post processing 0.83 0.54 1.83

SCMM + AEM 0.85 0.58 1.73

SCMM + AEM + post processing 0.85 0.59 1.67

Table 5.4: Evaluation of the proposed edge models on the BSDS500. Including the probable loca-
tion of edges is beneficial and increases the performance. Again, the Sinh-asinh Copula
Mixture Model shows the best performance. In all cases, the accuracies can be further
increased by a simple post processing step. See text for additional details.

proaches are divided into different groups depending on the characteristics of the meth-
ods. The groups are separated by horizontal lines. While some methods are based on
a region based interpretation, like the methods proposed in this thesis, the majority of
approaches is based on detecting contours and building a hierarchy of segmentations
from the detected contours. These hierarchies of closed contours are then thresholded
at learned levels to derive a segmentation and are summarized in the first and second
group. The approaches in the first group are based on OWT-UCM presented in [Arb+11]
(see also Section 2.6). The second group is based on multiscale combinatorial grouping
proposed in [Arb+14]. The latter is considered as the current state-of-the-art.

The third group are other approaches which are not based on contour detection, but
on a region based analysis comparable to our approach. The last group contains the
methods presented in this thesis which are based on generatively modelling the ob-
served image. Unfortunately, none of the competing methods from the literature fit this
category directly. Often, these methods do not evaluate their models comparably. For
example, the work presented in [Sfi+10] proposes a generative model for image segmen-
tation, but they only evaluate their approaches with a fixed number of mixture compo-
nents for every image. Naturally, this drastically degrades the possible performance of
the segmentation metrics. However, a comparison between this method and a simple
GMM has been presented in Table 4.2 to evaluate the impact of including positional
features.

The last row depicts the upper bound of the SCMM. Note that, the upper bound is
different from the values presented in Table 4.4. In the previous case, a segmentation
has been computed from all available ground truth annotations. In order to allow for
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BSDS500

PRI ↑ C ↑ VoI ↓

Canny-owt-ucm [Arb+11] 0.79 0.49 2.19

W-Net+ucm [XK17] 0.82 0.59 1.67

gPb-owt-ucm [Arb+11] 0.83 0.59 1.69

cPb-owt-ucm [KLL13] 0.83 0.59 1.65

PFE-owt-ucm [YFL15] 0.83 0.61 1.64

RGC-SE+ucm [Zha+18] 0.83 0.62 1.59

RGC+MCG [Zha+18] 0.84 0.62 1.57

PFE+MCG [YFL15] 0.84 0.62 1.56

Spectral Cut [Tan+18b] 0.78 0.42 2.34

FBTS [YWC15] 0.79 - 2.10

RFCL [Li+18] 0.79 - 1.89

HFCL [Li+18] 0.78 - 1.93

W-Net [XK17] 0.81 0.57 1.76

ICM [SWW17] 0.82 0.58 1.75

SCMM 0.80 0.51 2.22

SCMM + PEM 0.83 0.54 1.83

SCMM + AEM 0.85 0.59 1.67

SCMM (upper bound) 0.91 0.79 1.03

Table 5.5: Comparison of the proposed segmentation models to state-of-the-art approaches on
the BSDS500. The first two groups are based on contour detection. While the first group
is based on owt-ucm presented in [Arb+11], the second group is based on multiscale
combinatorial grouping proposed in [Arb+14]. The latter is considered as the current
state-of-the-art. The third group contains other approaches which are not based on
contour detection, but on a region based analysis comparable to our approach. The
last group contains the proposed models which are based on generatively modelling
the observed image data and the last row depicts the upper bound of the SCMM. Best
values are marked in bold font. Groups are separated by horizontal lines.

a comparison to the current state-of-the-art in image segmentation, only one segmenta-
tion is computed for every image. Afterwards, the metrics of all available ground truth
annotations are averaged.

In summary, the proposed generative segmentation model fares very well against the
other region-based methods. Spectral Cut [Tan+18b] estimates a segmentation in an un-
supervised fashion. However, the number of segments is provided as a supervisory sig-
nal. In contrast to our approach, which estimates the number of segments with a DPMM,
Spectral Cut performs worse. FBTS [YWC15] is an unsupervised method, but the perfor-
mance is worse compared to the proposed SCMM with an edge model included. RFCL
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and HFCL [Li+18] may be considered as unsupervised, but they contain several hyper-
parameters which have to be set accordingly. Again, the resulting segmentation metrics
are worse compared to the SCMM in combination with an edge model. W-Net [XK17] is
trained in a supervised fashion on the segmentation task of the PASCAL Visual Object
Classes Challenge 2012 [Eve+15] (VOC) and then applied to the BSDS500. Therefore,
W-Net makes heavily use of annotations and has several orders of magnitudes more
parameters. However, the generative SCMM with the edge models included performs
slightly better. Another disadvantage of all preceding approaches is their lack of quan-
tifying the uncertainty with which a prediction is made, because these approaches are
not generative like the proposed approach is.

