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Time-varying parameter VARs have become the workhorse models in em-

pirical macroeconomics. These models are usually equipped with tightly

parametrized prior distributions which favor a small and gradual change in

parameters. Do such prior distributions suppress some degree of time varia-

tion in the VAR coefficients? We address this question by proposing a flexible

global-local prior. It turns out that the conventional prior may suppress eco-

nomically relevant patterns of time variation. Using the global-local prior,

we observe that parameter change can be abrupt rather than smooth. We

find that, during the chairmanship of Paul Volcker, the Fed has been fighting

inflation pressures by raising the interest rate in response to a negative sup-

ply shock. However, during the chairmanship of Alan Greenspan, this policy

came to an end. In contrast, using the conventional prior, we do not detect

this pattern.
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1. Introduction

There is an ongoing debate about the causes of the Great Moderation. Some authors

(e.g., Primiceri (2005), Sims and Zha (2006)) emphasized that the variance of the exoge-

nous shocks was higher in the 70s and early 80s than in the rest of the sample. Other

authors (e.g., Boivin and Giannoni (2006), Cogley and Sargent (2001) and Lubik and

Schorfheide (2004)) emphasize the changes in the transmission mechanism, i.e., the way

macroeconomic variables respond to shocks. Particular attention has been given to mon-

etary policy. It is often argued that the reaction of the Fed to inflation has changed

over time (e.g., under the Volcker chairmanship, the Fed was more aggressive in fighting

inflation pressures). The time-varying parameter VAR (TVP-VAR) of Cogley and Sar-

gent (2005) and Primiceri (2005) allows both the VAR coefficients and the shock size to

change over time. This provides a flexible framework for the estimation and interpretation

of time variation in the systematic and non-systematic part of monetary policy and their

effect on the rest of the economy. Primiceri (2005), Canova and Gambetti (2006), Benati

and Mumtaz (2007), Gambetti et al. (2008), Koop et al. (2009) and Chan and Eisenstat

(2018) find evidence that points towards a decisive role played by a time-varying shock

size.

The TVP-VAR is flexible and can capture many different forms of structural instabili-

ties and the evolving nonlinear relationships between the variables. In order to regularize

the degree of time variation of the parameters, TVP-VARs are typically equipped with

tightly parametrized prior distributions, favoring a small and constant gradual change in

parameters. Is it possible that such prior distributions suppress some degree of time varia-

tion in the VAR coefficients? We address this question by proposing a flexible global-local

prior distribution to regularize the degree of time variation in the parameters. In addition

to a gradual change in parameters, it can also favor abrupt changes of different size if

empirically warranted. This flexibility turns out to be important for uncovering econom-

ically relevant patterns of time variation. We contribute to the literature by studying

the influence of the different prior distributions on the empirical findings. Finally, we

compare both prior distributions in a small simulation study to shed some light on the

implied dynamics by the different prior.

We find that the conventional prior may suppress some degree of time variation in the

coefficients. Using the more flexible global-local prior, we observe that parameter changes

can be more abrupt rather than smooth. In particular we provide empirical evidence that

the response of monetary policy to supply shocks has changed over time. It turns out that

during the chairmanship of Paul Volcker (1979-1987) the Fed has been fighting inflation

pressures by raising the interest rate in response to a negative supply shock. During the
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chairmanship of Alan Greenspan (1987-2006), this policy came to an end. These changes

are not observed with the conventional prior. However, both prior distributions confirm

the view that the variance of the exogenous shocks was higher in the 70s and early 80s

than in the rest of the sample. Overall, our proposed prior reveals that both the shock

size and systematic monetary policy have changed over time.

On a broader level, by proposing a global-local prior for TVP-VARs, we contribute to

the literature of modeling TVP-VARs. The prior specification of Koop et al. (2009) can

discriminate between very few (but usually large) breaks or many (usually small) breaks

in the parameters. They find evidence for gradual change in all of their parameters and

reinforce the findings of Primiceri (2005). Koop et al. (2009) use the algorithm of Gerlach

et al. (2000) to estimate a single latent indicator for each period to discriminate between

time constancy and parameter variation in the autoregressive coefficients, the covariances,

and the log-volatilities, respectively. This assumption, however, implies that either all au-

toregressive parameters change over a given time frame or none of them do. Huber et al.

