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Preface

Studying the propagation of waves through inhomogeneous media has a long
history, during which a variety of inhomogeneities has been concerned. In this
thesis we focus on the propagation of time-harmonic electromagnetic waves
through periodic media; more specifically, two regimes of wave propagation are
considered: in Part II, we assume that the period of the medium is much smaller
than the wavelength of the wave, which amounts to homogenising time-harmonic
Maxwell’s equations. The propagation of electromagnetic waves in a bounded
periodic waveguide is discussed in Part III, in which we assume the period of
the medium and the wavelength of the electromagnetic wave to be of the same
order. In Part I, we introduce notation and recall some results from functional
analysis as well as statements on two-scale convergence, which will be used
extensively. This part can be skipped by the more experienced reader, with
occasional glances at specific topics if necessary.

Short overview and orientation. Part I is divided into three chapters.
In Chapter 1, we recall Banach’s closed range theorem and state some

properties of compact operators as well as of Fredholm operators on Banach
spaces. Furthermore, we prove a variant of the Lax-Milgram lemma for Banach
spaces. The results of this chapter are mainly used in Part III.

Function spaces for Maxwell’s equations are considered in Chapter 2. More
precisely, we introduce the spaces of L2-vector fields for which the distributional
curl or the distributional divergence are again L2-mappings, and define the
normal trace operator for bounded Lipschitz domains. We further define function
spaces of periodic functions and prove a Helmholtz decomposition for L2-vector
fields on the three-dimensional flat torus T3.

Chapter 3 presents an overview of those results on two-scale convergence,
which we use in Part II of this thesis; we recall, in particular, a compactness
theorem and a statement on the connection between two-scale convergence and
weak L2-convergence.

In Part II we consider the time-harmonic Maxwell equations in a bounded
subdomain of R3, which contains a periodic array of obstacles Ση. In recent years,
there has been a great interest in constructing artificial materials, sometimes
referred to as metamaterials, that exhibit astonishing optical properties. Such
materials are usually constructed by choosing appropriate obstacles Ση and
considering electromagnetic waves with a wavelength that is much larger than
the period of the array of obstacles.

Our intention in this second part of the thesis is not to propose a new
microstructure leading to a metamaterial with unusual properties; instead, we
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clarify the connection between the topology of the microstructure and transmis-
sion properties of the metamaterial. Although very general microstructures are
allowed, we stay in the framework of periodic homogenisation and use the tool
of two-scale convergence. This allows us to follow a well-established scheme in
order to homogenise Maxwell’s equations: at first, we derive and analyse the
cell problems for the two-scale limits E0 and H0 of the electric and magnetic
field, respectively. We then use solutions of those cell problems to obtain the
effective system.

As we consider very general microstructures, the analysis of the cell problems
is non-trivial. Their solution spaces, for instance, depend on the topology of the
microstructure. The characterisation of these solution spaces is possible using
k-loops and the so-called geometric average—two tools, which were developed
in [SU18] and [PSU19], respectively. In Chapter 4, both tools are defined and we
discuss some of their properties. Moreover, we present the main ideas, developed
in the articles [SU18], [PSU19] as well as in this thesis, by two microstructures.

Chapter 5 is devoted to the derivation of the effective Maxwell equations in
the case of perfectly conducting microstructures Ση. This assumption on the
conductivity ensures that the cell problems can directly be analysed using the
geometric average and k-loops; see Lemmas 5.2 and 5.9. The characterisation of
the solution spaces allows us to derive the effective Maxwell system—our main
contribution in the second part of Chapter 5. It is noteworthy that the effective
fields are not understood in the standard way as cell averages. Instead, we define
them via the geometric average. In this way, we obtain an effective system that
has the form of Maxwell’s equations for a linear material; see Theorem 5.12. At
the end of Chapter 5, we discuss our results using four microstructures.

The more realistic case of highly conductive microstructures is treated
in Chapter 6. Although the cell problem for the two-scale limit E0 of the
electric field is identical to the one discussed in Chapter 5, the cell problem
for H0 is much more involved. Following an idea of Bouchitté, Bourel and
Felbacq [BBF17], we derive a variational identity for H0, which is equivalent to
the cell problem. Using the geometric average, we can then characterise the
solution space of this identity; see Proposition 6.9. Having a characterisation of
the solution spaces of the cell problems allows us to obtain the effective Maxwell
system. Similar to Chapter 5, we define the effective fields using the geometric
average. In this way, we obtain the same effective system as in Chapter 5;
see Theorem 6.10.

In Part III, we consider the time-harmonic Maxwell equations in an un-
bounded and periodically perforated waveguide with periodic boundary con-
ditions on the lateral boundary. As the waveguide is unbounded, radiation
conditions at infinity must additionally be imposed to ensure well-posedness
of the problem. Let us stress that, in contrast to Part II, the wavelength of
the electromagnetic wave and the distance between two holes in the waveguide
are assumed to be of the same order. Establishing the existence of a solution
to Maxwell’s equations in the unbounded perforated waveguide is out of the
scope of this thesis. To simplify the problem, we assume that the geometry of
the waveguide allows us to reduce Maxwell’s equations to a scalar Helmholtz
equation. Following a recent idea of Schweizer [Sch19], we then show that there
exists a solution to this Helmholtz equation in a bounded perforated waveguide
that satisfies a special boundary condition, which we call a “radiation condition
at a finite distance”. More precisely, we consider a periodic array O ⊂ R × S1
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of holes and the bounded waveguide ΩR := (−R,R) × S1. For fixed constants
R,L > 0 and a right-hand side h ∈ L2(ΩR+L), we seek a distributional solution
u ∈ H1(ΩR+L) to the Helmholtz equation −∆u − k2u = h in the perforated
waveguide ΩR ∩ Oc such that u restricted to the box (−(R + L),−R) × S1

transports energy to the left and u restricted to (R,R + L) × S1 transports
energy to the right.

A standard tool to establish the existence of a solution to a Helmholtz-like
equation in an unbounded domain (with appropriate boundary conditions)
is the so-called limiting absorption principle. This principle is usually based
on an operator theoretic approach. As we seek a solution to the Helmholtz
equation in the perforated waveguide that satisfies a “radiation condition at
a finite distance”, it is convenient to formulate the problem using sesquilinear
forms instead of operators. We therefore prove an abstract limiting absorption
principle for sesquilinear forms, from which we deduce the existence of a solution
to the Helmholtz equation in the perforated, bounded waveguide that satisfies
the special boundary condition.

Chapter 7 starts with the derivation of the scalar Helmholtz equation
from Maxwell’s equations and a discussion of our replacement of the radiation
condition at infinity. We formulate the “radiation condition at a finite distance”
with appropriate function spaces and sesquilinear forms.

Chapter 8 is devoted to an abstract limiting absorption principle for sesquilin-
ear forms on Banach spaces; see Theorem 8.6. The proof of this principle is based
on a Fredholm alternative for sesquilinear forms, which we discuss in Proposi-
tion 8.2. This chapter can be read independently of Chapters 7 and 9, since we
consider abstract sesquilinear forms on Banach spaces.

In Chapter 9, we first establish the existence and uniqueness of solutions to
a family of auxiliary problems, from which we deduce the existence of a solution
the Helmholtz equation in the bounded perforated waveguide that satisfies
the “radiation condition at a finite distance”; see Theorem 9.5. For this last
step, we use the abstract limiting absorption principle from Chapter 8. This
principle can only be applied if the Helmholtz equation has at most one solution.
Using standard arguments, we show in Proposition 9.6 that this uniqueness
assumption is satisfies except for an at most countable set of numbers k2 > 0.

Published articles. Some parts of this thesis are based on the following
articles and preprints by the author—obtained partially in collaboration with
Klaas Hendrik Poelstra and Ben Schweizer :

[SU18] Ben Schweizer and Maik Urban. Effective Maxwell’s equations in
general periodic microstructures. Appl. Anal., 97(13):2210-2230,
2018

[SU19] Ben Schweizer and Maik Urban. On a limiting absorption
principle for sesquilinear forms with an application to the
Helmholtz equation in a waveguide. Accepted for the proceedings
volume of the Conference on Mathematics of Wave Phenomena
2018 at Karlsruhe, Springer

[PSU19] Klaas H. Poelstra, Ben Schweizer and Maik Urban. The
geometric average of curl-free fields in periodic geometries.
Technical Report, TU Dortmund, submitted, 2019
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In the beginning of sections and subsections, we indicate whether they
contain material from the above articles. Results from the following article are
related but not used in this thesis:

[OSUV18] Mario Ohlberger, Ben Schweizer, Maik Urban and Barbara
Verfürth. Mathematical analysis of transmission properties of
electromagnetic meta-materials. Accepted for Netw. Heterog.
Media, 15(1) 2020, arXiv:1809.08824, 2018

Notation and conventions. Let us fix basic notation and conventions used
in the rest of this thesis.

• Constants are denoted by C and may change from line to line. If necessary,
the dependence of parameters is mentioned in parentheses.

• We often consider families of functions that are indicated by a continuous
parameter η > 0 or δ > 0. Abusing notation, we still use the term
“sequence” for these ordered families. If no ambiguity is possible, we do
not relabel subsequences.

• We denote by F either the field of real numbers R or the field of complex
numbers C. If not explicitly stated, any vector space is assumed to be
over the field F.

• Let V and W be vector spaces over F. A map ℓ : V → W is linear if
ℓ(αu + v) = αℓ(u) + ℓ(v) and anti-linear if ℓ(αu + v) = αℓ(u) + ℓ(v)
for all u, v ∈ V and α ∈ F. For α ∈ R we set α = α. We call a map
b : V ×W → F a bilinear form if it is linear in each of its arguments, and
a sesquilinear form if it is linear in the first and anti-linear in the second
argument. If a statement is formulated for general F, we always call a
map b : V ×W → F sesquilinear to emphasise that the complex case is
included.

• Let Ω be an open subset of Rd. We write C0(Ω;F) for the space of
continuous functions Ω → F. For all k ∈ N with k ≥ 1, we denote by
Ck(Ω;F) the space of k-times continuously differentiable functions on
Ω. The space of smooth maps is given by C∞(Ω;F) :=

⋂︁
k∈N C

k(Ω;F).
For k ∈ N0 ∪ {+∞} and m ∈ N with m ≥ 2, we identify the space
Ck(Ω;Fm) with Ck(Ω;F)m. Moreover, Ck

c (Ω;F) denotes the space of
Ck(Ω;F)-functions that have compact support in Ω. Let Ω be the closure
of Ω. We denote by Ck(Ω;F) with k ∈ N0 ∪ {+∞} the space of functions
in Ck(Ω;F) which have a continuous extension to Ω and for which all
partial derivatives up to order k have a continuous extension to Ω.

• Let Ω be an open subset of Rd with a Lipschitz boundary, and let k ∈ N0.
We use Sobolev spaces on open subsets of Rd in the usual way; see for
instance the book by Evans and Gariepy [EG15, Chapter 4]. We write
Hk(Ω;F) for W k,2(Ω;F). For m ∈ N with m ≥ 2 we identify the spaces
Hk(Ω;Fm) and Hk(Ω;F)m.

• If (X,A, µ) is a measure space with µ(X) < ∞ and f ∈ L1(X,µ), then

−
∫︂

X

f := −
∫︂

X

f(x) dx := 1
µ(X)

∫︂
X

f(x) dx .
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Part I

Preliminaries

Bernard of Chartres used to say that we are like dwarfs
sitting on the shoulders of giants so that we are able to see
more and further than they, not indeed by the sharpness of
our own vision or the height of our bodies, but because we
are lifted up on high and raised aloft by the greatness of
giants.

—John of Salisbury, Metalogicon





CHAPTER 1
Linear Operators and the

Lax-Milgram lemma

This section is devoted to some well-known results from functional analysis,
which we will use throughout this thesis.

We remind the reader that there are two natural dual spaces for a given
normed complex vector space V :

V ′ :=
{︂
ℓ : V → F

⃓⃓⃓
ℓ is linear and bounded

}︂
(1.0.1)

and
V ∗ :=

{︂
ℓ : V → F

⃓⃓⃓
ℓ is anti-linear and bounded

}︂
. (1.0.2)

The map V ′ → V ∗, ℓ ↦→ ℓ is an isometric isomorphism between the normed
spaces V ′ and V ∗. Note that both spaces are complex Banach spaces. Let us
emphasise that the pairing ⟨·, ·⟩V ′,V : V ′ × V → C is a bilinear form whereas
⟨·, ·⟩V ∗,V : V ∗ × V → C is a sesquilinear form.

1.1 Linear Operators

Let V and W be normed vector spaces over the same field. If T : V → W
is linear and bounded, then its dual T ′ : W ′ → V ′ is a linear and bounded
operator that is uniquely defined by the identity⟨︁

w′, T v
⟩︁

W ′,W
=
⟨︁
T ′w′, v

⟩︁
V ′,V

for all v ∈ V and w′ ∈ W ′ . (1.1.1)

If V is a normed vector space and U ⊂ V is a linear subspace, we define the
annihilator U⊥ of U as the set

U⊥ :=
{︂
v′ ∈ V ′

⃓⃓⃓
⟨v′, u⟩V ′,V = 0 for all u ∈ U

}︂
. (1.1.2)

We identify the annihilator U⊥ of U and the orthogonal complement of U if V
is a Hilbert space. The annihilator ⊥(U ′) of a linear subspace U ′ of V ′ is given

7



1.1. LINEAR OPERATORS

as
⊥(U ′) :=

{︂
v ∈ V

⃓⃓⃓
⟨u′, v⟩V ′,V = 0 for all u′ ∈ U ′

}︂
. (1.1.3)

Let T : V → W be a bounded linear operator between two normed spaces.
Using the definition of the dual operator T ′, a straightforward computation
shows the identity

kerT ′ = (imT )⊥ . (1.1.4)

Proposition 1.1. (Banach’s closed range theorem) – Let X and Y be two Ba-
nach spaces over the same field, and let T : X → Y be a linear and bounded
operator. Then the following statements are equivalent:

(i) The range imT of T is closed in Y.

(ii) The range imT ′ of T ′ is closed in X′.

(iii) imT = ⊥(kerT ′).

(iv) imT ′ = (kerT )⊥.

Proof. We refer to [Cia13, Theorem 5.11-5] for a proof of this result. □

We turn our focus now on two classes of linear operators, which play an
essential role in Chapter 8.

Compact operators
Let us recall that a subset B of a normed space V is relatively compact in V if
its closure B is compact in V .

Definition 1.2. (Compact operator) – Let V and W be two normed vector
spaces over the same field. A linear operator K : V → W is compact if for all
bounded sets B ⊂ V , the image K(B) is relatively compact in W .

Every compact operator is bounded. Indeed, as the closed unit ball B1 in V is
bounded, K(B1) is compact and thus bounded; in particular,

sup
∥v∥≤1

∥Kv∥ < ∞ .

The next result gives an equivalent characterisation of compact mappings.

Proposition 1.3. – Let V and W be two normed vector spaces of the same
field, and let K : V → W be a linear operator. Then K is compact if and only
if K maps every bounded sequence (vn)n in V onto a sequence (Kvn)n that has
a convergent subsequence.

Proof. The proof of this result is straightforward; we refer to [Kre78, Theorem
8.1-3]. □

A basic property of a compact linear operator is that it transforms weakly
convergent sequences into strongly convergent sequences.

8



CHAPTER 1. LINEAR OPERATORS AND THE LAX-MILGRAM LEMMA

Proposition 1.4. – Let V and W be normed spaces over the same field and let
K : V → W be a compact linear operator. Assume (vn)n is a weakly convergent
sequence in V with weak limit v ∈ V . Then (Kvn)n strongly converges to Kv
in W .

Proof. We refer to [Kre78, Theorem 8.1-7] for a proof of this result. □

Given a linear operator on a reflexive Banach space, the following character-
isation of compactness turns out to be useful.

Lemma 1.5. – Let X be a reflexive Banach space, and let K : X → X∗ be a
bounded linear operator. Then the following statements are equivalent.

(i) The operator K is compact.

(ii) Every bounded sequence (un)n in X has a subsequence (un)n that weakly
converges in X to some u ∈ X such that

lim
n→∞

⟨Kun, vn⟩X∗,X = ⟨Ku, v⟩X∗,X (1.1.5)

for every sequence (vn)n in X that weakly converges in X to some v ∈ X.

Proof. Assume K is compact. Fix a bounded sequence (un)n in X. Due
to Propositions 1.3 and 1.4 there exists a subsequence (Kun)n such that Kun →
Ku in X∗ for some u ∈ X. Let (vn)n be any sequence in X with vn → v weakly
in X. Weakly convergent sequences are bounded, and thus⃓⃓

⟨Kun, vn⟩X∗,X − ⟨Ku, v⟩X∗,X

⃓⃓
≤
⃓⃓
⟨Kun −Ku, vn⟩X∗,X

⃓⃓
+
⃓⃓
⟨Ku, vn − v⟩X∗,X

⃓⃓
≤ C

⃦⃦
Kun −Ku

⃦⃦
X∗ +

⃓⃓
⟨Ku, v − vn⟩X∗,X

⃓⃓
.

Sending n → ∞ yields the claim.
Assume (ii) holds and let (un)n be a bounded sequence in X. In view

of Proposition 1.3, we need to show that (Kun)n admits a strongly convergent
subsequence. As (un)n is bounded, we find a subsequence (un)n that weakly
converges in X to some element u ∈ X. We claim that (Kun)n strongly converges
to Ku. Suppose the contrary: there exists ε > 0 and a subsequence (Kun)n

such that ∥Kun −Ku∥X∗ > ε for all n ∈ N. By definition of the dual norm, for
each n ∈ N we find vn ∈ X with ∥vn∥X ≤ 1 such that

ε < ∥Kun −Ku∥X∗ ≤
⃓⃓
⟨Kun −Ku, vn⟩X∗,X

⃓⃓
+ ε

2 . (1.1.6)

The sequence (vn)n is bounded in X and thus admits a weakly convergent
subsequence (vn)n with weak limit v ∈ X. This together with (1.1.5) implies

lim
n→∞

⃓⃓
⟨Kun −Ku, vn⟩X∗,X

⃓⃓
= 0 .

Thus, sending n → ∞ in (1.1.6) yields a contradiction. Consequently, (Kun)n

converges to Ku in X. As the sequence (un)n was chosen arbitrarily, the claim
is proved. □

The next result clarifies the relationship between compact operators and
their duals.

9



1.1. LINEAR OPERATORS

Proposition 1.6. – Let V and W be two normed vector spaces over the same
field, and let K : V → W be a linear operator. Then the following statements
hold:

(i) If K is compact, so is its adjoint K ′ : W ′ → V ′.

(ii) Assume W is complete and K is bounded. If K ′ is compact, so is K.

Proof. A proof of the first part can be found in [Kre78, Theorem 8.2-5]. For a
proof of the second part, we refer to [Heu92, Satz 79.3]. □

The spectral properties of compact operators on an infinite dimensional
Banach space resembles those of square matrices on finite dimensional vector
spaces.

Proposition 1.7. – Let V be an infinite dimensional normed space, and let
K : V → V be a compact operator. Then the spectrum σ(K) of K is an at most
countable set and every nonzero λ ∈ σ(K) is an eigenvalue of K.

Proof. The statement that every nonzero λ ∈ σ(K) is an eigenvalue of K is
proved in [Kre78, Theorem 8.6-4]. In [Kre78, Theorem 8.3-1] it is shown that the
set of eigenvalues of K is at most countable and the only point of accumulation
is 0. □

Fredholm operators

Given a vector space V and a linear subspace U ⊂ V , the codimension of U is
defined as

codimU := dimV/U .

If W is an algebraic complement of U , that is, the vector space V admits the
decomposition V = U ⊕W , then the quotient map π : W → V/U is bijective
and hence dimW = codimU . Let T : E → V be a linear map between two
vector spaces over the same field. The cokernel of T is defined as

cokerT := V/ imT .

Clearly, dim cokerT = codim imT .
In this section we restrict our attention to operators on Banach spaces.

Definition 1.8. (Fredholm operator and Fredholm index) – Let X and Y be
two Banach spaces over the same field. A bounded linear operator T : X → Y
is a Fredholm operator if its kernel kerT and its cokernel cokerT are finite
dimensional vector spaces. If T is a Fredholm operator, then the integer

indT := dim kerT − dim cokerT

is the Fredholm index of T .

The Fredholm index can equivalently be defined as indT = dim kerT −
codim imT .

10



CHAPTER 1. LINEAR OPERATORS AND THE LAX-MILGRAM LEMMA

Remark 1. – The definition of Fredholm operators is not consistent across the
literatur. Operators T : X → Y with dim kerT < ∞ and codim imT < ∞ are
sometimes called Noetherian operators. A Fredholm operator in this terminology
is a Noetherian operator T : X → Y with indT = 0.

Some authors assume in the definition of a Fredholm operator additionally
that the range of the operator is closed. This leads to an equivalent definition,
since every bounded linear operator with finite dimensional cokernel has a closed
range. Let us demonstrate this fact:

Lemma 1.9. – Let X and Y be Banach spaces over the same field. If T : X → Y
is a linear and bounded operator with codim imT < ∞, then the range imT is
closed in Y.

Proof. The kernel kerT is a closed subspace of X, since T is bounded and linear;
hence, the quotient space X/ kerT is a Banach space. The induced operator

T̃ : X/ kerT → Y , [x] ↦→ T (x)

is injective and satisfies im T̃ = imT . As codim imT < ∞, there exists a
linear subspace W ⊂ Y with dimW < ∞ such that the vector space Y
admits the direct decomposition Y = imT ⊕ W . Define the vector space
X̂ := (X/ kerT ) × W . As X/ kerT and W are Banach spaces, so is X̂ with
respect to the norm ∥([x], w)∥X̂ := ∥[x]∥X/ ker T + ∥w∥W . The operator

T̂ : X̂ → Y , T̂
(︁
[x], w

)︁
:= T (x) + w

is linear, bounded, and bijective. Thus, its inverse operator T̂
−1

is bounded,
since X̂ and Y are Banach spaces. As

imT =
(︁
T̂

−1)︁−1(︁(X/ kerT ) × {0}
)︁

we find that imT is closed in Y. □

Proposition 1.6 discussed the relationship between compact operators and
their duals; the next result clarifies the connection between Fredholm operators
and their duals.

Lemma 1.10. – Let X and Y be Banach spaces over the same field, and let
T : X → Y be a Fredholm operator. Then T ′ : Y′ → X′ is also a Fredholm
operator with indT ′ = − indT .

Proof. We recall the identity (1.1.4). It is straightforward to see that the
vector spaces (imT )⊥ and (Y/ imT )′ are isomorphic; in particular, (imT )⊥ is
a finite dimensional space, since codim imT < ∞. Combining this observation
with (1.1.4) yields

indT = dim kerT − codim imT = dim kerT − dim kerT ′ . (1.1.7)

By assumption, kerT is finite dimensional, and so is its dual space (kerT )′.
The mapping

X′/(kerT )⊥ → (kerT )′ , [x′] ↦→ x′|ker T

11
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is a well-defined linear bijection; see [BK14, Proposition 3.51]. Hence, we may
identify X′/(kerT )⊥ and (kerT )′. Thanks to Lemma 1.9, the range imT of T
is closed in Y. Thus, applying Proposition 1.1, we find that

dim(kerT )′ = dimX′/(kerT )⊥ = dimX′/(imT ′) = dim coker(T ′) . (1.1.8)

Using that dim kerT = dim(kerT )′ and combining (1.1.8) with (1.1.7), we find
that the dual operator T ′ is a Fredholm operator with

indT = − indT ′ .

This proves the claim. □

Fredholm operators are stable under composition and we have the following
result.

Lemma 1.11. – Let X, Y, and Z be Banach spaces over the same field. If
T : X → Y and S : Y → Z are Fredholm operators, then so is ST : X → Z with

ind(ST ) = indS + indT .

Proof. For a proof of this result we refer to [Tay11, Proposition 7.6]. □

An import class of Fredholm operators is given by compact perturbations of
a fixed Fredholm operator.

Lemma 1.12. – Let X and Y be Banach spaces over the same field, and let
T : X → Y be a Fredholm operator. If K : X → Y is a compact operator, then
T +K is a Fredholm operator with ind(T +K) = indT .

Proof. We refer to [Tay11, Corollaries 7.2 and 7.5]. □

1.2 The Lax-Milgram lemma for Banach spaces

Consider a real Hilbert space H. Each bounded bilinear form b : H × H → R
induces a bounded linear operator B : H → H, u ↦→ Bu, where Bu ∈ H is
uniquely determined by ⟨Bu, v⟩H = b(u, v) for all v ∈ H. Assuming the bilinear
form b is coercive—that is, there exists a constant c0 > 0 such that

b(u, u) ≥ c0∥u∥2
H for all u ∈ H , (1.2.1)

Lax and Milgram [LM54] showed that the operator B has a bounded inverse.
This result had also been obtained by others, we mention Višik [Viš51].

This section is devoted to the generalisation of this result for sesquilinear
forms b : X × V → F, where X is an arbitrary Banach space over F and V is a
reflexive normed space over the same field. Such generalisations are classical:
Sauer [Sau66] established the result in the case X = V is a reflexive Banach
space and showed that reflexivity is necessary. We consider the more general
case of a reflexive Banach space V and an arbitrary Banach space X, and prove
a variant of a result by Hayden [Hay68]. Of course, in this case, the coercivity
estimate (1.2.1) has to be replaced appropriately.

12



CHAPTER 1. LINEAR OPERATORS AND THE LAX-MILGRAM LEMMA

We say a sesquilinear form b : X × V → F is X-elliptic if there exists a
constant c0 > 0 such that

sup
v∈V

∥v∥V =1

⃓⃓
b(u, v)

⃓⃓
≥ c0∥u∥X for all u ∈ X . (1.2.2)

If X = V is a real Hilbert space, then b is X-elliptic if it is coercive. Every X-
elliptic sesquilinear form b has the property that u = 0 if and only if b(u, v) = 0
for all v ∈ V . There might be, however, a non-trivial element v ∈ V such that
b(u, v) = 0 for all u ∈ X. A sesquilinear form b : X × V → F is non-degenerate
if the following two requirements are satisfied:

(i) For every u ∈ X \ {0} there exists v ∈ V such that b(u, v) ̸= 0;

(ii) For every v ∈ V \ {0} there exists u ∈ X such that b(u, v) ̸= 0.

We are now in the position to state the generalisation of the Lax-Milgram
lemma.

Proposition 1.13. – Let X be a Banach space over the field F, and let V
be a reflexive normed space over the same field. Let b : X × V → F be a
non-degenerate, bounded, and X-elliptic sesquilinear form. Then the following
statements hold:

(i) For every ℓ ∈ V ∗ there exists a unique u ∈ X such that

b(u, ·) = ℓ(·) . (1.2.3)

Moreover, the unique solution u ∈ X to (1.2.3) satisfies the estimate

∥u∥X ≤ 1
c0

∥ℓ∥V ∗ ,

where c0 > 0 is the constant from (1.2.2).

(ii) The operator B : X → V ∗, u ↦→ Bu with

⟨Bu, v⟩V ∗,V := b(u, v) for all v ∈ V

is a Banach space isomorphism; that is, B is a bijective, linear and
bounded operator between Banach spaces.

Proof. In order to show (i), it suffices to prove statement (ii) and to show that
∥B−1∥ ≤ c−1

0 .
Step 1. The sesquilinear form b is linear in its first argument and bounded,

which implies linearity and boundedness of B. We claim that B is an injective
operator with closed range. Indeed, since b is X-elliptic, we find that

∥Bu∥V ∗ = sup
v∈V

∥v∥V ≤1

⃓⃓
⟨Bu, v⟩V ∗,V

⃓⃓
≥ sup

v∈V
∥v∥V =1

⃓⃓
b(u, v)

⃓⃓
≥ c0∥u∥X (1.2.4)

for all u ∈ X. From inequality (1.2.4) it is straightforward to conclude that B
has closed range and is injective. We are left to prove that B is surjective.
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Step 2. Suppose B is not surjective. We then find v∗
0 ∈ V ∗ such that

v∗
0 /∈ imB. As imB is a closed subspace, the Hahn-Banach theorem implies

the existence of a linear functional ℓ ∈ V ∗∗ such that ℓ(v∗
0) = 1 and ℓ|im B = 0.

Using the reflexivity of V , we find a unique element vℓ ∈ V such that

ℓ
(︁
v∗)︁ = ⟨v∗, vℓ⟩V ∗,V for all v∗ ∈ V ∗ . (1.2.5)

For every u ∈ X,

b(u, vℓ) = ⟨Bu, vℓ⟩V ∗,V = ℓ
(︁
Bu
)︁

= 0 , (1.2.6)

where we used that ℓ vanishes on imB to obtain the last equation. Since b is
non-degenerate, we deduce from (1.2.6) that vℓ = 0. In view of (1.2.5), this is
a contradiction to ℓ(v∗

0) = 1.
We have shown that B is a bijective, linear, and bounded operator; its

inverse B−1 is thus also bounded. Moreover, from (1.2.4) we deduce that
∥B−1∥ ≤ c−1

0 . □

Remark 2. – In Proposition 1.13, we assumed that V is a reflexive normed
space, which already implies completeness. Indeed, V is isomorphic to V ∗∗, which
as the dual space of V ∗is a Banach space. We write, however, “reflexive normed
space” instead of “reflexive Banach space” to emphasise that completeness is
not used in the proof of the statement.
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CHAPTER 2
Function spaces for

Maxwell’s equations

2.1 Spaces related to divergence and curl

The analysis of Maxwell’s equations requires special function spaces involving
the divergence and curl of vector fields. Our objective in this chapter is to
define these function spaces and to list some of their properties. We follow
the book by Girault and Raviart [GR86]. Throughout this section, Ω ⊂ R3 is
bounded, open, and connected set with a Lipschitz boundary.

Studying cell problems, which naturally arise in the homogenization of
time-harmonic Maxwell’s equations, it is necessary to consider vector fields that
are less regular than H1(Ω;C3). Every vector field u ∈ L2(Ω;F3) induces a
distribution div u : C∞

c (Ω;F) → F by⟨︁
div u, φ

⟩︁
C∞

c (Ω;F)′,C∞
c (Ω;F) := −

∫︂
Ω

⟨︁
u,∇φ

⟩︁
.

If this distribution is induced by an L2(Ω;F)-function, we write div u ∈ L2(Ω;F).
The space

HF(div ,Ω) :=
{︂
u ∈ L2(Ω;F3)

⃓⃓⃓
div u ∈ L2(Ω;F)

}︂
(2.1.1)

is a Hilbert space when equipped with the norm

∥u∥HF(div ,Ω) := ∥u∥L2(Ω;F3) + ∥div u∥L2(Ω;F) .

We have the following density result.

Proposition 2.1. – If Ω is an open and bounded subset of R3 with a Lipschitz
boundary, then the space C∞(Ω;F3) is dense in HF(div ,Ω).

Proof. The statement is proved in [GR86] for F = R; see Theorem 2.4. The
case F = C follows easily, since every vector field u ∈ HC(div ,Ω) can be written
as u = Re{u} + Im{u} with Re{u}, Im{u} ∈ HR(div ,Ω). □
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It is a classical result from the theory of Sobolev spaces that there exists a
unique linear and bounded extension tr : H1(Ω;F) → H1/2(∂Ω;F) of the linear
map C∞(Ω;F) → C0(∂Ω;F), φ ↦→ φ|∂Ω; see, for instance, [GR86, Theorem 1.5].
Using the density result of Proposition 2.1, we can introduce the normal trace
on ∂Ω of vector fields in HF(div ,Ω).

Theorem 2.2. (Normal trace) – Let Ω be an open and bounded subset of R3

with a Lipschitz boundary. Denote by ν the unit outward normal on ∂Ω.
The mapping trν : C∞(Ω;F3) → L2(∂Ω;F), u ↦→ ⟨u|∂Ω, ν⟩ can be extended to
a linear and bounded mapping trν : HF(div ,Ω) → H−1/2(∂Ω;F). Moreover,
Green’s formula∫︂

Ω

⟨︁
u,∇φ

⟩︁
+
∫︂

Ω
(div u) φ =

⟨︁
trν(u), tr(φ)

⟩︁
H−1/2(∂Ω),H1/2(∂Ω)

holds for all u ∈ HF(div ,Ω) and φ ∈ H1(Ω;F).

Proof. The theorem is proved for HR(div ,Ω) in [GR86, Theorem 2.5]. The very
same proof is also valid for the case F = C, since only the density of C∞(Ω;C3)
in HC(div ,Ω) is used, which was proved in Proposition 2.1. □

Abusing notation, we shall always write ⟨u, ν⟩ instead of trν(u); similarly, we
simply write φ instead of tr(φ) if no ambiguity is possible.

The time-harmonic Maxwell equations are equations for complex-valued
vector fields u : Ω → C3. We shall therefore simply write H(div ,Ω) instead of
HC(div ,Ω). The kernel of the normal trace operator is denoted by H0(div ,Ω);
that is,

H0(div ,Ω) :=
{︂
u ∈ HC(div ,Ω)

⃓⃓⃓
trν(u) = 0

}︂
. (2.1.2)

Similar to H(div ,Ω) we introduce the space

H(curl ,Ω) :=
{︂
u ∈ L2(Ω;C3)

⃓⃓⃓
curl u ∈ L2(Ω;C3)

}︂
, (2.1.3)

which is a Hilbert space with respect to the norm

∥u∥H(curl ,Ω) := ∥u∥L2(Ω;C3) + ∥curl u∥L2(Ω;C3) .

The completion of C∞
c (Ω;C3) with respect to the norm ∥ · ∥H(curl ,Ω) is denoted

by H0(curl ,Ω). Similar to H0(div ,Ω), the space H0(curl ,Ω) can also be
characterised by the tangential trace. We do not need this notion and refer
to [GR86, Section 2.3] for more details.

2.2 Spaces of periodic functions

The closed unit cube [0, 1]3 in R3 is denoted by Y ; sometimes referred to as the
unit cell or periodicity cell. Let m ∈ N with m ≥ 1. Maps f : R3 → Fm that
satisfy

f(y + ei) = f(y) for all y ∈ R3 and i ∈ {1, . . . , d}

are called Y -periodic. For k ≥ 0, we define

Ck
♯ (Y ;Fm) :=

{︂
f |Y : Y → Fm

⃓⃓⃓
f ∈ Ck(R3;Fm) is Y -periodic

}︂
.
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The Sobolev space Hk
♯ (Y ;Fm) is defined as the completion of C∞

♯ (Y ;Fm) with
respect to the Hk-norm.

On the unit cube Y , we can define an equivalence relation ∼ by identifying
opposite faces—that is, y ∼ y′ whenever y − y′ ∈ Z3. The quotient Y/ ∼ can
be identified with the flat three-dimensional torus T3, and every Y -periodic
map Y → Fm can be viewed as a map T3 → Fm. We denote the canonical
projection Y ↪→ T3 by ι and the universal covering R3 → T3 by π. Given a
subset U of Y , we introduce the “periodic continuation” of U as the set

Ũ :=
⋃︂

m∈Z3

(m+ U) . (2.2.1)

We note that ι(U) = π(U) ⊂ T3 is open if and only if ι−1(︁ι(U)
)︁

⊂ Y is open.
Let us warn the reader that, in general, ι(U) ⊂ T3 is not open although U ⊂ Y
is open. Indeed, for ε ∈ (0, 1/2), the set U := [0, ε)3 is open in Y but ι(U) ⊂ T3

is not open.

Definition 2.3. (Lipschitz domain on T3) – Let U ⊂ Y be a non-empty sub-
set for which ι(U) ⊂ T3 is open, and let Ũ ⊂ R3 be the set defined in (2.2.1).
We say ι(U) has a Lipschitz boundary if Ũ has a Lipschitz boundary. Moreover,
ι(U) is a Lipschitz domain provided ι(U) is connected and has a Lipschitz
boundary.

Assume U ⊂ Y is non-empty and let Ũ be the set defined in (2.2.1). Similar
to Ck

♯ (Y ;Fm), we define the space

Ck
♯ (U ;Fm) :=

{︂
f |U : U → Fm

⃓⃓⃓
f ∈ Ck(Ũ ;Fm) is Y -periodic

}︂
,

for k ≥ 0. If U ⊂ Y is open, then the completion of Ck
♯ (U ;Fm) with respect to

the Hk-norm is denoted by Hk
♯ (U ;Fm).

2.3 Helmholtz decomposition for periodic vector fields

For a bounded Lipschitz domain Ω ⊂ R3, the classical Helmholtz decomposition
states that every vector field v ∈ L2(Ω;R3) can be written as a sum of a gradient
vector field and a divergence-free vector field; see, for instance, [Sch18, BPS16].
Such a decomposition does also hold for L2-vector fields on the torus T3. We
remark that the two spaces H1

♯ (Y ;F3) and H1(T3;F3) can be identified. Before
proving the Helmholtz decomposition , we recall a classical result related to the
Sobolev space H1(T3;F3).

Lemma 2.4. – Consider the sesquilinear form b : H1(T3;F3)×H1(T3;F3) → F,

b(v, φ) :=
∫︂
T3

⟨curl v, curl φ⟩ +
∫︂
T3

div v · div φ . (2.3.1)

Then, for all v ∈ H1(T3;F3), there holds

b(v, v) = ∥∇v∥2
L2(T3;F3×3) . (2.3.2)

In particular, the map H1(T3;F3) → R, v ↦→ b(v, v) +
∫︁
T3 |v|2 is the standard

H1(T3;F3)-norm. Moreover, if v ∈ L2(T3;F3) is a vector field for which
curl v ∈ L2(T3;F3) and div v ∈ L2(T3;F), then v ∈ H1(T3;F3).
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Proof. We begin by proving equation (2.3.2). For vector fields v ∈ C∞
♯ (Y ;F3)

the following identity for the vector Laplacian holds:⟨︁
(−∆v), v

⟩︁
L2(T3;F3) =

⟨︁
curl curl v, v

⟩︁
L2(T3;F3) −

⟨︁
∇ div v, v

⟩︁
L2(T3;F3) . (2.3.3)

Using integration by parts on both sides of (2.3.3), one readily checks that (2.3.2)
holds for all vector fields v ∈ C∞

♯ (Y ;F3). By definition of the periodic Sobolev
spaces, C∞

♯ (Y ;F3) is dense in H1(T3;F3). Thus, for every v ∈ H1(T3;F3) we
find a sequence (vk)k∈N in C∞

♯ (Y ;F3) that converges to v in H1(T3;F3). As
there are constants c1, c2 > 0 such that

∥curl v − curl vk∥2
L2(T3;F3) ≤ c1∥∇v − ∇vk∥2

L2(T3;F3×3) (2.3.4)
and

∥div v − div vk∥2
L2(T3;F) ≤ c2∥∇v − ∇vk∥2

L2(T3;F3×3) ,

we deduce that

∥∇v∥2
L2(T3;F3×3) = lim

k→∞
∥∇vk∥2

L2(T3;F3×3) = lim
k→∞

b(vk, vk) = b(v, v) .