Further, the presented method is able to outperform a great number of different
approaches which are discriminative and trained in a supervised fashion. These ap-
proaches are either based on OWT-UCM [Arb+11] or on MCG [Arb+14] and tackle
image segmentation from a fundamentally different perspective. They treat image seg-
mentation as a boundary detection task. From the detected boundaries a hierarchy of
segments is build by thresholding the boundary strengths at different levels. Therefore,
these methods cannot quantify region membership probabilities for every pixel, like the
proposed approach does. All these methods have learned in a supervised way how to
detect contours, how to build a hierarchy of segmentations from contours, and how to
threshold the hierarchy to achieve the best scores.

In comparison to the contour based approaches, the proposed generative method is
comparable in terms of the performance, but especially regarding the VoI criterion, not
on the same level. However, none of the competing methods is able to provide sensible
uncertainty estimates of the segmentation and feature a probability that an observed
pixel belongs to a specific region. The proposed framework is built on this reasoning,
and we consider it as a major advantage in comparison to the competing methods.

5.6 summary

In this chapter, a novel probabilistic segmentation model has been presented. In a first
step, a way of reducing the computational burden of the demanding parameter estima-
tion has been presented. Superpixels allow reducing the amount of data to 1% of the
original data size and vastly reduce the amount of data needed to compute a segmen-
tation while limiting the degradation of the segmentation accuracies through the sub-
sampling. Additionally, other ways of reducing the computational burden have been
explored. Afterwards, different ways to estimate the number of mixture components
have been evaluated. The Dirichlet Process Mixture Model is among the best-performing
methods in the given setting. It estimates the number of mixture components in an
unsupervised way with the help of a probabilistic model and fits therefore nicely in
the proposed framework. In the following experiments, the Dirichlet Process Mixture
Model is chosen for the estimation of the number of mixture components. This analysis
is followed by a complete probabilistic description of the used mixture model—the Sinh-
asinh Copula Mixture Model. In the previous chapter, it has been shown that increasing
the flexibility of the distribution significantly helps to improve the achievable segmen-
tation accuracies. In this chapter, the results have been transferred to the unsupervised
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setting and it has been shown again that the proposed Sinh-asinh Copula Mixture Model
performs best—even in the unsupervised setting.

Building on these results, the integration of a probabilistic edge model is presented
to further improve the quality of the segmentations. The key idea is to aid the mixture
model at placing regions of high uncertainty at areas where an edge is likely to appear.
To achieve this goal, a Passive Edge Model which rates the current segmentation accord-
ing to an edge map and an Active Edge Movement scheme to speed up the convergence
has been proposed. A simple post-processing can additionally be applied to further
improve the segmentation metrics. The proposed method reaches state-of-the-art perfor-
mance in generative image segmentation, surpasses several discriminative approaches
from the literature, and reaches nearly the performance of the current state-of-the-art
in image segmentation. The competing methods are, however, not generative and of-
ten trained in a supervised fashion. In fact, the upper bound of the proposed Sinh-asinh
Copula Mixture Model presented in the previous chapter outperforms all discriminative
approaches in image segmentation.

Since the upper bound has been computed by knowing the ground truth regions, the
comparison is unfair. However, the upper bound verifies that the limiting factor is not
the model itself, but the way how the parameters are estimated. Including the probable
locations of edges is a first important step at improving the estimation and a great step
towards reaching the upper bound. But, the upper bound is not reached yet, leaving
open a broad range of possible improvements in the future.

5.7 future research directions

The primary goal of future research should aim at reaching the upper bound of the
proposed SCMM. Using the proposed edge models has already been a significant con-
tribution, but the current model leaves room for further improvements. This might be
achieved through different approaches.

Currently, texture is implemented in a very rudimentary way. It is not directly in-
cluded as a probabilistic model of different patterns occurring in the image, but pas-
sively through the projection of histogram representations to a one-dimensional sub-
space. However, texture has been shown to be an important cue in contour detection
(see e. g., [MFM04]). Therefore, it should help in generative image segmentation as well.
Further, the inclusion of positional features has been proven as an important feature in
image segmentation. However, modelling the linearly increasing pixel indices by a prob-
ability distribution is rather limiting. Other approaches might be more sophisticated and
integrate better into the generative segmentation model.

Another limiting factor is the superpixel representation itself. While it allows a huge
reduction of the computational demand, the structure of the superpixels itself is visible
in the computed segmentations (cf. Figure 5.9). To tackle these issues, different super-
pixel algorithms, an increased number of superpixels, or even using the full resolution
can be tested. However, the computationally demanding evaluation of the model’s like-
lihood needs to be taken into account.





6
W E A K LY S U P E RV I S E D O B J E C T L O C A L I Z AT I O N A N D S E M A N T I C
S E G M E N TAT I O N

The content of this chapter has been adapted and/or adopted from [Wil+17]. This publication
is based on the author’s idea to combine class activation maps with a generative segmentation
model in order to improve the weakly supervised detection. The co-author Rene Grzeszick
provided the trained CNN and the computation of the class activation maps.