(2019) circumvent this issue by avoiding the computationally intensive simulation of the

latent indicators by proposing a straightforward approximation to these indicators. A

potential shortcoming of both prior specifications is that they favor either no parameter

change or parameter change of a constant size. Thus, both prior specifications assumes

two extreme cases: either there are few larger changes or many small changes. As is often

the case we argue that the truth lies in between. We find evidence for both: many small

breaks and a few large breaks of different size. Another related approach is proposed

by Cogley et al. (2010). They use a prior specification that allows the size of parameter

change to change gradually over time. Thus, it might not be ideally suited to model cases

of abrupt parameter changes. Moreover, it requires a careful parametrization of the prior

distributions, see Cogley et al. (2010) for a discussion. In contrast to other approaches,

our prior specification does not require any tuning of prior hyperparameters.

The remainder of this paper is organized as follows. Section 2 lays out and discusses the

econometric framework. Section 4 provides an overview of the data, contains a simulation

study and presents the empirical findings. Section 4 concludes.
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2. Econometric Framework

2.1. TVP-VAR

Let yt be an n× 1 vector of endogenous variables. We follow Chan and Eisenstat (2018)

and present the model in structural form:

B0tyt = µt +B1tyt−1 + · · ·+Bptyt−p + εt, εt ∼ N(0,Σt), (1)

where µt is an n × 1 vector of time-varying intercepts, B1t, . . . ,Bpt are n × n VAR

coefficient matrices, B0t is an n×n lower triangular VAR coefficient matrix with ones on

the diagonal and Σt is a diagonal matrix with time-varying variances. Following Primiceri

(2005), Cogley and Sargent (2005), Canova and Gambetti (2006), Benati and Mumtaz

(2007), Gambetti et al. (2008), Koop et al. (2009) and Chan and Eisenstat (2018), we set

p = 2.

Define βt = vec((µt,B1t, . . . ,Bpt)
′) a kβ × 1 vector and γt a kγ × 1 vector containing

the free elements of B0t stacked by rows. Note that kβ = n2p + p and kγ = n(n − 1)/2.

Equation (1) can be written as:

yt = X̃ tβt +W tγt + εt, εt ∼ N(0,Σt), (2)

where X̃ t = In⊗(1,y′t−1, . . . ,y
′
t−p) and W t is an n×kγ matrix that contains appropriate

elements of −yt. For example, in our empirical application we have n = 3, W t has the

form

W t =

 0 0 0

−y1t 0 0

0 −y1t −y2t

 , (3)

where yit is the i-th element of yt for i = 1, 2.

Let X t = (X̃ t,W t) and θt = (β′t,γ
′
t)
′ be of dimension kθ = kβ + kγ. The model can

be written more compactly as

yt = X tθt + εt, εt ∼ N(0,Σt). (4)

2.2. Hierachical Prior Specification

The estimation of the TVP-VAR is not feasible with the information provided by the

likelihood alone. Combining the likelihood with a hierarchical prior makes estimation

feasible. The vector of time-varying parameters in turn follows the following random

walk process:
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θj,t = θj,t−1 + ηt, ηt ∼ N(0, Vθtj), for j = 1, . . . , kθ. (5)

Let Σt = diag(exp(h1t), . . . , exp(hnt)). The log-volatilities also evolve according to

random walks,

hi,t = hi,t−1 + ξt, ξt ∼ N(0, Vhti), for i = 1, . . . , n. (6)

This specification allows the parameters to take on a different value in each period.

Thereby it is possible to detect structural breaks or regime changes without the need for

specifying a fixed number of breaks or regime changes prior to estimation. The prior

variances Vθtj and Vhti are crucial as they control the amount of time variation. Typically,

researchers put a tight prior on them and assume them to be constant over time in order to

favor gradual changes in the parameters. For a discussion see Cogley and Sargent (2005)

and Primiceri (2005). We treat initial conditions θ0 and h0 as parameters to be estimated

and assume the priors for both are Gaussian: θ0 ∼ N(0, 10×Ikθ) and h0 ∼ N(0, 10×In).