This proves the identity (2.3.2) for all vector fields v ∈ H1(T3;F3). Having this
identity, it is obvious that v ↦→ b(v, v) +

∫︁
T3 |v|2 is equal to the standard norm

on H1(T3;F3).
In order to prove the second part of the lemma, fix a vector field v ∈

L2(T3;F3) for which its curl and its divergence are L2(T3)-maps. Let (ρε)ε be
a sequence of mollifiers, and set vε := v ∗ ρε. Then vε ∈ C∞

♯ (T3;F3), and for
ε, ε′ > 0 there holds

b(vε − vε′) + ∥vε − vε′∥2 = ∥vε − vε′∥2
H1(T3;F3) . (2.3.5)

As vε → v in L2(T3;F3), curl vε = (curl v) ∗ ρε → curl v in L2(T3;F3) and
div vε = (div v) ∗ ρε → div v in L2(T3;F), we deduce from (2.3.5) that (vε)ε is
a Cauchy sequence in H1(T3;F3); hence, there exists ṽ ∈ H1(T3;F3) such that
vε → ṽ in H1(T3;F3). By uniqueness of the limit, v = ṽ ∈ H1(T3;F3), which
proves the claim. □

Define the space of gradient vector fields as

∇H1(T3;F) :=
{︂
u ∈ L2(T3;F3)

⃓⃓⃓
there is a Θ ∈ H1(T3;F) with u = ∇Θ in T3

}︂
and the space of solenoidal vector fields as

L2
sol(T3;F3) :=

{︂
u ∈ L2(T3;F3)

⃓⃓⃓
div u = 0 in T3

}︂
.

Armed with the characterisation of the H1-norm of vector fields and the
above defined spaces, we are now in the position to formulate a first version
of the Helmholtz decomposition on the torus, which resembles the classical
Helmholtz decomposition for a bounded Lipschitz domain.

Lemma 2.5. – The following orthogonal decomposition of L2(T3;F3) holds,

L2(T3;F3) = ∇H1(T3;F3) ⊕ L2
sol(T3;F3) .
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More precisely, for every u ∈ L2(T3;F3) there exists a periodic potential Θ ∈
H1(T3;F) and some vector field w ∈ L2

sol(T3;F3) such that u = ∇Θ + w in T3.
Moreover, the potential Θ ∈ H1(T3;F3) is the unique solution to∫︂

T3

⟨︁
∇Θ,∇φ

⟩︁
=
∫︂
T3

⟨︁
u,∇φ

⟩︁
for all φ ∈ H1(T3;F) .

with
∫︁
T3 Θ = 0.

Proof. Fix u ∈ L2(T3;F3). Thanks to the Lax-Milgram lemma, there exists a
unique function Θ ∈ H1(T3;F) with

∫︁
T3 Θ = 0 such that∫︂

T3

⟨︁
∇Θ,∇φ

⟩︁
=
∫︂
T3

⟨︁
u,∇φ

⟩︁
for all φ ∈ H1(T3;F) .

Having this potential Θ at hand, we find that the vector field v := u− ∇Θ is
an element of L2(T3;F3) and satisfies∫︂

T3

⟨︁
v,∇φ

⟩︁
=
∫︂
T3

⟨︁
u,∇φ

⟩︁
−
∫︂
T3

⟨︁
∇Θ,∇φ

⟩︁
= 0 ,

for all φ ∈ H1(T3;F). This shows that v ∈ L2
sol(T3;F3).

In order to show that the decomposition

L2(T3;F3) = ∇H1(T3;F) ⊕ L2
sol(T3;F3)

is direct, we need to prove that only the trivial vector field is an element in
both spaces. One readily checks, that L2

sol(T3;F3) is a linear subspace of the
L2-orthogonal complement of ∇H1(T3;F), which proves the claim. □

The space L2
sol(T3;F3) of solenoidal vector fields on the torus can be further

decomposed. To this end, we define the space of curl vector fields as

curlH1(T3;F3) :=
{︄
u ∈ L2(T3;F3)

⃓⃓⃓⃓
⃓ there exists w ∈ H1(T3;F3)

such that u = curl w in T3

}︄
.

We further introduce the space of harmonic vector fields,

H(T3;F3) :=
{︂
u ∈ L2(T3;F3)

⃓⃓⃓
curl u = 0 in T3 and div u = 0 in T3

}︂
.

Having these function spaces at hand, we can state an improved Helmholtz
decomposition on the torus.

Proposition 2.6. (Helmholtz decomposition on the torus) – The vector space
of harmonic fields H♯(Y ;F3) is finite dimensional. More precisely, H(T3;F3) =
F3. Furthermore, the following orthogonal decomposition holds

L2(T3;F3) = ∇H1(T3;F) ⊕ curlH1(T3;F3) ⊕ H(T3;F3) .

In particular, for every vector field u ∈ L2(T3;F3) there exist a scalar potential
Θ ∈ H1(T3;F), a vector potential w ∈ H1(T3;F3), and a constant c ∈ F3 such
that u = ∇Θ + curl w + c in T3.

19



2.3. HELMHOLTZ DECOMPOSITION FOR PERIODIC VECTOR FIELDS

Proof. We proceed in two steps.
Step 1. We claim that the vector space H(T3;F3) = F3. First, we observe

that H(T3;F3) is a subspace of H1(T3;F3); indeed, if u is an harmonic vector
field, both its distributional curl and its distributional divergence vanish in T3.
We can thus deduce from Lemma 2.4 that u ∈ H1(T3;F3). Equation (2.3.2)
shows ∇u = 0 in L2(T3;F3×3). This implies that u = c ∈ F3, since T3

is connected. Consequently, H(T3;F3) ⊂ F3. The other inclusion, that is
F3 ⊂ H(T3;F3) is clear.

Step 2. We already know, by Lemma 2.5, that L2(T3;F3) admits the
orthogonal decomposition

L2(T3;F3) = ∇H1(T3;F) ⊕ L2
sol(T3;F3) .

One readily checks that H(T3;F3) ⊂ L2
sol(T3;F3). As H(T3;F3) is finite

dimensional, it is a closed subspace of L2
sol(T3;F3), and thus

L2
sol(T3;F3) = H(T3;F3) ⊕ H(T3;F3)⊥ .

The claim is proved if we show that H(T3;F3)⊥ = curlH1
♯ (Y ;F3) in L2

sol(T3;F3).
By Step 1, H(T3;F3) = F3. This implies curlH1(T3;F3) ⊂ H(T3;F3)⊥. To

prove the converse inclusion, fix a vector field v ∈ H(T3;F3)⊥. Consider the
function space

H1
sol,0(T3;F3) :=

{︃
u ∈ H1(T3;F3)

⃓⃓⃓⃓ ∫︂
T3
u = 0 and div u = 0 in T3

}︃
,

and let b : H1
sol,0(T3;F3) ×H1

sol,0(T3;F3) → F be the sesquilinear form defined
in (2.3.1). The Lax-Milgram lemma together with equation (2.3.2) establish
the existence of a unique solution w ∈ H1

sol,0(T3;F3) to

b(w,φ) =
∫︂
T3

⟨v, curl φ⟩ (2.3.6)

for all φ ∈ H1
sol,0(T3;F3). Note that w satisfies (2.3.6) also for all φ ∈

H1(T3;F3), since the equation holds for constant vector fields. The claim
is proved if the remainder R := v − curl w ∈ L2(T3;F3) vanishes.

We claim that R ∈ H(T3;F3). Indeed, as v ∈ L2
sol(T3;F3) we find that

div R = div v− div curl w = 0. On the other hand, by construction of w, there
holds ∫︂

Y

⟨︁
R, curl φ

⟩︁
=
∫︂

Y

⟨v, curl φ⟩ −
∫︂

Y

⟨curl w, curl φ⟩

=
∫︂

Y

⟨v, curl φ⟩ − b(w,φ) = 0 ,

for all φ ∈ H1(T3;F3). This shows that R ∈ H(T3;F3).
The proof is finished if we can show that R is also an element of H(T3;F3)⊥.

As shown above, curl H1(T3;F3) ⊂ H(T3;F3)⊥ and so curl w ∈ H(T3;F3)⊥.
We chose v ∈ H(T3;F3)⊥ and hence, R = v − curl w ∈ H(T3;F3)⊥. □
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CHAPTER 3
Two-scale convergence

In order not to disturb the discussion later on, we present the definition of two-
scale convergence, introduced by Nguetseng [Ngu89], and some of its properties
in this chapter. The main references are [LNW02] and [All92]; we also mention
the book by Pavliotis and Stuart [PS08].

3.1 Banach space-valued maps

In this section, we survey the definition and basic properties of L2-spaces for
Banach space-valued maps. The appropriate integral is the Bochner integral.
We briefly recall some facts on the Bochner integral and refer to the book by
Diestel and Uhl [DU77, Chapter 2] for a more detailed discussion on the topic.

Let X be a (real or complex) Banach space with norm ∥ · ∥, and let Ω
be an open and bounded subset of Rd. A map f : Ω → X is simple if there
exist x1, . . . , xn ∈ X and measurable subsets E1, . . . , En of Ω such that f =∑︁n

j=1 xi1Ei
. We say f : Ω → X is strong measurable if there exists a sequence

(fk)k of simple functions with limk→∞∥fk(x) − f(x)∥ = 0 for almost all x ∈ Ω.
The following characterisation of Bochner integrable functions is sufficient for
our purposes.

Lemma 3.1. – Let f : Ω → X be a strong measurable map. Then f is Bochner
integrable if and only if ∫︂

Ω

⃦⃦
f(x)

⃦⃦
dx < ∞ .

Proof. We refer to the proof of Theorem 2 in [DU77, Chapter 2.2]. □

For brevity, we abuse notation and write ∥f∥ for the map Ω → R, x ↦→
∥f(x)∥. The previous result motivates the following definition:

L2(Ω;X) :=
{︂
f : Ω → X

⃓⃓⃓
f is strong measurable and ∥f∥ ∈ L2(Ω;R)

}︂
.

One can show that L2(Ω;X) is a Banach space. In addition, simple functions
are dense in L2(Ω;X). If X is reflexive, so is L2(Ω;X); see Corollary 2 in [DU77,
Chapter IV.1].
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3.2. THE NOTION OF TWO-SCALE CONVERGENCE

3.2 The notion of two-scale convergence

Let Ω be an open and bounded subset of Rd, and denote the closed unit cube
in Rd by Y := [0, 1]d. Throughout this section, m ∈ N with m ≥ 1.

Definition 3.2. (Two-scale convergence) – A sequence (uη)η in L2(Ω;Cm) is
said to two-scale converge to u0 ∈ L2(Ω × Y ;Cm), and we write uη 2−⇀ u0, if

lim
η→0

∫︂
Ω

⟨︂
uη(x), ψ

(︃
x,
x

η

)︃⟩︂
dx =

∫︂
Ω

∫︂
Y

⟨︁
u0(x, y), ψ(x, y)

⟩︁
dy dx (3.2.1)

for every ψ ∈ L2(Ω;C0
♯ (Y ;Cm)).

We remark that different definitions of two-scale convergence are present
in the literature; the main difference concerns the space of test functions,
L2(Ω;C0

♯ (Y ;Cm)). We refer to [LNW02] for a discussion on different choices of
spaces of test functions.

Lemma 3.3. – Let (uη)η be a sequence in L2(Ω;Cm) that two-scale converges
to u0 ∈ L2(Ω × Y ;Cm). Then

uη →
∫︂

Y

u0(·, y) dy weakly in L2(Ω;Cm) as η → 0 .

In particular, the sequence (uη)η is bounded in L2(Ω;Cm).

Proof. Fix an arbitrary ψ ∈ L2(Ω;Cm). We can view the map x ↦→ ψ(x) as an
element of L2(Ω;C0

♯ (Y ;Cm)). As (uη)η two-scale converges to u0, we obtain

lim
η→0

∫︂
Ω

⟨︁
uη(x), ψ(x)

⟩︁
dx =

∫︂
Ω

⟨︂∫︂
Y

u0(x, y) dy, ψ(x)
⟩︂

dx .

As ψ was chosen arbitrarily, the claim follows. □

In [LNW02], [All92], and [PS08], only sequences (uη)η in L2(Ω;R) are
considered. In order to apply the results obtained in these articles to sequences
in L2(Ω;Cm), we need the following two auxiliary lemmas.

Lemma 3.4. – Let Ω be a bounded and open subset of Rd. For a sequence
(uη)η in L2(Ω;C) the following statements are equivalent:

(i) (uη)η two-scale converges to u0 ∈ L2(Ω × Y ;C).

(ii) The sequences (Re{uη})η and (Im{uη})η in L2(Ω;R) two-scale converge
to Re{u0} ∈ L2(Ω × Y ;R) and Im{u0} ∈ L2(Ω × Y ;R), respectively.

Proof. Assume (uη)η is a sequence in L2(Ω;C) that two-scale converges to
u0 ∈ L2(Ω × Y ;C). We note that 2 Re{uη} = uη + uη and that 2i Im{uη} =
uη − uη. Thus, using the fact that every ψ ∈ L2(Ω, C0

♯ (Y ;R)) is an element of
L2(Ω;C2

♯ (Y ;C)), the two-scale convergence of (uη)η implies statement (ii).
Conversely, assume that statement (ii) holds. Then (i) follows from the obser-

vation that Re{ψ}, Im{ψ} ∈ L2(Ω;C0
♯ (Y,R)) for every ψ ∈ L2(Ω;C0

♯ (Y,C)). □
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CHAPTER 3. TWO-SCALE CONVERGENCE

Lemma 3.5. – Let Ω be an open and bounded subset of Rd, and let m ≥ 2. For
a sequence (uη)η in L2(Ω;Cm) the following statements are equivalent:

(i) (uη)η two-scale converges to u0 ∈ L2(Ω × Y ;Cm).

(ii) For each k ∈ {1, . . . ,m}, the sequence (uη
k)η two-scale converges to (u0)k ∈

L2(Ω × Y ;C).

Proof. Let (uη)η be a sequence in L2(Ω;Cm) that two-scale converges to u0 ∈
L2(Ω × Y ;Cm). We observe that for each k ∈ {1, . . . ,m} and for all test
functions ψ ∈ L2(Ω;C0

♯ (Y ;C)), the vector field (x, y) ↦→ ψ(x, y) ek is an element
of L2(Ω;C0

♯ (Y ;Cm)). This together with the two-scale convergence of (uη)η

implies statement (ii).
The converse implication, (ii) ⇒ (i), is straightforward and follows from the

linearity of the integral. □

We have the following result.

Lemma 3.6. – Let Ω ⊂ Rd be open and bounded. If ψ ∈ L1
♯ (Y ;C0(Ω;R)), then

for any η > 0 the map Ω → R , x ↦→ ψη(x) := ψ(x/η, x) is measurable and
satisfies ⃦⃦

ψη

⃦⃦
L1(Ω;R) ≤ C(Ω)∥ψ∥L1

♯
(Y ;C0(Ω;R))

Proof. The statement is proved in [All92, Corollary 5.4]. □

The next result is crucial for the theory of two-scale convergence, and for us
in Chapters 5 and 6.

Theorem 3.7. (Compactness theorem) – If (uη)η is a bounded sequence in
L2(Ω;Cm), then there exists a subsequence (uη)η and a map u0 ∈ L2(Ω×Y ;Cm)
such that (uη)η two-scale converges to u0.

Proof. The statement for sequences in L2(Ω;R) is proved in [LNW02, Theorem
14]; see also [All92, Theorem 1.2].

In order to prove the general statement, let (uη)η be a bounded sequence
in L2(Ω;Cm). The sequences (uη

1)η, . . . , (uη
m)η are then bounded in L2(Ω;C).

Fix k ∈ {1, . . . ,m}. Applying Theorem 14 from [LNW02] to the sequence
of the real part and the imaginary part of uη

k, respectively, we deduce the
existence of a subsequence (uη

k)η that two-scale converges. As k ∈ {1, . . . ,m}
was arbitrary, we can successively choose subsequences (uη

1)η, . . . , (uη
m)η that

two-scale converge. This implies the claim, by Lemma 3.5. □

The following theorem shows that if (uη)η two-scale converges, then the
identity (3.2.1) holds for test functions in other spaces than L2(Ω;C0

♯ (Y ;Cm)).

Theorem 3.8. – Let Ω be an open and bounded subset of Rd. If (uη)η is a
sequence in L2(Ω;Cm) that two-scale converges to u0 ∈ L2(Ω × Y ;Cm), then

lim
η→0

∫︂
Ω

⟨︂
uη(x), ψ

(︃
x,
x

η

)︃⟩︂
dx =

∫︂
Ω

∫︂
Y

⟨︁
u0(x, y), ψ(x, y)

⟩︁
dy dx , (3.2.2)

for every ψ ∈ L2
♯ (Y ;C0(Ω;Cm)).
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3.2. THE NOTION OF TWO-SCALE CONVERGENCE

Proof. Thanks to the linearity of the integral, we may assume that (uη)η is a se-
quence in L2(Ω;Rm) and that test vector fields are elements of L2

♯ (Y ;C0(Ω;Rm)).
The statement for a sequence in L2(Ω;R) is proved in [LNW02, Theorem 15].
In order to prove the general statement, we apply Theorem 15 from [LNW02]
to the sequence (uη

k)η for each k ∈ {1, . . . ,m}, which two-scale converge to
(u0)k ∈ L2(Ω × Y ;Rm) by Lemma 3.5. □

The next result is a straightforward variant of a classical rule, which applies
to vector fields uη : Ω → C3 for which both sequences (uη)η and (η div uη)η are
bounded in L2(Ω;C3); see [All92, Proposition 1.14].

Lemma 3.9. – Let Ω be an open and bounded subset of Rd, and let (uη)η be
a sequence in H(curl ,Ω). Assume that (uη)η and (η curl uη)η are bounded
sequences in L2(Ω;C3). Then there exists a vector field u0 ∈ L2(Ω × Y ;C3)
with curly u0(x, ·) ∈ L2

♯ (Y ;C3) for almost all x ∈ Ω such that

uη 2−⇀ u0 and η curl uη 2−⇀ curly u0 . (3.2.3)

Proof. As both sequences (uη)η and (η curl uη)η are bounded, we find subse-
quences (uη)η and (η curl uη)η as well as a vector field ξ ∈ L2(Ω × Y ;C3) such
that

uη 2−⇀ u0 and η curl uη 2−⇀ ξ .

The claim is proved provided ξ(x, ·) = curly u0(x, ·) for almost all x ∈ Ω. Choose
an arbitrary test function θ ∈ C∞

c (Ω;R) and a test vector field ψ ∈ C∞
♯ (Y ;C3).

Define φ(x, y) := θ(x)ψ(y) and set φη(·) := φ(·, ·/η) for each η > 0. On the one
hand, we have

lim
η→0

∫︂
Ω

⟨︁
η curl uη(x), φη(x)

⟩︁
dx =

∫︂
Ω
θ(x)

∫︂
Y

⟨︁
ξ(x, y), ψ(y)

⟩︁
dy dx . (3.2.4)

On the other hand, applying integration by parts and using the boundedness of
(uη)η, we find that

lim
η→0

∫︂
Ω

⟨︁
η curl uη(x), φη(x)

⟩︁
dx = lim

η→0

∫︂
Ω
θ(x)

⟨︁
uη(x), curl ψ(x/η)

⟩︁
dx

+ lim
η→0

η

∫︂
Ω

⟨︁
uη(x),∇θ(x) ∧ ψ(x/η)

⟩︁
dx

=
∫︂

Ω
θ(x)

∫︂
Y

⟨︁
u0(x, y), curl ψ(y)

⟩︁
dy dx .

Combining the last equation and (3.2.4) yields the claim. □
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Part II

Homogenization of
time-harmonic Maxwell’s

equations in general periodic
microstructures

What you say is very fine, Adso, and I thank you. The
order that our mind imagines is like a net, or like a ladder,
built to attain something. But afterward you must throw the
ladder away, because you discover that, even if it was useful,
it was meaningless. Er muoz gelîchesame die leiter
abewerfen, sô er an ir ufgestigen.

—Umberto Eco, The name of the rose

He must, so to speak, throw away the ladder after he has
climbed up it.

—Ludwig Wittgenstein, Tractatus Logico-Philosophicus





CHAPTER 4
Introduction

In the mid nineteenth century, James C. Maxwell [Max61, Max65] published
twenty equations summarising the state of electromagnetic theory in those days;
he thereby added a critical correction to Ampère’s circuital law by introducing a
displacement current term. Oliver Heaviside later simplified this set of equations
via vector notation; the resulting system of four equations involves four time-
and space-dependent unknown fields: the electric field E , the displacement field
D, the magnetic field H and the magnetic induction B. The sources of the
electromagnetic field are the electric current density J and the electric charge
density ρ. Maxwell’s equations then read

curl E = −∂tB , curl H = J + ∂tD , (4.0.1a)
div D = ρ , div B = 0 . (4.0.1b)

The relations between the four fields D, B, E , and H are determined by the
(experimentally derived) material laws; sometimes referred to as the constitutive
relations. In this work, we are interested in linear isotropic materials and thus
the material laws are of the form

D = εE and B = µH , (4.0.2)

with space-dependent scalars ε and µ. We refer to ε as the permittivity of the
material and to µ as the permeability of the material.

Simplifications. We consider Maxwell’s equations (4.0.1) in a bounded
and simply connected Lipschitz domain Ω ⊂ R3. For simplicity, we assume
that there are neither charges nor currents; that is, ρ = 0 and J = 0. Let us
mention that we have not specified any boundary conditions on ∂Ω, which can
be used to encode source terms. The results presented in this part of the thesis
are essentially independent of the boundary values of the electromagnetic field
on ∂Ω; this is why we will not specify any boundary condition in the sequel.

Instead of the full Maxwell system (4.0.1), one often studies a reduced set
of equations—namely, the so called time-harmonic Maxwell equations. In order
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to derive this reduced system, we make the time-harmonic ansatz

H(x, t) = Re
{︁
H(x) e−iωt

}︁
, E(x, t) = Re

{︁
E(x) e−iωt

}︁
B(x, t) = Re

{︁
B(x) e−iωt

}︁
, D(x, t) = Re

{︁
D(x) e−iωt

}︁
,

with time-independent fields H,B,E,D : Ω → C3 and a fixed frequency ω > 0.
Substituting the fields H(x) e−iωt and E(x) e−iωt into (4.0.1a) and using the
constitutive relations (4.0.2) yield the time-harmonic Maxwell equations{︃

curl E = iωµH in Ω ,

curl H = −iωεE in Ω .

(4.0.3a)
(4.0.3b)

The two equations in (4.0.1b) are automatically satisfied by D = εE and
B = µH, which can be seen by taking the divergence in (4.0.3b) and (4.0.3a),
respectively.

Metamaterials. For a homogeneous material both the permittivity ε and
the permeability µ are space-independent; they do depend, however, on the
frequency ω of an electromagnetic wave hitting the material. Whereas the
permittivity ε = ε(ω) can be a complex number with non-negative imaginary
part for frequencies ω of visible light, all natural materials show a non-magnetic
behaviour for this region of the spectrum; their permeability µ is hence close to
µ0 > 0, the permeability of free space.

In recent years, there has been a great interest in constructing artificial
materials, also called metamaterials, that behave as homogeneous materials
with a negative permittivity εeff [FB97] or a non-trivial permeability µeff [BS10,
BBF09, BBF17]; we refer to the survey [Sch16] for an overview. Usually such
metamaterials are periodically micro-structured. Assuming the scale of the
microstructure is small compared to the wavelength of the fields, a rigorous
mathematical analysis of the behaviour of the artificial material can be performed
using periodic homogenisation theory.

The vital part in the construction of metamaterials with unusual optical
properties is the choice of the microstructure. Using highly conductive split-ring
resonators, Bouchitté and Schweizer [BS10] designed a metamaterial with neg-
ative permeability Re{µeff(ω)} < 0 for special frequencies ω. A similar result
holds for perfectly conducting split rings, which was later shown by Lipton and
Schweizer [LS18b]. In [LS16], Lamacz and Schweizer construct a metamaterial
that exhibits a negative permittivity Re{εeff} < 0 as well as a negative per-
meability Re{µeff(ω)} < 0 for a special frequency ω. Bouchitté, Bourel, and
Felbacq [BBF09, BBF17] exploited the so-called Mie resonances to construct a
metamaterial with artificial magnetism from dielectric microstructures.

In contrast to the above mentioned articles, our intention in the subsequent
chapters is not to propose a new microstructure leading to an artificial material
with unusual properties, but to clarify the connection between the topology
of the microstructure and transmission properties of the metamaterial. We
thereby extend the result obtained in [SU18] and [PSU19].

4.1 Geometry and overview of main results

Although we are interested in general microstructures, we stay in the framework
of periodic homogenization.
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R

Ω

Y

Σ 1

Figure 4.1: Left: The set of obstacles Ση, located in a subdomain R ⋐ Ω, is
obtained by a “periodization” of microstructures Σ ⊂ Y . Right: Magnification
of the microstructure in R.

Geometric assumptions. Besides Ω ⊂ R3, we consider a simply connected
Lipschitz domain R ⋐ Ω in which the metamaterial is located; see Figure 4.1.
The term metamaterial describes a periodic assembly of conductors and free
space. More precisely, let Y denote the closed unit cube [0, 1]3 ⊂ R3. As
discussed in Section 2.2, we sometimes identify Y with the flat three-dimensional
torus T3. We make the following assumptions on the microstructure:

(A1) Σ ⊂ Y is a subdomain of the flat three-dimensional torus T3 that has a
Lipschitz boundary;

(A2) Σ∗ := Y \ Σ is a connected and non-empty subset of T3.

We call a microstructure Σ admissible provided assumptions (A1) and (A2) are
satisfied.

Denoting the period of the metamaterial by η > 0, we set

Ση :=
⋃︂

m∈M
η
(︁
m+ Σ

)︁
with M :=

{︂
m ∈ Z3

⃓⃓⃓
η
(︁
m+ Y

)︁
∈ R

}︂
.

Equations. Let R ⋐ Ω be as described above, and let Σ ⊂ Y be an admis-
sible microstructure. As discussed above, we may assume that the permeability
µ of the microstructure Σ coincides with the permeability µ0 of free space. On
the other hand, the permittivity ε of Σ differs from the permittivity of free
space ε0 by a complex scalar, ε = εηε0 with εη : Ω → C being the relative
permittivity. In Ω \ Ση we set εη = 1 since we assume free space outside the
metamaterial Ση. The value of εη in Ση is chosen below. The time-harmonic
Maxwell equations for a metamaterial with period η > 0 then read{︄

curl Eη = iωµ0H
η in Ω ,

curl Hη = −iωεηε0E
η in Ω .

(4.1.1a)
(4.1.1b)

Main results of Chapter 5.
The microstructure Σ is assumed to be perfectly conducting, which formally
amounts to εη = +∞ in Ση. More rigorously, we require Eη and Hη to vanish
identically in Ση and impose equation (4.1.1b) only in Ω \ Ση.
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Cell problems and their analysis. In the first part of Chapter 5, we
derive the cell problems for the two-scale limits E0 and H0 of (Eη)η and (Hη)η.
It is well-known that the solution space XE of the cell problem for E0 is at most
three-dimensional; see, for instance, [SU18, LS18b]. In contrast, the solution
space of the cell problem for H0 can have more than three dimensions; indeed,
Lipton and Schweizer [LS18b] consider a two-dimensional full torus Σ ⋐ Y and
show that there are four linearly independent solutions to the cell problem of
H0. Our main result of this first part states, however, that the two-scale limit
H0 lies in an at most three-dimensional subspace XH of the solution space of
the H0-cell problem; see Lemma 5.5 and (5.2.11). Let us emphasize that this is
no contradiction to the result by Lipton and Schweizer, because they consider a
microstructure Σ = Σ(η) that changes its topology as η → 0.

In order to derive the effective equations, we need a characterisation of XE

and XH . It turns out that both spaces depend only on the topology of Σ. We
can thus, for a large class of admissible Σ, determine bases for XE and XH

by using special curves in Y—so-called k-loops—, which were first introduced
in [SU18]; see Lemmas 5.2 and 5.9, and Section 5.4.

There is another, more abstract, way to characterise the spaces XE and
XH using the so-called geometric average. This average is a linear map that
assigns to each vector field v ∈ L2(Σ∗;C3) with curl v = 0 in Σ∗ a constant
vector

∮︁
Σ∗ v ∈ C3, which we call the geometric average of v. The geometric

average can be applied to every element in XH , allowing us to consider the
following subspaces of C3:

AE :=
{︃∫︂

Y

u

⃓⃓⃓⃓
u ∈ XE

}︃
and AH :=

{︃∮︂
Σ∗
v

⃓⃓⃓⃓
v ∈ XH

}︃
. (4.1.2)

The maps
∫︁

Y
: XE → AE and

∮︁
Σ∗ : XH → AH are vector space isomorphisms,

and hence the characterisation of XE and XH is equivalent to the characterisa-
tion of AE and AH . It turns out that AH is determined by AE . That is, we
can focus on the analysis of AE and can then deduce the characterisation of
XE , AH , and XH from AE . Let us stress that AE can be determined easily,
for a large class of microstructures Σ, using k-loops.

Effective material parameters and effective equations. The second
part of Chapter 5 is concerned with the definition of effective material parameters
and the derivation of effective equations. The relative permittivity εeff as well
as the relative permeability µeff of the metamaterial R are linear maps, which
are defined via solutions of the cell problems. More precisely, εeff is the unique
linear map εeff : AE → AE that satisfies⟨︃

εeff
(︃∫︂

Y

u1

)︃
,

∫︂
Y

u2

⟩︃
=
∫︂

Y

⟨︁
u1, u2

⟩︁
for all u1, u2 ∈ XE .

The relative permeability µeff : AH → C3 is defined by µeff(
∮︁

Σ∗ v) :=
∫︁

Y
v. We

recall that outside the metamaterial, we assume free space; this leads to the
following definition of the effective material parameters:

ε̂(x) := idC3×3 1Ω\R̄(x) + εeff1R(x) and µ̂(x) := idC3×3 1Ω\R̄(x) +µeff1R(x) .

What is noteworthy in the homogenisation of the time-harmonic Maxwell
equations is that the effective magnetic field Ĥ is not to be understood in
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the standard way as a cell-average. Instead we define Ĥ : Ω → C3 using the
geometric average,

Ĥ(x) :=
∮︂

Σ∗
H0(x, ·) . (4.1.3)

The effective electric field Ê : Ω → C3 can also be defined as the geometric
average of the two-scale limit E0; it turns out, however, that for E0 the volume
average and the geometric average coincide. We therefore define Ê : Ω → C3 as

Ê(x) :=
∫︂

Y

E0(x, ·) . (4.1.4)

We remind the reader that E0(x, ·) is an element of XE , and that H0(x, ·)
is an element of XH . This fact together with the definitions (4.1.3) and (4.1.4)
yield:

Ê(x) ∈ AE and Ĥ(x) ∈ AH (4.1.5)
for almost all x ∈ R. The spaces AE and AH depend only on the topology of Σ
and can be determined easily using k-loops, for a large class of microstructures
Σ. Moreover, (4.1.5) allows us to determine whether transmission through the
metamaterial is possible, and if transmission is possible, in which directions the
fields can point.

Our main contribution in this second part of Chapter 5 is the derivation of the
effective system; see Theorem 5.12. Denote by πAE : C3 → C3 the orthogonal
projection onto AE . The effective field (Ê, Ĥ) : Ω → C3 × C3 satisfies the
following equations:⎧⎪⎪⎨⎪⎪⎩

curl Ê = iωµ0µ̂Ĥ in Ω ,

πAE

(︁
curl Ĥ

)︁
= −iωε0πAE

(︁
ε̂Ê
)︁

in Ω ,

curl Ĥ = −iωε0Ê in Ω \R .

(4.1.6a)
(4.1.6b)
(4.1.6c)

The effective system has the form of time-harmonic Maxwell’s equations
for a linear material. We note, however, that the material parameters ε0ε̂ and
µ0µ̂ are, in general, tensors—although ε0εη and µ0 are scalars. Depending on
the space AE , equation (4.1.6b) does not determine all components of curl Ĥ.
To the best knowledge of the author, the first effective Maxwell system, in
which not all components of curl Ĥ are determined, appeared in [SU18]; see
also [PSU19].

Equations (4.1.6a) and (4.1.6b) imply interface conditions across the bound-
ary ∂R of the metamaterial. For a microstructure Σ that is compactly contained
in (0, 1)3, we will see that AE = C3 and consequently, the effective system
coincides with time-harmonic Maxwell’s equations for some linear material. In
this situation, the tangential components of Ê and Ĥ do not jump across ∂R.
Of particular interest are those microstructures Σ for which some components of
the effective field (Ê, Ĥ) vanish while other components satisfy certain parts of
Maxwell’s equations. This occurs, for instance, for cylindrical or plate structures;
see Section 5.4.

Main results of Chapter 6
In this chapter, we consider the more realistic high contrast case; that is, the
microstructure Σ is highly conductive. The relative permeability εη is thus
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defined as εη = εrη
−2 in Ση with Im{εr} > 0. This scaling is not new in

the theory of homogenisation and leads to metamaterials with astonishing
optical properties; see, for instance, [Zhi05, FB05, CC15, LS16, BBF17]. The
assumption Im{εr} > 0 is vital to ensure existence and uniqueness of solutions
to the cell problem.

Cell problems and their analysis. Similar to Chapter 5, we first derive
the cell problems for the two-scale limits E0 and H0 of (Eη)η and (Hη)η. These
cell problems are well-known; see, for instance, [BS10, BBF09, LS13, LS16].
Moreover, the cell problem for E0 coincides with the cell problem of E0 in the
case of a perfectly conducting microstructure Σ. We can therefore use the same
techniques to analyse the solution space XE as in Chapter 5.

The analysis of the cell problem for H0 is much more involved, though.
Besides the fields Eη and Hη one considers a third quantity Jη, the rescaled
displacement current, which was introduced in [BS10]. Denoting the two-scale
limit of (Jη)η by J0 ∈ L2(Ω × Y ;C3), the cell problem of H0 reads⎧⎪⎪⎪⎨⎪⎪⎪⎩

curly H0(x, ·) = −iωε0J0(x, ·) in Y ,

divy H0(x, ·) = 0 in Y ,

curly J0(x, ·) = iωµ0εrH0(x, ·) in Σ ,

J0(x, ·) = 0 in Σ∗ ,

(4.1.7a)
(4.1.7b)
(4.1.7c)
(4.1.7d)

for almost all x ∈ R. The solution space to this cell problem can have more
than three dimensions. Indeed, Bouchitté and Schweizer [BS10] consider a
two-dimensional full torus Σ ⋐ Y and show that (4.1.7) admits four linearly
independent solutions.

Our main result in the first part of this chapter is a new variational equation
involving J0 and H0, from which we deduce that H0 lies in an at most three-
dimensional subspace of the solution space to (4.1.7). More precisely, we show
that for every vector field v ∈ L2

♯ (Y ;C3) with curl v = 0 in Σ∗ and
∮︁

Σ∗ v = 0
there holds ∫︂

Σ

⟨︁
J0(x, ·), curl v

⟩︁
= iωεrµ0

∫︂
Y

⟨︁
H0(x, ·), v

⟩︁
(4.1.8)

for almost all x ∈ R. Using properties of the geometric average it is straightfor-
ward to show that (4.1.8) implies equations (4.1.7b) and (4.1.7c); the converse,
however, is not true, in general. That is, the variational identity (4.1.8) contains
more information than the two equations.

Combining (4.1.7a) and (4.1.8) we obtain the following variational charac-
terisation of H0 in R,∫︂

Σ

⟨︁
curl H0(x, ·), curl v

⟩︁
= ω2εrε0µ0

∫︂
Y

⟨︁
H0(x, ·), v

⟩︁
, (4.1.9)

which holds for all v ∈ L2
♯ (Y ;C3) with curl v = 0 in Σ∗ and

∮︁
Σ∗ v = 0. Thus,

the variational identity (4.1.8) allows us to reduce the cell problem of H0 from
a system of coupled partial differential equations to one variational equation,
which can be analysed by the Lax-Milgram lemma.

The variational characterisation (4.1.9) was also found by Bouchitté, Bourel,
and Felbacq in [BBF17]; they consider, however, only microstructures Σ ⋐
(0, 1)3 which are simply connected and for which Σ∗ ⊂ [0, 1]3 is simply connected,
as well. Moreover, in [BBF17] the variational identity (4.1.9) is directly derived
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from Maxwell’s equations (4.1.1) using more advanced results from the theory
of two-scale convergence. Our approach—that is, taking the detour to derive
equations (4.1.7a) and (4.1.8) first and then combine them—, yields a more
elementary proof of (4.1.9).

Let us comment on the solution space of (4.1.9). The effective system (4.1.7)
implies that H0(x, ·) ∈ H1

♯ (Y ;C3) is curl-free in Σ∗, for almost all x ∈ R. We
therefore define the solution space XH of (4.1.9) to be the space of vector fields
w ∈ H1

♯ (Y ;C3) with curl w = 0 in Σ∗ such that (4.1.8) holds after substituting
H0(x, ·) by w. As each w ∈ XH satisfies curl w = 0 in Σ∗, we can apply the
geometric average and obtain a constant vector

∮︁
Σ∗ w ∈ C3. The linear map∮︁

Σ∗ X
H → C3 is injective, since Im{εr} > 0; consequently, dimXH ≤ 3. Let

us define

AH :=
{︃∮︂

Σ∗
w

⃓⃓⃓⃓
w ∈ XH

}︃
.

We emphasize that the definition of the space AH seems to be the same
as (4.1.5) from Chapter 5; however, the solution space XH is defined differently
in each chapter. The geometric average

∮︁
Σ∗ : XH → AH is again a vector space

isomorphism, and thus allows us to characterise AH instead of XH . Similar
to Chapter 5, we show that AH is determined by AE . That is, also in the high
contrast case, the analysis of the solution spaces XE and XH reduces to a
characterisation of AE .

As the cell problem of E0 is the same in Chapters 5 and 6, the spaces AE

coincide as well. Therefore, from an abstract point of view, if we understand
the case of perfectly conducting microstructures, then we also understand the
high contrast case, and vice versa. Let us emphasis, however, that although the
solution spaces of the H0-cell problem in both cases are isomorphic they do not
coincide, and this influences, for instance, the relative permeability µeff of R.

Effective material parameters and equations. The effective material
parameters ε̂ and µ̂ are defined as in Chapter 5. We also define the effective
electromagnetic field (Ê, Ĥ) as in (4.1.3) and (4.1.4), and obtain (4.1.6) as the
effective system. This is not surprising but rather an evidence that the effective
field (Ê, Ĥ) is defined in the right way, since we obtain an effective system
which has the structure of Maxwell’s equations for a linear material.

Concluding comments

Besides our new definition of the geometric average and k-loops, we use mainly
the tool of two-scale convergence in Chapters 5 and 6.

Literature. In [BBF09, BBF17], Bouchitté, Bourel, and Felbacq study the
behaviour of solutions (Eη, Hη)η of (4.1.1) as η → 0 based on the following
assumptions on the microstructure: Σ is connected and compactly contained in
(0, 1)3 and Σ∗ ⊂ (0, 1)3 is simply connected. Let us stress that the emphasis
in the articles [BBF09, BBF17] is more on constructing metamaterials with a
negative effective permeability than on the connection between the topology of
Σ and transmission properties of the metamaterial. A first step to study this
connection is presented in [SU18], in which microstructures Σ are allowed that
satisfy the following property: every vector field v ∈ L2

♯ (Y ;C3) with vanishing
distributional curl in Σ∗ can be written as v = ∇Θ + c in Σ∗ for some periodic
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potential Θ ∈ H1
♯ (Σ∗;C) and some constant vector c ∈ C3. Moreover, Σ is

assumed to be perfectly conducting.
Perfectly conducting microstructures Σ are also studied in [PSU19]; there

Σ is only assumed to satisfy assumptions (A1) and (A2). The main topic
of [PSU19], however, is the generalisation of the geometric average to this large
class of microstructures. Nevertheless, parts of our results in Chapter 5 coincide
with conclusions from [PSU19].