In this chapter, a novel approach to the challenging task of weakly supervised segmen-
tation and object localization is presented. The problem is tackled from a mixed perspec-
tive utilizing a discriminative and a generative approach. In the previous chapters, gen-
erative models for image segmentation have been presented and analysed. When trans-
ferring from image segmentation to the special case of semantic segmentation, Deep
Neural Network (DNN) produce state-of-the-art segmentation accuracies. In this sce-
nario, the parameter-rich DNNs can utilize their full discriminative power by exploiting
a possibly large set of pixel-wise annotated ground truth segmentations. However, cre-
ating these annotations is cumbersome and time-consuming. According to [Bea+16] an-
notating every pixel of an image takes roughly ten times longer than simply annotating
the presence or absence of a set of object classes. Additionally, by using discriminative
methods the advantageous probabilistic interpretation of the generative approaches is
lost. In this chapter, we propose a way to solve both issues and build a deep segmen-
tation model by combining a DNN which is only supervised on the image-level and
fuse it with a generative segmentation model. The proposed model thus exploits rela-
tions among different semantic objects and additionally yields a meaningful pixel-wise
probabilistic classification. An overview of the proposed algorithm is given in Figure 6.1.

This chapter is structured as follows. First, related work regarding the proposed ap-
proach is presented in Section 6.1 and recent developments are sketched in Section 6.2.
Second, the proposed fusion of density estimation and class activation maps is presented
in Section 6.3. This is followed by an experimental evaluation and comparison to related
approaches in Section 6.4. Lastly, the results are summarized in Section 6.5.

6.1 related work

In recent years, rapid progress has been made in the field of deep learning. This has
been a driving factor for the recognition and localization of objects, where they are very
successful [LBH15]. Especially in prominent classification tasks like ImageNet [Rus+15]
much progress has been made. In recent years, the error rates have been reduced by
a large margin. Similarly, the detection of object instances has been improved. Accu-
rate bounding box predictions were enabled by Regional Convolutional Neural Net-
works (RCNNs) and Fully Convolutional Networks (FCNs) for object detection [Gir+16;
Liu+16]. However, most of these methods are learned in a supervised manner. While
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pc

pbg

pc,f

Figure 6.1: Overview of the proposed weakly supervised approach. From left to right: Raw Im-
age, class activation map as produced by a CNN, sketch of kernel density estimate,
probabilistic class membership, semantic segmentation, and bounding box.

this is easily possible for classification tasks where an image is assigned a single label,
it becomes more complicated for detection and segmentation tasks. In the case of object
detections, fine-grained annotations indicating the presence of an object instance have
to be provided, usually in the form of bounding boxes.

Prominent examples of segmentation networks are based on FCN, like the residual
networks (ResNets), as shown in [WSH16], or the SegNet [BHC15]. The SegNet has
also been extended by a Bayesian approach in order to provide a certainty measure
associated with the class labels [KBC15]. However, these uncertainty estimates are not
a result of a generative model but approximated through a sampling scheme after the
model has been trained. The sampling randomly cuts neurons from the full net and a
statistic over the output is built. This technique is termed dropout at test time [KBC15].

In the case of semantic segmentation, each pixel of a training image has to be anno-
tated such that deep architectures can enable a pixel-wise detection of objects in a given
scene [Cor+16]. As previously mentioned, this takes roughly ten times longer than sim-
ply annotating the presence or absence of a set of object classes [Bea+16]. Therefore,
the creation of the Cityscapes data set required a tremendous manual annotation effort
[Cor+16].

As a result of the costly annotation acquisition, weakly supervised learning ap-
proaches became of broader interest as these methods require a lower level of super-
vision during training. However, semantic segmentation is a challenging task if the level
of supervision is reduced to image-level annotations [Pap+15] because the supervisory
signal does not include the positions and the extents of the objects any longer. Only
the information contained in an object being present or absent is used to train the net-
work. In [KL16] it is therefore proposed to use further micro-annotations in order to
identify and prevent typical errors that are learned in a weakly supervised framework.
In [KHH+17] a superpixel pooling network is used, which consists of two decoupled
DNNs. Multiple passes through the unlabelled data are then used to iteratively refine
the semantic segmentation based on images which probably belong to the same class.
Another approach to reducing the annotation effort in segmentation is interactive multi-
label segmentation [SPB10]. A human annotator draws scribbles, which are used for
initializing the segmentation model. Additional information about different supervisory
signals in image segmentation is, among others, presented in [HKH17].

