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Abstract: The simulation of complex engineering components and structures under loads requires
the formulation and adequate calibration of appropriate material models. This work introduces an
optimisation-based scheme for the calibration of viscoelastic material models that are coupled to
gradient-enhanced damage in a finite strain setting. The parameter identification scheme is applied
to a self-diagnostic poly(dimethylsiloxane) (PDMS) elastomer, where so-called mechanophore units
are incorporated within the polymeric microstructure. The present contribution, however, focuses on
the purely mechanical response of the material, combining experiments with homogeneous and
inhomogeneous states of deformation. In effect, the results provided lay the groundwork for a future
extension of the proposed parameter identification framework, where additional field-data provided
by the self-diagnostic capabilities can be incorporated into the optimisation scheme.

Keywords: rate-dependent material behaviour; gradient-enhanced damage at large strains;
parameter identification; finite elements

1. Introduction

The adequate numerical prediction of material behaviour under complex loads and boundary
conditions is of high significance in the product development context, particularly in view of
today’s trends towards more efficient and cost-effective production, but also in view of component
safety requirements and appropriate component lifetime predictions. To this end, not only the
material model formulation itself needs to be physically sound and able to capture all relevant
material phenomena, but the corresponding model parameters also need to be identified properly.
This process of model calibration is typically carried out with the help of optimisation-based parameter
identification schemes.

In this work, we present an optimisation-based framework that enables the identification
of parameters for rate-dependent materials under large strains and subject to gradient-enhanced
damage by using an efficient two-step approach. In the first step, basic constitutive parameters,
in particular elastic parameters, are calibrated based on experiments reflecting homogeneous states
of deformation. These parameters are then kept fixed in view of the second step of model
calibration, which uses an optimisation scheme based on inhomogeneous states of deformation.
The inhomogeneous states of deformation activate gradient terms within the gradient-enhanced
damage formulation considered in this work, so that mesh-objective damage effects can be captured
within finite element-based simulations. With damage gradient terms activated due to inhomogeneous
states of deformation, we proceed to the identification of damage-related model parameters in the
second step of the model calibration procedure.
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The particular material considered in this work is an elastomer with self-diagnostic capabilities.
Self-diagnostic poly(dimethylsiloxane) (PDMS) elastomers are produced by the addition of so-called
mechanophore units, which generate a chemical response towards mechanical loads, as discussed
by, e.g., Brighenti and Artoni [1]. The specific PDMS elastomer containing a supramolecular
detection probe was presented and developed by Früh et al. [2]. In this case, the elastomer reacts
with strain-dependent levels of fluorescence when illuminated with UV light, thus enabling an in
situ quantification of the material’s strain and, potentially, damage state. In this work, however,
we restrict our elaborations to the purely mechanical properties of the elastomer, where solely the
inhomogeneous displacement field and the load-deflection curve are considered within the model
calibration process. A possible future extension of the framework proposed in this work could include
an additional consideration of the fluorescence field emitted by the self-diagnostic specimen within
the optimisation-based parameter identification procedure.

Different material models allow for the description of the mechanical behaviour of
rate-dependent—or rather viscoelastic—materials such as the elastomer considered, mostly using
either a convolution integral approach or a differential operator form of the constitutive relation.
Reese and Govindjee [3], for example, discussed a non-linear viscoelastic model that utilises a
non-linear evolution law that is valid for arbitrary deviations from thermodynamic equilibrium.
Bergström and Boyce [4] proposed a constitutive model for the time-dependent behaviour of
elastomers, motivated micromechanically by the relaxation of a single entangled chain in a polymer
gel. The constitutive viscoelasticity model used in this work is based on a convolution integral
approach. The model is based on the well-established finite hyperelasticity framework with uncoupled
volumetric-isochoric response that was extended towards viscous effects by Simo and Hughes [5].
The coupling of finite viscoelasticity with gradient-enhanced damage is carried out within the damage
regularisation framework provided by Ostwald et al. [6]. This framework is in line with the works
of Forest [7] and Miehe [8]. Kiefer et al. [9] presented another approach for a coupling of gradient
damage with inelasticity, and Sprave et al. [10] computed complex boundary value problems based on
a coupled gradient-enhanced damage formulation. For further, advanced concepts in the context of
gradient damage, see, e.g., the work by Liu and Jeffers [11] and the references cited therein.