Technical remark. As described in the previous sections, we show in Chap-
ters 5 and 6 that the classical cell problems of H0 do not contain all the infor-
mation about H0. Indeed, in the case of a perfectly conducting microstructure
Σ, our analysis reveals that H0 lies in an at most three-dimensional subspace
XH of the solution space to the cell problem; in the high contrast case, we
obtain the new relation (4.1.8) between J0 and H0. We would like to stress
that these two new information are obtained in the same way—namely, by
testing equation (4.1.1a) with the same vector field. More precisely, we choose
a cut-off function θ ∈ C∞

c (Ω;R), a vector field v ∈ L2
♯ (Y ;C3) with curl v = 0

in Σ∗ and
∮︁

Σ∗ v = 0, and define the test vector field φ ∈ C0(Ω;L2
♯ (Y ;C3)) as

φ(x, y) := θ(x)v(y). The new information about H0 is then derived by testing
equation (4.1.1b) with φ(·, ·/η), using that (Eη)η and (Hη)η two-scale converge,
and from the definition of the geometric average.

Averaging electromagnetic fields. The effective magnetic field Ĥ is
not to be understood as a cell-average but as a geometric average; see its
definition (4.1.3). In fact, the same holds true for the effective electric field
Ê. The reason for choosing a different averaging method is the following: the
electric field as well as the magnetic field may be viewed as differential one-
forms. As such, line integrals are the natural objects to average electromagnetic
fields. In the physics literature this is well-known; see, for instance, [PHRS99]
or [Ram05, Chapter 2.4]. This fact has also been utilised in the mathematical
homogenisation of Maxwell’s equations; we mention [KS08] for a two-dimensional
homogenisation problem, and [BBF09, BBF17] for an analysis of the full three-
dimensional Maxwell system.

Besides this mathematical argument, there is also a physical reason which
suggests that taking the volume average as the effective field is not the right
choice. Assume (Eη, Hη)η is a bounded sequence of distributional solutions to
time-harmonic Maxwell’s equations (4.1.1), and let H denote the weak L2-limit
of (Hη)η. It turns out that the tangential trace of H jumps across the interface
∂R, which is not desirable for a physical quantity. Moreover, having the effective
system (4.1.6) for (Ê, Ĥ) at hand, and using the fact that H = µeffĤ in R, the
effective system in terms of H read{︄

curl Ê = iωµ0H in R ,

πAE

(︁
curl (µeff)−1Ĥ

)︁
= −iωε0πAE

(︁
ε̂Ê
)︁

in R .

This set of equations has apparently not the form of Maxwell’s equations for
some linear material.

Line integrals are well suited for smooth vector fields. However, for less
regular fields, which one encounters in the framework of periodic homogenization,
a generalisation of line integrals is necessary. Such a generalisation—the so-called
geometric average—was first accomplished by Bouchitté, Bourel, and
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Σ1

e1

e3

e2

(a)

Σ2

e1

e3

e2

(b)

Figure 4.2: The figure shows two admissible microstructures. The unit cell Y
is represented by the cube; the dark grey areas represent the microstructures.
(a) Σ1 represents a metal plate, which is not compactly contained in (0, 1)3.
(b) Σ2 is a torus which connects opposite faces of Y . Neither is Σ2 compactly
contained in (0, 1)3 nor is its complement simply connected.

Felbacq [BBF09] and later extended to be applicable to more general microstruc-
tures Σ; see [PSU19] for an overview of the different definitions. Defining the
effective fields via the geometric average leads to the effective system (4.1.6),
which is in Maxwell form and which expresses, in particular, that the tangen-
tial components of Ĥ do not jump across the interface ∂R. Furthermore, the
effective magnetic induction B̂ := µ0µ

effĤ agrees with the weak L2-limit of
Bη := µ0H

η in the metamaterial R.

4.2 Main ideas discussed by two examples

The objective of this section is to present the ideas, which are developed
in [SU18, PSU19] as well as in this thesis, using two microstructures; in doing so,
we postpone involved technical details to later sections. The two microstructures
that we consider are sketched in Figures 4.2 (a) and 4.2 (b).

The metal plate
Choose γ ∈ (0, 1/2) and set

Σ1 :=
{︃

(y1, y2, y3) ∈ Y

⃓⃓⃓⃓
y1 ∈

(︃
1
2 − γ,

1
2 + γ

)︃}︃
.

A sketch of Σ1 is given in Figure 4.2 (a).
Bouchitté and Schweizer analyse in [BS13] the high contrast case, but only

in a two-dimensional setting. We note that the results from [BBF09, BBF17]
cannot be applied since Σ1 is not compactly contained in (0, 1)3.

We focus in this section on the case that Σ1 is perfectly conducting, which
is also discussed in [SU18]; see Section 6.4 for a discussion of the high contrast
case.
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Cell problem of E0. We first analyse the cell problem for the two-scale
limit E0. Let us recall from the previous section that the identical cell problem
appears in the high contrast case; the following analysis applies thus to both
cases. For almost all x ∈ R, the field E0 = E0(x, ·) ∈ L2

♯ (Y ;C3) satisfies⎧⎪⎨⎪⎩
curly E0 = 0 in Y ,

divy E0 = 0 in Σ∗
1 ,

E0 = 0 in Σ1 ,

(4.2.1a)
(4.2.1b)
(4.2.1c)

in the distributional sense. We ask: how many linearly independent solutions
of (4.2.1) exist?

In order to answer this question, we first ask: what are necessary conditions a
solution to (4.2.1) has to satisfy? Assume u ∈ L2

♯ (Y ;C3) is a solution to (4.2.1).
Equation (4.2.1a) implies the decomposition u = ∇Θ + c in Y for some periodic
scalar potential Θ ∈ H1

♯ (Y ;C3) and a constant vector c ∈ C3. Substituting this
decomposition into equation (4.2.1c) yields ∇Θ = −c in Σ1, from which we
deduce that

Θ(y1, y2, y3) = −c1y1 − c2y2 − c3y3 for (y1, y2, y3) ∈ Σ1 ,

where cj = ⟨c, ej⟩ for j ∈ {1, 2, 3}. As Θ is periodic, the following identities
have to be satisfied

Θ(y1, 0, y3) = Θ(y1, 1, y3) and Θ(y1, y2, 0) = Θ(y1, y2, 1)

for all (y1, y2, y3) ∈ Σ1. Hence, c2 = c3 = 0. On the other hand, there is no
restriction on c1.

The above argument can be summarised as follows: if it is possible to connect
two opposite points on the faces {yk = 0} and {yk = 1} by a continuous curve
in Σ1, then ck = 0 with k ∈ {1, 2, 3}. Indeed, γ2 : [0, 1] → Σ1, γ2(t) := (y1, t, y2)
is a continuous curve in Σ1 connecting the opposite points (y1, 0, y3) and
(y1, 1, y3), for all y1 ∈ (−γ, γ) and y3 ∈ [0, 1]. Similarly, the continuous curve
γ3 : [0, 1] → Σ1, γ3(t) := (y1, y2, t) connects (y1, y2, 0) with (y1, y2, 1) for all
y1 ∈ (−γ, γ) and y2 ∈ [0, 1]. The curves γ2 and γ3 are examples of so-called
k-loops in Σ1; more precisely, γ2 is an e2-loop in Σ1 and γ3 is an e3-loop in Σ1.

We also note that there is no continuous curve in Σ1 connecting the faces
{y1 = 0} and {y1 = 1}. This implies the existence of a periodic potential
Θ ∈ H1

♯ (Y ;C) with ∇Θ = e1 in Σ1. Indeed, a solution Θ ∈ H1
♯ (Y ;C) to

{︃−∆Θ = 0 in Σ∗
1 ,

Θ = y1 in Σ1 ,

(4.2.2a)
(4.2.2b)

satisfies ∇Θ = e1 in Σ1. Let us remark, however, that there are admissible
microstructures Σ for which there is no Θ ∈ H1

♯ (Y ;C) with ∇Θ = e1 in Σ
although the faces {y1 = 0} and {y1 = 1} cannot be connected by a continuous
path in Σ; see Remarks 3 on page 49.

The above considerations show that every solution u ∈ L2
♯ (Y ;C3) of (4.2.1)

is of the form u = ∇Θ + λ e1 with Θ ∈ H1
♯ (Y ;C3) and λ ∈ C, and thus

AE :=
{︃∫︂

Y

u

⃓⃓⃓⃓
u ∈ XE

}︃
⊂ C e1 .
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We claim that AE = C e1. Indeed, for fixed λ ∈ C, the vector field E1 : Y → C3,
E1 := α−1λ1Σ∗

1
e1 with α := |Σ∗

1| is a solution to (4.2.1) with
∫︁

Y
E1 = λ e1.

In order to answer the question how many linearly independent solutions
the system (4.2.1) admits, we show that the linear map

∫︁
Y

: XE → AE is a
vector space isomorphism. By definition of AE , this map is onto. Thus, we are
left to prove that every u ∈ XE with

∫︁
Y
u = 0 vanishes identically. Choose

such a vector field u ∈ XE . Then u = ∇Θ + c in Y with c = 0, since
∫︁

Y
u = 0.

Consequently, due to (4.2.1b) and (4.2.1c), the potential Θ ∈ H1
♯ (Y ;C3) solves{︃−∆Θ = 0 in Σ∗

1 ,

Θ = C in Σ1 ,

for some C ∈ C. This Dirichlet problem has only the constant solution Θ ≡ C,
and hence u = 0. We note that this proof of the injectivity of

∫︁
Y

: XE → AE

works for any admissible microstructure Σ.
We have thus shown that the solution space XE to (4.2.1) is isomorphic

to AE = C e1. Moreover, due to its definition in (4.1.4), the effective field
Ê(x) ∈ AE = C e1 for almost all x ∈ R.

Cell problem of H0. If Σ1 is perfectly conducting, then the two-scale
limit H0(x, ·) ∈ L2(Y ;C3) satisfies, for almost all x ∈ R,⎧⎪⎨⎪⎩

curly H0 = 0 in Σ∗
1 ,

divy H0 = 0 in Y ,

H0 = 0 in Σ1 ,

(4.2.3a)
(4.2.3b)
(4.2.3c)

in the distributional sense. We ask again: how many linearly independent
solutions to (4.2.3) exist?

Let v ∈ L2
♯ (Y ;C3) be a solution to the cell problem (4.2.3). Due to the

special structure of Σ1, equation (4.2.3a) implies that v = ∇Θ + c in Σ∗
1 for

some periodic potential Θ ∈ H1
♯ (Σ∗

1;C) and some constant vector c ∈ C3. In
contrast to the decomposition of a solution to the E0-cell problem (4.2.1), the
constant vector c in the decomposition of v is not uniquely defined. Indeed, the
function Φ: Σ∗

1 → R,

Φ(y1, y2, y3) :=

⎧⎪⎪⎨⎪⎪⎩
y1 for y1 ∈

[︃
0, 1

2 − γ

)︃
y1 − 1 for y1 ∈

(︃
1
2 + γ, 1

]︃ (4.2.4)

is an element of H1
♯ (Σ∗

1;C) with ∇Φ = e1. Hence, v admits the two decomposi-
tions v = ∇Θ + c and v = ∇(Θ + Φ) + (c− e1). On the other hand, there cannot
be a potential Ψ ∈ H1

♯ (Σ∗
1;C) with ∇Ψ = e2. For there was such a potential Ψ,

it has to be an affine function of y2 which is periodic as well. But every periodic
and affine function is constant and hence e2 = ∇Ψ = 0. A similar reasoning
shows there cannot exist a potential Ψ ∈ H1

♯ (Σ∗
1;C) with ∇Ψ = e3.

Given a solution v ∈ L2
♯ (Y ;C3) of (4.2.3) that can be written as v = ∇Θ + c

in Σ∗
1 for some Θ ∈ H1

♯ (Σ∗
1;C) and c ∈ C3. The geometric average

∮︁
Σ∗

1
v ∈ C3

of the field v is defined as∮︂
Σ∗

1

v := ⟨c, e2⟩ e2 +⟨c, e3⟩ e3 . (4.2.5)
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Denote the solution space to (4.2.3) by XH . We claim that every v ∈ XH

with
∮︁

Σ∗
1
v = 0 vanishes identically in Y . As the geometric average of v vanishes,

v = ∇Θ+λ e1 in Σ∗
1 for some Θ ∈ H1

♯ (Σ∗
1;C) and some λ ∈ C. Equations (4.2.3b)

and (4.2.3c) imply that Θ is a weak solution to

{︃−∆Θ = 0 in Σ∗
1 ,

∂νΘ = −λ⟨e1, ν⟩ on ∂Σ∗
1 ,

(4.2.6a)
(4.2.6b)

where ν is the outward pointing normal. This Neumann problem is uniquely
solvable up to an additive constant. Setting Θ := −λΦ provides us with a
weak solution to this Neumann problem, where Φ is defined in (4.2.4). Thus,
any weak solution Θ ∈ H1

♯ (Σ∗
1;C) of (4.2.6) satisfies ∇Θ = −λ∇Φ = −λ e1

in Σ∗
1. From this, we deduce that v = ∇Θ + λ e1 = 0 in Σ∗

1. Due to (4.2.3c),
the field v vanishes identically in Y . We have thus proved that the geometric
average

∮︁
Σ∗

1
: XH → C3 is an injective linear map; that is, there are at most

three linearly independent solutions to (4.2.3).
By the definition of the geometric average in (4.2.5) there holds

AH :=
{︃∮︂

Σ∗
1

v

⃓⃓⃓⃓
v ∈ XH

}︃
⊂ C e2 ⊕C e3 .

We claim that AH = C e2 ⊕C e3. Indeed, given any c ∈ C e2 ⊕C e3, one readily
checks that v := (c2 e2 +c3 e3)1Σ∗

1
is an element of XH with

∮︁
Σ∗

1
v = c. Conse-

quently, the geometric average is a vectors space isomorphism between AH and
C e2 ⊕C e3. This together with (4.1.3) implies that Ĥ(x) ∈ AH = C e2 ⊕C e3
for almost all x ∈ R.

The effective material parameters and equations. The relative per-
mittivity εeff of the metamaterial is given as the diagonal matrix

εeff = diag
(︃∫︂

Y

⃓⃓
E1 ⃓⃓2, 0, 0)︃ = α−1 diag

(︁
1, 0, 0

)︁
∈ R3×3 ,

where the field E1, defined above, is a basis of XE .
The vector fields H2, H3 : Y → R3, H2 := 1Σ∗ e2 and H3 := 1Σ∗ e3 are

solutions of the H0-cell problem with
∮︁

Σ∗
1
Hj = ej for j ∈ {2, 3}. Thus, the

relative permeability µeff of the metamaterial R is given by

µeff =
(︃

0
⃓⃓⃓⃓ ∫︂

Y

H2
⃓⃓⃓⃓ ∫︂

Y

H3
)︃

= α diag
(︁
0, 1, 1

)︁
∈ R3×3 .

Defining the effective permittivity ε̂ : Ω → R3×3 and the effective perme-
ability µ̂ : Ω → R3×3 as in Section 4.1, the effective system (4.1.6) for the
microstructure Σ1 reads⎧⎪⎪⎨⎪⎪⎩

curl Ê = iωµ0µ̂Ĥ in Ω ,

∂2Ĥ3 − ∂3Ĥ2 = −iωε0(ε̂Ê)1 in Ω ,

curl Ĥ = −iωε0Ê in Ω \R .
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Torus touching the boundary

In this section, we consider a two-dimensional full torus Σ2 which connects the
two opposite faces {y1 = 0} and {y1 = 1} of the unit cube Y ; see Figure 4.2 (b)
for a sketch of Σ2.

The high contrast case, which we consider in this section, has never been
treated before. Indeed, the results from [BBF09, BBF17] are not applicable
since Σ2 is neither compactly contained in Y nor is Σ∗

2 simply connected in Y ;
we can also not apply the result from [SU18, PSU19] since Σ2 is not perfectly
conducting. We discuss the case that Σ2 is perfectly conducting in Section 5.4.

Cell problem of E0. After replacing Σ1 by Σ2, the cell problem for the
two-scale limit E0 is identical to (4.2.1). We can therefore use the techniques
discussed above to determine the solution space XE . Let us first observe that
there is a continuous curve γ1 : [0, 1] → Σ2 connecting the faces {y1 = 0} and
{y1 = 1}. In contrast, there is no continuous curve in Σ2 connecting the opposite
faces {yk = 0} and {yk = 1} for k ∈ {2, 3}. Thus, every solution u ∈ L2

♯ (Y ;C3)
to (4.2.1) is of the form u = ∇Θ + c2 e2 +c3 e3 in Y for some Θ ∈ H1

♯ (Y ;C) and
c2, c3 ∈ C. Consequently,

AE :=
{︃∫︂

Y

u

⃓⃓⃓⃓
u ∈ XE

}︃
⊂ C e2 ⊕C e3 .

As there are no continuous paths in Σ2 connecting the faces {yk = 0}
and {yk = 1} for k ∈ {2, 3}, we can, similar to (4.2.2), construct potentials
Θ2,Θ3 ∈ H1

♯ (Y ;C) that are harmonic in Σ∗
2 and that satisfy ∇Θ2 = e2 in

Σ2 and ∇Θ3 = e3 in Σ2. These two potentials allow us to conclude that
AE = C e2 ⊕C e3. Indeed, given any vector c ∈ C e2 ⊕C e3, one readily checks
that the vector field u : Y → C3,

u := −⟨c, e2⟩∇Θ2 − ⟨c, e3⟩∇Θ3 + c

is an element of XE with
∫︁

Y
u = c.

In the previous section, we showed that
∫︁

Y
: XE → AE is injective; the same

proof works for Σ2. Consequently, the volume average yields a vector space
isomorphism between XE and AE = C e2 ⊕C e3. Moreover, the effective field
satisfies Ê(x) ∈ C e2 ⊕C e3 for almost all x ∈ R.

Cell problem of H0. Besides E0 and H0, we introduce a new quantity—
namely, the rescaled displacement current J0 ∈ L2(Ω × Y ;C3). For almost all
x ∈ R, the fields H0 = H0(x, ·) ∈ L2

♯ (Y ;C3) and J0 = J0(x, ·) ∈ L2
♯ (Y ;C3) are

distributional solutions to (4.1.7).
We saw in the previous section that the geometric average can be used

to characterise the solution space to the H0-cell problem. Unfortunately, we
cannot simply apply the definition of the geometric average from the previous
section, although the field H0(x, ·) is curl-free in Σ∗

2. Indeed, in definition (4.2.5)
we assume that every v ∈ L2

♯ (Y ;C3) with curl v = 0 in Σ∗
1 can be written as

v = ∇Θ + c in Σ∗
1 for some Θ ∈ H1

♯ (Σ∗
1;C) and for some c ∈ C3. This

decomposition is not true for curl-free vector fields in Σ∗
2.

In [PSU19], the definition of the geometric average was extended to vec-
tor fields v ∈ L2

♯ (Σ∗;C3) with curl v = 0 in Σ∗, where Σ is any admissible
microstructure. In order to state this definition, we introduce a space of test
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vector fields,

V :=
{︂
ϕ ∈ L2

♯ (Y ;C3)
⃓⃓⃓
curl ϕ = 0 in Y and ϕ = 0 in Σ2

}︂
.

Let v ∈ L2
♯ (Y ;C3) be a vector field with curl v = 0 in Σ∗

2. One can show that
there exists a unique vector

∮︁
Σ∗

2
v ∈ C3 such that∫︂

Σ∗
2

v ∧ ϕ =
(︃∮︂

Σ∗
2

v

)︃
∧
(︃∫︂

Σ∗
2

ϕ

)︃
for all ϕ ∈ V . (4.2.7)

We remark that the geometric average defined in (4.2.5) satisfies iden-
tity (4.2.7); a proof can be found in [SU18, Corollary 2.12].

Let us consider some properties of the geometric average, which will turn
out to be useful to characterise the solution space of the H0-cell problem. If c
is a constant vector in C3, then

∮︁
Σ∗

2
c = c. Indeed, as every solution u ∈ XE

of the E0-cell problem is an element of V and as
∫︁

Y
: XE → C e2 ⊕C e3 is

an isomorphism, we find uj ∈ XE with
∫︁

Y
uj = ej for j ∈ {2, 3}. Using

identity (4.2.7) with ϕ = uj , we find that(︃
c−
∮︂

Σ∗
2

c

)︃
∧ ej = c∧

(︃∫︂
Σ∗

2

uj

)︃
−
(︃∮︂

Σ∗
2

c

)︃
∧
(︃∫︂

Σ∗
2

uj

)︃
= 0 for j ∈ {2, 3} .

From this equation we deduce that
∮︁

Σ∗
2
c = c for any c ∈ C3. Given a potential

Θ ∈ H1
♯ (Y ;C), we compute that(︃∮︂
Σ∗

2

∇Θ
)︃

∧
(︃∫︂

Σ∗
2

ϕ

)︃
=
∫︂

Σ∗
2

∇Θ ∧ ϕ =
∫︂

Y

∇Θ ∧ ϕ =
∫︂

Y

curl
(︁
Θϕ
)︁

= 0 ,

for all ϕ ∈ V. Hence
∮︁

Σ∗
2

∇Θ = 0.
The two-scale limit H0(x, ·) is curl-free in Σ∗

2 and thus an element of the
function space

X :=
{︂
v ∈ H1

♯ (Y ;C3)
⃓⃓⃓
curl v = 0 in Σ∗

2

}︂
.

Our main contribution in the analysis of the H0-cell problem in the high contrast
case is a new variational equation involving J0 and H0. More precisely, for
every v ∈ X with

∮︁
Σ∗

2
v = 0 there holds:∫︂

Σ∗
2

⟨︁
J0, curl v

⟩︁
− iωµ0εr

∫︂
Y

⟨︁
H0, v

⟩︁
= 0 . (4.2.8)

This identity implies equations (4.1.7b) and (4.1.7c). Let us verify this claim.
If φ ∈ C∞

♯ (Y ;C) is an arbitrary test function, then ∇φ ∈ X with
∮︁

Σ∗
2

∇φ = 0.
We can therefore choose ϕ = ∇φ in (4.2.8) and find that H0 satisfies (4.1.7b).
On the other hand, every ψ ∈ C∞

c (Σ2;C3) is an element of X with
∮︁

Σ∗
2
ψ = 0.

Setting ϕ = ψ in (4.2.8) yields (4.1.7c).
Combining (4.2.8) with equation (4.1.7a) yields a variational characterisation

of the two-scale limit H0: for almost all x ∈ R, the field H0 = H0(x, ·) ∈ X
satisfies

b
(︁
H0, v

)︁
= 0 for all v ∈ X with

∮︂
Σ∗

2

v = 0 , (4.2.9)
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where the sesquilinear form b : X × X → C is defined as

b(w, v) :=
∫︂

Σ∗
2

⟨︁
curl w, curl v

⟩︁
− ω2ε0εrµ0

∫︂
Y

⟨︁
w, v

⟩︁
.

This variational cell problem (4.2.9) of H0 is equivalent to equations (4.1.7a)
and (4.2.8) in the following sense: if w ∈ X satisfies b(w, v) = 0 for all vector
fields v ∈ X with

∮︁
Σ∗

2
v = 0, then (H0, J0) is a solution to (4.1.7a) and (4.2.8),

where H0 := w and J0 := −(iωε0)−1 curl w. On the other hand, if (H0, J0)
solve (4.1.7a) and (4.2.8), then H0 satisfies (4.2.9).

Thanks to the equivalence of the variational cell problem (4.2.9) with the
two equations (4.1.7a) and (4.2.8), we can focus on the analysis of the space

XH :=
{︃
w ∈ X

⃓⃓⃓⃓
b(w, v) = 0 for all v ∈ X with

∮︂
Σ∗

2

v = 0
}︃
.

Choose an arbitrary vector field w ∈ XH . As the map
∮︁

Σ∗
2

: X → C3 is linear,
there exists a vector field w0 ∈ X with

∮︁
Σ∗

2
w0 = 0 such that w = w0 +

∮︁
Σ∗

2
w in

Y . To shorten notation, we set z :=
∮︁

Σ∗
2
w. Thanks to this decomposition of w

there holds
0 = b(w, v) = b(w0, v) − ω2ε0εrµ0

∫︂
Y

⟨︁
z, v
⟩︁

(4.2.10)

for all v ∈ X with
∮︁

Σ∗
2
v = 0. Equation (4.2.10) motivates the question: Given

z ∈ C3, is it possible to find a unique w0 ∈ X with
∮︁

Σ∗
2
w0 = 0 such that

b(w0, v) = ω2ε0εrµ0

∫︂
Y

⟨︁
z, v
⟩︁

for all v ∈ X with
∮︂

Σ∗
2

v = 0 ? (4.2.11)

If this question has an affirmative answer, then the map
∮︁

Σ∗
2

: XH → C3

is a vector space isomorphism. Let us check the injectivity of the map first:
Assume w ∈ XH has a vanishing geometric average. Then, by (4.2.10), the
field w satisfies b(w, v) = 0 for all v ∈ X with

∮︁
Σ∗

2
v = 0. Thus, by uniqueness,

w = 0. In order to show that the map is onto, we choose c ∈ C3. Then there
exists w0 ∈ X with

∮︁
Σ∗

2
w0 = 0 such that

b(w0, v) = ω2ε0εrµ0

∫︂
Y

⟨︁
c, v
⟩︁

for all v ∈ X with
∮︂

Σ∗
2

v = 0 .

Setting w := w0 + c yields an element of XH with
∮︁

Σ∗
2
w =

∮︁
Σ∗

2
w0 +

∮︁
Σ∗

2
c = c.

The question whether for every z ∈ C3 there exists a unique w0 ∈ X with∮︁
Σ∗ w0 = 0 such that (4.2.11) holds has an affirmative answer; the proof is

an application of the Lax-Milgram lemma. We remark that the assumption
Im{εr} > 0 is vital for the proof.

We have shown above that the geometric average
∮︁

Σ∗
2

: XH → C3 is an iso-
morphism between the solution space XH of the variational cell problem (4.2.9)
and C3.

Effective material parameters and equations. As the map
∫︁

Y
: XE →

AE = C e2 ⊕C e3 is an isomorphism, there exist unique fields E2, E3 ∈ XE such
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that
∫︁

Y
Ej = ej for j ∈ {2, 3}. The relative permittivity εeff of the metamaterial

R is a 3 × 3-matrix, which is given by

(︁
εeff)︁

k,l
=
{︄⟨︁
Ek, El

⟩︁
L2(Y ;C3) if k, l ∈ {2, 3}

0 if k = 1 or l = 1
.

The relative permeability µeff of R is given by

µeff =
(︃∫︂

Y

H1
⃓⃓⃓⃓ ∫︂

Y

H2
⃓⃓⃓⃓ ∫︂

Y

H3
)︃

∈ R3×3 ,

where Hj is the unique element of XH with
∮︁

Σ∗
2
Hj = ej for j ∈ {1, 2, 3}.

Defining the effective permittivity ε̂ : Ω → R3×3 and the effective permeability
µ̂ : Ω → R3×3 as in Section 4.1, the effective system (4.1.6) for the microstructure
Σ2 reads ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

curl Ê = iωµ0µ̂Ĥ in Ω ,

∂3Ĥ1 − ∂1Ĥ3 = −iωε0
(︁
ε̂Ê
)︁

2 in Ω ,

∂1Ĥ2 − ∂2Ĥ1 = −iωε0
(︁
ε̂Ê
)︁

3 in Ω ,

curl Ĥ = −iωε0Ê in Ω \R .

4.3 Preliminary geometric results

The derivation of effective Maxwell’s equations is based on an analysis of two
cell problems, for which we need the notion of a k-loop and the geometric
average. We introduce both concepts in this section and discuss the relevant
properties.

Geometric averaging
Throughout this section, Σ is an admissible microstructure. Following [PSU19],
we shall define the geometric average for vector fields v : Σ∗ → C3 with vanishing
distributional curl in Σ∗. We extend the notion of a geometric average, which
was introduced in [PSU19], to prepare for an analysis of highly conductive
materials.

In a first step, the geometric average for real-valued vector fields Σ∗ → R3 is
defined. Afterwards, the results are extended to complex-valued fields Σ∗ → C3.

Function spaces for the geometric average. The space of vector fields
for which we define the geometric average is

XF(Σ∗) :=
{︂
v ∈ L2

♯ (Σ∗;F3)
⃓⃓⃓
curl v = 0 in Σ∗

}︂
, (4.3.1)

where F denotes either R or C. We note that the equation curl v = 0 in Σ∗ is
understood in the distributional sense. In the definition, we also need a space
of test vector fields,

VF(Σ∗) :=
{︂
ϕ ∈ L2

♯ (Y ;F3)
⃓⃓⃓
curl ϕ = 0 in Y and ϕ = 0 in Σ

}︂
. (4.3.2)
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The space of attainable volume averages of fields from VF(Σ∗) is denoted by

AV
F (Σ∗) :=

{︄
−
∫︂

Y

ϕ

⃓⃓⃓⃓
⃓ ϕ ∈ VF(Σ∗)

}︄
. (4.3.3)

Clearly, AV
F (Σ∗) is a linear subspace of F3. Given any linear subspace W of F3,

we define the wedge-annihilator W∧ as the set

W∧ :=
{︂
b ∈ F3

⃓⃓⃓
b ∧ w = 0 for all w ∈ W

}︂
=

⎧⎪⎨⎪⎩
F3 if dimW = 0
W if dimW = 1
{0} if dimW ≥ 2

.

The set W ⊂ F3 is defined as the orthogonal complement, W := (W∧)⊥.
It turns out that

W =

⎧⎪⎨⎪⎩
{0} if dimW = 0
W⊥ if dimW = 1
F3 if dimW ≥ 2

. (4.3.4)

Notation: In Chapters 5 and 6, we mostly consider complex-valued vector
fields Σ → C3 and hence write X (Σ∗), V(Σ∗), and AV(Σ∗) instead of XC(Σ∗),
VC(Σ∗), and AV

C(Σ∗).

Definition of the geometric average—real-valued fields. In this para-
graph, we present the definition of the geometric average for real-valued vector
fields Σ → R3.

Definition 4.1. (Geometric average—real-valued fields) – The geometric av-
erage is the unique linear map∮︂

Σ∗
: XR(Σ∗) → AV

R(Σ∗) (4.3.5)

that satisfies the identity∫︂
Σ∗
v ∧ ϕ =

(︃∮︂
Σ∗
v

)︃
∧
(︃∫︂

Σ∗
ϕ

)︃
, (4.3.6)

for all v ∈ XR(Σ∗) and ϕ ∈ VR(Σ∗). We say that
∮︁

Σ∗ v ∈ R3 is the geometric
average of v.

Among all vectors b ∈ R3 that satisfy the identity∫︂
Σ∗
v ∧ ϕ = b ∧

(︃∫︂
Σ∗
ϕ

)︃
, (4.3.7)

for all ϕ ∈ VR(Σ∗), the geometric average
∮︁

Σ∗ v is the one with the minimal
Euclidean norm. The next result establishes the validity of Definition 4.1.

Theorem 4.2. – There exists one and only one map that satisfies (4.3.5)
and (4.3.6). This map is linear, bounded and surjective.

Proof. We refer to [PSU19, Theorem 2.2] for the proof of this theorem. □
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Definition of the geometric average—general case. In Chapters 5 and 6,
we mostly encounter complex-valued vector fields, which forces us to extend
the geometric average to vector fields in X (Σ∗). Although this definition is
straightforward, ∮︂

Σ∗
v :=

∮︂
Σ∗

Re{v} + i
∮︂

Σ∗
Im{v} , (4.3.8)

some remarks are in order. Before we prove that the geometric average of a
complex-valued vector field is also characterised by the identity (4.3.6), we need
the following auxiliary result.

Lemma 4.3. – For vector fields v : Σ → C3 and ϕ : Y → C3 the following
statements hold.

(i) v ∈ X (Σ∗) if and only if Re{v}, Im{v} ∈ XR(Σ∗).

(ii) ϕ ∈ V(Σ∗) if and only if Re{ϕ}, Im{ϕ} ∈ VR(Σ∗).

As the proof is straightforward, we postpone it to Appendix A.
The previous lemma in particular implies that the expressions on the right-

hand side of (4.3.8) are well defined.

Theorem 4.4. – There is one and only one map∮︂
Σ∗

: X (Σ∗) → AV(Σ∗) , v ↦→
∮︂

Σ∗
v :=

∮︂
Σ∗

Re{v} + i
∮︂

Σ∗
Im{v} (4.3.9)

that satisfies ∫︂
Σ∗
v ∧ ϕ =

(︃∮︂
Σ∗
v

)︃
∧
(︃∫︂

Σ∗
ϕ

)︃
, (4.3.10)

for all v ∈ X (Σ∗) and ϕ ∈ V(Σ∗). This map is linear, bounded and surjective.

Proof. We proceed in four steps.
Step 1. (Existence) We need to show that the map defined in (4.3.9) satisfies

the identity (4.3.10). To this end, fix two fields v ∈ X (Σ∗) and ϕ ∈ V(Σ∗).
A straightforward computation shows that for two complex vectors α, β ∈ C3

there holds

Re{α ∧ β} = Re{α} ∧ Re{β} − Im{α} ∧ Im{β} (4.3.11)

and

Im{α ∧ β} = Re{α} ∧ Im{β} + Im{α} ∧ Re{β} . (4.3.12)
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Thus, using (4.3.6) for the real-valued vector fields Re{v}, Im{v}, Re{ϕ}, and
Im{ϕ}, we find that∫︂

Σ∗
Re{v ∧ ϕ} =

∫︂
Σ∗

Re{v} ∧ Re{ϕ} −
∫︂

Σ∗
Im{v} ∧ Im{ϕ}

=
(︃∮︂

Σ∗
Re{v}

)︃
∧
(︃∫︂

Σ∗
Re{ϕ}

)︃
−
(︃∮︂

Σ∗
Im{v}

)︃
∧
(︃∫︂

Σ∗
Im{ϕ}

)︃
= Re

{︃∮︂
Σ∗
v

}︃
∧ Re

{︃∫︂
Σ∗
ϕ

}︃
− Im

{︃∮︂
Σ∗
v

}︃
∧ Im

{︃∫︂
Σ∗
ϕ

}︃
= Re

{︃(︃∮︂
Σ∗
v

)︃
∧
(︃∫︂

Σ∗
ϕ

)︃}︃
, (4.3.13)

where we used (4.3.11) again to obtain the last equality. A similar calculation
using (4.3.12) yields∫︂

Σ∗
Im{v ∧ ϕ} = Im

{︃(︃∮︂
Σ∗
v

)︃
∧
(︃∫︂

Σ∗
ϕ

)︃}︃
. (4.3.14)

Combining (4.3.13) and (4.3.14) proves that the map
∮︁

Σ∗ satisfies (4.3.10).
Step 2. Before we prove uniqueness of the map, we need to show that

im
∮︁

Σ∗ ⊂ AV(Σ∗) . If dimAV(Σ∗) ∈ {0, 2, 3}, one readily checks that this
inclusion holds.

In the case dimAV(Σ∗) = 1, the space AV(Σ∗) coincides with AV(Σ∗)⊥.
The claim follows if we show that

AV
R(Σ∗)⊥ ⊕ iAV

R(Σ∗)⊥ ⊂ AV(Σ∗)⊥ . (4.3.15)

Fix c1, c2 ∈ AV
R(Σ∗)⊥. Every b ∈ AV(Σ∗) can be written as b = Re{b} + i Im{b}

with Re{b}, Im{b} ∈ AV
R(Σ∗). Thus,

⟨c1 + ic2, b⟩ =
⟨︁
c1,Re{b}

⟩︁
−
⟨︁
c2, Im{b}

⟩︁
+ i
(︁⟨︁
c1, Im{b}

⟩︁
+
⟨︁
c2,Re{b}

⟩︁)︁
= 0 .

As b ∈ AV(Σ∗) was chosen arbitrarily, the inclusion (4.3.15) holds, and we infer
that im

∮︁
Σ∗ ⊂ AV(Σ∗) .

Step 3. (Uniqueness) Assume L : X (Σ∗) → AV(Σ∗) satisfies (4.3.10).
Then, for any v ∈ X (Σ∗) and every ϕ ∈ V(Σ∗), there holds(︃

L(v) −
∮︂

Σ∗
v

)︃
∧
∫︂

Σ∗
ϕ = 0 . (4.3.16)

Let us set R(v) := L(v) −
∮︁

Σ∗ v ∈ AV(Σ∗) . If dimAV(Σ∗) = 0, then
AV(Σ∗) = {0} and R(v) = 0 for all v ∈ X (Σ∗) by definition.

If dimAV(Σ∗) = 1, we find vectors c ∈ AV(Σ∗) and b2 ∈ C3 such that
(c, b2, c ∧ b2) is an orthogonal basis of C3. Fix v ∈ X (Σ∗). By definition of
AV(Σ∗) , there exists scalars α2, α3 ∈ C such that R(v) = α2b2 + α3(c ∧ b2).
Substituting this into (4.3.16) with a vector field ϕ ∈ V(Σ∗) such that −

∫︁
Y
ϕ = c

yields
0 = R(v) ∧ c = α2b2 ∧ c+ α3(c ∧ b2) ∧ c .
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From this we infer that α2 = α3 = 0, and hence R(v) = 0.
In the case dimAV(Σ∗) ≥ 2 we can argue similarly and show that R = 0.

This establishes the uniqueness of the map
∮︁

Σ∗ .
Step 4. The proof of linearity, boundedness, and surjectivity of the map∮︁

Σ∗ is similar to the one presented in [PSU19, Proof of Theorem 2.2]. □

The following properties of the geometric average are used later.

Lemma 4.5. (Properties of the geometric average) – Let Σ ⊂ Y be an admis-
sible microstructure.

(i) In the case Σ = ∅ the geometric average coincides with the volume average.
More precisely, for every vector field v ∈ X (Y ) there holds∮︂

Y

v = −
∫︂

Y

v .

(ii) For every f ∈ H1
♯ (Σ∗;C) the vector field ∇f is an element of X (Σ∗) with∮︂

Σ∗
∇f = 0 .

(iii) Denote by πAV (Σ∗) : C3 → C3 the orthogonal projection onto AV(Σ∗) .
Any constant vector field c ∈ C3 is an element of X (Σ∗) with∮︂

Σ∗
c = πAV (Σ∗) (c) .

Proof. (i) Let v ∈ L2
♯ (Y ;C3) be a vector field with curl v = 0 in Y . Every

vector c ∈ C3 is an element of V(Y ). We therefore find that(︃∫︂
Y

v

)︃
∧ c =

∫︂
Y

v ∧ c =
(︃∮︂

Y

v

)︃
∧ c ,

and as AV(Y ) = C3, the claim follows.
(ii) Let f ∈ H1

♯ (Σ∗;C) be arbitrary. Choose an H1-extension f̃ ∈ H1
♯ (Y ;C)

of f . Then, for any ϕ ∈ V(Σ∗) there holds(︃∮︂
Σ∗

∇f
)︃

∧
(︃∫︂

Σ∗
ϕ

)︃
=
∫︂

Σ∗
∇f ∧ ϕ =

∫︂
Y

∇f̃ ∧ ϕ =
∫︂

Y

curl
(︁
f̃ϕ
)︁

= 0 .

