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Abstract

In this thesis we study a stochastically perturbed mean curvature flow (SMCF).
In case of graphs, existence of weak solutions has already been established for one-
dimensional and two-dimensional periodic surfaces with a spatially homogeneous
perturbation. We extend this result by proving existence of solutions in arbitrary
dimensions perturbed by noise which is white in time and colored in space. In
addition, we work with a stronger notion of solution which corresponds to strong
solutions in the PDE sense.

For this, we give a new interpretation of graphical SMCF as a degenerate varia-
tional stochastic partial differential equation (SPDE) with compact embedding.
In order to infer existence of an approximating sequence, we extend the theory
of variational SPDEs such that we can treat SMCF within this framework. In
order to pass to the limit with the approximating sequence, we prove new a-priori
bounds for graphical SMCF.

With this a-priori bounds, we can characterize the large-time behavior of
solutions in case of spatially homogeneous noise. In particular, we will prove that
solutions become asymptotically constant in space and behave like the driving
noise in time. This strengthens a previously established one-dimensional large-time
result by extending it to higher dimensions and proving stronger convergence.

Furthermore, we propose a numerical scheme for graphical SMCF which employs
the variational interpretation we have analyzed before. Using this scheme, we
present Monte-Carlo simulations visualizing the energy estimates we have used in
the analytic part of this thesis.

Moreover, we discuss the regularity and uniqueness of solutions and give
conditional results for both. We complement the previous results, especially the
existence result, by investigating how they extend to SMCF with respect to an
anisotropic notion of curvature.
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1. Introduction

1.1. Motivation
The evolution of surfaces plays an important role in many applications. One of
the most prominent evolution laws is the mean curvature flow (MCF), which is
the simplest geometric evolution law as it stems from the minimization of the
area of a surface. A family of surfaces evolves according to mean curvature flow
if its normal velocity V is equal to its mean curvature H, i.e.

V = H.

Later, we will see that in terms of a local parametrization MCF is a parabolic
equation with similarities to the heat equation. When the surface at time t can be
written as the graph of a function u(·, t) then MCF is characterized by the PDE

∂tu =
√︂

1 + |∇u|2∇·
(︄

∇u√︁
1 + |∇u|2

)︄
= ∆u− ∇u ·D

2u∇u
1 + |∇u|2 .

MCF as a model for moving surfaces is considered among others in material
science, biology and physics (cf. [TCH92, OS88, ESS92, Bel13] and the references
therein) as well as recently in the theory of image processing (cf. [CDR03] and
the references therein). Furthermore, it also appears as the sharp interface limit
of the Allen-Cahn equation which itself is motivated by applications in material
sciences, but also is related to a model from biology, cf. [Fif79].

Due to its interesting properties, for example the interpretation as the gradient
flow of the area functional, MCF receives particular interest from a mathematical
point of view. We refer to the foundational work of Brakke [Bra78] and the
monographs [Eck04, Man11, Bel13] for an introduction to mean curvature flow
and an overview of the relevant literature. It is worth mentioning that mean
curvature flow in general will develop singularities, beyond which a natural
extension of the evolution is not unique.

In applications mean curvature flow often only appears after assuming several
simplifications, for example ignoring thermal fluctuations. In order to account
for the presence of possibly unspecific additional contributions it is reasonable
to perturb mean curvature flow with a random forcing ξ. This leads to so-called
stochastic mean curvature flow (SMCF), i.e.

V = H + ξ.
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1. Introduction

Stochastic mean curvature flow was first introduced in the physics community
by Kawasaki and Ohta [KO82]. They consider the Allen-Cahn equation as a model
for phase separation. To incorporate microscopic processes, which are neglected
in the standard Allen-Cahn model, they perturb the equation with additive
space-time white noise. They formally observe that in the low temperature limit,
which corresponds to the sharp interface limit, the interface moves according to
stochastic mean curvature flow with space-time white noise, i.e. formally ξ has
zero mean and satisfies

Eξ(x, t)ξ(y, s) = δ(x− y)δ(t− s).

This observation raised a lot of interest and was later revisited by the math
community, cf. [Fun99], [Web10], [HRW12], [HW15] and the references therein.
Röger and Weber proposed a multiplicative perturbation of the Allen-Cahn model
[RW13, HR18], which formally also yields stochastic mean curvature flow in the
limit but behaves better than the additive perturbation.

Besides its motivation from an applied point of view, SMCF is also motivated
from mathematical interest in understanding the influence of small perturbations
on MCF. In spirit of this motivation, a stochastic selection principle was proven
by Dirr, Luckhaus and Novaga [DLN01] and independently by Souganidis and
Yip [SY04]. The non-uniqueness of the MCF beyond singularities can be fixed
by considering small perturbations, which force the evolution to select one of the
possible solutions.

A special case is the situation where the surfaces are given as the graph of a
function u : Rn × [0, T ]→ R. Under this condition SMCF is characterized by

∂tu =
√︂

1 + |∇u|2∇·
(︄

∇u√︁
1 + |∇u|2

)︄
+
√︂

1 + |∇u|2ξ. (1.1)

For the unperturbed MCF, i.e. ξ = 0, this situation was considered by Ecker and
Huisken [EH89] as a first extension of the established theory for MCF of compact
hypersurfaces to non-compact situations. More importantly, graphs can in fact be
used to approximate the generic situation of a properly embedded hypersurface.
When uε = Uε

ε is a solution of graphical SMCF and U ε converges in a certain
sense to a function f : Rn × [0, T ] → R, then formally all level sets of f evolve
according to SMCF. This leads to the so-called level set formulation of SMCF.
The function f solves

∂tf = |∇f |∇·
(︄
∇f
|∇f |

)︄
+ |∇f |ξ.

Note that we loose one dimension, i.e. the level sets of f are (n− 1)-dimensional
hypersurfaces whereas the graph of uε is a n-dimensional hypersurface. This
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1.2. State of the art

approximation scheme was first used for unperturbed MCF by Evans and Spruck
[ES91] in order to construct a level set solution.

This motivates us to study the graphical SMCF (1.1) for arbitrary dimensions
in this thesis.

1.2. State of the art

Stochastic mean curvature flow gives rise to a stochastic partial differential equation
(SPDE). For an introduction to the theory of SPDEs we refer to [DPZ14].

It is important to understand the two related but different concepts of inter-
preting stochastic integrals, that is Itô integration and Stratonovich integration.
The Itô integral is a martingale, in particular has zero expectation. This is not
true for a stochastic integral interpreted in the sense of Stratonovich, but it has
the advantage that the classical chain rule holds.

The general validity of the chain rule for the Stratonovich differential makes
it favorable in geometric problems, as it allows for reparametrizations without
introducing additional terms. Nevertheless, it is possible to translate between the
Itô and Stratonovich integral, cf. Remark 4.20. In the following we will always
assume that the noise is given as ξ = ◦ dW with W = W (x, t) a suitable Wiener
process and ◦dW denoting its Stratonovich differential, cf. Definition 4.3 and
Definition 4.19.

Stochastic mean curvature flow has been treated by different authors focusing
on different properties and using slightly different formulations. Among the first
works concerning SMCF is a work by Yip [Yip98], who allows certain smooth
anisotropies and colored white noise, i.e. noise which is white in time but smooth
in space. In order to approximate SMCF he proposes a time-stepping scheme
consisting of two computations in each time step. First, as in the unperturbed
situation the surface is updated using the well-known ATW scheme, cf. [ATW93]
and Section 2.5.3. The second step introduces the perturbation using a random
flow deforming the underlying space. It is proven that this scheme in the limit
∆t→ 0 is tight and formally converges to SMCF. The regularity of the limit and
the rigorous identification of its evolution law is an open problem.

For spatially homogeneous noise, i.e. W = αβ with α2 < 2 and β a real-valued
Brownian motion, and an additional additive deterministic forcing term one can
prove short-time existence of smooth solutions of SMCF, cf. [DLN01]. In general
the existence time will be random and not bounded away from 0. This corresponds
to the fact that singularities can appear arbitrarily fast, cf. Section 3.4. In case
of spatially homogeneous noise one can transform the SPDE that is fulfilled by
the signed distance function to a PDE with rough coefficients and apply a purely
deterministic theory to infer existence. As mentioned above, by sending α→ 0
they infer a stochastic selection principle in situations where the unperturbed
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1. Introduction

evolution is not unique. In addition, it is also proven that solutions are stable
under regularization of the noise.

This is related to the stochastic viscosity theory proposed by Lions and Sougani-
dis in [LS98a, LS98b, LS00a, LS00b]. An extrinsic definition of stochastic viscosity
solutions is obtained by taking the limit of regularizing the noise. It should be
noted that the stochastic viscosity theory is not widely adopted as the first works
were mostly announcing and a rigorous treatment is still an active field of re-
search with relations to rough path theory, cf. [MPS19] and [Sou19]. Nevertheless,
Souganidis and Yip [SY04] use this notation to analyze the existence of solutions of
the level set equation with spatially homogeneous noise and also prove a stochastic
selection principle.

In the case where the hypersurfaces are given as the graphs of a periodic function
u : Tn × [0, T ] → R over the flat torus Tn, n ∈ N, the corresponding equation
(1.1) is a second-order SPDE, which has non-divergence form for n ≥ 2 and is
perturbed by multiplicative non-linear gradient-dependent noise. This makes
(1.1) difficult to treat. For example there is no abstract theory guaranteeing the
existence of solutions in arbitrary dimensions.

Only for n = 1, where MCF is referred to as curve shortening flow, the main
part of (1.1) can be rewritten in order to infer a divergence-form equation

∂tu = ∂x
(︁
arctan(∂xu)

)︁
+
√︂

1 + |∂xu|2ξ. (1.2)

This structure is exploited by Es-Sarhir and von Renesse [ESvR12] in order to
prove existence of the stochastic curve shortening flow for spatially homogeneous
noise. In addition, they conjecture that one can extend their proof in order to
obtain an existence result for colored noise, i.e. ξ = ◦ dW with W = W (x, t) a
Wiener process which is sufficiently regular in x. Furthermore, in the spatially
homogeneous noise case they show that at large times solutions of (1.2) become
spatially constant and behave like the driving Brownian motion in time.

Building on the one-dimensional analysis a finite element approximation of
stochastic curve shortening flow is proposed, cf. [FLP14]. In order to derive
convergence of their scheme, the authors need H2 regularity of solutions. Since
this regularity is not known for (1.2) they add an additional viscosity term to the
equation and consider for ε > 0 and α, β as above the viscous equation

du = ε∂2
xu+ ∂x

(︁
arctan(∂xu)

)︁
dt+ α

√︂
1 + |∂xu|2 ◦ dβ.

After proving convergence of their scheme, they employ it to simulate the large-
time behavior of solutions, consider a Monte-Carlo simulation of the Dirichlet
energy t ↦→ E

∫︁
|∇u(x, t)|2 dx, and simulate stochastic curve shortening flow with

colored and space-time white noise.
In the two-dimensional situation n = 2 graphical SMCF (1.1) was treated

by Hofmanová, Röger and von Renesse [HRvR17]. The authors exploit the
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1.3. Results and structure

gradient-flow structure of unperturbed MCF and observe that a version of the
energy-dissipation inequality

E
∫︂ √︂

1 + |∇u(x, T )|2 dx+ 1
2E

T∫︂
0

∫︂ ⃓⃓⃓⃓
∇·
(︃ ∇u√︁

1 + |∇u|2

)︃⃓⃓⃓⃓2
(x, t)

√︂
1 + |∇u(x, t)|2 dx dt

≤ E
∫︂ √︂

1 + |∇u0(x)|2 dx

for the surface area is still valid in case of stochastic perturbations. In order to
approximate (1.1) they propose for ε > 0, η > 0 and α2 < 2 the higher-order
viscous equation

du = −η(−∆)Ku+ ε∆u+
√︂

1 + |∇u|2∇·
(︄

∇u√︁
1 + |∇u|2

)︄
dt+ α

√︂
1 + |∇u|2 ◦ dβ.

(1.3)

As the term of highest order in (1.3) is linear and elliptic and the perturbation
is of lower order, existence of mild solutions for this equation follows by the
well-known fixed point iteration and semigroup theory.

Using energy estimates similar to the energy-dissipation inequality they derive
bounds which are sufficiently uniform in η and ε in order to first pass to the limit
η → 0 and then to ε→ 0. In order to identify the limit for ε→ 0 compensated
compactness and Young measure theory are involved. They conclude the existence
of martingale solutions of (1.1) in a weak sense.

1.3. Results and structure

This work continues and extends the results of [HRvR17] in several aspects. In
the following, we will summarize our main results in terms of informal theorems
with a focus on readability. For each of these theorems we will refer to its rigorous
formulation in the subsequent chapters.

First, we generalize the existence result from n = 2 to arbitrary dimensions
n ≥ 1. Note that considering the graphical situation is motivated by the fact that
the level set equation can be approximated by the graphical equation. Due to the
construction it is necessary to solve the graphical equation in one dimension higher
than the level set equation. That means that the result of [HRvR17] can only be
used to approximate SMCF of curves, whereas the physical relevant situation is
obtained for two-dimensional surfaces in R3. Furthermore, our existence result
also holds for colored noise. This is even new for the one-dimensional case where
it has been conjectured in [ESvR12, Remark 3.4]. In particular, we will prove the
following theorem.

5



1. Introduction

Theorem 1.1 (cf. Theorem 5.5). Under suitable assumptions on the initial
data u0 ∈ H1(Tn) and the coefficients (φl)l∈N ⊂ C∞(Tn) there is a global-
in-time martingale solution u of (1.1) where the noise is given as ξ(x, t) =∑︁

l∈N φl(x) ◦ dβl(t) with i.i.d. real-valued Brownian motions (βl)l∈N.

For the proof of Theorem 1.1 we will show new a-priori estimates for energies of
the form E(t) = E

∫︁
Tn f(∇u(x, t)) dx with properly chosen functions f , including

for example the Dirichlet energy recovered for f(p) = |p|2. From these bounds
we will deduce H2(Tn) regularity of solutions, which allows us to give a stronger
notion of solution compared to [HRvR17].

So far, uniqueness of solutions for graphical SMCF is only known in the one-
dimensional case using the particular divergence form of the equation, cf. [ESvR12].
We give a stability and weak-strong uniqueness result, which implies uniqueness
of solutions under certain regularity assumptions for n ≥ 1.

Theorem 1.2 (cf. Theorem 6.1). Let u1 and u2 be solutions of (1.1) with colored
noise. When u1, u2 are sufficiently regular then they will deviate at most expo-
nentially in time. If they coincide at time t = 0 they will coincide for all times
t > 0.

Whether all solutions are sufficiently regular in order to apply Theorem 1.2
is still an open problem. However, we can give first regularity results under the
assumption that the noise is spatially homogeneous, i.e. ξ = α ◦ dβ with α2 < 2.
The energy estimates imply a bound for the Lipschitz constant of solutions.

Theorem 1.3 (cf. Theorem 7.3). For Lipschitz-continuous initial data u0 a
solution u of (1.1) with spatially homogeneous noise is Lipschitz continuous for
all times and the Lipschitz constant does not increase over time.

Besides its importance for the regularity theory of solutions, Theorem 1.3 can
also be used to characterize the large-time behavior of solutions.

Theorem 1.4 (cf. Theorem 7.5). For Lipschitz-continuous initial data u0 a
solution u of (1.1) at large times becomes spatially homogeneous and behaves like
the driving Brownian motion in time.

Theorem 1.4 generalizes a similar result from the one-dimensional case to higher
dimensions and improves the convergence in terms of a stronger topology. For
smooth solutions with small Lipschitz constant we will also prove a temporal
decay of higher derivatives.

Moreover, it turns out that our energy estimates are very robust and allow to
extend the existence and large-time results to graphical SMCF with respect to
smooth anisotropies with spatially homogeneous noise.

In order to prove the above theorems we use methods differing from those used
in [HRvR17]. In particular, we will use a new interpretation of graphical SMCF

6



1.3. Results and structure

(1.1) as a (degenerate) variational SPDE. To our knowledge this interpretation is
new even for the unperturbed model.

Variational SPDEs form a special class of SPDEs and correspond to what is
known as weak solution theory for deterministic PDEs.

The theory of variational SPDEs was initiated by the pioneering works of
Pardoux [Par75] and Viot [Vio76]. They develop in their respective theses two
different theories for variational SPDEs, one relying on the monotonicity of the
equation and the other on the compactness of a certain embedding. The approach
of Pardoux yields the existence and uniqueness of strong solutions, whereas the
theory of Viot only implies the existence of martingale solutions, i.e. solutions
which are weak in a stochastic sense, cf. Definition 4.32. In both situations the
existence proof relies on a generalized Itô formula adapted to the variational
structure of the equation.

The approach of Pardoux was constantly continued [Par79, Par87, MV88] and
later reviewed in the book by Prévôt and Röckner [PR07]. Viot’s theory attracted
less attention as it was mentioned in [MV88], which is besides [Par07] one of few
works referring to it.

Nevertheless, in this work we will revisit Viot’s theory of variational SPDEs
with compact embedding and extend it such that SMCF in case of graphs can be
treated within this theory. For a detailed discussion about the differences between
our generalization and the results of [Vio76] and [Par07] we refer to Section 4.2
and Section 4.3.

In order to understand (1.1) as a variational SPDE it is convenient to consider
the equation the gradient of a solution fulfills

d∇u = ∇

⎛⎝√︂1 + |∇u|2∇·
(︄

∇u√︁
1 + |∇u|2

)︄
dt+

√︂
1 + |∇u|2 ◦ dW

⎞⎠ .
This equation naturally has divergence-form and therefore can be understood

as an equation in a dual space, which corresponds to testing the equation with
sufficiently regular functions and using integration by parts. That means, that it
can be treated as a variational SPDE. It also is (degenerate) coercive, since the
coercivity is equivalent to the availability of an estimate for the Dirichlet energy
of solutions, which we have mentioned before. As the drift lacks monotonicity we
are not in the situation of the variational theory of Pardoux [Par75] respectively
Prévôt and Röckner [PR07]. Instead we have to work in the spirit of Viot’s thesis
[Vio76] and exploit the compactness of the embedding H2(Tn) ⊂ H1(Tn).

A key ingredient of the variational approach is the approximation using a
Galerkin scheme. We propose a numerical scheme for graphical SMCF with
colored noise which mimics this discretization. As we are working in the Gelfand
triple H2(Tn) ⊂ H1(Tn) ≃ (H1(Tn))′ ⊂ (H2(Tn))′ this algorithm uses H2(Tn)-
compatible finite elements, which makes it different from previously considered

7



1. Introduction

numerical schemes for MCF and SMCF.
The subsequent chapters are organized as follows. We start with two introduc-

tory chapters. In Chapter 2 we quickly introduce the unperturbed mean curvature
flow with some fundamental results, focusing on those results that motivate the
analysis in this work. Chapter 3 is devoted to a formal deduction of SMCF,
the corresponding level set equation and the graphical equation. Furthermore,
we derive evolution laws of certain differential geometric objects and give a first
example how to derive energy bounds.

In Chapter 4 we fix the notation for infinite dimensional stochastic evolution
equations and give a precise definition of Stratonovich integration in comparison
with Itô integration. Furthermore we extend the results of [Par75] and [Vio76]
about variational SPDEs. We apply this theory in Chapter 5 to prove Theorem 1.1,
i.e. the existence of a martingale solution of (1.1) in the case of colored white
noise. For this, we first consider a viscous approximation, deduce existence from
an abstract existence result for variational SPDEs, prove uniform bounds for Lp
norms of the gradient of solutions and finally pass to the limit with the viscous
term. The uniform bounds allow to identify the limit as a solution of (1.1).

Chapter 6 is devoted to the proof of a precise formulation of the weak-strong
uniqueness result Theorem 1.2 for the solutions we have constructed before. It is
an open question whether solutions are always regular enough in order to deduce
pathwise uniqueness.

In Chapter 7 we concentrate on the case of spatially homogeneous noise. In this
situation we will prove a maximum principle for the gradient of solutions implying
Theorem 1.3, which is not reasonable for colored noise. As a consequence we can
prove the large time result Theorem 1.4. We also include the proof of a first result
into the direction of higher regularity of solutions. In particular we can prove
that the L2 norm of higher derivatives decays in time under the assumption that
the Lipschitz constant of the initial data is small and the solution is smooth.

In Chapter 8 we describe the above mentioned discretization of graphical SMCF
which is motivated by the variational interpretation of (1.1). This algorithm is
used for Monte-Carlo simulations of the various energies that have been considered
in the existence proof.

We end with Chapter 9 where the existence proof from Chapter 5 is extended
to smooth anisotropic geometries, with some shortcuts which are available due to
the restriction to spatially homogeneous noise.

Note that some of the results presented in this work already have been published
in a recent preprint [DHR19]. The introduction to variational SPDEs and the Itô
formula from Section 4.2 are only slightly changed in comparison to the preprint,
for example we give a more general formulation of the Itô formula as we allow
Wiener processes with arbitrary covariance operator. The abstract existence
theorem for variational SPDEs in Section 4.3 is also part of that preprint. Here,
we deduce the existence theorem from a new abstract convergence result for
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1.3. Results and structure

SPDEs and give a more elaborated version of the proof.
The preprint [DHR19] is only concerned with spatially homogeneous noise.

The existence result for SMCF with colored noise in Chapter 5 is in the spirit
of the proof for spatially homogeneous noise presented in the preprint, but in
order to account for the more general situation where an a-priori bound for the
Lipschitz constant is not available, we have to employ a new strategy to find
suitable a-priori bounds for a solution. As a consequence, the existence result
presented here is more general even in case of spatially homogeneous noise as the
assumption on the initial data is less restrictive.

The maximum principle for the gradient as well as the large-time behavior of
solutions in case of spatially homogeneous noise in Chapter 7 already appeared in
[DHR19]. Here, we include a novel result on higher regularity of solutions.
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2. Mean curvature flow

In this chapter we will review the theory of unperturbed mean curvature flow
with particular focus on those aspects that motivate the approach we take to
analyze stochastic mean curvature flow. The material in this chapter is mostly
taken from the monographs [Bel13], [Eck04] and [Sin10].

Let (Mt)t∈[0,T ], T > 0, be a family of smooth properly embedded hyper-
surfaces in Rn+1 given by smooth immersions Ft : M → Mt with respect to
a n-dimensional smooth manifold M without boundary. For the differential
geometry of hypersurfaces we refer to Appendix B.

We say that the family (Mt) evolves according to mean curvature flow when
the normal velocity is equal to the mean curvature. This can be expressed in
terms of a differential equation for the immersions

∂tFt(x) = H⃗t(x) ∀x ∈M, 0 < t < T, (2.1)

where H⃗t(x) is the mean curvature vector of Mt at Ft(x).
In the following, we will denote by ∇Mt ,∇Mt· and ∆Mt the tangential gradient,

the tangential divergence and the Laplace-Beltrami operator, respectively, with
respect to the differential structure of Mt. For a definition of these objects
we again refer to Appendix B. The corresponding objects with respect to the
Euclidean structure will be denoted without sub- and superscripts.

Since ∆MtFt = H⃗t we can rewrite (2.1) as ∂tFt(x) = ∆MtFt(x) and thus
emphasize the similarity to the heat equation. Note that the appearance of ∆Mt

makes this equation non-linear, but one can indeed show that (2.1) is a parabolic
equation. Therefore, under suitable assumptions on the initial manifold, one
can deduce short-time existence of solutions, cf. [Sin10, Theorem 4.1], [EH91,
Proposition 4.1] and the references therein.

Theorem 2.1. Let M be a smooth and compact n-dimensional manifold without
boundary and F0 a smooth immersion. Then (2.1) has a unique smooth short-time
solution with initial condition M0 = F0(M).

In [EH91, Proposition 4.2] it is proven that Theorem 2.1 extends to non-
compact complete manifolds with a uniform local Lipschitz condition and bounded
curvature.

For a convex and compact hypersurface the mean curvature vector is pointing
inwards, hence mean curvature flow forces such a surface to shrink. The easiest
example is given by shrinking spheres.

11



2. Mean curvature flow

Example 2.2. We are interested in the evolution by MCF of a n-dimensional
sphere with radius r0 > 0. As reference manifold we choose the unit sphere
M = Sn ⊂ Rn+1 together with the immersion F0(x) := r0x, x ∈ M, and set
M0 := F0(M) = r0Sn.

Since solutions of the mean curvature flow are unique and the evolution is
invariant under rotations, we infer that by evolving the sphere we only change its
radius. Hence, the unique solution of (2.1) can be written as Ft(x) = r(t)x with
r(0) = r0 and Mt = r(t)Sn. To determine r(t) we note that

H⃗t(x) = − n

r(t)x, x ∈ Sn.

Plugging this into (2.1) yields

r′(t) = − n

r(t)

which has the unique solution r(t) =
√︂
r2

0 − 2nt.
Therefore the sphere shrinks to a point at time T = r2

0
2n .

It was proven by Huisken in [Hui84] that this behavior is shared among all
uniformly convex initial hypersurfaces.

Theorem 2.3 ([Hui84, Theorem 1.1]). Let M0 be a smooth, compact, uniformly
convex, properly embedded n-dimensional hypersurface in Rn+1. Then the maximal
existence time T > 0 for solutions of (2.1) is finite and Mt converges to a single
point for t→ T .

For non-convex n-dimensional surfaces with n ≥ 2 different singularities might
appear. A prominent example is given by two-dimensional dumbbell-shaped
surfaces, which we will construct in the next example following the presentation
of [Eck04].

Figure 2.1.: Mean curvature flow of a dumbbell-shaped surface.

Example 2.4. For notational convenience we will write points x ∈ R3 as x =
(x̂, z) ∈ R2 × R. Let the hypersurface M0 ⊂ R3 be contained in a hyperboloid
and contain two disjoint spheres in its interior, i.e.

M0 ⊂ {x = (x̂, z) | γz2 ≥ |x̂|2 − ε2} ∩ {x | |x− x0|2 ≥ r2} ∩ {x | |x+ x0|2 ≥ r2}
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2.1. Graphical case

with parameters ε > 0, γ ∈ (0, 1), x0 = (0, z0) ∈ R3, r > 0. For a MCF (Mt)t
starting from M0 one can prove that a rescaled inclusion holds for t > 0

Mt ⊂ {x = (x̂, z) | γz2 ≥ |x̂|2 − ε2 + 2(1− γ)t} ∩ {x | |x± x0|2 ≥ r2 − 4t}.

Note that the hyperboloid as well as the spheres shrink. An example is shown in
Figure 2.1. For properly chosen parameters, the strongly curved neck dominates
the evolution such that a pinch off occurs before the inscribed spheres shrink to a
point. Beyond this singularity, a parametrization of the surface with respect to
the initial surface is not possible.

2.1. Graphical case
A particular interesting situation is the case where the initial hypersurface can
be written as the graph of a function u over some hyperplane in Rn+1, which we
without loss of generality always assume to be Rn × {0}. The mean curvature
flow of the graph of u corresponds to the following partial differential equation
for u

∂tu =
√︂

1 + |∇u|2∇·
(︄

∇u√︁
1 + |∇u|2

)︄
= ∆u− ∇u ·D

2u∇u
1 + |∇u|2 . (2.2)

For the derivation of this equation we refer to Section 3.3, where we consider
the more general perturbed mean curvature flow, and Remark B.9, where the
differential geometry of graphs is introduced.

The evolution of a graph is studied in [EH89]. A crucial argument in their
analysis is the fact that the Lipschitz constant of u is preserved during the
evolution. To prove this, they use a non-compact maximum principle which we
will describe in Section 2.3. The approach we take in the subsequent chapters is
similar. We refer to Example 3.12 for more details about the gradient bound.

Once this bound is established one can prove uniform estimates for the second
fundamental form and its derivatives. Note that short-time existence for (2.2)
follows with standard methods for parabolic equations. The uniform estimates
allow one to extend the solution for arbitrary times and therefore one can infer
the following existence result.

Theorem 2.5 ([EH89, Theorem 4.6]). Let M0 be the graph of a Lipschitz-
continuous function u : Rn → R. Then there is a global-in-time solution (Mt)t>0
of (2.1) which is smooth for t > 0.

Furthermore, one can characterize the large-time behavior of the solution Mt:
When the height of Mt stays bounded then Mt converges to a plane. Otherwise,
after properly rescaling the manifolds, one can prove that asymptotically Mt

behaves like an expanding selfsimilar solution of (2.1).
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2. Mean curvature flow

2.2. Gradient flow structure of mean curvature flow

An interesting fact about mean curvature flow is its formal interpretation as the
gradient flow of the area functional. To recover this we first consider the first
variation of certain integrals over a manifold M.

Remark 2.6 (First variation of surface integral). Let M be a smooth properly
embedded hypersurface and Ψλ ∈ C∞(Rn+1;Rn+1) diffeomorphisms for λ > 0
and Ψ0 = Id such that (Ψλ)λ≥0 is sufficiently smooth in λ. Furthermore, we
define X := ∂λ

⃓⃓⃓⃓
λ=0

Ψλ and Mλ := Ψλ(M). For f ∈ C∞
c (Rn+1) it holds that

∂λ

⃓⃓⃓⃓
λ=0

∫︂
Mλ

f =
∫︂

M
f∇M ·X +∇f ·X =

∫︂
M
∇⊥f ·X − fX · H⃗,

with ∇⊥f denoting the normal projection of the gradient of f , i.e. ∇⊥f = ∇f ·νν.

Note that Remark 2.6 implies for a compact M and Ψλ as above that

∂λ

⃓⃓⃓⃓
λ=0
|Mλ| = −

∫︂
M
X · H⃗.

Hence, after formally introducing the pseudo Riemannian structure on the space
of all hypersurfaces with the tangent space at a fixed hypersurface consisting of all
normal velocity fields together with the L2 inner product as Riemannian metric,
we infer that −H⃗ is the gradient of the area functionalM ↦→ |M| with respect to
this particular Riemannian structure. In particular (2.1) is the gradient flow with
respect to the area functional.

Since the induced metric on the space of all hypersurfaces is identically 0, cf.
[MM06], this does not allow us to directly apply the theory of gradient flows
to the mean curvature flow. Nevertheless, this interpretation motivates several
results about mean curvature flow. For example the interpretation as a gradient
flow yields the energy dissipation equality

∂t |Mt| = −
∫︂

Mt

|H|2

which indeed can be verified for solutions of (2.1). During the next section there
will be more results that exploit the formal gradient flow structure.

2.3. Monotonicity formula and estimates

Another important consequence of Remark 2.6 is Huisken’s (weighted) monotonic-
ity formula, c.f. [Eck04, Theorem 4.13].
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2.4. Weak solutions

Remark 2.7 (Weighted monotonicity formula). Let Φ : Rn+1 × (−∞, 0)→ R,

Φ(x, t) = 1
(−4πt) n

2
exp

(︄
|x|2

4t

)︄

be the n-dimensional backward heat kernel in Rn+1 and Φ(x0,t0)(x, t) := Φ(x −
x0, t− t0) for x0 ∈ Rn+1 and t0 > 0.

Furthermore, let (Mt) be a solution of (2.1) and f : Rn+1 × [0,∞)→ R be a
sufficiently smooth function such that all the integrals involved are finite. Then it
holds for all t < t0 that

∂t

∫︂
Mt

fΦ(x0,t0) =
∫︂

Mt

⎛⎜⎝∂tf + H⃗ · ∇f −∆Mtf −

⃓⃓⃓⃓
⃓⃓H⃗ − ∇⊥Φ(x0,t0)

Φ(x0,t0)

⃓⃓⃓⃓
⃓⃓
2

f

⎞⎟⎠Φ(x0,t0)

=
∫︂

Mt

⎛⎜⎝ d
dt f −∆Mtf −

⃓⃓⃓⃓
⃓⃓H⃗ − ∇⊥Φ(x0,t0)

Φ(x0,t0)

⃓⃓⃓⃓
⃓⃓
2

f

⎞⎟⎠Φ(x0,t0),

(2.3)

where we use the notation

d
dt f := d

dt
(︁
f(Ft(x), t)

)︁
= ∂tf + H⃗ · ∇f.

The monotonicity formula (2.3) for f = 1 was first proven by Huisken in [Hui90].
He applied it to complement Theorem 2.3 and Example 2.4 by characterizing the
singularities that might appear due to mean curvature flow for non-convex initial
data.

The weighted monotonicity formula with arbitrary f can be used to derive
a non-compact maximum principle for functions satisfying d

dt f − ∆Mtf ≤ 0,
cf. [Eck04, Proposition 4.27]. We refer to Example 3.12 for more details.

2.4. Weak solutions

We have already seen in Theorem 2.3 and Example 2.4 that long-time existence
of classical solutions of (2.1) can not be expected in the general case. As soon
as singularities appear and the topology of the hypersurface changes there is no
chance to have a classical solution. Nevertheless, there are several natural weak
formulations of (2.1) trying to extend the notion of solution beyond singularities.
As we only give a few examples we refer to [Bel13] for a more exhaustive overview
over these theories.

One of these approaches was introduced in [Bra78] by Brakke. He considers
the mean curvature flow in the setting of varifolds, cf. [Alm66]. This notion of
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2. Mean curvature flow

solutions lacks uniqueness, but one can prove long-time existence and give partial
regularity results. We refer to the recent book [Ton19] of Tonegawa which gives
an introduction to the theory of Brakke’s mean curvature flow.

2.4.1. Level set method

The level set method models the hypersurfaces Mt, t ≥ 0, as level sets of a
time-dependent function f = f(x, t). With the notation from Remark B.10 we
infer that all level sets of f evolve according to mean curvature flow if f solves
the partial differential equation

∂tf = |∇f |∇·
(︄
∇f
|∇f |

)︄
= ∆f − ∇f ·D

2f∇f
|∇f |2

. (2.4)

A detailed derivation of this equation can be found in Section 3.2.
Equation (2.4) is degenerate parabolic and not well-defined for ∇f = 0. Nev-

ertheless, in [CGG91] and at the same time in [ES91] this equation was treated
within the framework of viscosity theory yielding a unique viscosity solution of
(2.4). The downside of this notion of solution is the fact that the level sets of
f can develop an non-empty interior and therefore loose their interpretation as
surfaces. This corresponds to the non-uniqueness in the Brakke sense. For the
level set method this leads to so-called fattening and was already described in
[ES91].

In order to prove existence for (2.4) the equation is approximated in [ES91] for
ε > 0 by the regularized equation

∂tf = ∆f − ∇f ·D
2f∇f

ε2 + |∇f |2 . (2.5)

Note that (2.5) can be rewritten into the graphical equation (2.2) by considering
u = 1

εf . In order to pass to the limit ε→ 0 one has to infer estimates which are
uniform in ε motivating a detailed study of the graphical case.

2.4.2. Diffuse interface approximation

In binary phase separation processes, MCF is often used to describe the motion
of a sharp interface separating two coexisting phases. A different approach is to
model the evolution not by a sharp interface but instead by a diffuse interface
described by a smooth function u : Rn+1 → [−1, 1] where values close to ±1
model two different phases with a rapid change between these two values at the
interface between the phases. The thickness of the interface is controlled by a
small parameter ε > 0.
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2.5. Numerical schemes

In this context the perimeter functional is approximated by the Van der Waals-
Cahn-Hilliard energy

Pε(u) :=
∫︂

Ω

ε

2 |∇u|
2 + 1

ε
W (u)

with a suitable double-well potential W : R→ R, for which W (z) = 1
4(1− z2)2 is

a typical choice. It is a famous result of Modica and Mortola [MM77], [Mod87]
that Pε converges to a constant times the perimeter functional, where the notion
of Γ-convergence with respect to the L1(Ω)-topology is used.

We have seen in Section 2.2 that the mean curvature flow is the formal L2-
gradient flow of the perimeter functional. Formally, a diffuse approximation of
mean curvature flow can therefore be found by considering the L2-gradient flow of
the diffuse approximations Pε of the perimeter functional. After properly rescaling
in time we infer the Allen-Cahn equation

ε∂tu = ε∆u+ 1
ε
W ′(u). (2.6)

This equation allows to handle diffuse interfaces with topological changes. When
uε is a solution of (2.6) it is reasonable to think of the zero level set of the sharp
interface limit limε→0 u

ε as a weak solution of mean curvature flow. For short
times and with smooth initial data this notion of solution coincides with the
classical mean curvature flow, cf. [dMS95]. When continuing the evolution beyond
singularities it is proven in [Ilm93] and [ESS92] that under suitable assumptions
solutions with respect to Brakke’s notion and the level set notion can be recovered
as sharp interface limits.

For more details we refer to [Bel13] and [Gar13].

2.5. Numerical schemes

Up to the time the first singularity appears, MCF (2.1) can be expressed as a
parabolic PDE for the parametrization on a reference manifold M. For this
interpretation, a finite element scheme is described in [DDE05].

In the following we will focus on numerical schemes that simulate MCF beyond
the first singularity.

2.5.1. Finite element discretization of level set equation by
Deckelnick and Dziuk

In [DD03] a finite element discretization for the graphical case (2.2) and the level
set equation (2.4) is proposed.
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2. Mean curvature flow

Starting with a bounded domain Ω ⊂ Rn equation (2.2) is enriched with
Dirichlet boundary conditions, which we for simplicity assume to be 0. (2.2) can
equivalently be written as

∫︂
Ω

∂tu√︁
1 + |∇u|2

ϕ+ ∇u · ∇ϕ√︁
1 + |∇u|2

= 0 ∀ϕ ∈ H1
0 (Ω). (2.7)

An important observation is the fact that the dissipation equality for the area is
still encoded in (2.7): by choosing ϕ = ∂tu we infer

∫︂
Ω

|∂tu|2√︁
1 + |∇u|2

+ ∂t

∫︂
Ω

√︂
1 + |∇u|2 = 0.

Using piecewise polynomial finite elements in (2.7) leads to a semi-discrete
problem which corresponds to a finite-dimensional nonlinear differential equation.
The fact that the dissipation equality is true for the semi-discrete model implies
long-time existence of solutions. By employing a semi-implicit time discretization
a fully-discretized problem is deduced, for which convergence can be proven.

Once the graphical case is studied, an algorithm for the level set equation (2.4)
is proposed which uses the regularization described in (2.5). For this algorithm
convergence is proven in [DD03] for n = 2.

2.5.2. BMO scheme

A different algorithm was proposed by Bence, Merriman and Osher (BMO) in
[MBO92], which is particularly easy to implement. Starting with M0 given as
the boundary of a smooth set E0 ⊂ Rn+1, i.e. M0 = ∂E0, and a time step size
τ > 0 one inductively constructs the approximating sequence (Mτ

t )t≥0 through
Mτ

kτ := ∂Eτkτ with Eτkτ =
{︂
u(·, τ) ≥ 1

2

}︂
and u solving the heat equation

∂tu = ∆u in Rn+1 × (0,∞)

u
⃓⃓⃓
t=0

= χEτ
(k−1)τ

in Rn+1

for k ∈ N with Eτ0 := E0 and constant interpolation in between.
In [MBO92] there is a heuristic argument why the diffusion of the characteristic

function of a set on a small time scale behaves like the mean curvature flow. The
rigorous convergence in the sense of viscosity solutions is analyzed in [Eva93].
In [LO19] it is shown that the BMO algorithm can be understood as a mini-
mizing movement scheme in the sense of De Giorgi. Furthermore, a conditional
convergence result is presented.
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2.5. Numerical schemes

2.5.3. ATW algorithm

Another algorithm emphasizing the gradient flow character of mean curvature flow
was described by Almgren, Taylor and Wang in [ATW93]. Again, with a time
step size τ > 0 and an initial hypersurface M0 = ∂E0 it constructs a piecewise
constant sequence Mτ

t = ∂Eτt by iteratively minimizing

E ↦→ |∂E|+ 1
τ

∫︂
E∆Eτ

t−h

dist(·, ∂Eτt−h).

In [LS95] a conditional convergence result for this scheme is proven.

2.5.4. Diffuse approximation

The diffuse approximation of MCF through the Allen-Cahn equation (2.6) can be
used to implement numerical schemes to approximate MCF. For fixed thickness of
the interface ε > 0 the Allen-Cahn equation is a parabolic equation of divergence
form. The weak formulation of (2.6)∫︂

Ω
∂tuφ+

∫︂
Ω
∇u · ∇φ = 1

ε2

∫︂
Ω
W ′(u)φ ∀φ ∈ C∞

c (Ω)

together with initial and boundary values for u allows for a natural finite element
discretization, cf. [FP03, DDE05] and the references therein. Using arguments
adapted to the special structure of the problem one can prove finite element error
bounds of polynomial order in 1

ε and convergence of the scheme for fixed ε > 0 to
the Allen-Cahn equation as well as for ε→ 0 convergence of the zero level set to
MCF.
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3. Derivation of SMCF and formal
considerations

3.1. Parameterized SMCF
Similar to Chapter 2 we consider an evolution (Mt)t∈[0,T ], T > 0, of smooth
properly embedded hypersurfaces in Rn+1 given by smooth immersions Ft :
M→Mt ⊂ Rn+1 with respect to a n-dimensional smooth manifold M without
boundary.

We say that the family (Mt)t evolves according to stochastic mean curvature
flow if the immersions formally fulfill the stochastic differential equation

dFt(x) = H⃗t(x) dt+
∑︂
l

φl(Ft(x))νt(x) ◦ dβlt, (3.1)

where H⃗t(x) is the mean curvature vector of Mt at Ft(x) and νt(x) is a unit
normal on Mt at Ft(x). Furthermore (Wt)t≥0 := (∑︁l∈N φlβ

l
t)t≥0 denotes an

infinite-dimensional Wiener process with (βlt)t≥0 being independent real-valued
Brownian motions and φl : Rn+1 → R space-dependent functions, which we
will specify later. The integration ◦ dβlt should formally be understood as a
Stratonovich integral. To abbreviate the notation we will also write ◦dW for the
Stratonovich integral against ∑︁l φlβ

l
t when there is no ambiguity for the argument

of φl. In this chapter we will stay at a formal level, while rigorous arguments will
follow in the subsequent chapters.

3.1.1. Formal derivation of evolution laws for geometric
quantities

We would like to derive stochastic differential equations describing the evolution
of geometric quantities in the situation where the immersions fulfills (3.1). We
will use the fact that formally the chain rule applies to SPDEs with Stratonovich
noise. The approach we take here is similar to the one in [Eck04, Appendix B]
for deterministic MCF.

Let F̃ : Ω → M be a smooth local parametrization of M for some open set
Ω ⊂ Rn. Then, on a possibly smaller open set which we again denote by Ω,
Ft ◦ F̃ : Ω→Mt is a smooth local parametrization of Mt. Since the following
arguments are purely local we can identify Ft ◦ F̃ with Ft and think of it as a map
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3. Derivation of SMCF and formal considerations

Ft : Ω→Mt. Equation (3.1) still holds for Ft. In the following we will suppress
the dependency of Ft and the geometric quantities on the time parameter t and
simply write F for the parametrization.