A corresponding parameter identification scheme for finite viscoelastic material models was
introduced by Kleuter et al. [12], where an error square functional—comparing experimentally-
obtained inhomogeneous displacement fields with related finite element-based simulations—is
minimised by using a gradient scheme. This gradient-based calibration process for finite viscoelasticity
was studied in more detail and applied to different materials in [13]. The identification of material
parameters for inelastic materials, using experimental data representing non-uniform stress and
displacement distributions from the surface of the three-dimensional specimen, was established in
the work of Mahnken and Stein [14]. An application of a parameter identification scheme for different
constitutive models was presented in [15] where different identification methods, instabilities in least
squares problems, and identification for small and non-uniform finite deformations were discussed.
Hartmann [16] estimated the constitutive constants of hyperelasticity relations of the generalised
polynomial-type and discussed the aspects related to the gradient and convexity behaviour in certain
deformations. The particular optimisation methods that are generally applicable were illustrated in,
e.g., [17–21].

The present paper is organised as follows: Section 2 introduces the experimental data used in
this work, both for homogeneous deformations and for inhomogeneous deformations, as provided in
Sections 2.1 and 2.2, respectively. In Section 3, the constitutive framework is introduced, starting with
a brief review of the uncoupled finite hyperelasticity framework in Section 3.1. The extension towards
viscous effects is provided in Section 3.2 before the coupling to gradient-enhanced continuum damage
is established in Section 3.3. The parameter identification framework used, as well as the results
obtained are described in detail in Section 4 before the paper is concluded in Section 5.
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2. Experiments

In the following, all accomplished types of experiments for the self-diagnostic PDMS elastomer
are briefly presented in order to provide an overview of the experimental data required for the
subsequent parameter identification of the implemented material model. For most of the experiments,
a micro-testing machine by Kammrath & Weiss GmbH (Dortmund, Germany) was used; cf. Figure 1a.
The machine can be combined with a CCD camera system from Chemnitzer Werkstoffmechanik GmbH
(Chemnitz, Germany), which is of importance considering the need to track the displacement field
for the inhomogeneous deformation tests. Figure 1b presents a screenshot of the software VEDDAC
strain. The software was linked with the CCD camera and provided additional information on the
displacement field during the experiment. The CCD camera additionally took a photo during each
time step and delivered the changes in the displacement field directly to the DDS3 software of the
testing machine. In the post-processing, the software VEDDAC could be used to extract all required
displacement information from the photos taken during the experiment. Since the material was a
transparent soft polymer, a stochastic pattern was sprayed onto the specimens with graphite spray.
Consequently, the software was able to track all specific positions of the specimen up to the end of the
experiment. The following experiments were conducted with virgin material samples, thereby avoiding
the influences of Mullin’s effect or the strain history on the material response. The environmental
conditions were room conditions, including room temperature.

(a) Micro-testing machine by Kammrath (b) Rectangular specimen in the micro-testing machine
& Weiss GmbH. under tension visible via the VEDDAC strain software.

Figure 1. Experimental setting—the micro-testing machine by Kammrath & Weiss GmbH in
combination with the CCD camera system by Chemnitzer Werkstoffmechanik GmbH providing
load-displacement data, as well as the displacement field on the surface.