In the context of this thesis, two principled approaches for segmentation are dis-
tinguished. The discriminative way, where regions are divided according to a trained
discriminator or in a generative framework, where the appearances of the regions are
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modelled by probability distributions. In the previous chapters, the appearance of im-
age regions is modelled by mixture models. However, objects in an image often do not
follow a parametric distribution, especially if an object is highly textured or subject to
illumination changes. To some extent, this may be compensated by modifying the fea-
ture space or to include the probable locations of edges in an image as additional cues
for the model. Another approach to circumvent the inability of parametric distributions
to model complex scenes is the use of a non-parametric distribution. However, this only
works if the extent of an object in an image is known, because otherwise, the latent repre-
sentation used to derive the segmentation is meaningless (cf. Section 3.2.4). If, however,
the size of objects is known or, as in this case, known to some extent, non-parametric
methods like Kernel Density Estimation (KDE) (see Section 3.5.2) can be applied. While
the appearance of objects is a-priori not known, it can be estimated after learning a
weakly supervised object detector.

Such a weakly supervised object detector can be trained based on the image-level
annotations which just indicate the presence of an object class within an image. The
detector must then be able to recognize the regions that are discriminative for each of
the object classes. Nowadays, these approaches are also based on Convolutional Neural
Network (CNN). Recently, methods that incorporate information from region propos-
als showed state-of-the-art performance [BV16b; Kan+16]. While these methods require
the computationally expensive pre-computation of region proposals, the approaches in
[Oqu+15] and [Zho+16] tackle the task of weakly supervised detection in end-to-end
systems. The work in [Oqu+15] applies a global max pooling to the feature map of the
last filter in a fully convolutional VGG16 network architecture. The output of the max
pooling is then used for predicting the location of objects in a weakly supervised man-
ner. For each object class, a single point is predicted. A multi-scale training approach
is proposed in order to learn the locations of objects of varying size more accurately.
A similar approach is proposed in [Zho+16]. Instead of a global max pooling, a global
average pooling is proposed as the authors argue that this captures the extent of the ob-
jects more accurately. A weighted combination of feature maps is then used in order to
indicate the presence of an object in a scene. The resulting combination of feature maps
is termed a class activation map (see also Section 2.8.3). The authors propose to use
a simple heuristic in order to predict bounding box locations for objects. Each feature
map is thresholded and binarized. Then, the largest connected component is chosen for
predicting an object’s location. While this forms a baseline to evaluate object detection,
it partly neglects the pixel-level information provided by the class activation maps. A
natural approach is to include pixel-level information and aid the weakly supervised
object detector with a segmentation.

In this chapter, a combination of weakly supervised methods and a subsequent seg-
mentation is proposed. It builds on the recent advances in weakly supervised detection
using CNN. The segmentation is then initialized based on a class activation map which
has been learned in a weakly supervised manner. The segmentation requires no fur-
ther annotations and uses a generative approach. Partially, the proposed procedure is
similar to the aforementioned interactive multi-label segmentation. However, the scrib-
bles which are used to initialize the segmentation are not drawn by a human annotator,
but rather by a CNN. Therefore, no further annotations are required for training the
segmentation model and it can be nicely integrated into a weakly supervised detection
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framework that is solely based on image-level annotations. Instead of scribbling the an-
notator is asked to tell what objects appear in an image and the proposed procedure
estimates the probabilistic class membership of every pixel for each occurring object. In
this chapter, it is shown how to initialize a probabilistic image segmentation using class
activation maps generated by a weakly supervised object localization network. Further,
a combination of this discriminative detection model and a generative image model is
used to improve weakly supervised object detection. Lastly, the framework is expanded
in order to derive semantic segmentations of natural images.

6.2 recent developments

Recently, weakly supervised methods gained further interest and an increased number
of publications have been presented at major vision conferences, among others, [BMG18;
AK18; Tan+18a; Fan+18]. The trends can be summarized as different ways to fuse infor-
mation from different sources into the weakly supervised segmentation. In contrast to
the proposed approach, they often rely on different data sets or need to be trained addi-
tionally. The proposed approach, however, directly operates on the class activation maps
and the image data itself.

The first group of approaches fuses the image-level labels with saliency maps which
are learned from a separate data set. However, the saliency maps are almost exclusively
learned from pixel-level annotations and are therefore contradicting the weakly super-
vised paradigm to some extent. Typical representatives are, among others, [BMG18;
Fan+18]. Other approaches, like [Qi+16; Wei+17; LAT18], generate surrogate pixel-level
labels which are used to train a segmentation network or leverage pre-trained object
detection networks [Sal+18] for semantic segmentation. More in line with the proposed
approach are the methods which integrate pixel-level affinities [AK18] or modify the loss
function of the DNN. For instance, in [Tan+18a] the normalized cut (see Section 2.5.2)
is integrated into the loss function of a DNN. However, none of the above methods
operates in a generative framework, as the proposed approach does.

6.3 fusing class activation maps with density estimation

For localizing and segmenting objects in a weakly supervised fashion a combination of a
discriminative and a subsequent generative approach is proposed. The key idea behind
the combination is to maintain the benefits of a generative model even when using a
discriminative classifier.