For the notation we refer to Appendix B.

Remark 3.1 (Evolution of the metric). We will start by deriving the evolution
law of the metric g. Using ν · ∂jF = 0 we infer

dgij = 2∂i (◦ dF ) · ∂jF
= 2H∂iν · ∂jF dt+ 2∂iν · ∂jF ◦ dW
= −2HAij dt− 2Aij ◦ dW,

where H and A denote the scalar mean curvature and the second fundamental
form, respectively.

For the inverse metric it holds that

dgij = −g−1(◦dg)g−1

= 2HAij dt+ 2Aij ◦ dW.

Remark 3.2 (Evolution of the area element). For the area element √g we
calculate

d√g =
√
g

2 tr
(︂
g−1 ◦ dg

)︂
= −√gH2 dt−√gH ◦ dW.

Remark 3.3 (Evolution of the unit normal field). For the unit normal field ν
we have ν · ∂iF = 0 for all i. Hence,

◦ dν · ∂iF = −ν · ∂i (◦ dF )
= −∂iH dt−

∑︂
l

∂iφl ◦ dβl

= −∂iH dt− ◦ d∂iW.

Furthermore |ν| = 1, hence 0 = d|ν|2 = ν · ◦dν. Thus dν is a tangent vector,
which is completely determined by ◦dν · ∂iF :

dν = −∇MtH dt−
∑︂
l

∇Mtφl ◦ dβl

= −∇MtH dt− ◦ d∇MtW.

Remark 3.4 (Rewriting the SMCF into Itô formulation). Once we have derived
the evolution law for the unit normal field ν we can rewrite (3.1) into its Itô
formulation. For this, we need to compute the Itô-Stratonovich correction term,
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3.1. Parameterized SMCF

which we will introduce in detail in Definition 4.19. In Remark 4.20 we give a
general rule how to find the correction term.

In the situation of (3.1) we need to compute the evolution law of φl(F (x))ν(x).
In particular, we are only interested in that part of the evolution law that is given
as a stochastic integral with respect to βl. For a more detailed explanation we
refer to Example 4.21, where we will revisit this particular example.

Using the classical chain rule, we find

d
(︁
φl(F (x))ν(x)

)︁
= φl ◦ dν +

(︁
∇φl · (◦dF )

)︁
ν

= . . . dt+
∑︂
k ̸=l

. . . ◦ dβk − φl∇Mtφl + φl∇φl · νν ◦ dβl

= . . . dt+
∑︂
k ̸=l

. . . ◦ dβk − φl (∇φl)T + φl (∇φl)⊥ ◦ dβl,

where (∇φl)T is a different notation for the tangential gradient of φl and (∇φl)⊥

denotes the normal projection of the gradient of φl.
This implies

dF = H⃗ − 1
2
∑︂
l

(︂
φl (∇φl)T − φl (∇φl)⊥

)︂
dt+ ν dW. (3.2)

Note that when W = αβ with α constant and β a real-valued Brownian motion,
which we will refer to as the case of spatially homogeneous noise, we infer

dF = H⃗ dt+ αν ◦ dβ = H⃗ dt+ αν dβ.

Remark 3.5 (About geometric SPDEs). In case of deterministic evolution of
surfaces, it is common to describe the evolution only in terms of the normal
velocity of the surface. To make this precise, let (Ft)t be a family of smooth
immersions of properly embedded hypersurfaces (Mt)t in Rn+1 with respect to a
smooth manifold M.

The normal velocity Vt(x) of Mt in Ft(x) is defined as

Vt(x) = ∂tFt(x) · νt(x).

A different definition of deterministic mean curvature flow is characterized by the
scalar equation

V = H, (3.3)

where we again suppress the dependence of V and H on x and t.
Note that (3.3) does not imply that (Ft)t solves the vector-valued equation

∂tF = H⃗, (3.4)
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3. Derivation of SMCF and formal considerations

but

∂tF = H⃗ + (∂tF )T ,

where (∂tF )T denotes the tangential part of ∂tF .
One can prove that (3.3) is up to tangential diffeomorphisms equivalent to

(3.4), cf. [Eck04, Remark 2.2].
In case of stochastic mean curvature flow, the situation is slightly more involved.

First we note that (3.1) is a vector-valued evolution law into normal direction.
We have seen in the previous Remark 3.4 that this is not true for the equivalent
Itô formulation (3.2), where the tangential term (∇φl)T appears.

This shows that a purely normal evolution of surfaces in the sense Stratonovich
does not have to be a purely normal evolution in the sense of Itô and the other
way around.

Nevertheless, when immersions (F̃ t)t as above are given with

dF̃ = µ dt+ σ ◦ dW,

where µ and σ are sufficiently regular and have the right normal components
µ · ν = H and σ · ν = 1, we can mimic the idea of the deterministic counterpart
[Eck04, Remark 2.2] in order to formally infer a solution of the vector-valued
parameterized SMCF (3.1).

For this, let Ft(x) := F̃ t(ψt(x)) with diffeomorphisms ψt :M→M which we
have to specify. We compute

dF = dF̃ + DF̃ ◦ dψ.

As we want to solve (3.1), we are looking for ψ solving ψ0 = IdM and

DF̃ t(ψt(x)) ◦ dψt(x) = −µTt (ψt(x)) dt− σTt (ψt(x)) ◦ dW,

with µT and σT the tangential components of µ and σ. Since F̃ t is an immersion,
we infer that DF̃ t(ψt(x)) : Tψt(x)M→ TF̃ t(ψt(x))Mt is a bijection and therefore

dψt(x) = −
(︂
DF̃ t(ψt(x))

)︂−1
µTt (ψt(x)) dt−

(︂
DF̃ t(ψt(x))

)︂−1
σTt (ψt(x)) ◦ dW.

Let

a(t, x) := −
(︂
DF̃ t(x)

)︂−1
µTt (x) and b(t, x) := −

(︂
DF̃ t(x)

)︂−1
σTt (x).

With this notation the equation for ψt(x) becomes

dψt(x) = a(t, ψt(x)) dt+ b(t, ψt(x)) ◦ dW.

24



3.1. Parameterized SMCF

This is for fixed x ∈M a finite-dimensional stochastic differential equation on the
manifoldM. The fact that a(t, ψt) and b(t, ψt) are tangential and the perturbation
is in the sense of Stratonovich implies that any solution ψt(x) is indeed an element
of M. For the theory of SDEs on manifolds we refer to [Elw82] and [RW00].
Under suitable assumptions on µ, σ, F̃ and W that guarantee the existence of a
solution ψt, we find that F is a solution of (3.1).

Remark 3.6 (Evolution of the second fundamental form). For the second funda-
mental form we calculate

dAij = d(∂ijF · ν) = ∂ij(◦dF ) · ν + ∂ijF · ◦ dν
= ∂ijH⃗ · ν − ∂ijF · ∇MtH dt+

∑︂
l

∂ij (φlν) · ν − ∂ijF · ∇Mtφl ◦ dβl

= ∂ijH +H∂ijν · ν − ∂ijF · ∇MtH dt
+
∑︂
l

∂ijφl + φl∂ijν · ν − ∂ijF · ∇Mtφl ◦ dβl

= ∇Mt
i ∇

Mt
j H +H∂ijν · ν dt+

∑︂
l

∇Mt
i ∇

Mt
j φl + φl∂ijν · ν ◦ dβl

= ∇Mt
i ∇

Mt
j H −HAikAkj dt+

∑︂
l

∇Mt
i ∇

Mt
j φl − φlAikAkj ◦ dβl

= ∇Mt
i ∇

Mt
j H −HAikAkj dt+ ◦ d∇Mt

i ∇
Mt
j W −AikAkj ◦ dW.

Furthermore we have

dAij = ◦ dgikAkj + gik ◦ dAkj
= HAikAkj +∇iMt

∇Mt
j H dt+ ◦ d∇iMt

∇Mt
j W +AikAkj ◦ dW

and

dAij = 3HAikAjk +∇iMt
∇jMt

H dt+ ◦ d∇iMt
∇jMt

W + 3AikAjk ◦ dW.

Similar to [Eck04, Appendix B] this implies

dH = dAii = ∆MtH +H|A|2 dt+ ◦ d∆MtW + |A|2 ◦ dW

and

d|A|2 = 2Aij ◦ dAji
= ∆Mt |A|2 + 2|A|4 − 2|∇MtA|2 dt

+ 2Aij ◦ d∇jMt
∇Mt
i W + 2AijAjkAki ◦ dW.
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3. Derivation of SMCF and formal considerations

3.2. Level set equation
We have seen in Section 2.4.1 that in the theory of deterministic mean cur-
vature flow the level set method was introduced to consider topology changes.
Similar to the deterministic theory we consider here a time-dependent function
f : Rn+1 × [0, T ]→ R and ask under which conditions on f the level sets of f
evolve according to (3.1). For the differential geometry of level sets we refer to
Remark B.10.

Let λ ∈ R and M0 := {p ∈ Rn+1 | f(p, 0) = λ}. Let (Mt)t be an evolution of
M0 with corresponding immersions (Ft)t with respect to the manifold M0. The
manifold Mt and f should be compatible in the sense that f(Ft(x), t) = λ for all
x ∈M0, t ∈ [0, T ]. Formally differentiating this equation by using the chain rule
yields

0 = df(Ft(x), t) +∇f(Ft(x), t) ·
(︁
◦ dFt(x)

)︁
.

Hence,

df(Ft(x), t) = −∇f(Ft(x), t) ·
(︂
H⃗(x, t) dt+ ν(x, t) ◦ dW (Ft(x), t)

)︂
.

Using the same normal vector for Mt = {p ∈ Rn+1 | f(p, t) = λ} as in Re-
mark B.10 we infer

ν(x, t) = − ∇f(Ft(x), t)
|∇f(Ft(x), t)| and H(x, t) = ∇·

(︄
∇f(·, t)
|∇f(·, t)|

)︄
(Ft(x)).

Hence,

df(Ft(x), t) = |∇f(Ft(x), t)|∇·
(︄
∇f(·, t)
|∇f(·, t)|

)︄
(Ft(x)) dt

+ |∇f(Ft(x), t)| ◦ dW (Ft(x), t).

And since this should hold for all level sets of f we infer that

df = |∇f |∇·
(︄
∇f
|∇f |

)︄
dt+ |∇f | ◦ dW. (3.5)

By expanding W = ∑︁
l φlβ

l we can rewrite (3.5) to

df(p, t) = |∇f(p, t)|∇·
(︄
∇f
|∇f |

)︄
(p, t) dt+

∑︂
l

φl(p)|∇f(p, t)| ◦ dβl.

We will call (3.5) the level set equation.
Note that one can not easily reconstruct a solution of the parameterized

stochastic mean curvature flow (3.1) from the level set mean curvature flow.
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3.2. Level set equation

Remark 3.7. The level set equation (3.5) can also be derived from the Itô
formulation of the equation (3.2) for the immersions. With the notation from
above and assuming that f is smooth in the spatial component, we compute the
Taylor approximation

0 = f(Ft(x), t)− f(F0(x), 0)
= f(F0(x), t)− f(F0(x), 0) +∇f(F0(x), t) ·

(︁
Ft(x)− F0(x)

)︁
+ 1

2
(︁
Ft(x)− F0(x)

)︁
·D2f(F0(x), t)

(︁
Ft(x)− F0(x)

)︁
+ o(|Ft(x)− F0(x)|2).

Hence

f(F0(x), t)− f(F0(x), 0) = −∇f(F0(x), t) ·
(︁
Ft(x)− F0(x)

)︁
− 1

2
(︁
Ft(x)− F0(x)

)︁
·D2f(F0(x), t)

(︁
Ft(x)− F0(x)

)︁
+ o(|Ft(x)− F0(x)|2).

(3.6)

Since we would like to have on the right hand side of the above equations only f
evaluated at time 0 we rewrite it to

f(F0(x), t)− f(F0(x), 0) = −
(︁
∇f(F0(x), t)−∇f(F0(x), 0)

)︁
·
(︁
Ft(x)− F0(x)

)︁
−∇f(F0(x), 0) ·

(︁
Ft(x)− F0(x)

)︁
− 1

2(Ft(x)− F0(x)) ·
(︂
D2f(F0(x), t)−D2f(F0(x), 0)

)︂
(Ft(x)− F0(x))

− 1
2
(︁
Ft(x)− F0(x)

)︁
·D2f(F0(x), 0)

(︁
Ft(x)− F0(x)

)︁
+ o(|Ft(x)− F0(x)|2).

Now, note that by (3.6)

∇f(F0(x), t)−∇f(F0(x), 0) = −D2f(F0(x), t)
(︁
Ft(x)− F0(x)

)︁
−
(︃

D
(︂
Ft ◦ F−1

0

)︂T
(F0(x))− Id

)︃
∇f(F0(x), t)

+ o(|Ft(x)− F0(x)|)
= −D2f(F0(x), t)

(︁
Ft(x)− F0(x)

)︁
−
(︃

D
(︂
Ft ◦ F−1

0

)︂T
(F0(x))− Id

)︃
∇f(F0(x), 0)

+ o(|Ft(x)− F0(x)|).
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3. Derivation of SMCF and formal considerations

We therefore infer

f(F0(x), t)− f(F0(x), 0) = −∇f(F0(x), 0) ·
(︁
Ft(x)− F0(x)

)︁
+ 1

2
(︁
Ft(x)− F0(x)

)︁
·D2f(F0(x), 0)

(︁
Ft(x)− F0(x)

)︁
+∇f(F0(x), 0) ·

(︃
D
(︂
Ft ◦ F−1

0

)︂
(F0(x))− Id

)︃ (︁
Ft(x)− F0(x)

)︁
+ o(|Ft(x)− F0(x)|2).

Hence, similarly to how the Itô formula is proven in the one-dimensional case,
this implies

df(Ft(x), t) = −∇f(Ft(x), t) · H⃗(x, t)

+ 1
2∇f(Ft(x), t) ·

∑︂
l

φl(Ft(x))
(︂
∇Tφl(Ft(x))−∇⊥φl(Ft(x))

)︂
+ 1

2
∑︂
l

φ2
l (Ft(x))ν(x, t) ·D2f(Ft(x), t)ν(x, t)

+∇f(Ft(x), t)·
∑︂
l

φl(Ft(x)) D
⃓⃓⃓
y=Ft(x)

(︂
φl(y)ν(F−1

t (y), t)
)︂
ν(x, t) dt

−∇f(Ft(x), t) · ν(x, t) dW (Ft(x), t).

Using the representation of ν and H in terms of f we infer

df = |∇f |∇·
(︄
∇f
|∇f |

)︄

− 1
2
∑︂
l

φl∇φl · ∇f

+ 1
2
∑︂
l

φ2
l

∇f ·D2f∇f
|∇f |2

+
∑︂
l

φl∇φl · ∇f dt

+ |∇f | dW.

Hence, the Itô formulation of the level set equation is

df = |∇f |∇·
(︄
∇f
|∇f |

)︄
+ 1

2
∑︂
l

(︄
φl∇φl · ∇f + φ2

l

∇f ·D2f∇f
|∇f |2

)︄
dt

+ |∇f |dW.
(3.7)

One could also have started with (3.5) and deduce the Itô formulation (3.7)
without referring to (3.2).
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3.2. Level set equation

Remark 3.8. Note that (3.5) and (3.7) are invariant under reparametrizations.
For this, let ψ : R→ R be smooth with ψ′ > 0 and g := ψ ◦ f with f a solution
of (3.5), which is equivalent to (3.7). Note that we assume that ψ is not only
an injection but also does not change the orientation of the level sets. This is
necessary, since the sign of the perturbation in (3.1) changes with the orientation.

Using the classical chain rule, we infer

dg = ψ′(f)|∇f |∇·
(︄
∇f
|∇f |

)︄
dt+ ψ′(f)|∇f | ◦ dW

= |∇g|∇·
(︄
∇g
|∇g|

)︄
dt+ |∇g| ◦ dW,

which is the Stratonovich formulation of the level set equation for g.
Thus, (3.7) as the Itô formulation of a Stratonovich SPDE that is invariant

under reparametrizations itself has to be invariant. We can also give a direct proof
of this invariance using the Itô formula, which we will introduce in Proposition 4.24.
The Itô formula states that the evolution law of g in its Itô formulation consists
of those terms that stem from the classical chain rule applied to (3.7) plus the
additional term 1

2ψ
′′(g)φ2

l |∇f |2 dt, i.e.

dg = ψ′(f)

⎛⎝|∇f |∇·(︄ ∇f
|∇f |

)︄
+ 1

2
∑︂
l

(︄
φl∇φl · ∇f + φ2

l

∇f ·D2f∇f
|∇f |2

)︄⎞⎠
+ 1

2
∑︂
l

ψ′′(f)φ2
l |∇f |2 dt+ ψ′(f)|∇f |dW.

Note that

D2g = ψ′(f) D2f + ψ′′(f)∇f ⊗∇f,

where ∇f ⊗∇f ∈ Rn×n denotes the matrix (∂if∂jf)ij . Thus,

∇g ·D2g∇g
|∇g|2

= ψ′(f)∇f ·D
2f∇f

|∇f |2
+ ψ′′(f)|∇f |2.

This implies

dg = |∇g|∇·
(︄
∇g
|∇g|

)︄
+ 1

2

(︄
φl∇φl · ∇g + φ2

l

∇g ·D2g∇g
|∇g|2

)︄
dt+ |∇g|dW

and g is a solution of (3.7).
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3. Derivation of SMCF and formal considerations

3.3. Graphs
Similarly to the level set case one can consider the situation where the manifold
is given as the graph of a function u.

For u : Rn × [0, T ] → R we look for conditions on u such that the graphs
of u(·, t) evolve according to stochastic mean curvature flow. Let M = Rn,
F0(x) = (x, u(x, 0)) and (Ft) be a solution of the equation (3.1) with respect to
the manifold M and assume that Mt = graph u(·, t). To abbreviate the notation
we will write Ft(x) = (yt(x), zt(x)) ∈ Rn × R. Hence,

u(yt(x), t) = zt(x).

Formally applying the chain rule to this equation yields

du(yt(x), t) +∇u(yt(x), t) ·
(︁
◦dyt(x)

)︁
= dzt(x).

With (3.1) this gives

du(yt(x), t) = −∇u(yt(x), t) ·
(︃
H⃗

1,...,n(x, t) dt+ ν1,...,n(x, t) ◦ dW (Ft(x), t)
)︃

+ H⃗
n+1(x, t) dt+ νn+1(x, t) ◦ dW (Ft(x), t).

We will use the notation introduced in Remark B.9 with the same choice of a unit
normal field at Mt, in particular we will abbreviate

Q(p) =
√︂

1 + |p|2 and v(p) = p

Q(p) for p ∈ Rn

such that

ν(x, t) = 1
Q(∇u(yt(x), t))

(︄
−∇u(yt(x), t)

1

)︄
.

With this choice we infer for the mean curvature

H(x, t) = ∇·
(︁
v(∇u)

)︁ (︁
yt(x), t

)︁
.

Hence,

du(yt(x), t) = 1
Q(∇u(yt(x), t))

(︂
|∇u(yt(x), t)|2 + 1

)︂
∇·
(︁
v(∇u)

)︁ (︁
yt(x), t

)︁
dt

+ 1
Q(∇u(yt(x), t))

(︂
|∇u(yt(x), t)|2 + 1

)︂
◦ dW (Ft(x), t)

= Q(∇u(yt(x), t))∇·
(︁
v(∇u)

)︁ (︁
yt(x), t

)︁
dt

+ Q(∇u(yt(x), t)) ◦ dW (Ft(x), t).
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3.4. Spheres

Since this should hold for all x ∈ Rn, we infer

du = Q(∇u)∇·
(︁
v(∇u)

)︁
dt+

∑︂
l

Q(∇u)φl(·, u) ◦ dβl. (3.8)

Hence, the stochastic mean curvature flow of graphs is characterized by (3.8).
For a solution u of (3.8) one can consider the canonical graph parametrization

given by M := Rn and

Ft(x) :=
(︄

x
u(x, t)

)︄
, x ∈M. (3.9)

For this parametrization it holds that

dFt(x) =
(︄

0
Q(∇u)∇·

(︁
v(∇u)

)︁
dt+∑︁

l Q(∇u)φl(Ft) ◦ dβl

)︄
.

Hence, Ft does not move into normal direction in its Stratonovich formulation
and therefore is not a solution of (3.1). Nevertheless, as in Remark 3.5 the normal
component of dFt has the right structure

◦ dFt(x) · ν(x, t) = ∇·
(︁
v(∇u)

)︁
dt+

∑︂
l

φl(Ft) ◦ dβl

= H dt+ ◦ dW.

3.4. Spheres
In this section we show how Example 2.2 extends to stochastic mean curvature flow.
For this we consider a sphere M0 =M = ∂B(0, r0) ⊂ Rn+1 with radius r0 > 0
and F0 = Id. Furthermore we will assume that we have spatially homogeneous
noise, i.e. the Wiener process W has the structure

W (x, t) = αβ(t)

with α ∈ R and β a real-valued Brownian motion.
Because of the symmetry of (3.1) it is reasonable to assume that we can find a

solution of (3.1) which has the form

Ft(x) = r(t)
r0

x

with a stochastic process r and r(0) = r0. Plugging this Ansatz into (3.1) yields

drx
r0

= − n

r0r
x dt+ 1

r0
x ◦ dW.

31
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Deterministic evolution, i.e. α = 0
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Sample path for α = 1

Figure 3.1.: Simulation of (3.10) using Euler-Maruyama scheme, cf. [KP92, 9.1],
with r0 = 1 and n = 2. Once r(t0) = 0 is reached the evolution is
continued by r(t) = 0 for t ≥ t0.

Hence, the radius of a sphere evolves according to the stochastic differential
equation

dr = −n
r

dt+ α ◦ dβ = −n
r

dt+ α dβ. (3.10)

Equation (3.10) defines a Bessel process r with negative index. For the theory of
Bessel processes we refer to [GJY03] and the references therein. A simulation of
(3.10) is shown in Figure 3.1 for α = 0 and α = 1.

3.5. Huisken’s weighted monotonicity formula

In this section we want to derive a monotonicity formula for stochastic mean
curvature flow which generalizes Huisken’s weighted monotonicity formula from
Section 2.3.

We will start be deriving a formula which holds for the most general form of
(3.1) and later we will focus on the case of spatially homogeneous noise.

Remark 3.9 (Weak formulation of stochastic mean curvature flow). Let (Mt)t
be a solution of stochastic mean curvature flow with corresponding immersions
(Ft)t with respect to M solving (3.1).

Let ρ : Rn+1×[0,∞)→ R be a time-dependent (deterministic) smooth test func-
tion. Integration over Mt can be expressed using a smooth local parametrization,
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3.5. Huisken’s weighted monotonicity formula

cf. [Lee18, 2.31]. For simplicity we assume that we can find a global parametriza-
tion of Mt with respect to an open set Ω ⊂ Rn, which we will again denote
by Ft as in Section 3.1.1. The general case can be recovered by using local
parametrizations and a smooth partition of unity. We assume that all integrals
appearing in the following computations are finite.

Using the evolution laws from Section 3.1.1 we infer

d
∫︂

Mt

ρ = d
(︃∫︂

Ω
ρ(Ft(x), t)

√︂
g(x, t) dx

)︃
=
∫︂

Mt

[︃(︂
∂tρ+∇ρ · H⃗ − ρH2

)︂
dt+ (∇ρ · ν − ρH) ◦ dW

]︃
.

(3.11)

Note that here and in the following we will compute integrals over the space
variable x without explicitly stating that we are integrating over x. Furthermore
we will continue to write dt, dW and ◦dW as a shorthand notation for the
deterministic integral, the Itô integral and the Stratonovich integral, respectively.
In addition, we are always integrating all terms in front of these differentials as
long as no other differential with respect to the time variable appears. In the
above examples this means that the term

∫︂
Mt

∂tρ+∇ρ · H⃗ − ρH2 dt+∇ρ · ν − ρH ◦ dW

is an abbreviation for the process

T ↦→
∫︂ T

0

(︄∫︂
Mt

∂tρ(Ft(x), t) +∇ρ(Ft(x), t) · H⃗t(x)− ρ(Ft(x), t)H2
t (x) dx

)︄
dt

+
∫︂ T

0

(︄∫︂
Mt

∇ρ(Ft(x), t) · νt(x)− ρ(Ft(x), t)Ht(x) dx
)︄
◦ dW (t).

For the Itô-Stratonovich correction of (3.11) we calculate

d
(︃∫︂

Mt

(∇ρ · ν − ρH)φl
)︃

= . . . dt+
∑︂
k ̸=l

. . . ◦ dβk

+
∫︂

Mt

(︂
ν ·D2ρνφl −∇ρ · H⃗φl + (∇ρ · ν − ρH)∇φl · ν −∇ρ · ∇Mtφl

)︂
φl

+
∫︂

Mt

− (∇ρ · ν − ρH)φ2
lH − ρφl

(︂
∆Mtφl + φl|A|2

)︂
◦ dβl.
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3. Derivation of SMCF and formal considerations

Hence,

d
∫︂

Mt

ρ =
∫︂

Mt

[︃(︂
∂tρ+ (1− φ2

l )∇ρ · H⃗ −
(︄

1− φ2
l

2

)︄
ρH2

+ φ2
l

2 ν ·D2ρν + 1
2∇

⊥ρ · ∇⊥φlφl −
1
2ρ∇φl · H⃗φl −

1
2∇ρ · ∇Mtφlφl

− 1
2ρ∆Mtφlφl −

1
2ρφ

2
l |A|2

)︂
dt

+
(︂
∇̃ρ · ν − ρH

)︂
dW

]︃
.

By taking the expectation and formally using that the Itô integral is a martingale
under appropriate assumptions, we infer

E
∫︂

MT

ρ(·, T )− E
∫︂

M0
ρ(·, 0) = E

∫︂ T

0

∫︂
Mt

⎡⎣∂tρ+ (1− φ2
l )∇ρ · H⃗ −

(︄
1− φ2

l

2

)︄
ρH2

+ φ2
l

2 ν ·D2ρν + 1
2∇

⊥ρ · ∇⊥φlφl −
1
2ρ∇φl · H⃗φl −

1
2∇Mtρ · ∇Mtφlφl

− 1
2ρ∆Mtφlφl −

1
2ρφ

2
l |A|2

⎤⎦dt.

Using ∫︂
Mt

∇ρ · H⃗ =
∫︂

Mt

−∇Mt ·∇ρ =
∫︂

Mt

−∆ρ+ ν ·D2ρν

as well as ∫︂
Mt

ρ∆Mtφlφl = −
∫︂

Mt

∇Mtρ · ∇Mtφlφl + ρ|∇Mtφ|2

we end up with

E
∫︂

MT

ρ(·, T )− E
∫︂

M0
ρ(·, 0) = E

∫︂ T

0

∫︂
Mt

⎡⎣∂tρ+ ∆ρ+ 2
(︄

1− φ2
l

2

)︄
∇ρ · H⃗

−
(︄

1− φ2
l

2

)︄
ρH2 −

(︄
1− φ2

l

2

)︄
ν ·D2ρν + 1

2φl∇
⊥φl ·

(︂
∇⊥ρ− ρH⃗

)︂

+ 1
2ρ|∇Mtφl|2 −

1
2ρφ

2
l |A|2

⎤⎦dt,
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3.5. Huisken’s weighted monotonicity formula

which can be further simplified to

E
∫︂

MT

ρ(·, T )− E
∫︂

M0
ρ(·, 0) = E

∫︂ T

0

∫︂
Mt

⎡⎣∂tρ+ ∆ρ+
(︄

1− φ2
l

2

)︄
|∇⊥ρ|2

ρ

−
(︄

1− φ2
l

2

)︄
ν ·D2ρν −

(︄
1− φ2

l

2

)︄
ρ

⃓⃓⃓⃓
⃓H⃗ − ∇⊥ρ

ρ
+ φl∇⊥φl

4− 2φ2
l

⃓⃓⃓⃓
⃓
2

+ ρ
φ2
l |∇⊥φl|2

16− 8φ2
l

+ 1
2ρ|∇Mtφl|2 −

1
2ρφ

2
l |A|2

⎤⎦dt.

For positive ρ and ∑︁l φ
2
l ≤ 2 the last four terms are either negative or can be

controlled by Gronwall’s inequality. The first four terms contain higher derivatives
of ρ. Note that in Huisken’s monotonicity formula for deterministic MFC the
corresponding terms do not appear due to the particular choice of ρ. In order to
generalize the monotonicity formula to SMCF, we are looking for ρ solving

∂tρ+ ∆ρ+
(︄

1− φ2
l

2

)︄
|∇⊥ρ|2

ρ
−
(︄

1− φ2
l

2

)︄
ν ·D2ρν = 0.

Without assuming some special structure of the noise coefficients (φl) this equation
in general only has ρ ≡ const. as a solution. In the next remark, we will
construct non-trivial solutions ρ under the assumption that the noise is spatially
homogeneous.

Remark 3.10 (Monotonicity formula for spatially homogeneous noise). Addi-
tionally to the assumptions of Remark 3.9 we will assume that the Wiener process
is spatially homogeneous, i.e. W = αβ, with α2 < 2 and β a real-valued Brownian
motion. Under this assumption the conclusion from Remark 3.9 reduces to

E
∫︂

MT

ρ(·, T )− E
∫︂

M0
ρ(·, 0) = E

∫︂ T

0

∫︂
Mt

⎡⎣∂tρ+ ∆ρ+
(︄

1− α2

2

)︄
|∇⊥ρ|
ρ

−
(︄

1− α2

2

)︄
ν ·D2ρν −

(︄
1− α2

2

)︄
ρ

⃓⃓⃓⃓
⃓H⃗ − ∇⊥ρ

ρ

⃓⃓⃓⃓
⃓
2

− 1
2ρα

2|A|2
⎤⎦dt.

To find a good candidate for ρ we set λ = 1− α2

2 and make the Ansatz

∂tρ(z, t) + ∆ρ(z, t) + λ
|∇ρ(z, t) · v|2

ρ(z, t) − λv ·D2ρ(z, t)v = 0 (3.12)

which should hold for all z ∈ Rn+1, t ∈ [0,∞) and v ∈ Rn+1 with |v| = 1. Note
that in (3.12) the differential operators ∇, ∆ and D2 are with respect to z.
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3. Derivation of SMCF and formal considerations

The Ansatz (3.12) implies that the value of v ·D2ρ(z, t)v − |∇ρ(z,t)·v|2
ρ(z,t) does not

depend on v, hence

D2(︁log(ρ)
)︁

(z, t) = γ(t) Id

with a function γ : [0,∞)→ R. We infer for ρ

ρ(z, t) = C(t) exp
(︃1

2γ(t)|z − z0|2
)︃

with z0 ∈ Rn+1 and C : [0,∞) → R. For C and γ we find with (3.12) the
equations

1
2γ

′ + γ2 = 0 and

C ′

C
+ (n+ 1)γ − λγ = 0.

Solving these equations yields two kinds of solutions, either

ρ(z, t) = const.

or for z0 ∈ Rn+1 and t0 > 0

ρ(z, t) = c0ρz0,t0(z, t)

with a constant c0 ∈ R and

ρz0,t0(z, t) = 1(︁
4π(t0 − t)

)︁n+1−λ
2

e
− |z−z0|2

4(t0−t) , z ∈ Rn+1, t ∈ [0, t0).

In the subsequent chapters we will only use the constant kernel as we are working
on compact hypersurfaces and do not need the kernel to decay. In more general
situations the kernels ρz0,t0 might be useful to handle unbounded hypersurfaces.

Note that

ρz0,t0(z, t) =
(︁
4π(t0 − t)

)︁λ−1
2 Φz0,t0(z, t)

with Φz0,t0 as in Huisken’s monotonicity formula for the unperturbed MCF a
translation of the n-dimensional backward heat kernel in Rn+1, cf. Remark 2.7.

Hence,

EHn(MT )− EHn(M0) + E
∫︂ T

0

∫︂
Mt

(︄
1− α2

2

)︄
H2 + 1

2α
2|A|2 dt = 0
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3.5. Huisken’s weighted monotonicity formula

and for T < t0

E
∫︂

MT

ρz0,t0(·, T )− E
∫︂

M0
ρz0,t0(·, 0)

+ E
∫︂ T

0

⎡⎣∫︂
Mt

(︄
1− α2

2

)︄
ρz0,t0

(︄
H − (z0 − p) · ν

2(t0 − t)

)︄2

+ 1
2ρz0,t0α

2|A|2
⎤⎦dt = 0,

especially for α2 ≤ 2

EHn(MT ) ≤ EHn(M0) and

E
∫︂

MT

ρz0,t0(·, T ) ≤ E
∫︂

M0
ρz0,t0(·, 0).

Remark 3.11 (Weighted monotonicity formula for spatially homogeneous noise).
In the situation of Remark 3.10 we consider a stochastic process ψ ≥ 0 of functions
on Ω. We assume that ψ has the decomposition

dψ(x, t) = ψµ(x, t) dt+ αψσ(x, t) ◦ dβt,

which can be equivalently written as

dψ = ψµ + α2

2 ψσσ dt+ αψσ dβt.

Furthermore let ρ ≥ 0 be one of the kernels found in Remark 3.10. We infer

d
(︄∫︂

Mt

ρψ

)︄
=
∫︂

Mt

ψ
(︂
∂tρ+∇ρ · H⃗ − ρH2

)︂
+ ρψµ dt

+ αψ∇ρ · ν − αρψH + αρψσ ◦ dβ

For the Itô-Stratonovich correction terms we calculate

d
(︄∫︂

Mt

ψ∇ρ · ν − ρψH + ρψσ

)︄
= . . . dt

+ α

∫︂
Mt

ψν ·D2ρν + 2ψσ∇ρ · ν − ψ∇ρ · H⃗ − ρψσH − ρψ|A|2 + ρψσσ

− α
∫︂

Mt

(ψ∇ρ · ν − ρψH + ρψσ)H ◦ dβ.

Hence,

d
(︄∫︂

Mt

ρψ

)︄
=
∫︂

Mt

ψ

⎛⎝∂tρ+
(︂
1− α2

)︂
∇ρ · H⃗ −

(︄
1− α2

2

)︄
ρH2 + α2

2 ν ·D2ρν

⎞⎠
+ ρψµ + α2ψσ∇ρ · ν − α2ρψσH + α2

2 ρψσσ −
α2

2 ρψ|A|2 dt

+ αψ∇ρ · ν − αρψH + αρψσ dβ.
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3. Derivation of SMCF and formal considerations

We will continue only with the finite variation part of the above equation which
we will denote by

(︂∫︁
Mt

ρψ
)︂
µ
, i.e.

(︄∫︂
Mt

ρψ

)︄
µ

:=
∫︂

Mt

ψ

⎛⎝∂tρ+
(︂
1− α2

)︂
∇ρ · H⃗ −

(︄
1− α2

2

)︄
ρH2 + α2

2 ν ·D2ρν

⎞⎠
+ ρψµ + α2ψσ∇ρ · ν − α2ρψσH + α2

2 ρψσσ −
α2

2 ρψ|A|2.

By using the properties of ρ derived in Remark 3.10, in particular (3.12), we find(︄∫︂
Mt

ρψ

)︄
µ

=
∫︂

Mt

ψ

⎛⎝−∆ρ−∇ρ · H⃗ + ν ·D2ρν −
(︄

1− α2

2

)︄
ρ

(︄
H⃗ − ∇

⊥ρ

ρ

)︄2
⎞⎠

+ ρψµ + α2ψσ∇ρ · ν − α2ρψσH + α2

2 ρψσσ −
α2

2 ρψ|A|2.

We integrate by parts and complete the square to infer(︄∫︂
Mt

ρψ

)︄
µ

=
∫︂

Mt

−
(︄

1− α2

2

)︄
ρψ

(︄
H⃗ − ∇

⊥ρ

ρ

)︄2

+ α2ρψσν ·
(︄
∇⊥ρ

ρ
− H⃗

)︄

+ ρ

(︄
ψµ −∆Mtψ + α2

2 ψσσ −
α2

2 ψ|A|2
)︄

=
∫︂

Mt

−
(︄

1− α2

2

)︄
ρψ

(︄
H⃗ − ∇

⊥ρ

ρ
+ α2ψσν

(2− α2)ψ

)︄2

+ ρ

(︄
ψµ −∆Mtψ + α2

2 ψσσ −
α2

2 ψ|A|2 + α4ψ2
σ

(4− 2α2)ψ

)︄
.

Hence,

E
∫︂

Mt

ρψ

is decreasing if

ψµ −∆Mtψ + α2

2 ψσσ −
α2

2 ψ|A|2 + α4ψ2
σ

(4− 2α2)ψ ≤ 0.

Example 3.12 (Gradient estimates in the graphical case). Let us additionally
assume that Mt is the graph of a function. We want to show that one can argue
similar to [EH89, Section 3] to deduce bounds for the gradient.
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3.5. Huisken’s weighted monotonicity formula

SinceMt is a graph there is a w ∈ Rn+1 such that ν ·w > 0. From Remark 3.3
we deduce for ψ = 1

ν·w that

dψ = ψ2w · ∇MtH dt.

Note that ψ solves the same equation as in the deterministic case. Since ∂jν is a
tangent vector it is completely determined by Aij = −∂iF · ∂jν and we infer

∂jν = −Akj∂kF

implying

∇jMt
ν = −Akj∂kF.

Using the Codazzi equations, cf. [Lee18, Chapter 8], we infer for the Laplace-
Beltrami operator applied component-wise to ν

∆Mtν = −∇MtH − |A|2ν.

Hence,

∆Mtψ = −ψ2∆Mtν · w + 2ψ3 |w · ∇Mtν|
2

= ψ2∇MtH · w + ψ|A|2 + 2ψ−1 |∇Mtψ|
2 .

This implies

dψ = ∆Mtψ − ψ|A|2 − 2ψ−1 |∇Mtψ|
2 dt

and with the notation from above

ψµ = ∆Mtψ − ψ|A|2 − 2ψ−1|∇Mtψ|2 ≤ ∆Mtψ,

ψσ = 0,
ψσσ = 0.

Therefore E
∫︁

Mt
ρψ is decreasing.

Let Ψ = f(ψ) with a convex, increasing non-negative function f . It holds that

Ψµ = f ′ψµ = ∆MtΨ− f ′ψ|A|2 − (2f ′ψ−1 + f ′′)|∇Mtψ|2 ≤ ∆MtΨ,
Ψσ = 0,

Ψσσ = 0.

Hence E
∫︁

Mt
ρΨ is also decreasing. Since this holds for all such f , we conclude

that esssupψ(ω, x, t) ≤ esssupω̃,x̃ ψ(ω̃, x̃, 0). We will make this argument rigorous
in Chapter 7 to deduce a maximum principle for the gradient in the graphical
case.
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4. Stochastic evolution equations in
infinite dimensions

4.1. Stochastic integration
We present the theory of stochastic integration in infinite dimensional Hilbert
spaces. Our main reference is [DPZ14].

Definition 4.1. Let (Ω,F ,P) be a probability space and I = [0, T ] with T <∞
or I = [0,∞). A system (Ft)t∈I with Ft ⊂ F is called a filtration on (Ω,F ,P) if
Ft is a σ-algebra and Ft ⊂ Fs for all s, t ∈ I with t ≤ s.

A filtration (Ft)t∈I is called a normal filtration if

• it is complete with respect to F , i.e. A ∈ F0 for all A ∈ F with P(A) = 0
and

• it is right-continuous, i.e.

Ft =
⋂︂
s>t

Fs ∀t ∈ I, t < sup I.

For a filtration (Ft)t∈I we call (Ω,F , (Ft)t∈I ,P) a stochastic basis.

Definition 4.2. Let (Ω,F , (Ft)t∈I ,P) be a stochastic basis and E a separable
Banach space. An E-valued stochastic process X = (X(t))t∈I is called (Ft)t∈I -
adapted if X(t) is Ft-measurable for all t ∈ I.

The process X is called predictable if X : I×Ω→ E is measurable with respect
to the predictable σ-algebra

P := σ
(︂{︁

(s, t]× F | s, t ∈ I, s ≤ t, F ∈ Fs
}︁
∪
{︁
{0} × F | F ∈ F0

}︁)︂
.

In the following we will introduce the notion of a Wiener process on a Hilbert
space U . For this, we will use the notion of trace class and Hilbert-Schmidt
operators, for a definition of which we refer to Appendix A.1. For a self-adjoint
non-negative trace class operator Q ∈ L1(U) we will denote by N (0, Q) the
Gaussian measure on U with zero mean and covariance Q, cf. [DPZ14].

Definition 4.3. Let U be a separable Hilbert space, (Ω,F ,P) a probability space
and Q ∈ L1(U) self-adjoint and non-negative. A U -valued stochastic process W
is called a Wiener process with covariance operator Q if
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4. Stochastic evolution equations in infinite dimensions

• W (0) = 0,

• W has continuous trajectories in U ,

• W has independent increments and

• W (t)−W (s) ∼ N (0, (t− s)Q) for all s, t ∈ I, s ≤ t.

For a given filtration (Ft)t∈I we will call W an (Ft)t∈I -Wiener process with
covariance operator Q if additionally

• W (t) is Ft-measurable for all t ∈ I,

• W (t)−W (s) is independent of Fs for all s, t ∈ I, s ≤ t.

There is an often-used representation formula for Wiener processes, a detailed
exposition of which can be found in [DPZ14, Section 4.1], especially [DPZ14,
Propositions 4.3 and 4.7]), which we summarize as follows:

Proposition 4.4. Let U be a separable Hilbert space, (Ω,F , (Ft)t∈I ,P) a stochas-
tic basis and Q ∈ L1(U) self-adjoint and non-negative.

A U -valued stochastic process W has a version which is a Wiener process on U
with covariance operator Q if and only if there is an orthonormal system (ek)k∈I
in U with a finite or countable index set I and independent real-valued Brownian
motions (βk)k∈I such that Q 1

2U ⊂ span
(︁
{ek | k ∈ I}

)︁
and

W (t) =
∑︂
k∈I

Q
1
2 ekβk(t) ∀t ∈ I (4.1)

with convergence in L2(Ω;U). Furthermore, one can choose (ek)k∈I to be the eigen-
vectors of Q to the non-zero eigenvalues (λk)k∈I. Equation (4.1) then translates
to

W (t) =
∑︂
k∈I

√︁
λkekβk(t) ∀t ∈ I.

Remark 4.5. Note that in the statement of Proposition 4.4 it is necessary to
exclude the eigenvectors from kerQ. For example W = 0 is a Wiener process
on ℓ2 with respect to any probability space (Ω,F ,P), but there are probability
spaces which are too small to carry a real-valued Brownian motion.