2.1. Homogeneous Deformation Tests

As a first step, experiments with homogeneous deformation states were conducted. In order
to receive sufficient experimental data for the calibration of the viscoelastic material parameters,
three different types of experiments were carried out. Apart from uni-axial tensile tests (cf. Figure 2),
relaxation tests (see Figure 3), as well as creep tests (cf. Figure 4) provided the experimental data
basis for the following parameter identification; see Section 4. Tensile tests with different strain rates
were not considered here, as we instead focused on capturing the viscosity-related parameters of the
material via the explicit incorporation of creep and relaxation characteristics within the error square
functional. In the case of all these experiments, a homogeneous rectangular specimen with an initial
length of 25 mm, depth of 2.2 mm, and width of 10 mm was used. An example of the specimen is
shown in Figure 1b at the beginning of the corresponding loading path.
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(a) Strain-time curve. (b) Nominal stress (P11)-stretch (λ) curve.

Figure 2. Tensile test results of the micro-testing machine, where the strain-rate is applied (a) in order
to get the nominal stress (b).
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(a) Strain-time curve. (b) Nominal stress (P11)-time curve.

Figure 3. Relaxation test results of the micro-testing machine, where the stretch level is fixed (a) in
order to get the nominal stress decrease over time (b).
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(a) Nominal stress (P11)-time curve. (b) Displacement (u)-time curve.

Figure 4. Creep test results of the micro-testing machine, where the stress is fixed over time (a) in order
to measure the displacement change (b).

2.2. Inhomogeneous Deformation Tests

Apart from the experiments with homogeneous deformation states, an additional experiment
with an inhomogeneous deformation state was carried out in order to identify the damage-related
material parameters. Considering the regularised gradient-enhanced damage framework, specific
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information on localisation effects was needed for the identification. Hence, with regard to the possible
specimen dimensions, a notched rectangular shape was chosen; see Figure 5a. A constant displacement
rate of 20.0µm/s was applied until the sample with an initial length of 10 mm, width of 10 mm,
radius of 2 mm, and thickness of 2.2 mm tore apart. In the figure, prominent states of the experiment
are visualised. Moreover, Figure 5e shows the corresponding load-displacement curve.

(a) Specimen before loading. (b) Specimen at t = 554.64 s.

(c) Specimen at t = 1141.0 s, just before tearing starts. (d) Specimen at t = 1407.0 s, after tearing.
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(e) Load-displacement curve.

Figure 5. Experimental results of the tensile test of a notched specimen presenting photos of the sample
at characteristic time steps, as well as the load-displacement curve.

3. Modelling Framework—Finite-Strain Viscoelasticity Coupled with Gradient-Enhanced
Continuum Damage

Viscoelastic material models can describe a large class of history- and rate-dependent materials.
These materials differ from ideally elastic materials by time-dependent effects such as creep or
relaxation. Polymeric rubber materials such as the elastomer considered in this work are typical
representatives of this class of materials. Constitutive models for viscoelasticity either use a differential
operator or convolution integral representation, where the constitutive model considered in this work
is based on the latter approach. The convolution integral approach was described in detail in the
works by Simo and Hughes [5], Kaliske and Rothert [22], amongst others. The model formulation
considered in this work is introduced as follows: Section 3.1 briefly summarises the classic finite strain
hyperelastic constitutive relations with volumetric-isochoric decomposition. Section 3.2 proceeds
with the generalisation of these relations to a finite strain viscoelastic model. An extension towards
gradient-enhanced continuum damage is then briefly covered in Section 3.3.
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3.1. Finite Hyperelasticity with Volumetric-Isochoric Decomposition

This section briefly outlines the hyperelastic local constitutive setting considered in the work at
hand, which will then be extended towards finite viscoelasticity. The constitutive framework at hand
facilitates the accommodation of any arbitrary hyperelastic response based on a local Helmholtz free
energy function ψloc, enabling the use of higher order constitutive relations such as the Yeoh model.