2.2.1. Inverse Gamma Prior

In our benchmark model we use the prior specification exactly as in Chan and Eisenstat

(2018). This prior specification favors a gradual change (many small breaks) in the pa-

rameters. As in most empirical applications (see citations above), the prior variances are

assumed to be constant, that is, Vθtj = Vθj and Vhti = Vhi , ∀t. Both Vθj and Vhi have

inverse gamma priors

Vθj ∼ IG(vθj , Sθj), Vhi ∼ IG(vhi , Shi). (7)

The degree of freedom parameters are assumed to be small: vθj = vhi = 5. The scale

parameters are set so that the prior mean of Vθj is 0.012 if it is associated with a VAR

coefficient and 0.12 for an intercept. Similarly, the implied mean of Vhi is 0.12.

2.2.2. Horseshoe Prior

In this paper we propose the use of a more flexible prior and set:

Vθtj = τθjλθtj , (8)

Vhti = τhiλhti . (9)

The idea is that the global component τ regularizes the overall amount of time variation

and the local component λ allows for abrupt breaks. If the local components are close

to one for all time periods the prior favors a gradual change. On the other hand, if the

local component is larger than one at some point in time it temporarily favors a larger
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change. Hence, this prior can favor many small breaks (gradual change), but it can also

favor a few large breaks of different size or a mix of both. We will use the data to guide us

and estimate the global and local components. Gelman (2006) provides strong arguments

for using the half-Cauchy distribution over an inverse gamma distribution for the scale

parameters. Polson and Scott (2012) show that it has excellent frequentist risk properties.

We therefore follow Carvalho et al. (2010) and use half-Cauchy distributions for the global

and local components

√
τθj ∼ C+(0, 1),

√
λθtj ∼ C+(0, 1), (10)

√
τhi ∼ C+(0, 1),

√
λhti ∼ C+(0, 1). (11)

Thus, we propose a global-local prior in form of the horseshoe prior to regularize the

degree of time variation.

3. Empirical Results and Simulation

3.1. Data

We use the gross domestic product (GDP) deflator, real GDP and a short-term interest

rate as variables for yt. Our sample covers the quarters from 1958Q1 to 2019Q4. The

GDP deflator and real GDP are sourced from the Federal Reserve Bank of St. Louis

economic database. Both are transformed to annualized growth rates. For the short-term

interest rate (denoted by R in our figures), a typical choice is the effective federal funds

rate. After the financial crisis the effective federal funds rate approaches the zero lower

bound. In consequence, it becomes uninformative with respect to the stance of monetary

policy. We circumvent this issue by using the shadow rate developed by Wu and Xia

(2016) for our main results. The results, however, are similar when we use the effective

federal funds rate instead.

3.2. Parameter change: Smooth or abrupt?

Figure 1 shows the estimated VAR coefficients for both prior specifications. For the VAR

coefficients we find much more time variation in case of the horseshoe prior as well as

more abrupt rather than smooth parameter changes than in case of the inverse gamma

prior. Figure 2 shows the volatilities of the residuals for both prior specifications. Using

the horseshoe prior, we find that the residual volatility of GDP growth changes quite

abruptly from higher to lower volatility from the Great Inflation period to the Great

Moderation period. In contrast, this change is substantially smoother for the inverse

gamma prior where the change from higher to lower volatility starts in 1980 and ends
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Figure 1: Median VAR coefficients.

in 1985. We find a similar difference between both prior specifications for the residual

volatility of the interest rate. However, for inflation we find a smooth change for both

prior specifications. These findings demonstrate the flexibility of our proposed horseshoe

prior, uncovering various dynamics for the different variables in our analysis.