In a first step a discriminative classifier—a FCN—is solely trained on image-level an-
notations. The last convolutional layer of this network is designed such that it outputs
a class activation map. Each map can then be leveraged in order to indicate the proba-
ble location of objects (see Section 2.8.3). Next, these class activation maps are used for
initializing a generative segmentation model for every occurring class. From these mod-
els and an additional model for the background class of the image, a mixture model is
built. A KDE is chosen as a probability distribution in order to be maximally flexible in
the shapes the distribution can model. Since the class activation maps provide a rough
localization and a coarse estimate of the extent of an object, the issue of an indirect in-
terpretation of the KDE is circumvented. Recall, for image segmentation with mixture
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Figure 6.2: Overview of the proposed FCN architecture. Following the VGG architecture, the
network is composed of 3× 3 convolutions and subsequent max pooling operations.
The last block of the network is designed such that a class activation map can be
derived for each of the C classes from the last convolution layer. The network is
trained using a binary logistic loss after a global average pooling.

models the latent interpretation of the mixture models is essential (cf. Section 3.5.2 and
Section 3.2.4).

The derived segmentation is then evaluated based on global class similarities as well
as local per instance knowledge about the object’s appearance with respect to the back-
ground. An overview of the proposed algorithm is given in Figure 6.1. The approach
can be applied for semantic segmentation as well as bounding box predictions.

In general, using class activation maps to initialize a segmentation model is similar
to using scribble annotations. In this case, however, the scribbles are replaced by the
output of the CNN. Therefore, one can think of the CNN as drawing the scribbles in the
image instead of the human annotator. Technical details of the proposed approach are
presented in the following sections.

6.3.1 Class Activation Maps

In this section, the concept of class activation maps in the context of the given setting
is explained. General information about class activation maps are presented in Sec-
tion 2.8.3. As already mentioned, a FCN has been trained for computing a class acti-
vation map. An overview of the architecture is given in Figure 6.2. It builds on the ideas
proposed in [Oqu+15; Zho+16]. Following the VGG16 architecture, the network consists
of blocks which contain 3× 3 convolutions followed by subsequent pooling operations.
The last of these blocks contains two additional convolution layers and the goal is to
learn exactly one filter for each of the C object classes. The last layer is then followed
by a global average pooling [Zho+16] so that a single prediction score is computed for
each of the object classes. While the last step is essential and reflects the nature of weak
supervision, the class activation maps cannot be directly used for computing the loss
because the supervisory signal is only available on image-level and not on pixel-level.
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Similar to the approach described in [Oqu+15], a binary loss function (cross-entropy)
with

lce = −
1

N

N∑︂
j=1

C∑︂
c=1

yj,c log
(︁
ŷj,c

)︁
(6.1)

is applied for training, where yj is the desired output indicating the presence of all
object classes C and ŷj is the prediction of the network. N is the number of items in
the training data. The network is thus trained based on a binary vector indicating the
presence of multiple object classes simultaneously.

For localizing objects, the feature map of the last convolutional layer can easily be
interpreted as a class activation map since the responses of each of the filters indicate
the presence of exactly one class. Since the network contains four pooling layers, the
final output of the class activation map is 1/16 of the original input image size.

6.3.2 Segmentation

As the class activation map is relatively coarse, recovering an object’s boundaries is not
directly possible. However, the network produces an educated guess about the position
and extent of the objects appearing in the image. A natural approach for recovering the
true object boundaries is segmenting the image into semantic regions.

The goal is to recover the joint probability distribution of the object extent and colour
appearance from the raw data through a probabilistic model. This is achieved by com-
bining the learned global view of the CNN with a local appearance model.

Modelling the local appearance of each region by KDE appears to be especially well
suited because it does not make strong assumptions regarding the shape of the dis-
tribution. Alternatives, like the Gaussian distribution or any other parametric model,
are in semantic segmentation often too limiting. In contrast to the previous chapters,
where each region has been associated with a distribution that has one unique mode,
this assumption needs to be relaxed in semantic segmentation. For certain classes, like
the background class or the person class, assuming a unique mode for the colour dis-
tribution is too limiting. For instance, persons exhibit multiple colour modes through
the differences in hair, skin, and the possibly large number of different colours of the
clothing. Capturing this multimodality is easily achieved by KDE.

As pixel-level features, the coordinates of the Lab and RGB colour spaces are chosen.
Additionally, the positions of the pixels within the image are used as positional features
to enforce locality in the regions. This has been proven useful in the previous chapters
(see Section 4.3). The joint probability p(X, Y,L,a,b,R,G,B) is estimated by a KDE. In
order to reduce the computational burden of the KDE, the joint distribution is rewritten
as

p(X, Y,L,a,b,R,G,B) = p(X, Y)p(L)p(a)p(b)p(R)p(G)p(B)

by assuming independence between the probability distribution of the colour features.
By only looking at the marginal distribution of the colour features the number of data
points which need to be evaluated in the KDE is vastly reduced, since the number of data
points grow exponentially with the number of features while keeping the resolution con-
stant. However, possible correlations are an issue in the positional features and should
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not be neglected, because the appearance of an object might be multi-modal. Assuming
independence in the positional data leads to an overestimation of the object probability
in regions where only one of the two marginals might have a high probability.