The claim follows as 0 ∈ AV(Σ∗) .
(iii) Fix c ∈ C3 and let ϕ ∈ V(Σ∗) be arbitrary. We compute(︃∮︂

Σ∗
c

)︃
∧
(︃∫︂

Σ∗
ϕ

)︃
=
∫︂

Σ∗
c ∧ ϕ = c ∧

(︃∫︂
Σ∗
ϕ

)︃
= πAV (Σ∗) (c) ∧

(︃∫︂
Σ∗
ϕ

)︃
,

where we used the definition of AV(Σ∗) and the fact that
∫︁

Σ∗ ϕ ∈ AV(Σ∗) to
obtain the last equation. □
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π

Y

e1

e2

R2

γ

γ̃

Figure 4.3: On the right, we sketch the cross-section Y ∩ {y3 = 1/2} of the unit
cell Y . We assume that the cross-sections Y ∩ {y3 = c} are identical for any
c ∈ (0, 1). The gray area represents a subset U , which is open in T3. On the
left, a part of the cross-section (

⋃︁
k∈Z3(k + U)) ∩ {x3 = 0} is sketched. The

universal covering R2 → Y , y ↦→ y mod Z2 is denoted by π. The black curve
γ in Y represents a k-loop in U . From its lift γ̃ on the left, we see that γ is a
(1, 1, 0)-loop in U .

The notion of k-loops
In this section we generalise the concept of a k-loop that was introduced
in [SU18]. Consider a path σ : [0, 1] → T3. We say that σ̃ : [0, 1] → R3 is a
lift of σ provided σ = π ◦ σ̃, where π denotes the universal covering R3 → T3,
x ↦→ x mod Z3. Let us recall that besides π there is another covering of the
torus, ι : Y → T3, x ↦→ x mod Z3.

Definition 4.6. – Let U ⊂ Y be a non-empty subset for which ι(U) ⊂ T3 is
open. For a vector k ∈ Z3, k ̸= 0, a continuous and piecewise continuously
differentiable closed and simple curve γ : [0, 1] → ι(U) is called a k-loop in U if
there is a lift γ̃ : [0, 1] → R3 of γ satisfying γ̃(1) − γ̃(0) = k.

In Figure 4.3, a k-loop and one of its lifts is sketched. We observe that every
lift γ̃ : [0, 1] → R3 of a continuous and closed path γ : [0, 1] → ι(U) satisfies
γ̃(1) − γ̃(0) ∈ Z3. In the definition of a k-loop we demand that there is a lift γ̃
of γ for which γ̃(1) − γ̃(0) = k. The next result shows that if there is one such
lift, then every lift has this property.

Lemma 4.7. – Let U ⊂ Y be a non-empty subset for which ι(U) ⊂ T3 is open,
and fix k ∈ Z3. For a continuous and piecewise continuously differentiable
closed and simple path γ : [0, 1] → ι(U) the following statements are equivalent:

(i) There is a lift γ̃ : [0, 1] → R3 of γ satisfying γ̃(1) − γ̃(0) = k.

(ii) Every lift γ̃ : [0, 1] → R3 of γ satisfies γ̃(1) − γ̃(0) = k.

Proof. When (ii) holds, then (i) is trivially true. In order to show that (i)
implies (ii), let γ̃ be a lift of γ with γ̃(1)− γ̃(0) = k. Suppose that σ̃ : [0, 1] → R3
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is another lift of γ for which σ̃(1) − σ̃(0) ̸= k. As π is the universal covering of
T3, for every y ∈ ι(U) there is a point p ∈ U such that π(p) = y. We further
have that π−1(y) = {p} + Z3. Thus for each t ∈ [0, 1] there is a vector l ∈ Z3

such that γ̃(t) = σ̃(t) + l. Due to the continuity of γ̃ and σ̃ it is the same vector
l ∈ Z3 for all t ∈ [0, 1]. Using this relation between γ and σ, we find that

k ̸= σ̃(1) − σ̃(0) = γ̃(1) − γ̃(0) = k .

As this is a contradiction, the claim is proved. □

Given a subset U of the unit cell Y , we define the two index sets

LU :=
{︂
k ∈ Z3

⃓⃓⃓
k ̸= 0 and there is a k-loop in U

}︂
(4.3.17)

and
NU :=

{︂
k ∈ Z3

⃓⃓⃓
k ̸= 0 and there is no k-loop in U

}︂
. (4.3.18)

Clearly, there holds LU ∪ NU = Z3 \ {0}.
We will exploit the following connection between k-loops and potentials

in Chapters 5 and 6.

Proposition 4.8. – Let U ⊂ Y be a non-empty subset for which ι(U) ⊂ T3

is connected and has a Lipschitz boundary. If m ∈ Z3 \ {0} satisfies ⟨m, k⟩ = 0
for all k ∈ LU , then there is a potential Θm ∈ H1

♯ (U ;R) with ∇Θm = m.

Proof. We proceed in two steps: at first we construct a potential on the torus,
and afterwards we lift this function to Y .

Step 1. We first construct a potential Ψm : ι(U) → R. To this end, fix a point
y0 ∈ ι(U). For every y ∈ ι(U) we choose a piecewise smooth path γy : [0, 1] →
ι(U) connecting γy(0) = y0 and γy(1) = y. Denoting by γ̃y : [0, 1] → R3 a lift
of γy, we define Ψm : ι(U) → R by Ψm(y) := ⟨γ̃y(1) − γ̃y(0),m⟩.

Claim: Ψm is well defined. The potential Ψm is independent of the chosen
path γy. Indeed, let σy : [0, 1] → ι(U) be another continuous and piecewise
continuously differentiable path connecting σy(0) = y0 and σy(1) = y. Denote
by σ̃y : [0, 1] → R3 the unique lift of σy with σ̃y(0) = γ̃y(0). Setting Γ: [0, 1] →
ι(U),

Γ(t) :=
{︄
σy(1 − 2t) for t ∈ [0, 1/2]
γy(2t− 1) for t ∈ (1/2, 1]

,

we obtain a continuous and piecewise continuously differentiable closed path.
For every lift Γ̃ : [0, 1] → R3 of Γ there exists k ∈ {0} ∪ LU such that

Γ̃(1) − Γ̃(0) = k . (4.3.19)

One readily checks that Γ̃ : [0, 1] → R3,

Γ̃(t) :=
{︄
σ̃y(1 − 2t) for t ∈ [0, 1/2]
γỹ(2t− 1) for t ∈ (1/2, 1]

,

is a lift of Γ. Thanks to (4.3.19) we find that σ̃y(1) = Γ̃(0) = Γ̃(1)−k = γ̃y(1)−k
for some k ∈ {0} ∪ LU . As σ̃y was chosen in such a way that σ̃y(0) = γ̃y(0), we
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infer that

Ψm(y) =
⟨︁
γ̃y(1) − γ̃y(0),m

⟩︁
=
⟨︁
σ̃y(1) − σ̃y(0),m

⟩︁
+ ⟨k,m⟩

=
⟨︁
σ̃y(1) − σ̃y(0),m

⟩︁
.

Thus Ψm is independent of the chosen path γy.
The domain ι(U) is path connected and hence the potential Ψm depends on

the basepoint y0 in the following sense: if we choose another basepoint y1 ∈ ι(U)
and define Φm in the same way as Ψm but with respect to the basepoint y1,
then Ψm − Φm = c for some c ∈ R.

Step 2. Having the potential Ψm at hand, we define the Θm. Let Ũ ⊂ R3

denote the “periodic continuation” of U , that is,

Ũ :=
⋃︂

m∈Z3

(m+ U) .

We recall that π : R3 → T3 denotes the universal covering of T3. Clearly,
π(Ũ) = ι(U). Setting Θm : Ũ → R, Θm := Ψm ◦π provides us with a continuous
and Y -periodic function. We need to prove that ∇Θm = m. It suffices to
show this identity almost everywhere in Ũ . Choose ỹ ∈ Ũ and y ∈ U such that
π(ỹ) = y. Without loss of generality, we may assume that Ψm is constructed
with respect to the basepoint y and hence Ψm(y) = 0. As π is a covering, there
are open sets Ṽ ⊂ Ũ and V ⊂ U such that π|Ṽ : Ṽ → V is a homeomorphism.
Fix j ∈ {1, 2, 3} and choose h0 > 0 such that ỹ + h ej ∈ Ṽ for all h ∈ (0, h0).
The path γ̃ : [0, 1] → R3, γ̃(t) := ỹ + th ej is a lift of γ : [0, 1] → ι(U), γ := π ◦ γ̃,
which satisfies γ(0) = y and γ(1) = π(ỹ + h ej). Thus, by definition of Ψm, we
find that

Θm(ỹ + h ej) =
⟨︁
γ̃(1) − γ̃(0),m

⟩︁
= h⟨ej ,m⟩ .

As Θm(ỹ) = Ψm(y) = 0, we compute that

∂jΘm(ỹ) = lim
h→0

Θm(ỹ + h ej) − Θm(ỹ)
h

= ⟨ej ,m⟩ .

The identity ∇Θm = m is thus proved. We need to show that Θm ∈ H1
♯ (U ;R).

As ∇Θm = m, we find that Θm ∈ C1(Ũ ;R). Moreover, Θm as well as its
gradient are Lipschitz continuous on Ũ . We can thus extend both to continuous
maps on the closure of Ũ and find that Θm ∈ C1(Ũ ;R). The claim follows by
restricting Θm to U ⊂ Y . □

Remarks 3. – (a) The assumption on m ∈ Z3 \ {0} in Proposition 4.8
can, in general, not be replaced by m ∈ NU . Indeed, consider the set U
in Figure 4.4. Every k-loop in U is of the form k = (n, n, l) for n, l ∈ Z
and thus e1 ∈ NU . Suppose Θ ∈ H1

♯ (U ;R) satisfies ∇Θ = e1. As the
two components U1 and U2 are connected subsets of [0, 1]3, there exist
constants c1, c2 ∈ R such that

Θ(y1, y2, y3) =
{︄
y1 + c1 if (y1, y2, y3) ∈ U1

y1 + c2 if (y1, y2, y3) ∈ U2
.
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Y y1

y2

1
2

1
2

V2

V1

Figure 4.4: On the left: The dark grey area represents a subset U of the unit
cube Y such that ι(U) ⊂ T3 is open. Moreover, U ⊂ (0, 1)3 has two connected
components U1 and U2. On the right: We sketch a cross-section Y ∩ {y3 = c}
of the left figure, for some c ∈ [0, 1]. The cross section of the two connected
components are called V1 and V2, respectively. As can be seen from the left
figure, every k-loop in U is of the form k = (n, n, l) for n, l ∈ Z.

By periodicity,

Θ
(︃

0, 1
2 , y3

)︃
= Θ

(︃
1, 1

2 , y3

)︃
and Θ

(︃
1
2 , 0, y3

)︃
= Θ

(︃
1
2 , 1, y3

)︃
for all y3 ∈ [0, 1]. The first equality yields the identity c1 = 1 + c2 and
the second equality implies that c1 = c2. As this is a contradiction, there
cannot exist a periodic function Θ ∈ H1

♯ (U ;R) with ∇Θ = e1, although
e1 ∈ NU .

(b) In Sections 5.4 and 6.4 we consider microstructures U for which every
m ∈ NU satisfies ⟨k,m⟩ = 0 for all k ∈ LU . If U is such a microstructure,
we deduce from Proposition 4.8 that, for every m ∈ NU , there exists a
potential Θm ∈ H1

♯ (U ;R) with ∇Θm = m.
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CHAPTER 5
Effective Maxwell’s

equations for perfectly
conducting microstructures

In this chapter, we focus on a perfectly conducting microstructure Σ; in view of
the time-harmonic Maxwell equations (4.1.1) this formally amounts to εη = +∞
in Ση. More precisely, using the notation from Section 4.1, we consider a
distributional solution (Eη, Hη) ∈ L2(Ω;C3) × L2(Ω;C3) to⎧⎪⎨⎪⎩

curl Eη = iωµ0H
η in Ω ,

curl Hη = −iωε0E
η in Ω \ Ση ,

Eη = Hη = 0 in Ση ,

(5.0.1a)
(5.0.1b)
(5.0.1c)

where ω > 0 is a fixed frequency, and ε0, µ0 > 0 are the permittivity and
permeability of free space, respectively.

In this chapter we combine and generalise the results obtained in [SU18,
PSU19]. Indeed, k-loops were used to characterise the solution spaces of the
cell problems and to determine the effective equations in [SU18]. However, the
assumptions on the microstructure were rather restrictive. In [PSU19], the
above system was homogenised for microstructures Σ satisfying assumptions
(A1) and (A2), but k-loops were not used to characterise the solution spaces of
the cell problems.

Besides assumptions (A1) and (A2) discussed in Section 4.1 we make an
additional one:

(A3) There exists a sequence (Eη, Hη)η of distributional solutions to (5.0.1)
that satisfies the energy-bound

sup
η>0

∫︂
Ω

|Eη|2 + |Hη|2 < ∞ . (5.0.2)
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This assumption together with Theorem 3.7 ensure the existence of a subse-
quence (Eη, Hη)η and of fields E0, H0 ∈ L2(Ω × Y ;C3) such that

Eη 2−⇀ E0 and Hη 2−⇀ H0 .

Assumption (A3) further implies the existence of a subsequence (Eη, Hη)η and
of fields E,H ∈ L2(Ω;C3) such that (Eη)η weakly converges to E in L2(Ω;C3)
and (Hη)η weakly converges to H in L2(Ω;C3). The relation between E and
E0 as well as between H and H0 is given in Lemma 3.3,

E(x) = −
∫︂

Y

E0(x, ·) and H(x) = −
∫︂

Y

H0(x, ·) , (5.0.3)

for almost all x ∈ Ω.
In the subsequent sections, we define five spaces to which we will often refer.

The following list is meant to be an overview and a reference:

• XE is the space of vector fields u ∈ L2
♯ (Y ;C3) that are distributional

solutions to (5.1.1);

• AE is the space of attainable volume averages of fields in XE and it is
defined in (5.1.6);

• X, defined in (5.2.9), is the space of vector fields v ∈ L2
♯ (Y ;C3) that are

distributional solutions to (5.2.1);

• XH is the space of fields w ∈ X that satisfy identity (5.2.2);

• AH is the space of attainable geometric averages of fields in XH and it is
defined in (5.2.12).

5.1 The oscillating electric field

Our aim in this section is to derive the cell problem for the two-scale limit E0
and to analyse its solution space.

Lemma 5.1. (Cell problem) – Let Ω ⊂ R3 be as described in Section 4.1 and let
Σ ⊂ Y be an admissible microstructure. Let (Eη, Hη)η be a sequence satisfying
assumption (A3), that two-scale converges to (E0, H0), and that weakly converges
in L2(Ω;C3) × L2(Ω;C3) to (E,H). Then for almost all x ∈ R the two-scale
limit E0 = E0(x, ·) ∈ L2

♯ (Y ;C3) satisfies

⎧⎪⎨⎪⎩
curly E0 = 0 in Y ,

divy E0 = 0 in Σ∗ ,

E0 = 0 in Σ ,

(5.1.1a)
(5.1.1b)
(5.1.1c)

in the distributional sense.
Outside the meta-material R, the two-scale limit E0 is y-independent; that

is, E0(x, y) = E(x) for almost all x ∈ Ω \R and almost all y ∈ Y .
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Proof. We choose θ ∈ C∞
c (Ω;R), ψ ∈ C∞

♯ (Y ;C3), and define the field φ(x, y) :=
θ(x)ψ(y) for all x ∈ Ω and y ∈ Y . For fixed η > 0 we set ψη(x) := ψ(x/η) and
φη(x) := θ(x)ψη(x). Combining assumption (A3) and equation (5.0.1a), we find
that (Eη)η and (η curl Eη)η are bounded in L2(Ω;C3). Thus, by Lemma 3.9,
we know that η curl Eη 2−⇀ curly E0; that is,

lim
η→0

∫︂
Ω
η⟨curl Eη, φη⟩ =

∫︂
Ω
θ

∫︂
Y

⟨curly E0, ψ⟩ . (5.1.2)

On the other hand, for each η > 0 the field Eη is a distributional solution
to (5.0.1a), and hence

lim
η→0

∫︂
Ω
η
⟨︁
Eη, curl [φη]

⟩︁
= iωµ0 lim

η→0

∫︂
Ω
η
⟨︁
Hη, φη

⟩︁
= 0 , (5.1.3)

where we used the boundedness of (Hη)η in L2(Ω;C3) to obtain the last
equation. Combining equations (5.1.2) and (5.1.3), we conclude that E0(x, ·) is
a distributional solution to (5.1.1a) for almost all x ∈ Ω.

On account of (5.0.1b), the distributional divergence of Eη vanishes in Ω\Ση.
Fixing θ ∈ C∞

c (Ω;R), ψ ∈ C∞
c (Σ∗;C), and setting ψη(x) := ψ(x/η) for each

η > 0, we calculate

0 = lim
η→0

∫︂
Ω
ηψη

⟨︁
Eη,∇θ

⟩︁
+ lim

η→0

∫︂
Ω
θ
⟨︁
Eη,∇ψη

⟩︁
=
∫︂

Ω
θ

∫︂
Σ∗

⟨E0,∇ψ⟩ , (5.1.4)

where we used the two-scale convergence of (Eη)η to obtain the last equation.
From (5.1.4) we deduce that E0(x, ·) satisfies (5.1.1b) for almost all x ∈ Ω. In
order to prove that E0(x, ·) solves (5.1.1c), we choose θ ∈ C∞

c (Ω;R) and ψ ∈
C∞

c (Σ;C3). For each η > 0 we set φη(x) := θ(x)ψ(x/η). As Eη satisfies (5.0.1c),

0 = lim
η→0

∫︂
Ω

⟨︁
Eη, φη

⟩︁
=
∫︂

Ω
θ

∫︂
Σ

⟨︁
E0, ψ

⟩︁
. (5.1.5)

Thus, the two-scale limit E0(x, ·) satisfies (5.1.1) for almost all x ∈ R.
We claim that divy E0(x, ·) = 0 in Y for almost all x ∈ Ω \ R. Indeed,

thanks to equation (5.0.1b), the distributional divergence of Eη vanishes in
Ω \R. Fix θ ∈ C∞

c (Ω \R;R) and ψ ∈ C∞
♯ (Y ;C). Setting ψη(x) := ψ(x/η) for

each η > 0, we deduce that

0 = lim
η→0

∫︂
Ω\R

ηψη

⟨︁
Eη,∇θ

⟩︁
+ lim

η→0

∫︂
Ω\R

θ
⟨︁
Eη,∇ψη

⟩︁
=
∫︂

Ω\R

θ

∫︂
Y

⟨︁
E0,∇ψ

⟩︁
.

Thus, both curly E0(x, ·) and divy E0(x, ·) vanish in Y for almost all x ∈ Ω \R,
from which we infer that E0(x, ·) is a constant vector field, by Lemma 2.4.
Using (5.0.3) yields the identity E0(·, y) = E(·) for almost every y ∈ Y . □

Remark 4. (On the averaging of the electric field) – As explained in the in-
troduction, the natural object for averaging the electric field is a line integral—or
a generalisation thereof. We use the geometric average, introduced in Section 4.3.
However, in view of equation (5.1.1a), Lemma 4.5(i), and (5.0.3), we find that∮︂

Y

E0(x, ·) = −
∫︂

Y

E0(x, ·) = E(x)

for almost all x ∈ Ω.
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The next result settles the uniqueness of solutions. We investigate the
existence of solutions to (5.1.1) in more detail; to this end, we remind the reader
that the index sets LΣ and NΣ are defined in (4.3.17) and (4.3.18), respectively.

Lemma 5.2. (Analysis of the cell problem) – For an admissible microstructure
Σ ⊂ Y the following statements hold:

(i) Given any c ∈ C3 there is at most one distributional solution u ∈ L2
♯ (Y ;C3)

to (5.1.1) with −
∫︁

Y
u = c.

(ii) If k ∈ LΣ, then there is no distributional solution to (5.1.1) with volume
average equal to k.

(iii) If m ∈ NΣ satisfies ⟨m, k⟩ = 0 for every k ∈ LΣ, then there is a unique
distributional solution um ∈ L2

♯ (Y ;R3) to (5.1.1) with −
∫︁

Y
um = m.

Proof. (i) It suffices to show that every distributional solution w ∈ L2
♯ (Y ;C3)

to (5.1.1) with −
∫︁

Y
w = 0 vanishes identically. As w is curl-free in Y , we can

apply Proposition 2.6 and find a potential Θ ∈ H1
♯ (Y ;C) and a constant c ∈ C3

such that w = ∇Θ+c in L2
♯ (Y ;C3). The volume average of w vanishes and hence

c = 0. Equation (5.1.1c) implies ∇Θ = 0 in Σ, and since Σ is connected, we infer
that Θ is constant in Σ. Combining this observation with equation (5.1.1b), we
deduce that Θ ∈ H1

♯ (Y ;C) is a weak solution to{︃−∆Θ = 0 in Σ∗ ,

Θ = d in Σ ,

for some d ∈ C. The unique solution to this problem is Θ ≡ d. Hence
w = ∇Θ = 0 in Y and the claim is proved.

(ii) Suppose uk ∈ L2
♯ (Y ;C3) is a distributional solution to (5.1.1) with

−
∫︁

Y
uk = k ∈ LΣ. Due to equation (5.1.1a), there exist a potential Θ ∈ H1

♯ (Y ;C)
and a constant c ∈ C3 such that uk = ∇Θ + c in L2

♯ (Y ;C3). As −
∫︁

Y
uk = k,

we infer that c = k. Let γ : [0, 1] → ι(Σ) be a k-loop in Σ and denote by
γ̃ : [0, 1] → Σ a lift of γ. By equation (5.1.1c), the field u vanishes identically in
Σ and hence

0 =
∫︂

γ

u =
∫︂ 1

0

⟨︁
u(γ̃(t)), γ̇̃(t)

⟩︁
dt =

∫︂ 1

0

d
dt
[︁
Θ(γ̃(t))

]︁
dt+ ⟨k, γ̃(1) − γ̃(0)⟩ .

As Θ is periodic and γ is a k-loop, we conclude that

0 =
∫︂ 1

0

d
dt
[︁
Θ(γ̃(t))

]︁
dt+

⟨︁
k, γ̃(1) − γ̃(0)

⟩︁
= |k|2 .

This is a contradiction since k ̸= 0.
(iii) Fix m ∈ NΣ which satisfies ⟨m, k⟩ = 0 for all k ∈ NΣ. By Proposi-

tion 4.8, there exists a potential Θ ∈ H1
♯ (Σ;R3) such that ∇Θ = m in L2

♯ (Σ;R3).
Let Φ ∈ H1

♯ (Y ;R) be a weak solution to{︃
−∆Φ = 0 in Σ∗ ,

Φ = Θ in Σ .

Setting um := −∇Φ +m provides us with a distributional solution to (5.1.1).
As Φ is a periodic function, −

∫︁
Y
um = m and the claim is proved. □
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We denote the space of distributional solutions to (5.1.1) by XE and set

AE :=
{︃

−
∫︂

Y

u

⃓⃓⃓⃓
u ∈ XE

}︃
. (5.1.6)

Clearly, AE is a subspace of C3. In the definition of the geometric average, the
space AV(Σ∗), given in (4.3.3), plays a crucial role. The next result allows us
to simplify the derivation of the effective equations; see Section 5.4.

Lemma 5.3. – The two spaces AE and AV(Σ∗) coincide for every admissible
microstructure Σ ⊂ Y .

Proof. The solution space XE is a subset of V(Σ∗) and hence AE ⊂ AV(Σ∗).
In order to show the converse inclusion, we prove that for each ϕ ∈ V(Σ∗) there
is a potential Θ ∈ H1

♯ (Y ;C) such that ϕ+ ∇Θ ∈ XE . Indeed, let Θ ∈ H1
♯ (Y ;C)

be the unique distributional solution to{︃
−∆Θ = div ϕ in Σ∗ ,

Θ = 0 in Σ .

One readily checks that ϕ+ ∇Θ satisfies equations (5.1.1a) and (5.1.1c). More-
over, by construction of Θ, the distributional divergence of ϕ+ ∇Θ vanishes in
Σ∗. Consequently, ϕ+ ∇Θ ∈ XE . The potential Θ is periodic and hence

−
∫︂

Y

ϕ = −
∫︂

Y

ϕ+
∫︂

Y

∇Θ = −
∫︂

Y

(︁
ϕ+ ∇Θ

)︁
∈ AE .

As ϕ ∈ V(Σ∗) was chosen arbitrarily, AV(Σ∗) ⊂ AE and the claim is proved.□

We note that, due to Lemma 5.2 (i), for every vector c ∈ AE there exists a
unique element u ∈ XE such that −

∫︁
Y
u = c.

Proposition 5.4. (Characterisation of the solution space) – If Σ ⊂ Y is an
admissible microstructure, then there holds

dimXE = dimAE ≤ 3 .

More precisely, let {bj |j ∈ I} be a basis of AE with I ⊂ {1, 2, 3}. For each j ∈ I
we denote by uj the unique distributional solution to (5.1.1) with −

∫︁
Y
uj = bj.

Then every u ∈ XE can be written as a linear combination,

u =
∑︂
j∈I

αju
j in L2

♯ (Y ;C3) , (5.1.7)

with coefficients αj ∈ C for j ∈ I.

Proof. Fix u ∈ XE . As −
∫︁

Y
u ∈ AE , we find αj ∈ C for j ∈ I such that

−
∫︂

Y

u =
∑︂
j∈I

αj−
∫︂

Y

uj .

Define the field w : Y → C3 by w := u−
∑︁

j∈I αju
j . Then w ∈ XE and

−
∫︂

Y

w = −
∫︂

Y

u−
∑︂
j∈I

αj−
∫︂

Y

uj = 0.

Due to Lemma 5.2 (i), distributional solutions to the cell problem (5.1.1) are
unique and hence w = 0. This proves (5.1.7) and the claim follows. □
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This characterisation is somewhat abstract, since it might not be easy to
determine a basis of AE . In many cases, however, the solution space can be
characterised using k-loops; see Proposition 5.13.

5.2 The oscillating magnetic field

In this section we derive and analyse the cell problem for the two-scale limit H0.
The analysis is more delicate than in the previous section due to the fact that
the geometric average can, in general, not be used to show a uniqueness result.

The cell problem and its solution space. We recall that the energy-
bound (5.0.2) ensures the existence of a subsequence (Hη)η and a field H0 such
that Hη 2−⇀ H0. Moreover, the weak L2-limit H of (Hη)η is connected with
the two-scale limit H0 by (5.0.3).

In order to state the cell problem of H0 we define the function space

X :=
{︂
v ∈ L2

♯ (Y ;C3)
⃓⃓⃓
curl v = 0 in Σ∗

}︂
.

We recall from Section 4.3 that the geometric average can be applied to every
element of X .

Lemma 5.5. (Cell problem) – Let Ω ⊂ R3 be as described as in Section 4.1
and let Σ ⊂ Y be an admissible microstructure. Let (Eη, Hη)η be a sequence
satisfying (A3), that two-scale converges to (E0, H0) and that weakly converges
in L2(Ω;C3) × L2(Ω;C3) to (E,H). Then for almost all x ∈ R the two-scale
limit H0 = H0(x, ·) ∈ L2

♯ (Y ;C3) satisfies⎧⎪⎨⎪⎩
curly H0 = 0 in Σ∗ ,

divy H0 = 0 in Y ,

H0 = 0 in Σ ,

(5.2.1a)
(5.2.1b)
(5.2.1c)

in the distributional sense. Moreover, for almost all x ∈ Ω the following identity
holds: ∫︂

Y

⟨︁
H0(x, y), v(y)

⟩︁
dy = 0 for all v ∈ X with

∮︂
Σ∗
v = 0 . (5.2.2)

Outside the meta-material R the two-scale limit H0 is y-independent; that
is, H0(x, y) = H(x) for almost all x ∈ Ω \R and almost all y ∈ Y .

Proof. We proceed in three steps.
Step 1. (Derivation of equations (5.2.1a)-(5.2.1c)) This proof mimics the

one for Lemma 5.1. For θ ∈ C∞
c (Ω;R) and ψ ∈ Cc(Σ∗;C3), we define φ(x, y) :=

θ(x)ψ(y) for all x ∈ Ω and y ∈ Y . We further set ψη(·) := ψ(·/η) and
φη(·) := θ(·)ψη(·) for each η > 0. As the sequence (Hη)η two-scale converges to
H0, which in particular implies that (Hη)η is bounded in L2(Ω;C3), we find
that

lim
η→0

∫︂
Ω
η⟨Hη, curl [φη]⟩ = lim

η→0

∫︂
Ω
η
⟨︁
Hη,∇θ ∧ ψη

⟩︁
+ lim

η→0

∫︂
Ω
θ
⟨︁
Hη, curl ψη

⟩︁
=
∫︂

Ω
θ

∫︂
Σ∗

⟨︁
H0, curl ψ

⟩︁
. (5.2.3)
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On the other hand, Hη is a distributional solution to (5.0.1b) and hence

lim
η→0

∫︂
Ω
η
⟨︁
Hη, curl [φη]

⟩︁
= −iωε0 lim

η→0

∫︂
Ω
η
⟨︁
Eη, φη

⟩︁
= 0 . (5.2.4)

Combining equations (5.2.3) and (5.2.4), we deduce that H0(x, ·) is a distribu-
tional solution to (5.2.1a) for almost all x ∈ Ω.

Choose θ ∈ C∞
c (Ω;R), ψ ∈ C∞

♯ (Y ;C) and define ψη(·) := ψ(·/η) for η > 0.
The distributional divergence of Hη vanishes in Ω because of equation (5.0.1a).
Thus,

0 = lim
η→0

∫︂
Ω
ηψη

⟨︁
Hη,∇θ

⟩︁
+ lim

η→0

∫︂
Ω
θ
⟨︁
Hη,∇ψη

⟩︁
=
∫︂

Ω
θ

∫︂
Y

⟨︁
H0,∇ψ

⟩︁
, (5.2.5)

where we used the two-scale convergence of (Hη)η to obtain the last equality.
Equation (5.2.5) implies that H0(x, ·) satisfies (5.2.1b) for almost all x ∈ Ω.

In order to prove that H0(x, ·) solves (5.2.1c), we choose θ ∈ C∞
c (Ω;R) and

ψ ∈ C∞
c (Σ;C3). For each η > 0 we set φη(·) := θ(·)ψ(·/η). The vector field Hη

satisfies (5.0.1c) and thus

0 = lim
η→0

∫︂
Ω

⟨Hη, φη⟩ =
∫︂

Ω
θ

∫︂
Σ

⟨H0, ψ⟩ .

Consequently, H0(x, ·) solves (5.2.1) for almost every x ∈ R.
Step 2. (Derivation of (5.2.2)) Fix a vector field v ∈ X with

∮︁
Σ∗ v = 0

and a test function θ ∈ C∞
c (Ω;R). For η > 0 we set φη(·) := θ(·)v(·/η). The

sequence (Hη)η two-scale converges to H0,

lim
η→0

∫︂
Ω

⟨︁
Hη, φη

⟩︁
=
∫︂

Ω
θ

(︃∫︂
Y

⟨︁
H0, v

⟩︁)︃
. (5.2.6)

On the other hand, Eη is a solution to (5.0.1a) and thus∫︂
Ω

⟨Hη, φη⟩ = − i
ωµ0

∫︂
Ω

⟨︁
Eη, curl [φη]

⟩︁
= − i

ωµ0

∫︂
Ω\Ση

⟨︁
Eη,∇θ ∧ v(·/η)

⟩︁
, (5.2.7)

where we used that curl v = 0 in Σ∗ and Eη = 0 in Ση to obtain the last
equation. As the two-scale limit E0 satisfies the cell problem (5.1.1), we infer
that E0(x, ·) ∈ V(Σ∗) for almost all x ∈ Ω; the space V(Σ∗) is defined in (4.3.2).
Sending η → 0 in equation (5.2.7) and using the definition of the geometric
average in Theorem 4.4, we find that

lim
η→0

∫︂
Ω

⟨Hη, φη⟩ = − i
ωµ0

∫︂
Ω

∫︂
Σ∗

⟨︁
E0,∇θ ∧ v

⟩︁
= i
ωµ0

∫︂
Ω

⟨︂
∇θ,

∫︂
Σ∗
E0 ∧ v

⟩︂
= i
ωµ0

∫︂
Ω

⟨︂
∇θ,

(︃∫︂
Σ∗
E0

)︃
∧
(︃∮︂

Σ∗
v

)︃⟩︂
. (5.2.8)

Combining equations (5.2.6) and (5.2.8) and using that
∮︁

Σ∗ v = 0, we deduce
that ∫︂

Ω
θ

(︃∫︂
Y

⟨︁
H0, v

⟩︁)︃
= 0 .
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This proves equation (5.2.2), since θ ∈ C∞
c (Ω;R) was chosen arbitrarily.

Step 3. For almost every x ∈ Ω \R there holds curly H0(x·) = 0 in Y . To
see this, we choose θ ∈ C∞

c (Ω \R;R) and ψ ∈ C∞
♯ (Y ;C3), and define the field

φη(·) := θ(·)ψ(·/η) for each η > 0. Due to equation (5.0.1b) we have

0 = lim
η→0

∫︂
Ω\R

η
⟨︁
Hη, curl [φη]

⟩︁
=
∫︂

Ω\R

θ

∫︂
Y

⟨︁
H0, curl ψ

⟩︁
,

which proves that H0(x, ·) is curl-free in Y for almost all x ∈ Ω \R. We showed
above that divy H0(x, ·) = 0 in Y for almost all x ∈ Ω\R. Applying Lemma 2.4
we deduce that H0(x, ·) is a constant vector field in Y and the claim is proved.□

System (5.2.1) is usually referred to as the cell problem for H0. As was shown
by Lipton and Schweizer [LS18b, Proposition 2.1], there might be more than
three linearly independent solutions to this cell problem. The identity (5.2.2),
which will ensure that H0 lies in an at most three-dimensional subspace of the
solution space of (5.2.1), was first discussed in [PSU19, Corollary 5.2].

The solution space to the classical cell problem (5.2.1) is defined as

X :=
{︂
v ∈ L2

♯ (Y ;C3)
⃓⃓⃓
v is a distributional solution to (5.2.1)

}︂
. (5.2.9)

Equipped with the L2
♯ (Y ;C3)-scalar product, X is a Hilbert space. We further

introduce the following two subspaces of X,

X0 :=
{︃
v ∈ X

⃓⃓⃓⃓ ∮︂
Σ∗
v = 0

}︃
(5.2.10)

and
XH :=

{︃
w ∈ X

⃓⃓⃓⃓ ∫︂
Y

⟨︁
w, v

⟩︁
= 0 for all v ∈ X0

}︃
. (5.2.11)

As the geometric average is a bounded operator, X0 is a closed subspace of
X. Moreover, by definition, XH is the L2-orthogonal complement of X0; we
may therefore write X = X0 ⊕XH . We already explained that X might have
more than three dimensions; it is, however, always a finite dimensional space.

Proposition 5.6. – For every admissible microstructure Σ ⊂ Y , the space X
of distributional solutions to (5.2.1) is finite dimensional.

As we do not use this result, we postpone its proof to Appendix B.

The appropriate function space and its analysis. The space X0 can
be nontrivial and hence, there might be two or more solutions to the cell
problem (5.2.1) with the same geometric average. However, if we only consider
distributional solutions in XH , then uniqueness of solutions necessarily holds.
Thanks to identity (5.2.2) we can indeed focus on XH as H0(x, ·) ∈ XH for
almost all x ∈ R.

We observe that the solution space X is a subset of X (Σ∗), the latter space
being defined in (4.3.1); the geometric average can thus be applied to elements
of X. Before analysing the space XH , we introduce the space AH of attainable
geometric averages of fields in XH ⊂ X,

AH :=
{︃∮︂

Σ∗
v

⃓⃓⃓⃓
v ∈ XH

}︃
. (5.2.12)
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Let us recall from Section 4.3 that the geometric average is a surjective linear
map X (Σ∗) → AV(Σ∗) . It is thus remarkable that the two subspaces AH and
AV(Σ∗) of C3 coincide.

Lemma 5.7. – The two spaces AH and AV(Σ∗) coincide for every admissible
microstructure Σ ⊂ Y .

Proof. The solution space X of the cell problem (5.2.1), defined in (5.2.9), is a
subset of X (Σ∗). As the geometric average maps X (Σ∗) onto AV(Σ∗) and as
XH ⊂ X, we infer that AH ⊂ AV(Σ∗) .

Fix k ∈ AV(Σ∗) with k ̸= 0. Then, by Theorem 4.4, there is an element
vk ∈ X (Σ∗) with

∮︁
Σ∗ v

k = k. Let Θ ∈ H1
♯ (Σ∗;C) with −

∫︁
Σ∗ Θ = 0 be the unique

solution to∫︂
Σ∗

⟨︁
∇Θ,∇φ

⟩︁
= −

∫︂
Σ∗

⟨︁
v,∇φ

⟩︁
for all φ ∈ H1

♯ (Σ∗;C) . (5.2.13)

Defining the vector field

wk :=
{︄
vk + ∇Θ in Σ∗

0 in Σ

provides us with an element of L2
♯ (Y ;C3). We claim that wk ∈ XH . Clearly, wk

is a distributional solution to equations (5.2.1a) and (5.2.1c). Let us show that
the distributional divergence of wk vanishes in Y . To do so, fix φ ∈ C∞

♯ (Y ;C).
As φ ∈ H1

♯ (Σ∗;C), we can use (5.2.13) and find that∫︂
Y

⟨︁
wk,∇φ

⟩︁
=
∫︂

Σ∗

⟨︁
vk,∇φ

⟩︁
+
∫︂

Σ∗

⟨︁
∇Θ,∇φ

⟩︁
= 0 .

Consequently, wk ∈ X and, by Lemma 4.5 (ii), we find that
∮︁

Σ∗ w
k =

∮︁
Σ∗ v

k = k.
As k ̸= 0, we infer that wk ∈ XH . The constant vector field v0 := 0 is an
element of XH with

∮︁
Σ∗ v

0 = 0. This shows that AV(Σ∗) ⊂ AH . □

Having chosen the appropriate functions space XH , in which we seek so-
lutions to the cell problem (5.2.1), the analysis of the cell problem is rather
straightforward.

Lemma 5.8. (Analysis of the cell problem) – Let Σ ⊂ Y be an admissible mi-
crostructure. Then the following statements hold:

(i) Given any c ∈ C3 there is at most one distributional solution v ∈ XH

to (5.2.1) with
∮︁

Σ∗ v = c.

(ii) For every c ∈ AH there is a unique element vc ∈ XH with
∮︁

Σ∗ v
c = c.

(iii) If c /∈ AH , then there is no element v ∈ X with
∮︁

Σ∗ v = c.

Proof. (i) It suffices to show that every w ∈ XH with
∮︁

Σ∗ w = 0 vanishes
identically. This, however, follows from the definition of the space XH as the
L2-orthogonal complement of X0.

(ii) Given c ∈ AH , the existence of a field ṽc ∈ X with
∮︁

Σ∗ ṽ
c = c follows from

definition of the set AH . The space X admits the decomposition X = X0 ⊕XH
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and hence we can write ṽc = ṽc
1 + ṽc

2, where ṽc
1 ∈ X0 and ṽc

2 ∈ XH . Setting
vc := ṽc

2 provides us with an element of XH that satisfies
∮︁

Σ∗ v
c = c. Uniqueness

of vc follows from (i).
(iii) The space X admits the orthogonal decomposition X = X0 ⊕ XH .