3.3. Simulation

To shed some light on the implied dynamics by the different priors, we compare both prior

specifications in a simulation using one DGP with a gradual change in parameters and

one with an abrupt change in parameters. The data for both DGPs are generated from

equation (2). We use the point estimates of the TVP-VAR with inverse gamma prior for

the first DGP (DGPsmooth) and the point estimates of the TVP-VAR with the horseshoe

prior for the second DGP (DGPabrupt). As point estimates we employ the median of the

marginal posterior distributions for our main results. The results are similar when using

the mean instead of the median. In order to evaluate the simulation results, we calculate

the mean squared error (MSE) and mean absolute error (MAE) of the model parameters

for both prior distributions and both DGPs using S = 500 replications

MSEθ =
1

S × kθ × T

S∑
s=1

kθ∑
j=1

T∑
t=1

(θjt − θ̂rjt)2, (12)
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Figure 2: Median residual volatilities with 68% and 90% credible bands.

MAEθ =
1

S × kθ × T

S∑
s=1

kθ∑
j=1

T∑
t=1

|θjt − θ̂rjt|, (13)

MSEσ =
1

S × n× T

S∑
s=1

n∑
i=1

T∑
t=1

(σit − σ̂rit)2, (14)

MAEσ =
1

S × n× T

S∑
s=1

n∑
i=1

T∑
t=1

|σit − σ̂rit|, (15)

where σit = exp(hit/2) and both σ̂it and θ̂jt denote point estimates. For our main results

we again use the median of the marginal posterior distributions but the results are similar

for the mean of the marginal posterior distributions. The results are documented in

Table 1. Unsurprisingly, the inverse gamma prior gives more precise estimates for the

smooth DGP and the horseshoe prior gives more precise estimates for the abrupt DGP.

Furthermore, the estimation precision seems to be reasonable for both prior specifications.

For the θ coefficients, the simulation reveals that, if the DGP is unknown, the inverse

gamma prior is associated with a higher estimation risk. In the sense that if the data are

generated by the smooth DGP, it has the lowest MSE and MAE. If the data are generated

by the abrupt DGP it has the highest MSE and MAE. Thus, the horseshoe prior may be

the safer option as if the data are generated from the abrupt DGP (the DGP for which

both priors have a higher MSE and MAE), it has both a lower MSE and MAE than

the inverse gamma prior. These results hold if we calculate the MSE and MAE of θ by

excluding the intercepts. The reason why the MSE and MAE are higher for the intercepts
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Table 1: Simulation results

Horseshoe Inverse gamma
MAE MSE MAE MSE

θ

DGPabrupt 0.18 0.21 0.31 1.18
DGPsmooth 0.18 0.16 0.11 0.04

θ excluding intercepts

DGPabrupt 0.11 0.03 0.13 0.05
DGPsmooth 0.11 0.03 0.08 0.02

σ

DGPabrupt 0.16 0.06 0.18 0.09
DGPsmooth 0.22 0.13 0.17 0.08

The MSE and MAE are defined in equations (12) to (15).

is that they exhibit a large degree of time variation. For the MSE and MAE of σ we find

the opposite results. Here the horseshoe prior is associated with a higher estimation risk.

3.4. Impulse Response Functions

We follow the approach suggested in Canova and Nicoló (2002) and Uhlig (2005) in order

to identify a demand, supply and monetary policy shock in an economically plausible

fashion, and use a common/conventional set of sign restrictions on the contemporaneous

responses of the variables in yt. The set of sign restrictions can be found in Table 2. Tech-

nically, these sign restrictions are implemented by using the algorithm of Rubio-Ramirez

et al. (2010). First, we draw a n×n matrix, J , from independent N(0,1) random variables.

Second, calculating Q from the QR decomposition of J provides a candidate structural

impact matrix such as A0,t = B−10t Σ
1/2
t Q. The candidate matrix A0,t is accepted if it

satisfies the sign restrictions. Up to this point, the shocks are only set identified. There-

fore, we follow the suggestion in Fry and Pagan (2011) and collect for each draw from

the posterior 1000 candidates A0,t which satisfy the restrictions. Out of this set of ‘ad-

missible models’ we select the one with elements closest to the median across these 1000

candidates. For more details see Fry and Pagan (2011).