Later on, in Proposition 4.9 it will turn out that it is natural to consider the
space U0 = Q

1
2U with the induced scalar product

⟨x, y⟩U0
:=
⟨︂
Q− 1

2x,Q− 1
2 y
⟩︂
U
, x, y ∈ U,
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4.1. Stochastic integration

where Q− 1
2 : U0 →

(︂
kerQ 1

2
)︂⊥

= R(Q 1
2 ) ⊂ U is the pseudo-inverse of Q 1

2 : U →
U0, cf. Definition A.9. Note that U0 is a separable Hilbert space. The space U0 is
called the reproducing kernel space of W . If H is another separable Hilbert space,
we will see that under some additional assumptions one can integrate processes Φ
taking values in L2(U0;H), which is less restrictive than assuming that Φ takes
values in L(U ;H).1

Once this observation is made, one can consider a more general concept of
Wiener processes without assuming that Q is a trace class operator as long as
one can make sense of T (W (t)) for T ∈ L2(U0;H).

Definition 4.6 (cf. [PR07, Section 2.5.1]). Let U be a separable Hilbert space,
(Ω,F , (Ft)t∈I ,P) a stochastic basis and Q ∈ L(U) self-adjoint and non-negative
and define U0 as above.

Let U1 be another separable Hilbert space with a Hilbert-Schmidt embedding
J : U0 ↪→ U1. A Wiener process W on U1 with covariance operator JJ∗ is called
a generalized Wiener process on U with covariance operator Q.

A generalized Wiener process W on U with covariance operator Q = Id is called
cylindrical Wiener process.

The next proposition shows that the abstract notion of a generalized Wiener
process can be equivalently stated with the help of a simple representation formula
which is very similar to Proposition 4.4. Again, we refer to [DPZ14, Proposition
4.7 and the discussion thereafter]. As we gave a different but equivalent definition
of a generalized Wiener process, we include a proof.

Proposition 4.7. Let U be a separable Hilbert space, (Ω,F , (Ft)t∈I ,P) a stochas-
tic basis and Q ∈ L(U) self-adjoint and non-negative.
W has a version which is a generalized Wiener process on U with covariance

operator Q if and only if there is a separable Hilbert space U1 with a Hilbert-Schmidt
embedding J : U0 ↪→ U1, an orthonormal system (ek)k∈I in U and independent
real-valued Brownian motions (βk)k∈I such that Q− 1

2U0 ⊂ span
(︁
{ek | k ∈ I}

)︁
and

W (t) =
∑︂
k∈I

J
(︂
Q

1
2 ek
)︂
βk(t) P-a.s. ∀t ∈ I. (4.2)

Proof. We will start by proving that (4.2) defines a generalized Wiener process
on U with covariance operator Q. According to Definition 4.6 we have to show
that W has a version which is a Wiener process on U1 with covariance operator
JJ∗ in the sense of Definition 4.3.

To this end, let (fk)k∈N be an orthonormal basis of U1 of eigenvectors of the
self-adjoint trace-class operator JJ∗ : U1 → U1 with corresponding eigenvalues

1For T ∈ L(U ; H) one calculates ∥T ∥2
L2(U0;H) ≤ ∥T ∥2

L(U ;H)∥Q∥L1(U).

43



4. Stochastic evolution equations in infinite dimensions

(λk) ∈ ℓ1. For k ∈ N with λk ̸= 0 let

β̃k := 1√
λk

⟨︁
W (t), fk

⟩︁
U1

= 1√
λk

∑︂
l∈I

⟨︂
JQ

1
2 el, fk

⟩︂
U1
βl.

This defines a sequence of real-valued Brownian motions, which are independent
because for k ̸= k̃∑︂
l∈I

⟨︂
JQ

1
2 el, fk

⟩︂
U1

⟨︂
JQ

1
2 el, fk̃

⟩︂
U1

=
⟨︂
JQ

1
2Q− 1

2J∗fk, fk̃

⟩︂
U1

= λk
⟨︂
fk, fk̃

⟩︂
U1

= 0.

This definition at hand, (4.2) can be equivalently written as

W (t) =
∑︂
k∈N
λk ̸=0

√︁
λkfkβ̃k(t).

Proposition 4.4 implies that W has a version which is a Wiener process on U1
with covariance operator JJ∗.

For the opposite conclusion let us assume that W is a generalized Wiener
process on U with covariance operator Q. By Definition 4.6 there is another
separable Hilbert space U1 with a Hilbert-Schmidt embedding J : U0 ↪→ U1, such
that W is a Wiener process on U1 with covariance operator JJ∗.

We denote by (λk)k∈I ∈ ℓ1 the positive eigenvalues of JJ∗ and by (fk)k∈I ⊂ U1
an orthonormal system of corresponding eigenvectors. Using the representation
formula from Proposition 4.4, we find a sequence of independent real-valued
Brownian motions (βk)k∈I such that

W (t) =
∑︂
k∈I

(︁
JJ∗)︁ 1

2 fkβk(t) P-a.s. ∀t ∈ I.

Let gk := 1√
λk
J∗fk ∈ U0 for k ∈ I. By definition (gk)k∈I is an orthonormal

system in U0. Because of the injectivity of J and the fact that (fk)k∈I has
dense span in JU0, we know that span{gk | k ∈ I} = J∗(span{fk | k ∈ I}) is
dense in U0. Hence, (gk)k∈I is an orthonormal basis of U0. Let ek := Q− 1

2 gk for
k ∈ I. Then again by construction (ek)k∈I is an orthonormal system in U with
Q− 1

2U0 ⊂ span
(︁
{ek | k ∈ I}

)︁
. Since JQ 1

2 ek = 1√
λk
JJ∗fk =

√
λkfk we infer (4.2)

and conclude the proof.

Remark 4.8. With the assumptions from Proposition 4.7 the representation
formula (4.2) justifies to write

W (t) =
∑︂
k∈N

Q
1
2 ekβk(t), t ∈ I

for a generalized Wiener process W on U , even though the sum only converges in
the larger space U1.
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4.1. Stochastic integration

In the following proposition we will show that this generalization still allows us
to make sense of T (W (t)) for T ∈ L2(U0;H).

Proposition 4.9. Let U and H be separable Hilbert spaces, (Ω,F , (Ft)t∈I ,P)
a stochastic basis and W a generalized Wiener process on U with self-adjoint,
non-negative covariance operator Q ∈ L(U). Furthermore let U0, U1 and J as in
Definition 4.6.

For all S ∈ L(U1;H) it holds that

∥S(W (t))∥L2(Ω;H) = ∥S ◦ J∥L2(U0;H)
√
t ∀t ∈ I. (4.3)

Furthermore {S ◦ J | S ∈ L(U1;H)} is dense in L2(U0;H), hence TW :=
(T (W (t)))t∈I is a well-defined H-valued stochastic process for all T ∈ L2(U0;H).
It holds that

T (W (t)) =
∑︂
k∈N

T
(︂
Q

1
2 ek
)︂
βk(t) P-a.s. ∀t ∈ I.

In particular the law of TW does not depend on the choice of U1 and J .

Proof. Let

W (t) =
∑︂
k∈N

J
(︂
Q

1
2 ek
)︂
βk(t)P-a.s. ∀t ∈ I

be the representation of W from Proposition 4.7. We can assume that (Q 1
2 ek)k∈N

is an orthonormal basis of U0. For S ∈ L(U1;H) we infer for t ∈ I

S(W (t)) =
∑︂
k∈N

S ◦ J
(︂
Q

1
2 ek
)︂
βk(t)

and

∥S(W (t))∥2L2(Ω;H) = t
∑︂
k∈N
∥S ◦ J

(︂
Q

1
2 ek
)︂
∥2H

= t∥S ◦ J∥2L2(U0;H).

Once Proposition 4.9 is established, one can build up the theory of Itô integration.
One starts by defining the integral of elementary processes, that is processes being
piecewise constant in time and taking only a finite number of values in L2(U0;H).
Equation (4.3) extends to the so called Itô isometry for elementary processes
between appropriate spaces. It is apparent that this definition then extends to a
larger class of integrands using a density argument and gives rise to the so called
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4. Stochastic evolution equations in infinite dimensions

Itô integral. This procedure is explained in detail in [DPZ14, Section 4.2]. We
have to fix some notation to summarize this result here.

For the remaining part of this section we will assume that (Ω,F , (Ft)t∈I ,P) is
a stochastic basis with a normal filtration and U a separable Hilbert space. For
the definition of a martingale we refer to [DPZ14].
Definition 4.10. Let T ∈ I. For a Banach space E we denote by M2

T (E)
the Banach space of all continuous square-integrable (Ft)-adapted E-valued
martingales M on [0, T ] with M(0) = 0 equipped with the norm

∥M∥2M2
T (E) := E sup

t∈[0,T ]
∥M(t)∥2E .

Furthermore, for a generalized Wiener process W with covariance opera-
tor Q ∈ L(U) and a separable Hilbert space H we denote by N 2

W (0, T ) =
N 2
W (0, T ;L2(U0;H)) the space of all predictable L2(U0;H)-valued processes Φ

for which the norm

∥Φ∥2N 2
W (0,T ) := E

∫︂ T

0
∥Φ(t)∥2L2(U0;H) dt

is finite.
The space NW (0, T ) = NW (0, T ;L2(U0;H)) consists of all Φ as above satisfying

the weaker bound

P
(︄∫︂ T

0
∥Φ(t)∥2L2(U0;H) dt <∞

)︄
= 1.

Remark 4.11. The spaces we have defined in Definition 4.10 will be of fun-
damental interest in the theory of Itô integration. We will see that the space
M2

T (H) contains all processes which can be written as the Itô integral of a process
Φ ∈ N 2

W (0, T ;L2(U0;H)).
The Itô integral of a process Φ ∈ NW (0, T ;L2(U0;H)) will still give rise to a

continuous local martingale M , i.e. an (Ft)-adapted continuous process such that
there is a sequence of increasing stopping times (τk)k∈N with τk →∞ a.s. and for
all k ∈ N the stopped process M τk := (Mmin(t,τk))t∈[0,T ] is a martingale. For the
definition of a stopping time we refer to [DPZ14].
Definition 4.12 (Itô integral). Let H be a separable Hilbert space and W a
generalized Wiener process with covariance operator Q ∈ L(U). There is an
uniquely determined family (IT )T∈I of linear isometries IT : N 2

W (0, T )→M2
T (H)

with the following properties:
(i) for all 0 ≤ S ≤ T ∈ I it holds that IS and IT are compatible in the sense

that for all Φ ∈ N 2
W (0, T ) and t ∈ [0, S]

IT (Φ)(t) = IS(Φ|[0,S]×Ω)(t),

allowing us to write IT (Φ) =: (
∫︁ t

0 Φ dW )t∈[0,T ],
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4.1. Stochastic integration

(ii)
∫︁ t

0 Φ dW = ΦW (t) for all Φ ∈ L2(U0;H) and

(iii)
∫︁ t∧τ

0 Φ dW =
∫︁ t

0 χ[0,τ ]Φ dW for all Φ ∈ N 2
W (0, T ) and stopping times τ ≤ T .

For Φ ∈ N 2
W (0, T ) we call the process

(︂∫︁ t
0 Φ dW

)︂
t∈[0,T ]

the Itô integral of Φ with
respect to W .

Remark 4.13. Note that the Itô integral is typically defined by its construction.
However Definition 4.12 is well-suited to give a self-contained definition of the
Itô integral directly summarizing some fundamental properties of it, without the
need to rephrase the whole construction. The existence of the above notion of Itô
integration is a consequence of [DPZ14, Section 4.2].

Furthermore, the definition gives a unique notion of Itô integration. This is due
to the linearity of IT and (ii), because this yields the right notion for elementary
processes and the class of elementary processes is dense in N 2

W (0, T ), cf. [DPZ14,
Proposition 4.22].

Part (iii) of Definition 4.12 allows us to carry out a localization procedure to
extend Itô integration to the class NW (0, T ).

Definition 4.14. Let T ∈ I, H be a separable Hilbert space and W a generalized
Wiener process with covariance operator Q ∈ L(U). There is an unique extension
of the Itô integral Φ ↦→

(︂∫︁ t
0 Φ dW

)︂
t∈[0,T ]

from the space NW (0, T ) into the space
of all continuous local martingales, such that (iii) from Definition 4.12 holds for
all Φ ∈ NW (0, T ).

The next Proposition shows that the Itô integral commutes with linear operators,
cf. [PR07, Lemma 2.4.1].

Proposition 4.15. Let T ∈ I, H, H̃ be separable Hilbert spaces, W a generalized
Wiener process with covariance operator Q ∈ L(U) and Φ ∈ NW (0, T ;L2(U0;H)).
For a linear operator L ∈ L(H; H̃) it holds that LΦ ∈ NW (0, T ;L2(U0; H̃)) and

L

(︄∫︂ T

0
Φ dW

)︄
=
∫︂ T

0
LΦ dW P-a.s. in H̃.

In [DPZ14, Section 3.4] the quadratic variation process of a Hilbert space
valued martingale is introduced. For two Hilbert spaces H1 and H2 and x ∈ H1,
y ∈ H2 we will denote by the tensor product x⊗y ∈ L(H2;H1) the linear operator
z ↦→ ⟨z, y⟩H2

x.

Definition 4.16 (Quadratic variation). Let T ∈ I and H1, H2 be separable
Hilbert spaces. For M ∈M2

T (H1) we will denote by ⟨⟨M⟩⟩ the unique continuous
and increasing L1(H1)-valued process starting in 0 such that

M ⊗M − ⟨⟨M⟩⟩
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4. Stochastic evolution equations in infinite dimensions

is an (Ft)-martingale. When N ∈M2
T (H1) is another martingale, we will denote

by

⟨⟨M,N⟩⟩ := 1
4
(︁
⟨⟨M +N⟩⟩ − ⟨⟨M −N⟩⟩

)︁
the quadratic cross variation of M and N .

Using orthonormal bases (ek)k and (fl)l of H1 and H2, respectively, the above
definition can be extended to define the quadratic cross variation of martingales
M ∈M2

T (H1), N ∈M2
T (H2) via

⟨⟨M,N⟩⟩ :=
∑︂
k,l

⟨⟨⟨M, ek⟩H1
, ⟨N, fl⟩H2

⟩⟩ek ⊗ fl ∈ L1(H2;H1).

Remark 4.17. One can extend the above notion of quadratic cross variation to
so called semimartingales, for the definition of which we refer to [Mét82, 23.7 and
26.11].

We will only work with the following class of semimartingales: Let H be a
separable Hilbert space, W a generalized Wiener process, X0 an F0-measurable
H-valued random variable, Φ ∈ NW (0, T ) and φ a H-valued predictable process
that is P-a.s. Bochner integrable on [0, T ], i.e.

∫︁ T
0 ∥φ(t)∥H dt < ∞ P-a.s. Then

the process X with

X(t) := X0 +
∫︂ t

0
φ(s) ds+

∫︂ t

0
Φ(s) dW (s), t ∈ [0, T ], (4.4)

is a semimartingale. We will often abbreviate (4.4) as

dX = φ dt+ Φ dW.

The quadratic variation of X is given by

⟨⟨X⟩⟩ = ⟨⟨
∫︂ ·

0
Φ dW ⟩⟩,

where the quadratic variation of the local martingale
∫︁ ·

0 Φ dW is inferred using a
localization procedure.

This definition at hand, we can state a more general version of [DPZ14, Theorem
4.27] which characterizes the quadratic variation of Itô integrals. Note that for
Q

1
2 : U → U0 we have

(︂
Q

1
2
)︂∗

= Q− 1
2 : U0 → U and Q

1
2Q− 1

2 = IdU0 .

Proposition 4.18. Let T ∈ I, H a separable Hilbert space, W a (generalized)
Wiener process and Φ ∈ NW (0, T ). Then

⟨⟨
∫︂ ·

0
Φ dW ⟩⟩t =

∫︂ t

0
Φ(s)Φ∗(s) ds ∀t ∈ [0, T ].
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4.1. Stochastic integration

Furthermore, the definition of the quadratic variation of a semimartingale allows
us to define the Stratonovich integral by generalizing [Mét82, Chapter 5, E.8] to
the infinite-dimensional case.

Definition 4.19. Let T ∈ I, H be a separable Hilbert space and W a generalized
Wiener process with covariance operator Q ∈ L(U). Furthermore, let Φ ∈
NW (0, T ) be a semimartingale and (Q 1

2 gl)l a basis of U0. The quadratic cross
variation ⟨⟨Φ,W ⟩⟩ is by definition an L1(U1;L2(U0;H))-valued process, but similar
to the ideas of Proposition 4.9 can be treated as an L2(U0;L2(U0;H))-valued
process.

The Stratonovich integral of Φ with respect to W is defined as∫︂ T

0
Φ ◦ dW :=

∫︂ T

0
Φ dW + 1

2
(︂
⟨⟨Φ,W ⟩⟩TQ

1
2 gl
)︂
Q

1
2 gl ∈ H.

We will refer to the term

1
2
(︂
⟨⟨Φ,W ⟩⟩TQ

1
2 gl
)︂
Q

1
2 gl

as Itô-Stratonovich correction term, as it allows us to pass from the stochastic
integral in the sense of Itô to the Stratonovich integral.

Remark 4.20. In the situation of Definition 4.19 let Φ be given by

dΦ = µ dt+ σ dW

with a predictable L2(U0;H)-valued process µ that is a.s. Bochner integrable and
σ an L2(U0;L2(U0;H))-valued process integrable in the sense of Itô. Then

⟨⟨Φ,W ⟩⟩T =
∫︂ T

0
σ(t) dt.

Hence, ∫︂ T

0
Φ ◦ dW =

∫︂ T

0
Φ dW + 1

2
∑︂
l∈N

∫︂ T

0

(︂
σ(t)Q

1
2 gl
)︂
Q

1
2 gl dt.

Example 4.21. We revisit Remark 3.4 and apply the above considerations in
order to find the Itô formulation of SMCF. For this we adapt the notation from
Section 3.1, in particular let (βl)l∈N be independent real-valued Brownian motions.
Furthermore, let U,H be separable Hilbert spaces. We assume that U is a function
space of functions Rn+1 → R containing the coefficients φl and H is a function
space of functions M→ Rn+1 containing the immersions Ft.
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4. Stochastic evolution equations in infinite dimensions

The process W := ∑︁
l∈N φlβ

l defines a Wiener process on U with covariance
operator Q := ∑︁

l∈N φl ⊗ φl. For t ∈ [0, T ] we define the linear operator Φ(t) :
U → H through (︁

Φ(t)g
)︁

(x) := g(Ft(x))νt(x), g ∈ U.

With this notation the SPDE for the immersions (Ft)t (3.1) can be written as

dFt = H⃗ dt+ Φ ◦ dW.

In order to apply Remark 4.20 and rewrite this equation into its Itô formulation
we need to compute the evolution of Φ. This is best done by considering the
action of Φ on a function g ∈ U . Using the evolution of the normal field from
Remark 3.3 we infer

(dΦ)g = ∇g · H⃗ν − g∇MtH dt+
∑︂
l∈N

(∇g · νφlν − g∇Mtφl) ◦ dβl.

Let σ(t) : U → L(U ;H) with(︂(︁
σ(t)g1

)︁
g2
)︂

(x) = ∇g2(Ft(x)) · νt(x)g1(Ft(x))νt(x)− g2(Ft(x))∇Mtg1(Ft(x))

for g1, g2 ∈ U . With this notation

dΦ = . . . dt+ σ dW.

We therefore conclude∫︂ T

0
Φ ◦ dW =

∫︂ T

0
Φ dW + 1

2
∑︂
l∈N

∫︂ T

0

(︂
φl (∇φl)⊥ − φl (∇φl)T

)︂
dt.

This implies the Itô formulation (3.2) of SMCF.

The Burkholder-Davis-Gundy inequality is an important inequality in the
context of Hilbert space valued martingales and Itô integration, which we will
use often throughout this thesis. We refer to [MR16] and the references therein.

Proposition 4.22 (Burkholder-Davis-Gundy). Let H be a separable Hilbert space.
For p > 0 there are constants cp, Cp > 0 such that for all H-valued continuous
local martingales M with M0 = 0 and (Ft)-stopping times τ

cpE
(︁
tr⟨⟨M⟩⟩τ

)︁ p
2 ≤ E sup

t≤τ
∥Mt∥pH ≤ CpE

(︁
tr⟨⟨M⟩⟩τ

)︁ p
2 .

When W is a (generalized) Wiener process and Φ ∈ NW (0, T ) this reduces to

cp∥Φ∥pLp(Ω;L2(0,τ ;L2(U0;H))) ≤ E sup
t≤τ

⃦⃦⃦⃦
⃦
∫︂ t

0
Φ(s) dW (s)

⃦⃦⃦⃦
⃦
p

H

≤ Cp∥Φ∥pLp(Ω;L2(0,τ ;L2(U0;H))).
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4.1. Stochastic integration

Another important property of the Itô integral is its behavior under concatena-
tion with sufficiently regular functions. The Itô formula is the substitute for the
chain rule for differentiable functions. Before stating the Itô formula we introduce
the notion of differentiable functions on a Banach space. For a more detailed
exposition we refer to [BL00].

Definition 4.23. Let E,F be two Banach spaces, U ⊂ E open and f : U → F .
We say that f is Gâteaux differentiable at x0 ∈ U if there is a bounded linear
operator Df(x0) : E → F such that

Df(x0)ξ = lim
h→0

f(x0 + hξ)− f(x0)
h

∀ξ ∈ E.

We say that f is Fréchet differentiable at x0 if there is a bounded linear operator
Df(x0) : E → F such that

lim
∥ξ∥→0

f(x0 + ξ)− f(x0)−Df(x0)ξ
∥ξ∥

= 0.

We say that f is continuous differentiable in U if f is Fréchet differentiable for
all x0 ∈ U and the derivative Df : U → L(E;F ) is continuous. We denote by
C1(U ;F ) the space of all continuous differentiable functions f : U → F .

This definition naturally extends to higher derivatives, i.e. f ∈ C2(U ;F ) if
f ∈ C1(U ;F ) and Df ∈ C1(U ;L(E;F )). For f ∈ C2(U ;F ) we denote the
second-order derivative by D2f : U → L(E;L(E;F )).

For F = R we write Ck(U) := Ck(U ;R) for k ∈ N.

A very classical version of the Itô formula is stated in [DPZ14, Theorem 4.32],
which we cite here. Later, in Proposition 4.28, we will state a more general but
less common version of the Itô formula in the context of variational SPDEs, which
is a consequence of the classical one.

Proposition 4.24 (Itô formula). Let T ∈ I, H be a separable Hilbert space, W
a (generalized) Wiener process, X0 an F0-measurable H-valued random variable,
Φ ∈ NW (0, T ) and φ a H-valued predictable process, which is P-a.s. Bochner
integrable on [0, T ]. Consider the continuous H-valued process

X(t) := X0 +
∫︂ t

0
φ(s) ds+

∫︂ t

0
Φ(s) dW (s), t ∈ [0, T ].

For a function F ∈ C2([0, T ]×H) with F , ∂tF , DF and D2F uniformly continuous
on bounded subsets of [0, T ]×H it holds that

dF (t,X(t)) = ∂tF (t,X(t)) +
⟨︁
DF (t,X(t)), φ(t)

⟩︁
+ 1

2 tr
(︂
D2F (t,X(t))Φ(t)Φ∗(t)

)︂
dt

+
⟨︁
DF (t,X(t)),Φ(t) dW (t)

⟩︁
.
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4. Stochastic evolution equations in infinite dimensions

Next, we present a result called the Da Prato-Zabczyk factorization method,
which we will us to prove Hölder regularity of stochastic integrals. A proof of it
can be found in [Sei93].

Proposition 4.25 (Da Prato-Zabczyk factorization method). Let T ∈ I, H be a
separable Hilbert space, W a (generalized) Wiener process, p > 2 and Φ ∈ N 2

W (0, T )
with E

∫︁ T
0 ∥Φ(t)∥pL2(U0;H) dt <∞.

For all λ ∈
[︂
0, 1

2 −
1
p

)︂
there is a version of

∫︁ ·
0 Φ dW which has λ-Hölder contin-

uous paths in H and there is a constant C, which only depends on p, T, λ and U ,
such that

E
⃦⃦⃦⃦∫︂ ·

0
Φ dW

⃦⃦⃦⃦p
C0,λ([0,T ];H)

≤ CE
∫︂ T

0
∥Φ(t)∥pL2(U0;H) dt.

4.2. Variational SPDEs under a compactness
assumption

In this section we will consider infinite-dimensional stochastic differential equations
with a variational structure and prove an Itô formula for this kind of equation.
Let V,H be two separable Hilbert spaces with V ⊂ H ≃ H ′ ⊂ V ′ and dense
embeddings. For a Wiener process W on U and operators A : V → V ′ and
B : V → L2(U0;H), which we do not assume to be linear, we will call

du = A(u) dt+B(u) dW (4.5)

a variational SPDE. One of the difficulties that arise in the theory of variational
SPDEs is the fact that the process u has to be V -valued in order to make sense
of (4.5), whereas the right hand side of (4.5) in general only defines a V ′-valued
process.

The theory of variational SPDEs goes back to Pardoux [Par75] and Viot [Vio76].
We refer to [PR07] for an overview of the variational theory initiated by Pardoux.

An important tool in the study of variational SPDEs is an Itô formula, which
adapts Proposition 4.24 to the special situation in order to infer the evolution of
F (u) for functions F : H → R, where Proposition 4.24 would only be applicable
for functions F : V ′ → R. The Itô formula, which we state here, is related to the
version in [Par75, II.II.§4] where more restrictive assumptions on F are made, see
below.

During the whole section we will work with the following assumptions.

Assumptions 4.26. Let V and H be separable Hilbert spaces with V ⊂ H ≃
H ′ ⊂ V ′ and V densely and compactly embedded in H. Furthermore, we will
consider another separable Hilbert space U , which will be the space where a Wiener
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4.2. Variational SPDEs under a compactness assumption

process is defined. For notational convenience we will restrict the presentation to
the case of infinite-dimensional spaces, although finite-dimensional spaces could
be treated as well.

Then we can find an orthonormal basis (ek)k∈N of H which is an orthogonal
basis of V and we will use the abbreviation λk := ∥ek∥2V for k ∈ N. We will
assume that the (ek)k are arranged such that (λk)k is a non-decreasing sequence.

If not otherwise specified we will always assume that W is a (generalized)
Wiener process on U with covariance operator Q ∈ L(U). Furthermore, we will
assume that W has the representation given by Proposition 4.7 and Remark 4.8,
i.e.

W =
∑︂
l∈N

Q
1
2 glβl,

with (gl)l∈N an orthonormal system in U such that Q 1
2 gl is a basis of U0 and

(βl)l∈N mutually independent real-valued (Ft)-Brownian motions.

Remark 4.27 (Existence of (ek)k∈N). Let JV : V → V ′ be the identification of
V with its dual space V ′ via

⟨JV x, y⟩V ′,V := ⟨x, y⟩V , x, y ∈ V.

The restriction of the inverse of JV to H together with the embedding of V
into H gives J−1

V |H : H → H which is compact and self-adjoint. Hence we find
an orthonormal basis (ek)k∈N of H of eigenvectors of J−1

V with corresponding
eigenvalues

(︂
1
λk

)︂
k∈N

. For k ∈ N we have that ek = λkJ
−1
V ek ∈ V and

⟨︂
ek, el

⟩︂
V

=
⟨︂
JV e

k, el
⟩︂
V ′,V

= λk
⟨︂
ek, el

⟩︂
H

= λkδk,l ∀k, l ∈ N.

Proposition 4.28 (Itô formula and continuity). Let T > 0, (Ω,F , (Ft)t∈[0,T ],P)
be a stochastic basis with a normal filtration and W a (generalized) Wiener process
on U . Furthermore let u0 ∈ L2(Ω;H) be F0-measurable and u, v, B be predictable
processes with values in H, V ′ and L2(U0;H), respectively, such that

u ∈ L2(Ω;L2(0, T ;V )),
v ∈ L2(Ω;L2(0, T ;V ′)),
B ∈ L2(Ω;L2(0, T ;L2(U0;H))),

and

u(t)− u0 =
∫︂ t

0
v(s) ds+

∫︂ t

0
B(s) dW (s) in V ′ P-a.s. ∀t ∈ [0, T ]. (4.6)

53
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Then u has a version with continuous paths in H and for this version it holds
that u ∈ L2(Ω;C([0, T ];H)) with

∥u(t)∥2H − ∥u0∥2H =
∫︂ t

0
2
⟨︁
v(s), u(s)

⟩︁
V ′,V + ∥B(s)∥2L2(U0;H) ds

+ 2
∫︂ t

0

⟨︁
u(s), B(s) dW (s)

⟩︁
H ∀t ∈ [0, T ].

Furthermore, if F ∈ C1(H) and the second Gâteaux derivative D2F : H → L(H)
exists with

• F , DF and D2F bounded on bounded subsets of H,

• D2F : H → L(H) continuous from the strong topology on H to the weak-∗
topology on L(H) =

(︁
L1(H)

)︁′ and

• (DF )|V : V → V continuous from the strong topology on V to the weak
topology on V and growing at most linearly

∥DF (x)∥V ≤ C
(︁
1 + ∥x∥V

)︁
∀x ∈ V,

then

F (u(t))− F (u0) =
∫︂ t

0

⟨︁
v(s),DF (u(s))

⟩︁
V ′,V

+ 1
2 tr

[︂
D2F (u(s))B(s)(B(s))∗

]︂
ds

+
∫︂ t

0

⟨︁
DF (u(s)), B(s) dW (s)

⟩︁
H P-a.s. ∀t ∈ [0, T ].

Note that this generalization is similar to the result presented in [Par75, II.II.§4]
where it was proven under slightly different assumptions. There, less is assumed
about the spaces, i.e. the embedding V ⊂ H is not assumed to be compact and
V is assumed to be an arbitrary separable Banach space, which is uniformly
smooth and convex, but F is assumed to be twice Fréchet differentiable. In our
application, this assumption on F will not be fulfilled.

By analyzing the proof in [Par75, II.II.§4] one can see that this restrictive
assumption on the differentiability of F can be relaxed. It is sufficient to assume
the Gâteaux differentiability of DF : H → H and the weak-∗ continuity of
D2F : H → L(H), which ensures that the restriction F |V : V → R is twice
Fréchet differentiable. Note that this Itô formula also appears in [Par79, I.3.2]
and [Vio76, I.§1 Theorem 1.3] and with the weaker assumption on F in [Par07,
Lemma 2.3.5] without proof.

Hence, for the readers convenience we include a different proof here, which
makes use of the stronger assumptions on the spaces compared to [Par75] and
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4.2. Variational SPDEs under a compactness assumption

adapts the proof of [DHV16, Proposition A.1], where H and V are assumed
to be Sobolev spaces. In (4.7) below, we define a smoothing operator which
in fact is the semigroup generated by −JV with JV : V → V ′ given by the
canonical identification of the Hilbert space V with its dual space. If V = H1

0 (Tn),
H = L2(Tn), then this is the classical heat semigroup.

Proof of Proposition 4.28. Step 1: Smoothing the solution.
For ε > 0 we consider the smoothing operator

ρε : V ′ → V, ρε(v′) :=
∑︂
k∈N

exp(−ελk)
⟨︂
v′, ek

⟩︂
V ′,V

ek. (4.7)

It is easy to verify that with ε→ 0 and X ∈ {V ′, H, V }

ρε(x)→ x in X ∀x ∈ X

and ∥ρε∥L(X) ≤ 1. Since ρε ∈ L(V ′;V ) we infer from Proposition 4.15 for all
t ∈ [0, T ] that

ρε(u(t))− ρε(u0) =
∫︂ t

0
ρε(v(s)) ds+

∫︂ t

0
ρε ◦B(s) dW (s) P-a.s. in V,

where ρε ◦ B(s) : U0 → V denotes the composition of B(s) : U0 → H with
ρε : H → V .

In the following we will abbreviate u0,ε := ρε(u0), uε(t) := ρε(u(t)), vε(t) :=
ρε(v(t)) and Bε(t) := ρε ◦B(t).

Step 2: u takes values in H.
The Itô formula from Proposition 4.24 for the function ∥ · ∥2H implies

∥uε(t)∥2H − ∥u0,ε∥2H =
∫︂ t

0
2
⟨︁
uε(s), vε(s)

⟩︁
H + ∥Bε(s)∥2L2(U0;H) ds

+ 2
∫︂ t

0

⟨︁
uε(s), Bε(s) dW (s)

⟩︁
H P-a.s.

The Burkholder-Davis-Gundy inequality, cf. Proposition 4.22, ∥ρε∥L(X) ≤ 1 for
all X ∈ {V ′, H, V } and the Young inequality imply

E sup
t∈[0,T ]

∥uε(t)∥2H ≤ C∥u0∥2H + C∥u∥L2(Ω;L2(0,T ;V ))∥v∥L2(Ω;L2(0,T ;V ′))

+ C∥B∥2L2(Ω;L2(0,T ;L2(U0;H))) + CE
(︄∫︂ T

0
∥B(s)∥2L2(U0;H)∥uε(s)∥2H ds

)︄ 1
2

≤ C∥u0∥2H + C∥u∥L2(Ω;L2(0,T ;V ))∥v∥L2(Ω;L2(0,T ;V ′))

+ C∥B∥2L2(Ω;L2(0,T ;L2(U0;H))) + 1
2E sup

t∈[0,T ]
∥uε(t)∥2H .
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4. Stochastic evolution equations in infinite dimensions

Thus E supt∈[0,T ] ∥uε(t)∥2H is uniformly bounded in ε. With Fatou’s Lemma we
infer that

E sup
t∈[0,T ]

∥u(t)∥2H = E sup
t∈[0,T ]

lim
ε→0
∥uε(t)∥2H

≤ E lim inf
ε→0

sup
t∈[0,T ]

∥uε(t)∥2H

≤ lim inf
ε→0

E sup
t∈[0,T ]

∥uε(t)∥2H <∞.

(4.8)

Step 3: Proving the Itô formula.
Now, in Lemma 4.29 below it is verified that F |V ∈ C2(V ) with F |V , D(F |V )
and D2(F |V ) uniformly continuous on bounded subsets of V . We apply the Itô
formula from Proposition 4.24 to conclude that

F (uε(t))− F (u0,ε) =
∫︂ t

0

⟨︁
vε(s),DF (uε(s))

⟩︁
V ′,V

+ 1
2

∫︂ t

0
tr
[︂
D2F (uε(s))Bε(s)(Bε(s))∗

]︂
ds

+
∫︂ t

0

⟨︁
DF (uε(s)), Bε(s) dW (s)

⟩︁
H P-a.s. ∀t ∈ [0, T ].

(4.9)

Because of the assumptions on F and an infinite dimensional version of the
dominated convergence theorem for stochastic integrals [Pro04, Theorem IV.32]
we can pass to the limit ε→ 0 on both sides of this equation.

Hence, F (u) has a continuous version for which

F (u(t))− F (u0) =
∫︂ t

0

⟨︁
v(s),DF (u(s))

⟩︁
V ′,V ds

+ 1
2

∫︂ t

0
tr
[︂
D2F (u(s))B(s)(B(s))∗

]︂
ds

+
∫︂ t

0

⟨︁
DF (u(s)), B(s) dW (s)

⟩︁
H ∀t ∈ [0, T ].

Step 4: u has a continuous version.
We infer from the calculations above that there is a version of u such that ∥u∥2H
is continuous and

∥u(t)∥2H − ∥u0∥2H =
∫︂ t

0
2
⟨︁
v(s), u(s)

⟩︁
V ′,V + ∥B(s)∥2L2(U0;H) ds

+ 2
∫︂ t

0

⟨︁
u(s), B(s) dW (s)

⟩︁
H ∀t ∈ [0, T ].

From (4.6) and (4.8) we infer that u ∈ C([0, T ]; (H,w)) a.s. It is well known (cf.
[PR07, Theorem 4.2.5]) that this together with the continuity of ∥u∥2H implies
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4.2. Variational SPDEs under a compactness assumption

that u ∈ C([0, T ];H) a.s. Since H is separable we can apply [DPZ14, Proposition
3.18] to conclude that u : Ω → C([0, T ];H) is measurable. This proves that
u ∈ L2(Ω;C([0, T ];H)).

Lemma 4.29. Under the assumptions of Proposition 4.28 we have F |V ∈ C2(V )
and F |V , DF |V : V → V ′ and D2F |V : V → L(V ;V ′) are uniformly continuous
on bounded subsets of V .

Proof. We only have to prove the continuity of D2F |V : V → L(V ;V ′) and the
uniform continuity on bounded subsets of V .

The compactness of the embeddings V ⊂ H ≃ H ′ ⊂ V ′ implies that the
embedding L(H) ⊂ L(V ;V ′) is compact. Thus, when uk ⇀ u in V then uk → u
in H and by the assumptions from Proposition 4.28 we infer D2F (uk)

∗
⇀ D2F (u)

in L(H), hence D2F (uk) → D2F (u) in L(V ;V ′). This proves that D2F |V :
(V,w)→ L(V ;V ′) is continuous.

Let M ⊂ V be a bounded set in V , then M is precompact in H and therefore
F |M : M → R and DF |M : M → H ⊂ V ′ are uniformly continuous. Furthermore
M is precompact in (V,w) and therefore D2F |M : M → L(V ;V ′) is uniformly
continuous.

We will apply Proposition 4.28 to the appropriate spaces for the stochastic
mean curvature flow, cf. Remark 5.1.

Corollary 4.30. Let T > 0, (Ω,F , (Ft)t∈[0,T ],P) be a stochastic basis with
a normal filtration and W a generalized Wiener process on U . Further-
more let u0 ∈ L2(Ω;H1(Tn)) be F0-measurable and u, v,B be predictable pro-
cesses with u ∈ L2(Ω;L2(0, T ;H2(Tn))), v ∈ L2(Ω;L2(0, T ;L2(Tn))) and B ∈
L2(Ω;L2(0, T ;L2(U0;H1(Tn)))) such that

du = v dt+B dW in L2(Tn). (4.10)

Then u has a version with continuous paths in H1(Tn) and for this version it
holds that u ∈ L2(Ω;C([0, T ];H1(Tn))). If F = F (z, p) ∈ C2(R× Rn) with ∂2

zF ,
∂z∇pF and D2

pF bounded then we have

∫︂
Tn
F (u(t),∇u(t)) dx−

∫︂
Tn
F (u0,∇u0) dx =

∫︂ t

0
µ(s) ds+

∑︂
l∈N

∫︂ t

0
σl(s) dβl(s).
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4. Stochastic evolution equations in infinite dimensions

a.s. for all t ∈ [0, T ] with

µ(s) =
∫︂
Tn

(︂
∂zF (u(s),∇u(s))−∇·

(︁
∇pF (u(s),∇u(s))

)︁)︂
v(s) dx

+ 1
2
∑︂
l∈N

∫︂
Tn
∂zzF (u(s),∇u(s))

⃓⃓
Bl(s)

⃓⃓2 dx

+ 1
2
∑︂
l∈N

∫︂
Tn
∂z∇pF (u(s),∇u(s)) · ∇

(︂⃓⃓
Bl(s)

⃓⃓2)︂ dx

+ 1
2
∑︂
l∈N

∫︂
Tn
∇Bl(s) ·D2

pF (u(s),∇u(s))∇Bl(s) dx

and for l ∈ N

σl(s) =
∫︂
Tn
∂zF (u(s),∇u(s))Bl(s) +∇pF (u(s),∇u(s)) · ∇Bl(s) dx,

where Bl := BQ
1
2 gl ∈ L2(Ω;L2(0, T ;H1(Tn))). Note that the assumptions imply

the integrability of the right hand side in the above expression.

Proof. We consider the spaces V = H2(Tn) and H = H1(Tn). To work in
the framework from above we have to do the rather unusual identification of
w ∈ H1(Tn) with JHw := −∆w + w ∈ H ′ where

⟨JHw,φ⟩H′,H = ⟨w,φ⟩H1(Tn) =
∫︂
Tn
∇w · ∇φ+ wφ, φ ∈ H1(Tn).

Then
d⟨JHu,w⟩H′,H = d⟨u,−∆w + w⟩L2(Tn)

= ⟨v,−∆w + w⟩L2(Tn) dt
+ ⟨B dW,−∆w + w⟩L2(Tn) ∀w ∈ H

2(Tn),
(4.11)

which is an equation for JHu in V ′. We consider the function G : H1(Tn)→ R
with

G(w) :=
∫︂
Tn
F (w(x),∇w(x)) dx, w ∈ H1(Tn).

Since F ∈ C2 it easy to check that G ∈ C1(H1(Tn)) and that the second Gâteaux
derivative D2G exists. We calculate for w,φ, ψ ∈ H1(Tn)⟨︁

DG(w), φ
⟩︁
H′,H =

∫︂
Tn
∂zF (w,∇w)φ+∇pF (w,∇w) · ∇φ,⟨︂

D2G(w)φ,ψ
⟩︂
H′,H

=
∫︂
Tn
∂zzF (w,∇w)φψ + ∂z∇pF (w,∇w) · (φ∇ψ + ψ∇φ)

+
∫︂
Tn
∇φ ·D2

pF (w,∇w)∇ψ.

58



4.2. Variational SPDEs under a compactness assumption

We have that G and DG are bounded on bounded subsets of H1(Tn) and that
D2G is bounded because of the bounds of the second derivatives of F . On
bounded subsets of L(H) =

(︁
L1(H)

)︁′ the weak-∗ topology is equivalent to the
weak operator topology and therefore the continuity of D2G : H → (L(H), w∗)
follows from the fact that for all wk → w in H1(Tn) and all φ,ψ ∈ H1(Tn) we
have by dominated convergence⟨︂

D2G(wk)φ,ψ
⟩︂
H′,H

=
∫︂
Tn
∂zzF (wk,∇wk)φψ + ∂z∇pF (wk,∇wk) · (φ∇ψ + ψ∇φ)

→
∫︂
Tn
∂zzF (w,∇w)φψ + ∂z∇pF (w,∇w) · (φ∇ψ + ψ∇φ)

=
⟨︂
D2G(w)φ,ψ

⟩︂
H′,H

.

For w ∈ H2(Tn), φ ∈ H1(Tn) we have⟨︁
DG(w), φ

⟩︁
H′,H

=
∫︂
Tn

(︂
∂zF (w,∇w)− ∂z∇pF (w,∇w) · ∇w −D2

pF (w,∇w) : D2w
)︂
φ

=
∫︂
Tn

Φ(w)φ,

with

Φ(w) := ∂zF (w,∇w)− ∂z∇pF (w,∇w) · ∇w −D2
pF (w,∇w) : D2w,

where D2
pF (w,∇w) : D2w denotes the matrix scalar product, cf. Definition C.1.