Every element v ∈ X0 satisfies
∮︁

Σ∗ v = 0. Thus, for any constant vector
c ∈ C3 \{0} there holds, c ∈ AH if and only if there exists v ∈ X with

∮︁
Σ∗ v = c.

This shows statement (iii). □

Compared to Lemma 5.2, the previous result seems to be unsatisfactory
as it provides only an abstract condition for the existence (and non-existence)
of distributional solutions to (5.2.1) with prescribed geometric averages. As it
turns out, a statement similar to Lemma 5.2 cannot hold for XH . We do have,
however, the following relations.

Lemma 5.9. – Let Σ ⊂ Y be an admissible microstructure, and let LΣ∗ and
NΣ∗ be the sets given in (4.3.17) and (4.3.18).

(i) If m ∈ NΣ∗ satisfies ⟨m, k⟩ = 0 for all k ∈ LΣ∗ , then m is not an element
of AH ; in particular, there is no vm ∈ X with

∮︁
Σ∗ v

m = m.

(ii) If k ∈ LΣ∗ , then there exists vk ∈ X with∮︂
Σ∗
vk = πAH (k) , (5.2.14)

where πAH : C3 → C3 denotes the orthogonal projection onto AH .

Proof. (i) By Proposition 4.8, there exists Θm ∈ H1
♯ (Σ∗;R) with ∇Θm = m.

Applying the properties of the geometric average from Lemma 4.5 we obtain
that

0 =
∮︂

Σ∗
∇Θm =

∮︂
Σ∗
m = πAH (m) ,

As m ̸= 0, we deduce that m /∈ AH .
(ii) Fix k ∈ LΣ∗ . Let Θ ∈ H1

♯ (Σ∗;C) be a weak solution to∫︂
Σ∗

⟨︁
∇Θ,∇φ

⟩︁
= −

∫︂
Σ∗

⟨︁
k,∇φ

⟩︁
for all φ ∈ H1

♯ (Σ∗;C) . (5.2.15)

We claim that the vector field

vk :=
{︄

∇Θ + k in Σ∗

0 in Σ

is an element of XH . One readily checks that vk solves the equations (5.2.1a)
and (5.2.1c) in the distributional sense. In order to show that the distributional
divergence of vk vanishes in Y , we take a test function φ ∈ C∞

♯ (Y ;C). As
φ ∈ H1

♯ (Σ∗;C), we can use (5.2.15) and find∫︂
Y

⟨︁
vk,∇φ

⟩︁
=
∫︂

Σ∗

⟨︁
∇Θ + k,∇φ

⟩︁
=
∫︂

Σ∗

⟨︁
∇Θ,∇φ

⟩︁
+
∫︂

Σ∗

⟨︁
k,∇φ

⟩︁
= 0 ,
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which proves that vk is a distributional solution to the cell problem (5.2.1).
Applying the properties of the geometric average from Lemma 4.5 yields∮︂

Σ∗
vk =

∮︂
Σ∗

∇Θ +
∮︂

Σ∗
k = πAH (k) .

This proves the claim. □

Remarks 5. – (a) Let us discuss equation (5.2.14) in more detail. The
spaces AE and AV(Σ∗) coincide, by Lemma 5.3. Moreover, the iden-
tity AH = AV(Σ∗) holds, due to Lemma 5.7. Thus, using the defini-
tion (4.3.4) of AV(Σ∗) ,

AH = AV(Σ∗) =

⎧⎪⎪⎨⎪⎪⎩
{0} if dimAE = 0(︁
AE
)︁⊥ if dimAE = 1

C3 if dimAE ≥ 2

.

Due to Lemma 5.2(i), the linear map −
∫︁

Y
: XE → AE is a vector space

isomorphism. We consider three cases:
Case 1. If the solution space XE is zero-dimensional, then AH = {0} and
hence for every element v ∈ X there holds

∮︁
Σ∗ v = 0.

Case 2. If dimXE = 1, then AH = (AE)⊥ and equation (5.2.14) reads∮︂
Σ∗
vk = π(AE)⊥(k) .

Case 3. If dimXE ≥ 2, then AH = C3 and equation (5.2.14) reads∮︂
Σ∗
vk = k .

Consequently, for any k ∈ LΣ∗ there exists a unique vk ∈ XH with∮︁
Σ∗ v

k = k.

(b) The above considerations allow us to discuss the relation between the
two subspaces spanC LΣ∗ and AH of C3. For a generic microstructure Σ,
neither is spanC LΣ∗ a subspace of AH nor is AH a subspace of spanC LΣ∗ .
We again consider three cases, depending on the dimension of XE.
Case 1. If dimXE = 0, then AH = {0}. However, we find admissible
microstructures Σj such that dim spanC LΣ∗

j
= j for all j ∈ {0, 1, 2, 3}.

Indeed, fix r ∈ (0, 1/2) and consider for j ∈ {1, 2, 3} the following sets

Σ0 :=
{︃
y ∈ Y

⃓⃓⃓⃓ ⃦⃦⃦⃦
y − 1

2(1, 1, 1)
⃦⃦⃦⃦2
> r2

}︃
and

Zj :=
{︄

(y1, y2, y3) ∈ Y

⃓⃓⃓⃓
⃓

3∑︂
l=1
l ̸=j

(︃
yl − 1

2

)︃2
< r2

}︄
.
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We set

Σ1 := Y \ Z1 , Σ2 := Y \
(︁
Z1 ∪ Z2

)︁
, Σ3 := Y \

(︁
Z1 ∪ Z2 ∪ Z3

)︁
.

We note that all four microstructures Σ0, . . . ,Σ3 are admissible. More-
over, for each j ∈ {0, 1, 2, 3}, there exist e1-, e2-, and e3-loops in Σj,
which implies, by Proposition 5.13, that the corresponding E0-cell prob-
lem (5.1.1) has only the trivial solution; that is dimXE = 0 for all four
microstructures.
On the other hand, one readily checks that there is no k-loop in Σ∗

0 for
any k ∈ Z3 \ {0}, and thus dim span LΣ∗

0
= 0. Fix j ∈ {1, 2, 3}. If there

is a k-loop in Σ∗
j , then k has the form k =

∑︁j
l=1 αl el for αl ∈ Z. This

shows that dim spanC LΣ∗
j

= j.

Summarising the above considerations, we find that AH ⊂ spanC LΣ∗ if
dimXE = 0.
Case 2. If dimXE = 1, we do not know which of the two inclusions hold
for a generic microstructure Σ. However, the identity spanC LΣ∗ = AH

is, in general, wrong. Indeed, consider the two cylinders Z1, Z2 defined
in case 1, and set Σ := Z1 ∪ Z2. As there are e1- and e2-loops in Σ but
no e3-loop, we infer from Proposition 5.13 that AE = C e3. Consequently,
AH = C e1 ⊕C e2. On the other hand, one readily checks that LΣ∗ =
Z3 \ {0} and thus spanC LΣ∗ = C3. That is, AH ⊊ spanC LΣ∗ .
Case 3. If dimXE ≥ 2, we deduce from case 3 in (a) that spanC LΣ∗ ⊂ AH .
Adding an additional assumption on Σ, we can show that spanC LΣ∗ =
AH = C3; see Proposition 5.14.

Having Lemma 5.8 at hand, we can turn to the characterisation of the
solution space XH . Similar to Proposition 5.4, this result is rather abstract for
general microstructures; we stress, however, that this characterisation is not
needed to derive the effective equations.

Proposition 5.10. (Characterisation of the solution space) – If Σ ⊂ Y is an
admissible microstructure, then

dimXH = dimAH ≤ 3 .

More precisely, let {bj | j ∈ I} be a basis of AH , and denote by vj the dis-
tributional solution to (5.2.1) with geometric average equal to bj. Then every
v ∈ XH can be written as a linear combination,

v =
∑︂
j∈I

αjv
j in L2

♯ (Y ;C3) , (5.2.16)

with coefficients αj ∈ C for j ∈ I.

Proof. Fix v ∈ XH . As
∮︁

Σ∗ v ∈ AH , we find αj ∈ C for j ∈ I such that∮︂
Σ∗
v =

∑︂
j∈J

αjb
j =

∑︂
j∈J

αj

∮︂
Σ∗
vj .

62



CHAPTER 5. PERFECTLY CONDUCTING MICROSTRUCTURES

Define the field w : Y → C3 by w := v −
∑︁

j∈I αjv
j . Then w ∈ XH and∮︂

Σ∗
w =

∮︂
Σ∗
v −

∑︂
j∈J

αj

∮︂
Σ∗
vj = 0 .

From Lemma 5.8(i), we deduce that w = 0 and the claim is proved. □

5.3 Effective material parameters and equations

The objective of this section is the derivation of the effective system as well as
the definition of the effective permittivity and effective permeability. Let us
recall that the subspaces AE and AH of C3 are defined in (5.1.6) and (5.2.12),
respectively. Denote by πAE : C3 → C3 the orthogonal projection onto AE .

Before we define the effective material parameters, we need the following
technical result.

Lemma 5.11. – Let Σ ⊂ Y be an admissible microstructure, and let AE be
the space defined in (5.1.6). Then there exists one and only one linear map
εeff : AE → AE that satisfies the identity⟨︃

εeff
(︃

−
∫︂

Y

u1

)︃
,−
∫︂

Y

u2

⟩︃
=
∫︂

Y

⟨u1, u2⟩ (5.3.1)

for all u1, u2 ∈ XE.

Proof. Existence. Due to Lemma 5.2, for every c ∈ AE there is a unique element
uc ∈ XE with −

∫︁
Y
uc = c. The uniqueness of the element uc implies that the

map εeff : AE → (AE)∗,⟨︃
εeff
(︃

−
∫︂

Y

u1

)︃
,−
∫︂

Y

u2

⟩︃
(AE)∗,AE

:= −
∫︂

Y

⟨︁
u1, u2

⟩︁
(5.3.2)

is linear. As AE is a finite dimensional vector space, we may identify (AE)∗ and
AE . In this way, we obtain a linear map εeff : AE → AE that satisfies (5.3.1).

Uniqueness. Assume L : AE → AE is a linear map such that for all u1, u2 ∈
XE the identity ⟨︃

L

(︃
−
∫︂

Y

u1

)︃
,−
∫︂

Y

u2

⟩︃
=
∫︂

Y

⟨u1, u2⟩ (5.3.3)

holds. Identifying the finite dimensional vector space AE with its anti-dual
(AE)∗, we conclude from (5.3.2) and (5.3.3) that (L− εeff)(c) = 0 in (AE)∗ for
all c ∈ AE . This implies that L = εeff on AE . □

The unique linear map εeff : AE → AE from Lemma 5.11 is called the relative
permittivity of the metamaterial located in R.

We recall from Lemma 5.8 that for every k ∈ AH there is a unique element
vk ∈ XH with

∮︁
Σ∗ v

k = k. The linear map µeff : AH → C3 given by

µeff
(︃∮︂

Σ∗
v

)︃
:= −
∫︂

Y

v for v ∈ XH

is called the relative permeability of the meta-material located in R.
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For x ∈ Ω we define the effective permittivity and the effective permeability
as

ε̂(x) :=
{︄
εeff if x ∈ R

idC3×3 if x ∈ Ω \R
(5.3.4a)

and

µ̂(x) :=
{︄
µeff if x ∈ R

idC3×3 if x ∈ Ω \R
. (5.3.4b)

We recall that E0, H0 ∈ L2(Ω ×Y ;C3) are the two-scale limits of (Eη)η and
(Hη)η, respectively. The effective electromagnetic field (Ê, Ĥ) : Ω → C3 × C3 is
defined by

Ê(x) := −
∫︂

Y

E0(x, y) dy and Ĥ(x) :=
∮︂

Σ∗
H0(x, ·) . (5.3.5)

Note that Ĥ is defined on all of Ω; outside the microstructure Ω \R, we assume
free space—in other words, there is no microstructure. Thus, by Lemma 4.5(i),
for x ∈ Ω \R there holds

Ĥ(x) =
∮︂

Y

H0(x, ·) = −
∫︂

Y

H0(x, y) dy = H(x) .

Theorem 5.12. (Effective equations) – Let Ω ⊂ R3 and let R ⋐ Ω be as
in Section 4.1. Let Σ ⊂ Y be an admissible microstructure, and let ε̂ and
µ̂ be the maps given in (5.3.4). Assume (Eη, Hη)η is a sequence satisfying (A3)
on page 51. Then the effective electromagnetic field (Ê, Ĥ) satisfies

Ê(x) ∈ AE and Ĥ(x) ∈ AH for almost all x ∈ R . (5.3.6)

Moreover, (Ê, Ĥ) is a distributional solution to⎧⎪⎪⎨⎪⎪⎩
curl Ê = iωµ0µ̂Ĥ in Ω ,

πAE

(︁
curl Ĥ

)︁
= −iωε0πAE

(︁
ε̂Ê
)︁

in Ω ,

curl Ĥ = −iωε0Ê in Ω \R .

(5.3.7a)
(5.3.7b)
(5.3.7c)

Proof. Thanks to the preparation of the last sections, we can follow standard
arguments to derive (5.3.7a)-(5.3.7c). We infer (5.3.6) by combining Lemmas 5.1
and 5.5 with (5.3.5).

Step 1: Derivation of (5.3.7a) and (5.3.7c). The sequence (Eη, Hη)η con-
verges weakly in L2(Ω;C3) × L2(Ω;C3) to (E,H). The distributional limit of
equation (5.0.1a) thus reads

curl E = iωµ0H in Ω . (5.3.8)

By Lemma 3.3, the two-scale limit E0 and the weak limit E of (Eη)η are
connected by the identity

E(x) = −
∫︂

Y

E0(x, ·) for almost all x ∈ Ω .
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Using the definition of the effective electric field Ê in (5.3.5), we find that
Ê(x) = E(x) for almost all x ∈ Ω and thus curl Ê = curl E.

On the other hand, using the definition of the effective permeability µ̂ in R,
we find that

H(x) = −
∫︂

Y

H0(x, ·) = µeff
∮︂

Σ∗
H0(x, ·) = µeffĤ(x) = µ̂Ĥ(x) , (5.3.9)

for almost all x ∈ R. Outside of R, the two-scale limit H0(x, ·) coincides with
the weak limit H(x) by Lemma 5.5, and thus Ĥ(x) = H(x) for almost all
x ∈ Ω \R. This together with the definition of µ̂ implies (5.3.9) for almost all
x ∈ Ω. From (5.3.8) and (5.3.9) we conclude that equation (5.3.7a) is satisfied.

In order to prove (5.3.7c), we observe that Ω \R ⊂ Ω \ Ση. We can therefore
take the distributional limit in equation (5.0.1b) and find that

curl H = −iωε0E in Ω \R .

This shows (5.3.7c), since Ê = E and Ĥ = H in Ω \R.
Step 3: Derivation of (5.3.7b). Choose θ ∈ C∞

c (Ω;R), u ∈ XE , and set
φη(·) := θ(·)u(·/η) for η > 0. Due to the two-scale convergence of (Hη)η,

lim
η→0

∫︂
Ω

⟨︁
Hη, curl [φη]

⟩︁
=
∫︂

Ω

∫︂
Σ∗

⟨︁
H0,∇θ ∧ u

⟩︁
=
∫︂

Ω

⟨︂
∇θ,

∫︂
Σ∗
u∧H0

⟩︂
. (5.3.10)

Thanks to Lemma 5.5, for almost all x ∈ Ω, the field H0(x, ·) is an element
of X (Σ∗) such that we can apply the geometric average to H0(x, ·). On the
other hand, XE is a subset of V(Σ∗) and hence u ∈ V(Σ∗). We can thus apply
the defining identity (4.3.10) of the geometric average on the right-hand side
of (5.3.10) and obtain∫︂

Σ∗
u ∧H0(x, ·) =

(︃∫︂
Σ∗
u

)︃
∧
(︃∮︂

Σ∗
H0(x, ·)

)︃
, (5.3.11)

for almost all x ∈ Ω. Combining (5.3.10) and (5.3.11) yields

lim
η→0

∫︂
Ω

⟨︁
Hη, curl [φη]

⟩︁
=
∫︂

Ω

⟨︂∮︂
Σ∗
H0,∇θ ∧

∫︂
Σ∗
u
⟩︂

=
∫︂

Ω

⟨︂∮︂
Σ∗
H0, curl

(︂
θ

∫︂
Σ∗
u
)︂⟩︂

. (5.3.12)

On the other hand, for each η > 0, the field Hη is a distributional solution
to (5.0.1b). Thus, by exploiting the two-scale convergence of (Eη)η,

lim
η→0

∫︂
Ω

⟨︁
Hη, curl [φη]

⟩︁
= −iωε0 lim

η→0

∫︂
Ω

⟨Eη, φη⟩

= −iωε0

∫︂
Ω
θ

∫︂
Y

⟨E0, u⟩ . (5.3.13)

Using the map εeff and the definition of the effective field Ê as well as of the
effective permittivity ε̂, we find that∫︂

Y

⟨︂
E0(x, ·), u

⟩︂
=
⟨︂
εeff
(︂∫︂

Y

E0(x, ·)
)︂
,

∫︂
Y

u
⟩︂

=
⟨︂
ε̂(x)Ê(x),

∫︂
Y

u
⟩︂
, (5.3.14)
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for almost all x ∈ R. For x ∈ Ω\R there holds E0(x, ·) = E(x) and ε̂(x) = idC3×3 .
Thus, for almost all x ∈ Ω we find the identity∫︂

Y

⟨︂
E0(x, ·), u

⟩︂
=
⟨︂
ε̂(x)Ê(x),

∫︂
Y

u
⟩︂

(5.3.15)

Substituting (5.3.15) into equation (5.3.13) yields

lim
η→0

∫︂
Ω

⟨︂
Hη, curl [φη]

⟩︂
= −iωε0

∫︂
Ω

⟨︂
ε̂Ê, θ

∫︂
Y

u
⟩︂
. (5.3.16)

Combining equations (5.3.12) and (5.3.16), and using the definition of Ĥ
from (5.3.5), we obtain∫︂

Ω

⟨︃
Ĥ, curl

(︃
θ

∫︂
Σ∗
u

)︃⟩︃
= −iωε0

∫︂
Ω

⟨︂
ε̂Ê, θ

∫︂
Y

u
⟩︂
.

As u ∈ XE was chosen arbitrarily, we infer that equation (5.3.7b) holds. □

5.4 Discussion of examples

The section is devoted to the discussion of the effective equations by examples.

Special geometries
All the microstructures we discuss in this section satisfy the following two
assumptions:

(A4) There exist an orthogonal basis (b1, b2, b3) of R3 and two disjoint sets
N,L ⊂ {1, 2, 3} with N ∪ L = {1, 2, 3} such that bi ∈ NΣ and bj ∈ LΣ
for all i ∈ N and j ∈ L.

(A4∗) There exists an orthogonal basis (b∗
1, b

∗
2, b

∗
3) of R3 and two disjoint sets

N∗, L∗ ⊂ {1, 2, 3} with N∗ ∪ L∗ = {1, 2, 3} such that b∗
i ∈ NΣ∗ and

b∗
j ∈ LΣ∗ for all i ∈ N∗ and j ∈ L∗.

Let us remark that if a microstructure Σ satisfies (A4), then for every m ∈
NΣ there holds ⟨m, k⟩ = 0 for all k ∈ LΣ. Combining this observation
with Lemma 5.2(iii), we find that for every m ∈ NΣ there exists a unique
element um ∈ XE such that −

∫︁
Y
um = m. Moreover, for such microstructures

the solution space XE of the cell problem (5.1.1) can be characterised in terms
of k-loops.

Proposition 5.13. – Let Σ ⊂ Y be an admissible microstructure for which
assumption (A4) holds. For each i ∈ N , we denote by ui the unique distributional
solution to (5.1.1) with −

∫︁
Y
ui = bi. Then every u ∈ XE can be written as a

linear combination,
u =

∑︂
i∈N

αiu
i , (5.4.1)

with scalars αi ∈ C for i ∈ N . In particular, dimXE = |N |. Moreover,

AE = spanC NΣ . (5.4.2)
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Proof. We proceed in two steps.
Step 1. (Proof of (5.4.1)) Let u ∈ L2

♯ (Y ;C3) be a distributional solution
to (5.1.1). As the distributional curl of u vanishes in Y , we find a potential
Θ ∈ H1

♯ (Y ;C) and a constant c0 ∈ C3 such that u = ∇Θ + c0 in Y . For each
l ∈ {1, 2, 3}, we set αl := ⟨c0, bl⟩. The vector field

v := u−
∑︂
i∈N

αiu
i ,

is an element of XE with

−
∫︂

Y

v =
∑︂
j∈L

αjbj ∈ spanC LΣ .

If αj = 0 for all j ∈ L, we deduce from Lemma 5.2(i) that v = 0 and the claim
is proved.

Suppose there exists j0 ∈ L for which αj0 ̸= 0. Let γj0 be a bj0-loop in Σ.
As v is an element of XE , its distributional curl vanishes in Y ; we find thus a
potential Φ ∈ H1

♯ (Y ;C) such that

v = ∇Φ +
∑︂
j∈L

αjbj in Y . (5.4.3)

Using that v = 0 in Σ and the Helmholtz decomposition (5.4.3), we find that

0 =
∫︂

γj0

v =
∫︂ 1

0

d
dt
[︁
Φ(γ̃j0(t))

]︁
dt+

∑︂
j∈L

αj

∫︂ 1

0

⟨︁
bj , γ̇̃j0(t)

⟩︁
dt

=
∑︂
j∈L

αj

⟨︁
bj , bj0

⟩︁
= αj0 .

As this is a contradiction, we infer that αj = 0 for all j ∈ L. This proves the
representation (5.4.1).

Step 2. (Proof of (5.4.2)) By Lemma 5.2(iii) and assumption (A4), for every
m ∈ NΣ there exists um ∈ XE with −

∫︁
Y
um = m. Thus, NΣ ⊂ AE and hence,

since AE is a vector space, spanC NΣ ⊂ AE .
In order to prove the converse inclusion, choose c ∈ AE . By definition of

AE , there exists u ∈ XE with −
∫︁

Y
u = c. Due to Step 1, there exist αi ∈ C for

i ∈ N such that u =
∑︁

i∈N αiu
i. Consequently,

c = −
∫︂

Y

u =
∑︂
i∈N

αibi ∈ spanC NΣ .

This proves the identity (5.4.2). □

One might think that a similar characterisation holds for the solution space
XH provided the microstructure Σ satisfies (A4∗). In view of cases 1 and 2 of
Remarks 5(b), however, we already know that the solution space XH cannot
be characterised by k-loops if dimXE ≤ 1.

Proposition 5.14. – Let Σ ⊂ Y be an admissible microstructure for which
(A4∗) holds. If dimXE ≥ 2, then

spanC LΣ∗ = AH = C3 . (5.4.4)
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Proof. As dimXE ≥ 2, we deduce from Lemma 5.9 that each k ∈ LΣ∗ induces
an element vk ∈ XH with

∮︁
Σ∗ v

k = k. Thus, LΣ∗ ⊂ AH and hence, since AH is
a vector space, spanC LΣ∗ ⊂ AH .

In order to prove the converse inclusion, choose c ∈ AH . By definition
of AH there exist v ∈ XH with

∮︁
Σ∗ v = c. Let (b∗

1, b
∗
2, b

∗
3) be an orthogonal

basis of R3 for which (A4∗) is satisfied. Then, for each j ∈ L∗, there exists
vj ∈ XH with

∮︁
Σ∗ v

j = b∗
j . For l ∈ {1, 2, 3}, we set αl := ⟨c, b∗

l ⟩. The vector
field w := v −

∑︁
j∈L∗ αjv

j is an element of XH with∮︂
Σ∗
w =

∑︂
i∈N∗

αib
∗
i ∈ spanC

{︁
b∗

i

⃓⃓
i ∈ N∗}︁ .

If
∮︁

Σ∗ w = 0, then

c =
∮︂

Σ∗
v =

∮︂
Σ∗
w +

∑︂
j∈L∗

αj

∮︂
Σ∗
vj =

∑︂
j∈L∗

αjb
∗
j ∈ spanC LΣ∗ ,

which proves the inclusion AH ⊂ spanC LΣ∗ . We thus need to show that w has
a vanishing geometric average.

From Lemma 5.9 (i), we deduce that b∗
i /∈ AH for every i ∈ N∗. On the

other hand, w is an element of XH and thus∮︂
Σ∗
w = πAH

(︃∮︂
Σ∗
w

)︃
=
∑︂

i∈N∗

αiπAH

(︁
b∗

i

)︁
= 0 .

This proves the claim. □

In the examples below, we can always choose (b1, b2, b3) = (b∗
1, b

∗
2, b

∗
3) =

(e1, e2, e3). We remark that Proposition 5.14 is not needed to derive the effective
equations for the examples below; see also Remark 6(b) at the end of this section.

We recall from Lemmas 5.3 and 5.7 that AV(Σ∗) = AE and AH = AV(Σ∗)
for any admissible microstructure Σ ⊂ Y . Using the definition (4.3.4) of
AV(Σ∗) and the fact that the volume average −

∫︁
Y

: XE → AE is an isomor-
phism, we find that

AH =

⎧⎪⎨⎪⎩
{0} if dimXE = 0
(AE)⊥ if dimXE = 1
C3 if dimXE ≥ 2

. (5.4.5)

Compact inclusions with simply connected complements
Let Σ ⊂ Y be an admissible microstructure that is compactly contained in (0, 1)3.
Assume further that the complement (0, 1)3 \ Σ is simply connected; we refer
to Figure 5.1 (a) for an example of such a microstructure. Such microstructures
are, for instance, considered in [BBF09, BBF17]. As Σ is compactly contained
in (0, 1)3, we infer that

NΣ = Z3 \ {0} and LΣ∗ = Z3 \ {0} . (5.4.6)

A compactly contained microstructure satisfies assumptions (A4) and (A4∗) with
index sets N = {1, 2, 3}, L = ∅ and N∗ = ∅, L∗ = {1, 2, 3}. We may therefore
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Σ1

e1

e3

e2

(a)

Σ2

e1

e3

e2

(b)

Figure 5.1: The figure shows two admissible microstructures. The unit cell Y is
represented by the cube; the dark grey areas represent the microstructures. (a)
The microstructure Σ1 is compactly contained and its complement Σ∗

1 := Y \ Σ1
is simply connected in (0, 1)3. (b) Σ2 is also compactly contained in (0, 1)3; its
complement Σ∗

2, however, is not simply connected.

apply Proposition 5.13 and find that the solution space XE is three-dimensional
and that

AE = spanC NΣ = C3 .

As dimXE = 3, we infer that

AH = C3 . (5.4.7)

We note that (5.4.7) follows from Proposition 5.14 and (5.4.6), as well.
Having all these at hand, we can apply Theorem 5.12 and find the following

effective equations.

Corollary 5.15. (Effective equations) – Let Ω ⊂ R3 and R ⋐ Ω be as in Sec-
tion 4.1. Let Σ ⊂ Y be an admissible microstructure that is compactly contained
in (0, 1)3 and for which (0, 1)3\Σ is simply connected. Let ε̂, µ̂ : Ω → C3×3 be the
effective material parameters given in (5.3.4), and let (Eη, Hη)η be a sequence
that satisfies (A3) on page 51. Then the effective field (Ê, Ĥ) : Ω → C3 × C3,
defined in (5.3.5), is a distributional solution to{︄

curl Ê = iωµ0µ̂Ĥ in Ω ,

curl Ĥ = −iωε0ε̂Ê in Ω .

Compact inclusions
Let Σ ⊂ Y be an admissible microstructure that is compactly contained in
(0, 1)3; see Figure 5.1 (b) for an example. We note that the results from [BBF09,
SU18, BBF17] can, in general, not be applied to such microstructures.

As Σ is compactly contained in (0, 1)3, we can argue as in the previous
example, and conclude that

AE = spanC NΣ = C3 and AH = C3 . (5.4.8)
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Σ3

e1

e3

e2

(a)

Σ4

e1

e3

e2

(b)

Figure 5.2: The figure shows two admissible microstructures. The unit cell Y is
represented by the cube; the dark grey areas represent the microstructures. (a)
Σ3 represents a metal plate. (b) Σ4 is neither compactly contained in (0, 1)3

nor is its complement simply connected.

As the geometric average
∮︁

Σ∗ : XH → AH is an isomorphism, dimXH = 3.
For the sake of completeness, let us mention that the space X of distributional
solutions of the cell problem (5.2.1), which is defined in (5.2.9), has, in general,
more than three dimensions.

Having (5.4.8) at hand, we can apply Theorem 5.12 and determine the
effective equations.

Corollary 5.16. (Effective equations) – Let Ω ⊂ R3 and R ⋐ Ω be as de-
scribed as in Section 4.1. Let Σ ⊂ Y be an admissible microstructure that is
compactly contained in (0, 1)3. Let ε̂, µ̂ : Ω → C3×3 be the effective material
parameters given in (5.3.4), and let (Eη, Hη)η be a sequence satisfying (A3) on
page 51. Then the effective field (Ê, Ĥ) : Ω → C3 × C3, defined in (5.3.5), is a
distributional solution to{︄

curl Ê = iωµ0µ̂Ĥ in Ω ,

curl Ĥ = −iωε0ε̂Ê in Ω .

The metal plate
We fix γ ∈ (0, 1/2) and consider the set

Σ :=
{︃

(y1, y2, y3) ∈ Y

⃓⃓⃓⃓
y1 ∈

(︃
1
2 − γ,

1
2 + γ

)︃}︃
. (5.4.9)

We refer to Figure 5.2 (a) for a sketch of the microstructure Σ. Observe that
Σ is an admissible microstructure. We first note that there is no k-loop in Σ
for k ∈ Z3 \ {0} with ⟨k, e1⟩ ≠ 0. On the other hand, there are k-loops in Σ for
k ∈ Z e2 ⊕Z e3. Thus,

NΣ = Z e1 \{0} and LΣ =
{︂

(0, k2, k3) ∈ Z3
⃓⃓⃓
k2, k3 ∈ Z \ {0}

}︂
.
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This shows that the metal plate satisfies assumption (A4) with N = {1} and
L = {2, 3}. Applying Proposition 5.13 yields

AE = spanC NΣ = C e1 .

The permittivity εeff : AE → AE of the meta-material located in R can therefore
be identified with a complex scalar εeff . Moreover, as dimXE = dimAE = 1,

AH =
(︁
AE
)︁⊥ = C e2 ⊕C e3 .

The permeability µeff of the meta-material located in R is thus a linear map
µeff : C e2 ⊕C e3 → C3.

Having all these information at hand, we can apply Theorem 5.12 and
determine the effective equations.

Corollary 5.17. (Effective equations) – Let Ω ⊂ R3 and R ⋐ Ω be as de-
scribed as in Section 4.1. Let Σ ⊂ Y be the microstructure defined in (5.4.9).
Let ε̂ and µ̂ be the effective material parameters given in (5.3.4), and let
(Eη, Hη)η be a sequence that satisfies (A3) on page 51. Then the effective
field (Ê, Ĥ) : Ω → C3 × C3, which is defined in (5.3.5), satisfies

Ê(x) ∈ C e1 and Ĥ(x) ∈ C e2 ⊕C e3 for almost all x ∈ R .

Moreover, (Ê, Ĥ) is a distributional solution to⎧⎪⎪⎨⎪⎪⎩
curl Ê = iωµ0µ̂Ĥ in Ω ,

(curl Ĥ)1 = −iωε0(ε̂Ê)1 in Ω ,

curl Ĥ = −iωε0Ê in Ω \R .

The metal torus touching the boundary
Let Σ ⊂ Y be a two-dimensional full torus that connects the two (and only the
two) opposite faces {y1 = 0} and {y1 = 1} of the unit cube; see Figure 5.2 (b)
for a sketch. As both Σ and Σ∗ are connected, Σ is an admissible microstructure.
We first note that there is no k-loop in Σ for k ∈ Z e2 ⊕Z e3. On the other
hand, there is a k-loop in Σ for every k ∈ Z e1 with k ̸= 0. Combining these
two observations, we obtain

NΣ =
{︂

(0, k2, k3) ∈ Z3
⃓⃓⃓
k2, k3 ∈ Z \ {0}

}︂
and LΣ = Z e1 \{0} .

Thus, Σ satisfies assumption (A4) with index sets N = {2, 3} and L = {1}.
From Proposition 5.13 we deduce that

AE = spanC NΣ = C e2 ⊕C e3 .

The permittivity εeff of the meta-material located in R is thus a linear map
εeff : C e2 ⊕C e3 → C e2 ⊕C e3. Moreover, since dimXE = dimAE = 2,

AH = C3 .

Applying Theorem 5.12 we determine the effective equations.
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Corollary 5.18. (Effective equations) – Let Ω ⊂ R3 and R ⋐ Ω be as de-
scribed as in Section 4.1. Let Σ ⊂ Y be a two-dimensional full-torus that
connects the two opposite faces {y1 = 0} and {y1 = 1} of the unit cube. Let ε̂
and µ̂ be the effective material parameters given in (5.3.4), and let (Eη, Hη)η

be a sequence that satisfies (A3). Then the effective electric field Ê : Ω → C3,
defined in (5.3.5), satisfies

Ê(x) ∈ C e2 ⊕C e3 for almost all x ∈ R .

Moreover, the effective electromagnetic field (Ê, Ĥ) : Ω → C3 × C3 is a distribu-
tional solution to ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

curl Ê = iωµ0µ̂Ĥ in Ω ,

(curl Ĥ)2 = −iωε0(ε̂Ê)2 in Ω ,

(curl Ĥ)3 = −iωε0(ε̂Ê)3 in Ω ,

curl Ĥ = −iωε0Ê in Ω \R .

Remarks 6. – (a) The above examples show that k-loops can be used to
characterise the solution space XE of (5.1.1) quite easily. Unfortunately,
the analysis of the solution space XH of (5.2.1) for general microstructures
is more involved.

(b) We do neither need Proposition 5.14 nor a characterisation of the space
XH to derive the effective equations for the four examples. This is no
coincidence. The geometric average∮︂

Σ∗
: XH → AH

is an isomorphism between the two vector spaces and thus, instead of
characterising the solution space XH of the cell problem (5.2.1), it suffices
to analyse the space AH . Moreover, AH is determined by AE. Thus, the
geometric average allows us to bypass the involved analysis of the cell
problem (5.2.1) of H0 and to focus on the analysis of the space AE when
deriving the effective equations.
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CHAPTER 6
Effective Maxwell’s
equations for highly

conductive microstructures

In this chapter, we focus on highly conductive microstructures Σ. Following the
notation of Section 4.1, we denote the period of the metamaterial by η > 0 and
the frequency by ω > 0. In view of the time-harmonic Maxwell equations (4.1.1),
we need to specify the relative permittivity εη of the medium; we choose a
function εη : R3 → C of the form

εη(x) := εr

η21Ση
(x) + 1Ω\Ση

(x) , (6.0.1)

where εr ∈ C with Im{εr} > 0 and Re{εr} ≥ 0. We study the behaviour of
distributional solutions (Eη, Hη) ∈ L2(Ω;C3) × L2(Ω;C3) to the system{︄

curl Eη = iωµ0H
η in Ω ,

curl Hη = −iωε0εηE
η in Ω ,

(6.0.2a)
(6.0.2b)

in the limit η → 0.
In Chapter 5 we make an additional assumption (A3) besides assump-

tions (A1) and (A2) discussed in Section 4.1. Assumption (A3) has to be
modified in this chapter, since the fields Eη and Hη are nontrivial in all of Ω.
Throughout this chapter we assume:

(A3′) There exists a sequence (Eη, Hη)η of distributional solutions to (6.0.2)
that satisfies the energy-bound

sup
η>0

∫︂
Ω

|Eη|2 + |Hη|2 < ∞ . (6.0.3)
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Assumption (A3′) ensures the existence of a subsequence (Eη, Hη)η and
fields E0, H0 ∈ L2(Ω×Y ;C3) such that (Eη, Hη) 2−⇀ (E0, H0). Moreover, there
exist fields E,H ∈ L2(Ω;C3) such that (Eη)η and (Hη)η weakly converge in
L2(Ω;C3) to E and H, respectively. The two-scale limit fields E0 and H0 and
the weak L2-limit fields E and H are related via

E(x) = −
∫︂

Y

E0(x, ·) and H(x) = −
∫︂

Y

H0(x, ·) ,

for almost all x ∈ Ω.
The following list of spaces is intended to be an overview and reference of

the important spaces, which we define in the subsequent sections.

• XE is the space of vector fields u ∈ L2
♯ (Y ;C3) that are distributional

solutions to (6.1.1). This space is identical to the corresponding function
space defined in Section 5.1;

• AE , defined in (6.1.7), is the space of attainable volume averages of fields
u ∈ XE ;

• X is the space of vector fields v ∈ H1
♯ (Y ;C3) with curl v = 0 in Σ∗;

• XH , defined in (6.2.26), is the subspace of X in which we seek H0(x, ·)
for almost all x ∈ Ω;

• X div
0 is the space of vector fields v ∈ X with div v = 0 in Y and

∮︁
Σ∗ v = 0;

• AH is the space of attainable geometric averages of fields in XH and it is
defined in (6.2.33).

6.1 The oscillating electric field

In this section we derive and analyse the cell problem for the two-scale limit
E0. The analysis is based on results from Section 5.1, since the cell problems
are identical.

Lemma 6.1. (Cell problem) – Let Ω ⊂ R3 be as described in Section 4.1 and
let Σ ⊂ Y be an admissible microstructure. Let (Eη, Hη)η be a sequence
satisfying (A3′) that two-scale converges to (E0, H0) and that weakly converges
in L2(Ω;C3) × L2(Ω;C3) to (E,H). Then for almost all x ∈ R the two-scale
limit E0 = E0(x, ·) ∈ L2

♯ (Y ;C3) satisfies

⎧⎪⎨⎪⎩
curly E0 = 0 in Y ,

divy E0 = 0 in Σ∗ ,

E0 = 0 in Σ ,

(6.1.1a)
(6.1.1b)
(6.1.1c)

in the distributional sense.
Outside of the meta-material R, the two-scale limit E0 is y-independent;

that is, E0(x, y) = E(x) for almost all x ∈ Ω \R and almost all y ∈ Y .
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Proof. For θ ∈ C∞
c (Ω;R) and ψ ∈ C∞

♯ (Y ;C3) we define φ(x, y) := θ(x)ψ(y) for
all (x, y) ∈ Ω × Y . We set ψη(·) := ψ(·/η) and φη(·) := θ(·)ψη(·) for each η > 0.
As (Eη)η two-scale converges to E0 ∈ L2(Ω × Y ;C3), we find that

lim
η→0

∫︂
Ω
η⟨Eη, curl [φη]⟩ = lim

η→0

∫︂
Ω
η⟨Eη,∇θ ∧ ψη⟩ + lim

η→0

∫︂
Ω
θ⟨Eη, curl ψη⟩

=
∫︂

Ω
θ

(︃∫︂
Y

⟨Eη, curl ψ⟩
)︃
. (6.1.2)

On the other hand, for every η > 0, the field Eη is a distributional solution to
equation (6.0.2a) and thus∫︂

Ω
η
⟨︁
Eη, curl [φη]

⟩︁
= iωµ0η

∫︂
Ω

⟨︁
Hη, φη

⟩︁
. (6.1.3)

The sequence (Hη)η is bounded in L2(Ω;C3) by assumption. Sending η → 0
in (6.1.3) and combining the result with (6.1.2) yields∫︂

Ω
θ

(︃∫︂
Y

⟨︁
E0, curl ψ

⟩︁)︃
= 0 .