6.3.3 Combining Class Activation Maps with KDE

The class activation maps form the basis of the segmentation. In the first step, the class
activations of an occurring class are rescaled to the size of the original input image us-
ing bicubic interpolation. Second, the activations aj at pixel index j of the set of class
activation maps A =

{︁
A(1), . . . , A(C)

}︁
are transformed to the interval [0, 1] to measure

the overall influence of different pixels with respect to all others. As the CNN learns to
predict multiple classes at once, each class c is considered independently. The normal-
ization is performed such that

∑︁N
j=1 aj = 1 with the number of samples N being the

pixels in the class activation map for a given class c. These activations are then used as
weights ωj for the KDE of each class occurring in the image separately, thus yielding
an appearance model pc(X, Y,L,a,b,R,G,B) for each class c. For the sake of readability,
the appearance model is simply denoted by pc in the following.

The same procedure is repeated for a background model pbg where the weights are
computed by Bg = 1−A(c). A separate background model is crucial to the success of the
segmentation, because of the blurred predictions of the CNN. Since the class activation
maps do not respect the object boundaries they almost always include a part of the
background instead of just the foreground.

For deriving the final pixel-wise foreground probability map pf|c for a given class c,
the probability model for class c and the background model, are both evaluated for each
pixel. The resulting probabilities are compared with respect to how much of the sum of
both models is explained by the model of class c:

pf|c =
pc

pc + pbg
. (6.2)

The final segmentation is then achieved by thresholding pf|c at a given probability level
θp for each class. Ambiguities in the case of equal probabilities for different classes
are resolved by taking the class with the higher activation Ac by assuming that higher
activations correspond to a higher certainty of the presence of an object at a given loca-
tion. Therefore, the global view of the CNN is rated as more important than the local
appearance.

6.3.4 Localization

For localizing an object, a bounding box can be extracted after computing the final
segmentation. Traditionally, a bounding box can be extracted from the class activation
maps by simply thresholding the class-specific scores at a given level and then finding
the largest connected component. The extent of the resulting region is then computed
and represents the bounding box. Following this reasoning, an improved bounding box,
which takes the local instance knowledge into account, is extracted by thresholding the
class probabilities pf|c and computing the extent of the largest connected component.
The largest connected component is chosen in order to cope with multiple objects of the
same class, which might be present in an image.
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Figure 6.3: Segmentation results on the PASCAL Visual Object Classes Challenge 2012 [Eve+15]
(VOC). The last two columns depict typical failure cases. From top to bottom: raw im-
age, class activation map, probability map, and the resulting semantic segmentation.

6.4 evaluation

The proposed method is evaluated on two different tasks of VOC: the semantic seg-
mentation task and the object localization task. Both approaches are tackled in a weakly
supervised manner using the proposed approach. Additionally, the novel combination
of density estimation and class activation maps is compared with state-of-the-art tech-
niques in weakly-supervised learning.

The proposed FCN, which is used for computing the class activation maps, is trained
in a weakly supervised fashion on the training set of VOC. Only image-level annotations
are used which indicate the presence of an object class in a scene. For training and
testing, the input images are rescaled so that the length of the shortest edge equals 512px.
The network is trained with a batch size of 256 for 2, 000 iterations. This corresponds
to 512, 000 images or 90 epochs on the training set. The weights are initialized from a
VGG16 network trained on ImageNet. The first 600 iterations are trained with a learning
rate of 10−4 which is then increased to 10−3. Random data augmentations are applied
to the original images. Namely, translations and rotations of up to 5% / 5deg, Gaussian
noise with σ = 0.02, and vertical mirroring.

The same network is used for both tasks, weakly supervised semantic segmentation
and localization. First, the segmentation accuracy of the proposed approach is evaluated
based on the probabilities which are computed by the KDE. Given a segmentation and
a ground truth segmentation, the segmentation accuracy (see Section 2.11) is computed
by treating each class as a binary classification problem and computing the confusion
matrix. Recall, the segmentation accuracy is given by [Eve+15]:

seg. acc. =
|T P |

|T P |+ |FP |+ |FN |
. (6.3)
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Mean Acc. [%]

#labels Validation

SPN (plain) [KHH+17] 10 582 40.0

EM-Adapt [Pap+15] 10 582 38.2

EM-Fixed [Pap+15] 10 582 20.8

GMM (this work) 5717 (0) 25.9

KDE (this work) 5717 (0) 41.1

Table 6.1: Segmentation accuracy on the PASCAL Visual Object Classes Challenge 2012 [Eve+15]
(VOC) segmentation task. The column denoted by #labels indicates the number of
annotations that are used for training the CNN in a weakly supervised manner. In
brackets the number of annotations used for training the segmentation is depicted.

Note that, while the CNN is trained based on image-level annotations, the segmentation
algorithm requires no further supervision.