Because of the assumptions on F we find that Φ(w) ∈ L2(Tn) for w ∈ H2(Tn) and
Φ : H2(Tn) → L2(Tn) is continuous. Since for the restriction of JH to H2(Tn)
we have that JH |H2(Tn) : H2(Tn) → L2(Rn) is an isomorphism, we conclude
J−1
H ◦ Φ(w) ∈ H2(Tn) and J−1

H ◦ Φ : H2(Tn)→ H2(Tn) is continuous with

∥J−1
H Φ(w)∥H2(Tn) ≤ C∥Φ(w)∥L2(Tn) ≤ C(1 + ∥w∥H2(Tn)).

Note that for the application of Proposition 4.28 we shall have an equation for
du ∼= dJHu in V ′, whereas (4.10) is an equation for du in L2(Tn). Therefore we
have to use (4.11) to infer that a.s. for all t ∈ [0, T ]

G(u(t))−G(u0)

=
∫︂ t

0

⟨︂
JHv(s), J−1

H ◦ Φ(u(s))
⟩︂
V ′,V

+ 1
2 tr

[︂
D2G(u(s))B(s)(B(s))∗

]︂
ds

+
∫︂ t

0

⟨︁
DG(u(s)), B(s) dW (s)

⟩︁
H′,H .

Plugging in the definition of Φ as well as the expressions for D2G and DG implies
the result.
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4. Stochastic evolution equations in infinite dimensions

4.3. Existence for variational SPDEs

We will adapt the approach of [Par07, Section 2.3.3] to prove existence of weak
solutions for variational SPDEs

du = A(u) dt+B(u) dW
u(0) = u0.

(4.12)

This theory goes back to [Vio76], where an existence proof is given for certain
operators A which have an additive structure and are linear in the highest order.
In [Par07] this proof is generalized to a larger class of variational SPDEs, which
is still not optimal and too restrictive in order to apply it to SMCF. We will
give a detailed comparison of our result and the result in [Par07] after fixing the
assumptions.

Without loss of generality we assume that W is a cylindrical Wiener process on
a Hilbert space U . In addition to Assumptions 4.26 we will make the following
assumptions.

Assumptions 4.31. Let A : V → V ′ and B : V → L2(U ;H). We will write
B∗ : V → L2(H;U) for the adjoint operator B∗(u) :=

(︁
B(u)

)︁∗. We assume:

• Coercivity: There are constants α,C > 0 such that for all u ∈ V

2
⟨︁
A(u), u

⟩︁
V ′,V + ∥B(u)∥2L2(U0;H) ≤ −α∥u∥

2
V + C

(︂
1 + ∥u∥2H

)︂
. (4.13)

• Growth bounds: There is a constant C > 0 and δ ∈ (0, 2] such that for
all u ∈ V

∥A(u)∥2V ′ ≤ C
(︂
1 + ∥u∥2V

)︂
, (4.14)

∥B(u)∥2L2(U ;H) ≤ C
(︂
1 + ∥u∥2V

)︂
and (4.15)

∥B(u)∥2L(U ;V ′) ≤ C
(︂
1 + ∥u∥2−δ

V + ∥u∥2H
)︂
. (4.16)

• Continuity: A : V → V ′ is weak-weak-∗ sequentially continuous, that
means

uk ⇀ u in V ⇒ A(uk)
∗
⇀ A(u) in V ′ (4.17)

and B∗ : V → L2(H;U) is sequentially continuous from the weak topology
on V to the strong operator topology on L(H;U), that means

uk ⇀ u in V ⇒ B∗(uk)h→ B∗(u)h in U ∀h ∈ H. (4.18)
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The assumptions (4.13), (4.14) and (4.17) are the same as in [Par07], whereas
(4.18) is weaker. Furthermore we have replaced the sublinear growth bound from
[Par07] for B(u) by the weaker assumptions (4.15) and (4.16). These weaker
assumptions are necessary to apply the theory to the stochastic mean curvature
flow in Chapter 5. To prove this generalization we have to prove bounds for
higher moments of the ∥ · ∥H norm of the approximations, whereas in the proof
in [Par07] only the second moment of the ∥ · ∥H norm needed to be bounded.
This will be done in Proposition 4.36 under the additional assumption that
the corresponding higher moment of the ∥ · ∥H norm is bounded for the initial
data. Similarly to the ideas of [HRvR17], we will use the Jakubowski-Skorokhod
representation theorem [Jak97] for tight sequences in non-metric spaces to prove
that our approximations converge on a different probability space. We will make
use of similar arguments as in [BFHM18] to handle the unbounded time interval.
Finally, we will show that this limit is a martingale solution of (4.12) using a
general method of constructing martingale solutions without relying on any kind
of martingale representation theorem, which was introduced in [BO07] and already
used in [Ond10] and [HRvR17], among others.

Before stating the result, we define the different notions of solutions.
Definition 4.32.

(i) Let I = [0,∞), (Ω,F , (Ft)t∈I ,P) be a stochastic basis with a normal filtra-
tion, W an (Ft)-Wiener process on U and u0 ∈ L2(Ω;H) be F0-measurable.
A predictable H-valued process u with u ∈ L2(Ω;L2(0, t;V )) for all t ∈ I is
a strong solution of (4.12) with initial data u0 if⟨︁
u(t), v

⟩︁
H − ⟨u0, v⟩H =

∫︂ t

0

⟨︁
A(u(s)), v

⟩︁
V ′,V ds+

∫︂ t

0

⟨︁
B(u(s)) dW (s), v

⟩︁
H

=
∫︂ t

0

⟨︁
A(u(s)), v

⟩︁
V ′,V ds+

∑︂
l∈N

∫︂ t

0

⟨︁
B(u(s))gl, v

⟩︁
H dβl(s)

P-a.s. for all t ∈ I and v ∈ V .

(ii) Let Λ be a Borel probability measure on H with bounded second mo-
ments

∫︁
H ∥z∥2H dΛ(z) < ∞. A martingale solution of (4.12) is given by

(Ω,F , (Ft)t∈I ,P) together with W , u0 and u such that (i) is satisfied and
P ◦ u−1

0 = Λ.
Remark 4.33. Note that in Definition 4.32 for a martingale solution the stochas-
tic basis is not prescribed but part of the solution. The concept of a martingale
solution is a weak solution concept and therefore the term weak solution is a
common synonym for it. In the context of SPDEs this notion is misleading as
it might be mixed up with the concept of a weak solution in the deterministic
PDE theory. We will therefore stick to the notion of a martingale solution even
for finite-dimensional SDEs.
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Our main result is:

Theorem 4.34. Let q > 2 and Λ be a Borel probability measure on H with finite
q-th moment ∫︂

H
∥z∥qH dΛ(z) <∞.

Then there is a martingale solution of (4.12) with initial data Λ.

To prove Theorem 4.34, we will use a standard Galerkin scheme (compare with
[Par07, Chapter 2.3]) to prove that there is a martingale solution of (4.12) if
the initial condition has bounded q-th moment in H for some q > 2. With the
(ek)k∈N as in Assumptions 4.26 we will write

VN := span
(︂
{e1, . . . , eN}

)︂
, N ∈ N.

Theorem 4.35. Let N ∈ N and Λ be a Borel probability measure on H. Then
there is a martingale solution of the finite-dimensional approximation of (4.12).

That means, that there is a stochastic basis (Ω,F , (Ft)t∈[0,∞),P) with a normal
filtration, β1, . . . , βN mutually independent real-valued (Ft)-Brownian motions
and a predictable VN -valued process u with u ∈ L2(Ω;C([0, T ];VN )) for all T > 0
such that ⟨︁

u(t), v
⟩︁
H −

⟨︁
u(0), v

⟩︁
H

=
∫︂ t

0

⟨︁
A(u(s)), v

⟩︁
V ′,V ds+

N∑︂
l=1

∫︂ t

0

⟨︁
B(u(s))gl, v

⟩︁
H dβl(s)

P-a.s. for all t ∈ [0,∞) and v ∈ VN , and

P ◦ u(0)−1 = ΛN := Λ ◦ P−1
N ,

where PN : H → VN is the orthogonal projection with respect to H.

Proof. We transform the equation into an N -dimensional stochastic differential
equation for the RN -valued coefficients a = (ak)k=1,...,N of u = ∑︁N

k=1 ake
k. For

this let

Ã : RN → RN(︂
Ã(a)

)︂
k

:=
⟨︄
A

⎛⎝ N∑︂
m=1

ame
m

⎞⎠ , ek⟩︄
V ′,V

, k = 1, . . . , N, a ∈ RN
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and

B̃ : RN → RN×N

(︂
B̃(a)

)︂k
l

:=
⟨︄
B

⎛⎝ N∑︂
m=1

ame
m

⎞⎠ gl, ek
⟩︄
H

, k, l = 1, . . . , N, a ∈ RN .

These mappings are continuous and grow at most linearly. Therefore we can apply
a classical theorem for finite dimensional stochastic differential equations [HS12,
Theorem 0.1] and [IW81, Theorem IV.2.4] to find a martingale solution of

dak =
(︂
Ã(a)

)︂
k

dt+
N∑︂
l=1

(︂
B̃(a)

)︂k
l

dβl, k = 1, . . . , N

P ◦ a(0)−1 = P̃N ,

where

P̃N (M) := ΛN

⎛⎜⎝
⎧⎨⎩

N∑︂
k=1

ake
k ∈ H

⃓⃓⃓⃓
a ∈M

⎫⎬⎭
⎞⎟⎠ , M ⊂ RN .

Defining u(t) = ∑︁N
k=1 ak(t)ek for t ∈ [0,∞) we find u ∈ L2(Ω;C([0, T ];VN )) for

all T > 0 with⟨︂
u(t), ek

⟩︂
H
−
⟨︂
u0, e

k
⟩︂
H

= ak(t)− ak(0)

=
∫︂ t

0

(︂
Ã(a(s))

)︂
k

ds+
N∑︂
l=1

(︂
B̃(a(s))

)︂k
l

dβl(s)

=
∫︂ t

0

⟨︂
A(u(s)), ek

⟩︂
V ′,V

ds+
N∑︂
l=1

∫︂ t

0

⟨︂
B(u(s))gl, ek

⟩︂
H

dβl(s)

and

P ◦ u(0)−1 = ΛN .

Proposition 4.36 (Estimates for the norm). Let T > 0 and (Ω,F , (Ft)t∈[0,T ],P)
be a stochastic basis with a normal filtration. Then there is a constant C > 0 that
only depends on the constants from Assumptions 4.31, such that for all mutually
independent real-valued (Ft)-Brownian motions (βl)l∈N, N ∈ N and all VN -valued
predictable processes u ∈ L2(Ω;C([0, T ];VN )) with⟨︁

u(t), v
⟩︁
H −

⟨︁
u(0), v

⟩︁
H

=
∫︂ t

0

⟨︁
A(u(s)), v

⟩︁
V ′,V ds+

N∑︂
l=1

∫︂ t

0

⟨︁
B(u(s))gl, v

⟩︁
H dβl(s)
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P-a.s. for all t ∈ [0, T ] and v ∈ VN , we have

E sup
t∈[0,T ]

∥u(t)∥2H + E
∫︂ T

0
∥u(t)∥2V dt ≤ CeCT

(︂
1 + E∥u(0)∥2H

)︂
.

Additionally, there is a q0 > 2 such that u(0) ∈ Lq(Ω;H) for some q ∈ (2, q0)
implies u ∈ L∞(0, T ;Lq(Ω;H)) with

E∥u(t)∥qH ≤ e
Ct
(︂
1 + E∥u(0)∥qH

)︂
∀t ∈ [0, T ].

Proof. From Proposition 4.28 we conclude that the following Itô formula holds
for the norm of solutions

d∥u∥2H = 2
⟨︁
A(u), u

⟩︁
V ′,V dt+

N∑︂
k,l=1

⟨︂
B(u)gl, ek

⟩︂2

H
dt+

N∑︂
l=1

2
⟨︁
B(u)gl, u

⟩︁
H dβl

= 2
⟨︁
A(u), u

⟩︁
V ′,V dt+ ∥BN (u)∥2L2(U ;H) dt+ 2

⟨︁
BN (u) dW,u

⟩︁
H ,

(4.19)

where BN : V → L2(U ;H) is given by

⟨︂
BN (u)gl, ek

⟩︂
H

:=

⎧⎨⎩
⟨︂
B(u)gl, ek

⟩︂
H

if k ≤ N and l ≤ N,
0 otherwise,

k, l ∈ N, u ∈ V.

For q ≥ 1 we use the Itô formula for real-valued semimartingales to deduce that

d
(︂
1 + ∥u∥2H

)︂q
= q

(︂
1 + ∥u∥2H

)︂q−1 (︂
2
⟨︁
A(u), u

⟩︁
V ′,V + ∥BN (u)∥2L2(U ;H)

)︂
dt

+ 2q(q − 1)
(︂
1 + ∥u∥2H

)︂q−2
∥B∗

N (u)u∥2U dt

+ 2q
(︂
1 + ∥u∥2H

)︂q−1 ⟨︁
BN (u) dW,u

⟩︁
H .

Since the Itô integral defines a local martingale and 1 + ∥u∥2H ≥ 0, we infer by
taking the expectation for the stopped processes and Fatou’s lemma that for all
t ∈ [0, T ]

E
(︂
1 + ∥u(t)∥2H

)︂q
− E

(︂
1 + ∥u(0)∥2H

)︂q
≤ qE

∫︂ t

0

(︂
1 + ∥u(s)∥2H

)︂q−1 (︂
2
⟨︁
A(u(s)), u(s)

⟩︁
V ′,V + ∥BN (u(s))∥2L2(U ;H)

)︂
ds

+ 2q(q − 1)E
∫︂ t

0

(︂
1 + ∥u(s)∥2H

)︂q−2
∥B∗

N (u(s))u(s)∥2U ds.
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Using the coercivity (4.13) and the growth bounds (4.15) we conclude for q ∈
[1, 1 + ε) with ε < α

C where C depends on the constants from (4.13) and (4.15),
that

E
(︂
1 + ∥u(t)∥2H

)︂q
− E

(︂
1 + ∥u(0)∥2H

)︂q
≤ qE

∫︂ t

0

(︂
1 + ∥u(s)∥2H

)︂q−1
(︃
−α∥u(s)∥2V + C

(︂
1 + ∥u(s)∥2H

)︂)︃
ds

+ Cq(q − 1)E
∫︂ t

0

(︂
1 + ∥u(s)∥2H

)︂q−1
∥B∗

N (u(s))∥2L2(H;U) ds

≤ −q
(︁
α− C(q − 1)

)︁
E
∫︂ t

0

(︂
1 + ∥u(s)∥2H

)︂q−1
∥u(s)∥2V ds

+ CE
∫︂ t

0

(︂
1 + ∥u(s)∥2H

)︂q
ds

≤ CE
∫︂ t

0

(︂
1 + ∥u(s)∥2H

)︂q
ds ∀t ∈ [0, T ]

(4.20)

and with a Gronwall argument

E
(︂
1 + ∥u(t)∥2H

)︂q
≤ eCtE

(︂
1 + ∥u(0)∥2H

)︂q
∀t ∈ [0, T ].

This already implies that there is a constant C > 0 such that

E∥u(t)∥2qH ≤ e
Ct
(︂
1 + E∥u(0)∥2qH

)︂
∀t ∈ [0, T ].

Furthermore, we have for the stochastic integral in (4.19) using the Burkholder-
Davis-Gundy inequality from Proposition 4.22 and the growth assumption (4.15)

E sup
t∈[0,T ]

⃓⃓⃓⃓
⃓⃓2 ∫︂ t

0

⟨︁
BN (u) dW,u

⟩︁
H

⃓⃓⃓⃓
⃓⃓ ≤ CE

[︄∫︂ T

0

⃦⃦
B∗
N (u(s))u(s)

⃦⃦2
U ds

]︄ 1
2

≤ CE

⎡⎣ sup
t∈[0,T ]

∥u(s)∥2H

(︄
1 +

∫︂ T

0
∥u(s)∥2V ds

)︄⎤⎦ 1
2

≤ 1
2E sup

t∈[0,T ]
∥u(s)∥2H + C

(︄
1 + E

∫︂ T

0
∥u(s)∥2V ds

)︄
.

(4.21)

And from the last inequality in (4.20) for q = 1 we infer

E
∫︂ T

0
∥u(s)∥2V ds ≤ eCT

(︂
1 + E∥u(0)∥2H

)︂
,
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hence with (4.13) and (4.21)

E sup
t∈[0,T ]

∥u(t)∥2H ≤ E∥u(0)∥2H

+ E sup
t∈[0,T ]

∫︂ t

0

[︂
2
⟨︁
A(u(τ)), u(τ)

⟩︁
V ′,V + ∥BN (u(τ))∥2L2(U ;H)

]︂
dτ

+ E sup
t∈[0,T ]

2
∫︂ t

0

⟨︁
BN (u(τ)) dW (τ), u(τ)

⟩︁
H

≤ E∥u(0)∥2H + 1
2E sup

t∈[0,T ]
∥u(t)∥2H + C

(︄
1 + E

∫︂ T

0
∥u(t)∥2V dt

)︄

≤ CeCT
(︂
1 + E∥u(0)∥2H

)︂
+ 1

2E sup
t∈[0,T ]

∥u(t)∥2H

and therefore

E sup
t∈[0,T ]

∥u(t)∥2H ≤ CeCT
(︂
1 + E∥u(0)∥2H

)︂
.

The proof of Theorem 4.34 will be a consequence of a more general result, which
characterizes the limit of solutions of SPDEs. This result will also be applied
in Chapter 5 in order to prove that there is a martingale solution of graphical
SMCF.

For this we allow the coefficients to vary, as long as suitable assumptions similar
to Assumptions 4.31 hold.

Theorem 4.37. Let (Ω,F ,P) be a fixed probability space. For N ∈ N let
(FNt )t∈[0,∞) be a normal filtration and WN a generalized (FNt )-Wiener process on
U with covariance operator QN ∈ L(U) such that QN → Q in the strong operator
topology (SOT) on L(U). We denote the corresponding reproducing kernel spaces
by UN0 := Q

1
2
NU and U0 := Q

1
2U .

In addition to Assumptions 4.26 we assume that (AN )N , (BN )N are sequences
of operators AN : V → V ′ and BN : V → L2(UN0 ;H) with:

• Growth bounds: There is a constant C > 0 and δ ∈ (0, 2] such that for
all N ∈ N and u ∈ V

∥AN (u)∥2V ′ ≤ C(1 + ∥u∥2V ), (4.22)
∥BN (u)∥2L2(UN

0 ;H) ≤ C(1 + ∥u∥2V ) and (4.23)

∥BN (u)∥2L(UN
0 ;V ′) ≤ C(1 + ∥u∥2−δ

V + ∥u∥2H). (4.24)
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• Continuity: There are A : V → V ′ and B : V → L2(U0;H) such that for
all uN ⇀ u in V it holds that

AN (uN ) ∗
⇀ A(u) in V ′, (4.25)

Q
− 1

2
N B∗

N (uN ) SOT−→ Q− 1
2B∗(u) in L(H;U). (4.26)

Let uN be a solution of

duN = AN (uN ) dt+BN (uN ) dWN , (4.27)

with P ◦uN (0)−1 ⇀ Λ in the sense of probability laws on H (cf. [IW81, Definition
2.1]) such that for some q > 2 and all T > 0 it holds that (uN )N is uniformly
bounded in

L2(Ω;C([0, T ];H)) ∩ L2(Ω;L2(0, T ;V )) ∩ L∞(0, T ;Lq(Ω;H)).

Then there is a martingale solution of

du = A(u) dt+B(u) dW (4.28)

with initial data Λ, where W is a generalized Wiener process with covariance
operator Q.

Before proving Theorem 4.37 we need the following Lemma, which provides
convergence results for the deterministic operators involved.

Lemma 4.38. Let the assumptions of Theorem 4.37 hold. Furthermore let T > 0
and

Xu := (L2(0, T ;V ), w) ∩ L2(0, T ;H) ∩ C([0, T ]; (H,w))

with C([0, T ]; (H,w)) endowed with the compact-open topology.
Then for all uN → u in Xu and p < 2 it holds that for all v ∈ V⟨︁

AN (uN ), v
⟩︁
V ′,V →

⟨︁
A(u), v

⟩︁
V ′,V in Lp(0, T )

and

Q
− 1

2
N B∗

N (uN )v → Q− 1
2B∗(u)v in L2(0, T ;U).

Proof. Let v ∈ V and (uN )N ⊂ Xu be a sequence with uN → u in Xu. For M > 0
we consider the functions

uMN (t) :=
{︄
uN (t) if ∥uN (t)∥V ≤M,
u(t) otherwise , t ∈ [0, T ], N ∈ N.
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Since u ∈ L2(0, T ;V ) we conclude that for almost every t ∈ [0, T ] the sequence
(uMN (t))N∈N is uniformly bounded in V . Furthermore we know for every t ∈ [0, T ]
that uMN (t) ⇀ u(t) in H, because uN → u in Xu implies⃓⃓⃓⃓⟨︂

uMN (t)− u(t), h
⟩︂
H

⃓⃓⃓⃓
≤
⃓⃓⃓⟨︁
uN (t)− u(t), h

⟩︁
H

⃓⃓⃓
→ 0 as N →∞ ∀h ∈ H.

Hence uMN (t) ⇀ u(t) in V for N →∞ for almost every t ∈ [0, T ].
The continuity assumptions (4.25) and (4.26) from Theorem 4.37 imply⟨︂

AN (uMN (t)), v
⟩︂
V ′,V

→
⟨︁
A(u(t)), v

⟩︁
V ′,V and

Q
− 1

2
N B∗

N (uMN (t))v → Q− 1
2B∗(u(t))v

for almost every t ∈ [0, T ]. Furthermore, using the growth assumption (4.22) we
get ⃓⃓⃓⃓⟨︂

AN (uMN (t)), v
⟩︂
V ′,V

⃓⃓⃓⃓2
≤ C

(︂
1 + ∥u(t)∥2V + ∥uN (t)∥2V

)︂
∥v∥2V .

Since the right hand side of the above inequality is bounded in L1(0, T ), we infer
with Vitali’s convergence theorem for p < 2⟨︂

AN (uMN ), v
⟩︂
V ′,V

→
⟨︁
A(u), v

⟩︁
V ′,V in Lp(0, T ).

In order to infer a similar result for B, we use the growth bound (4.24), which
by convergence also holds for B, and deduce⃦⃦⃦⃦

Q
− 1

2
N B∗

N (uMN (t))v −Q− 1
2B∗(u(t))v

⃦⃦⃦⃦2

U

≤ C
(︃
∥BN (uMN (t))∥2L(UN

0 ;V ′) + ∥B(u(t))∥2L(U0;V ′)

)︃
∥v∥2V

≤ C
(︂
1 + ∥uN (t)∥2−δ

V + ∥u(t)∥2−δ
V + ∥uN (t)∥2H + ∥u(t)∥2H

)︂
∥v∥2V .

The right hand side is uniformly integrable, because ∥uN∥2−δ
V is bounded in

L
2

2−δ (0, T ) and ∥uN∥2H is convergent in L1(0, T ). Therefore, by Vitali’s conver-
gence theorem

Q
− 1

2
N B∗

N (uMN )v → Q− 1
2B∗(u)v in L2(0, T ;U).

Let EMN := {t ∈ [0, T ] | ∥uN (t)∥V > M} for N ∈ N. For the measure of EMN we
estimate ⃓⃓⃓

EMN

⃓⃓⃓
≤
∫︂ T

0

∥uN (t)∥2V
M2 dt ≤ C

M2 ,
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because (uN )N∈N is uniformly bounded in L2(0, T ;V ).
As above one can conclude from the growth assumptions (4.22) and (4.24)

and the fact that ∥uMN (t)∥V ≤ ∥uN (t)∥V + ∥u(t)∥V and ∥uMN (t)∥H ≤ ∥uN (t)∥H +
∥u(t)∥H that

⃓⃓⃓
AN (uN )v −AN (uMN )v

⃓⃓⃓p
and

⃦⃦⃦⃦
Q

− 1
2

N B∗
N (uN )v −Q− 1

2
N B∗

N (uMN )v
⃦⃦⃦⃦2

U

are uniformly integrable with respect to N and M . Hence,

∥AN (uN )v −A(u)v∥Lp(0,T ) ≤ ∥AN (uN )v −AN (uMN )v∥Lp(EM
N )

+ ∥AN (uMN )v −A(u)v∥Lp(0,T )

and

∥Q− 1
2

N B∗
N (uN )v −Q− 1

2B∗(u)v∥L2(0,T ;U)

≤ ∥Q− 1
2

N B∗
N (uN )v −Q− 1

2
N B∗

N (uMN )v∥L2(EM
N ;U)

+ ∥Q− 1
2

N B∗
N (uMN )v −Q− 1

2B∗(u)v∥L2(0,T ;U)

converge to 0 by first choosing M large such that the first terms on the right
hand side become small and then choosing N large and using the convergences
derived above.

The proof of Theorem 4.37 will be carried out in several steps. We start by
proving a weak Hölder continuity of the approximate solutions and the Wiener
processes. With a compactness result of Simon [Sim87] we will conclude that
the joint laws of the processes are tight, i.e. there is a sequence of increasing
compact sets such that the probability of leaving these compact sets goes to zero,
cf. [DPZ14]. The characterization of tight sequences given by Jakubowski [Jak97]
yields the existence of a limit. With the convergence result Lemma 4.38 from
above we will infer that this limit is a martingale solution of (4.28).

Proof of Theorem 4.37. Step 1: Uniform Hölder continuity of (uN ) and (WN ).
Note that by Hölder’s inequality (uN ) is uniformly bounded in L∞(0, T ;Lq′(Ω;H))
for all 2 < q′ ≤ q. Hence, without loss of generality we might choose q > 2
sufficiently small during the next arguments.

Let Z be another separable Hilbert space with a Hilbert-Schmidt embedding
V ′ ⊂ Z. Because (4.24) holds uniformly in N we have that BN (uN ) is uniformly
bounded in Lq(Ω;Lq(0, T ;L2(UN0 ;Z))), since by the Hilbert-Schmidt embedding
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V ′ ⊂ Z it holds that ∥S∥L2(UN
0 ;Z) ≤ C∥S∥L(UN

0 ;V ′) for all S ∈ L(UN0 ;V ′) and

E
∫︂ T

0
∥BN (uN (t))∥q

L2(UN
0 ;Z) dt ≤ CE

∫︂ T

0
∥BN (uN (t))∥q

L(UN
0 ;V ′) dt

≤ C

⎛⎝1 + E
∫︂ T

0
∥uN (t)∥2V + sup

t∈[0,T ]
E∥uN (t)∥qH

⎞⎠ .
Note that BN (uN ) ∈ N 2

WN (0, T ) for N ∈ N. Therefore we can apply the fac-
torization method stated in Proposition 4.25 to infer a uniform bound for the
stochastic integral

∫︁ ·
0 BN (uN (t)) dWN

t ∈ L2(Ω;C0,λ([0, T ];Z)) for some λ > 0.
Furthermore, since (4.14) holds uniformly in N we get a uniform bound for∫︁ ·

0 AN (uN (t)) dt ∈ L2(Ω;C0, 1
2 ([0, T ];V ′)). This implies by (4.27) a uniform bound

for uN ∈ L2(Ω;C0,λ([0, T ];Z)) for some λ > 0.
In order to infer the uniform Hölder continuity of the Wiener processes (WN )

we consider the separable Hilbert space U1 given as the completion of U with
respect to the scalar product

⟨︁
gl1 , gl2

⟩︁
U1

= a2
l1
δl1,l2 for l1, l2 ∈ N and (al)l∈N ∈ ℓ2

a positive square-summable sequence. Then U is densely embedded in U1 with
a Hilbert-Schmidt embedding. The representation of WN as in Proposition 4.7
converges in U1. Hence, each WN can be understood as a Wiener process on U1
and the covariance operator fulfills QN ∈ L1(U1). Since QN converges pointwise
to Q, the QN are uniformly bounded in L(U) by the uniform boundedness
principle and therefore uniformly bounded in L1(U1). The factorization method
Proposition 4.25 for WN (t) =

∫︁ t
0 ΦN dWN where ΦN : UN0 → U1 is the embedding

of UN0 into U1 implies that for λ ∈ (0, 1
2) the (WN )N are uniformly bounded in

L2(Ω;C0,λ([0, T ];U1)).
Step 2: Tightness of the joint laws of (uN (0), uN ,WN ).

For λ > 0 the embeddings

C0,λ([0, T ];Z) ∩ C([0, T ];H)→ C([0, T ];Z) and
C0,λ([0, T ];Z) ∩ L2(0, T ;V )→ L2(0, T ;H)

are compact because of the Ascoli theorem [Kel55, Theorem 7.17] and the charac-
terization of compact sets in L2(0, T ;H) in [Sim87, Theorem 5]. As on bounded
subsets of H the weak topology (H,w) and the topology of Z coincide we also
infer that the embedding

C0,λ([0, T ];Z) ∩ C([0, T ];H)→ C([0, T ]; (H,w))

is compact.
The embedding

C0,λ([0, T ];U1)→ C([0, T ]; (U1, w))
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is also compact because of the Ascoli theorem [Kel55, Theorem 7.17]. Furthermore,
the laws P ◦ uN (0)−1 are tight in H because of Prokhorov’s theorem [IW81,
Theorem 2.6].

Thus, the joint laws of (uN (0), uN ,WN ) are tight in H ×X Tu ×X TW with

X Tu := C([0, T ]; (H,w)) ∩ L2(0, T ;H) ∩
(︂
L2(0, T ;V ), w

)︂
and

X TW := C
(︁
[0, T ]; (U1, w)

)︁
.

This holds for all T > 0. Note that a set is compact in Xu ×XW with

Xu := Cloc([0,∞); (H,w)) ∩ L2
loc(0,∞;H) ∩

(︂
L2

loc(0,∞;V ), w
)︂

and

XW := Cloc
(︁
[0,∞); (U1, w)

)︁
,

where Cloc([0,∞); (H,w)) and Cloc([0,∞); (U1, w)) are endowed with the compact-
open topology, if and only if for all T > 0 the set (with all of its elements restricted
to [0, T ]) is compact in X Tu ×X TW . We conclude similarly to [BFHM18, Proof of
Proposition 4.3] that the joint laws of (uN (0), uN ,WN ) are tight in H ×Xu×XW .

Step 3: Existence of a.s. converging random variables on a different probability
space.
Since the space H ×Xu ×Xw satisfies a separability condition, see Lemma 4.39
below, we can apply the Jakubowski-Skorokhod representation theorem for tight
sequences in nonmetric spaces [Jak97, Theorem 2]. We deduce the existence
of a probability space (Ω̃, F̃ , P̃), an strictly increasing sequence (Nm)m∈N ⊂ N,
Xu-valued random variables ũm, ũ and XW -valued random variables W̃m, W̃ for
m ∈ N such that

ũm(0)→ ũ(0) P̃-a.s. in H,

ũm → ũ P̃-a.s. in Xu,
W̃

m → W̃ P̃-a.s. in XW

and the joint law of (ũm, W̃m) coincides with the joint law of (uNm ,WNm) for all
m ∈ N. To simplify the notation, we will assume that Nm = m for m ∈ N.

Step 4: Identification of the limit.
Let (Gt)t∈[0,∞) be the natural filtration of the process (ũ, W̃ ). That means Gt for
t ∈ [0,∞) is the smallest σ-algebra such that ũ(s) : Ω̃→ H and W̃ (s) : Ω̃→ U1
are measurable for all s ∈ [0, t]. The Pettis measurability theorem implies that
for the Borel σ-algebras on H and U1 we have B((H, ∥ · ∥H)) = B((H,w)) and
B((U1, ∥ ·∥U1)) = B((U1, w)). Therefore Gt is contained in the σ-algebra generated
by ũ|[0,t] : Ω̃ → C([0, t]; (H,w)) and W̃ |[0,t] : Ω̃ → C([0, t]; (U1, w)). Choosing
dense subsets of [0, t] and H respectively U1, one can also show that ũ|[0,t] and
W̃ |[0,t] are measurable with respect to Gt. Hence Gt is exactly the σ-algebra
generated by ũ|[0,t] and W̃ |[0,t].
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4. Stochastic evolution equations in infinite dimensions

Let N := {M ∈ F̃ | P̃(M) = 0}. We will consider the augmented filtration
(F̃ t)t∈[0,∞) which is defined by

F̃ t :=
⋂︂
s>t

σ (Gs ∪N ) , t ∈ [0,∞).

The augmented filtration (F̃ t)t is a normal filtration. For m ∈ N we can do
the same construction to define the natural filtration (Gmt )t and the augmented
filtration (F̃mt )t of (ũm, W̃m).

Let t ∈ [0,∞) and

M̃(t) := ũ(t)− ũ(0)−
∫︂ t

0
A(ũ(s)) ds, (4.29)

M̃
m(t) := ũm(t)− ũm(0)−

∫︂ t

0
Am(ũm(s)) ds, (4.30)

Mm(t) := um(t)− um(0)−
∫︂ t

0
Am(um(s)) ds =

∫︂ t

0
Bm(um(s)) dWm(s). (4.31)

For s ∈ [0, t] let

γ : C([0, s]; (H,w))× C([0, s]; (U1, w))→ R

be a bounded and continuous function. We will use the abbreviations

γm := γ
(︂
um|[0,s],Wm|[0,s]

)︂
,

γ̃m := γ
(︂
ũm|[0,s], W̃

m|[0,s]
)︂
,

γ̃ := γ
(︂
ũ|[0,s], W̃ |[0,s]

)︂

and for a time-dependent process X we write X
⃓⃓⃓t
s

:= X(t)−X(s).

Note that the joint law of (ũm, W̃m) coincides with the joint law of (um,Wm).
The processes Wm and Mm are martingales and we can compute their quadratic
variation using Proposition 4.18, which we encode in the next equations:

0 = E
(︄
γmWm

⃓⃓⃓⃓t
s

)︄
= Ẽ

(︄
γ̃mW̃

m
⃓⃓⃓⃓t
s

)︄
and (4.32)

(t− s)Qm = E
(︄
γm (Wm ⊗Wm)

⃓⃓⃓⃓t
s

)︄
= Ẽ

(︄
γ̃m

(︂
W̃

m ⊗ W̃m
)︂ ⃓⃓⃓⃓t

s

)︄
(4.33)
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4.3. Existence for variational SPDEs

as well as

0 = E
(︄
γmMm

⃓⃓⃓⃓t
s

)︄
= Ẽ

(︄
γ̃mM̃

m
⃓⃓⃓⃓t
s

)︄
and (4.34)

0 = E
(︄
γm (Mm ⊗Mm)

⃓⃓⃓⃓t
s
− γm

∫︂ t

s
Bm(um(σ))B∗

m(um(σ)) dσ
)︄

= Ẽ
(︄
γ̃m

(︂
M̃

m ⊗ M̃m
)︂ ⃓⃓⃓⃓t

s
− γ̃m

∫︂ t

s
Bm(ũm(σ))B∗

m(ũm(σ)) dσ
)︄
.

(4.35)

We also have to encode the fact that Mm can be written as an Itô integral
driven by Wm. Together with the above equations this can be recovered from the
following equation which holds in L(U ;H):

0 = E
(︄
γm (Mm ⊗Wm)

⃓⃓⃓⃓t
s
− γm

∫︂ t

s
Bm(um(σ))Qm dσ

)︄

= Ẽ
(︄
γ̃m

(︂
M̃

m ⊗ W̃m
)︂ ⃓⃓⃓⃓t

s
− γ̃m

∫︂ t

s
Bm(ũm(σ))Qm dσ

)︄
.

(4.36)

In order to pass to the limit in the above equations we have to justify why we
can interchange the integration with respect to the probability measure and the
limit. To this end, we will repeatedly use the Vitali convergence theorem.

The Burkholder-Davis-Gundy inequality from Proposition 4.22 applied to Wm

yields the uniform bound

Ẽ sup
σ∈[0,t]

∥W̃m(σ)∥3U1 = E sup
σ∈[0,t]

∥Wm(σ)∥3U1 ≤ Ct
3
2

with a constant C > 0 independent of m, since Qm ∈ L1(U1) is uniformly bounded
in m. Therefore W̃m(σ) is uniformly integrable in L2(Ω;U1) for all σ ∈ [0, t] and
this implies that we can pass to the limit in (4.32) with weak convergence in U1
and in (4.33) with convergence in the weak operator topology on L(U1) because
for all x, y ∈ U1 it holds that

(t− s) ⟨Qx, y⟩U1
← (t− s) ⟨Qmx, y⟩U1

= Ẽ
(︄
γ̃m

(︃⟨︂
W̃

m
, y
⟩︂
U1

⟨︂
W̃

m
, x
⟩︂
U1

)︃ ⃓⃓⃓⃓t
s

)︄

→ Ẽ
(︄
γ̃

(︃⟨︂
W̃ , y

⟩︂
U1

⟨︂
W̃ , x

⟩︂
U1

)︃ ⃓⃓⃓⃓t
s

)︄

=
⟨︄
Ẽ
(︄
γ̃
(︂
W̃ ⊗ W̃

)︂ ⃓⃓⃓⃓t
s

)︄
x, y

⟩︄
U1

.

The Kolmogorov continuity theorem [DPZ14, Theorem 3.3] implies that W̃ has
a version with continuous paths in U1, which we will again denote by W̃ . Since
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4. Stochastic evolution equations in infinite dimensions

the above argument holds for all γ, we conclude that W̃ is a square-integrable
continuous (Gt)t-martingale with (Gt)t-quadratic variation in U given by

⟨⟨W̃ ⟩⟩t = tQ. (4.37)

Since W̃ is continuous, we infer that W̃ is a square-integrable (F̃ t)t-martingale
and (4.37) also holds for the quadratic variation with respect to (F̃ t)t. By the
Lévy martingale characterization [DPZ14, Theorem 4.6] we conclude that W̃ is a
generalized (F̃ t)t-Wiener process on U with covariance operator Q.

From Lemma 4.38 we infer that M̃m(t) ∗
⇀ M̃(t) P-a.s. in V ′. In addition, the

Burkholder-Davis-Gundy inequality from Proposition 4.22, the growth bound
(4.24) and the assumed bounds for u imply for some q > 2 and all v ∈ V

Ẽ sup
σ∈[0,t]

⃓⃓⃓⃓ ⟨︂
M̃

m(t), v
⟩︂
V ′,V

⃓⃓⃓⃓q
= E sup

σ∈[0,t]

⃓⃓⃓⟨︁
Mm(t), v

⟩︁
V ′,V

⃓⃓⃓q
≤ CE

[︄∫︂ t

0

⃦⃦
Bm(um(s))

⃦⃦2
L(Um

0 ;V ′) ∥v∥
2
V ds

]︄ q
2

≤ C

⎛⎝1 + E
∫︂ T

0
∥um(s)∥2V ds+ sup

s∈[0,T ]
E∥um(s)∥qH

⎞⎠ ∥v∥qV
≤ C∥v∥qV

uniformly in m. Thus
⟨︂
M̃

m(σ), v
⟩︂
V ′,V

is uniformly integrable in L2(Ω;R) with
respect to m ∈ N and σ ∈ [0, t] for all v ∈ V . The estimate also implies the
uniform integrability of the integral terms in (4.35) and (4.36) in a weak sense.
The pathwise convergence of these terms can be inferred from Lemma 4.38. We
can pass to the limit with Vitali’s convergence theorem in (4.32) with weak-∗
convergence in V ′ and in (4.35) and (4.36) with convergence in the weak operator
topology on L(H) and L(U ;H), respectively.

We infer that M̃ is a V ′-valued continuous square-integrable (Gt)t-martingale
and because of the continuity also an (Ft)t-martingale. It holds for all t ∈ [0,∞)
that

M̃(t) =
∫︂ t

0
Bm(ũ(s)) dW̃ (s) P-a.s. in V ′.

Furthermore we have

Λ ↼ P ◦ um(0)−1 = P̃ ◦ ũm(0)−1 ⇀ P̃ ◦ ũ(0)−1,

which completes the proof.
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4.3. Existence for variational SPDEs

Proof of Theorem 4.34. For N ∈ N let VN := span({e1, . . . , eN}) and consider
the VN -valued process uN from Theorem 4.35. The process uN is a weak solution
of the finite-dimensional approximation of (4.12) for a Wiener process WN on
U with covariance operator QN : U → U , which is the orthogonal projection on
span{g1, . . . , gN}. Note that QN → Id in the strong operator topology on L(U).
We can assume that the processes (uN )N∈N are defined on one common probability
space (Ω,F ,P) = ([0, 1],B([0, 1]),L), because the proof of [HS12, Theorem 0.1]
could be adapted to yield existence of weak solutions for the finite-dimensional
approximation on this particular space (cf. [IW81, Theorem IV.2.3 and Theorem
IV.2.4]). Furthermore we note that P ◦ uN (0)−1 = ΛN = Λ ◦ P−1

N ⇀ Λ, since
PN → Id in the strong operator topology.

We can apply Proposition 4.36 to infer that for all T > 0 the sequence (uN )N∈N
is in N ∈ N uniformly bounded in

L2(Ω;C([0, T ];H)) ∩ L2(Ω;L2(0, T ;V )) ∩ L∞(0, T ;Lq(Ω;H)).

for some q > 2.
Now, Theorem 4.37 yields the existence of a weak martingale solution of (4.12)

with initial data Λ.

Lemma 4.39. Let U be a separable Hilbert space. Then the following spaces have
the property, that there is a countable set of real-valued continuous functions on
this space that separates points:

• Cloc([0,∞);U),

• L2
loc(0,∞;U),

• (L2
loc(0,∞;U);w) and

• Cloc([0,∞); (U,w)) with the compact-open topology.

Proof. Fix dense and countable subsets Q ⊂ [0,∞) and V ⊂ U . Consider the
set of functions F = {u ↦→

⟨︁
u(q), v

⟩︁
U | q ∈ Q, v ∈ V }. Then F is a countable

set of real-valued continuous functions on Cloc([0,∞); (U,w)) that separates
points. Since Cloc([0,∞);U) ⊂ Cloc([0,∞); (U,w)) is continuously embedded, the
functions in F are also continuous on Cloc([0,∞);U) and separate points.

The space L2(0,∞;U) is a separable Hilbert space. Let G ⊂ Cc(0,∞;U) ⊂(︂
L2

loc(0,∞;U)
)︂′

be a countable set which is dense in L2(0,∞;U). Then G is a
set of continuous functions on L2

loc(0,∞;U) and (L2
loc(0, T ;U), w) that separates

points on both spaces.
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5. Existence of solutions for
graphical SMCF

This chapter is devoted to a rigorous formulation and proof of the existence result
Theorem 1.1. Under suitable assumptions on the noise and the initial data we
will prove for n ∈ N existence of global-in-time martingale solutions of stochastic
mean curvature flow of graphs with colored noise, i.e. for all t ∈ [0,∞) =: I and
x ∈ Tn

du(x, t) = Q(∇u(x, t))∇·
(︁
v(∇u(x, t))

)︁
dt+

∑︂
l∈N

Q(∇u(x, t))φl(x) ◦ dβl(t), (5.1)

where Q(p) =
√︁

1 + |p|2 and v(p) = p√
1+|p|2

for p ∈ Rn as in Remark B.9. Note
that we do not allow the noise coefficients (φl)l∈N to depend on the height u(x, t)
of a point (x, u(x, t)) on the graph of u(·, t), because in general this kind of noise
would not permit graphical solutions.