This proves that E0(x, ·) is a distributional solution to (6.1.1a) for almost all
x ∈ Ω.

In order to show that equation (6.1.1b) is valid, we choose θ ∈ C∞
c (Ω;R)

and ψ ∈ C∞
c (Σ∗;C). For η > 0 we define ψη(·) := ψ(·/η) and φη(·) := θ(·)ψη(·).

Due to (6.0.2b) the distributional divergence of Eη vanishes in Ω \ Ση for all
η > 0. Thus,

0 =
∫︂

Ω
η
⟨︁
Eη,∇[φη]

⟩︁
= η

∫︂
Ω
ψη

⟨︁
Eη,∇θ

⟩︁
+
∫︂

Ω
θ
⟨︁
Eη,∇ψη

⟩︁
. (6.1.4)

Sending η → 0 in (6.1.4) and using the two-scale convergence of (Eη)η to E0
shows the validity of equation (6.1.1b).

Choose θ ∈ C∞
c (Ω;R), ψ ∈ C∞

c (Σ;C3), and define ψη(·) := ψ(·/η) and
φη(·) := θ(·)ψη(·) for each η > 0. In Ση, equation (6.0.2b) reads

η2 curl Hη = −iωε0εrE
η ,

and hence

−iωε0εr lim
η→0

∫︂
Ω

⟨︁
Eη, φη

⟩︁
= lim

η→0
η

∫︂
Ω
η
⟨︁
Hη, curl [φη]

⟩︁
= lim

η→0
η

(︄∫︂
Ω
η
⟨︁
Hη,∇η ∧ ψη

⟩︁
+
∫︂

Ω
θ
⟨︁
Hη, curl ψη

⟩︁)︄
= 0 . (6.1.5)

On the other hand, (Eη)η two-scale converges to E0 and thus,

−iωε0εr lim
η→0

∫︂
Ω

⟨︁
Eη, φη

⟩︁
= −iωε0εr

∫︂
Ω
θ

(︃∫︂
Σ

⟨︁
E0, ψ

⟩︁)︃
. (6.1.6)

Combining (6.1.5) and (6.1.6) yields: E0(x, ·) satisfies (6.1.1c) for almost all
x ∈ Ω.

The proof that E0(x, ·) is independent of y for almost all x ∈ Ω \ R is
identical to the one given for Lemma 5.1. □
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As before, let us denote by XE the set of all distributional solutions to (6.1.1).
The space of all attainable volume averages of fields in XE is defined by

AE :=
{︃

−
∫︂

Y

u

⃓⃓⃓⃓
u ∈ XE

}︃
. (6.1.7)

Clearly, AE is a subspace of C3. The cell problems (6.1.1) and (5.1.1) are
identical and thus, by Lemma 5.3, the spaces AE and AV(Σ∗) coincide.

Remark 7. – We collect other results of Section 5.1, which follow by com-
bining the proofs of Lemma 5.2 and Proposition 5.4. For every admissible
microstructure Σ ⊂ Y the following statements hold:

(i) Given any c ∈ C3 there is at most on distributional solution u ∈ L2
♯ (Y ;C3)

to (6.0.2) with −
∫︁

Y
u = c.

(ii) If k ∈ LΣ, then there is no distributional solution to (6.0.2) with volume
average equal to k.

(iii) If m ∈ NΣ satisfies ⟨m, k⟩ = 0 for all k ∈ LΣ, then there is a unique
distributional solution um ∈ L2

♯ (Y ;R3) with −
∫︁

Y
um = m.

(iv) The space XE of distributional solutions to the cell problem (6.1.1) is
finite dimensional; more precisely, dimXE = dimAE ≤ 3.

This characterisation of the solution space XE is somewhat abstract for a
general microstructure Σ. However, in many cases, XE can be analysed using
k-loops; see Proposition 5.13 and the examples discussed in Section 5.4.

6.2 The oscillating magnetic field

This section is devoted to the derivation and analysis of the cell problem of
the magnetic field. In contrast to the previous section, the analysis of the cell
problem of H0 for highly conductive microstructures is more involved than for
perfectly conducting microstructures due to the appearance of a new quantity,
the rescaled displacement current, which was introduced in [BS10].

Following an idea of Bouchitté, Bourel, and Felbacq we show that H0 is not
only a solution of the cell problem but satisfies a variational identity. It is thus
sufficient to analyse the space that consists of vector fields which satisfy the
variational identity and induce solutions to the cell problem.

The classical cell problem. Besides the electromagnetic field (Eη, Hη) we
consider a third quantity—namely, the rescaled displacement current

Jη : Ω → C3, Jη := ηεηE
η (6.2.1)

Assume (Eη, Hη) is a distributional solution to Maxwell’s equations (6.0.2);
that is, for every φ ∈ C∞

c (Ω;C3) there holds∫︂
Ω

⟨︁
Eη, curl φ

⟩︁
= iωµ0

∫︂
Ω

⟨︁
Hη, φ

⟩︁
(6.2.2)
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and ∫︂
Ω

⟨︁
Hη, curl φ

⟩︁
= −iωε0

∫︂
Ω
εη

⟨︁
Eη, φ

⟩︁
. (6.2.3)

As C∞
c (Ω;C3) is dense in H0(curl ,Ω), both equations, (6.2.2) and (6.2.3),

are still valid for vector fields φ ∈ H0(curl ,Ω). We observe that for every
φ ∈ C∞

c (Ω;R) the vector fields φEη and φHη are elements of H0(curl ,Ω).
Assumption (A3′) ensures that the sequence (Jη)η is bounded in L2(Ω;C3).

This result was proved in [BS10, Section 3.1].

Lemma 6.2. – Let Ω ⊂ R3 as described in Section 4.1 and let Σ ⊂ Y be an
admissible microstructure. Let (Eη, Hη)η be a sequence that satisfies (A3′).
Then the sequence of displacement currents (Jη)η is bounded in L2(Ω;C3).

Proof. We proceed in two steps.
Step 1. The claim is a consequence of the estimate

sup
η>0

∫︂
Ω

(︂
|εη||Eη|2 + |Hη|2

)︂
< ∞ . (6.2.4)

Indeed, provided the bound (6.2.4) holds, we find∫︂
Ω

|Jη|2 = η2
∫︂

Ω
|εη|2|Eη|2 ≤ sup

Ω

(︁
η2|εη|

)︁ ∫︂
Ω

|εη||Eη|2 < ∞

for all η ∈ (0, η0) and for an arbitrary η0 > 0. We are thus left to prove (6.2.4).
Step 2. Fix a cut-off function χ ∈ C∞

c (Ω; [0, 1]) with χ ≡ 1 in R. Clearly,
χEη ∈ H0(curl ,Ω). Setting φ := iω−1χEη in (6.2.3), we find that

ε0

∫︂
Ω
εηχ|Eη|2 = i

ω

∫︂
Ω

⟨︁
χHη, curl Eη

⟩︁
+ i
ω

∫︂
Ω

⟨︁
Hη,∇χ ∧ Eη

⟩︁
= µ0

∫︂
Ω
χ|Hη|2 + i

ω

∫︂
Ω

⟨︁
Hη,∇χ ∧ Eη

⟩︁
, (6.2.5)

where we used integration by parts and the fact that (6.2.2) is valid for
χHη ∈ H0(curl ,Ω). Taking the imaginary part in (6.2.5) and applying Young’s
inequality yields

ε0

∫︂
Ω

Im{εη}χ|Eη|2 ≤ C1

∫︂
Ω

|Hη|2 + C2

∫︂
Ω

|Eη|2 . (6.2.6)

Similarly we obtain the estimate

ε0

∫︂
Ω

Re{εη}χ|Eη|2 ≤ C3

∫︂
Ω

|Hη|2 + C2

∫︂
Ω

|Eη|2 . (6.2.7)

By definition (6.0.1) of εη, we have that Re{εη} ≥ 0 and Im{εη} ≥ 0 in Ω.
Thus, combining (6.2.6) and (6.2.7) we get

ε0

∫︂
Ση

|εη||Eη|2 ≤ ε0

∫︂
Ω

(︁
Re{εη} + Im{εη}

)︁
χ|Eη|2

≤ C sup
η>0

∫︂
Ω

(︂
|Eη|2 + |Hη|2

)︂
. (6.2.8)
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On the other hand,

ε0

∫︂
Ω\Ση

|εη||Eη|2 = ε0

∫︂
Ω\Ση

|Eη| ≤ ε0 sup
η>0

∫︂
Ω

|Eη|2 . (6.2.9)

Combining (6.2.8) and (6.2.9) yields the estimate (6.2.4) and the claim is
proved. □

Lemma 6.2 implies that a subsequence (Jη)η of the sequence of displacement
currents two-scale converges to some field J0 ∈ L2(Ω × Y ;C3) provided (A3′) is
satisfied.

In order to state the cell problem for H0, we introduce the function space

X :=
{︃
v ∈ H1

♯ (Y ;C3)
⃓⃓⃓⃓
curl v = 0 in Σ∗

}︃
. (6.2.10)

We note that the geometric average can be applied to every element of X .

Lemma 6.3. (Cell problem) – Let Ω ⊂ R3 be as described in Section 4.1 and
let Σ ⊂ Y be an admissible microstructure. Let (Eη, Hη)η be a sequence
satisfying (A3′) that two-scale converges to (E0, H0, J0) and such that (Eη)η,
(Hη)η, and (Jη)η weakly converge in L2(Ω;C3) to E, H, and J . Then for
almost all x ∈ R the two-scale limits H0 = H0(x, ·) ∈ L2

♯ (Y ;C3) and J0 =
J0(x, ·) ∈ L2

♯ (Y ;C3) satisfy

⎧⎪⎪⎪⎨⎪⎪⎪⎩
curly H0 = −iωε0J0 in Y ,

divy H0 = 0 in Y ,

curly J0 = iωµ0εrH0 in Σ ,

J0 = 0 in Σ∗ ,

(6.2.11a)
(6.2.11b)
(6.2.11c)
(6.2.11d)

in the distributional sense. Moreover, for almost all x ∈ Ω, the two-scale limits
H0 = H0(x, ·) and J0 = J0(x, ·) satisfy the identity:∫︂

Σ

⟨︁
J0, curl v

⟩︁
= iωεrµ0

∫︂
Y

⟨︁
H0, v

⟩︁
for all v ∈ X with

∮︂
Σ∗
v = 0 . (6.2.12)

Outside the meta-material R, the two-scale limit H0(x, ·) is y-independent
and J0(x, ·) vanishes identically.

Proof. We proceed in three steps.
Step 1. (Derivation of (6.2.11)) For θ ∈ C∞

c (Ω;R) and ψ ∈ C∞
♯ (Y ;C3) we

define φ(x, y) := θ(x)ψ(y) for almost all x ∈ Ω and y ∈ Y . We further set
φη(·) := φ(·, ·/η) for each η > 0. The sequence (Hη)η two-scale converges to
H0 ∈ L2(Ω × Y ;C3), which implies that

lim
η→0

∫︂
Ω
η
⟨︁
Hη, curl [φη]

⟩︁
=
∫︂

Ω
θ

(︃∫︂
Y

⟨H0, curl ψ⟩
)︃
. (6.2.13)

On the other hand, Hη is a distributional solution to (6.0.2b); hence, by
definition of the displacement current Jη in (6.2.1),∫︂

Ω
η
⟨︁
Hη, curl [φη]

⟩︁
= −iωε0

∫︂
Ω
ηεη

⟨︁
Eη, φη

⟩︁
= −iωε0

∫︂
Ω

⟨︁
Jη, φη

⟩︁
. (6.2.14)
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The sequence (Jη)η two-scale converges and thus sending η → 0 in (6.2.14)
yields

lim
η→0

∫︂
Ω
η
⟨︁
Hη, curl [φη]

⟩︁
= −iωε0

∫︂
Ω
θ

(︃∫︂
Y

⟨︁
Jη, ψ

⟩︁)︃
. (6.2.15)

Combining (6.2.13) and (6.2.15) shows that H0(x, ·) is a distributional solution
to (6.2.11a) for almost all x ∈ Ω.

Thanks to equation (6.0.2a), the distributional divergence of Hη vanishes
identically in Ω. Thus,

0 = lim
η→0

∫︂
Ω
η
⟨︁
Hη,∇[φη]

⟩︁
=
∫︂

Ω
θ

(︃∫︂
Y

⟨︁
H0,∇ψ

⟩︁)︃
. (6.2.16)

The two-scale limit H0(x, ·) is thus a distributional solution to (6.2.11b) for
almost all x ∈ Ω.

In order to show the validity of equation (6.2.11c), we choose θ ∈ C∞
c (Ω;R)

and ψ ∈ C∞
c (Σ;C3). For η > 0 we define φη(·) := θ(·)ψ(·/η). Using the defini-

tion of the relative permittivity εη in (6.0.1) and Maxwell’s equation (6.0.2a),
we compute∫︂

Ω
η
⟨︁
Jη, curl [φη]

⟩︁
=
∫︂

Ση

η2εη

⟨︁
Eη, curl [φη]

⟩︁
= εr

∫︂
Ω

⟨︁
Eη, curl [φη]

⟩︁
= iωεrµ0

∫︂
Ω

⟨︁
Hη, φη

⟩︁
. (6.2.17)

Sending η → 0 in (6.2.17) yields∫︂
Ω
θ

(︃∫︂
Y

⟨︁
J0, curl ψ

⟩︁)︃
= iωεrµ0

∫︂
Ω
θ

(︃∫︂
Y

⟨︁
H0, ψ

⟩︁)︃
.

This proves the validity of equation (6.2.11c).
Let us fix θ ∈ C∞

c (Ω;R) and ψ ∈ C∞
c (Σ∗;C3). For every η > 0 we set

φη(·) := θ(·)ψ(·/η). The two-scale convergence of both sequences (Jη)η and
(Eη)η as well as the definition of εη imply that∫︂

Ω
θ

(︃∫︂
Y

⟨︁
J0, ψ

⟩︁)︃
= lim

η→0

∫︂
Ω

⟨︁
Jη, φη

⟩︁
= lim

η→0

∫︂
Ω\Ση

η
⟨︁
Eη, φη

⟩︁
= 0 ,

which shows that J0(x, ·) solves equation (6.2.11d) for almost all x ∈ Ω. Thus,
the two-scale limits H0(x, ·) and J0(x, ·) solve (6.2.11) for almost every x ∈ R.

Step 2. (Derivation of (6.2.12)) Choose a cut-off function θ ∈ C∞
c (Ω;R) and

a field v ∈ X with
∮︁

Σ∗ v = 0. For each η > 0 we define the fields vη(·) := v(·/η)
and φη(·) := θ(·)vη(·); note that φη ∈ H1

0 (Ω;C3). As (Hη)η two-scale converges
to H0,

lim
η→0

∫︂
Ω

⟨︁
Hη, φη

⟩︁
=
∫︂

Ω
θ

(︃∫︂
Y

⟨︁
H0, v

⟩︁)︃
. (6.2.18)

On the other hand, Hη is a solution to (6.0.2a) for each η > 0. Thus,

iωµ0

∫︂
Ω

⟨︁
Hη, φη

⟩︁
=
∫︂

Ω

⟨︁
Eη,∇θ ∧ vη

⟩︁
+ 1
η

∫︂
Ω
θ
⟨︁
Eη, curl vη

⟩︁
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As curl vη = 0 in Ω \ Ση and εrE
η = ηJη in Ση, we deduce from the above

equation

iωµ0εr

∫︂
Ω

⟨︁
Hη, φη

⟩︁
= εr

∫︂
Ω

⟨︁
Eη,∇θ ∧ vη

⟩︁
+
∫︂

Ση

θ
⟨︁
Jη, curl vη

⟩︁
. (6.2.19)

Due to Lemma 6.1, one readily checks that the two-scale limit E0(x, ·) is
an element of the space V(Σ∗), which is defined in (4.3.2). Thus, using the
identity (4.3.10) of the geometric average, we obtain

lim
η→0

∫︂
Ω

⟨︁
Eη,∇θ ∧ vη

⟩︁
=
∫︂

Ω

∫︂
Y

⟨︁
E0,∇θ ∧ v

⟩︁
=
∫︂

Ω

⟨︂
∇θ,

∫︂
Y

v ∧ E0

⟩︂
=
∫︂

Ω

⟨︂
∇θ,

(︃∮︂
Σ∗
v

)︃
∧
(︃∫︂

Y

E0

)︃⟩︂
= 0 , (6.2.20)

where we used the fact
∮︁

Σ∗ v = 0 to obtain the last equation.
Using the two-scale convergence of (Jη)η, we obtain

lim
η→0

∫︂
Ση

θ
⟨︁
Jη, curl vη

⟩︁
=
∫︂

Ω
θ

(︃∫︂
Σ

⟨︁
J0, curl v

⟩︁)︃
. (6.2.21)

Consequently, sending η → 0 in (6.2.19) and combining (6.2.20)-(6.2.21),
we get

iωµ0εr lim
η→0

∫︂
Ω

⟨︁
Hη, φη

⟩︁
=
∫︂

Ω
θ

(︃∫︂
Σ

⟨︁
J0, curl v

⟩︁)︃
. (6.2.22)

Combining (6.2.22) and (6.2.18) yields the identity (6.2.12).
Step 3. For x ∈ Ω \ R the relative permittivity εη = 1 is independent of

η > 0. This implies that the two-scale limit J0(x, ·) = 0. To see this, fix
θ ∈ C∞

c (Ω \R;R) and ψ ∈ C∞
♯ (Y ;C3). For η > 0 we define φη(·) := θ(·)ψ(·/η).

The two sequences (Jη)η and (Eη)η two-scale converge and hence∫︂
Ω\R

θ

(︃∫︂
Y

⟨︁
J0, ψ

⟩︁)︃
= lim

η→0

∫︂
Ω\R

⟨︁
Jη, φη

⟩︁
= lim

η→0

∫︂
Ω\R

η
⟨︁
Eη, φη

⟩︁
= 0 ,

which proves the claim. We have proved that equations (6.2.11a) and (6.2.11b)
are valid for almost all x ∈ Ω. Thus, curly H0(x, ·) = 0 in Y and divy H0(x, ·) =
0 in Y for almost all x ∈ Ω \R. Applying Lemma 2.4, we deduce that H0(x, ·)
is a constant vector field in Y . □

The system (6.2.11) is usually called the cell problem of H0; see, for in-
stance, [BS10, BBF09]. The novelty in Lemma 6.2, and our main contribution
in this section, is the identity (6.2.12).

We observe that the two-scale limit H0(x, ·) is an element of H1
♯ (Y ;C3),

for almost all x ∈ Ω. Indeed, equations (6.2.11a) and (6.2.11b) imply that
curl H0(x, ·) ∈ L2

♯ (Y ;C3) and div H0(x, ·) ∈ L2
♯ (Y ;C) and thus, by Lemma 2.4,

the field H0(x, ·) ∈ H1
♯ (Y ;C3) for almost all x ∈ R. Outside the meta-material,

H0(x, ·) is constant in the second argument and hence an H1
♯ (Y ;C3)-vector

field, as well.
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A variational characterisation of the two-scale limit. Due to equa-
tions (6.2.11a) and (6.2.11d) the two-scale limit H0(x, ·) is an element of the
space X , which is defined in (6.2.10). Equipped with the H1

♯ (Y ;C3)-scalar
product, X is a Hilbert space.

The equations (6.2.11a) and (6.2.12) allow us to give a variational character-
isation of H0. Before we discuss this variational characterisation, we introduce
the sesquilinear form b : X × X → C,

b(w, v) :=
∫︂

Σ

⟨︁
curl w, curl v

⟩︁
− ω2εrε0µ0

∫︂
Y

⟨︁
w, v

⟩︁
. (6.2.23)

Lemma 6.4. – Let Σ ⊂ Y be an admissible microstructure. Then the following
statements hold:

(i) If (H0, J0) ∈ H1
♯ (Y ;C3) × L2

♯ (Y ;C3) satisfy (6.2.11a) and (6.2.12), then

b
(︁
H0, v

)︁
= 0 for all v ∈ X with

∮︂
Σ∗
v = 0 . (6.2.24)

(ii) Assume w ∈ X satisfies b(w, v) = 0 for all v ∈ X with
∮︁

Σ∗ v = 0. Set
H0 := w and J0 := −(iωε0)−1 curl w. Then (H0, J0) is a distributional
solution to (6.2.11).

Proof. (i) Combining equations (6.2.11a) and (6.2.12) yields (6.2.24).
(ii) By definition of the sesquilinear form b, the field w satisfies the equation∫︂

Σ

⟨︁
curl w, curl v

⟩︁
− ω2εrε0µ0

∫︂
Y

⟨w, v⟩ = 0 (6.2.25)

for all v ∈ X with
∮︁

Σ∗ v = 0. Defining J0 := −(iωε0)−1 curl w provides us with
an element of L2

♯ (Y ;C3) and the pair (w, J0) satisfies equation (6.2.11a) trivially.
From the definition (6.2.10) of X , we deduce that J0 satisfies equation (6.2.11d).

By Lemma 4.5(ii), the vector field ∇φ is an element of X with
∮︁

Σ∗ ∇φ = 0,
for every test function φ ∈ C∞

♯ (Y ;C). Thus, setting v = ∇φ in (6.2.25) yields
the identity ∫︂

Y

⟨︁
w,∇φ

⟩︁
= 0 for all φ ∈ C∞

♯ (Y ;C) ,

which shows that w satisfies equation (6.2.11b).
In order to prove that (w, J0) solves equation (6.2.11c), we take a test vector

field φ ∈ C∞
c (Σ;C3). Clearly, curl φ = 0 in Σ∗. We claim that

∮︁
Σ∗ φ = 0.

Indeed, as the geometric average
∮︁

Σ∗ φ has the smallest Euclidean norm amongst
all vectors c ∈ C3 for which

c ∧
(︃∫︂

Σ∗
ϕ

)︃
=
∫︂

Σ∗
φ ∧ ϕ = 0 for all ϕ ∈ V(Σ∗) ,

we deduce that
∮︁

Σ∗ φ = 0. We may therefore set v = φ in (6.2.25) and find that

−iωε0

∫︂
Σ

⟨︁
J0, curl φ

⟩︁
= ω2εrε0µ0

∫︂
Σ

⟨︁
w,φ

⟩︁
for all φ ∈ C∞

c (Σ;C3) .

This proves the validity of equation (6.2.11c). □
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The identity (6.2.24) has been formulated for the first time by Bouchitté,
Bourel, and Felbacq in [BBF17, Lemma 5.4]. In [BBF17], (6.2.24) is directly
derived from Maxwell’s equations (6.0.2) using more advanced results from the
theory of two-scale convergence.

Statement (i) of Lemma 6.4 shows that the two-scale limit H0(x, ·) lies in
the space

XH :=
{︃
w ∈ X

⃓⃓⃓⃓
b(w, v) = 0 for all v ∈ X with

∮︂
Σ∗
v = 0

}︃
. (6.2.26)

Let us stress that, although we denote them identical, the function spaces XH

in Chapters 5 and 6 are not identical. Indeed, every element of XH in Chapter 5
vanishes in Σ; this is not true for a generic element of the function space defined
in (6.2.26).

Before we proceed, let us briefly sketch the idea of the analysis of XH . A
generic element w ∈ XH has a non-vanishing geometric average,

∮︁
Σ∗ w = z ̸= 0.

Then w = (w− z) + z = w0 + z for some w0 ∈ X with
∮︁

Σ∗ w0 = 0. Substituting
this decomposition into the sesquilinear form b and using the definition of XH ,
we obtain the equation

0 = b(w, v) = b
(︁
w0, v

)︁
− ω2ε0εrµ0

∫︂
Y

⟨z, v⟩ , (6.2.27)

which holds for all v ∈ X with
∮︁

Σ∗ v = 0. Both vector fields w0 and v are
elements of X with vanishing geometric averages. Moreover, ℓz : X → C,

ℓz(v) := ω2ε0εrµ0

∫︂
Y

⟨z, v⟩ (6.2.28)

is a bounded anti-linear map. Thus, equation (6.2.27) fits in the framework of
the Lax-Milgram lemma.

Analysis of the variational equation (6.2.27). An immediate conse-
quence of statement (ii) in Lemma 6.4 is the following equality:

XH =
{︃
w ∈ X

⃓⃓⃓⃓
div w = 0 in Y and b(w, v) = 0 ∀v ∈ X with

∮︂
Σ∗
v = 0

}︃
,

suggesting that instead of thinking of XH as a subspace of X , we should think
of it as a subspace of

X div :=
{︁
v ∈ X

⃓⃓
div v = 0 in Y

}︁
. (6.2.29)

The geometric average is a bounded linear form and hence

X div
0 :=

{︃
v ∈ X div

⃓⃓⃓⃓ ∮︂
Σ∗
v = 0

}︃
(6.2.30)

is a closed subspace of X div .

Lemma 6.5. (Existence and uniqueness result) – Let b : X div
0 × X div

0 → C be
the sesquilinear form defined in (6.2.23). Choose z ∈ C3 and let ℓz : X div

0 → C
be the anti-linear form given in (6.2.28). Assume that Im(εr) > 0. Then there
is a unique solution w ∈ X div

0 to

b(w, ·) = ℓz(·) . (6.2.31)
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Proof. Fix z ∈ C3. Choose α > 0 such that α Im{εr} ≥ 1 + Re{εr}. For every
w ∈ X div we then find that

Re
{︁

(1 + iα)b(w,w)
}︁

= ∥curl w∥2
L2(Σ;C3) +

(︁
α Im{εr} − Re{εr}

)︁
∥w∥2

L2(Y ;C3) .

Due to Lemma 2.4,

∥∇w∥2
L2(Y ;C3) = ∥curl w∥2

L2(Y ;C3) + ∥div w∥2
L2(Y ;C) = ∥curl w∥2

L2(Σ;C3) ,

where we used that w ∈ X div
0 to obtain the last equality. These two equations

together with the choice of α imply the coercivity of the sesquilinear form
(1 + iα)b. One readily checks that (1 + iα)b is bounded. Applying the Lax-
Milgram lemma, we infer the existence and uniqueness of a solution w ∈ X div

0
to (6.2.31), since ℓz is a continuous anti-linear form on X div

0 . □

Analysis of the space XH . The first result is an immediate consequence
of Lemma 6.5.

Corollary 6.6. – If w ∈ XH satisfies
∮︁

Σ∗ w = 0, then w = 0.

Proof. Thanks to Lemma 6.4 (ii), the field w is an element of X div . As the
geometric average of w vanishes, w ∈ X div

0 . By definition of XH ,

b(w, v) = 0 , (6.2.32)

for all v ∈ X with
∮︁

Σ∗ v = 0. Each v ∈ X div
0 is an element of X with

∮︁
Σ∗ v = 0

and hence equation (6.2.32) does hold for all v ∈ X div
0 . By Lemma 6.5, there is

only the trivial solution w = 0 in X div
0 to (6.2.32). This proves the claim. □

From Corollary 6.6 we infer that the geometric average
∮︁

Σ∗ : XH → AH

is an isomorphism, where AH is the space of attainable geometric averages of
fields in XH ; that is

AH :=
{︃∮︂

Σ∗
v

⃓⃓⃓⃓
v ∈ XH

}︃
. (6.2.33)

We note that AH is defined in the same was as in (5.2.12); let us stress, however,
that the symbol XH denotes different function spaces in Chapters 5 and 6. The
following result, which is an analogue of Lemma 5.7, is thus remarkable.

Proposition 6.7. – Let εr ∈ C with Im{εr} > 0. Then the two spaces AH

and AV(Σ∗) coincide for every admissible microstructure Σ ⊂ Y .

Proof. We recall from its definition that the geometric average is a linear and
surjective map X (Σ∗) → AV(Σ∗) . As XH , defined in (6.2.29), is a subset of
X (Σ∗), which is defined in (4.3.1), we deduce that AH ⊂ AV(Σ∗) .

Choose an arbitrary z ∈ AV(Σ∗) . By Lemma 6.5, there is a unique
wz ∈ X div

0 such that b(wz, v) = ℓz(v) for all v ∈ X div
0 . Define the vector field

vz := wz + z. One readily checks that vz ∈ X div satisfies

b
(︁
vz, v

)︁
= b
(︁
wz, v

)︁
− ℓz(v) = 0 ,

for all v ∈ X div
0 . Consequently, vz ∈ XH . Using the linearity of the geometric

average as well as Lemma 4.5(iii), we find that
∮︁

Σ∗ v
z =

∮︁
Σ∗ z = z. □
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Remark 8. – We recall from its definition in (4.3.4) that the space AV(Σ∗)
depends on AV(Σ∗). As the E0-cell problem is identical in Chapters 5 and 6,
the spaces AE and AV(Σ∗) coincide by Lemma 5.3. Combining this observation
with Proposition 6.7 we find that the spaces which we denote by AH are not
only defined in the same way in Chapters 5 and 6, but they are identical. This
is a nontrivial observation, since the function space XH is defined differently
in Chapters 5 and 6.

The next result clarifies the relation between k-loops and XH .

Lemma 6.8. – Assume εr ∈ C with Im{εr} > 0. Let Σ ⊂ Y be an admissible
microstructure, and let LΣ∗ and NΣ∗ be the sets given in (4.3.17) and (4.3.18).

(i) If m ∈ NΣ∗ satisfies ⟨m, k⟩ = 0 for all k ∈ LΣ∗ , then m /∈ AH ; in
particular, there is no element vm ∈ XH with

∮︁
Σ∗ v

m = m.

(ii) If k ∈ LΣ∗ , then there exists a unique vk ∈ XH with∮︂
Σ∗
vk = πAH (k) , (6.2.34)

where πAH : C3 → C3 denotes the orthogonal projection onto AH .

Proof. (i) By Proposition 4.8, there is a potential Θ ∈ H1
♯ (Σ∗;R) with ∇Θ = m.

Applying the properties of the geometric average from Lemma 4.5, we obtain
that

0 =
∮︂

Σ∗
∇Θ =

∮︂
Σ∗
m = πAH (m) .

As m ̸= 0, we deduce that m /∈ AH .
(ii) Fix k ∈ LΣ∗ . Due to Lemma 6.5, there is a unique element wk ∈ X div

0
such that b(wk, v) = ℓk(v) for all v ∈ X div

0 . The vector field vk := wk + k is an
element of X div , since both summands are. Furthermore,

b
(︁
vk, v

)︁
= b
(︁
wk, v

)︁
− ℓk(v) = 0

for all v ∈ X div
0 , and hence vk ∈ XH . Applying the properties of the geometric

average from Lemma 4.5, we obtain that
∮︁

Σ∗ v
k =

∮︁
Σ∗ k = πAH (k). This shows

the existence of vk; uniqueness follows from Corollary 6.6. □

For a discussion of equation (6.2.34) we refer to Remarks 5 on page 61; see
also Proposition 6.11.

Proposition 6.9. (Characterisation of the solution space ) – If Im{εr} > 0,
then for every admissible microstructure Σ ⊂ Y , we have that

dimXH = dimAH ≤ 3 .

More precisely, let {bj | j ∈ I} be a basis of AH and denote by vj ∈ XH the
unique field with

∮︁
Σ∗ v

j = bj. Then every v ∈ XH can be written as a linear
combination,

v =
∑︂
j∈I

αjv
j in H1

♯ (Y ;C3) , (6.2.35)

with coefficients αj ∈ C for j ∈ I.
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Proof. Fix v ∈ XH . As
∮︁

Σ∗ v ∈ AH , we find αj ∈ C for j ∈ I such that∮︂
Σ∗
v =

∑︂
j∈I

αjb
j =

∑︂
j∈I

αj

∮︂
Σ∗
vj .

Setting w : Y → C3 as w := v −
∑︁

j∈I αjv
j provides us with an element of XH

with
∮︁

Σ∗ w = 0. From Corollary 6.6, we infer that w = 0 in XH and the claim
is proved. □

6.3 Effective material parameters and equations

This section is devoted to the derivation of the effective system and the definition
of the effective material parameters. For convenience of the reader, let us
recall that the subspaces AE and AH of C3 are defined in (6.1.7) and (6.2.33),
respectively. Denote by πAE : C3 → C3 the orthogonal projection onto AE .

By Lemma 5.11, there exists a unique linear map εeff : AE → AE that
satisfies the identity⟨︃

εeff
(︃∫︂

Y

u1

)︃
,

∫︂
Y

u2

⟩︃
=
∫︂

Y

⟨u1, u2⟩ for all u1, u2 ∈ XE .

This map is called the relative permittivity of the metamaterial located in R.
Due to Corollary 6.6 the geometric average is an isomorphism between XH

and AH . Thus, for every k ∈ AH there is a unique vk ∈ AH with
∮︁

Σ∗ v
k = k.

The linear map µeff : AH → C3,

µeff
(︃∮︂

Σ∗
v

)︃
:= −
∫︂

Y

v for v ∈ XH

is called the relative permeability of the meta-material located in R.
The effective permittivity ε̂ and the effective permeability µ̂ are then defined

as

ε̂(x) :=
{︄
εeff if x ∈ R

idC3×3 if x ∈ Ω \R
(6.3.1a)

and

µ̂(x) :=
{︄
µeff if x ∈ R

idC3×3 if x ∈ Ω \R
. (6.3.1b)

We recall that E0, H0 ∈ L2(Ω ×Y ;C3) are the two-scale limits of (Eη)η and
(Hη)η, respectively. The effective electromagnetic field (Ê, Ĥ) : Ω → C3 × C3 is
defined by

Ê(x) := −
∫︂

Y

E0(x, y) dy and Ĥ(x) :=
∮︂

Σ∗
H0(x, ·) . (6.3.2)

Let us recall from Section 5.3 that outside the microstructure, that is, for
x ∈ Ω \R, the fields Ĥ(x) and H(x) coincide.
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Theorem 6.10. (Effective equations) – Let Ω ⊂ R3 and let R ⋐ Ω be as de-
scribed in Section 4.1. Let Σ ⊂ Y be an admissible microstructure, and let ε̂
and µ̂ be the linear maps given in (6.3.1). Assume (Eη, Hη)η is a sequence of
distributional solutions to (6.0.2) that satisfies the energy-bound (6.0.3). Then
the effective electromagnetic field (Ê, Ĥ) satisfies

Ê(x) ∈ AE and Ĥ(x) ∈ AH for almost all x ∈ R . (6.3.3)

Moreover, (Ê, Ĥ) is a distributional solution to⎧⎪⎪⎨⎪⎪⎩
curl Ê = iωµ0µ̂Ĥ in Ω ,

πAE

(︁
curl Ĥ

)︁
= −iωε0πAE

(︁
ε̂Ê
)︁

in Ω ,

curl Ĥ = −iωε0Ê in Ω \R .

(6.3.4a)
(6.3.4b)
(6.3.4c)

We note that the relations (6.3.3) and the effective system (6.3.4) coincide
with the corresponding results from Section 5.3. Let us stress, however, that
the relative permeabilities µeff : AH → C3 are different in Sections 5.3 and 6.3,
because the function spaces which we denote by XH are not identical in Chap-
ters 5 and 6. The relative permittivity εeff : AE → AE , on the other hand, is
identical to the one from Section 5.3.

Proof. This proof is similar to the proof of the effective system (5.3.5).
Step 1: Derivation of (6.3.3). By Lemma 6.1, E0(x, ·) ∈ XE for almost all

x ∈ R and thus, Ê(x) = −
∫︁

Y
E0(x, ·) ∈ AE for almost all x ∈ R, by definition of

AE . This shows the first part of (6.3.3).
Combining Lemmas 6.3 and 6.4 yields H0(x, ·) ∈ XH for almost all x ∈ R.

As XH ⊂ X div , we deduce that (6.3.3) holds by definition of the effective
magnetic field Ĥ as well as the definition of the space AH .

Step 2: Derivation of (6.3.4a) and (6.3.4c). The verification of (6.3.4a)
is analogous to the one for equation (5.3.7a): take the distributional limit
of (6.0.2a) as η → 0 and use to definition of the effective electromagnetic field
(Ê, Ĥ) as well as the definition of µ̂ to obtain (6.3.4a).

In order to show (6.3.4c), we observe that Ω \R ⊂ Ω \ Ση. We can therefore
take the distributional limit in (6.0.2b) as η → 0 and find

curl H = −iωε0E in Ω \R .

From this identity we infer the validity of (6.3.4c), since E = Ê and H = Ĥ in
Ω \R.

Step 3: Derivation of (6.3.4b). Choose θ ∈ C∞
c (Ω;R) and u ∈ XE . For

η > 0 we set φη(·) := η(·)u(·/η). Using the two-scale convergence of (Hη)η and
the fact that curl u = 0 in Y , we obtain

lim
η→0

∫︂
Ω

⟨︁
Hη, curl [φη]

⟩︁
=
∫︂

Ω

∫︂
Y

⟨︁
H0,∇θ ∧ u

⟩︁
=
∫︂

Ω

⟨︂
∇θ,

∫︂
Y

u ∧H0

⟩︂
. (6.3.5)

The definition of the geometric average implies that∫︂
Y

u ∧H0(x, ·) =
(︃∫︂

Σ∗
u

)︃
∧
∮︂

Σ∗
H0(x, ·) =

(︃∫︂
Σ∗
u

)︃
∧ Ĥ(x) , (6.3.6)
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for almost all x ∈ Ω. Combining (6.3.5) and (6.3.6) we get

lim
η→0

∫︂
Ω

⟨︁
Hη, curl [φη]

⟩︁
=
∫︂

Ω

⟨︂
Ĥ,∇θ ∧

(︃∫︂
Σ∗
u

)︃⟩︂
=
∫︂

Ω

⟨︂
Ĥ, curl

(︂
θ

∫︂
Σ∗
u
)︂⟩︂

. (6.3.7)

On the other hand, the field Hη is a distributional solution to (6.0.2b).
Thus, by exploiting the two-scale convergence of (Eη)η and the fact that u = 0
in Σ, we get

lim
η→0

∫︂
Ω

⟨︁
Hη, curl [φη]

⟩︁
= −iωε0 lim

η→0

∫︂
Ω\Ση

⟨︁
Eη, φη

⟩︁
= −iωε0

∫︂
Ω
θ

∫︂
Σ∗

⟨︁
E0, u

⟩︁
. (6.3.8)

We claim that the identity∫︂
Y

⟨︁
E0(x, ·), u

⟩︁
=
⟨︃
ε̂(x)Ê(x),−

∫︂
Y

u

⟩︃
(6.3.9)

holds for almost all x ∈ Ω. Lemma 6.1 implies that Ê(x) = E(x) for almost
all x ∈ Ω \ R. As ε̂(x) = idC3×3 , identity (6.3.9) holds in Ω \ R. For x ∈ R,
equation (6.3.9) follows from the definitions of εeff and Ê. Substituting (6.3.9)
into (6.3.8) yields

lim
η→0

∫︂
Ω

⟨︁
Hη, curl [φη]

⟩︁
= −iωε0

∫︂
Ω

⟨︂
ε̂Ê, θ−

∫︂
Y

u
⟩︂

= −iωε0

∫︂
Ω

⟨︂
ε̂Ê, θ

∫︂
Σ∗
u
⟩︂
. (6.3.10)

Combining (6.3.7) and (6.3.10) we infer the validity of equation (6.3.4b), since
u ∈ XE was chosen arbitrarily. □

6.4 Discussion of examples

Let us recall that we only used the spaces XE , AE , and AH to derive the
effective equations in Section 5.4. As explained in Remark 8 on page 84, the
spaces XE , AE , and AH are identical in Chapters 5 and 6. Thus, the effective
equations for a perfectly conducting microstructure coincide with the effective
equations for a highly conductive microstructure, and we therefore do not
state the equations again. We would like to stress, though, that the relative
permeability µeff : AH → C3 is a different map in Chapters 5 and 6, since the
function spaces XH are not identical.