Let F = ∇Xϕ(X, t) denote the deformation gradient, where x = ϕ(X, t) ∈ Bt reflects the current
placement of material points with position X ∈ B0 in the referential placement. The isochoric, i.e.,
volume-preserving, part F̄ of the deformation gradient F is defined as

F̄ := J−
1
3 F , with J = det(F) and det(F̄) = 1 . (1)

In this context, J
1
3 I is referred to as the volumetric part of the deformation gradient, with I

denoting the second-order identity tensor. The standard and isochoric right Cauchy–Green deformation
tensors are introduced via

C := Ft · F and C̄ := F̄t · F̄ = J−
2
3 C, (2)

respectively.
In view of the hyperelastic contribution to the constitutive response, a local Helmholtz free energy

function ψhyp of the form
ψhyp(C) = ψvol(J) + ψich(C̄) (3)

is considered, where an additive decomposition into volumetric and isochoric energy contributions,
ψvol and ψich, respectively, is taken into account.

Within this modelling framework, the hyperelastic part of the Piola–Kirchhoff stress tensor
follows as

Shyp := 2 ∂Cψhyp(C) = J ∂Jψvol(J)C−1 + S̄hyp , (4)

where the isochoric contribution to the hyperelastic part of the Piola–Kirchhoff stress tensor is
abbreviated as

S̄hyp := J−
2
3

[
2 ∂C̄ψich(C̄)− 1

3
[2 ∂C̄ψich(C̄) : C]C−1

]
(5)

for notational simplicity. It is noted that the well-established relations ∂C J = 1
2 J C−1 and ∂CC̄ =

J−
2
3 [I − 1

3 C⊗ C−1] were employed here.
The corresponding hyperelastic part of the spatial Kirchhoff stresses, τhyp = F · Shyp · Ft, then

follows as
τhyp = J ∂Jψvol(J) I + dev

(
2 F̄ · ∂C̄ψich(C̄) · F̄t) (6)

with dev(•) = [•]− 1
3 [[•] : I]I being the deviator operator in spatial representation.

3.2. Extension of Finite Hyperelasticity to Finite Viscoelasticity

In view of a generalisation of the volumetrically-isochorically decoupled finite strain hyperelastic
modelling framework outlined in Section 3.1 to finite viscoelasticity, C(t) is now assumed to be a
function of time t. As a relation for the viscoelastic stress response in terms of Piola–Kirchhoff stresses
S at time t, the form

S(t) = Shyp(t)− J−
2
3

N

∑
i=1

DEV(Qi(t)) (7)

is considered and is in line with classic works such as [5,23], where DEV(•) := [•]− 1
3 [[•] : C]C−1.

Here, Shyp(t) denotes the hyperelastic stress contribution defined in (4) and Qi(t); i = 1, 2, . . . , N
represent stress-type tensor-valued internal variables. This form of the stress extension leaves the
volumetric part of the constitutive response unaffected by viscous effects. Relation (7) reflects a finite
strain generalisation of a classic generalised relaxation model with N being the number of Maxwell
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elements, each consisting of a (linear) spring and a (linear) dashpot. Conceptually speaking, in a
simplified and linear setting, each Maxwell element would be characterised by a given spring stiffness,
say Ei, and corresponding dashpot viscosity, say ηi; cf., e.g., [5].

For the evolution of the stress-type internal variables, rate equations of the type

Q̇i(t) +
1
τi

Qi(t) =
γi
τi

DEV(2 ∂C̄ψich(C̄(t))) with lim
t→−∞

Qi(t) = 0 , (8)

are considered (cf. [5,23]), where τi are referred to as relaxation times and where γi represent relative
moduli subject to the restriction

N

∑
i=1

γi = 1− γ∞ , (9)

with γ∞ ∈ [0, 1) determining the quasi-static (hyperelastic) limiting case of the material response.
In a simplified and linear setting, as thoroughly introduced in [5], τi := ηi/Ei > 0 and γi = Ei/E0 ∈
[0, 1] would be the parameters defining the properties of each Maxwell branch in the viscoelastic
model. Here, E0 = E∞ + ∑i Ei is the stiffness obtained in the (hyperelastic) limiting case reflected by
infinitely high strain rates. In the context of the three-dimensional non-linear formulation at hand,
this contribution is represented by the general Helmholtz free energy potential ψhyp that facilitates the
incorporation of higher-order and even anisotropic constitutive relations.