We will solve (5.1) with periodic boundary conditions. For this, let us introduce
Sobolev spaces with respect to the flat torus Tn.

Remark 5.1 (Periodic Sobolev spaces). For k ∈ N, p ∈ [1,∞) we will denote
by W k,p(Tn) the space of periodic Sobolev functions on the flat torus Tn. This
space can be obtained as the completion of the [0, 1]n-periodic C∞(Rn) functions
with respect to the Sobolev norm ∥ · ∥Wk,p([0,1]n). We will abbreviate Hk(Tn) :=
W k,2(Tn).

We will make the following assumptions:

Assumptions 5.2. If not otherwise specified, we will always assume that the
coefficients are smooth, i.e. φl ∈ C∞(Tn) for l ∈ N, and

• ∑︁
l∈N φ

2
l < 2 on Tn and

• ∑︁
l∈N ∥φ2

l ∥C2(Tn) <∞.

In the following, we will write C = Cnoise for any constant C that only depends
on the assumptions on the coefficients (φl)l∈N, i.e. minx∈Tn

(︂
2−∑︁l∈N φ

2
l (x)

)︂
> 0

and ∑︁l∈N ∥φ2
l ∥C2(Tn).

For the driving processes, we will assume that (βl)l∈N is a family of independent
real-valued standard Brownian motions.
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5. Existence of solutions for graphical SMCF

Under the aforementioned assumptions, solutions of (5.1) are defined in the
following way.

Remark 5.3 (Notion of solution). Let I = [0, T ] with T <∞ or I = [0,∞) and
Λ a Borel probability measure on H1(Tn) with bounded second moments, i.e.∫︂

H1(Tn)
∥z∥2H1(Tn) dΛ(z) <∞.

In accordance to Definition 4.32 we say that there is a martingale solution u of (5.1)
on the time interval I, if there is a stochastic basis (Ω,F , (Ft)t∈I ,P) with a normal
filtration together with a family (βl)l∈N of independent real-valued standard (Ft)-
Brownian motions, an F0-measurable random variable u0 ∈ L2(Ω;H1(Tn)) and
a predictable H1(Tn)-valued process u with u ∈ L2(Ω;L2(0, t;H2(Tn))) for all
t ∈ I such that P ◦ u−1

0 = Λ and

u(t)− u0 =
∫︂ t

0
Q(∇u(s))∇·

(︁
v(∇u(s))

)︁
ds

+
∑︂
l

∫︂ t

0
Q(∇u(s))φl ◦ dβl(s) P-a.s. in L2(Tn) ∀t ∈ I.

(5.2)

According to Definition 4.19 and Remark 4.20 we can compute the Itô-Stratonovich
correction terms using the formula

dQ(∇u) = . . . dt+
∑︂
l

v(∇u) · ∇
(︁
φlQ(∇u)

)︁
◦ dβl

and infer that (5.2) is equivalent to the Itô formulation

u(t)− u0 =
∫︂ t

0
Q(∇u(s))∇·

(︁
v(∇u(s))

)︁
+ 1

2
∑︂
l

φlv(∇u(s)) · ∇
(︁
φlQ(∇u(s))

)︁
ds

+
∑︂
l

∫︂ t

0
Q(∇u(s))φl dβl(s) P-a.s. in L2(Tn) ∀t ∈ I.

(5.3)

Note that the above equation is well-defined since for u ∈ L2(Ω;L2(0, t;H2(Tn)))
it holds

Q(∇u)∇·
(︁
v(∇u)

)︁
= ∆u− v(∇u) ·D2uv(∇u) ∈ L2(Ω;L2(0, t;L2(Tn))),∑︂

l∈N
φlv(∇u) · ∇(φlQ(∇u)) ∈ L2(Ω;L2(0, t;L2(Tn))) and

(φlQ(∇u))l∈N ∈ L2(Ω;L2(0, t; ℓ2(H1(Tn)))).

Proposition 4.28 implies that a martingale solution u has a modification with
continuous paths in H1(Tn) and u ∈ L2(Ω;C([0, t];H1(Tn))) for all t ∈ I.
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Remark 5.4 (Spatially homogeneous noise). The spatially homogeneous noise
case refers to φ1 ≡ α ∈ (−

√
2,
√

2) and φl = 0 for l ≥ 2. Note that this particular
situation is included in Assumptions 5.2. In this situation we will write β := β1.

The Itô formulation (5.3) becomes

du = Q(∇u)∇·
(︁
v(∇u)

)︁
+ 1

2α
2v(∇u) ·D2uv(∇u) dt+ αQ(∇u) dβ

=
(︄

1− α2

2

)︄
Q(∇u)∇·

(︁
v(∇u)

)︁
+ α2

2 ∆udt+ αQ(∇u) dβ.

When the noise coefficient is in the admissible range α ∈ (−
√

2,
√

2), the determin-
istic part of this equation is a convex combination of the mean curvature operator
Q(∇u)∇·

(︁
v(∇u)

)︁
and the Laplace operator. In fact,

(︂
1− α2

2

)︂
Q(∇u)∇·

(︁
v(∇u)

)︁
+

α2

2 ∆u is a strongly elliptic operator. But as the equation is perturbed by multi-
plicative gradient-dependent noise, this does not imply that (5.3) is a coercive
equation in the sense of Assumptions 4.31.

In the next theorem we will state the existence result for graphical SMCF.
Theorem 5.5. Let Λ be a Borel probability measure on H1(Tn) with∫︂

H1(Tn)
∥z∥2H1(Tn) dΛ(z) <∞ and

∫︂
H1(Tn)

∥∇z∥6L6(Tn) dΛ(z) <∞.

Then, under Assumptions 5.2, there is a martingale solution u of (5.1) for
I = [0,∞) with initial data Λ.

As mentioned above, equation (5.1) is not a coercive variational SPDE in
the sense of Assumptions 4.31 preventing to directly infer Theorem 5.5 using a
Galerkin scheme. Instead, we employ a different method that is based on a-priori
bounds, which we will derive in Section 5.2 using the abstract Itô formula for
variational SPDEs from Proposition 4.28.

The a-priori bounds imply that any solution of (5.1) with sufficiently regular
initial data does not explode. In order to use this result for an existence proof, we
need to construct a suitable sequence of functions (uε)ε>0 such that this sequence
approximates (5.1) and preserves the a-priori bounds. Once such a sequence is
constructed, we can use the a-priori bounds to apply a stochastic compactness
principle and deduce the existence of a limit of uε for ε→ 0. In the last step we
will show that the a-priori bounds imply that the limit is sufficiently regular and
the convergence is strong enough in order to identify the limit as a solution of
(5.1).

We will construct the approximating sequence by solving for ε > 0 the so-called
viscous equation

du = ε∆u+ Q(∇u)∇·
(︁
v(∇u)

)︁
dt+

∑︂
l

Q(∇u)φl ◦ dβl, (5.4)
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5. Existence of solutions for graphical SMCF

which differs from (5.1) by the additional viscosity term ε∆u. We will show in
Section 5.1 that the viscous equation (5.4) is a coercive variational SPDE and
therefore existence can be deduced from Theorem 4.34.

Before going into the details, we want to show the computations that assure
the a-priori bounds for solutions of (5.1).

Remark 5.6 (A-priori bounds). We want to consider the slightly more general
case of stochastic mean curvature flow in which the noise coefficients might depend
on the height of the function. To this end let u be a solution of

du = Q(∇u)∇·
(︁
v(∇u)

)︁
dt+

∑︂
l

ηl(·, u)Q(∇u) ◦ dβl

where the coefficients ηl = ηl(x, z) are assumed to be smooth. We recover our
standard equation (5.1) for ηl(x, z) = φl(x).

In the following we will denote by ∇xη the gradient of η with respect to the x
variable and by ∂zη the derivative with respect to the z variable. For the gradient
of the composed function η(·, u) we will write ∇η = ∇(η(·, u)) = ∇xη + ∂zη∇u.

For a function f : Rn → [0,∞) we want to analyze the time evolution of the
corresponding gradient-dependent energy

E(u) :=
∫︂
Tn
f(∇u).

Formally the chain rule applies when using the Stratonovich formulation of
stochastic integration. In our case this yields

dE(u) =
∫︂
Tn
∇f(∇u) · ∇

⎛⎝Q(∇u)∇·
(︁
v(∇u)

)︁
dt+

∑︂
l

ηlQ(∇u) ◦ dβl
⎞⎠ .

In particular, we are interested in the evolution of the expectation EE(u). Note
that, at least under suitable assumptions, a stochastic integral in the sense of
Itô does not contribute to the expectation. In order to use this fact, we rewrite
the above evolution law of E(u) into its Itô formulation. For this we refer to
Remark 4.20 and compute

d
(︃
∇f(∇u) · ∇(ηlQ(∇u))

)︃
= ∇(ηlQ(∇u)) ·D2f(∇u)∇(◦du)

+∇f(∇u) · ∇(∂zηlQ(∇u) ◦ du+ ηlv(∇u) · ∇(◦du))

= . . . dt+
∑︂
m ̸=l

. . . ◦ dβm +
[︃
∇(ηlQ(∇u)) ·D2f(∇u)∇(ηlQ(∇u))

+∇f(∇u) · ∇
(︂
ηl∂zηlQ(∇u)2 + ηlv(∇u) · ∇

(︁
ηlQ(∇u)

)︁)︂ ]︃
◦ dβl.
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Hence, EE(u(T ))− EE(u(0)) = E
∫︁ T

0 µ(t) dt with

µ =
∫︂
Tn
∇f(∇u) · ∇

(︂
Q(∇u)∇·

(︁
v(∇u)

)︁)︂
+ 1

2
∑︂
l

∇f(∇u) · ∇
(︂
ηl∂zηlQ(∇u)2 + ηlv(∇u) · ∇

(︁
ηlQ(∇u)

)︁)︂
+ 1

2
∑︂
l

∇(ηlQ(∇u)) ·D2f(∇u)∇(ηlQ(∇u)).

Note that in deducing the expression for µ and EE(u(t)) we have not been
rigorous as we have not proven that the chain rule holds for the Stratonovich
differential in our situation. Furthermore, we can not justify that the assumptions
of Remark 4.20 are fulfilled in order to compute the Itô-Stratonovich correction
terms. We will fix these issues later by using the Itô formulation (5.3) of graphical
SMCF and using the Itô formula from Corollary 4.30, which holds for a solution
of (5.3) in the sense of Remark 5.3.

In addition, we have not been rigorous why the Itô integral can be neglected
when taking the expectation. Because of the integrability of the integrand we can
only infer by Definition 4.14 that the Itô integral is a local martingale.

It is worth mentioning, that the following manipulations of µ are rigorous for
all u ∈ H2(Tn) for sufficiently smooth f , i.e. f ∈ C2(Rn) with bounded second
derivatives, and sufficiently regular noise coefficients (ηl)l∈N. In particular height-
independent noise coefficients ηl(x, z) = φl(x) with (φl)l∈N as in Assumptions 5.2
are admissible.

For notational convenience we will use the Einstein summation convention,
i.e. we will sum over all indices appearing twice. For example, we will abbreviate
Ψ := 1− η2

l
2 = 1−∑︁l∈N

η2
l
2 .

Note that

Q(∇u)∇·
(︁
v(∇u)

)︁
+ 1

2ηlv(∇u) · ∇(ηlQ(∇u))

= ΨQ(∇u)∇·
(︁
v(∇u)

)︁
+ 1

2η
2
l ∆u+ 1

2ηl∇u · ∇ηl.

Hence, with the notation

µmcf :=
∫︂
Tn

Ψ∇f(∇u) · ∇
(︂
Q(∇u)∇·

(︁
v(∇u)

)︁)︂
+ f(∇u)∂zΨQ(∇u)∇·

(︁
v(∇u)

)︁
,

µnoise :=
∫︂
Tn
∇f(∇u) · ∇

(︂
η2
l ∆u+ ηl∂zηlQ(∇u)2 + ηl∇u · ∇ηl

)︂
+ 2Q(∇u)∇·

(︁
v(∇u)

)︁ (︁
∇f(∇u) · ∇Ψ− f(∇u)∂zΨ

)︁
+∇(ηlQ(∇u)) ·D2f(∇u)∇(ηlQ(∇u))
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5. Existence of solutions for graphical SMCF

we have

µ = µmcf + 1
2µnoise.

The choice of µmcf is motivated by the fact that it is the directional derivative of
u ↦→

∫︁
Tn Ψf(∇u) into the direction Q(∇u)∇·

(︁
v(∇u)

)︁
. Therefore, it has the same

structure as the time derivative of
∫︁
Tn Ψf(∇u) for solutions of the unperturbed

mean curvature flow of graphs. This interpretation gives us the hint to handle µmcf
similarly to the way time-dependent test functions are handled in the deterministic
case, c.f. [Eck04, Proposition 4.6]. To this end, we will rewrite µmcf and also µnoise
using integration by parts. Note that there will be no boundary terms appearing
because of the periodicity of u.

Motivated by Remark 3.11 we will artificially add and subtract the term
f(∇u)Ψ|∇·

(︁
v(∇u)

)︁
|2 to µmcf and integrate by parts, i.e.

µmcf =
∫︂
Tn
−f(∇u)Ψ|∇·

(︁
v(∇u)

)︁
|2 + Ψ∇·

(︁
v(∇u)

)︁
∇·
(︁
f(∇u)v(∇u)

)︁
−Ψ∇·

(︁
v(∇u)

)︁
v(∇u) ·D2u∇f(∇u)

−Ψ∇·
(︁
v(∇u)

)︁
∇·
(︁
Q(∇u)∇f(∇u)

)︁
+ Ψ∇·

(︁
v(∇u)

)︁
∇f(∇u) ·D2uv(∇u)

−Q(∇u)∇·
(︁
v(∇u)

)︁
∇f(∇u) · ∇Ψ + f(∇u)∂zΨQ(∇u)∇·

(︁
v(∇u)

)︁
=
∫︂
Tn
−f(∇u)Ψ|∇·

(︁
v(∇u)

)︁
|2

+ Ψ∇·
(︁
v(∇u)

)︁
∇·
(︁
f(∇u)v(∇u)−Q(∇u)∇f(∇u)

)︁
−Q(∇u)∇·

(︁
v(∇u)

)︁
∇f(∇u) · ∇Ψ + f(∇u)∂zΨQ(∇u)∇·

(︁
v(∇u)

)︁
.

We will rewrite the second term by integration by parts

µmcf =
∫︂
Tn
−f(∇u)Ψ|∇·

(︁
v(∇u)

)︁
|2

−∇·
(︁
v(∇u)

)︁
∇Ψ ·

(︁
f(∇u)v(∇u)−Q(∇u)∇f(∇u)

)︁
+∇Ψ ·D

(︁
v(∇u)

)︁ (︁
f(∇u)v(∇u)−Q(∇u)∇f(∇u)

)︁
+ Ψ D

(︁
v(∇u)

)︁T : D
(︁
f(∇u)v(∇u)−Q(∇u)∇f(∇u)

)︁
−Q(∇u)∇·

(︁
v(∇u)

)︁
∇f(∇u) · ∇Ψ + f(∇u)∂zΨQ(∇u)∇·

(︁
v(∇u)

)︁
and note that two terms cancel out

µmcf =
∫︂
Tn
−f(∇u)Ψ|∇·

(︁
v(∇u)

)︁
|2 − f(∇u)∇·

(︁
v(∇u)

)︁
∇Ψ · v(∇u)

+∇Ψ ·D
(︁
v(∇u)

)︁ (︁
f(∇u)v(∇u)−Q(∇u)∇f(∇u)

)︁
+ Ψ D

(︁
v(∇u)

)︁T :
(︂
f(∇u) D

(︁
v(∇u)

)︁
−Q(∇u) D2f(∇u) D2u

)︂
+ f(∇u)∂zΨQ(∇u)∇·

(︁
v(∇u)

)︁
.
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Now, after one more integration by parts in the second line and completing the
square, we infer

µmcf =
∫︂
Tn
−f(∇u)Ψ|∇·

(︁
v(∇u)

)︁
|2 − f(∇u)∇·

(︁
v(∇u)

)︁
∇Ψ · v(∇u)

+ f(∇u)∆Ψ− f(∇u)v(∇u) ·D2Ψv(∇u)
− f(∇u)∇Ψ · v(∇u)∇·

(︁
v(∇u)

)︁
+ Ψ D

(︁
v(∇u)

)︁T :
(︂
f(∇u) D

(︁
v(∇u)

)︁
−Q(∇u) D2f(∇u) D2u

)︂
+ f(∇u)∂zΨQ(∇u)∇·

(︁
v(∇u)

)︁
=
∫︂
Tn
−f(∇u)Ψ

⃓⃓⃓⃓
⃓∇·(︁v(∇u)

)︁
+ ∇Ψ · v(∇u)

Ψ

⃓⃓⃓⃓
⃓
2

+ f(∇u)
⃓⃓
∇Ψ · v(∇u)

⃓⃓2
Ψ

+ f(∇u)
(︂
∆Ψ− v(∇u) ·D2Ψv(∇u) + ∂zΨQ(∇u)∇·

(︁
v(∇u)

)︁)︂
+ Ψ D

(︁
v(∇u)

)︁T :
(︂
f(∇u) D

(︁
v(∇u)

)︁
−Q(∇u) D2f(∇u) D2u

)︂
.

Later, we will show that f can be chosen such that the last term is non-positive.
Let us repeat the definition of µnoise:

µnoise =
∫︂
Tn
∇f(∇u) · ∇

(︂
η2
l ∆u+ ηl∂zηlQ(∇u)2 + ηl∇u · ∇ηl

)︂
+ 2Q(∇u)∇·

(︁
v(∇u)

)︁ (︁
∇f(∇u) · ∇Ψ− f(∇u)∂zΨ

)︁
+∇(ηlQ(∇u)) ·D2f(∇u)∇(ηlQ(∇u)).

By combining terms in the first line we infer

µnoise =
∫︂
Tn
∇f(∇u) · ∇

(︃
∇·
(︂
η2
l∇u

)︂
− ηl∇u · ∇ηl + ηl∂zηlQ(∇u)2

)︃
+ 2Q(∇u)∇·

(︁
v(∇u)

)︁ (︁
∇f(∇u) · ∇Ψ− f(∇u)∂zΨ

)︁
+∇(ηlQ(∇u)) ·D2f(∇u)∇(ηlQ(∇u)).

We rewrite this expression by integration by parts and note that two terms cancel
out, i.e.

µnoise =
∫︂
Tn
−η2

l D2f(∇u) D2u :D2u−∇f(∇u) · ∇
(︂
ηl∇u · ∇ηl − ηl∂zηlQ(∇u)2

)︂
+ 2Q(∇u)∇·

(︁
v(∇u)

)︁ (︁
∇f(∇u) · ∇Ψ− f(∇u)∂zΨ

)︁
+ η2

l v(∇u) ·D2uD2f(∇u) D2uv(∇u) + Q(∇u)2∇ηl ·D2f(∇u)∇ηl.

Note that

Q(∇u) D
(︁
v(∇u)

)︁
= D2u− v(∇u)⊗D2uv(∇u) and

∇u · ∇ηl = ∇u · ∇xηl + |∇u|2∂zηl,
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5. Existence of solutions for graphical SMCF

hence

µnoise =
∫︂
Tn
−η2

l Q(∇u) D2f(∇u) D2u : D
(︁
v(∇u)

)︁T
−∇f(∇u) · ∇ (ηl∇u · ∇xηl − ηl∂zηl)
+ 2Q(∇u)∇·

(︁
v(∇u)

)︁ (︁
∇f(∇u) · ∇Ψ− f(∇u)∂zΨ

)︁
+ Q(∇u)2∇ηl ·D2f(∇u)∇ηl.

The second term can be further simplified by

−
∫︂
Tn
∇f(∇u) · ∇ (ηl∇u · ∇xηl − ηl∂zηl)

=
∫︂
Tn
−∇(f(∇u)) · (ηl∇xηl)−∇u ·D(ηl∇xηl)∇f(∇u) +∇f(∇u) · ∇(ηl∂zηl)

=
∫︂
Tn
f(∇u)∇·(ηl∇xηl)−∇u ·D(ηl∇xηl)∇f(∇u) +∇f(∇u) · ∇(ηl∂zηl).

By Ψ = 1− η2
l
2 we infer

µnoise =
∫︂
Tn
−η2

l Q(∇u) D2f(∇u) D2u : D
(︁
v(∇u)

)︁T − f(∇u)∇·∇xΨ

+∇u ·D∇xΨ∇f(∇u)−∇f(∇u) · ∇∂zΨ
+ 2Q(∇u)∇·

(︁
v(∇u)

)︁ (︁
∇f(∇u) · ∇Ψ− f(∇u)∂zΨ

)︁
+ Q(∇u)2∇ηl ·D2f(∇u)∇ηl.

Combining the computations for µmcf and µnoise we infer

µ =
∫︂
Tn
−f(∇u)Ψ

⃓⃓⃓⃓
⃓∇·(︁v(∇u)

)︁
+ ∇Ψ · v(∇u)

Ψ

⃓⃓⃓⃓
⃓
2

+ Q(∇u)∇·
(︁
v(∇u)

)︁
∇f(∇u) · ∇Ψ + f(∇u)

⃓⃓
∇Ψ · v(∇u)

⃓⃓2
Ψ

+ D
(︁
v(∇u)

)︁T :
(︂
Ψf(∇u) D

(︁
v(∇u)

)︁
−Q(∇u) D2f(∇u) D2u

)︂
+ f(∇u)

(︃
∆Ψ− v(∇u) ·D2Ψv(∇u)− 1

2∇·∇xΨ
)︃

+ 1
2∇f(∇u) ·

(︂
DT ∇xΨ∇u−∇∂zΨ

)︂
+ 1

2Q(∇u)2∇ηl ·D2f(∇u)∇ηl.
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Completing the square gives

µ =
∫︂
Tn
−f(∇u)Ψ

⃓⃓⃓⃓
⃓⃓⃓∇·(︁v(∇u)

)︁
+
∇Ψ ·

(︂
f(∇u) · v(∇u)− 1

2Q(∇u)∇f(∇u)
)︂

f(∇u)Ψ

⃓⃓⃓⃓
⃓⃓⃓
2

+ D
(︁
v(∇u)

)︁T :
(︂
Ψf(∇u) D

(︁
v(∇u)

)︁
−Q(∇u) D2f(∇u) D2u

)︂

+

⃓⃓⃓⃓
∇Ψ ·

(︂
f(∇u)v(∇u)− 1

2Q(∇u)∇f(∇u)
)︂⃓⃓⃓⃓2

f(∇u)Ψ

+ f(∇u)
(︃

∆Ψ− v(∇u) ·D2Ψv(∇u)− 1
2∇·∇xΨ

)︃
+ 1

2∇f(∇u) ·
(︂
DT ∇xΨ∇u−∇∂zΨ

)︂
+ 1

2Q(∇u)2∇ηl ·D2f(∇u)∇ηl.

Note that the first term is non-negative. The second term can be written as

D
(︁
v(∇u)

)︁T :
(︂
Ψf(∇u) D

(︁
v(∇u)

)︁
−Q(∇u) D2f(∇u) D2u

)︂
= D2uA(∇u) : B(∇u) D2u

Q(∇u)2

with
A(∇u) = Id−v(∇u)⊗ v(∇u),
B(∇u) = Ψf(∇u)

(︁
Id−v(∇u)⊗ v(∇u)

)︁
−Q(∇u)2 D2f(∇u).

The matrix A is non-negative and under suitable assumptions on f the matrix
B will be non-positive. Together with Lemma C.2 this implies that the whole
second term is non-positive.

In the general case the other terms might contain second order derivatives of u
for which we do not know if they are controlled by the good terms. But when we
consider the situation where the noise coefficients do not depend on the height,
i.e. ηl(x, z) = φl(x), then the above expression for µ reduces to

µ =
∫︂
Tn
−f(∇u)Ψ

⃓⃓⃓⃓
⃓∇·(︁v(∇u)

)︁
+
∇Ψ·

(︂
f(∇u)·v(∇u)− 1

2Q(∇u)∇f(∇u)
)︂

f(∇u)Ψ

⃓⃓⃓⃓
⃓
2

+ D
(︁
v(∇u)

)︁T :
(︂
Ψf(∇u) D

(︁
v(∇u)

)︁
−Q(∇u) D2f(∇u) D2u

)︂

+

⃓⃓⃓⃓
∇Ψ ·

(︂
f(∇u)v(∇u)− 1

2Q(∇u)∇f(∇u)
)︂⃓⃓⃓⃓2

f(∇u)Ψ

+ f(∇u)
(︃1

2∆Ψ− v(∇u) ·D2Ψv(∇u)
)︃

+ 1
2∇f(∇u) ·D2Ψ∇u+ 1

2Q(∇u)2∇φl ·D2f(∇u)∇φl.

(5.5)
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5. Existence of solutions for graphical SMCF

In this equation, the third to sixth term do not contain second order derivatives
of u.

In order to derive a-priori bounds using the representation (5.5) of µ we will
choose f such that the first two terms are non-positive and the other terms can
be controlled by E(u). An a-priori bound for E(u) is then a consequence of the
Gronwall lemma.

As mentioned before, in order to employ the a-priori bounds we will construct
an approximating sequence (uε) solving for ε > 0 the viscous equation (5.4).
That means, that we are constructing a solution of (5.1) utilizing the vanishing
viscosity method, which is the foundation of the deterministic viscosity theory for
first-order PDEs. It therefore has to be emphasized that the notion of solution
from Remark 5.3 does not coincide with the notion of stochastic viscosity solutions
in the sense of [LS98a].

5.1. Existence of viscous approximation

In this section we will show how to infer existence for the viscous equation (5.4)
by interpreting it as a variational SPDE in the sense of Section 4.3.

Theorem 5.7. Let ε > 0, q > 2 and Λ be a Borel probability measure on H1(Tn)
with ∫︂

H1(Tn)
∥z∥2H1(Tn) dΛ(z) <∞ and

∫︂
H1(Tn)

∥∇z∥qL2(Tn) dΛ(z) <∞.

Then, under Assumptions 5.2, there is a martingale solution u of (5.4) for
I = [0,∞) with initial data Λ.

Proof. We intend to apply Theorem 4.34 in order to obtain a martingale solution
to the equation the gradient ∇u fulfills for u satisfying (5.4), which in turn gives
rise to a martingale solution to (5.4) itself. To this end, we will work with the
spaces

V := {∇u | u ∈ H2(Tn)} with ∥∇u∥V := ∥∇u∥H1(Tn;Rn),

H := {∇u | u ∈ H1(Tn)} with ∥∇u∥H := ∥∇u∥L2(Tn;Rn) and
U := ℓ2.

We have that V ⊂ H densely and compactly. Furthermore, we can identify
L2(U ;H) = ℓ2(H).
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5.1. Existence of viscous approximation

Using the Einstein summation convention we define the operators

Aε : V → V ′⟨︁
Aε(∇u),∇w

⟩︁
V ′,V

:= −
∫︂
Tn

(︃
ε∆u+ Q(∇u)∇·

(︁
v(∇u)

)︁
+ 1

2φlv(∇u) · ∇
(︁
φlQ(∇u)

)︁)︃
∆w

= −
∫︂
Tn

⎛⎝ε∆u+
(︄

1− φ2
l

2

)︄
Q(∇u)∇·

(︁
v(∇u)

)︁
+ φ2

l

2 ∆u+ 1
4∇(φ2

l ) · ∇u

⎞⎠∆w

and

B = (Bl)l∈N : V → ℓ2(H)
Bl(∇u) := ∇

(︁
φlQ(∇u)

)︁
= φl D2uv(∇u) + Q(∇u)∇φl.

We verify that the Assumptions 4.31 are fulfilled:

• Coercivity: The coercivity assumption is an assumption on the terms
appearing in the time evolution of ∥∇u∥2H for a solution ∇u. Since ∥∇u∥2H
and

∫︁
Tn Q(∇u)2 only differ by a constant, the term

2
⟨︁
Aε(∇u),∇u

⟩︁
V ′,V +

∑︂
l

∥Bl(∇u)∥2H

=
∫︂
Tn
−2
[︃
ε∆u+

(︄
1− φ2

l

2

)︄
Q(∇u)∇·

(︁
v(∇u)

)︁
+ φ2

l

2 ∆u+ 1
4∇(φ2

l ) · ∇u
]︃
∆u

+ φ2
l |D2uv(∇u)|2 + Q(∇u)2|∇φl|2 + 2Q(∇u)φl∇φl ·D2uv(∇u)

is up to the first part, which stems from the viscous approximation, exactly
the term we have rewritten in Remark 5.6 for f(∇u) = Q(∇u)2. Repeating
the computations yields

2
⟨︁
Aε(∇u),∇u

⟩︁
V ′,V +

∑︂
l

∥Bl(∇u)∥2H

=
∫︂
Tn
−2ε(∆u)2 −

(︄
1− φ2

l

2

)︄
|Q(∇u)∇·

(︁
v(∇u)

)︁
|2

+ Q(∇u) D
(︁
v(∇u)

)︁T :

⎛⎝(︄1− φ2
l

2

)︄
Q(∇u) D

(︁
v(∇u)

)︁
− 2 D2u

⎞⎠
− 1

4Q(∇u)2∆(φ2
l ) + Q(∇u)2|∇φl|2.
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5. Existence of solutions for graphical SMCF

Note that by Lemma C.2

Q(∇u) D
(︁
v(∇u)

)︁T :

⎛⎝(︄1− φ2
l

2

)︄
Q(∇u) D

(︁
v(∇u)

)︁
− 2 D2u

⎞⎠
= −D2u

(︁
Id−v(∇u)⊗ v(∇u)

)︁
:

⎛⎝(︄1 + φ2
l

2

)︄
Id +

(︄
1− φ2

l

2

)︄
v(∇u)⊗ v(∇u)

⎞⎠D2u

≤ 0.

Hence,

2
⟨︁
Aε(∇u),∇u

⟩︁
V ′,V +

∑︂
l

∥Bl(∇u)∥2H

≤ −2ε∥∇u∥2V + C
(︂
1 + ∥∇u∥2H

)︂
with a constant C = Cnoise that only depends on the coefficients (φl)l∈N, see
Assumptions 5.2. This proves that equation (5.4) is coercive in the sense of
(4.13).

• Growth bounds: There is a constant C = Cnoise such that

∥Aε(∇u)∥2V ′ ≤
⃦⃦⃦⃦
ε∆u+

(︄
1− φ2

l

2

)︄
Q(∇u)∇·

(︁
v(∇u)

)︁
+ φ2

l

2 ∆u+ 1
4∇(φ2

l ) · ∇u
⃦⃦⃦⃦2

L2(Tn)

≤ C(1 + ∥∇u∥2H1(Tn;Rn)),
∥B(∇u)∥2ℓ2(H) = ∥∇(φlQ(∇u))∥2L2(Tn;Rn) ≤ C(1 + ∥∇u∥2H1(Tn;Rn)),
∥B(∇u)∥2ℓ2(V ′) ≤ ∥φlQ(∇u)∥2L2(Tn) ≤ C(1 + ∥∇u∥2L2(Tn;Rn)).

• Continuity: When ∇uk ⇀ ∇u in V , then ∇uk → ∇u in H and therefore

v(∇uk) ·D2ukv(∇uk) = v(∇uk)⊗ v(∇uk) : D2uk

⇀ v(∇u)⊗ v(∇u) : D2u in L1(Tn)
= v(∇u) ·D2uv(∇u)

and since |v(∇uk)| ≤ 1 also

v(∇uk) ·D2ukv(∇uk) ⇀ v(∇u) ·D2uv(∇u) in L2(Tn).
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5.1. Existence of viscous approximation

The other terms in the definition of Aε(uk) are linear in uk, hence

Aε(uk)
∗
⇀ Aε(u) in V ′.

Similarly,

Bl(∇uk) = φl D2ukv(∇uk) + Q(∇uk)∇φl
⇀ φl D2uv(∇u) + Q(∇u)∇φl = Bl(u) in L2(Tn;Rn).

Hence, for all ∇w ∈ L2(Tn;Rn) by dominated convergence(︂⟨︁
Bl(uk),∇w

⟩︁
H

)︂
l∈N
→
(︂⟨︁
Bl(u),∇w

⟩︁
H

)︂
l∈N

in ℓ2.

Now, from Theorem 4.34 we can conclude that there is a martingale solution
∇u of

d∇u = ∇
(︃
ε∆u+ Q(∇u)∇·

(︁
v(∇u)

)︁
+ 1

2φlv(∇u) · ∇(φlQ(∇u))
)︃

dt

+
∑︂
l

∇
(︁
φlQ(∇u)

)︁
dβl

= ∇
(︂
ε∆u+ Q(∇u)∇·

(︁
v(∇u)

)︁)︂
dt+

∑︂
l

∇
(︁
φlQ(∇u)

)︁
◦ dβl in V ′

(5.6)

with initial data Λ ◦ ∇−1.
Next, we will show that (5.6) is not only fulfilled in V ′ but also in

(︂
H1(Tn;Rn)

)︂′
,

hence weak in the PDE sense. For an arbitrary ψ ∈ H1(Tn;Rn) we take the
Helmholtz decomposition ψ = ∇w + ϕ with w ∈ H2(Tn) and ϕ ∈ H1(Tn;Rn)
with ∇·ϕ = 0 and since both sides of the equation for ∇u are orthogonal to
divergence-free vector fields, we have for all t ∈ [0,∞)∫︂

Tn

(︁
∇u(t)−∇u(0)

)︁
· ψ =

∫︂ t

0

⟨︃
∇
(︂
Q(∇u(s))∇·

(︁
v(∇u(s))

)︁)︂
, ψ

⟩︃
(H1)′,H1

ds

+
∑︂
l

∫︂ t

0

∫︂
Tn
∇
(︁
φlQ(∇u(s))

)︁
· ψ ◦ dβl(s)

and therefore the equation for ∇u is also fulfilled in
(︂
H1(Tn;Rn)

)︂′
.

By eventually enriching the stochastic basis (Ω,F , (Ft)t∈I ,P) and using disin-
tegration theory, we find an F0-measurable H1(Tn)-valued random variable u0
with ∇u0 = ∇u(0) a.s. and Λ = P ◦ u−1

0 . Now, define for t ∈ [0,∞)

ũ(t) := u0 +
∫︂ t

0
Q(∇u(s))∇·

(︁
v(∇u(s))

)︁
ds+

∑︂
l

∫︂ t

0
φlQ(∇u(s)) ◦ dβl(s). (5.7)
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5. Existence of solutions for graphical SMCF

Note that by assumption u0 ∈ L2(Ω;L2(Tn)) and also for T ∈ [0,∞)

t ↦→
∫︂ t

0
Q(∇u(s))∇·

(︁
v(∇u(s))

)︁
ds ∈ L2(Ω;L2(0, T ;L2(Tn))) and

t ↦→
∑︂
l

∫︂ t

0
φlQ(∇u(s)) ◦ dβl(s) ∈ L2(Ω;L2(0, T ;L2(Tn))).

Hence, ũ ∈ L2(Ω;L2(0, T ;L2(Tn))). Furthermore

∇ũ(t) = ∇u0 +
∫︂ t

0
∇
(︂
Q(∇u(s))∇·

(︁
v(∇u(s))

)︁)︂
ds

+
∫︂ t

0
∇
(︁
φlQ(∇u(s))

)︁
◦ dβl(s) = ∇u(t) ∀t ∈ [0,∞) P-a.s.

and by (5.7) ũ is a martingale solution of (5.4).

5.2. Itô formula for solutions and a-priori estimates
In this section we will derive the evolution laws of certain energies, motivated by
the formal computations from Remark 5.6. With this evolution laws at hand, we
will prove a-priori estimates for solutions of (5.1) and (5.4). It will turn out that
these estimates yield uniform bounds in ε > 0 and also hold in the limit for ε = 0.

Note that a martingale solution of either (5.1) or (5.4) is a strong solution with
respect to the appropriate choices of probability space, Wiener process and initial
data, see Definition 4.32. The following results, in which we characterize the
properties of a strong solution, therefore also apply to martingale solutions in the
above sense.

5.2.1. Preliminary results

We will start by giving a motivating example which shows that the perimeter of
solutions is controlled.

Example 5.8. We know that the deterministic mean curvature flow can be
understood as the gradient flow of the perimeter functional. Hence, the natural
dissipation inequality implies that

∫︁
Tn Q(∇u) is decreasing for solutions of the

deterministic mean curvature flow.
We will show that this property is still valid for stochastic mean curvature flow

with spatially homogeneous noise. In the case of colored noise this is not true,
but at least we have a control of the perimeter.

Note that the following computations are similar to Remark 5.6. In particular,
we do not give rigorous arguments why the chain rule holds, how to pass from the
Stratonovich to the Itô formulation and why the Itô integral does not contribute to
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5.2. Itô formula for solutions and a-priori estimates

the expectation. This problems will be addressed in Lemma 5.9 and Lemma 5.10
below.

Formally, for a solution u of (5.1) it holds that

d
∫︂
Tn

Q(∇u) =
∫︂
Tn

v(∇u) · ∇
(︂
Q(∇u)∇·

(︁
v(∇u)

)︁
dt+ φlQ(∇u) ◦ dβl

)︂
,

which is by Remark 4.20 formally equivalent to the Itô formulation

d
∫︂
Tn

Q(∇u) =
∫︂
Tn

v(∇u) · ∇
(︃

Q(∇u)∇·
(︁
v(∇u)

)︁
+ 1

2φlv(∇u) · ∇(φlQ(∇u))
)︃

+ 1
2∇(φlQ(∇u)) · Id−v(∇u)⊗ v(∇u)

Q(∇u) ∇(φlQ(∇u)) dt

+ v(∇u) · ∇
(︁
φlQ(∇u)

)︁
dβl.

We will manipulate this term similar to Remark 5.6. In this particular situation,
terms can be combined differently in order to infer a more accessible expression.

Using integration by parts we infer

d
∫︂
Tn

Q(∇u) =
∫︂
Tn
−
(︄

1− φ2
l

2

)︄
Q(∇u)|∇·

(︁
v(∇u)

)︁
|2

+ v(∇u) · ∇
(︄
φ2
l

2 ∆u+ φl
2 ∇u · ∇φl

)︄

+ 1
2∇(φlQ(∇u)) · Id−v(∇u)⊗ v(∇u)

Q(∇u) ∇(φlQ(∇u)) dt

+ v(∇u) · ∇
(︁
φlQ(∇u)

)︁
dβl.

Note that

φ2
l

2 ∆u+ φl
2 ∇u · ∇φl = ∇·

(︄
φ2
l

2 ∇u
)︄
− 1

4∇u · ∇(φ2
l ).

Hence,

d
∫︂
Tn

Q(∇u) =
∫︂
Tn
−
(︄

1− φ2
l

2

)︄
Q(∇u)|∇·

(︁
v(∇u)

)︁
|2

− φ2
l

2 Q(∇u) D
(︁
v(∇u)

)︁T : D
(︁
v(∇u)

)︁
− 1

4v(∇u) · ∇(∇u · ∇(φ2
l ))

+ Q(∇u)
2 ∇φl ·

(︁
Id−v(∇u)⊗ v(∇u)

)︁
∇φl dt

+ v(∇u) · ∇
(︁
φlQ(∇u)

)︁
dβl.
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5. Existence of solutions for graphical SMCF

This can be further simplified to

d
∫︂
Tn

Q(∇u) =
∫︂
Tn
−
(︄

1− φ2
l

2

)︄
Q(∇u)|∇·

(︁
v(∇u)

)︁
|2

− φ2
l

2 Q(∇u) D
(︁
v(∇u)

)︁T : D
(︁
v(∇u)

)︁
+ 1

4Q(∇u)
(︂
∆(φ2

l )− v(∇u) ·D2(φ2
l )v(∇u)

)︂
+ 1

2Q(∇u)∇φl ·
(︁
Id−v(∇u)⊗ v(∇u)

)︁
∇φl dt

+ v(∇u) · ∇
(︁
φlQ(∇u)

)︁
dβl.

Now, we recover the deterministic case by setting φl = 0. That is,

∂t

∫︂
Tn

Q(∇u) = −
∫︂
Tn

Q(∇u)|∇·
(︁
v(∇u)

)︁
|2 ≤ 0.

Since the stochastic integral is a (local) martingale, we formally infer for spatially
homogeneous noise φ1(x) = α ∈ (−

√
2,
√

2) and φl = 0 for l ̸= 1 by Lemma C.2

∂t

(︃
E
∫︂
Tn

Q(∇u)
)︃

= −
(︄

1− α2

2

)︄
E
∫︂
Tn

Q(∇u)|∇·
(︁
v(∇u)

)︁
|2

− α2

2 E
∫︂
Tn

Q(∇u) D
(︁
v(∇u)

)︁T : D
(︁
v(∇u)

)︁
≤ 0.

In the general case we infer

∂t

(︃
E
∫︂
Tn

Q(∇u)
)︃
≤ E

∫︂
Tn

⎡⎣− (︄1− φ2
l

2

)︄
Q(∇u)|∇·

(︁
v(∇u)

)︁
|2

− φ2
l

2 Q(∇u) D
(︁
v(∇u)

)︁T : D
(︁
v(∇u)

)︁ ⎤⎦
+ CnoiseE

∫︂
Tn

Q(∇u)

and with a Gronwall argument we deduce that E
∫︁
Tn Q(∇u) grows at most

exponentially in time.
In geometric terms this last inequality yields for a constant C = Cnoise > 0

EHn(Mt) + E
∫︂ t

0

∫︂
Ms

⎡⎣(︄1− φ2
l

2

)︄
H2(s) + φ2

l

2 |A(s)|2
⎤⎦dHn ds

≤ eCtEHn(M0),

(5.8)

92



5.2. Itô formula for solutions and a-priori estimates

where Mt = graph u(t), H(t) is the mean curvature and |A(t)| the length of the
second fundamental form of Mt for t ≥ 0.

Although (5.8) is the natural energy estimate for stochastic mean curvature
flow, we will not use this estimate since stronger estimates are needed in order to
pass to the limit ε→ 0 in the viscous equation (5.4). Nevertheless, we will argue
similarly as in Example 5.8 to derive these stronger estimates.