Second, the Correct Localization (CorLoc) accuracy measure is evaluated [DAF12;
Kan+16]. Given an image and a target class, the CorLoc describes the percentage of
images where a bounding box has been correctly predicted for localizing an object of
the said target class. The localizations are derived from the probabilistic image model
as described in Section 6.3.4. In order to consider a prediction as correct, an Intersection
over Union (IoU) of the two bounding boxes larger than 50% is required. The CorLoc
metric is typically evaluated on the training set [Kan+16]. Here, the CorLoc is evaluated
on the complete trainval set. Nevertheless, only the training split of the detection task
has been used during the network’s training. Note that the same network is used to
evaluate both tasks—weakly supervised object detection and semantic segmentation.

6.4.1 Qualitative Results

Figure 6.3 and Figure 6.4 depict qualitative results for both tasks. It is evident that the
computed probability maps capture the extent of the appearing objects precisely. How-
ever, the computed probability maps may fail to cover the complete extent of an object if
the class activation maps are highly cluttered or the CNN is uncertain about the location
of an object. Another frequently occurring drawback of the computed probability maps
is that regions which are close to an object and are highly similar to parts of the anno-
tated object are considered as a part of this object as well. This may be circumvented if
texture features or shape priors are added to the appearance model in future work.

6.4.2 Segmentation Accuracy

In the first experiments, the segmentation accuracy of the proposed approach is eval-
uated. Therefore, the validation set of the segmentation task of VOC is used. In accor-
dance with the CorLoc task, the visible classes are assumed to be known. The baseline
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Figure 6.4: CorLoc results on the PASCAL Visual Object Classes Challenge 2012 [Eve+15] (VOC)
trainval split. From left to right: raw image, class activation map, probability map,
predicted bounding box, and ground truth bounding box. The first rows show good
predictions and the last two rows depict typical failure cases.
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CorLoc [%]

Context LocNet [Kan+16] 54.8

Thresholding 37.9

KDE 41.9

KDE + oracle 53.3

Table 6.2: Correct Localization on VOC trainval split.

algorithm is a Gaussian Mixture Model (GMM) where each occurring object and the
background are modelled by one component of a GMM, respectively. Furthermore, the
presented KDE approach is evaluated in terms of segmentation accuracy. The results
are summarized in Table 6.1. In addition to the accuracy, the number of training images
is presented, as the presented approach uses only about half of the number of training
images compared to methods from the literature.

The proposed approach is compared to a baseline using a GMM as a substitute for the
generative image model. The application of a GMM greatly decreases performance. This
confirms the assumption that regions of complex scenes do not follow Gaussian distri-
butions and that a GMM is not a reasonable approximation for an appearance model
in complex scenes. In terms of segmentation accuracy, the presented KDE approach is
similar to state-of-the art approaches from the literature.

6.4.3 CorLoc Metric

The CorLoc metric is evaluated on the complete trainval split. Three different approaches
are presented. Additionally, a competing method from the literature is evaluated. Note
that the proposed methods are solely trained on the images from the training split of
VOC, excluding the validation images. This is a deviation from the CorLoc protocol
which is often evaluated in the literature where the complete training and validation
data are used for training. All results are averaged over all 20 object classes and summa-
rized in Table 6.2.

The baseline of our algorithm is thresholding the class activation maps, as discussed in
Section 6.3.4. All values exceeding a normalized activation of 80% are considered as pos-
itive. This is followed by a connected component analysis (see e. g., [Sze10, pp. 131-132])
where only the largest connected component remains in order to reduce the influence
of multiple objects, which may be present in an image. The proposed approach goes
beyond the baseline method by using the thresholded class activation maps in order to
initialize a kernel density estimator and by computing a probabilistic class model for
each visible class in an image (see Section 6.3.3). In this approach, two thresholds need
to be considered. The first is, as in the baseline approach, the level at which the class
activation maps are thresholded and second the level at which the probability θpf|c

of
a pixel is considered to belong to a specific class. The proposed approach improves the
results by 4%. Note that recently the only other result on this task has been reported
in [Kan+16]. While these show superior performance, the network is trained with fur-
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ther samples and requires additional regional proposals as it is directly optimized for a
bounding box evaluation, which is not the case here.

From the experiments, it was evident that the presented approach is sensitive with
respect to the choice of the second threshold θpf|c

, because the extent of an object in-
fluences the choice of an optimal threshold. Smaller regions require more confident
predictions and vice versa. Therefore, a third approach is considered, where an appro-
priate threshold is determined by an oracle on a per image basis. This leads to a vastly
increased performance compared to our previous approaches. It is, thus, reasonable to
assume that the performance can be improved with a meta-recognition step which de-
termines an appropriate threshold and allows for closing the gap between the proposed
approach and [Kan+16].

6.5 summary

In this chapter, a novel approach to the task of weakly supervised segmentation and ob-
ject localization has been presented. In contrast to the methods presented in the literature
which are exclusively discriminative, the problem is tackled from a mixed perspective
utilizing a discriminative and a generative approach.