The next result is an analogue of Proposition 5.14.

Proposition 6.11. – Let εr ∈ C with Im{εr} > 0, and let Σ ⊂ Y be an
admissible microstructure for which (A4∗) holds. If dimXE ≥ 2, then

spanC LΣ∗ = AH = C3 .
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Proof. This proof mimics the one of 5.14. As dimXE ≥ 2, we deduce from
equation (5.4.5) and from Lemma 6.8(ii) that each k ∈ LΣ∗ induces an element
vk ∈ XH with

∮︁
Σ∗ v

k = k. Thus, LΣ∗ ⊂ AH and hence, since AH is a vector
space, spanC LΣ∗ ⊂ AH .

In order to proof the converse inclusion, choose c ∈ AH . By definition
of AH there exists v ∈ XH with

∮︁
Σ∗ v = c. Let (b∗

1, b
∗
2, b

∗
3) be an orthogonal

basis of R3 for which (A4∗) is satisfied. Then, for each j ∈ L∗, there exists
vj ∈ XH with

∮︁
Σ∗ v

j = b∗
j . Set αl := ⟨cl, b

∗
l ⟩ for l ∈ {1, 2, 3}. The vector field

w := v −
∑︁

j∈L∗ αjv
j is an element of XH with∮︂
Σ∗
w =

∑︂
i∈N∗

αib
∗
i ∈ spanC

{︁
b∗

i

⃓⃓
i ∈ N∗}︁ . (6.4.1)

If
∮︁

Σ∗ w = 0, then

c =
∮︂

Σ∗
v =

∮︂
Σ∗
w +

∑︂
j∈L∗

αj

∮︂
Σ∗
vj =

∑︂
j∈L∗

αjb
∗
j ∈ spanC LΣ∗ ,

which proves the inclusion AH ⊂ spanC LΣ∗ . We are thus left to prove that w
has a vanishing geometric average.

By Lemma 6.8(i), the vector b∗
i /∈ AH for i ∈ N∗. On the other hand, w is

an element of XH and thus∮︂
Σ∗
w = πAH

(︃∮︂
Σ∗
w

)︃
=
∑︂

i∈N∗

αiπAH

(︁
b∗

i

)︁
= 0 . (6.4.2)

This proves the claim. □
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Part III

Limiting absorption principle for
a bounded periodic waveguide

Upwards:- in spite of the spirit that drew it downwards,
towards the abyss, the spirit of gravity, my devil and
archenemy.
Upwards:- although it sat upon me, half-dwarf, half-mole;
paralysed, paralysing; dripping lead in my ear, and thoughts
like drops of lead into my brain.
“Oh Zarathustra,” it whispered scornfully, syllable by
syllable, “you stone of wisdom! you threw yourself high, but
every thrown stone must - fall![...]”
“Halt, dwarf!” said I. “Either I- or you! I, however, am the
stronger of the two:- you knowest not my abysmal thought!
It- could you not endure!”[...]
“Look at this gateway! Dwarf!” I continued, “it has two
faces. Two roads come together here: these has no one yet
gone to the end.[...]”
“But should one follow them further- and even further and
further on, think you, dwarf, that these roads would be
eternally antithetical?”
“Everything straight lies,” murmured the dwarf,
contemptuously. “All truth is crooked; time itself is a circle.”
“You spirit of gravity!” said I wrathfully, “do not take it too
lightly! Or I shall let you squat where you squat, Haltfoot,-
and I carried you high!”

—Friedrich Nietzsche, Thus Spoke Zarathustra,
The Vision and the Riddle





CHAPTER 7
Introduction

Consider an electromagnetic wave (E,H) satisfying the time-harmonic Maxwell
equations {︃curl E = iωµH in Ω ,

curl H = −iωεE in Ω ,

(7.0.1a)
(7.0.1b)

in a domain Ω ⊂ R3, where ω > 0 is the prescribed frequency of the wave,
ε the permittivity and µ the permeability of the medium, respectively. The
equations are complemented by boundary conditions on ∂Ω. For applications
it is interesting to solve the equations in an unbounded domain Ω; in this
case, radiation conditions at infinity must additionally be imposed to ensure
the well-posedness of the problem. There are many radiation conditions for
time-harmonic electromagnetic waves present in the literature, the most promi-
nent being the Silver-Müller radiation condition; see [Sil49], [Mül57], and the
survey [Sch92].

In some cases, the system (7.0.1) of two equations for two unknown fields
can be reduced to a scalar Helmholtz equation

−∆u− k2u = 0 in Ω

with u being a component of one of the fields E or H. For an unbounded
domain Ω, the problem is only well-posed if u also satisfies a radiation condition
at infinity such as the classical Sommerfeld condition [Som12]. Which radiation
condition needs to be imposed depends on the medium Ω: For a homogeneous
medium with a compact boundary, the Sommerfeld radiation condition ensures
well-posedness. In the case of an unbounded homogeneous waveguide Ω :=
R×(0, 1), Svešnikov proved in [Sve50] that the Dirichlet as well as the Neumann
boundary value problems are well posed provided the so-called partial radiation
conditions are imposed. We mention [Rit09, Section 2.4] for a discussion of
different radiation conditions.

The study of wave propagation in a periodic medium Ω has a long history.
Wave propagation in stratified materials has been extensively discussed in the
literature; see, for instance, [Wil84, Wed91, BBDT01]. Recently, the interest has
turned to radiation conditions for closed periodic waveguides; see, for instance,
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Figure 7.1: Cross section of the unbounded waveguide Ω̃ = R × T2. The
dark gray areas represent a periodic assembly Õ of effectively two-dimensional
obstacles Σ.

the articles of Fliss and Joly [FJ15], Lamacz and Schweizer [LS18a], and Kirsch
and Lechleiter [KL18].

From Maxwell to Helmholtz
Instead of studying the full Maxwell system (7.0.1) in a periodic and closed
waveguide, we reduce this system to a scalar Helmholtz-like equation. This
simplification is only valid if the domain Ω and the source terms satisfy certain
assumptions, which we discuss below.

We denote by Ω̃ the unbounded waveguide R×T2, which contains a periodic
assembly of obstacles Õ; see Figure 7.1 for a sketch. Let us assume that Õ is
an open set with Lipschitz boundary. We are interested in the propagation of a
time-harmonic electromagnetic wave (E,H) in this waveguide. Assuming the
obstacles are perfect conductors, (E,H) ∈ L2

loc(Ω̃;C3) × L2
loc(Ω̃;C3) satisfies

the time-harmonic Maxwell equations,⎧⎪⎪⎨⎪⎪⎩
curl E = iωµ0H + fH in Ω̃ ,

curl H = −iωε0E + fE in Ω̃ \ Õ ,

E = H = 0 in Õ ,

(7.0.2a)

(7.0.2b)
(7.0.2c)

in a distributional sense. Here fH ∈ L2(Ω̃;C3) and fE ∈ H(curl , Ω̃ \ Õ) are
given source terms of the form

fH(x1, x2, x3) := fH
3 (x1, x2) e3 (7.0.3a)

and
fE(x1, x2, x3) := fE

1 (x1, x2) e1 +fE
2 (x1, x2) e2 . (7.0.3b)

The two functions fH and fE also vanish almost everywhere in the obstacles Õ.
We note that the system (7.0.2) admits, in general, no unique solution, since
no radiation conditions at infinity are specified.

This system of three equations with two unknown fields can be transformed
into a system involving only the magnetic field H; indeed, taking the distribu-
tional curl in (7.0.2b) and using equation (7.0.2a) yields

curl curl H = ω2µ0ε0H − iωε0f
H + curl fE in Ω̃ \ Õ ,
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provided (E,H) is a distributional solution to (7.0.2). Due to (7.0.2a) the
distributional divergence of H vanishes in Ω̃ and hence the normal trace ⟨H, ν⟩
does not jump across the interface ∂Õ. Consequently, if (E,H) is a distributional
solution to (7.0.2), then H solves⎧⎪⎪⎨⎪⎪⎩

−∆H = ω2µ0ε0H − iωε0f
H + curl fE in Ω̃ \ Õ ,

H = 0 in Õ ,

⟨H, ν⟩ = 0 on ∂Õ .

(7.0.4a)
(7.0.4b)
(7.0.4c)

Equation (7.0.4a) follows from the identity curl curl H = −∆H + ∇ div H.
On the other hand, every distributional solution H of (7.0.4) that is diver-

gence free in Ω̃ \ Õ induces a solution (E,H) to (7.0.2) with the electric field
given by E := (iωε0)−1(fE − curl H)1Ω̃\Õ.

Further simplifications. So far, we have only demanded that the obstacle
Õ has a Lipschitz boundary. In what follows, we additionally assume that it
is independent of x3. We call a set Σ ⊂ (0, 1)3 an effectively two-dimensional
obstacle if

Σ = σ × (0, 1) ,

where σ ⋐ (0, 1)2 is an open, non-empty set with Lipschitz boundary.

(0, 1)3

Figure 7.2: The two
dark grey cylinders rep-
resent an effectively two-
dimensional obstacle Σ.

An example of such an effectively two-dimensional
obstacle is given in Figure 7.2.

Given an effectively two-dimensional obstacle
Σ ⊂ (0, 1)3, we define the set of all obstacles as

Õ :=
⋃︂

m∈Z

(︁
m e1 +Σ

)︁
.

For an effectively two-dimensional obstacle Σ,
the geometry of Õ as well as the geometry of the
waveguide Ω̃ are essentially two-dimensional. We
recall from (7.0.3) that the source terms fH and
fE are also independent of x3. This allows for a
special ansatz of the magnetic field transforming
the vector-valued problem (7.0.4) into a system of
scalar equations. Before presenting this ansatz, we introduce suitable notation:

Ω := R × S1 and O := π1,2
(︁
Õ
)︁
,

where π1,2 : R3 → R2 is given by π1,2(x1, x2, x3) := (x1, x2).
A special ansatz for the magnetic field. We look for a distributional

solution H to (7.0.4) of the form

H(x1, x2, x3) = u(x1, x2) e3 , (7.0.5)

for some function u : Ω → C. Setting h := −iωε0f
H
3 + ∂1f

E
2 − ∂2f

E
1 provides us

with an element of L2(Ω;C) if fH ∈ L2(Ω;C3) and fE ∈ H(curl ,Ω \ O). Let
u ∈ H1

loc(Ω \ O;C) be a distributional solution to{︃
−∆u = ω2µ0ε0u+ h in Ω \ O ,

u = 0 on ∂O .

(7.0.6a)
(7.0.6b)
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Then the vector field H, given in (7.0.5) and extended trivially to Ω, is a
distributional solution to (7.0.4). Furthermore, the distributional divergence of
H vanishes in Ω̃ \ Õ.

In order to have a well-posed problem, system (7.0.6) has to be comple-
mented by radiation conditions at infinity. Choosing radiation conditions and
establishing the existence and uniqueness of a solution to (7.0.6) is out of
the scope of this thesis. Instead, we study (7.0.6) in a bounded waveguide.
More precisely, we fix R ∈ N and l > 0, and consider the bounded waveguide
ΩR := (−R,R) × S1 as well as the box WR,l := (R,R + l) × S1. Denoting by
OR := O ∩ ΩR set of all obstacles in ΩR, we prove that up to a countable set
of singular frequencies k2 := ω2µ0ε0 > 0 there exists a unique distributional
solution u ∈ H1(ΩR+l;C) to{︄

−∆u = k2u+ h in ΩR \ OR ,

u = 0 on ∂OR .

(7.0.7a)
(7.0.7b)

The radiation condition at infinity needs to be replaced appropriately. Loosely
speaking, we demand that, for some large l > 0, the solution u|W−R−l,l

transports
energy to the left and u|WR,l

transports energy to the right; see the next section
for a detailed discussion.

Let us mention that this approach can lead to an existence and uniqueness
result for the Helmholtz equation in an unbounded waveguide, as has been
recently shown by Schweizer in [Sch19].

Replacement of the radiation condition at infinity
The radiation conditions at infinity have to be suitably replaced by conditions
in the boxes W−R−l,l and WR,l. An important ingredient in the formulation of
those conditions play distributional solutions to{︃

−∆u = k2u in Ω \ O ,

u = 0 on ∂O .

(7.0.8a)
(7.0.8b)

Let us consider the following vector space, which contains special solutions to
the above problem:

X :=

⎧⎨⎩u ∈ H1
loc(Ω;C)

⃓⃓⃓⃓
⃓⃓ u is a distributional solution to (7.0.8),
u = 0 in O, and sup

r∈Z
∥u∥L2(Wr,1;C) < ∞

⎫⎬⎭ . (7.0.9)

Elements of X may transport energy in any direction; to indicate in which
direction along the x1-axis energy is transported, we introduce the sesquilinear
forms QR,l : H1(WR,l;C) ×H1(WR,l;C) → C,

QR,l(u, v) := 1
l

∫︂
WR,l

⟨︁
∇u, v e1

⟩︁
, (7.0.10)

for R, l ∈ R \ {0}. We say a function u : Ω → C is quasiperiodic if there exists
ξ ∈ [0, 2π) such that the function u satisfies u(x+ e1) = eiξ u(x) for all x ∈ Ω;
the number ξ is called the quasimoment of u. The following assumption is vital
for our analysis of the Dirichlet problem (7.0.7).
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Assumption 7.1. – We assume k2 > 0 is non-singular in the following sense:

(i) The space X defined in (7.0.9) is finite dimensional. More precisely, there
exists a basis (ϕ−

1 , . . . , ϕ
−
M , ϕ+

1 , . . . , ϕ
+
N ) of X and numbers ξ−

k , ξ
+
j ∈ [0, 2π)

for k ∈ {1, . . . ,M} and j ∈ {1, . . . , N} such that

(a) ϕ−
k is ξ−

k -quasiperiodic;
(b) ϕ+

j is ξ+
j -quasiperiodic, and

(c) The quasimoments ξ−
1 , . . . , ξ

−
M , ξ+

1 , . . . , ξ
+
N are pairwise distinct.

(ii) There exists l0 ∈ N such that the basis functions ϕ−
1 , . . . , ϕ

−
M , ϕ+

1 , . . . , ϕ
+
N

satisfy

Im
{︂
Q0,l0

(︁
ϕ−

k , ϕ
−
k

)︁}︂
< 0 for all k ∈ {1, . . . ,M} , (7.0.11a)

and
Im
{︂
Q0,l0

(︁
ϕ+

j , ϕ
+
j

)︁}︂
> 0 for all j ∈ {1, . . . , N} . (7.0.11b)

Let (ϕ−
1 , . . . , ϕ

−
M , ϕ+

1 , . . . , ϕ
+
N ) be a basis of X for which (i) and (ii) in

Assumption 7.1 are satisfied. We will show that such a basis satisfies (ii) for
any l > 0; see Remark 9. Instead of the space X, we consider the following
subspaces of H1(W0,l;C):

X−
l := spanC

{︂
ϕ−

k |W0,l

⃓⃓⃓
k ∈ {1, . . . ,M}

}︂
and

X+
l := spanC

{︂
ϕ+

j |W0,l

⃓⃓⃓
j ∈ {1, . . . , N}

}︂
.

Loosely speaking, a function in X−
l transports energy to the left and a function in

X+
l transports energy to the right. Let us recall that we look for a distributional

solution u ∈ H1(ΩR+l;C) to (7.0.7) such that u|W−R−l,l
transports energy to

the left and u|WR,l
transports energy to the right. To make this precise, we

introduce the operators R±
R,l(u) : W0,l → C by

R−
R,l(u)(x1, x2) := u

(︁
x1 −R− l, x2

)︁
and R+

R,l(u)(x1, x2) := u
(︁
x1 +R, x2

)︁
.

The function space in which we seek a solution u to (7.0.7) is

VR,l :=
{︄
u ∈ H1(ΩR+l;C)

⃓⃓⃓⃓
⃓R−

R,l(u) ∈ X−
l , R+

R,l(u) ∈ X+
l

and u = 0 in OR

}︄
. (7.0.12)

7.1 Main results

A standard tool to establish the existence of a solution to a Helmholtz-like
equation,

Lu := −∇
(︁
a∇u

)︁
− k2u = f , (7.1.1)

in an unbounded domain (with appropriate boundary conditions), is the so-
called limiting absorption principle. The idea of this principle is to add a small
absorption term leading to the problem

Luδ + iδuδ = f (7.1.2)
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for δ > 0. Usually, the existence of a solution uδ to (7.1.2) is easy to establish.
The challenging part is to show that the sequence (uδ)δ converges in some
sense to a limit function u, which is a candidate for a solution to (7.1.1). The
first limiting absorption principle was formulated for the Helmholtz equation
in R2 by Ignatowsky [vI05] and since then this program has been applied
successfully in several settings [BBDT01, Hoa11, Rad14, FJ15, KL18]. The
limiting absorption principle is usually based on operator theoretical results.

As we seek a distributional solution u ∈ H1(ΩR+l;C) to (7.0.7) that satisfies
the special boundary condition in the boxes W−R−l,l and WR,l, it is convenient
to formulate the problem using sesquilinear forms instead of operators. We
nevertheless follow the approach to use a limiting absorption principle in order
to prove the existence (and uniqueness) of a solution u ∈ VR,l to (7.0.7).

Abstract limiting absorption principle. In Chapter 8, we derive an
abstract limiting absorption principle for sesquilinear forms on reflexive Banach
spaces, generalising the results from [SU19].

Given (real or complex) Banach spaces X and Y, a bounded sesquilinear
form b on X × Y, and ℓ ∈ Y∗, we seek an element u ∈ X for which

b(u, ·) = ℓ(·) . (7.1.3)

If X = Y with X a Hilbert space, the Lax-Milgram lemma implies the existence
of a solution u to (7.1.3) provided b is coercive. Even in the general case of two
Banach spaces X and Y, the existence of such an element u is standard provided
b satisfies the inf-sup condition (also known as Ladyzhenskaya-Babuška-Brezzi
condition). But how can we prove the existence of a solution u ∈ X to (7.1.3)
if b does not satisfy the inf-sup condition? Borrowing the idea of the limiting
absorption principle, we propose the following approach: Instead of b, we
consider a family (bδ)δ of sesquilinear forms for which there exists a unique
solution uδ ∈ X to

bδ

(︁
uδ, ·

)︁
= ℓ(·) ,

for each δ > 0. Under suitable assumptions on the sesquilinear forms (bδ)δ, the
sequence (uδ)δ converges to a solution u ∈ X of (7.1.3). This statement, a lim-
iting absorption principle for sesquilinear forms, is the main result of Chapter 8
and it has the character of a Fredholm alternative: ker(b) = {0} implies the
existence (and uniqueness) statement.

One crucial assumption on (bδ)δ is the existence of a compact operator
K : X → Y∗ and a constant c > 0 such that

sup
v∈Y

∥v∥Y=1

⃓⃓⃓
bδ(u, v) + ⟨Ku, v⟩Y∗,Y

⃓⃓⃓
≥ c∥u∥X for all u ∈ X ,

and each δ > 0. Loosely speaking, the operator B : X → Y∗, u ↦→ b(u, ·)
satisfies the inf-sup condition up to a compact perturbation. This assumption
essentially restricts the applicability of the abstract limiting absorption principle
to equations posed in bounded domains.

A key ingredient for the abstract limiting absorption principle is a Fredholm
alternative for sesquilinear forms; see Proposition 8.2. Our result is not new
but rather a variant of known results [Stu69, Kre77].

Application to the Dirichlet problem (7.0.7). In Chapter 9, we use
the abstract limiting absorption principle, derived in Chapter 8, to study the
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question if there exists a unique distributional solution u ∈ VR,l to (7.0.7). To
this end, we first prove that for each δ > 0 and every h ∈ L2(ΩR;C) there is a
unique distributional solution uδ ∈ VR,l to{︄

−∆uδ = k2(1 + iδ)uδ + h in ΩR \ OR ,

uδ = 0 on ∂OR ,

(7.1.4a)
(7.1.4b)

provided l > 0 is large enough and k2 > 0 is non-singular in the sense of
Assumption 7.1. This existence and uniqueness result follows from a Fredholm
alternative for sesquilinear forms.

Using an appropriate sesquilinear form b : VR,l ×VR,l → C, the limit problem
for δ = 0 can be written as

b(u, ·) = ⟨h, ·⟩V ∗
R,l

,VR,l
. (7.1.5)

If k2 > 0 is non-singular, ker(b) = {0}, and l > 0 is large enough, then the
sequence (uδ)δ of solutions to (7.1.4) converges weakly in VR,l to a limit function
u which satisfies (7.1.5). The assumptions on k2 and l are necessary to ensure
the existence of the sequence (uδ)δ. However, whether the kernel of b is trivial
depends on the value of k2 > 0. We prove, using standard arguments, that there
is an at most countable set of non-singular values k2 > 0 such that ker(b) ̸= {0}.

Similar approaches
Dohnal and Schweizer [DS18] consider, for H > 0, the following Helmholtz-like
equation

Lu := −∇
(︁
a∇u

)︁
− k2u = f (7.1.6)

in the closed waveguide R × (0, H)♯; the symbol ♯ indicates periodic boundary
conditions on the lateral boundary. The source f has a compact support and
the coefficient field a : R2 → R is bounded and satisfies a(x) ≥ c > 0 for all
x ∈ R2. Moreover, a is assumed to be periodic in the left half-space and in
the right half-space: a(x) = a−(x) for x ∈ (−∞, 0) × R and a(x) = a+(x) for
x ∈ [0,∞) × R, where a−, a+ : R2 → R are periodic functions with the same
period.

In order to treat (7.1.6) numerically, Dohnal and Schweizer choose a number
R > 0 and truncate the waveguide R × (0, H)♯ to obtain a bounded domain
(−R,R)×(0, H)♯. They further introduce a small absorption term δ > 0 leading
to the equation

Luδ + iδuδ = f in (−R,R) × (0, H)♯ . (7.1.7)

Similar to our approach, discussed above, the radiation condition at infinity is
replaced by a “radiation condition at a finite distance”. To this end, they define,
for L > 0, the radiation boxes (−R−L,−R) × (0, H)♯ and (R,R+L) × (0, H)♯.

In [DS18], it is shown that for every δ > 0 there exists a unique distributional
solution uδ ∈ H1(ΩR+L;C) to (7.1.7) that satisfies the following “radiation
condition at a finite distance”: uδ restricted to (−R− L,−R) × (0, H)♯ can be
expanded in finitely many left-going Bloch waves and uδ restricted to the box
(R,R + L) × (0, H)♯ can be expanded in finitely many right-going Bloch waves.
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We stress that this existence result only holds for δ > 0. The limit δ → 0
was discussed in [SU19]. More precisely, the following is shown in [SU19]: There
exists a sequence (uδ)δ in H1(ΩR+L;C) of distributional solutions to (7.1.7) and
each member uδ of this sequence satisfies the “radiation condition at a finite
distance”. Up to a countable set of singular frequencies k2 > 0, this sequence
converges weakly in H1(ΩR+L;C) to a function u that is a distributional solution
to

Lu = f in (−R,R) × (0, H)♯ (7.1.8)
and that satisfies the “radiation condition at a finite distance”.

Let us stress that, although the approach in Chapters 8 and 9 is inspired
by [SU19], there are two main differences: (i) the equations we consider are
different. Indeed, in this thesis we focus on the Dirichlet problem (7.0.7) in a
perforated, bounded, and closed waveguide whereas in [SU19], the Helmholtz-
like equation (7.1.6) is studied in a bounded and closed waveguide. (ii) In
contrast to [DS18, SU19], we do not use Bloch waves to formulate the “radiation
condition at a finite distance” but solutions to (7.0.8) that belong to the space
VR,l, which is defined in (7.0.12).

7.2 Function spaces and a special boundary condition

In order to replace the radiation conditions at infinity, we introduced the vector
spaceX in (7.0.9). This section is devoted to a more detailed study of elements of
X. Let us recall that the sesquilinear form QR,l : H1(WR,l;C)×H1(WR,l;C) →
C defined in (7.0.10) is used to indicate in which direction along the x1-axis
energy is transported by elements of X. The following flux identities turn out
to be useful.

Lemma 7.1. (Flux identities) – Let R1, R2 ∈ R and l1, l2 > 0 such that R1 +
l1 ≤ R2. Then for any u ∈ X there holds

Im
{︁
QR1,l1(u, u)

}︁
= Im

{︁
QR2,l2(u, u)

}︁
. (7.2.1)

Moreover, if u ∈ X is quasiperiodic, then

Im
{︁
Q0,l1(u, u)

}︁
= Im

{︁
Q0,l2(u, u)

}︁
(7.2.2)

for all l1, l2 > 0.

Proof. Define the cut-off function θ : Ω → [0, 1],

θ(x1, x2) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 x1 < R1 and x1 > R2 + l2

1 x1 ∈ (R1 + l1, R2)
1
l1

(︁
x1 −R1

)︁
x1 ∈ [R1, R1 + l1]

1
l2

(︁
R2 + l2 − x1

)︁
x1 ∈ [R2, R2 + l2]

. (7.2.3)

We refer to Figure 7.3 for a sketch of θ. As u is a distributional solution
to (7.0.8), for every v ∈ H1(Ω;C) with compact support that satisfies v = 0 in
O, there holds

0 =
∫︂

Ω
⟨∇u,∇v⟩ − k2

∫︂
Ω
uv̄ .
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R1 R2R1 + l1 R2 + l2

1

θ(x1)

x1

Figure 7.3: Sketch of the cut-off function θ defined in (7.2.3).

Substituting v = θu, we find that

0 =
∫︂

Ω
θ
⃓⃓
∇u
⃓⃓2 − k2

∫︂
Ω
θ|u|2 + 1

l1

∫︂
WR1,l1

⟨︁
∇u, u e1

⟩︁
− 1
l2

∫︂
WR2,l2

⟨︁
∇u, u e1

⟩︁
.

Taking the imaginary part of the above equation yields the claim.
Let us assume that u ∈ X is ξ-quasiperiodic. For R1 = 0 and R2 = l1, we

deduce from (7.2.1) that

Im
{︁
Q0,l1(u, u)

}︁
= Im

{︁
Ql1,l2(u, u)

}︁
= 1
l2

Im
{︃∫︂

Wl1,l2

⟨︁
∇u, u e1

⟩︁}︃
= 1
l2

Im
{︃∫︂

W0,l2

eiξl1
⟨︁
∇u, u e1

⟩︁
e−iξl1

}︃
= Im

{︁
Q0,l2(u, u)

}︁
.

This proves the claim. □

We say that a basis (ϕ−
1 , . . . , ϕ

−
M , ϕ+

1 , . . . , ϕ
+
N ) of X is admissible if the

conditions (i) and (ii) of Assumption 7.1 are satisfied.

Remark 9. – In Assumption 7.1(ii) on page 95 we demand that there exists
l0 ∈ N such that (7.0.11) holds. As the basis functions (ϕ−

1 , . . . , ϕ
−
M , ϕ+

1 , . . . , ϕ
+
N )

are assumed to be quasiperiodic, we infer from the flux identity (7.2.2) that (7.0.11)
is satisfied for all l > 0 if it is satisfied for some l0 ∈ N.

Instead of X, we consider the following subspace of H1(W0,l;C),

Xl :=
{︂
u|W0,l

⃓⃓⃓
u ∈ X

}︂
, (7.2.4)

for l ∈ N. We note that if k2 > 0 is non-singular in the sense of Assump-
tion 7.1, then Xl is finite dimensional. More precisely, Xl admits a basis
(ψ−

1 , . . . , ψ
−
M , ψ+

1 , . . . , ψ
+
N ) of quasiperiodic functions with pairwise distinct quasi-

moments such that

Im
{︁
Q0,l(ψ−

k , ψ
−
k )
}︁
< 0 and Im

{︁
Q0,l(ψ+

j , ψ
+
j )
}︁
> 0
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for all k ∈ {1, . . . ,M} and j ∈ {1, . . . , N}. Such a basis is admissible if there
exists an admissible basis (ϕ−

1 , . . . , ϕ
−
M , ϕ+

1 , . . . , ϕ
+
N ) of X such that

ψ−
k = ϕ−

k |W0,l
and ψ+

j = ϕ+
j |W0,l

(7.2.5)

for all k ∈ {1, . . . ,M} and j ∈ {1, . . . , N}. We also say that the basis
(ψ−

1 , . . . , ψ
−
M , ψ+

1 , . . . , ψ
+
N ) is induced by (ϕ−

1 , . . . , ϕ
−
M , ϕ+

1 , . . . , ϕ
+
N ).

Some properties of functions in Xl. Throughout this section, l ∈ N
is arbitrary and fixed unless otherwise stated. The fact that Xl is a finite
dimensional subspace of H1(W0,l;C) yields the following regularity result.

Lemma 7.2. (Regularity estimate) – Assume k2 > 0 is non-singular. Choose
l ∈ N and let Xl be the function space defined in (7.2.4). Then there exists a
constant C > 0 such that

∥ϕ∥H1(W0,l;C) ≤ C∥ϕ∥L2(W0,l;C)

for all ϕ ∈ Xl.

Proof. Let (ψ1, . . . , ψK) be a basis of Xl that is orthogonal with respect to the
L2(W0,l;C)-scalar product. As the basis consists of only a finite number of
functions, we find a constant C0 > 0 such that⃦⃦

∇ψj

⃦⃦2
L2(W0,l;C2) ≤ C0∥ψj∥2

L2(W0,l;C) for all j ∈ {1, . . . ,K} . (7.2.6)

Fix a function ϕ ∈ Xl. Then ϕ =
∑︁K

j=1 αjψj in Xl for some constants
α1, . . . , αK ∈ C. Using (7.2.6) and the orthogonality of (ψ1, . . . , ψK) with
respect to the L2(W0,l;C)-scalar product, we find that

⃦⃦
∇ϕ
⃦⃦2

L2(W0,l;C2) =
∫︂

W0,l

⃓⃓⃓ K∑︂
j=1

αj∇ψj

⃓⃓⃓2
≤ C1

K∑︂
j=1

|αj |2
∫︂

W0,l

⃓⃓
∇ψj

⃓⃓2
≤ C2

K∑︂
j=1

∫︂
W0,l

⃓⃓
αjψj

⃓⃓2 = C2∥ϕ∥2
L2(W0,l;C) .

From this inequality it is straightforward to deduce the claim. □

An admissible basis (ψ−
1 , . . . , ψ

−
M , ψ+

1 , . . . , ψ
+
N ) of Xl is not necessarily or-

thogonal with respect to the sesquilinear form Q0,l. However, we have the
following “approximate orthogonality” result.

Lemma 7.3. (Approximate orthogonality) – Let k2 > 0 be non-singular, and
let (ϕ−

1 , . . . , ϕ
−
M , ϕ+

1 , . . . , ϕ
+
N ) be an admissible basis of X. For every ε > 0 there

exists a number l0 ∈ N such that for all l ∈ N with l ≥ l0 the following statement
holds: If u, v ∈ {ϕ−

1 |W0,l
, . . . , ϕ−

M |W0,l
, ϕ+

1 |W0,l
, . . . , ϕ+

N |W0,l
} with u ̸= v, then⃓⃓

Q0,l(u, v)
⃓⃓

≤ ε . (7.2.7)

Proof. Let (ϕ−
1 , . . . , ϕ

−
M , ϕ+

1 , . . . , ϕ
+
n ) be an admissible basis of X. Fix two

distinct elements ũ and ṽ of {ϕ−
1 , . . . , ϕ

−
M , ϕ+

1 , . . . , ϕ
+
n } and denote their quasi-

moments by ξũ, ξṽ ∈ [0, 2π). We recall that ξũ ̸= ξṽ by Assumption 7.1(i)(c).
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Using the quasiperiodicity of ũ and ṽ, we calculate that, for each l ∈ N,

Q0,l

(︂
ũ|W0,l

, ṽ|W0,l

)︂
= 1
l

∫︂
W0,l

⟨︁
∇ũ, ṽ e1

⟩︁
= 1
l

l−1∑︂
k=0

∫︂
Wk,1

⟨︁
∇ũ, ṽ e1

⟩︁
= 1
l

l−1∑︂
k=0

∫︂
W0,1

eikξũ
⟨︁
∇ṽ, ṽ e1

⟩︁
e−ikξṽ

= 1
l

l−1∑︂
k=0

eik(ξũ−ξṽ)
∫︂

W0,1

⟨︁
∇ũ, ṽ e1

⟩︁
.

As ξũ ≠ ξṽ, the sum l−1∑︁l−1
k=0 eik(ξũ−ξṽ) converges to 0 as l → ∞. As the

admissible basis (ϕ−
1 , . . . , ϕ

−
M , ϕ+

1 , . . . , ϕ
+
N ) contains only finitely many elements,

we can choose l0 ∈ N large enough such that (7.2.7) holds for every two distinct
elements u and v of the admissible basis. Thus the claim is proved. □

Assume (ϕ−
1 , . . . , ϕ

−
M , ϕ+

1 , . . . , ϕ
+
N ) is an admissible basis of X. For each

l > 0, we define the two subspaces of Xl,

X−
l := spanC

{︂
ϕ−

k |W0,l

⃓⃓⃓
k ∈ {1, . . . ,M}

}︂
(7.2.8a)

and
X+

l := spanC

{︂
ϕ+

j |W0,l

⃓⃓⃓
j ∈ {1, . . . , N}

}︂
. (7.2.8b)

The approximate orthogonality of the basis (ϕ−
1 , . . . , ϕ

−
M , ϕ+

1 , . . . , ϕ
+
N ) allows

us to estimate the L2(W0,l;C)-norm of elements in X±
l by the bilinear form

Im{QW0,l
(·, ·)}; this observations plays a key role in establishing the existence

of a solution to the radiation problem with absorption (7.0.7).

Lemma 7.4. – Let k2 > 0 be non-singular, and let (ϕ−
1 , . . . , ϕ

−
M , ϕ+

1 , . . . , ϕ
+
N )

be an admissible basis of X. Then there exists l0 ∈ N such that for all l ∈ N
with l ≥ l0 and for some c = c(l) > 0 there holds

− Im
{︁
Q0,l(v, v)

}︁
≥ c∥v∥2

L2(W0,l,C) and Im
{︁
Q0,l(u, u)

}︁
≥ c∥u∥2

L2(W0,l,C) ,

for all v ∈ X−
l and u ∈ X+

l .

Proof. We perform the proof of the statement for v ∈ X−
l , since the argument

for u ∈ X+
l is analogous.

For each l ∈ N we define two positive constants

γl := min
k∈{1,...,M}

(︂
− Im

{︁
Q0,l(ϕ−

k , ϕ
−
k )
}︁)︂

and ηl := max
k,n∈{1,...,M}

k ̸=n

⃓⃓
Q0,l(ϕ−

n , ϕ
−
k )
⃓⃓
.

The constant γl is independent of l because of the flux identity (7.2.2); in other
words, γl = γ1 for all l > 0. By Lemma 7.3, we find l0 ∈ N such that for all
l ∈ N with l ≥ l0 there holds ηl ≤ γ1(2M)−1.

Fix such an l ∈ N and let (ψ−
1 , . . . , ψ

−
M , ψ+

1 , . . . , ψ
+
N ) be an admissible

basis for Xl that is induced by (ϕ−
1 , . . . , ϕ

−
M , ϕ+

1 , . . . , ϕ
+
N ) . For every v ∈ X−

l ,
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there exist constants α1, . . . , αM ∈ C such that v =
∑︁M

k=1 αkψ
−
k in X−

l . A
straightforward calculation yields that

− Im
{︁
Q0,l(v, v)

}︁
= −

M∑︂
k=1

|αk|2 Im
{︁
Q0,l(ψ−

k , ψ
−
k )
}︁

−
M∑︂

k,n=1
k ̸=n

Im
{︁
αkαnQ0,l(ψ−

k , ψ
−
n )
}︁

≥ γ1

M∑︂
k=1

|αk|2 − ηl

M∑︂
k,n=1
k ̸=n

|αk| |αn| .

As ηl ≤ γ1(2M)−1, we infer the estimate

− Im
{︁
Q0,l(v, v)

}︁
≥ γ1

2

M∑︂
k=1

|αk|2 . (7.2.9)

The following estimate

∥v∥2
L2(W0,l;C) =

∫︂
W0,l

⃓⃓⃓⃓ M∑︂
k=1

αkψ
−
k

⃓⃓⃓⃓2
≤ M

M∑︂
k=1

|αk|2
(︃∫︂

W0,l

|ψ−
k |2
)︃

≤ C

M∑︂
k=1

|αk|2

together with (7.2.9) yields the claim. □

Variational formulation. Throughout this section R ∈ N and l > 0 are
fixed. The existence of a solution u ∈ VR,l to (7.0.7) is established using a
limiting absorption principle. Consequently, in a first step, we seek a distribu-
tional solution uδ ∈ VR,l to (7.1.4). For a weak formulation of this problem
with absorption, we introduce the function ϑ : ΩR+l → [0, 1],

ϑ(x1, x2) :=

⎧⎪⎪⎨⎪⎪⎩
0 for |x1| ≥ R+ l ,

1 for |x1| ≤ R ,

1
l

(︁
R+ l − |x1|

)︁
otherwise

.

With the help of ϑ we define the sesquilinear form bδ : VR,l × VR,l → C,

bδ(u, v) :=
∫︂

ΩR+l

ϑ
⟨︁
∇u,∇v

⟩︁
− k2(︁1 + iδ

)︁ ∫︂
ΩR+l

ϑuv̄

−Q0,l

(︁
R+

R,l(u),R+
R,l(v)

)︁
+Q0,l

(︁
R−

R,l(u),R−
R,l(v)

)︁
.

(7.2.10)

Let us recall that we look for a distributional solution u to (7.0.7) that is
an element of VR,l and as such satisfies conditions in the boxes W−R−l,l and
WR,l. The solution concept we introduce in the next definition contains these
boundary conditions.

Definition 7.5. (Solution concept) – We say that u : ΩR+l → C is a solution
to the radiation problem with damping if u is an element of VR,l and satisfies

bδ(u, v) =
∫︂

ΩR

hv̄ (7.2.11)
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for all v ∈ VR,l. If u satisfies (7.2.11) for δ = 0, then u is a solution to the
radiation problem.

For later purposes, we introduce the sesquilinear form QR,l : VR,l ×VR,l → C,

QR,l(u, v) := Q0,l

(︁
R+

R,l(u),R+
R,l(v)

)︁
−Q0,l

(︁
R−

R,l(u),R−
R,l(v)

)︁
. (7.2.12)
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CHAPTER 8
Abstract limiting

absorption principle for
sesquilinear forms

This chapter is devoted to the proof of an abstract limiting absorption principle.
One key result in the proof of this principle is a Fredholm alternative for
sesquilinear forms, which we discuss in the next section.

8.1 Fredholm alternative for sesquilinear forms

We recall from Section 1.1 that a bounded linear operator T : X → Y between
Banach spaces is a Fredholm operator if its kernel kerT and its cokernel
cokerT are finite dimensional vector spaces. The index of T is the integer
indT := dim kerT−dim cokerT . One classical version of Fredholm’s alternative
is the following: if T : X → Y is a Fredholm operator with index 0, then either
for every f ∈ Y there exists a unique solution u ∈ X to the equation Tu = f or
there is a non-trivial solution u ̸= 0 to Tu = 0.