In the next two Lemmas, we will justify the computations from Remark 5.6
under suitable assumptions on the energy. The abstract Itô formula Corollary 4.30
for variational SPDEs applies to our situation and yields the next Lemma.
Lemma 5.9. Let ε ≥ 0 and u be a strong solution of (5.4) on the time interval
I. For a function f ∈ C2(Rn) we consider the energy

E(t) :=
∫︂
Tn
f(∇u(t)), t ∈ I.

If the second derivatives of f are bounded then

dE =
∫︂
Tn
− εD2f(∇u) D2u : D2u

−
(︄

1− φ2
l

2

)︄
f(∇u)

⃓⃓⃓⃓
⃓⃓∇·(︁v(∇u)

)︁
−
∇(φ2

l ) ·
(︂
fv− 1

2Q∇f
)︂

(∇u)

2f(∇u)
(︃

1− φ2
l

2

)︃
⃓⃓⃓⃓
⃓⃓
2

+ D
(︁
v(∇u)

)︁T :

⎛⎝(︄1− φ2
l

2

)︄
f(∇u) D

(︁
v(∇u)

)︁
−Q(∇u) D2f(∇u) D2u

⎞⎠

+

⃓⃓⃓⃓
∇(φ2

l ) ·
(︂
f(∇u)v(∇u)− 1

2Q(∇u)∇f(∇u)
)︂⃓⃓⃓⃓2

4f(∇u)
(︃

1− φ2
l

2

)︃
− 1

2f(∇u)
(︃1

2∆(φ2
l )− v(∇u) ·D2(φ2

l )v(∇u)
)︃

− 1
4∇f(∇u) ·D2(φ2

l )∇u+ 1
2Q(∇u)2∇φl ·D2f(∇u)∇φl dt

+∇f · ∇
(︁
φlQ(∇u)

)︁
dβl.

Note that the integral on the right hand side is finite.

Proof. We can apply Corollary 4.30 to infer

dE =
∫︂
Tn
−∇·(∇f(∇u))

(︃
ε∆u+ Q(∇u)∇·

(︁
v(∇u)

)︁
+ 1

2φlv(∇u) · ∇
(︁
φlQ(∇u)

)︁)︃
+ 1

2∇(φlQ(∇u)) ·D2f(∇u)∇(φlQ(∇u)) dt

+∇f(∇u) · ∇(φlQ(∇u)) dβl.
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5. Existence of solutions for graphical SMCF

With the justification of this evolution law at hand, we can use the rigorous
manipulations of the deterministic term from Remark 5.6 to deduce the claimed
expression for dE.

Since f grows at most quadratically and ∇f grows at most linearly and
u ∈ L2(Ω;L2(0, t;H2(Tn))) for all t ∈ I, we infer that the integral on the right
hand side is finite.

By specializing Lemma 5.9 to the case f(∇u) = g(Q(∇u)) we find, under
suitable assumptions on g, a whole family of energies which can be controlled
during the stochastic mean curvature flow. Note that by Remark 5.3 a solution u
of (5.4) has continuous paths in H1(Tn), i.e. u ∈ L2(Ω;C([0, t];H1(Tn))) for all
t ∈ I. Therefore u(0) ∈ H1(Tn) is well-defined, in particular for ε = 0.

Lemma 5.10. Let ε ≥ 0 and u be a strong solution of (5.4) on the time interval
I. Furthermore let g ∈ C2(R≥1) with

• g is increasing and convex, i.e. g′, g′′ ≥ 0,

• there is a constant p ≥ 2 such that z ↦→ g′(z)
zp−1 is decreasing and

• 0 < g′(1)
p ≤ g(1) ≤ g′(1).

Then we can estimate the energy

E(t) :=
∫︂
Tn
g(Q(∇u(t))), t ∈ I

by

EE(t) + E
∫︂ t

0

∫︂
Tn

(︂
Q(∇u)g′(Q(∇u))− g(Q(∇u))

)︂
D
(︁
v(∇u)

)︁T : D
(︁
v(∇u)

)︁
ds

≤ eC(p2+1)tEE(0) ∀t ∈ I
(5.9)

with a constant C = Cnoise that only depends on the coefficients (φl)l∈N, see
Assumptions 5.2. Furthermore, the integral on the left hand side of the above
inequality is non-negative.

Proof. We will start by deriving some properties of the function g.
Since g′(z)

zp−1 is decreasing we infer

g′′(z)z − (p− 1)g′(z) ≤ 0 ∀z ∈ R≥1.

Furthermore, we have(︂
g′(z)z − pg(z)

)︂′
= g′′(z)z − (p− 1)g′(z) ≤ 0
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and g′(1)− pg(1) ≤ 0. Hence,

g′(z)z − pg(z) ≤ 0 ∀z ∈ R≥1.

Similarly, we have

(g′(z)z − g(z))′ = g′′(z)z ≥ 0

and g′(1)− g(1) ≥ 0. This implies

g′(z)z − g(z) ≥ 0 ∀z ∈ R≥1.

We intend to apply Lemma 5.9 to the function f(∇u) = g(Q(∇u)). We compute

∇f(∇u) = g′(Q(∇u))v(∇u) and

D2f(∇u) = g′(Q(∇u))
Q(∇u) Id−

(︄
g′(Q(∇u))

Q(∇u) − g′′
)︄

v(∇u)⊗ v(∇u).

Furthermore, we have

f(∇u)v(∇u)− 1
2Q(∇u)∇f(∇u) =

(︃
g(Q(∇u))− 1

2Q(∇u)g′(Q(∇u))
)︃

v(∇u)

and (︄
1− φ2

l

2

)︄
f(∇u) D

(︁
v(∇u)

)︁
−Q(∇u) D2f(∇u) D2u

=

⎛⎝(︄1− φ2
l

2

)︄
g(Q(∇u))−Q(∇u)g′(Q(∇u))

⎞⎠D
(︁
v(∇u)

)︁
− g′′(Q(∇u))v(∇u)⊗D2uv(∇u).

From the fact that

Id−v(∇u)⊗ v(∇u) ≥ 0

we infer D2f(∇u) ≥ 0 and with Lemma C.2

D2f(∇u) D2u : D2u ≥ 0.

Lemma C.2 also implies

D
(︁
v(∇u)

)︁T : D
(︁
v(∇u)

)︁
≥ 0.

Hence, we have already proven that the integral on the left hand side of (5.9)
is non-negative.
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To verify the assumptions of Lemma 5.9 we first have to additionally assume
that g′′ is bounded. Then g′ grows at most linearly and D2f is bounded. The
above calculations and Lemma 5.9 imply

dE ≤
∫︂
Tn

(︂
g(Q(∇u))−Q(∇u)g′(Q(∇u))

)︂
D
(︁
v(∇u)

)︁T : D
(︁
v(∇u)

)︁
+

(︂
g(Q(∇u))− 1

2Q(∇u)g′(Q(∇u))
)︂2 ⃓⃓⃓
∇(φ2

l ) · v(∇u)
⃓⃓⃓2

4g(Q(∇u))
(︃

1− φ2
l

2

)︃
− 1

4g(Q(∇u))∆(φ2
l )

+ 1
2

(︃
g(Q(∇u))− 1

2Q(∇u)g′(Q(∇u))
)︃

v(∇u) ·D2(φ2
l )v(∇u)

+ 1
2Q(∇u)g′(Q(∇u))|∇φl|2

− 1
2
(︂
g′(Q(∇u))Q(∇u)−Q(∇u)2g′′(Q(∇u))

)︂ ⃓⃓
∇φl · v(∇u)

⃓⃓2 dt

+ g′(Q(∇u))v(∇u) · ∇
(︁
φlQ(∇u)

)︁
dβl

≤
∫︂
Tn

[︃ (︂
g(Q(∇u))−Q(∇u)g′(Q(∇u))

)︂
D
(︁
v(∇u)

)︁T : D
(︁
v(∇u)

)︁
+ C(p2 + 1)g(Q(∇u))

]︃
dt

+
∫︂
Tn
g′(Q(∇u))v(∇u) · ∇

(︁
φlQ(∇u)

)︁
dβl,

with a constant C = Cnoise. In particular, we have used that

⃓⃓⃓
∇(φ2

l ) · v(∇u)
⃓⃓⃓2

1− φ2
l

2

≤

(︂∑︁
l∈N ∥φ2

l ∥C1(Tn)
)︂2

min
Tn

(︃
1−∑︁l∈N

φ2
l

2

)︃ ≤ Cnoise.

The stochastic integral defines a local martingale according to Definition 4.14,
therefore there is an increasing sequence (τn)n∈N of stopping times with τn → sup I
for n→∞, such that for all t ∈ I

EE(t ∧ τn) + E
∫︂ t∧τn

0

(︂
Q(∇u)g′(Q(∇u))− g(Q(∇u))

)︂
D
(︁
v(∇u)

)︁T :D
(︁
v(∇u)

)︁
ds

≤ EE(0) + C(p2 + 1)E
∫︂ t∧τn

0
E(s) ds.

And by pathwise continuity of u in H1(Tn), Fatou’s Lemma and monotone
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convergence we infer

EE(t) + E
∫︂ t

0

(︂
Q(∇u)g′(Q(∇u))− g(Q(∇u))

)︂
D
(︁
v(∇u)

)︁T : D
(︁
v(∇u)

)︁
ds

≤ EE(0) + C(p2 + 1)E
∫︂ t

0
E(s) ds.

Using Fubini’s theorem we can interchange the time integral and the expectation,
i.e.

EE(t) + E
∫︂ t

0

(︂
Q(∇u)g′(Q(∇u))− g(Q(∇u))

)︂
D
(︁
v(∇u)

)︁T : D
(︁
v(∇u)

)︁
ds

≤ EE(0) + C(p2 + 1)
∫︂ t

0
EE(s) ds.

The Gronwall Lemma implies

EE(t) + E
∫︂ t

0

(︂
Q(∇u)g′(Q(∇u))− g(Q(∇u))

)︂
D
(︁
v(∇u)

)︁T : D
(︁
v(∇u)

)︁
ds

≤ eC(p2+1)tEE(0).

In the last step we need to get rid of the additional assumption that g′′ is
bounded. Therefore let g be an arbitrary function fulfilling the assumptions from
Lemma 5.10.

Let η ∈ C∞
c (R) be a smooth cut-off function, i.e. 0 ≤ η ≤ 1 and η′(z) ≤ 0 for

z ≥ 1, with η(z) = 1 for all z ≤ 1. For M > 1 we abbreviate ηM (z) := η
(︂
z
M

)︂
and

define gM ∈ C2(R≥1) through

g′′
M (z) := g′′(z)ηM (z), z ∈ R≥1, g′

M (1) = g′(1), gM (1) = g(1).

Then g′′
M ≥ 0 and g′

M ≥ g′
M (1) = g′(1) ≥ 0. Furthermore it holds for all

z ∈ R≥1

g′′
M (z)z − (p− 1)g′

M (z) = g′′(z)ηM (z)z − (p− 1)
(︃
g′(1) +

∫︂ z

1
g′′(ξ)ηM (ξ) dξ

)︃
= g′′(z)ηM (z)z − (p− 1)

(︃
g′(z)ηM (z)−

∫︂ z

1
g′(ξ)η′

M (ξ) dξ
)︃

≤ 0.

That means that z ↦→ g′
M (z)
zp−1 is decreasing.

By construction the second derivative of g′′
M is bounded. Hence, we can apply

the above calculations to the function gM and infer

EEM (t) + E
∫︂ t

0

(︂
Q(∇u)g′

M (Q(∇u))− gM (Q(∇u))
)︂

D
(︁
v(∇u)

)︁T : D
(︁
v(∇u)

)︁
ds

≤ eC(p2+1)tEEM (0).
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5. Existence of solutions for graphical SMCF

By monotone convergence all the integrals in the above inequality converge for
M →∞ implying (5.9).

As a consequence of Lemma 5.10 we can estimate the Lp(Tn) norm of Q(∇u)
for solutions of (5.4).

Corollary 5.11. Let ε ≥ 0 and u be a strong solution of (5.4) on the time
interval I. There is a constant C = Cnoise that only depends on the coefficients
(φl)l∈N, see Assumptions 5.2, such that for p ≥ 2

E∥Q(∇u(t))∥pLp(Tn) + (p− 1)E
∫︂ t

0

∫︂
Tn

Q(∇u(s))p D
(︁
v(∇u(s))

)︁T :D
(︁
v(∇u(s))

)︁
ds

≤ eC(p2+1)tE∥Q(∇u(0))∥pLp(Tn) ∀t ∈ I.

Proof. This result is a direct consequence of Lemma 5.10 for g(z) = zp.

5.2.2. Uniform bounds for the viscous approximation

Corollary 5.11 is of great importance, because it also bounds the Hessian of a
solution in L2(Ω;L2(0, t;L2(Tn))), as we will show in the next theorem.

Theorem 5.12. Let ε ≥ 0 and u be a strong solution of (5.4) on the time interval
I. Then for all t ∈ I

E∥∇u(t)∥6L6(Tn) + 5E
∫︂ t

0
∥D2u(s)∥2L2(Tn) ds

≤ eCt
(︂
1 + E∥∇u(0)∥6L6(Tn)

)︂
with a constant C = Cnoise.

Proof. The smallest eigenvalue of A := Id−v(∇u) ⊗ v(∇u) is given by 1 −
|v(∇u)|2 = 1

Q(∇u)2 , hence by Lemma C.2

D
(︁
v(∇u)

)︁T : D
(︁
v(∇u)

)︁
= 1

Q(∇u)2 D2uA : AD2u ≥ 1
Q(∇u)6 |D

2u|2.

By Corollary 5.11 and |∇u| ≤ Q(∇u) ≤ |∇u|+ 1 we infer the claimed inequality.

The next theorem deals with the continuity of solutions in H1(Tn).

Theorem 5.13 (C([0, T ];H1(Tn)) bounds). Let ε ≥ 0 and u be a strong solution
of (5.4) on the time interval I = [0, T ]. Then

E sup
t∈[0,T ]

∥u(t)∥2H1(Tn) ≤ C
(︂
1 + E∥u(0)∥2L2(Tn) + E∥∇u(0)∥6L6(Tn)

)︂
eCT

with a constant C = Cnoise.
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5.2. Itô formula for solutions and a-priori estimates

Proof. We will start by deriving bounds for the gradient. Therefore, we choose
f(∇u) = 1

2Q(∇u)2 in Lemma 5.9. We infer similarly to the coercivity part of the
proof of Theorem 5.7

d
∫︂
Tn
|∇u|2 = d

∫︂
Tn

Q(∇u)2

=
∫︂
Tn
−2ε(∆u)2 −

(︄
1− φ2

l

2

)︄
|Q(∇u)∇·

(︁
v(∇u)

)︁
|2

+ Q(∇u) D
(︁
v(∇u)

)︁T :

⎛⎝(︄1− φ2
l

2

)︄
Q(∇u) D

(︁
v(∇u)

)︁
− 2 D2u

⎞⎠
− 1

4Q(∇u)2∆(φ2
l ) + Q(∇u)2|∇φl|2 dt

− 2φlQ(∇u)∆udβl

≤ C
(︂
1 + ∥∇u∥2L2(Tn)

)︂
dt− 2

∫︂
Tn
φlQ(∇u)∆udβl

with a constant C = Cnoise. Using the Burkholder-Davis-Gundy inequality from
Proposition 4.22 we infer for δ > 0 and T ′ ∈ [0, T ]

E sup
t∈[0,T ′]

⃓⃓⃓⃓ ∫︂ t

0

∫︂
Tn
φlQ(∇u(s))∆u(s) dβl(s)

⃓⃓⃓⃓

≤ E
(︄∫︂ T ′

0

⃓⃓⃓⃓∫︂
Tn
φlQ(∇u(t))∆u(t)

⃓⃓⃓⃓2
dt
)︄ 1

2

≤ CE
(︄∫︂ T ′

0
∥Q(∇u(t))∥2L2(Tn)∥∆u(t)∥2L2(Tn) dt

)︄ 1
2

≤ δE sup
t∈[0,T ′]

∥Q(∇u(t))∥2L2(Tn) + C

4δE
∫︂ T ′

0
∥∆u(t)∥2L2(Tn).

Hence, for δ = 1
4

E sup
t∈[0,T ′]

∥∇u(t)∥2L2(Tn) ≤ C
(︄

1 + E∥∇u(0)∥2L2(Tn) + E
∫︂ T ′

0
∥∆u(t)∥2L2(Tn) dt

)︄

+ CE
∫︂ T ′

0
∥∇u(t)∥2L2(Tn) dt.

The Gronwall lemma implies

E sup
t∈[0,T ]

∥∇u(t)∥2L2(Tn) ≤ C
(︄

1 + E∥∇u(0)∥2L2(Tn) + E
∫︂ T

0
∥∆u(t)∥2L2(Tn) dt

)︄
eCT
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5. Existence of solutions for graphical SMCF

and with Theorem 5.12
E sup
t∈[0,T ]

∥∇u(t)∥2L2(Tn) ≤ C
(︂
1 + E∥∇u(0)∥2L2(Tn) + E∥∇u(0)∥6L6(Tn)

)︂
eCT .

To continue, we will apply the Itô formula Corollary 4.30 to derive
1
2 d
∫︂
Tn
u2 =

∫︂
Tn
u

(︃
ε∆u+ Q(∇u)∇·

(︁
v(∇u)

)︁
+ 1

2φlv(∇u) · ∇(φlQ(∇u))
)︃

dt

+ uφlQ(∇u) dβl.
Similarly to the above estimates we infer

E sup
t∈[0,T ′]

∥u(t)∥2L2(Tn) ≤ E∥u(0)∥2L2(Tn) + E
∫︂ T ′

0
∥u(t)∥2L2(Tn) dt

+ CE
∫︂ T ′

0
∥D2u(t)∥2L2(Tn) dt+ CE

∫︂ T ′

0
∥Q(∇u(t))∥2L2(Tn) dt.

Again, the Gronwall lemma and Theorem 5.12 imply

E sup
t∈[0,T ]

∥u(t)∥2L2(Tn) ≤ C
(︂
1 + E∥u(0)∥2L2(Tn) + E∥∇u(0)∥6L6(Tn)

)︂
eCT .

5.3. Vanishing viscosity limit
The bounds from Section 5.2 at hand, we can apply an abstract result available
in the context of variational SPDEs stated in Theorem 4.37 to pass to the limit
ε→ 0 in (5.4) and infer the existence result Theorem 5.5.

Proof of Theorem 5.5. For ε > 0 let uε be a martingale solution of (5.4) with
initial data Λ, which exists according to Theorem 5.7. We adapt the notation
from the proof of Theorem 5.7. Let

V := {∇u | u ∈ H2(Tn)} with ∥∇u∥V := ∥∇u∥H1(Tn;Rn),

H := {∇u | u ∈ H1(Tn)} with ∥∇u∥H := ∥∇u∥L2(Tn;Rn) and
U := ℓ2.

Furthermore let
Aε : V → V ′⟨︁

Aε(∇u),∇w
⟩︁
V ′,V

:= −
∫︂
Tn

(︃
ε∆u+ Q(∇u)∇·

(︁
v(∇u)

)︁
+ 1

2φlv(∇u) · ∇
(︁
φlQ(∇u)

)︁)︃
∆w

= −
∫︂
Tn

⎛⎝ε∆u+
(︄

1− φ2
l

2

)︄
Q(∇u)∇·

(︁
v(∇u)

)︁
+ φ2

l

2 ∆u+ 1
4∇(φ2

l ) · ∇u

⎞⎠∆w
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5.3. Vanishing viscosity limit

and

B = (Bl)l∈N : V → ℓ2(H)
Bl(∇u) := ∇

(︁
φlQ(∇u)

)︁
= φl D2uv(∇u) + Q(∇u)∇φl.

Since the solutions uε are constructed with [Jak97, Theorem 2] we can fix one
probability space (Ω;F ;P) = ([0, 1];B([0, 1]),L) such that for all ε > 0 we can
find

• a normal filtration (Fεt )t∈[0,∞),

• a cylindrical Wiener process W ε on U , i.e. a generalized Wiener process
with covariance operator Id,

• a (Fεt )t-predictable process uε with uε ∈ L2(Ω;L2(0, T ;H2(Tn))) for all
T ∈ [0,∞)

such that

d∇uε = Aε(∇uε) dt+B(u) dW ε

and P ◦
(︁
uε(0)

)︁−1 = Λ.
From Theorem 5.12 and Theorem 5.13 we conclude that (∇uε)ε>0 is uniformly

bounded in

L2(Ω;C([0, T ];H)) ∩ L2(Ω;L2(0, T ;V )) ∩ L∞(0, T ;L6(Ω;H)).

In the proof of Theorem 5.7 we have already verified that the growth bounds
(4.14) and (4.16) hold uniformly in ε > 0. Furthermore the continuity assumption
(4.18) is fulfilled.

Now, let

A : V → V ′⟨︁
A(∇u),∇w

⟩︁
V ′,V

:= −
∫︂
Tn

(︃
Q(∇u)∇·

(︁
v(∇u)

)︁
+ 1

2φlv(∇u) · ∇
(︁
φlQ(∇u)

)︁)︃
∆w

= −
∫︂
Tn

⎛⎝(︄1− φ2
l

2

)︄
Q(∇u)∇·

(︁
v(∇u)

)︁
+ φ2

l

2 ∆u+ 1
4∇(φ2

l ) · ∇u

⎞⎠∆w.

The arguments in the proof of Theorem 5.7 show that A is weak-weak-∗
sequentially continuous. Furthermore, for a weakly convergent series ∇wε ∈ V
with ∇wε ⇀ ∇w in V it holds that

Aε(∇wε) = ε∇∆wε +A(∇wε) ∗
⇀ A(∇w) in V ′.
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5. Existence of solutions for graphical SMCF

Hence, from Theorem 4.37 we infer that there is a weak martingale solution ∇u of

d∇u = A(∇u) dt+B(∇u) dW

with initial data Λ ◦ ∇−1 and a cylindrical Wiener process W on U .
As in the proof of Theorem 5.7 this solution can be lifted to a martingale

solution u of (5.1) with initial data Λ.
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6. Uniqueness under a regularity
assumption

In this chapter we will show that sufficiently regular solutions of SMCF deviate
at most exponentially in time, cf. Theorem 1.2. For this, we have to assume that
the solutions are more regular than we have proven in Chapter 5.

As a consequence, we will also infer a pathwise uniqueness result. We will
refer to this result as a weak-strong uniqueness result, as it holds under the
mild regularity assumption of Lipschitz continuity for one of the solutions and
a strong regularity assumption for the other solution. In particular for spatially
homogeneous noise, we will show in Theorem 7.3 that the assumption of Lipschitz
continuity is always fulfilled, if the initial data is Lipschitz continuous.
Theorem 6.1 (Stability and pathwise uniqueness). For T > 0 let u1, u2 be strong
solutions of (5.1) on a common probability space with respect to the same Wiener
process. If Assumptions 5.2 hold and there is a constant M > 0 such that for all
t ∈ [0, T ]

∥∇u1(t)∥L∞(Tn) ≤M and ∥D2u2(t)∥L∞(Tn) ≤M a.s. (6.1)
then there are constants c0 = c0(M) > 0 and C = C(M,Cnoise) < ∞ such that
for all t ∈ [0, T ]

E∥∇u1(t)−∇u2(t)∥2L2(Tn) + c0E
∫︂ t

0
∥D2u1(s)−D2u2(s)∥2L2(Tn) ds

≤ eCtE∥∇u1(0)−∇u2(0)∥2L2(Tn).

If in addition u1(0) = u2(0) a.s. then u1 = u2 a.s. in C([0, T ];H1(Tn)).

Proof. From Corollary 4.30 we deduce that
1
2 d∥∇u1 −∇u2∥2L2(Tn) = µ dt+

∑︂
l∈N

σl dβl

with

µ :=
∫︂
Tn
−∆ (u1 − u2)

(︂
Q(∇u1)∇·

(︁
v(∇u1)

)︁
−Q(∇u2)∇·

(︁
v(∇u2)

)︁)︂
− 1

2φl∆ (u1 − u2)
(︂
v(∇u1) · ∇

(︁
φlQ(∇u1)

)︁
− v(∇u2) · ∇

(︁
φlQ(∇u2)

)︁)︂
+ 1

2
⃓⃓⃓
∇
(︁
φl(Q(∇u1)−Q(∇u2))

)︁⃓⃓⃓2
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6. Uniqueness under a regularity assumption

and

σl :=
∫︂
Tn
∇ (u1 − u2) · ∇

(︁
φl(Q(∇u1)−Q(∇u2))

)︁
, l ∈ N.

Using integration by parts and the periodicity of u1 and u2 we infer

µ =
∫︂
Tn
−
⃓⃓⃓
D2(u1 − u2)

⃓⃓⃓2
+
(︄
1− φ2

l

2

)︄
∆(u1 − u2)

(︂
v(∇u1) ·D2u1v(∇u1)− v(∇u2) ·D2u2v(∇u2)

)︂
− 1

4∆(u1 − u2)∇(φ2
l ) · ∇(u1 − u2) + 1

2φ
2
l

⃓⃓
∇(Q(∇u1)−Q(∇u2))

⃓⃓2
+ 1

2(Q(∇u1)−Q(∇u2))∇(φ2
l ) · ∇(Q(∇u1)−Q(∇u2))

+ 1
2(Q(∇u1)−Q(∇u2))2|∇φl|2.

We will continue with each term separately. Note that the first term is non-positive.
We rewrite the second term and estimate

∫︂
Tn

(︄
1− φ2

l

2

)︄
∆(u1 − u2)

(︂
v(∇u1) ·D2u1v(∇u1)− v(∇u2) ·D2u2v(∇u2)

)︂
=
∫︂
Tn

(︄
1− φ2

l

2

)︄
∆(u1 − u2)v(∇u1) ·D2(u1 − u2) v(∇u1)

+
(︄

1− φ2
l

2

)︄
∆(u1 − u2)

(︁
v(∇u1) + v(∇u2)

)︁
·D2u2

(︁
v(∇u1)− v(∇u2)

)︁
≤
∫︂
Tn

1
2

(︄
1− φ2

l

2

)︄(︁
∆(u1 − u2)

)︁2 + 1
2

(︄
1− φ2

l

2

)︄ ⃓⃓⃓
D2(u1 − u2)

⃓⃓⃓2 ⃓⃓
v(∇u1)

⃓⃓2
+ δ

2

(︄
1− φ2

l

2

)︄(︁
∆(u1 − u2)

)︁2
+ 1
δ

(︄
1− φ2

l

2

)︄
∥D2u2∥2L∞(Tn)|∇u1 −∇u2|2.

Note that for a smooth function ψ : Tn → R

∫︂
Tn
ψ
(︁
∆(u1 − u2)

)︁2 =
∫︂
Tn
ψ
⃓⃓⃓
D2(u1 − u2)

⃓⃓⃓2
− |∇(u1 − u2)|2∆ψ

+∇(u1 − u2) ·D2ψ∇(u1 − u2).

104



Hence, after choosing δ ≤ 1
2(1+M2) ≤ 1− ∥v(∇u1)∥2L∞(Tn) −

1
2(1+M2)∫︂

Tn

(︄
1− φ2

l

2

)︄
∆(u1 − u2)

(︂
v(∇u1) ·D2u1v(∇u1)− v(∇u2) ·D2u2v(∇u2)

)︂
≤
∫︂
Tn

(︄
1− 1

4(1 +M2)

)︄(︄
1− φ2

l

2

)︄ ⃓⃓⃓
D2(u1 − u2 )⃓⃓⃓

2
+ C(Cnoise,M)|∇u1 −∇u2|2.

For the third term we have

−
∫︂
Tn

∆(u1 − u2)∇(φ2
l ) · ∇(u1 − u2)

=
∫︂
Tn
∇(u1 − u2) ·D2(φ2

l )∇(u1 − u2)− 1
2∆(φ2

l )|∇(u1 − u2)|2

≤ Cnoise

∫︂
Tn
|∇u1 −∇u2|2.

The fourth term can be estimated by∫︂
Tn
φ2
l

⃓⃓
∇(Q(∇u1)−Q(∇u2))

⃓⃓2
=
∫︂
Tn
φ2
l

⃓⃓⃓
D2(u1 − u2)v(∇u1) + D2u2

(︁
v(∇u1)− v(∇u2)

)︁⃓⃓⃓2
≤
∫︂
Tn

(1 + δ)φ2
l ∥v(∇u1)∥2L∞(Tn)

⃓⃓⃓
D2(u1 − u2)

⃓⃓⃓2
+
(︃

1 + 1
δ

)︃
φ2
l ∥D2u2∥2L∞(Tn)|∇u1 −∇u2|2.

By choosing δ ≤ 3
4M2 ≤ 1

∥v(∇u1)∥2
L∞(Tn)

− 1− 1
4M2 we infer

∫︂
Tn
φ2
l

⃓⃓
∇(Q(∇u1)−Q(∇u2))

⃓⃓2
≤
∫︂
Tn

(︄
1− 1

4(1 +M2)

)︄
φ2
l

⃓⃓⃓
D2(u1 − u2)

⃓⃓⃓2
+ C(Cnoise,M)|∇u1 −∇u2|2.

Using the Lipschitz continuity of p ↦→ Q(p) we infer for the fifth and sixth term∫︂
Tn

1
2∇
(︂
(Q(∇u1)−Q(∇u2))2

)︂
· ∇(φ2

l ) + (Q(∇u1)−Q(∇u2))2|∇φl|2

≤
∫︂
Tn
Cnoise(Q(∇u1)−Q(∇u2))2 ≤

∫︂
Tn
Cnoise|∇u1 −∇u2|2.

Combining all these estimate we infer

µ ≤ −c0

∫︂
Tn

⃓⃓⃓
D2(u1 − u2)

⃓⃓⃓2
+ C(Cnoise,M)

∫︂
Tn
|∇u1 −∇u2|2
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6. Uniqueness under a regularity assumption

with c0 := 1
4(1+M2) .

Since the Itô integral defines a local martingale and by Fatou’s lemma, we infer
for all t ∈ [0, T ]

E∥∇u1(t)−∇u2(t)∥2L2(Tn) + c0E
∫︂ t

0
∥D2u1(s)−D2u2(s)∥2L2(Tn) ds

≤ E∥∇u1(0)−∇u2(0)∥2L2(Tn) + CE
∫︂ t

0
∥∇u1(s)−∇u2(s)∥2L2(Tn) ds.

The Gronwall lemma implies for all t ∈ [0, T ]

E∥∇u1(t)−∇u2(t)∥2L2(Tn) + c0E
∫︂ t

0
∥D2u1(s)−D2u2(s)∥2L2(Tn) ds

≤ eCtE∥∇u1(0)−∇u2(0)∥2L2(Tn).

Now, let us assume that u1(0) = u2(0) a.s. From the above estimate we infer
that for all t ∈ [0, T ] it holds that ∇u1(t) = ∇u2(t) a.s. and the a.s. pathwise
continuity of ∇u1,∇u2 in L2(Tn) implies ∇u1 = ∇u2 a.s. in C([0, T ];L2(Tn)).

Since u1 and u2 are solutions of (5.1) we also have for all t ∈ [0, T ]

u1(t) = u1(0) +
∫︂ t

0
Q(∇u1(s))∇·

(︁
v(∇u1(s))

)︁
ds+

∑︂∫︂ t

0
φlQ(∇u1(s)) ◦ dβl(s)

= u2(0) +
∫︂ t

0
Q(∇u2(s))∇·

(︁
v(∇u2(s))

)︁
ds+

∑︂∫︂ t

0
φlQ(∇u2(s)) ◦ dβl(s)

= u2(t) a.s.

Remark 6.2. It is an open problem whether the regularity assumptions (6.1)
always hold for solutions of (5.1) at least under some additional conditions on
the initial data.

Assuming this, the pathwise uniqueness derived in Theorem 6.1 can be used to
infer the uniqueness of the law of the solution process. For this purpose one can
use the same ideas as in the proof of the classical Yamada-Watanabe theorem
[YW71]. Instead of going into the technical details here we refer to [RSZ08] where
the Yamada-Watanabe theorem is proven in the setting of variational stochastic
partial differential equations. Furthermore we refer to [KS88, 5.3.D] and [RY91,
Theorem IX.1.7] for the proof of the Yamada-Watanabe theorem in the context
of finite-dimensional stochastic differential equations.

The described strategy would also yield the existence of a strong solution
of (5.1), i.e. a solution on a given probability space which has to be at least
rich enough to define a Wiener process W and a random variable u0 with the
prescribed initial law, which is independent of W .
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7. The case of spatially homogeneous
noise

In this chapter we consider (5.1) with spatially homogeneous noise, i.e.

du = Q(∇u)∇·
(︁
v(∇u)

)︁
dt+ αQ(∇u) ◦ dβ (7.1)

with α2 ∈ [0, 2) and a real-valued standard Brownian motion β.
Note that SMCF with spatially homogeneous noise has previously been con-

sidered among others by Dirr, Luckhaus and Novaga [DLN01] and Souganidis
and Yip [SY04], both proving a stochastic selection principle in the limit α→ 0.
The case of graphs has been analyzed for n = 1 by Es-Sarhir and von Renesse
[ESvR12] and for n = 2 by Hofmanová, Röger and von Renesse [HRvR17].

In Theorem 7.3 we will justify the argument from Example 3.12 and prove
that solutions of (7.1) preserve the Lipschitz constant of the initial data. The
analogue result for deterministic MCF of graphs was proven in [EH89]. As in
the deterministic case, we will use the Lipschitz bound to deduce a large-time
result in Theorem 7.5 that extends the large-time characterization for n = 1 from
[ESvR12] by providing a stronger convergence for T → ∞. Furthermore, the
large-time results holds in arbitrary dimensions.

In addition, we can adapt the ideas of the a-priori bounds from Chapter 5 to
derive estimates for higher-order derivatives.

7.1. Maximum principle for the gradient
Corollary 7.1. Let u be a strong solution of (7.1) on the time interval I and
f ∈ C2(Rn) with bounded second-order derivatives. For the energy

E(t) :=
∫︂
Tn
f(∇u(t)), t ∈ I

it holds that

dE =
∫︂
Tn

[︃
−
(︂
1− α2

2
)︂
f(∇u)

⃓⃓⃓
∇·
(︁
v(∇u)

)︁⃓⃓⃓2
+ D

(︁
v(∇u)

)︁T :
(︃(︂

1− α2

2
)︂
f(∇u) D

(︁
v(∇u)

)︁
−Q(∇u) D2f(∇u) D2u

)︃
dt

− f(∇u)∇·
(︁
v(∇u)

)︁
dβ
]︃
.

(7.2)
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7. The case of spatially homogeneous noise

Proof. This is a direct consequence of Lemma 5.9 and the identity

∫︂
Tn
∇f(∇u) · ∇

(︁
Q(∇u)

)︁
=
∫︂
Tn
∇
(︁
f(∇u)

)︁
· v(∇u) = −

∫︂
Tn
f(∇u)∇·

(︁
v(∇u)

)︁
.

Corollary 7.2. Let u be a strong solution of (7.1) on the time interval I = [0, T ]
and g ∈ C2(R≥1) such that g is non-negative, increasing and convex, i.e. g, g′, g′′ ≥
0, g′′ is bounded and g(1) ≤ g′(1).

Then for all t ∈ I we have that

E
∫︂
Tn
g(Q(∇u(t))) +

(︂
1− α2

2
)︂
E
∫︂ t

0

∫︂
Tn
g(Q(∇u(s)))

⃓⃓⃓
∇·
(︁
v(∇u(s))

)︁⃓⃓⃓2
ds

+ E
∫︂ t

0

∫︂
Tn

[︄(︃
Q(∇u(s))g′(Q(∇u(s)))−

(︂
1− α2

2
)︂
g(Q(∇u(s)))

)︃

·D
(︁
v(∇u(s))

)︁T : D
(︁
v(∇u(s))

)︁ ]︄
ds

+ E
∫︂ t

0

∫︂
Tn
g′′(Q(∇u(s)))

(︂
|D2u(s)v(∇u(s))|2−|v(∇u(s))·D2u(s)v(∇u(s))|2

)︂
ds

≤ E
∫︂
Tn
g(Q(∇u(0))),

with all integrals being positive. In particular,
∫︁
Tn g(Q(∇u)) is a non-negative

supermartingale.
Furthermore, for a constant C = C(α) > 0 we have that

E sup
t∈[0,T ]

∫︂
Tn
g(Q(∇u(t))) ≤ CE

∫︂
Tn
g(Q(∇u(0))).

Proof. The first part follows from Corollary 7.1 in the same way Lemma 5.10
follows from Lemma 5.9. Note that no Gronwall argument is needed since no
lower-order term appears in (7.2).

For the second part we note that by Corollary 7.1

E sup
t∈[0,T ]

∫︂
Tn
g(Q(∇u(t))) ≤ E sup

t∈[0,T ]

⃓⃓⃓⃓
⃓
∫︂ t

0

∫︂
Tn
g(Q(∇u(s)))∇·

(︁
v(∇u(s))

)︁
dβ(s)

⃓⃓⃓⃓
⃓
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7.2. Large-time behavior

and because of the Burkholder-Davis-Gundy inequality from Proposition 4.22

E sup
t∈[0,T ]

∫︂
Tn
g(Q(∇u(t)))

≤ CE
(︄∫︂ T

0

(︃∫︂
Tn
g(Q(∇u(t)))∇·

(︁
v(∇u(t))

)︁)︃2
dt
)︄ 1

2

≤ CE
(︄∫︂ T

0

[︃∫︂
Tn
g(Q(∇u(t)))

∫︂
Tn
g(Q(∇u(t)))

⃓⃓⃓
∇·
(︁
v(∇u(t))

)︁⃓⃓⃓2]︃
dt
)︄ 1

2

≤ 1
2E sup

t∈[0,T ]

∫︂
Tn
g(Q(∇u(t))) + CE

∫︂ T

0

∫︂
Tn
g(Q(∇u(t)))

⃓⃓⃓
∇·
(︁
v(∇u(t))

)︁⃓⃓⃓2
dt.

This and the first part imply that

E sup
t∈[0,T ]

∫︂
Tn
g(Q(∇u(t))) ≤ CE

∫︂ T

0

∫︂
Tn
g(Q(∇u(t)))

⃓⃓⃓
∇·
(︁
v(∇u(t))

)︁⃓⃓⃓2
dt

≤ C(α)E
∫︂
Tn
g(Q(∇u(0))).

Corollary 7.2 at hand, we can prove the following rigorous formulation of
Theorem 1.3.

Theorem 7.3. Let u be a strong solution of (7.1) on the time interval I = [0, T ]
with uniformly Lipschitz continuous initial data, i.e. ∥∇u(0)∥L∞(Tn) ≤ L a.s. for
a constant L > 0.

Then it holds ∥∇u∥L∞(0,T ;L∞(Tn)) ≤ L a.s.

Proof. Let g(w) := (w −
√

1 + L2)3
+ − (w − 1 −

√
1 + L2)3

+, w ≥ 1. Then g is
non-negative, increasing and convex with g′′ bounded and g(1) = g′(1) = 1. We
can apply Corollary 7.2 and deduce

0 ≤ E sup
t∈[0,T ]

∫︂
Tn
g(Q(∇u(t))) ≤ CE

∫︂
Tn
g(Q(∇u(0))) = 0.

Thus ∥Q(∇u(t))∥L∞(0,T ;L∞(Tn)) ≤
√

1 + L2 a.s., which implies the Lipschitz
continuity of u.

7.2. Large-time behavior
As mentioned above, this section is devoted to the proof of a large-time result
that follows from Theorem 7.3. We will give a stronger characterization of the
large-time behavior compared to [ESvR12]. This is available, since we can bound
the Hessian of a solution in a appropriate norm.
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7. The case of spatially homogeneous noise

Proposition 7.4. Let u be a strong solution of (7.1) on the time interval I =
[0,∞) with uniformly Lipschitz continuous initial data, i.e. ∥∇u(0)∥L∞(Tn) ≤ L
a.s. for a constant L > 0.

Then there are constants c0 = c0(L) and C = C(α) such that

E sup
s∈[0,t]

∥∇u(s)∥2L2(Tn) + c0E
∫︂ t

0
∥D2u(s)∥2L2(Tn) ds ≤ CE∥∇u(0)∥2L2(Tn) ∀t ∈ I.

(7.3)

Proof. From Theorem 7.3 we deduce that ∥∇u∥L∞(0,T ;L∞(Tn)) ≤ L a.s. Further-
more, for g(w) = w2, w ≥ 1, we infer from Corollary 7.2 for all t ∈ [0,∞)

E∥∇u(t)∥2L2(Tn) +
(︄
1 + α2

2

)︄
E
∫︂ t

0

∫︂
Tn

Q(∇u(s))2 D
(︁
v(∇u(s))

)︁T :D
(︁
v(∇u(s))

)︁
ds

≤ E∥∇u(0)∥2L2(Tn)

and

E sup
s∈[0,t]

∥∇u(s)∥2L2(Tn) ≤ CE∥∇u(0)∥2L2(Tn).

Note that

Q(∇u)2 D
(︁
v(∇u)

)︁T : D
(︁
v(∇u)

)︁
= D2u

(︁
Id−v(∇u)⊗ v(∇u)

)︁
:
(︁
Id−v(∇u)⊗ v(∇u)

)︁
D2u

and for the smallest eigenvalue we have

λmin
(︁
Id−v(∇u)⊗ v(∇u)

)︁
≥ 1−

⃓⃓
v(∇u)

⃓⃓2 = 1
Q(∇u)2 ≥

1
1 + L2 a.s.

By Lemma C.2 we have

Q(∇u)2 D
(︁
v(∇u)

)︁T : D
(︁
v(∇u)

)︁
≥ 1

(1 + L2)2 |D
2u|2

and this proves (7.3).

We will use the bound of the Hessian, to prove that solutions at large times
become spatially homogeneous and behave like the driving Brownian motion in
time, cf. Theorem 1.4.

Theorem 7.5. Let u be a strong solution of (7.1) on the time interval I = [0,∞)
with uniformly Lipschitz continuous initial data, i.e. ∥∇u(0)∥L∞(Tn) ≤ L a.s. for
a constant L > 0.

Then there is a real-valued random variable ū ∈ L1(Ω) such that

E sup
t≥T
∥u(t)− αβ(t)− ū∥H1(Tn) → 0 for T →∞.
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7.2. Large-time behavior

Proof. The estimates in Theorem 7.3 and Proposition 7.4 imply that

D2u ∈ L2(Ω;L2(0,∞;L2(Tn)))

and

∥∇u∥L∞(0,∞;L∞(Tn)) ≤ L a.s.

For the convergence as T →∞ we note that by Corollary 4.30

d
∫︂
Tn

(u− αβ) =
∫︂
Tn

Q(∇u)∇·
(︁
v(∇u)

)︁
dt+ α

∫︂
Tn

(︁
Q(∇u)− 1

)︁
◦ dβ

= −
(︄

1− α2

2

)︄∫︂
Tn

v(∇u) ·D2uv(∇u) dt+
∫︂
Tn
α
(︁
Q(∇u)− 1

)︁
dβ.