The linearity of evolution Equation (8) facilitates the standard closed-form convolution
representation

Qi(t) =
γi
τi

∫ t

−∞
exp(−(t− s)/τi)DEV(2 ∂C̄ψich(C̄(s)))ds . (10)

Combining (10) with (7) and integrating by parts yield an explicit expression for the stress
response in terms of the Piola–Kirchhoff stress tensor of the form

S(t) = J ∂Jψvol(J)C−1(t) + J−
2
3 (t)

∫ t

−∞
g(t− s)

d
ds

(DEV(2 ∂C̄ψich(C̄(s))))ds , (11)

where the relaxation function

g(t) = γ∞ +
N

∑
i=1

γi exp(−t/τi) (12)

is incorporated.
The spatial counterpart of (11) is obtained by using J−

2
3 F · [DEV(•)] = dev(F̄ · (•) · F̄t), so that

the convolution representation of the Kirchhoff stresses reads

τ(t) = J ∂Jψvol(J) I +
∫ t

−∞
g(t− s)

d
ds
(
dev

(
2 F̄ · ∂C̄ψich(C̄(s)) · F̄t))ds . (13)

For more detailed information on the derivation of well-established relations in the context
of (undamaged) finite strain viscoelasticity based on a volumetric-isochoric split of the underlying
Helmholtz free energy function, the reader is referred to classic monographs such as [5,24], amongst
other works.

The numerical solution of the convolution integrals introduced above is based on a transformation
towards a recurrence formula, enabling the computation of the constitutive response based on the
standard internal variable procedure, thereby bypassing the need to store the entire strain history that
is individual to each material point in view of the later finite element application; see Appendix A for
details on the numerical update procedure.
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3.3. Incorporation of Damage

We considered a gradient-regularised damage formulation in view of a mesh-objective solution
of boundary value problems by using the finite element method, where the constitutive response
can include damage-induced softening. To this end, an overall Helmholtz free energy potential
ψ is introduced, composed of local and non-local energy contributions, ψloc and ψnloc, in terms of
ψ = ψloc + ψnloc.

The local Helmholtz free energy contribution, in extension of (3), takes the form

ψloc(C, κ) = fd(κ)ψvol(J) + f niso
d (κ)ψich(C̄) , (14)

where the volumetric and isochoric damage functions, fd ∈ (0, 1] and f niso
d ∈ (0, 1], are evaluated based

on a common internal damage variable κ, but allow for an adjustment of the volumetric-isochoric
damage distribution via the exponent niso ∈ R. The exponent niso is a material parameter that
facilitates the modelling of a damage process that affects volumetric and isochoric contributions with
different intensities.

The non-local energy contribution ψnloc enables the damage regularisation and consists of two
contributions, namely a non-local gradient term ψ

grad
nloc (∇X φ; F) and a non-local penalty term ψ

plty
nloc(φ, κ),

so that ψnloc(F, φ,∇X φ, κ) = ψ
grad
nloc (∇X φ; F) + ψ

plty
nloc(φ, κ), with

ψ
grad
nloc (∇X φ; F) =

cd
2
∇X φ · C−1 · ∇X φ =

cd
2
∇xφ · ∇xφ , (15)

ψ
plty
nloc(φ, κ) =

βd
2

[φ− κ]2 . (16)

Here, φ is the non-local damage variable that is coupled to the local damage variable κ via the
penalty parameter βd. Moreover, cd represents a length scale-type regularisation parameter. With this
particular choice of the non-local energy contributions, the Euler–Lagrange equations for the non-local
damage field variable in spatial format take the form

cd∇x · [∇xφ]− βd [φ− κ] = 0 in Bt , (17)

∇xφ · n = 0 on ∂By
t = ∂Bt ; (18)

see, e.g., [6] for more details on the associated relations, as well as on the numerical treatment within
appropriately coupled finite element formulations.