Time variation in the IRFs can result due to time variation in the shock size and/or

due to a time-varying response pattern. In order to study if the response of the Fed

to demand or to supply shocks has changed over time we keep the shock size constant.

That is, we keep Σ
1/2
t constant for the calculation of the IRFs by fixing it at its posterior

mean. Note however that we have estimated the model by allowing time variation in Σ
1/2
t .

Calculations (not shown in this paper) of the IRFs without this restriction reveal clearly
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Table 2: Imposed sign restrictions on impact

Variable Demand Shock Supply Shock Monetary Policy Shock

Inflation + - -
GDP growth + + -
Interest rate + ? +

The plus/minus sign represents a positive/negative sign restriction and the
question mark leaves the sign unrestricted.

that the shock size of all three shocks has changed over time. This finding holds for both

prior distributions. That the shock size has changed over time is however not much of a

debate. Therefore our aim is to study if the response of the Fed to demand and supply

shocks has changed over time and, in addition, if the results change when using the more

flexible prior specification.

Figure 3 shows the median response of the Fed to a demand and supply shock for

horizons 1 to 20 over the entire sample period and for both prior specifications. Figure

A.1 shows the median response of the Fed, along with 68% and 90% credible bands, to

a demand shock at specific points in time for both prior specifications. Finally, Figure

A.2 shows the median response of the Fed, along with 68% and 90% credible bands, to a

supply shock at specific time points for both prior specifications. The figures reveal that

the response of the Fed to a demand shock is stronger than to a supply shock throughout

the sample. The response of the Fed to a demand shock has changed over time for both

prior specifications. In particular, the persistence of the response has changed over time.

The change of the persistence over time is a bit stronger for the horseshoe prior. Further-

more, the persistence of the response is, overall, smaller for the horseshoe prior. While for

the response of the Fed to a demand shock both prior distributions give roughly similar

results, the opposite is the case for the response of the Fed to a supply shock.

When a supply shock is temporary, central banks in general face a trade-off between

stabilizing inflation and economic activity. Therefore the Fed can respond in three pos-

sible ways: no policy response, policy that stabilizes inflation or policy that stabilizes

economic activity. Figure A.1 reveals different results for the two prior specifications. Us-

ing the horseshoe prior we discover a time-varying pattern of the Fed’s response. At the

beginning and at the end of the sample, we find some evidence that the Fed pays more

attention to stabilizing economic activity. Most interestingly, we find that, during the

chairmanship of Paul Volcker (1979-1987), the Fed fought inflation pressures by raising

the interest rate in response to a negative supply shock. Note that we can equivalently

say that the Fed has stabilized inflation by lowering the interest rate in response to a

positive supply shock which is shown in our figures. Note that this policy started shortly

9



Figure 3: Comparison of median impulse response functions.

before the beginning of the period of the Great Moderation in 1982. During the chair-

manship of Alan Greenspan (1987-2006) this policy came to an end. In contrast, using

the inverse gamma prior we do not identify this pattern over time. Here we find that the

Fed either does not respond to a supply shock or if it does, then it pays more attention

to stabilize economic activity. Overall we find stronger empirical evidence that the Fed

fought inflation more aggressively under Paul Volcker using the horseshoe prior than for

the inverse gamma prior.

The full set of all impulse responses can be found in the online appendix. Here we note

that the horseshoe prior reveals a higher degree of time variation also for other impulse

response functions. In particular we find that the response of GDP growth to a demand

shock and monetary policy shock has changed over time. This pattern of time variation

is again suppressed by the inverse gamma prior. In contrast we observe time variation

for the response of inflation to a demand shock for both prior specifications. Finally, we

observe for both prior specifications that the persistence of the interest rate to a monetary

policy shock has smoothly increased over time. This illustrates the great flexibility of the

horseshoe prior in terms of the types of parameter change allowed for. And this flexibility

does not cost us much in terms of estimation precision in the sense that the credible

intervals for the two approaches have similar width or in some cases the credible intervals

are even smaller than the credible bands obtained with the inverse gamma prior.
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4. Conclusion