For the drift we estimate with a Poincaré inequality⃓⃓⃓⃓∫︂
Tn

v(∇u) ·D2uv(∇u)
⃓⃓⃓⃓
≤
∫︂
Tn

⃓⃓⃓
D2u

⃓⃓⃓
|∇u|

≤ ∥D2u∥L2(Tn)∥∇u∥L2(Tn) ≤ C∥D2u∥2L2(Tn).

Hence,

E
⃓⃓⃓⃓∫︂ ∞

0

∫︂
Tn

v(∇u(t)) ·D2u(t)v(∇u(t)) dt
⃓⃓⃓⃓
≤ CE

∫︂ ∞

0
∥D2u(t)∥2L2(Tn) dt <∞.

The estimate

E
∫︂ ∞

0

(︃∫︂
Tn

Q(∇u(t))− 1
)︃2

dt ≤ CE
∫︂ ∞

0
∥∇u(t)∥2L2(Tn) dt

≤ CE
∫︂ ∞

0
∥D2u(t)∥2L2(Tn) <∞,

implies that the stochastic integral∫︂ ∞

0

∫︂
Tn

(︁
Q(∇u(t))− 1

)︁
dβ(t)

is well-defined.
Let

ū := 1
|Tn|

⎛⎝∫︂
Tn
u0 −

(︄
1− α2

2

)︄∫︂ ∞

0

∫︂
Tn

v(∇u(t)) ·D2u(t)v(∇u(t)) dt

+ α

∫︂ ∞

0

∫︂
Tn

(︁
Q(∇u(t))− 1

)︁
dβ(t)

⎞⎠.
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7. The case of spatially homogeneous noise

The estimates from above imply ū ∈ L1(Ω).
The bound D2u ∈ L2(Ω;L2(0,∞;L2(Tn))) at hand we find a sequence (tk)k∈N

of increasing times tk → ∞ such that E∥D2u(tk)∥2L2(Tn) → 0 for k → ∞. We
apply a Poincaré inequality to obtain

∥u(t)− αβ(t)− ū∥H1(Tn) ≤ C
(︃
∥∇u(t)∥L2(Tn) +

⃓⃓⃓∫︂
Tn

(u(t)− αβ(t)− ū)
⃓⃓⃓)︃
. (7.4)

From Proposition 7.4 we infer

E sup
t≥tk
∥∇u(t)∥2L2(Tn) ≤ CE∥∇u(tk)∥2L2(Tn).

Hence,

lim
T→∞

(︄
E sup
t≥T
∥∇u(t)∥L2(Tn)

)︄2

= lim
k→∞

(︄
E sup
t≥tk
∥∇u(t)∥L2(Tn)

)︄2

≤ lim
k→∞

E sup
t≥tk
∥∇u(t)∥2L2(Tn)

≤ C lim
k→∞

E∥∇u(tk)∥2L2(Tn)

≤ C lim
k→∞

E∥D2u(tk)∥2L2(Tn) = 0.

For the second term in (7.4) we have with the Burkholder-Davis-Gundy inequality
from Proposition 4.22 and the estimates from above

E sup
t≥T

⃓⃓⃓⃓∫︂
Tn

(︁
u(t)− αβ(t)− ū

)︁⃓⃓⃓⃓

≤
(︄

1− α2

2

)︄
E sup
t≥T

⃓⃓⃓⃓∫︂ ∞

t

∫︂
Tn

v(∇u(s)) ·D2u(s)v(∇u(s)) ds
⃓⃓⃓⃓

+ αE sup
t≥T

⃓⃓⃓⃓∫︂ ∞

t

∫︂
Tn

(︁
Q(∇u(s))− 1

)︁
dβ(s)

⃓⃓⃓⃓

≤ CE
∫︂ ∞

T
∥D2u(t)∥2L2(Tn) dt+ C

(︃
E
∫︂ ∞

T
∥∇u(t)∥2L2(Tn) dt

)︃ 1
2

→ 0 for T →∞.

From Theorem 7.5 we can deduce the next corollary which extends the one-
dimensional result from [ESvR12, Theorem 4.2] to higher dimensions. Furthermore
it improves the convergence in distribution in Cloc([0,∞);L2(Tn)) to convergence
in L1(Ω;Cb([0,∞), H1(Tn))).
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Corollary 7.6. Under the same assumptions as in Theorem 7.5 we have for
T →∞

(u(T + t)− u(T ))t≥0 − α(β(T + t)− β(T ))t≥0 → 0

in L1(Ω;Cb([0,∞);H1(Tn))).

Proof. We estimate

E sup
t≥0
∥u(T + t)− u(T )− α(β(T + t)− β(T ))∥H1(Tn)

≤ 2E sup
t≥T
∥u(t)− αβ(t)− ū∥H1(Tn) → 0.

7.3. Higher regularity of solutions

In this section we will derive a-priori bounds for higher-derivatives of solutions of
(5.1). These bounds will imply a decay in time formula for higher derivatives with
the same asymptotics as for the deterministic heat equation. In doing so, we have
to assume that the Lipschitz constant of the initial data is small. Furthermore,
we have to assume that the solution is smooth, although the decay formula
would make sense as long as the initial data has bounded second moments in
H1(Tn). This seems to be a technical restriction due to the lack of a suitable
approximation of either the solution or the L2(Tn) norm of the higher-derivatives.
Note that neither taking difference quotients instead of derivatives nor mollifying
the solution seem to work, as the interpolation inequalities used below rule out
the difference quotients and the non-linear structure of the equation rules out the
mollification approach.

Nevertheless, we think that the following estimates are still interesting enough
to be included here and might be helpful for future research.

In what follows we will have to calculate higher derivatives of functions like
v(∇u) ·D2uv(∇u). In order to handle these terms we will introduce some notation.

Remark 7.7 (Notation). We recall the definitions Q : Rn → R with Q(p) =√︁
1 + |p|2 and v : Rn → Rn with v(p) = p

Q(p) for p ∈ Rn from Remark B.9.
Let A : Rn → Rn×n with A(p) := v(p) ⊗ v(p) = p⊗p

1+|p|2 , p ∈ Rn. It holds that
A,Q,v ∈ C∞.

The k-th derivative DkA(p) of A can be understood as a k-linear map DkA(p) :
Rn × · · · × Rn → Rn×n for which we will write

DkA(p)⟨q1, . . . , qk⟩
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where q1, . . . , qk ∈ Rn are the directions in which to evaluate the derivative DkA(p).
Similarly, the k-th derivatives of Q and v can be understood as k-linear maps.

Since A,v ∈ C∞ we infer that for every bounded subset B ⊂ Rn there is a
constant C > 0 such that

⃓⃓⃓
DkA(p)⟨q1, . . . , qk⟩

⃓⃓⃓
≤ C

k∏︂
j=1
|qj | and

⃓⃓⃓
Dkv(p)⟨q1, . . . , qk⟩

⃓⃓⃓
≤ C

k∏︂
j=1
|qj |. (7.5)

For a sufficiently regular function g : Rn → R we will use the multi-index
notation for derivatives, i.e. for a multi-index k ∈ Nn0 we write

∂kg(x) := ∂k1
x1 · · · ∂

kn
xn
g(x).

For k ∈ N we write ⃓⃓⃓
Dkg(x)

⃓⃓⃓2
:=

∑︂
k∈Nn

0
|k|=k

|∂kg(x)|2,

which is consistent with the Euclidean and Frobenius norm for k = 1 and k = 2,
respectively.

Lemma 7.8. For a function u ∈ H2+m(Tn) with ∇u ∈ L∞(Tn) and m ∈ N0 it
holds that v(∇u) ·D2uv(∇u) ∈ Hm(Tn) and Q(∇u) ∈ Hm+1(Tn).

Furthermore for k ≤ m

∥Dk
(︂
v(∇u) ·D2uv(∇u)

)︂
∥L2(Tn) + ∥Dk+1(︁Q(∇u)

)︁
∥L2(Tn)

≤ h(∥∇u∥L∞(Tn))∥Dk+2u∥L2(Tn)

for a continuous, increasing function h with h(0) = 0.

Proof. Let k ∈ Nn0 be a multi-index with |k| = k ≤ m. In the subsequent
computations we will abbreviate l = |l| for all multi-indices l appearing. We will
denote by e(1), . . . , e(n) ∈ Nn0 the multi-indices corresponding to derivation into
the direction of the coordinate axes. With the notation A(∇u) = v(∇u)⊗ v(∇u)
we compute

∂k
(︂
v(∇u) ·D2uv(∇u)

)︂
=

∑︂
j≤l≤k

i(1)+···+i(j)=l−j

∂k−l D2u :DjA(∇u)
⟨︄ ∂i(1)+e(1) ∇u, ..., ∂i(j1)+e(1) ∇u,

∂i(j1+1)+e(2) ∇u, ..., ∂i(j1+j2)+e(2) ∇u,
..., ..., ...,

∂i(j1+···+jn−1+1)+e(n) ∇u, ..., ∂i(j)+e(n) ∇u

⟩︄
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and estimate with (7.5)⃓⃓⃓⃓
∂k
(︂
v(∇u) ·D2uv(∇u)

)︂⃓⃓⃓⃓
≤
⃓⃓⃓
∂k D2u

⃓⃓⃓
|v(∇u)|2

+ C
∑︂

j≤l≤k, j≥1
i(1)+···+i(j)=l−j

⃓⃓⃓
∂k−l D2u

⃓⃓⃓ j∏︂
a=1

⃓⃓⃓⃓
∂i(a) D2u

⃓⃓⃓⃓

≤
⃓⃓⃓
∂k D2u

⃓⃓⃓
|v(∇u)|2 + C

∑︂
1≤j≤k

l0+···+lj=k+1

j∏︂
a=0

⃓⃓⃓
Dla∇u

⃓⃓⃓
(7.6)

with a constant C > 0 depending on ∥∇u∥L∞(Tn).
For l = 0, . . . , k + 1 choose

1
pl

:= l

2(k + 1) and ϑl := l

k + 1 .

By definition 2 ≤ pl ≤ ∞ and ϑl ∈ [0, 1] with

1
pl

= l

n
+ ϑl

(︄
1
2 −

k + 1
n

)︄
.

The Gagliardo-Nirenberg interpolation inequality on the flat torus, cf. [Aub82,
3.70 Theorem], implies

∥Dl∇u∥Lpl (Tn) ≤ C∥Dk+1∇u∥ϑl

L2(Tn)∥∇u∥
1−ϑl

L∞(Tn).

Furthermore, for 1 ≤ l ≤ k and l0 + · · ·+ lj = k + 1 it holds

1
pl0

+ · · ·+ 1
plj

= l0 + · · ·+ lk
2(k + 1) = 1

2 .

The Hölder inequality implies⃦⃦⃦⃦
⃦⃦ j∏︂
a=0

⃓⃓⃓
Dla∇u

⃓⃓⃓⃦⃦⃦⃦⃦⃦
L2(Tn)

≤
j∏︂

a=0

⃦⃦⃦
Dla∇u

⃦⃦⃦
Lpla (Tn)

≤ C∥Dk+1∇u∥
∑︁j

a=0 ϑla

L2(Tn) ∥∇u∥
∑︁j

a=0(1−ϑla )
L∞(Tn)

≤ C∥Dk+1∇u∥L2(Tn)∥∇u∥
j
L∞(Tn).
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7. The case of spatially homogeneous noise

Combining this inequality with (7.6) yields⃦⃦⃦⃦
∂k
(︂
v(∇u) ·D2uv(∇u)

)︂⃦⃦⃦⃦
L2(Tn)

≤ ∥v(∇u)∥2L∞(Tn)

⃦⃦⃦
∂k D2u

⃦⃦⃦

+ C

⎛⎝ ∑︂
1≤j≤k

∥∇u∥jL∞(Tn)

⎞⎠ ∥Dk+1∇u∥L2(Tn)

≤ h(∥∇u∥L∞(Tn))∥Dk+1∇u∥L2(Tn)

with a continuous, increasing function h and h(0) = 0. We have used
⃓⃓
v(p)

⃓⃓
≤

|p|√
1+|p|2

→ 0 for |p| → 0.
Repeating these computations for all multi-indices k with |k| = k ≤ m yields

v(∇u) ·D2uv(∇u) ∈ Hm(Tn) with the claimed inequality.
Similarly, one proves that Q(∇u) ∈ Hm+1(Tn).

The next theorem generalizes Proposition 7.4 to higher derivatives and refor-
mulates it for m = 0.

Theorem 7.9 (A-priori estimates for higher derivatives). Let u be a strong
solution of (7.1) on the time interval I = [0, T ] with uniformly Lipschitz continuous
initial data, i.e. ∥∇u(0)∥L∞(Tn) ≤ L a.s for a constant L > 0. Furthermore,
assume that u ∈ L2(Ω;L2(0, T ;Hm+2(Tn))), u(0) ∈ L2(Ω;Hm+1(Tn)) and m ∈
N0.

Then there is a version of u with u ∈ L2(Ω;C([0, T ];Hm+1(Tn))) and if L is
sufficiently small there are constants c0 = c0(m) > 0 and C = C(m) > 0 such
that

E∥Dm+1u(t)∥2L2(Tn) + c0E
∫︂ t

0
∥Dm+2u(s)∥2L2(Tn) ds ≤ E∥Dm+1u(0)∥2L2(Tn)

and

E sup
t∈[0,T ]

∥Dm+1u(t)∥2L2(Tn) ≤ CE∥Dm+1u(0)∥2L2(Tn).

Proof. From Theorem 7.3 we infer

∥∇u∥L∞(0,T ;L∞(Tn)) ≤ L a.s.

Lemma 7.8 implies Q(∇u)∇·
(︁
v(∇u)

)︁
∈ L2(Ω;L2(0, T ;Hm(Tn))) and Q(∇u) ∈

L2(Ω;L2(0, T ;Hm+1(Tn))). Therefore, we can apply Proposition 4.28 to deduce
that u has a version with u ∈ L2(Ω;C([0, T ];Hm+1(Tn))) and for a multi-index
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k ∈ Nn0 with |k| = m we have

d
∫︂
Tn

⃓⃓⃓
∂k∇u

⃓⃓⃓2
= −2

∫︂
Tn
∂k∆u∂k

⎛⎝∆u+
(︄

1− α2

2

)︄
v(∇u) ·D2uv(∇u)

⎞⎠
+ α2

∫︂
Tn

⃓⃓⃓
∂k∇Q(∇u)

⃓⃓⃓2
dt+ 2α

∫︂
Tn
∂k∇u · ∂k∇Q(∇u) dβ

:= µ dt+ σ dβ
with

µ = −2
∫︂
Tn
∂k∆u∂k

⎛⎝∆u+
(︄

1− α2

2

)︄
v(∇u) ·D2uv(∇u)

⎞⎠
+ α2

∫︂
Tn

⃓⃓⃓
∂k∇Q(∇u)

⃓⃓⃓2
and

σ = 2α
∫︂
Tn
∂k∇u · ∂k∇Q(∇u).

Integration by parts, the Hölder inequality and Lemma 7.8 imply

µ ≤ −2∥∂k D2u∥2L2(Tn) + 2
(︄

1− α2

2

)︄
∥∂k∆u∥L2(Tn)∥v(∇u) ·D2uv(∇u)∥Hm(Tn)

+ α2∥Q(∇u)∥2Hm+1(Tn)

≤ −∥∂k D2u∥2L2(Tn) + h2(L)∥Dm+2u∥2L2(Tn).

Since the Itô integral σ dβ is a local martingale, we can deduce by Fatou’s Lemma
for all t ∈ [0, T ]

E∥∂k∇u(t)∥2L2(Tn) ≤ E∥∂k∇u(0)∥2L2(Tn) − E
∫︂ t

0
∥∂k D2u(s)∥2L2(Tn) ds

+ h2(L)E
∫︂ t

0
∥Dm+2u(s)∥2L2(Tn) ds.

We can repeat the above computations for all multi-indices k with |k| = m. By
continuity of h and h(0) = 0, there is a constant c0 > 0, that depends on m, such
that for L sufficiently small

E∥Dm+1u(t)∥2L2(Tn) + c0E
∫︂ t

0
∥Dm+2u(s)∥2L2(Tn) ds ≤ E∥Dm+1u(0)∥2L2(Tn). (7.7)

In addition, the Burkholder-Davis-Gundy inequality Proposition 4.22 implies for
a fixed multi-index k

E sup
s∈[0,t]

⃓⃓⃓⃓∫︂ s

0
σ(τ) dβ(τ)

⃓⃓⃓⃓
≤ CαE

(︄∫︂ t

0

(︃∫︂
Tn
∂k∇u(s) · ∂k∇Q(∇u(s))

)︃2
ds
)︄ 1

2

≤ 1
2E sup

s∈[0,t]
∥∂k∇u(s)∥2L2(Tn) + CE

∫︂ t

0
∥∂k∇Q(∇u(s))∥2L2(Tn) ds
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7. The case of spatially homogeneous noise

and by Lemma 7.8 and (7.7)

E sup
s∈[0,t]

⃓⃓⃓⃓∫︂ s

0
σ(τ) dβ(τ)

⃓⃓⃓⃓
≤ 1

2E sup
s∈[0,t]

∥∂k∇u(s)∥2L2(Tn) + CE∥Dm+1u(0)∥2L2(Tn).

We conclude

E sup
s∈[0,t]

∥Dm+1u(s)∥2L2(Tn) ≤ CE∥Dm+1u(0)∥2L2(Tn).

Corollary 7.10 (Smoothing property). Under the same assumptions as Theo-
rem 7.9 and L sufficiently small there is a constant C = C(m) > 0 such that for
all 1 ≤ k ≤ m

E∥Dk+1u(t)∥2L2(Tn) ≤ Ct
−kE∥∇u(0)∥2L2(Tn). (7.8)

Proof. We will prove this result by induction over k.
Theorem 7.9 implies that t ↦→ E∥D2u(t)∥2L2(Tn) is decreasing and

c0E
∫︂ t

0
∥D2u(s)∥2L2(Tn) ds ≤ E∥∇u(0)∥2L2(Tn).

Therefore

E∥D2u(t)∥2L2(Tn) ≤
1
t
E
∫︂ t

0
∥D2u(s)∥2L2(Tn) ds ≤ 1

c0t
E∥∇u(0)∥2L2(Tn).

Now, let 1 ≤ k ≤ m − 1 and (7.8) hold for k. As k + 1 ≤ m we infer from
Theorem 7.9 that t ↦→ E∥Dk+2u(t)∥2L2(Tn) is decreasing and for all 0 ≤ s ≤ t ≤ T

c0E
∫︂ t

s
∥Dk+2u(σ)∥2L2(Tn) dσ ≤ E∥Dk+1u(s)∥2L2(Tn).

For s = t
2 we deduce by (7.8) that

E∥Dk+2u(t)∥2L2(Tn) ≤
2
t
E
∫︂ t

s
∥Dk+2u(σ)∥2L2(Tn) dσ

≤ 2
c0t

E∥Dk+1u(s)∥2L2(Tn)

≤ Ct−1s−kE∥∇u(0)∥2L2(Tn)

= Ct−(k+1)E∥∇u(0)∥2L2(Tn).
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8. Simulations

We describe a finite element discretization of (5.1) and use this for Monte-Carlo
simulations of energies that appeared in the preceding chapters. The analysis
presented in the preceding chapters motivates to use a variational formulation of
(5.1) with respect to the scalar product of H1(Tn), instead of the common choice
of the L2(Tn) scalar product. We refer to [FLP14] for a finite element scheme in
the case of n = 1 which uses a variational formulation of (5.1) in L2(Tn).

The numerical scheme at hand, we present Monte-Carlo simulations for certain
energies which appeared during the existence and regularity proofs.

8.1. Discretization
For a given parameter N ∈ N we divide the unit cube [0, 1]n into a uniform grid
of Nn cubes being translations of [0, h]n with length h := 1

N . Let VN ⊂ H2(Tn)
be the finite dimensional subspace of (periodic) piecewise polynomials, which we
obtain by considering an n-dimensional analog of the Bogner-Fox-Schmit element
[Bra07, 5.10]. That is on each cell, up to affine transformations, the space of
polynomials spanned by x ↦→ p1(x1) · · · · · pn(xn) with p1, . . . , pn ∈ {P1, . . . , P4}
and Pi : [0, 1]→ R being the cubic polynomials uniquely determined by:

Pi(0) P ′
i (0) Pi(1) P ′

i (1)
i = 0 1 0 0 0
i = 1 0 1 0 0
i = 2 0 0 1 0
i = 3 0 0 0 1

On each cell there are 4n local degrees of freedom and due to the periodicity
and the continuous differentiability of functions in VN it has the dimension
dimVN = (2N)n.

Instead of solving the SPDE (5.1) we look for a VN -valued process u solving
the stochastic ordinary differential equation (SODE)

du = projVN

(︂
Q(∇u)∇·

(︁
v(∇u)

)︁)︂
dt+

M∑︂
l=1

projVN

(︁
Q(∇u)φl

)︁
◦ dβl (8.1)

with another parameter M ∈ N and projVN
: H1(Tn)→ VN being the orthogonal

projection onto VN with respect to the scalar product of H1(Tn). Equation (8.1)
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8. Simulations

is equivalent to

d
∫︂
Tn
uw +∇u · ∇w =

∫︂
Tn

[︃
(w −∆w) Q(∇u)∇·

(︁
v(∇u)

)︁
dt

+
M∑︂
l=1

(w −∆w) Q(∇uN )φl ◦ dβl
]︃
∀w ∈ VN

and has the Itô formulation

d
∫︂
Tn
uw +∇u · ∇w =

∫︂
Tn

[︃
(w −∆w)F (·,∇u,D2u) dt

+
M∑︂
l=1

(w −∆w)Bl(·,∇u) dβl
]︃ (8.2)

with

F (x, p,A) := trA−
(︄

1−
∑︁M
l=1 φl(x)2

2

)︄
v(p) ·Av(p) + 1

2

M∑︂
l=1

φl(x)∇φl(x) · p,

Bl(x, p) := Q(p)φl(x).

Now, let w1, . . . , w(2N)n ∈ VN be the basis of VN which we get by considering
affine transformations of products of P1, . . . , P4. Furthermore, let

u(t) =
(2N)n∑︂
k=1

ûk(t)wk.

In terms of the coefficients û(t) equation (8.2) becomes

d
(2N)n∑︂
k=1

Ak̃kûk(t) =
∫︂
Tn

[︂ (︂
wk̃ −∆wk̃

)︂
F (·,∇u,D2u) dt

+
M∑︂
l=1

(︂
wk̃ −∆wk̃

)︂
Bl(·,∇u) dβl

]︃
for all k̃ = 1, . . . , (2N)n with

Ak̃k :=
∫︂
Tn
wkwk̃ +∇wk · ∇wk̃, k, k̃ = 1, . . . , (2N)n.

We infer a fully-discrete explicit system with the Euler-Maruyama scheme,
cf. [KP92, 9.1]. For this, let ∆t > 0 and tj := j∆t for j ∈ N. We approximate
u(tj) through a VN -valued random variable uj with uj := ∑︁(2N)n

k=1 ûjkwk where we
define the coefficients ûj =

(︂
ûjk

)︂
k

through

Aûj −Aûj−1 = F̂ (ûj−1)∆t+
M∑︂
l=1

B̂l(ûj−1)
(︂
βl(tj)− βl(tj−1)

)︂
, j ≥ 1, (8.3)
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where(︂
F̂ (ûj)

)︂
k

:=
∫︂
Tn

(wk −∆wk)F (·,∇uj ,D2uj),(︂
B̂l(ûj)

)︂
k

:=
∫︂
Tn

(wk −∆wk)Bl(·,∇uj), k = 1, . . . , (2N)n, l = 1, . . . ,M.

Furthermore, we prescribe an initial condition for û0. In order to simulate (8.3)
we restrict ourselves to a finite number of samples P ∈ N of the initial data and
the increments of the Brownian motions.

To compute A, F̂ and B̂ we use on each cell a Gaussian quadrature formula
with 4n points corresponding to 4 points in each dimension. With this choice of
degree of the quadrature formula the matrix A is computed exactly.

To solve the linear equation (8.3) in each timestep, we use the conjugate gradient
method for small P . When the number of samples P becomes large, the explicit
computation of A−1 is preferred.

The algorithm is implemented in Python using SciPy, cf. [VGO+19].

8.2. Monte-Carlo simulations
In this section we present simulations of t ↦→ EE(u(t)) for a solution u of (5.1) for
certain energies E. With the notation from above, we approximate the energy by

EE(u(tj)) ≈
1
P

P∑︂
p=1

E(uj,p),

where uj,p corresponds to the p-th sample of uj , p = 1, . . . , P .
In all cases we assume n = 2. Furthermore, for N ∈ N we set ∆t := 0.01

N2 .
We will denote by (gk)k∈N the orthonormal basis of L2(Tn) which can be

canonically constructed from the basis

{1,
√

2 cos(2πx),
√

2 sin(2πx),
√

2 cos(4πx),
√

2 sin(4πx), . . . }

of L2(T1), such that g1 = 1.

8.2.1. Monte-Carlo simulation for spatially homogeneous noise

To simulate the case of spatially homogeneous noise, described by (7.1), we set
M = 1 and φ1 = α = 1. As initial data we choose U0 := ∑︁72

k=1 λkgk with
coefficients λk ∈ (0, 1) which are randomly chosen but identical for all samples.
The discrete initial data u0 is inferred by projecting U0 to VN orthogonal with
respect to the L2(Tn) scalar product.

We have shown in Example 5.8 that the expectation of the area E
∫︁
Tn Q(∇u(t))

is decreasing in t. Figure 8.1 shows this decrease for N = 32 on the time interval
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Figure 8.1.: Decay of expectation of area for N = 32, M = 1, P = 4096 and
∆t = 0.01

N2 .

[0, 16000∆t] = [0, 5
32 ], where the average is taken over P = 4096 trajectories.

Furthermore, we recover the fact that E
∫︁
Tn Q(∇u(t)) converges to 1, which is a

consequence of the large-time result Theorem 7.5. The variance of
∫︁
Tn Q(∇u(t))

increases at the beginning, but after some time it starts decreasing and converges
to zero. Note that the plot of the variance is very rough, which indicates that the
Monte-Carlo simulation has too few samples.

In Figure 8.2 the same energy is plotted with more samples on the shorter time
interval [0, 5

256 ] for N = 32 and P = 65536 as well as N = 64 and P = 12288,
showing the same behavior as before, but with a smoother evolution of the
variance.

Of great importance for the existence proof in Chapter 5 is the bound in Lp of
Q(∇u), c.f. Corollary 5.11, which is equivalent to a bound for the Lp norm of ∇u.
In the case of spatially homogeneous noise, this bound generalizes to the maximum
principle for the gradient of solutions, c.f. Theorem 7.3. Instead of simulating
the L∞ norm of solutions, which is numerically very unstable, in Figure 8.3
the Lp norms for p ≥ 2 are shown. When the exponent p increases, a single
outlier has more importance, hence the number of trajectories simulated P has to
increase in order to get a smooth result. In order to keep the computation time
acceptable we have to reduce the number of timesteps. Figure 8.3 also suggests
that there is an acceleration of the evolution after some time. Furthermore,
after this acceleration the evolution is more regular, for example the slope of
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Figure 8.2.: Decay of expectation of area for different values of N and P with
M = 1 and ∆t = 0.01

N2 .

log
(︂
E
∫︁
Tn |∇u(t)|p

)︂ 1
p becomes constant and Figure 8.4 shows that for p = 2 there

is a rapid decrease of the variance of the evolution. Our interpretation is that
the behavior of (7.1) changes when the gradient is “small”. This is in accordance
with the a-priori regularity results from Section 7.3, which only hold for small
gradients.

8.2.2. Monte-Carlo simulation for colored noise

We consider (5.1) with the same initial-data as above for not necessarily spatially
homogeneous noise. For the noise coefficients we choose φl = 2−l+1gl with l ∈ N.
Since φ1 = 1, for M = 1 we have the same evolution law as in the spatially
homogeneous case from above. Note that (φl) fulfills Assumptions 5.2.

In Figure 8.5 the evolution of the area is plotted. In contrast to the spatially
homogeneous case the evolution is slower and less regular, for example the variance
is larger. Furthermore, the plotted expectation is rougher indicating that one
needs more samples in the colored noise case in order to get a good estimate
for the expectation. We have shown in Example 5.8 that the expectation of the
area grows at most exponentially in time. The Monte-Carlo simulations suggests
that the expectation of the area is decreasing, at least for large values. The same
holds true for the Lp norms of the gradient, the evolution of which are shown
in Figure 8.6. Nevertheless, we can not expect the area and the Lp norms to
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Figure 8.5.: Evolution of
∫︁
Tn Q(∇u(t)) for M = 25 and several values for N and

P with ∆t = 0.01
N2 .
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and ∆t = 0.01
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converge to 1 and 0, respectively, as the colored noise prevents constant solutions.
To analyze how the colored noise introduces spatial roughness, we have repeated

the simulations with U0 = 0 as initial data. Figure 8.7 shows that the expectation
of the area increases with a nearly linear behavior near t = 0. There seems to be
a saturation happening, which prevents the area to grow beyond a certain bound.
Figure 8.8 supports the interpretation that the evolution is saturated after some
time, as the Lp norms of the gradient of solutions for p ≫ 1 increase but stay
bounded.
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Figure 8.7.: Evolution of
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9. Extension to anisotropic SMCF

In this chapter we will extend the previous considerations to the case of anisotropic
SMCF. We will prove existence of solutions for graphs with spatially homogeneous
noise. Since the calculations in the case of colored noise become very involved we
restrict the whole presentation to spatially homogeneous noise.

9.1. Anisotropic mean curvature flow
In this section we introduce the notation for anisotropic geometries and state the
anisotropic version of (3.1) on a formal level. We adapt the notation from [Bel04].

Definition 9.1. A convex function ϕ : Rn+1 → [0,∞) which is

(i) positively 1-homogeneous, i.e. ϕ(λz) = λϕ(z) for all λ > 0, z ∈ Rn+1 and

(ii) coercive, i.e. there is a c0 > 0 such that ϕ(z) ≥ c0|z| for all z ∈ Rn+1

is called a Minkowski norm on Rn+1. If additionally ϕ2 ∈ C∞(Rn \ {0}) and ϕ2

is strictly convex then we will call ϕ a regular Minkowski norm.
Given a Minkowski norm ϕ we define the corresponding unit ball Bϕ = {z ∈

Rn+1 | ϕ(z) ≤ 1}, which is sometimes also called the Wulff shape of ϕ. Furthermore
the dual norm ϕ◦ is given by

ϕ◦(z◦) := sup{z · z◦ | z ∈ Bϕ}, z◦ ∈ Rn+1.

For a regular ϕ we introduce the duality map

Tϕ := ϕ∇ϕ

which is the unique solution of

ϕ◦(Tϕ(z))2 = ϕ(z)2 = z · Tϕ(z).

According to [Bel04, Definition 2.2] the regularity of a Minkowski norm ϕ can
equivalently be characterized in terms of the unit ball Bϕ. Since we could not
find a good reference, we sketch the proof of the equivalence.

Remark 9.2 (Regular Minkowski norm). A Minkowski norm ϕ is regular if and
only if ∂Bϕ is smooth and all principal curvatures are strictly positive.
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9. Extension to anisotropic SMCF

Sketch of the proof. Let ϕ be a regular Minkowski norm and λ > 0 such that
D2ϕ2 ≥ λ Id. Then ∂Bϕ is smooth since M := ∂Bϕ is a compact level set of ϕ2

which can be locally parameterized as the graph of a smooth function. From
Remark B.10 we infer for the Weingarten map s : TzM → TzM for a tangent
vector X ∈ TzM

s(X) ·X = X ·D2(ϕ2)X
|∇(ϕ2)| ≥ λ |X|

2

|∇(ϕ2)| .

Therefore the principal curvatures of M are bounded from below by λ
|∇(ϕ2)| and

∇(ϕ2) is bounded on M because of its continuity and the compactness of M.
For the opposite conclusion we assume thatM = ∂Bϕ is a smooth hypersurface

with all of its principal curvatures bounded from below by a constant γ. With the
same formula for the Weingarten map as above we infer for all tangent vectors
X ∈ TzM

X ·D2(ϕ2)X ≥ γ|∇(ϕ2)||X|2.

In Lemma 9.5 we prove for z ∈M that ∇(ϕ2)(z) ·z = 2ϕ(z)∇ϕ(z) ·z = 2ϕ2(z) = 2.
This implies |∇(ϕ2)| ≥ 2

|z| and therefore for all z ∈M

X ·D2(ϕ2)(z)X ≥ 2 γ
|z|
|X|2.

Furthermore we know that D2(ϕ2)(z)z = ∇(ϕ2)(z) ⊥ TzM and z ·D2(ϕ2)(z)z =
2ϕ2(z). Since z ̸∈ TzM we can conclude that D2(ϕ2) ≥ c Id with a constant c > 0
that only depends on γ and c0.

In the subsequent part of this section we will always assume that ϕ is a regular
Minkowski norm. Then the dual norm ϕ◦ is also regular, c.f. [Bel04, Section 2.2].
Definition 9.3 (Anisotropic area). Let M be a smooth properly embedded
hypersurface in Rn+1. The anisotropic area of M with respect to ϕ is given by

|M|ϕ :=
∫︂

M
ϕ◦(ν) dHn.

In [BP96, Theorem 5.1] a formula for the first variation of the anisotropic area is
proven. In order to state this formula we will introduce some notation generalizing
the notion of a unit normal field and mean curvature to the anisotropic setting.
Definition 9.4. Let M be a smooth properly embedded hypersurface in Rn+1

with a smooth local parametrization F . We denote by

νϕ := ν

ϕ◦(ν) ,

nϕ := Tϕ◦(νϕ) = ∇ϕ◦(ν) and
Hϕ := −∇·nϕ = −gij∂inϕ · ∂jF
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9.1. Anisotropic mean curvature flow

the anisotropic unit normal field νϕ, the Cahn-Hoffmann vector field nϕ and the
anisotropic mean curvature Hϕ, where (gij) denotes the inverse metric, cf. Defini-
tion B.2.

Before continuing with the first variation formula we summarize some prop-
erties of the objects introduced above which are basically consequences of the
homogeneity of ϕ.

Lemma 9.5. With the notation from above it holds that

(i) ∇ϕ is positively 0-homogeneous with ∇ϕ(z) · z = ϕ(z) for all z ∈ Rn+1 \ {0},

(ii) D2ϕ is positively (−1)-homogeneous with D2ϕ(z)·z = 0 for all z ∈ Rn+1\{0},

(iii) nϕ · νϕ = 1 and

(iv) ∇M ·nϕ = ∇·nϕ.

Remark 9.6 (First variation of anistropic area). Let M be a smooth properly
embedded hypersurface in Rn+1. For λ > 0 let Ψλ : Rn+1 → Rn+1 be sufficiently
regular diffeomorphisms with Ψ0 = Id. Let Mλ := Ψλ(M) and X := ∂λ

⃓⃓⃓⃓
λ=0

Ψλ.
Then

∂λ

⃓⃓⃓⃓
λ=0
|Mλ|ϕ =

∫︂
M
X · ν∇·nϕ =

∫︂
M
ϕ◦(ν)Hϕνϕ ·X. (9.1)

We recover (9.1) using a formal calculation. In the following computations all
derivatives with respect to λ are evaluated at λ = 0. It holds that

∂λ|Mλ|ϕ = ∂λ

∫︂
Mλ

ϕ◦(ν) =
∫︂

M
ϕ◦∇M ·X + ∂λν · ∇ϕ◦

=
∫︂

M
ϕ◦(ν)∇M ·X − νi∇MXi · nϕ.

Note that∫︂
M
−νi∇MXi · nϕ =

∫︂
M
−∇M ·

(︂
ν ·Xnϕ

)︂
+Xi∇Mνi · nϕ + ν ·X∇M ·nϕ

=
∫︂

M
ϕ◦(ν)ν ·XH +Xi∇Mνi · nϕ + ν ·X∇M ·nϕ.

In order to continue we need the symmetry of (∇Mνi)j in i and j, which is a
consequence of

(∇Mνi)j = gkl∂lνi∂kFj = −Akm∂mFi∂kFj .
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9. Extension to anisotropic SMCF

Hence∫︂
M
−νi∇MXi · nϕ =

∫︂
M
ϕ◦(ν)ν ·XH +X · ∇M(ϕ◦(ν)) + ν ·X∇M ·nϕ

=
∫︂

M
−ϕ◦(ν)∇M ·X + ν ·X∇M ·nϕ.

This implies

∂λ|Mλ|ϕ =
∫︂

M
X · ν∇M ·nϕ =

∫︂
M
X · ν∇·nϕ.

Formula (9.1) at hand, it is proven in [BP96, Proposition 5.1] that in a suitable
sense the direction of maximal slope of the anisotropic area is given by the
anisotropic mean curvature vector Hϕnϕ. This motivates to define the anisotropic
stochastic mean curvature flow with the notation from Section 3.1 through the
stochastic differential equation

dF = Hϕnϕ dt+ nϕ ◦ dW. (9.2)

As mentioned above we will assume that W is spatially homogeneous, i.e. W = αβ
with a real-valued Brownian motion β and a constant α with α2 < 2.

Similar to Section 3.1.1 we will derive evolution laws for the geometric quantities.

Remark 9.7 (Evolution of geometric quantities). For the metric tensor g we
infer

dgij = 2Hϕ∂inϕ · ∂jF + 2∂iHϕnϕ · ∂jF dt+ 2∂inϕ · ∂jF ◦ dW.

We will use the notation

(Aϕ)ij := −∂inϕ · ∂jF

for an anisotropic generalization of the second fundamental form. This notation
is compatible with

Hϕ = −∇M ·nϕ = gij(Aϕ)ij .

With this notation the above evolution equation for the metric tensor can be
rewritten to

dgij = −2Hϕ(Aϕ)ij + 2∂iHϕnϕ · ∂jF dt− 2(Aϕ)ij ◦ dW.

For the inverse metric we infer

dgij = 2Hϕ(Aϕ)ij − 2gij∇kHϕnϕ · ∂jF dt+ 2(Aϕ)ij ◦ dW.
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9.1. Anisotropic mean curvature flow

For the volume element it holds

d√g = −H2
ϕ

√
g +∇MtHϕ · nϕ dt−Hϕ

√
g ◦ dW.

As in Remark 3.3 dν is a tangent vector and since ∂inϕ also is a tangent vector
we have

dν · ∂iF = −ϕ◦(ν)∂iHϕ dt.

This gives

dν = −ϕ◦(ν)∇MtHϕ dt

and for the Cahn-Hoffmann vector field

dnϕ = −ϕ◦(ν) D2ϕ◦(ν)∇MtHϕ dt.

We conclude for the anisotropic area element

d
(︁
ϕ◦(ν)√g

)︁
= −ϕ◦(ν)H2

ϕ

√
g dt− ϕ◦(ν)Hϕ

√
g ◦ dW.

As we are interested in the evolution of E
∫︁

Mt
ϕ◦(ν) we need to rewrite the above

equation into its Itô formulation. In order to determine the Itô-Stratonovich
correction terms we need the stochastic part of the evolution equation of the
anisotropic mean curvature. We start by deriving the corresponding part of the
evolution law for the anisotropic second fundamental form. It holds

d(Aϕ)ij = . . . dt− ∂inϕ · ∂jnϕ ◦ dW.

since ∂inϕ is a tangent vector and ∂inϕ · ∂jF = −(Aϕ)ij we recover ∂inϕ =
−(Aϕ)ki ∂kF which gives

d(Aϕ)ij = . . . dt− (Aϕ)ik(Aϕ)kj ◦ dW.

Hence

d(Aϕ)ji = . . . dt+ 2(Aϕ)jk(Aϕ)ki − (Aϕ)jk(Aϕ)ki ◦ dW
= . . . dt+ (Aϕ)jk(Aϕ)ki ◦ dW.

This implies for the anisotropic mean curvature

dHϕ = . . . dt+ |Aϕ|2 ◦ dW.

This evolution law at hand we can rewrite the evolution of the anisotropic area
element into its Itô formulation

d(ϕ◦(ν)√g) = −
(︃

1− α

2

)︃
ϕ◦(ν)H2

ϕ

√
g − α2

2 ϕ◦(ν)|Aϕ|2
√
g dt− ϕ◦(ν)Hϕ

√
g dW.
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9. Extension to anisotropic SMCF

This implies

E
∫︂

MT

ϕ◦(ν) + E
∫︂ T

0

∫︂
Mt

(︄
1− α2

2

)︄
ϕ◦(ν)H2

ϕ + α2

2 ϕ◦(ν)|Aϕ|2 dt

≤ E
∫︂

M0
ϕ◦(ν)

(9.3)

which is the anisotropic version of Example 5.8.

We proceed as in the isotropic situation by deriving the level set formulation of
(9.2).

Remark 9.8 (Level set formulation of (9.2)). We adopt the notation from
Section 3.2. In particular we assume thatMt = {p ∈ Rn+1 | f(p, t) = λ} for some
constant λ ∈ R. This assumption yields

0 = df(Ft(x), t) +∇f(Ft(x), t) · nϕ(x, t)Hϕ(x, t) dt
+∇f(Ft(x), t) · nϕ(x, t) ◦ dW.

(9.4)

Due to the homogeneity of ϕ it is more convenient to choose the normal vector

ν(x, t) = ∇f(Ft(x), t)
|∇f(Ft(x), t)|

which has the opposite orientation as in Remark B.10. We infer because of the
homogeneity of ϕ◦ and ∇ϕ◦

νϕ(x, t) = ∇f(Ft(x), t)
ϕ◦(∇f(Ft(x), t)) ,

nϕ(x, t) = ∇ϕ◦(∇f(Ft(x), t)) and
Hϕ(x, t) = −∇·

(︁
∇ϕ◦(∇f)

)︁
(Ft(x), t).

Plugging this into (9.4) and using Lemma 9.5 gives

df(Ft(x), t) = ∇f(Ft(x), t) · ∇ϕ◦(∇f(Ft(x), t))∇·
(︁
∇ϕ◦(∇f)

)︁
(Ft(x), t) dt

−∇f(Ft(x), t) · ∇ϕ◦(∇f(Ft(x), t)) ◦ dW
= ϕ◦(∇f(Ft(x), t))∇·

(︁
∇ϕ◦(∇f)

)︁
(Ft(x), t) dt

− ϕ◦(∇f(Ft(x), t)) ◦ dW.