As we mainly focus on sesquilinear forms b on normed spaces, we formulate
a Fredholm alternative for such maps. Let E and V be normed spaces over the
same field F, and let b : E×V → F be a sesquilinear form. Fredholm alternatives
for bilinear forms are well-known in the literature; indeed, Stummel [Stu69,
§1 and §2] developed a Fredholm theory for bilinear forms in the case E = V
with V a Hilbert space. This theory was later generalised by Kress [Kre77] to
the case of bilinear forms b : X × Y → R on reflexive Banach spaces X and Y.
We also mention the more recent article by Arendt and coauthors [AtEKS14,
Lemma 4.1] in which a Fredholm-Lax-Milgram lemma is employed to establish
the self-adjointness of a Dirichlet-to-Neumann graph.

Let us recall that a sesquilinear form b : E × V → F is linear in its first
argument and anti-linear in its second. Note that b is bilinear if F = R. We
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define the kernel of b as the set

ker(b) :=
{︂
u ∈ E

⃓⃓⃓
b(u, v) = 0 for all v ∈ V

}︂
.

The adjoint sesquilinear form b∗ : V × E → F is given by b∗(v, u) := b(u, v). If
F = R this reduces to b∗(v, u) = b(u, v).

We also remind the reader that V ∗ denotes the set of anti-linear and bounded
maps V → F.

Definition 8.1. (Gårding inequality) – Let E and V be normed spaces over
the field F. A sesquilinear form b : E × V → F satisfies a Gårding inequality if
there exist a constant c > 0 and a compact linear operator K : E → V ∗ such
that

sup
v∈V

∥v∥V =1

⃓⃓
b(u, v) + ⟨Ku, v⟩V ∗,V

⃓⃓
≥ c∥u∥E for all u ∈ E .

At risk of redundancy, we remind the reader that every reflexive normed
space is a Banach space; see Remark 2 on page 14. However, throughout this
section we write “reflexive normed space” instead of “reflexive Banach space”
to emphasise that completeness is not used in the proofs.

Proposition 8.2. (Fredholm alternative for sesquilinear forms) – Let X be a
Banach space over the field F, and let V be a reflexive normed space over the
same field. Let b : X × V → F be a bounded sesquilinear form that satisfies a
Gårding inequality with the compact operator K : X → V ∗. Assume further that
for every v ∈ V \ {0} there is an element u ∈ X such that

b(u, v) + ⟨Ku, v⟩V ∗,V ̸= 0 .

Then the following statements hold:

(i) Let ℓ ∈ V ∗. There exists u ∈ X with

b(u, ·) = ℓ(·) (8.1.1)

if and only if
ℓ(v) = 0 for all v ∈ ker(b∗) .

(ii) The spaces ker(b) and ker(b∗) are finite dimensional and

dim ker(b) = dim ker(b∗) .

(iii) If ker(b) = {0}, then for every ℓ ∈ V ∗ there is a unique u ∈ X such
that (8.1.1) holds.

The following result will be useful in the proof of Proposition 8.2. We
remind the reader that the notion of an X-elliptic sesquilinear form was defined
in (1.2.2).
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Lemma 8.3. – Let X be a Banach space over the field F, and let V be a reflexive
normed space over the same field. Let b : X × V → F be a bounded sesquilinear
form that satisfies a Gårding inequality with compact operator K : X → V ∗.
Assume further that for every v ∈ V \ {0} there exists an element u ∈ X such
that

b(u, v) + ⟨Ku, v⟩V ∗,V ̸= 0 . (8.1.2)

Then B : X → V ∗, u ↦→ b(u, ·) is a Fredholm operator with indB = 0.

Proof. The sesquilinear form b is linear in its first argument and bounded,
which implies linearity and boundedness of B. The operator (B +K) : X → V ∗

induces a sesquilinear form a : X × V → F,

a(u, v) := ⟨(B +K)u, v⟩V ∗,V = b(u, v) + ⟨Ku, v⟩V ∗,V .

Thanks to the boundedness of b andK, the sesquilinear form a is bounded as well.
Moreover, a is X-elliptic, since b satisfies a Gårding inequality with the compact
operator K. Due to (8.1.2), the sesquilinear form a is non-degenerate. We can
therefore apply Proposition 1.13 and find that (B +K) : X → V ∗ is a Banach
space isomorphism and as such a Fredholm operator with ind(B + K) = 0.
By Lemma 1.12, the Fredholm index is stable under compact perturbations,
and hence, B = (B + K) − K is a Fredholm operator with indB = 0. This
proves the claim. □

Let T : E → V be a linear operator between two normed vector spaces. We
recall from Section 1.1 that the dual operator T ′ : V ′ → E′ is determined by the
identity (1.1.1). Similarly, the anti-dual operator T ∗ : V ∗ → E∗ is defined by

⟨v∗, Tu⟩V ∗,V = ⟨T ∗v∗, u⟩E∗,E for all u ∈ E and v∗ ∈ V ∗ .

The annihilator ⊥(U ′) of a linear subspace U ′ of V ′ is defined in (1.1.3); we
recall that ⊥(U ′) ⊂ V . If U∗ is a linear subspace of V ∗, we set

⊥(U∗) :=
{︂
v ∈ V

⃓⃓⃓
⟨u∗, v⟩V ∗,V = 0 for all u∗ ∈ U∗

}︂
.

If F = C, the two natural dual spaces V ′ and V ∗ of a normed space V are
isometrically isomorphic via the map V ′ → V ∗, ℓ ↦→ ℓ. Using this isomorphism
it is straightforward to show that

⊥(kerT ′) = ⊥(kerT ∗) (8.1.3)

for every linear and bounded operator T : E → V between normed spaces over
C. In the case F = R, the two spaces V ′ and V ∗ coincide and (8.1.3) holds
trivially.

Having Lemma 8.3 at hand, we can perform the proof of Proposition 8.2.

Proof (of Proposition 8.2). Due to Lemma 8.3, the operator B : X → V ∗, u ↦→
b(u, ·) is a Fredholm operator with indB = 0.

(i) Problem (8.1.1) is equivalent to Bu = ℓ in V ∗. As B is a Fredholm
operator, its image is closed by Lemma 1.9. By Banach’s closed range theo-
rem, Proposition 1.1, there holds imB = ⊥(kerB′). This together with (8.1.3)
implies that ℓ ∈ imB if and only if ℓ ∈ ⊥(ker(B∗)). As V is reflexive, we shall
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identify V ∗∗ with V ; in particular, ker(B∗) is viewed as a subset of V . The
claim is thus proved if we show that ker(B∗) = ker(b∗), since ℓ ∈ ⊥(ker(b∗)) if
and only if

ℓ(v) = 0 for all v ∈ ker(b∗) .
Using the definition of the adjoint sesquilinear form b∗, it is straightforward

to show the identity b∗(v, u) = ⟨B∗v, u⟩X∗,X for all u ∈ X and v ∈ V . This
implies in particular that ker(b∗) = ker(B∗), and claim (i) is proved.

(ii) As B is a Fredholm operator, its kernel is finite dimensional and hence
dim ker(b) < ∞. Moreover, B∗ : V → X∗ is also a Fredholm operator with
indB∗ = − indB = 0. As discussed in Section 1.1, the vector spaces (imB)⊥

and (V/ imB)′ are isomorphic, and (imB)⊥ = kerB′. Consequently, (V/ imB)∗

and kerB∗ are isomorphic, finite dimensional vector spaces. As indB = 0, we
therefore find

dim kerB = dim cokerB = dim
(︁
V/ imB

)︁
= dim

(︁
V/ imB

)︁∗ = dim ker(B∗) .

The claim follows since kerB = ker(b) and ker(B∗) = ker(b∗).
(iii) Existence of an element u ∈ X such that (8.1.1) holds follows from (i).

As ker(b) = {0}, the element u is the only solution to equation (8.1.1). □

If we consider a sesquilinear form b : H × H → F on a Hilbert space H, we
have the following special case of the Fredholm alternative.

Corollary 8.4. (Fredholm alternative for Hilbert spaces) – Let b : H × H →
F be a bounded sesquilinear form on a Hilbert space H over the field F. Assume
that there exists a compact operator K : H → H∗ and a constant c > 0 such that⃓⃓

b(u, u) + ⟨Ku, u⟩H∗,H

⃓⃓
≥ c∥u∥2

H for all u ∈ H . (8.1.4)
Then the following statements hold:

(i) Let ℓ ∈ H∗. There exists u ∈ H with

b(u, ·) = ℓ(·) (8.1.5)

if and only if
ℓ(v) = 0 for all v ∈ ker(b∗) .

(ii) The spaces ker(b) and ker(b∗) are finite dimensional and

dim ker(b) = dim ker(b∗) .

(iii) If ker(b) = {0}, then for every ℓ ∈ H∗ there is a unique u ∈ H such
that (8.1.5) holds.

Proof. The claim follows from Proposition 8.2 if we show that b satisfies a
Gårding inequality and that b is non-degenerate. Inequality (8.1.4) implies that
b is non-degenerate. Moreover, for every u ∈ H, u ̸= 0, there holds

sup
v∈H

∥v∥=1

⃓⃓⃓
b(u, v) + ⟨Ku, v⟩H∗,H

⃓⃓⃓
≥
⃓⃓⃓⃓
b

(︃
u,

u

∥u∥H

)︃
+
⟨︃
Ku,

u

∥u∥H

⟩︃
H∗,H

⃓⃓⃓⃓
≥ c∥u∥H ,

and hence b satisfies a Gårding inequality. □
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8.2 Limiting absorption principle

This section is devoted to a limiting absorption principle for sesquilinear forms.

Assumption 8.1. – Let X be a Banach space over the field F, and let V be
a normed space over the same field. We assume that the sesquilinear form
b : X × V → F satisfies the following two requirements:

(i) (Uniqueness) The kernel of b is trivial.

(ii) (Gårding) There exist c > 0 and a compact linear operator K : X → V ∗

such that

sup
v∈V

∥v∥V =1

⃓⃓
b(u, v) + ⟨Ku, v⟩V ∗,V

⃓⃓
≥ c∥u∥X for all u ∈ X .

(iii) (Nontriviality) For every v ∈ V \ {0} there is an element u ∈ X such that

b(u, v) + ⟨Ku, v⟩V ∗,V ̸= 0 ,

where K : X → V ∗ is the compact operator from (ii).

We observe that every coercive sesquilinear form H × H → F on a Hilbert
space H satisfies Assumption 8.1.

Lemma 8.5. – Let X be a Banach space over the field F, and let V be a reflexive
normed space over the same field. Let b : X × V → F be a bounded sesquilinear
form that satisfies Assumption 8.1. Then, for every ℓ ∈ V ∗, there is a unique
u ∈ X such that

b(u, ·) = ℓ(·) .

Proof. The claim follows from applying Proposition 8.2(iii). □

Having this existence result at hand, we can state and proof the main result
of this section.

Theorem 8.6. (Abstract limiting absorption principle) – Let X be a reflexive
Banach space over the field F, and let V be a reflexive normed space over the
same field. Let b : X × V → F be a sesquilinear form, and assume that (bδ)δ is
a sequence of bounded sesquilinear forms, bδ : X × V → F for all δ > 0, that
satisfies the following requirements:

(a) For each δ > 0, the sesquilinear form bδ satisfies Assumption 8.1. More-
over, the compact operator in Assumption 8.1(ii) can be chosen indepen-
dently of δ > 0.

(b) For fixed u ∈ X and v ∈ V , limδ→0 bδ(u, v) = b(u, v).

(c) For every sequence (uδ)δ in X with uδ → u weakly in X there holds:

lim
δ→0

bδ

(︁
uδ − u, v

)︁
= 0 for all v ∈ V .
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Assume further that
ker(b) = {0} .

Then the following holds: For every ℓ ∈ V ∗ there exists a sequence (uδ)δ in X
such that bδ(uδ, ·) = ℓ(·), for each δ > 0. The sequence (uδ)δ weakly converges
in X to an element u ∈ X, which satisfies

b(u, ·) = ℓ(·) . (8.2.1)

Moreover, the limit u is the unique solution to (8.2.1).

Proof. Fix ℓ ∈ V ∗. Assumption (a) together with Lemma 8.5 imply that, for
each δ > 0, there is a unique uδ ∈ X such that bδ(uδ, ·) = ℓ(·).

Case 1. Assume (uδ)δ is a bounded sequence in X. We then find a subse-
quence (uδ)δ and an element u ∈ X such that uδ → u weakly in X, since X is
reflexive. For all v ∈ V there holds⃓⃓

bδ

(︁
uδ, v

)︁
− b(u, v)

⃓⃓
≤
⃓⃓
bδ

(︁
uδ − u, v

)︁⃓⃓
+
⃓⃓
bδ(u, v) − b(u, v)

⃓⃓
. (8.2.2)

Using assumptions (b) and (c), we deduce from (8.2.2) that

lim
δ→0

bδ

(︁
uδ, v

)︁
= b(u, v) for all v ∈ V . (8.2.3)

On the other hand, we have that bδ(uδ, ·) = ℓ(·) for each δ > 0. Combining
this with (8.2.3) yields b(u, ·) = ℓ(·) and a solution u ∈ X to (8.2.1) is found.
Uniqueness of u follows from ker(b) = {0}. As the limit u is unique, we infer
that every subsequence of the bounded sequence (uδ)δ has a subsequence that
weakly converges to u and thus, the whole sequence (uδ)δ weakly converges to
u.

Case 2. Suppose the sequence (uδ)δ is unbounded in X. We shall show that
this is impossible. As (uδ)δ is unbounded, we find a subsequence (uδ)δ such
that limδ→0∥uδ∥X = +∞. Consider the re-scaled sequence (wδ)δ given by

wδ := uδ

∥uδ∥X
.

Clearly, (wδ)δ is a bounded sequence in X; we therefore find a subsequence
(wδ)δ and an element w ∈ X such that wδ → w weakly in X. For each δ > 0,
the element wδ satisfies the equation

bδ

(︁
wδ, v

)︁
= ℓ(v)

∥uδ∥X
(8.2.4)

for all v ∈ V . As (uδ)δ is unbounded, we deduce from (b), (c), and equa-
tion (8.2.4) that

b(w, v) = lim
δ→0

bδ

(︁
wδ, v

)︁
= lim

δ→0

ℓ(v)
∥uδ∥X

= 0 for all v ∈ V . (8.2.5)

Equation (8.2.5) has only the trivial solution w = 0, since ker(b) = {0}.
On the other hand, there exists a compact operator K : X → V ∗ and a

constant c > 0 such that

sup
v∈V

∥v∥V =1

⃓⃓
bδ(u, v) + ⟨Ku, v⟩V ∗,V

⃓⃓
≥ c∥u∥X (8.2.6)
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for all δ > 0 and all u ∈ X. Substituting u = wδ into (8.2.6) yields

0 < c = c∥wδ∥X ≤ sup
v∈V

∥v∥V =1

⃓⃓
bδ(wδ, v) + ⟨Kwδ, v⟩V ∗,V

⃓⃓
≤ sup

v∈V
∥v∥V ≤1

⃓⃓
bδ

(︁
wδ, v

)︁⃓⃓
+ ∥Kwδ∥V ∗ . (8.2.7)

From (8.2.4) we deduce that, for every v ∈ V with ∥v∥V ≤ 1 and each δ > 0
there holds ⃓⃓

bδ(wδ, v)
⃓⃓

≤ ∥ℓ∥
∥uδ∥X

.

Combining this estimate with (8.2.7) yields the inequality

0 < c ≤ ∥ℓ∥
∥uδ∥X

+
⃦⃦
Kwδ

⃦⃦
V ∗ , (8.2.8)

for all δ > 0. The operator K is compact and the sequence (wδ)δ weakly
converges to w = 0; we find therefore a subsequence (Kwδ)δ that converges
strongly in V ∗ to Kw = 0. Sending δ → 0 in (8.2.8) thus yields

0 < c ≤ lim
δ→0

∥ℓ∥
∥uδ∥X

+ lim
δ→0

⃦⃦
Kwδ

⃦⃦
V ∗ = 0 .

This is a contradiction and hence the sequence (uδ)δ has to be bounded in X.□

Remark 10. – In Theorem 8.6, the sesquilinear form b : X × V → F is not
assumed to be bounded. In view of (8.2.1) we do, however, implicitly assume
that b is continuous in its second argument. In fact, b is bounded if (bδ)δ is a
sequence of bounded sesquilinear forms for which assumption (b) is satisfied.
Indeed, for fixed v ∈ V , the map T : X → F, u ↦→ b(u, v) is the pointwise limit
of the family of bounded linear operators Tδ : X → F, u ↦→ bδ(u, v). Thus, by
Banach-Steinhaus, T is a bounded linear operator and hence b is continuous in
its first argument. As every reflexive normed space is a Banach space, we can
repeat the above argument for S : V → F, v ↦→ b(u, v) and every fixed u ∈ X,
and infer that b is continuous in its second argument. The uniform boundedness
principle then implies the boundedness of b.

Let us state a special case of the abstract limiting absorption principle for a
sesquilinear form b on a Hilbert space H.

Corollary 8.7. (Limiting absorption principle for Hilbert spaces) – Let H be
a Hilbert space over F, and let b : H × H → F be a sesquilinear form. Assume
that (bδ)δ is a sequence of bounded sesquilinear forms, bδ : H × H → F for all
δ > 0, that satisfies the following requirements:

(a) There exists a compact operator K : H → H∗ and a constant c > 0 such
that ⃓⃓

bδ(u, u) + ⟨Ku, u⟩H∗,H

⃓⃓
≥ c∥u∥2

H (8.2.9)

for all u ∈ H and δ > 0. Moreover, ker(bδ) = {0} for each δ > 0.

(b) For fixed u, v ∈ H, limδ→0 bδ(u, v) = b(u, v).
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(c) For every sequence (uδ)δ in H with uδ → u weakly in H there holds:

lim
δ→0

bδ

(︁
uδ − u, v

)︁
= 0 for all v ∈ H .

Assume further that ker(b) = {0}. Then the following holds: For every ℓ ∈ H∗

there exists a sequence (uδ)δ in H such that bδ(uδ, ·) = ℓ(·) for each δ > 0. The
sequence (uδ)δ weakly converges in H to an element u ∈ H, which satisfies

b(u, ·) = ℓ(·) . (8.2.10)

Furthermore, the limit u is the unique solution to (8.2.10).

Proof. Inequality (8.2.9) implies a Gårding inequality as was shown in the proof
of Corollary 8.4. The claim thus follows from Theorem 8.6. □
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CHAPTER 9
Existence and Uniqueness

result for a Helmholtz
equation in a bounded

waveguide with a special
boundary condition

In this section we apply the abstract limiting absorption principle as well as
the Fredholm alternative for sesquilinear forms from the previous chapter to
deduce the existence of a distributional solution u ∈ VR,l to (7.0.7).

9.1 Existence result for the radiation problem with δ > 0

This section is devoted to an existence and uniqueness result for the radiation
problem with damping; that is, for given R ∈ N, l > 0 and h ∈ L2(ΩR;C), we
seek a function u ∈ VR,l such that

bδ(u, v) =
∫︂

ΩR

hv̄ for all v ∈ VR,l .

We shall use the Fredholm alternative for sesquilinear forms to establish
the existence of a solution. In order to apply Proposition 8.2, we need to
show that bδ satisfies a Gårding inequality. To this end we define the operator
K : VR,l → V ∗

R,l, u ↦→ Ku with

⟨Ku, v⟩V ∗
R,l

,VR,l
:= 2k2

∫︂
ΩR+l

uv̄ + QR,l(u, v) , (9.1.1)

where the sesquilinear form QR,l is defined in (7.2.12). We first show that this
operator is compact.
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Lemma 9.1. – Assume k2 > 0 is non-singular. Let R ∈ N, l > 0, and let VR,l

be the function space defined in (7.0.12). Then the operator K defined in (9.1.1)
is compact.

Proof. For brevity we write L2 instead of L2(ΩR+l). By Lemma 1.5, the
compactness of K is equivalent to the following condition: Every bounded
sequence (um)m in VR,l admits a subsequence (um)m that weakly converges to
some u ∈ VR,l and that satisfies

lim
m→∞

⟨Kum, vm⟩V ∗
R,l

,VR,l
= ⟨Ku, v⟩V ∗

R,l
,VR,l

for all sequences (vm)m in VR,l with vm → v weakly in VR,l.
Let (um)m and (vm)m be sequences in VR,l such that (um)m is bounded in

VR,l and (vm)m weakly converges in VR,l to some v ∈ VR,l. As VR,l is a Hilbert
space, (um)m admits a subsequence (um)m that weakly converges in VR,l to
some function u ∈ VR,l. The space VR,l is a subspace of H1(ΩR+l;C), and thus,
by the Rellich-Kondrachov theorem, there exists a subsequence (um)m such that
um → u in L2. Similarly, as (vm)m weakly converges in VR,l to v, we deduce
the existence of a subsequence (vm)m such that vm → v in L2. Consequently,

lim
m→∞

∫︂
ΩR+l

umv̄m =
∫︂

ΩR+l

uv̄ . (9.1.2)

Furthermore, the weak convergence of (∇um)m in L2 and the strong con-
vergence of (vm)m in L2 imply that

lim
m→∞

QR,l

(︁
um, vm

)︁
= QR,l(u, v) . (9.1.3)

Combining (9.1.2) and (9.1.3) yields

lim
m→∞

(︃
2k2

∫︂
ΩR+l

umv̄m + QR,l

(︁
um, vm

)︁)︃
= 2k2

∫︂
ΩR+l

uv̄ + QR,l(u, v) .

and the claim is proved. □

With the compact operator K, we obtain a Gårding inequality.

Lemma 9.2. (Gårding inequality) – Assume k2 > 0 is non-singular. Let R ∈
N, l > 0, and let VR,l be the function space defined in (7.0.12). Then, for each
δ ≥ 0, the sesquilinear form bδ : VR,l × VR,l → C defined in (7.2.10) satisfies a
Gårding inequality. More precisely, there exists a constant c > 0 such that for
all u ∈ VR,l there holds⃓⃓⃓

bδ(u, u) + ⟨Ku, u⟩V ∗
R,l

,VR,l

⃓⃓⃓
≥ c∥u∥2

H1(ΩR+l;C) ,

where K : VR,l → V ∗
R,l is the compact operator defined in (9.1.1).

Proof. Fix u ∈ VR,l. Using the definition of K, we find that

Re
{︂
bδ(u, u) + ⟨Ku, u⟩V ∗

R,l
,VR,l

}︂
=
∫︂

ΩR+l

ϑ
⃓⃓
∇u
⃓⃓2 +k2

∫︂
ΩR+l

(2 −ϑ)|u|2 . (9.1.4)
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Equation (9.1.4) and Lemma 7.2 imply⃓⃓⃓
bδ(u, u) + ⟨Ku, u⟩V ∗

R,l
,VR,l

⃓⃓⃓
≥
⃦⃦
∇u
⃦⃦2

L2(ΩR+l;C) + k2∥u∥2
L2(ΩR+l;C)

≥ c∥u∥2
H1(ΩR;C) + k2∥u∥2

L2(W−R−l,l;C) + k2∥u∥2
L2(WR,l;C)

= c∥u∥2
H1(ΩR;C) + k2⃦⃦R−

R,l(u)
⃦⃦2

L2(W0,l;C) + k2⃦⃦R+
R,l(u)

⃦⃦2
L2(W0,l;C)

≥ c∥u∥2
H1(ΩR+l;C) . (9.1.5)

This implies the claim. □

Our next aim is to show that the homogeneous problem bδ(u, ·) = 0 has
only the trivial solution u = 0. Before we do so, let us remind the reader that,
due to Lemma 7.4, there exists an l0 ∈ N such that for all l ∈ N with l ≥ l0
there holds

− Im
{︁
Q0,l(v, v)

}︁
≥ c∥v∥2

L2(W0,l,C) for all v ∈ X−
l (9.1.6a)

and
Im
{︁
Q0,l(u, u)

}︁
≥ c∥u∥2

L2(W0,l,C) for all u ∈ X+
l . (9.1.6b)

The function spaces X−
l and X+

l are defined in (7.2.8).

Lemma 9.3. (Uniqueness of the homogeneous problem) – Let k2 > 0 be non-
singular and let l ∈ N be large enough such that (9.1.6) holds. Fix R ∈ N and
let VR,l be function space defined in (7.0.12). For δ > 0 we denote by bδ the
sesquilinear form given in (7.2.10). If u ∈ VR,l satisfies bδ(u, ·) = 0, then u = 0.

Proof. Let u ∈ ker(bδ). Taking the imaginary part of bδ(u, u), we obtain

δk2
∫︂

ΩR+l

ϑ|u|2 + Im
{︁

QR,l(u, u)
}︁

= 0 . (9.1.7)

As u ∈ VR,l, the functions R+
R,l(u) and R−

R,l(u) are elements of X+
l and X−

l ,
respectively. The definition of QR,l in (7.2.12) as well as (9.1.6) imply then

Im
{︁

QR,l(u, u)
}︁

= Im
{︂
Q0,l

(︁
R+

R,l(u),R+
R,l(u)

)︁}︂
− Im

{︂
Q0,l

(︁
R−

R,l(u),R−
R,l(u)

)︁}︂
≥ c∥u∥2

L2(WR,l;C) + c∥u∥2
L2(W−R−l,l;C) . (9.1.8)

Combining (9.1.7) with (9.1.8), we find that

0 ≥ δk2
∫︂

ΩR+l

ϑ|u|2 + c∥u∥2
L2(WR,l;C) + c∥u∥2

L2(W−R−l,l;C) ≥ C∥u∥2
L2(ΩR+l;C) .

Consequently u = 0 in VR,l and the claim is proved. □

Theorem 9.4. (Existence result for δ > 0) – Let k2 > 0 be non-singular and
choose l ∈ N large enough such that (9.1.6) holds. Fix R ∈ N and let VR,l be
the function space defined in (7.0.12). If δ > 0, then for every h ∈ L2(ΩR;C)
there exists a unique solution u ∈ VR,l to the radiation problem with damping.
More precisely, for every v ∈ VR,l there holds

bδ(u, v) =
∫︂

ΩR

hv̄ ,

where bδ is the sesquilinear form given in (7.2.10).
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Proof. Due to Assumption 7.1(i), the space Xl is finite dimensional and hence
VR,l is a Hilbert space. The sesquilinear form bδ is bounded and satisfies a
Gårding inequality by Lemma 9.2. Due to Lemma 9.3, ker(bδ) = {0}. Thus,
the claim follows from Corollary 8.4. □

9.2 Existence result for the radiation problem with δ = 0

In this section we apply the abstract limiting absorption principle to establish
the existence of a solution to the radiation problem with δ = 0. We recall that,
by Definition 7.5, a function u ∈ VR,l is a solution provided

b(u, v) =
∫︂

ΩR

hv̄ for all v ∈ VR,l ,

where the sesquilinear form b : VR,l × VR,l → C is defined as

b(u, v) :=
∫︂

ΩR+l

ϑ
⟨︁
∇u,∇v

⟩︁
− k2

∫︂
ΩR+l

ϑuv̄ − QR,l(u, v) . (9.2.1)

Theorem 9.5. (Existence result for δ = 0) – Let k2 > 0 be non-singular and
let l ∈ N large enough such that (9.1.6) holds. Let (δ)δ be a sequence in (0,∞)
with δ → 0. Fix R ∈ N, let VR,l be the function space defined in (7.0.12), and
let bδ, b : VR,l × VR,l → C be the sesquilinear forms from (7.2.10) and (9.2.1),
respectively. Assume that ker(b) = {0}. Then, for every h ∈ L2(ΩR;C), there
exists a sequence (uδ)δ of solutions to the radiation problem with damping. That
sequence converges weakly in VR,l to a function u ∈ VR,l which satisfies

b(u, v) =
∫︂

ΩR

hv̄ for all v ∈ VR,l . (9.2.2)

Moreover, the solution u to (9.2.2) is unique.

Proof. We use the limiting absorption principle for Hilbert spaces, Corollary 8.7,
to deduce the claim. Due to Assumption 7.1(i), the space Xl is finite dimensional
and hence VR,l is a Hilbert space. Moreover, bδ is bounded for each δ > 0. One
readily checks that limδ→0 bδ(u, v) = b(u, v) for all u, v ∈ VR,l. Lemmas 9.2
and 9.3 imply that premise (a) from Corollary 8.7 is satisfied. We are thus left
to show premise (c) of Corollary 8.7.

Let (uδ)δ be a sequence in VR,l with uδ → u weakly in VR,l. Thanks to
the Rellich-Kondrachov theorem, we find a subsequence (uδ)δ that strongly
converges to u in L2(ΩR+l;C). Consequently, for every v ∈ VR,l,

lim
δ→0

(︃
k2(1 + iδ)

∫︂
ΩR+l

ϑ
(︁
uδ − u)v̄

)︃
= 0 . (9.2.3)

On the other hand, as ∇uδ → ∇u weakly in L2(ΩR+l;C), we deduce that

lim
δ→0

∫︂
ΩR+l

⟨︁
∇uδ − ∇u, v

⟩︁
= 0 and lim

δ→0
QR,l

(︁
uδ − u, v

)︁
= 0 , (9.2.4)

for all v ∈ VR,l. Combining (9.2.3) and (9.2.4), we get

lim
δ→0

bδ(uδ − u, v) = 0
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for every v ∈ VR,l, which shows premise (c) of Corollary 8.7
We can therefore apply the abstract limiting absorption principle and the

claim is proved. □

On the number of non-singular values of k2

In Theorem 9.5 we assume the kernel of b to be trivial. Whether or not this
is the case depends on the value of k2. We shall see that there are at most
countable many non-singular values of k2 for which ker(b) ̸= {0}. To be more
precise, we define

D :=
{︂
k2 ∈ (0,∞)

⃓⃓⃓
k2 is non-singular in the sense of Assumption 7.1

}︂
.

We have the following result.

Proposition 9.6. – For every R ∈ N there exists an at most countable set
ΣR ⊂ D and a number l0 ∈ N such that for all l ∈ N with l ≥ l0 there holds
ker(b) = {0} for all k2 ∈ D \ ΣR.

We need two auxiliary lemmas for the proof of this result, in which we use the
following subspace of H1(ΩR \ OR;C):

Z :=
{︂
u ∈ H1(ΩR \OR;C)

⃓⃓⃓
u = 0 on ∂OR and u = 0 on {±R}×S1

}︂
, (9.2.5)

for R ∈ N.

Lemma 9.7. – Let k2 > 0 be non-singular. Choose the number l ∈ N so large
that (9.1.6) is satisfied. Then, for every R ∈ N the following holds: if u ∈ VR,l

is an element of ker(b), then u|ΩR\OR
∈ Z and u satisfies∫︂

ΩR\OR

⟨︁
∇u,∇v

⟩︁
= k2

∫︂
ΩR\OR

uv̄ for all v ∈ Z . (9.2.6)

Proof. Let u ∈ ker(b). Then, for any v ∈ VR,l there holds

0 =
∫︂

ΩR+l

⟨︁
∇u,∇v

⟩︁
− k2

∫︂
ΩR+l

uv̄ − QR,l(u, v) . (9.2.7)

Substituting v = u into the above equation and taking the imaginary part yields

0 = Im
{︁
QR,l

(︁
R+

R,l(u),R+
R,l(u)

)︁}︁
− Im

{︁
QR,l

(︁
R−

R,l(u),R−
R,l(u)

)︁}︁
.

As R−
R,l(u) ∈ X−

l and R+
R,l(u) ∈ X+

l , we deduce from Lemma 7.4 that

0 ≥ c∥u∥2
L2(W−R−l,l;C) + c∥u∥2

L2(WR,l;C) ≥ 0 .

Consequently, u = 0 in W−R−l,l ∪WR,l. As VR,l is a subspace of H1(ΩR+l;C)
and u vanishes in the boxes W−R−l,l, WR,l as well as in the obstacles OR, we
infer that u = 0 on {±R} × S1 and u = 0 on ∂OR. This shows that for every
u ∈ ker(b) there holds u|ΩR\OR

∈ Z. Moreover, since u vanishes in the boxes
W−R−l,l and WR,l, equation (9.2.7) reads

0 =
∫︂

ΩR

⟨︁
∇u,∇v

⟩︁
− k2

∫︂
ΩR

uv̄
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for all v ∈ VR,l. The trivial extension ṽ of any function v ∈ Z to ΩR+l is an
element of VR,l. Thus, for any v ∈ Z there holds

0 =
∫︂

ΩR\OR

⟨︁
∇u,∇v

⟩︁
− k2

∫︂
ΩR\OR

uv̄ .

This proves the claim. □

Lemma 9.8. – For every R ∈ N there exists a countable set ΣR ⊂ (0,∞) such
that (9.2.6) admits only the trivial solution u = 0 if k2 ∈ (0,∞) \ ΣR.

Proof. For fixed R ∈ N, equation (9.2.6) is the weak formulation of the Dirichlet
eigenvalue problem {︄

−∆u = k2u in ΩR \ OR ,

u = 0 on ∂
(︁
ΩR \ OR

)︁
.

(9.2.8a)
(9.2.8b)

The Dirichlet Laplacian admits countably many eigenvalues, since ΩR \ OR is a
bounded Lipschitz domain; that is, there exists a countable set ΣR ⊂ (0,∞)
such that (9.2.8) has only the trivial solution u = 0 if k2 ∈ (0,∞) \ ΣR. This
proves the claim. □

Proof (of Proposition 9.6). Fix R ∈ N, and assume D ̸= ∅. Due to Lemma 9.8,
there exists a countable set ΣR ⊂ (0,∞) such that (9.2.6) admits only the
trivial solution if k2 ∈ (0,∞) \ ΣR. Let k2 ∈ D \ ΣR and choose l ∈ N so large
that (9.1.6) holds. Then, by Lemma 9.7, every u ∈ ker(b) is a distributional
solution to (9.2.6). As k2 ∈ D \ ΣR ⊂ (0,∞) \ ΣR, we infer that u = 0. This
proves the claim. □
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APPENDIX A
Proof of Lemma 4.3

(i) Assume v ∈ X (Σ∗). Clearly, Re{v} and Im{v} are elements of L2
♯ (Σ∗;R3).

As every test vector field φ ∈ C∞
c (Σ∗;R3) lies in C∞

c (Σ∗;C3), we find that

0 =
∫︂

Σ∗

⟨︁
v, curl φ

⟩︁
=
∫︂

Σ∗

⟨︁
Re{v}, curl φ

⟩︁
+ i
∫︂

Σ∗

⟨︁
Im{v}, curl φ

⟩︁
.

This equation implies that, in the sense of distributions, curl Re{v} = 0 in Σ∗

and curl Im{v} = 0 in Σ∗. Consequently, Re{v}, Im{v} ∈ XR(Σ∗).
Conversely, assume that Re{v} and Im{v} are elements of XR(Σ∗). By

definition of the complex Lebesgue spaces, we deduce that v ∈ L2
♯ (Σ∗;C3). We

claim that ∫︂
Σ∗

⟨︁
Re{v}, φ

⟩︁
= 0 and

∫︂
Σ∗

⟨︁
Im{v}, φ

⟩︁
= 0 (A.0.1)

for all φ ∈ C∞
c (Σ∗;C3). Fix an arbitrary φ ∈ C∞

c (Σ∗;C3). As Re{φ}, Im{φ} ∈
C∞

c (Σ∗;R3), we deduce from the fact that Re{v} ∈ XR(Σ∗) that∫︂
Σ∗

⟨︁
Re{v}, φ

⟩︁
=
∫︂

Σ∗

⟨︁
Re{v},Re{φ}

⟩︁
+ i
∫︂

Σ∗

⟨︁
Re{v}, Im{v}

⟩︁
= 0 .

The statement for Im{v} can be shown analogously. Having (A.0.1) at hand,
we observe that∫︂

Σ∗

⟨︁
v, φ

⟩︁
=
∫︂

Σ∗

⟨︁
Re{v}, φ

⟩︁
+
∫︂

Σ∗

⟨︁
Im{v}, φ

⟩︁
= 0

for all φ ∈ C∞
c (Σ∗;C3).

(ii) Replacing Σ∗ by Y , we can follow the above argument and find that
curl ϕ = 0 in Y if and only if curl Re{ϕ} = 0 in Y and curl Im{ϕ} = 0 in Y .
We are thus left to prove that ϕ = 0 in Σ∗ if and only if Re{ϕ} = 0 in Σ and
Im{ϕ} = 0 in Σ. But this holds trivially.
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APPENDIX B
Proof of Proposition 5.6

We proceed in two steps.
Step 1. We claim that the vector space X is isomorphic to the vector space

H :=
{︂
v ∈ L2

♯ (Σ∗;C3)
⃓⃓⃓
curl v = 0 in Σ∗, div v = 0 in Σ∗, ⟨v, ν⟩ = 0 on ∂Σ∗

}︂
.

Choose v ∈ H and extend it trivially to a vector field ṽ ∈ L2
♯ (Y ;C3). Clearly,

curl ṽ = 0 in Σ∗ and ṽ = 0 in Σ. Thus, the map T : H → X, v ↦→ ṽ is well
defined provided ṽ is divergence free in Y . The normal trace of v on ∂Σ∗

vanishes; thus, the identity∫︂
Σ∗

⟨v,∇ψ⟩ = −
∫︂

Σ∗
(div v) ψ

holds for all ψ ∈ H1
♯ (Σ∗;R). As every φ ∈ C∞

♯ (Y ;R) is an element of H1
♯ (Σ∗;R)

and div v = 0 in Σ∗, we infer that∫︂
Y

⟨︁
ṽ,∇φ

⟩︁
=
∫︂

Σ∗

⟨︁
v,∇φ

⟩︁
= −

∫︂
Σ∗

(div v) φ = 0 .

This shows div ṽ = 0 in Y . We note that T is a linear map. Its inverse S
is given by S : X → H, v ↦→ v|Σ∗ . This map is well defined, since the two
equations {︃div v = 0 in Y ,

v = 0 in Σ ,

imply that ⟨v, ν⟩ = 0 on ∂Σ∗; in particular, v|Σ∗ ∈ H. The two vector spaces
X and H are thus isomorphic.

Step 2. We claim that H is finite dimensional. Clearly, H is a closed subspace
of

M :=
{︄
v ∈ L2

♯ (Σ∗;C3)

⃓⃓⃓⃓
⃓ curl v ∈ L2

♯ (Σ∗;C3) , div v ∈ L2
♯ (Σ∗;C3)

and ⟨v, ν⟩ = 0 on ∂Σ∗

}︄
.

Equipped with the norm ∥ · ∥M : M → R,

∥v∥M := ∥v∥L2
♯
(Σ∗;C3) + ∥curl v∥L2

♯
(Σ∗;C3) + ∥div v∥L2

♯
(Σ∗;C) ,

121



the space M is a Hilbert space. H is finite dimensional if every bounded
sequence in H admits a strongly convergent subsequence. Let (vk)k be a
bounded sequence in H. Then there exists a subsequence (vk)k that weakly
converges to some field w ∈ M . As H is a closed subspace of M , we deduce that
w ∈ H. The space M embeds compactly into L2

♯ (Y ;C3); see Weber [Web80].
Thus, we find another subsequence (vk)k and a field w̃ ∈ L2

♯ (Σ∗;C3) such that
vk → w̃ in L2

♯ (Σ∗;C3). By uniqueness of the limit, w̃ = w ∈ H. Thus,

lim
k→∞

∥w − vk∥M = lim
k→∞

∥w − vk∥L2
♯
(Σ∗;C3) = 0 .

We have thus proved that each bounded sequence (vk)k in H admits a strongly
convergent subsequence and hence the claim is proved.
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