We have studied the influence of the prior distribution on the time-varying pattern of

parameters in a TVP-VAR. In order to regularize the degree of time variation, researchers

typically use tightly parametrized prior distributions favoring a gradual change in the

parameters. We find that such priors may suppress some amount of time variation. Using

the proposed horseshoe prior we find that parameter changes can be more abrupt rather

than smooth. From an economic perspective we find that, during the chairmanship of

Paul Volcker, the Fed fought inflation pressures by raising the interest rate in response to

a negative supply shock. During the chairmanship of Alan Greenspan this policy came to

an end. In contrast, using the inverse gamma prior, we do not observe this pattern over

time. Hence, we provide evidence that the prior choice matters for the empirical findings

provided by the TVP-VAR and that the conventional inverse gamma prior may suppress

economically relevant patterns of time variation.
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Appendix A. Figures

Figure A.1: Comparison of the Fed’s median response to a demand shock with 68% and
90% credible bands.

Figure A.2: Comparison of the Fed’s median response to a supply shock with 68% and
90% credible bands.
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Appendix B. Gibbs-sampler

In order to estimate the TVP-VAR model we use the Gibbs-sampler as described in the

appendix of Chan and Eisenstat (2018). Let y = (y′1, . . . ,y
′
T )′, θ = (θ′1, . . . ,θ

′
T )′, Σθ =

diag(Vθ11 , . . . , Vθ1kθ , . . . , VθT1
, . . . , VθTkθ ) and Σh = diag(Vh11 , . . . , Vh1n , . . . , VhT1

, . . . , VhTn).

Then a sample of the posterior can be obtained by sequentially drawing from the condi-

tional posterior distributions:

1. p(θ|y,h,Σθ,Σh,θ0,h0);

2. p(h|y,θ,Σθ,Σh,θ0,h0);

3. p(θ0,h0|y,θ,h,Σθ,Σh);

4. p(Σθ,Σh|y,θ,h,θ0,h0).

In order to derive the conditional posterior in step 1 it is useful to write the TVP-VAR

in (2) more compactly as:

y = Xθ + ε, ε ∼ N(0,Σ), (16)

where ε = (ε′1, . . . , ε
′
T )′, Σ = diag(Σ1, . . . ,ΣT ) and X = diag(X1, . . . ,XT ). The

hierarchical prior in (5) can be written more compactly as

Hθθ = α̃θ + η, η ∼ N(0,Σθ), (17)

where α̃θ = (θ′0,0, . . . ,0)′ and

Hθ =


Ikθ 0 . . . 0

−Ikθ Ikθ
. . .

...
...

. . . . . .
...

0 . . . −Ikθ Ikθ

 . (18)

It follows that the hierarchical prior for θ follows a Gaussian distribution

(θ|Σθ,θ0) ∼ N(αθ, (H
′
θΣ
−1
θ Hθ)

−1), (19)

where αθ = H−1θ α̃θ. Using standard linear regression results the conditional posterior of

θ can be shown to be

(θ|y,h,Σθ,Σh,θ0,h0) ∼ N(θ̂,K−1θ ), (20)

where θ̂ = K−1θ dθ with

Kθ = H ′θΣ
−1
θ Hθ +X ′Σ−1X, dθ = H ′θΣ

−1
θ Hθαθ +X ′Σ−1y. (21)
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The precision matrix Kθ is a band matrix, i.e., the nonzero elements are all confined

within a narrow band along the main diagonal. This structure allows us to use the pre-

cision sampler of Chan and Jeliazkov (2009) to draw from N(θ̂,K−1θ ) efficiently.

To implement Step 2, we use the auxiliary mixture sampler of Kim et al. (1998) in com-

bination with the precision sampler of Chan and Jeliazkov (2009) to sequentially draw

each slice of hi = (hi1, . . . , hiT )′, i = 1, . . . , n.