Since this should hold for all x and all level sets we can simplify it to

df = ϕ◦(∇f)∇·
(︁
∇ϕ◦(∇f)

)︁
dt− ϕ◦(∇f) ◦ dW.
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9.1. Anisotropic mean curvature flow

Note that −W also is a Wiener process with the same distribution as W . Hence,
we do not change the qualitative behavior of this equation by dropping the minus
sign in front of the perturbation for notational convenience. We call

df = ϕ◦(∇f)∇·
(︁
∇ϕ◦(∇f)

)︁
dt+ ϕ◦(∇f) ◦ dW (9.5)

the level set formulation of (9.2). Whenever we want to translate (9.5) back
to a solution of (9.2) for a particular Wiener process, we have to compensate
the different signs of the Wiener processes involved. Note that this difficulty
appears here but not in Section 3.2, because here we have chosen the unit normal
with the opposite orientation. In general, we have for a Minkowski norm ϕ that
ϕ(x) ̸= ϕ(−x). Hence, the unit normal we have chosen here is the more convenient
choice as otherwise there would be minus signs appearing in the arguments of the
Minkowski norm and its derivatives in (9.5). Nevertheless, with the orientation
from Section 3.2 we would not have to change the sign of the Wiener process.

Example 9.9 (Stochastic mean curvature flow of Wulff shape). Using the defi-
nition of the duality maps Tϕ and Tϕ◦ we infer that ∇ϕ◦(∇ϕ(z)) = z

ϕ(z) for all
z ∈ Rn+1 \ {0}. According to Remark 9.8 this implies for the Cahn-Hoffmann
vector field and the anisotropic mean curvature of r∂Bϕ = {z ∈ Rn+1 | ϕ(z) = r}

nϕ = z

r
and Hϕ = −∇·

(︁
∇ϕ◦(∇ϕ)

)︁
= −n

r
.

Let M = ∂Bϕ and Ft(x) = r(t)z for z ∈M and r(0) = r0. Then the evolution
of r(t)∂Bϕ induced by (9.2) is characterized by

drz = −n
r
z dt+ z ◦ dW ⇔ dr = −n

r
dt+ α dβ.

Comparing this with (3.10) we find that the radius of the Wulff shape solves the
same stochastic differential equation as the radius of a sphere in the isotropic
setting.

Remark 9.10 (The graphical case). Let us now assume that Mt is the graph
of a function u(·, t). In order to avoid the issues arising from the choice of the
orientation as in Remark 9.8 we derive the equation for u not from (9.2) but
directly from the level set equation (9.5), which already accounts for it.

To this end, let f : Rn+1 → R be given by

f(x, ξ) = u(x)− ξ.

The zero level set of f is the graph of u. Note that

∇f =
(︄
∇u
−1

)︄
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9. Extension to anisotropic SMCF

and

ν = 1√︁
1 + |∇u|2

(︄
∇u
−1

)︄
.

We will use the notation introduced in Remark B.9, especially

Q(p) =
√︂

1 + |p|2 and v(p) = p

Q(p) for p ∈ Rn.

Furthermore, we define their anisotropic analogs

Qϕ◦(p) := ϕ◦(p,−1) and vϕ◦(p) := ∇Qϕ◦(p) = ∇pϕ◦(p,−1),

where we write ∇ϕ◦ =
(︂

∇pϕ◦

∂wϕ◦

)︂
with ∇pϕ◦ ∈ Rn and ∂wϕ◦ ∈ R. With this notation

we infer

νϕ = 1
Qϕ◦(∇u)

(︄
∇u
−1

)︄
,

nϕ =
(︄

vϕ◦(∇u)
∂wϕ

◦(∇u,−1)

)︄
and

Hϕ = ∇·
(︂
vϕ◦(∇u)

)︂
.

Plugging this into the level set equation (9.5) gives

du = Qϕ◦(∇u)∇·
(︂
vϕ◦(∇u)

)︂
dt+ Qϕ◦(∇u) ◦ dW, (9.6)

which therefore characterizes the anisotropic stochastic mean curvature flow of
graphs.

Note that (9.6) has the same structure as (3.8).

9.2. Existence in the graphical case
In this section we will prove existence of solutions for anisotropic stochastic mean
curvature flow under the assumption that the initial data is the graph of a function
u. For notational convenience we will consider the evolution with respect to ϕ◦,
which corresponds to (9.6) with ϕ◦ replaced by ϕ, i.e.

du = Qϕ(∇u)∇·
(︂
vϕ(∇u)

)︂
dt+ Qϕ(∇u) ◦ dW. (9.7)

Assumptions 9.11. We assume that α ∈ R with α2 < 2 and ϕ is a regular
Minkowski norm which additionally fulfills

D2
pϕ(p, w) ≤ 2ϕ(p, w) Id ∀p ∈ Sn−1, w ∈ R. (9.8)

Furthermore, we will assume that W = αβ with a real-valued Brownian motion
β.
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9.2. Existence in the graphical case

Remark 9.12. Note that (9.8) is a technical assumption which we need in order
to prove that the Dirichlet energy E

∫︁
Tn |∇u|2 is decreasing for solutions of (9.7).

Since the Dirichlet energy is not adapted to ϕ it is natural that some additional
condition on ϕ comes in. This technicality is due to the fact that we will treat
(9.7) as a variational SPDE in the setting of Section 4.2.

At the moment it is not clear how to get rid of this assumption. It would be
natural to replace the variational theory which builds up on the weak formulation
of (9.7) with respect to the isotropic L2 norm of ∇u by a theory which uses a
weak formulation which respects the anisotropy. However, we do not pursue this
in this thesis.

By considering an Euclidean transformation induced by a symmetric positive
definite matrix A ∈ Rn×n one could weaken (9.8) to

D2
pϕ(p, w) ≤ 2ϕ(p, w)A ∀p ∈ Rn with p ·Ap = 1, w ∈ R

and consider on L2(Tn;Rn) the scalar product ⟨ψ1, ψ2⟩A :=
∫︁
Tn ψ1 ·Aψ2, ψ1, ψ2 ∈

L2(Tn;Rn). We will not go into detail about this generalization.

Theorem 9.13. Let Λ be a Borel probability measure on H1(Tn) with∫︂
H1(Tn)

∥z∥2H1(Tn) dΛ(z) <∞ and ∥∇z∥L∞(Tn;Rn) ≤ L Λ-a.s.

for a constant L > 0. Then, under Assumptions 9.11, there is a martingale
solution u of (9.7) for I = [0,∞) with initial data Λ.

In addition, the uniform bounds we will derive in this section also imply that
the large-time result Theorem 7.5 also holds for solutions of (9.7).

Remark 9.14 (Viscous equation). In order to prove Theorem 9.13 we proceed
as in Chapter 5 and introduce for ε > 0 the viscous equation

du = ε∆u+ Qϕ(∇u)∇·
(︂
vϕ(∇u)

)︂
dt+ Qϕ(∇u) ◦ dW. (9.9)

Since (9.9) has the same structure as (5.4) we can repeat the proof of Lemma 5.9
to deduce its anisotropic analog, which is the foundation for the existence proof.

Lemma 9.15. Let ε ≥ 0 and u be a strong solution of (9.9) on the time interval
I. Let f ∈ C2(Rn) with bounded second order derivatives. For the energy

E(t) :=
∫︂
Tn
f(∇u(t)), t ∈ I
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9. Extension to anisotropic SMCF

it holds that

dE =
∫︂
Tn
− εD2f(∇u) D2u : D2u−

(︄
1− α2

2

)︄
f(∇u)

⃓⃓⃓⃓
∇·
(︂
vϕ(∇u)

)︂⃓⃓⃓⃓

−D2uD2
pϕ(∇u,−1) :

⎡⎣Qϕ(∇u) D2f(∇u) D2u

−
(︄

1− α2

2

)︄
f(∇u) D2

pϕ(∇u,−1) D2u

⎤⎦dt

− f(∇u)∇·
(︂
vϕ(∇u)

)︂
dW.

A direct consequence of Lemma 9.15 is the following Lemma.

Lemma 9.16. Let ε ≥ 0 and u be a strong solution of (9.9) on the time interval
I. Let g ∈ C2([0,∞)) be non-negative, increasing and convex with bounded second
derivative and g(0) = 0. Then the energy

E(t) :=
∫︂
Tn
g(Qϕ(∇u(t))), t ∈ I

is estimated by

EE(t) +
(︄

1− α2

2

)︄
E
∫︂ t

0

∫︂
Tn
g

⃓⃓⃓⃓
∇·
(︂
vϕ(∇u)

)︂⃓⃓⃓⃓
ds

+ E
∫︂ t

0

∫︂
Tn

Qϕ(∇u)g′′vϕ(∇u) ·D2uD2
pϕ(∇u,−1) D2uvϕ(∇u) ds

+ E
∫︂ t

0

∫︂
Tn

(︃
Qϕ(∇u)g′ −

(︂
1− α2

2
)︂
g

)︃
D2uD2

pϕ(∇u,−1) :D2
pϕ(∇u,−1) D2uds

≤ EE(0)

for all t ∈ I with all integrals on the left side of the equation being non-negative
and with g, g′ and g′′ evaluated at Qϕ(∇u).

In order to interpret (9.9) as a variational SPDE in the sense of Assumptions 4.31,
we will present a second application of Lemma 9.15 for f(∇u) = |∇u|2. In this
situation, we recover the coercivity assumption (4.13).

Proposition 9.17 (Coercivity of the viscous equation). Let ε ≥ 0 and u be a
strong solution of (9.9) on the time interval I. For the Dirichlet energy we have

d
∫︂
Tn
|∇u|2 + 2ε

∫︂
Tn
|D2u|2 +

(︄
1− α2

2

)︄∫︂
Tn
|∇u|2

⃓⃓⃓⃓
∇·
(︂
vϕ(∇u)

)︂⃓⃓⃓⃓2
dt

≤ −
∫︂
Tn
|∇u|2∇·

(︂
vϕ(∇u)

)︂
dW.
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9.2. Existence in the graphical case

Proof. We apply Lemma 9.15 to f(∇u) = |∇u|2 and infer

d
∫︂
Tn
|∇u|2 =

∫︂
Tn
− 2ε|D2u|2 −

(︄
1− α2

2

)︄
|∇u|2

⃓⃓⃓⃓
∇·
(︂
vϕ(∇u)

)︂⃓⃓⃓⃓2

−D2uD2
pϕ(∇u,−1) :

⎡⎣2Qϕ(∇u) Id

−
(︄

1− α2

2

)︄
|∇u|2 D2

pϕ(∇u,−1)

⎤⎦D2udt

− |∇u|2∇·
(︂
vϕ(∇u)

)︂
dW.

Because of the convexity of ϕ we have D2
pϕ ≥ 0. Assumption (9.8) implies

2Qϕ(p) Id−
(︂
1− α2

2
)︂
|p|2 D2

pϕ(p,−1) ≥ |p|
(︃

2ϕ
(︂ p
|p|
,− 1
|p|

)︂
Id−D2

pϕ
(︂ p
|p|
,− 1
|p|

)︂)︃
≥ 0.

By combining these estimates with Lemma C.2 we find the claimed inequality.

The coercivity result Proposition 9.17 at hand, we can prove existence of
martingale solutions of the viscous equation (9.9).

Theorem 9.18. Let ε > 0, q > 2 and Λ be a Borel probability measure on H1(Tn)
with ∫︂

H1(Tn)
∥z∥2H1(Tn) dΛ(z) <∞ and

∫︂
H1(Tn)

∥∇z∥qL2(Tn) dΛ(z) <∞.

Then, under Assumptions 9.11, there is a martingale solution u of (9.9) for
I = [0,∞) with initial data Λ.

Proof. The existence of martingale solutions can be concluded as in the proof of
Theorem 5.7 by interpreting (9.9) as a variational equation for the gradient ∇u.
Note that the coercivity of this equation is a consequence of the computations in
Proposition 9.17.

In order to pass to the limit ε → 0 we deduce bounds for the gradient of
solutions. We will start by stating a maximum principle for the gradient, which
generalizes Theorem 7.3. Note that we measure the Lipschitz constant with
respect to the Minkowski norm.

Theorem 9.19 (Maximum principle for the gradient). Let ε ≥ 0 and u be a
strong solution of (9.9) on the time interval [0, T ] with initial data u0 which is
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9. Extension to anisotropic SMCF

uniformly Lipschitz continuous, i.e. ∥ϕ(∇u0,−1)∥L∞(Tn) ≤ L P-a.s. for a constant
L > 0.

Then the solution has the same Lipschitz constant for all times, i.e.

∥ϕ(∇u,−1)∥L∞(0,T ;L∞(Tn)) ≤ L P-a.s.

Proof. This is a direct consequence of Lemma 9.16 for a suitable approximation
g of z ↦→ (z − L)+ as in the proof of Theorem 7.3.

As a consequence of the maximum principle for the gradient, we can prove a
bound for the Hessian.

Proposition 9.20 (Hessian bound). Let ε ≥ 0 and u be a strong solution of
(9.9) on the time interval [0, T ] with initial data u0 which is uniformly Lipschitz
continuous, i.e. ∥ϕ(∇u0,−1)∥L∞(Tn) ≤ L P-a.s. for a constant L > 0. Then there
is a constant c = c(L, ϕ) such that

E
∫︂
Tn

Qϕ(∇u(t))2 + cE
∫︂ t

0

∫︂
Tn
|D2u(s)|2 ds ≤ E

∫︂
Tn

Qϕ(u0) ∀t ∈ [0, T ].

Proof. We apply Lemma 9.16 to g(z) = z2 and infer

E
∫︂
Tn

Qϕ(∇u(t))2 + E
∫︂ t

0

∫︂
Tn

Qϕ(∇u(s))2 D
(︂
vϕ(∇u(s))

)︂
: D
(︂
vϕ(∇u(s))

)︂T
ds

≤ E
∫︂
Tn

Qϕ(∇u(0))2.

(9.10)

Since ϕ is a regular anisotropy it holds for all z, ζ ∈ Rn+1\{0} that ζ ·D2ϕ(z)ζ >
0 for ζ ̸∈ span{z}. Otherwise there would be an 0 ̸= X = λz + µζ ∈ T z

|z|
∂Bϕ ∩

span{z, ζ} such that

1
|z|
X ·D2ϕ

(︄
z

|z|

)︄
X = X ·D2ϕ(z)X

= λ2z ·D2ϕ(z)z + 2λµζ ·D2ϕ(z)z + µ2ζ ·D2ϕ(z)ζ
= 0

since D2ϕ(z) is (−1)-homogeneous and D2ϕ(z)z = 0 by Lemma 9.5, which
contradicts the assumption that ∂Bϕ has positive principal curvatures.

In particular q · D2
pϕ(p,−1)q =

(︁ q
0
)︁
· D2ϕ(p,−1)

(︁ q
0
)︁
> 0 for all p, q ∈ Rn

with q ̸= 0. Hence, D2
pϕ(p,−1) is positive definite. Furthermore, we infer

from Theorem 9.19 that ∥∇u∥L∞(0,T ;L∞(Tn)) ≤ c(L) P-a.s. The continuity of
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9.2. Existence in the graphical case

p ↦→ D2
pϕ(p,−1) implies that there is a constant c that depends on L and ϕ such

that

D2
pϕ(∇u,−1) ≥ c Id a.s. in Ω× [0, T ]× Tn.

With Lemma C.2 we conclude that

D
(︂
vϕ(∇u)

)︂
: D
(︂
vϕ(∇u)

)︂T
= D2

pϕ(∇u,−1) D2u : D2uD2
pϕ(∇u,−1) ≥ c2|D2u|2

almost surely in Ω× [0, T ]× Tn. Plugging this inequality into (9.10) yields the
asserted estimate.

Proof of Theorem 9.13. With the existence result for the viscous equation, the
maximum principle for the gradient and the Hessian bound at hand, cf. The-
orem 9.18, Theorem 9.19 and Proposition 9.20, we can follow the lines of the
proof of the isotropic result in Section 5.3 to conclude the existence of martingale
solutions for (9.7).
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10. Outlook

In this chapter, we will give an outlook how the results of this thesis might be
used or extended in future research. In particular, we will summarize the open
problems that were mentioned during the previous chapters.

Remark 10.1 (SMCF for arbitrary hypersurfaces). In this work, we mostly
focus on the situation where the hypersurfaces are given as the graphs of a time-
dependent function u. As mentioned before, the generic situation can be described
by the level set equation (3.5). Formally, this equation can be approximated by
the graphical case. For this, let uε = Uε

ε solve the graphical SMCF (3.8), i.e.

∂tU
ε =

√︂
ε2 + |∇U ε|2∇·

(︄
∇U ε√︁

ε2 + |∇U ε|2

)︄
dt+

√︂
ε2 + |∇U ε|2 ◦ dW. (10.1)

Our previous analysis of the graphical situation in particular yields existence of
martingale solutions of (10.1) under appropriate assumptions on the noise and
the initial data.

In order to pass to the limit ε→ 0 and prove that a limit f := limε→0 U
ε exists

and solves (3.5) we need uniform estimate for U ε in ε > 0. It is not clear, whether
the estimates from Chapter 5 or in case of spatially homogeneous noise from
Chapter 7 can be adapted in order to infer a sufficiently strong control of U ε in
ε > 0. Besides this, it is necessary to find the right notion of solution for the
level set equation (3.5) such that it is compatible with this kind of approximation.
In particular it is not clear if in analogy to the deterministic case, cf. [ES91],
the theory of stochastic viscosity solutions [LS98a, LS98b, LS00a, LS00b] is well
suited for this.

Remark 10.2 (Uniqueness and regularity). In Chapter 6 we prove a conditional
stability and uniqueness result under the assumption that solutions are sufficiently
regular. In particular, we have to assume more regularity than the existence
theorem in Chapter 5 guarantees.

The stability result is based on an estimate of the L2 difference of the gradient
of two solutions of (5.1). This Ansatz does not exploit the geometric origin of
graphical SMCF. At the moment, it is not clear if an intrinsically geometric
notion of stability is available and would yield a stronger result.

In the situation of compact properly embedded hypersurfaces moving according
to SMCF, it is a natural question whether a pathwise inclusion principle holds.
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In a strong formulation, this can be characterized by the pathwise growth of
the distance between two solutions driven by the same Wiener process. The
corresponding result is true for deterministic mean curvature flow, cf. [Bel13,
Theorem 5.4]. In fact, it can also be easily verified in the situation of Section 3.4
for spherical solutions of SMCF with spatially homogeneous noise.

In Section 7.3 we have proven a first regularity result for graphical SMCF with
spatially homogeneous noise. Besides holding interest on its own, proving higher
regularity of solutions is a different attempt to strengthen the uniqueness result
in Chapter 6. Nevertheless, it is an open problem whether we can prove enough
regularity in order to apply the uniqueness result at least under appropriate
assumptions on the initial data and the noise.

Remark 10.3 (Convergence of a numerical scheme). In Chapter 8 we have
proposed a numerical scheme for graphical SMCF. Since it is based on the same
Galerkin approximation as in the existence proof for variational SPDEs from
Section 4.3, we expect the scheme to converge for ε > 0 to a martingale solution
of the viscous approximation (5.4).

The question of a rate of convergence as well as the convergence to a strong
solution is strongly related to the uniqueness issue mentioned in Remark 10.2.

Furthermore, it is not clear if convergence can be proven not only for the viscous
equation but also for graphical SMCF (5.1).

The regularity proven in Chapter 5 and Chapter 7 in case of spatially homoge-
neous noise goes beyond the regularity results that previously were available for
n = 1, cf. [ESvR12]. Therefore, it is a natural question whether these results can
be used in order to strengthen the convergence proven in [FLP14] for a numerical
scheme in the one-dimensional case.

Remark 10.4 (Numerical observations in case of colored noise). The Monte-
Carlo simulations in Section 8.2.2 for SMCF with colored noise suggest some fine
properties of certain energies, which we have not proven before. For example,
the best analytic results from Chapter 5 imply that the expectation of the Lp
norm of the gradient of a solution grows at most exponentially. Nevertheless,
in the simulations we see that for spatially rough data, i.e. situations where
the aforementioned norm is large, SMCF has a regularizing effect and the norm
decreases.

It is not clear, if this is a numerical artifact which is due to the discretization
and the particular choice of the noise coefficients or if it is a feature of SMCF
with colored noise.

Related to this is the large-time behavior of solutions of SMCF with colored
noise. The mean curvature flow has a regularizing effect while the colored noise
introduces spatial roughness. Depending on the regularity of the solution, we
expect one of those effects to dominate. Due to their interplay we expect that at
large times the solution stays in a region where the effects are balanced.
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Remark 10.5 (Different boundary conditions and unbounded domains). In this
work, we have considered graphical SMCF on the flat torus, i.e with periodic
boundary conditions. In the deterministic situation, several works deal with
Neumann and Dirichlet boundary conditions for graphical MCF, cf. [Ger76],
[Hui89] and [MT17] and the references therein. In the presence of stochastic
perturbations, we expect that the approach taken in this thesis can be used to
prove existence of graphical SMCF on bounded convex domains with Neumann
boundary data.

For a smooth function u on a bounded convex domain U with Neumann
boundary condition ∇u · ν = 0 on ∂U it holds that

∇u ·D2uν = −∇u ·Dν∇u ≤ 0.

The formal calculations regarding the energy estimates from Remark 5.6 can be
repeated for non-periodic data with Neumann boundary condition. With the
above inequality, the boundary terms formally have the right sign. Thus, we
expect the energy estimates to hold in this situation, at least under suitable
assumptions on the noise coefficients. For a similar strategy in the deterministic
case we refer to [MT17].

For more general bounded domains, the boundary terms will not be neglectable.
Instead, these terms might be estimated in the same way the boundary terms are
handled in [Ger76] and [Hui89].

On unbounded domains, in particular for U = Rn, it is not clear if existence of
solutions of graphical SMCF can be proven with our approach. In this situation,
the monotonicity formula derived in Section 3.5 with a non-constant kernel might
be used in order to infer the integrability of certain terms with no sufficient spatial
decay, cf. [EH89] for the deterministic situation.
Remark 10.6 (Technical assumption on anisotropy). In Chapter 9 we prove
existence of graphical SMCF with respect to an anisotropy ϕ. In order to use the
same strategy as in the isotropic case, in particular the viscous approximation and
the theory of variational SPDEs, we need to restrict to anisotropies satisfying a
technical assumption. This assumption assures that the anisotropy is compatible
with the Dirichlet energy. Furthermore, we have assumed that the noise is spatially
homogeneous.

It is an open problem, whether one can remove the assumption on the anisotropy
by choosing a different approximation technique. It is also not clear, if one can
derive existence under the presence of colored noise.
Remark 10.7 (Use the variational framework for other equations). The theory
of variational SPDEs with a compact embedding, that we present in Section 4.2
and for which we prove existence in Section 4.3, extends the previously available
theory. It is an interesting question, if it can be applied to different equations
that previously could not be treated within the theory of variational SPDEs.
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A. Some results about bounded
linear operators

In this chapter we will state some results about bounded linear operators on
Banach spaces. In some cases we will restrict the presentation to Hilbert spaces,
if the general theory is not needed in this work.

A.1. Trace class and Hilbert-Schmidt operators
We will adapt the presentation of [DPZ14, Appendix B]. For proofs and a more
detailed exposition see also [DS63, XI.6 and XI.9], [RS72, VI.6] and [Kab11, 12].

Definition A.1. Let H be a Hilbert space. For a non-negative operator A ∈ L(H)
and an orthonormal basis (ek)k∈I of H

trA :=
∑︂
k∈I
⟨Aek, ek⟩

is called the trace of A.

Remark A.2. In the situation of Definition A.1 trA is well-defined, i.e. it does
not depend on the choice of the orthonormal basis.

Definition A.3. Let H be a Hilbert space. An operator A ∈ L(H) is called a
trace class operator if tr |A| <∞.

We denote by

L1(H) :=
{︁
A ∈ L(H) | tr |A| <∞

}︁
the set of all trace class operators and define

∥A∥L1(H) := tr |A|, A ∈ L1(H).

For an orthonormal basis (ek)k∈I of H we will call

trA :=
∑︂
k∈I
⟨Aek, ek⟩

the trace of A ∈ L1(H).
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Remark A.4. Note that in the situation of Definition A.3 the operator |A| =√
A∗A is well-defined, cf. [RS72, Theorem VI.9].
Furthermore, for A ∈ L1(H) the trace trA is well-defined and coincides for

non-negative trace class operators with the trace defined in Definition A.1.

Theorem A.5 (cf. [RS72, Theorem VI.19] and [RS72, Theorem VI.20]). If H
is a Hilbert space then L1(H) is an ideal in L(H) and (L1(H); ∥ · ∥L1(H)) is a
Banach space.

Definition A.6. Let H1 and H2 be two Hilbert spaces. An operator A ∈
L(H1;H2) is called a Hilbert-Schmidt operator if A∗A is a trace class operator
on H1.

We denote by

L2(H1;H2) :=
{︁
A ∈ L(H1;H2) | A∗A ∈ L1(H1)

}︁
the set of all Hilbert-Schmidt operators and define the scalar product

⟨A1, A2⟩L2(H1;H2) := tr
(︁
A∗

1A2
)︁
, A1, A2 ∈ L2(H1;H2).

For the induced norm we write

∥A∥L2(H1;H2) =
√︂

tr (A∗A), A ∈ L2(H1;H2).

Theorem A.7 (cf. [RS72, Theorem VI.22] and [RS72, Problem VI.48]). If H1
and H2 are Hilbert spaces then (L2(H1;H2); ⟨·, ·⟩L2(H1;H2)) is a Hilbert space.

Remark A.8. Note that the spaces introduced in Definition A.3 and Defini-
tion A.6 are special instances of the Schatten classes, cf. [Kab11, 12.5]. More
precisely, for Hilbert spaces H1 and H2 it holds that

L1(H1) =

⎧⎨⎩A ∈ L(H1) | A is compact and
∑︂
k∈N

sk(A) <∞

⎫⎬⎭
and

L2(H1;H2) =

⎧⎨⎩A ∈ L(H1;H2) | A is compact and
∑︂
k∈N

s2
k(A) <∞

⎫⎬⎭ ,
with sk(A) denoting the k-th singular value of a compact operator A.

Furthermore the trace class operators coincide with the nuclear operators in
the context of Banach spaces.
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A.2. Moore-Penrose inverse

A.2. Moore-Penrose inverse
Compare with [PR07, Appendix C].

Definition A.9. Let H1, H2 be Hilbert spaces and T ∈ L(H1;H2). The Moore-
Penrose inverse T−1 : T (H1)→ (kerT )⊥ of the operator T is given by the inverse
of T |(kerT )⊥ : (kerT )⊥ → T (H1).

Remark A.10. Note that in the setting of Definition A.9 the restriction of T to
(kerT )⊥, i.e. T |(kerT )⊥ : (kerT )⊥ → T (H1), is bijective.

As a consequence of the open mapping theorem the Moore-Penrose inverse is a
bounded linear operator.

Proposition A.11. In the setting of Definition A.9 we have that:

(i) T−1y = argmin{∥x∥H | Tx = y} for all y ∈ T (H1),

(ii) TT−1T = T ,

(iii) T−1TT−1 = T−1,

(iv)
(︂
TT−1

)︂∗
= TT−1,

(v)
(︂
T−1T

)︂∗
= T−1T .
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B. Differential geometry of
hypersurfaces

In this chapter we will introduce the terminology we will use to describe the
differential geometry of hypersurfaces in Rn+1. For a more detailed exposition of
the concepts of Riemannian manifolds we refer to [Lee18], where we have taken
most of the notation from. Furthermore, we would like to refer to [Eck04] for
an exposition which focuses on the objects which are important for the mean
curvature flow. At some points we will also use ideas from [Bel13] where the
geometric objects are introduced and expressed in terms of the signed distance
function.

During this chapter we will not give the optimal regularity assumptions and
instead always assume that all objects are sufficiently smooth.

We assume that M⊂ Rn+1 is a smooth properly embedded hypersurface. We
will denote by F : Ω→ F (Ω) ⊂M a smooth local parametrization for some open
set Ω ⊂ Rn. We introduce the (local) geometric objects in terms of F , but up to
their representation in local coordinates they are independent of the choice of F .
If not otherwise specified p = F (x) denotes a point on the manifold M for x ∈ Ω.

Definition B.1 (Tangent space). The tangent vectors ∂1F (x), . . . , ∂nF (x) are
linearly independent and form a basis of the n-dimensional tangent space TpM.
The cotangent space T ∗

pM is the dual space of the tangent space. The dual
basis is given by the cotangent vectors dx1, . . . ,dxn, which are the differentials of
p = F (x1, . . . , xn) ↦→ xi.

For a tangent vector X ∈ TpM and a cotangent vector Y ∈ T ∗
pM we write

X = Xi∂iF (x) and Y = Yi dxi using the Einstein summation convention. Since
Y is a linear form on TpM, we can apply it to X and get Y (X) = XiYi.

Definition B.2 (Metric and area element). Since M is a submanifold of Rn+1,
the Euclidean structure of Rn+1 induces a Riemannian metric g on M. For two
tangent vectors X,Y ∈ TpM⊂ Rn+1 we have

⟨X,Y ⟩g = X · Y = XiY j∂iF · ∂jF =: gijXiY j .

The matrix (gij)i,j=1,...,n is invertible and for the inverse matrix we write (gij) =
(gij)−1. The area element is given by

√
g :=

√︁
det g.
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Note that ⟨X, ·⟩g defines a cotangent vector with components
(︂
⟨X, ·⟩g

)︂
i

=
gijX

j .
For a vector in the ambient space X ∈ Rn+1 we will denote by XT its tangential

part, i.e. XT is the tangent vector uniquely determined by⟨︂
XT , Y

⟩︂
g

= X · Y ∀Y ∈ TpM.

It can be expressed in terms of the metric g via

XT = gijX · ∂iF∂jF.

Definition B.3 (Integration). For a function f : F (Ω) → R under suitable
assumptions the integral ∫︂

M
f dHn =

∫︂
Ω

√
gf ◦ F dLn

is well-defined. Using a smooth partition of unity this definition can be extended
to define the integral

∫︁
M f dHn for a function f :M→ R.

Definition B.4 (Tangential gradient). For a smooth function f :M→ R the
differential dfp ∈ T ∗

pM is a well-defined cotangent vector. The corresponding
tangent vector

∇Mf(p) = ∇iMf(p)∂iF (x) := gij dfp(∂jF (x))∂iF (x) = gij∂j (f ◦ F ) (x)∂iF (x)

is called the tangential gradient of f .

Definition B.5 (Covariant derivative and Christoffel symbols). The Christoffel
symbols Γkij are the coefficients of the tangential part of ∂ijF , i.e.

(︁
∂ijF

)︁T =: Γkij∂kF.

In terms of the metric the Christoffel symbols can be expressed as

Γkij = 1
2g

kl
(︂
∂igjl + ∂jgil − ∂lgij

)︂
.

With help of the Christoffel symbols one can define the covariant derivative of
higher-order tensor fields.

Let G be a smooth (k, l)-tensor field, i.e. a k-times contravariant and l-times
covariant tensor field. Expressing G in a basis we have

G = Gi1,...,ikj1,...,jl
∂i1F ⊗ . . .⊗ ∂ikF ⊗ dxj1 ⊗ · · · ⊗ dxjl .
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The covariant derivative of G is the (k, l + 1)-tensor field given by

∇MG = ∇M
mG dxm

with coefficients(︂
∇M
mG

)︂i1,...,ik
j1,...,jl

:= ∇M
mG

i1,...,ik
j1,...,jl

:= ∂m
(︂
Gi1,...,ikj1,...,jl

◦ F
)︂

+
k∑︂
s=1

Gi1,...,p,...,ikj1,...,jl
Γismp −

l∑︂
s=1

Gi1,...,ikj1,...,p,...,jl
Γpmjs .

Definition B.6 (Divergence and Laplacian). Let X be a smooth vector field.
The divergence of X in terms of the covariant derivative is given by

∇M ·X := ∇M
i X

i = ∂i(Xi ◦ F ) + ΓiijXj .

It can also be expressed as

∇M ·X = 1
√
g
∂i
(︂√

gXi ◦ F
)︂
.

For a smooth function f :M→ R the Laplacian of f is given by

∆Mf := ∇M ·∇Mf = ∇M
i

(︂
∇iMf

)︂
.

There are several different expressions for the Laplacian of f , i.e.

∆Mf = gij∇M
i ∇M

j f = trg∇M∇Mf = gij
(︂
∂ij (f ◦ F )− Γkij∂k (f ◦ F )

)︂
= 1
√
g
∂i
(︂√

ggij∂j (f ◦ F )
)︂
.

Definition B.7 (Unit normal field and second fundamental form). Let ν be a
smooth unit normal field, i.e. |ν(p)| = 1 and ν(p) ⊥ TpM for all p ∈M.

The second fundamental form is a symmetric 2-covariant tensor field A, which
describes the difference between differentiation in the ambient space and the
covariant derivative, i.e.1

∂ijF = (∂ijF )T + (∂ijF )⊥

=: ∇M
i

(︁
∂jF

)︁
+A(∂iF, ∂jF )ν.

Hence, the tensor can be represented by

A = Aij dxi ⊗ dxj

with

Aij := ∂ijF · ν = −∂iF · ∂jν.
1Note that the second fundamental form changes sign, when ν changes sign. We have used a

different sign convention as in [Eck04], but are in accordance with [Lee18] and [Bel13].
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Definition B.8 (Shape operator, Weingarten map and curvature). The shape
operator or Weingarten map s is the (1, 1)-tensor field corresponding to A by
raising one index. That means that

s = Aij∂iF ⊗ dxj

with Aij = gikAkj .
The shape operator at a point p can be identified with the self-adjoint linear

endomorphism on TpM given by X = Xi∂iF ↦→ AijX
j∂iF . The eigenvalues of s

are called the principal curvatures κ1, . . . , κn. The mean curvature H is the sum
of the principal curvatures

H := κ1 + . . .+ κn

= Aii = tr s
= gijAij = trg A.

The mean curvature vector is

H⃗ = Hν.

The mean curvature vector is independent of the choice of ν.
Note that ∆MF = H⃗ component-wise.

Remark B.9 (Differential geometry of graphs). We will specialize the above
notation to the case that the hypersurfaceM is the graph of a function u : Ω→ R.
The canonical global parametrization of M is given by

F (x) :=
(︄

x
u(x)

)︄
, x ∈ Ω.

For the metric tensor we calculate

gij = δij + ∂iu∂ju,

which is (gij) = Id +∇u⊗∇u. In the following we will use the abbreviations

Q(p) :=
√︂

1 + |p|2 and

v(p) := p√︁
1 + |p|2

= p

Q(p)

for p ∈ Rn. With this notation we can write the inverse metric as

(gij) = Id−v(∇u)⊗ v(∇u)
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and the area element as
√
g = Q(∇u).

For the Christoffel symbols we infer

Γkij = 1
2g

kl
(︂
∂igjl + ∂jgil − ∂lgij

)︂
= ∂iju∂ku

Q(∇u)2 .

Let f : Ω→ R and h : Ω→ Rn+1. The tangential gradient of f is given by

∇Mf =

⎛⎝(︁Id−v(∇u)⊗ v(∇u)
)︁
∇f

∇u·∇f
Q(∇u)2

⎞⎠ ,
where ∇ denotes the gradient with respect to the differential structure of Ω.

The divergence of h is given by

∇M ·h = gij∂ih · ∂jF

=
(︁
Id−v(∇u)⊗ v(∇u)

)︁
: Dh1,...,n + 1

Q(∇u)2∇u · ∇hn+1.

Hence,

∆Mf =
(︁
Id−v(∇u)⊗ v(∇u)

)︁
: D2f − v · ∇f∇·

(︁
v(∇u)

)︁
.

A smooth unit normal field is given by

ν := 1
Q(∇u)

(︄
−∇u

1

)︄
.

For this choice of a normal field the second fundamental form has the components

Aij = ∂iju

Q(∇u)

and the Weingarten maps has the components

Aij = 1
Q(∇u)

(︁
Id−v(∇u)⊗ v(∇u)

)︁
ik ∂kju

= ∂j
(︁
vi(∇u)

)︁
.

Hence, the mean curvature is given by

H = ∇·
(︁
v(∇u)

)︁
.
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B. Differential geometry of hypersurfaces

Remark B.10 (Differential geometry of level sets). Let f : Rn+1 → R be a
smooth function. For λ ∈ R we consider the level set M := {f = λ} and assume
that ∇f ≠ 0 on M. Then M is a properly embedded smooth hypersurface in
Rn+1 by [Lee18, Theorem A.24]. Since the gradient of f is non-vanishing and
a rotation of M does not change its geometric properties we can assume that
locally ∂n+1f ̸= 0 and therefore locally solve the equation f(x, u(x)) = λ. This
yields a local graph parametrization of M by F (x) = (x, u(x)). We will denote
the components of the gradient of f by ∇f = (∇̂f, ∂n+1f) ∈ Rn × R = Rn+1.
With this notation we infer

∇u = − 1
∂n+1f

∇̂f. (B.1)

In Remark B.9 we express the geometric objects related to M in terms of u.
These expressions and (B.1) at hand we can characterize them in terms of f .

The components of the metric tensor with respect to the coordinates introduced
by the local graph parametrization are given by

gij = δij + ∂iu∂ju = δij + ∂if∂jf

(∂n+1f)2 .

For the area element and the inverse metric it holds that

√
g = Q(∇u) =

√︄
1 + |∇̂f |2

(∂n+1f)2 = 1
|∂n+1f |

√︂
1 + |∇f |2

and

(gij) = Id−v(∇u)⊗ v(∇u) = Id−∇̂f ⊗ ∇̂f
|∇f |2

.

For a function φ : Rn+1 → R let h(x) = φ(x, u(x)). For the gradient of h we
compute

∇h = ∇̂φ+ ∂n+1φ∇u = ∇̂φ− ∂n+1φ

∂n+1f
∇̂f.

This implies for the tangential gradient of φ

∇Mφ = ∇Mh =
(︄(︁

Id−v(∇u)⊗ v(∇u)
)︁
∇h

∇u·∇h
Q(∇u)2

)︄

=

⎛⎜⎜⎝
(︃

Id− ∇̂f⊗∇̂f
|∇f |2

)︃
∇h

− ∇̂f ·∇h
|∇f |2 ∂n+1f

⎞⎟⎟⎠ =
(︄

Id−∇f ⊗∇f
|∇f |2

)︄
∇φ.
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Similarly, when ψ : Rn+1 → TpM⊂ Rn+1 is a smooth vector field then

∇M ·ψ = ∇·ψ − ∇f ·Dψ∇f
|∇f |2

.

Combining these expressions we find for the Laplace-Beltrami operator

∆Mφ =
(︄

Id−∇f ⊗∇f
|∇f |2

)︄
:
(︄

D2φ− ∇f · ∇φ
|∇f |2

D2f

)︄

=
(︄

Id−∇f ⊗∇f
|∇f |2

)︄
: D2φ− ∇f · ∇φ

|∇f |
∇·
(︄
∇f
|∇f |

)︄
.

Let

ν := − ∇f
|∇f |

and ν̃ := 1
Q(∇u)

(︄
−∇u

1

)︄
.

We infer from (B.1)

ν̃ = − sgn(∂n+1f)ν.

The unit normal fields ν and ν̃ induce possibly different second fundamental forms

Ãij = ∂iju

Q(∇u) and Aij = − sgn(∂n+1f)Ãij

with

D2u = − D2̂f

∂n+1f
+ ∂n+1∇̂f ⊗ ∇̂f + ∇̂f ⊗ ∂n+1∇̂f

(∂n+1f)2 − ∂n+1,n+1f∇̂f ⊗ ∇̂f
(∂n+1f)3

and sgn(∂n+1f)
Q(∇u) = ∂n+1f

|∇f | . Hence,

(Aij) = D2̂f

|∇f |
− ∂n+1∇̂f ⊗ ∇̂f + ∇̂f ⊗ ∂n+1∇̂f

∂n+1f |∇f |
+ ∂n+1,n+1f∇̂f ⊗ ∇̂f

(∂n+1f)2|∇f |
.

This expression becomes more convenient by considering its action on tangent
vectors X,Y ∈ TpM ⊂ Rn+1. Let X = Xi∂iF and Y = Y j∂jF be their repre-
sentations with respect to the basis (∂iF )i of TpM . Let X̂ = (X1, . . . , Xn) and
Ŷ = (Y 1, . . . , Y n) be the coordinates of X and Y . Since ∂iF =

(︃
ei

− ∂if

∂n+1f

)︃
we

have

X =

⎛⎝ X̂

− X̂·∇̂f
∂n+1f

⎞⎠ and Y =

⎛⎝ Ŷ

− Ŷ ·∇̂f
∂n+1f

⎞⎠ .
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B. Differential geometry of hypersurfaces

This implies

A(X,Y ) = XiAijY
j = X ·D2fY

|∇f |
.

For the Weingarten map s : TpM → TpM we note that for X ∈ TpM the
image s(X) is defined as the unique solution of

A(X,Y ) =
⟨︁
s(X), Y

⟩︁
g ∀Y ∈ TpM.

Since g is the metric induced by the standard metric on Rn+1 we infer

X ·D2fY

|∇f |
= A(X,Y ) = s(X) · Y ∀Y ∈ TpM.

This implies that s(X) is the orthogonal projection of D2fX
|∇f | onto the tangent

space TpM. This projection can be expressed in terms of the unit normal

s(X) = 1
|∇f |

(︄
Id−∇f ⊗∇f

|∇f |2

)︄
D2fX = D

(︄
∇f
|∇f |

)︄
X.

Note that D
(︂

∇f
|∇f |

)︂
has at least a one-dimensional kernel and n eigenvectors living

in the tangent space. The corresponding eigenvalues are the principal curvatures
of M. The mean curvature is therefore given by

H = ∇·
(︄
∇f
|∇f |

)︄
.

156



C. Matrix scalar product

Definition C.1. For two matrices A,B ∈ Rn×n we define the matrix scalar
product

A : B := AijBij .

The Frobenius norm of A is given by

|A|2 := A : A.

If in addition matrices C,D ∈ Rn×n are given then we give higher precedence
to matrix multiplication than to the matrix scalar product, i.e.

AB : CD := (AB) : (CD).

Lemma C.2. Let A,B,C ∈ Rn×n be symmetric matrices with B,C ≥ 0. Then

AB : A ≥ λmin(B)|A|2 and AB : CA ≥ λmin(B)λmin(C)|A|2,

where λmin(M) denotes the smallest eigenvalue of a matrix M ∈ Rn×n.

Proof. Let D,E ∈ Rn×n be symmetric square roots of B and C, i.e. DD = B
and EE = C. Furthermore let D = ∑︁

k

√
λkek ⊗ ek with an orthonormal basis

(ek)k of eigenvalues of B. Then

AB : A = ADD : A = AD : AD = λk|Aek|2 ≥ λmin(B)|A|2

and

AB : CA = ADD : EEA = |EAD|2 ≥ λmin(B)|EA|2 ≥ λmin(B)λmin(C)|A|2.
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