The results show that the proposed weakly supervised semantic segmentation ap-
proach reaches state-of-the-art performance compared to other weakly supervised ap-
proaches from the literature. In contrast to other approaches, ours is generative and,
therefore, offers uncertainty estimates. It is further shown that the application of a KDE
is far superior to a GMM baseline which does not model the appearance in complex
scenes accurately. In addition, the proposed segmentation approach is integrated into
a weakly supervised object localization framework. Promising results are achieved by
the proposed approach in terms of the CorLoc accuracy. The results may further be im-
proved by tackling the problem from a Bayesian perspective and considering similarities
across several test images, as in [KHH+17], where the posterior belief of the semantic
labels is iteratively updated.
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C O N C L U S I O N

In contrast to the majority of approaches from the related work, image segmentation has
been tackled from a generative perspective in this thesis. While the generative approach
yields uncertainty estimates of the predictions as an implicit property, it comes at the
cost of a higher modelling complexity. Therefore, these models have not been used if
a high accuracy is required. However, this work has shown that generative approaches
are a viable alternative. They additionally provide uncertainty estimates which are an
important tool when assessing the quality of a segmentation, interpreting the prediction,
and communicating the results to domain experts.

In order to model the observed data, mixture models are chosen. They have the benefit
of yielding a direct interpretation (see Section 3.2.4) in which it is assumed that each
region of an image is associated with exactly one probability distribution. Afterwards,
the probability of a pixel belonging to a region is computed by evaluating the probability
density function (pdf) of every mixture component. The result is then interpreted as
a probabilistic segmentation. However, this approach poses several issues which are
addressed in this thesis through rigorously testing. First, it is unclear how well image
data can be described by probability distributions and which features shall be used.
Second, it is unclear which pdfs should be used and which properties a suitable pdf
should have. Lastly, the number of mixture components is a-priori unknown and has to
be estimated or given, depending on the level of supervision which is desired.

In this thesis, it has been shown that the colour space used to describe the image
data does not have a high impact on the achievable segmentation accuracy. However,
including a model for the pixel positions is of central importance to achieve good re-
sults. Additionally, it is of utmost importance to have as flexible as possible distribu-
tions for modelling the observed image data. The proposed Sinh-asinh Copula Mixture
Model (SCMM) has been proven as the best choice in terms of the considered segmen-
tation metrics. These experiments have been conducted in a supervised setting in order
to successfully establish an upper bound of the achievable segmentation accuracies. Af-
terwards, the experiments have been concerned with reaching the upper bound in an
unsupervised setting.

In the unsupervised case, it is especially challenging to estimate a suitable number of
mixture components. In this thesis, we have experimentally shown that a Dirichlet Pro-
cess Mixture Model (DPMM) (see Section 3.5.1) performs best. Fortunately, it suits the
Bayesian paradigm used throughout this thesis best. Afterwards, it has been shown that
probabilistically including the probable location of edges into the mixture estimation is
another crucial feature to leverage the proposed SCMM to surpass the state-of-the-art
performance in generative image segmentation. Further, the proposed SCMM is on-par
with many discriminative approaches which do not offer uncertainty estimates.

Lastly, an approach to weakly supervised semantic segmentation and object detection
has been presented. In contrast to many other approaches to this challenging task, we
compute a generative segmentation as an output although a discriminatively trained
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116 conclusion

Deep Neural Network (DNN) is used to detect the presence or absence of objects. This
is achieved through combining the class activation maps of a weakly supervised DNN
with a local appearance model. The local appearance is modelled generatively by non-
parametric density estimation. The proposed approach outperforms a Gaussian Mixture
Model (GMM) used as a generative baseline model significantly.

future work

While possible feature research directions have been briefly sketched at the end of the
respective chapters, some of the most important aspects are summarized here. In the
context of mixture models, the lack of a suitable texture model stands out. While this
has been circumvented to some extent by using the proposed texture feature, it does
not include texture as a thoroughly generative model. Future work should place more
focus on this aspect because texture has often been proven to be an important cue in
image segmentation. One particular interesting research direction is the integration of a
generative model for repeatedly occurring texture patterns, like textons. By doing this,
the resulting model would additionally consist of a mixture model of discrete probability
distributions which generatively model the texture behaviour within every segment.

The presented Sinh-asinh Copula Mixture Model (SCMM) is modular. Therefore, parts
of it can be replaced conveniently and new variants can be explored easily. While the
use of the sinh-asinh distribution appears to be already well suited, because it is a very
tractable and flexible distribution, the copula modelling the dependence structure de-
serves more attention. The rich copula literature offers alternatives to the used Gaussian
copula which are worth exploring.

One of the most promising approaches to weakly supervised segmentation in a gen-
erative setting will be a better fusion of DNNs and a local appearance model based on
probability distribution. While the results of the previous chapter have been an impor-
tant first step, other ways can be explored. Probably most promising is the integration
of another unsupervised approach which directly operates on the pixel-level. Therefore,
a trifocal view on the data is achieved: the DNN’s, the class activation map’s, and the
density’s view on the image data. Another future challenge is to transfer the methods
presented in this thesis to other domains like remotely sensed images or medical image
data.
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