The initial conditions θ0 and h0 are conditionally independent and their conditional

posterior is Gaussian:

(θ0|y,θ,h,Σθ,Σh) ∼ N(θ̂0,K
−1
θ0

), (h0|y,θ,h,Σθ,Σh) ∼ N(ĥ0,K
−1
h0

), (22)

where Kθ0 = diag(Vθ11 , . . . , Vθ1kθ )
−1 + 1

10
Ikθ , θ̂0 = K−1θ0 diag(Vθ11 , . . . , Vθ1kθ )

−1θ1, Kh0 =

diag(Vh11, . . . , Vh1n)−1 + 1
10
In and ĥ0 = K−1h0 diag(Vh11 , . . . , Vh1n)−1h1.

Finally we implement step 4 to draw Σθ and Σh. In the benchmark model equipped

with inverse gamma prior the elements of Σθ and hθ are conditionally independent and

follow inverse gamma distributions:

(Vθj |y,θ,h,θ0,h0) ∼ IG

(
vθj +

T

2
, Sθj +

1

2

T∑
t=1

(θjt − θj,t−1)2
)
, j = 1, . . . , kθ, (23)

(Vhj |y,θ,h,θ0,h0) ∼ IG

(
vhi +

T

2
, Shi +

1

2

T∑
t=1

(hit − hi,t−1)2
)
, i = 1, . . . , n. (24)

Estimating the TVP-VAR model equipped with the horseshoe prior requires a modifi-

cation of the Gibbs-sampler. In order to get known conditional posterior distributions for

the elements of Σθ and Σh for the horseshoe prior we follow Makalic and Schmidt (2016)

and exploit the scale mixture representation of the half-Cauchy distribution. The scalar

mixture representation stems from the fact that if X and w are random variables such

that X2|w ∼ IG(1
2
, 1
w

) and w ∼ IG(1
2
, 1), then X ∼ C+(0, 1). Since the Gaussian and

inverse gamma distributions are conjugate distributions, it is straightforward to derive

the posteriors of the hyperparameters.

The conditional posterior distributions of the hyperparameters from the scale mixture

representation of the horseshoe prior are conditionally independent and follow inverse
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gamma distributions:

(τθj |θ,θ0, vτθj , λθtj) ∼ IG

(
T + 1

2
,

1

vτθj
+

1

2

T∑
t=1

(θjt − θj,t−1)2

λθtj

)
, j = 1, . . . , kθ, (25)

(λθtj |θ,θ0, vλθtj , τθtj) ∼ IG

(
1,

1

vλθtj
+

1

2

(θjt − θj,t−1)2

τθj

)
, j = 1, . . . , kθ, (26)

(vτθj |τθj) ∼ IG

(
1, 1 +

1

τθj

)
, j = 1, . . . , kθ, (27)

(vλθtj |λθtj) ∼ IG

(
1, 1 +

1

λθtj

)
, j = 1, . . . , kθ, (28)

(τhi |h, vτhi , λhti) ∼ IG

(
T + 1

2
,

1

vτhi
+

1

2

T∑
t=1

(hit − hi,t−1)2

λhti

)
, i = 1, . . . , n, (29)

(λhti|h,h0, vλhti , τhi) ∼ IG

(
1,

1

vλhti
+

1

2

(hit − hi,t−1)2

τhi

)
, i = 1, . . . , n, (30)

(vτhi |τhi) ∼ IG

(
1, 1 +

1

τhi

)
, i = 1, . . . , n, (31)

(vλhti |λhti) ∼ IG

(
1, 1 +

1

λhti

)
, i = 1, . . . , n. (32)

Thus, the implementation of the horseshoe prior is straightforward, as all hyperpa-

rameters can be drawn from the inverse gamma distribution. This implies also that the

computation burden relative to the inverse gamma prior does not increase much.
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Appendix C. Figures for online appendix

Figure C.3: Impulse response functions horseshoe prior.

Figure C.4: Impulse response functions inverse gamma prior.
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Figure C.5: Impulse response functions horseshoe prior.

Figure C.6: Impulse response functions inverse gamma prior.
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Figure C.7: Impulse response functions horseshoe prior.

Figure C.8: Impulse response functions inverse gamma prior.
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Figure C.9: Impulse response functions horseshoe prior.

Figure C.10: Impulse response functions inverse gamma prior.
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