The incorporation of the damage functions in the local free energy potential (14) induces
Piola–Kirchhoff stresses of the form

Shyp := 2 ∂Cψloc(C, κ) = J fd(κ) ∂Jψvol(J)C−1 + f niso
d (κ) S̄hyp , (19)

corresponding to spatial Kirchhoff stresses given by

τhyp = J fd(κ) ∂Jψvol(J) I + dev
(
2 f niso

d F̄ · ∂C̄ψich(C̄) · F̄t) , (20)

both of which are direct extensions of their purely hyperelastic counterparts introduced in (4) and (6).
The damage function affecting the isochoric part of the free energy function furthermore affects

the evolution of viscous stress-type internal variables via

Q̇i(t) +
1
τi

Qi(t) =
γi
τi

f niso
d DEV(2 ∂C̄ψich(C̄(t))) , (21)



Materials 2020, 13, 3156 9 of 20

which basically reflects the damage-extended version of (8). This induces a convolution representation
in terms of

Qi(t) =
γi
τi

∫ t

−∞
exp(−(t− s)/τi) f niso

d DEV(2 ∂C̄ψich(C̄(s)))ds , (22)

see (10) for the corresponding expression that is associated with an undamaged setting.
Finally, the Piola–Kirchhoff stresses that fully incorporate viscous and damage effects take

the form

S(t) = J fd ∂Jψvol(J)C−1(t) + J−
2
3 (t)

∫ t

−∞
g(t− s)

d
ds
(

f niso
d DEV(2 ∂C̄ψich(C̄(s)))

)
ds , (23)

which allows for the accommodation of arbitrary free energy functions, in particular energy functions
of higher order such as the Yeoh model that appropriately captures the Treloar-type behaviour of
materials such as the particular elastomer considered in this work.

The numerical solution of the above-introduced convolution integrals is based on a transformation
towards a recurrence formula, enabling the computation of the constitutive response based on the
standard internal variable procedure, thereby bypassing the need to store the entire strain history that
is individual to each material point in view of the later finite element application; see Appendix A for
details on the numerical update procedure.

4. Parameter Identification

This section discusses the optimisation-based procedures employed for the identification of the
constitutive parameters of the finite strain viscoelastic material model coupled with gradient-enhanced
continuum damage as introduced in Section 3. Since the general framework can be applied to all kinds
of energy functions, at first, considering the type of material and its behaviour, the chosen hyperelastic
material model is briefly presented in Section 4.1. Next, the applied damage function fd is specified
in Section 4.2. The main idea is to first carry out a parameter identification based on homogeneous
states of deformation as described in Section 4.3. The obtained set of material parameters is then used
as the initial value for the parameter identification based on inhomogeneous states of deformation,
as elaborated in Section 4.4. The gradient terms of the gradient-enhanced damage framework are
activated only in the case of inhomogeneous deformations.

4.1. Hyperelastic Material Model

Considering the nearly incompressible, non-linear elastic material behaviour (see for example the
stress-strain-response in Figure 2b), the Yeoh hyperelastic material model was chosen [25,26]. In [27],
Yeoh and Flemming argued that Rivlin’s theory [28], where the strain energy function depends on the
first two invariants of the right Cauchy–Green tensor C, to be specific

ψRiv =
∞

∑
i,j=1

Cij[I1 − 3]i[I2 − 3]j , (24)

runs into difficulties with respect to the identification of the material parameters since the contributions
cannot be perfectly determined separately in the experiments. Here, Cij are the corresponding material
parameters, and I1 and I2 are the first and second principal invariants related to the isochoric right
Cauchy–Green tensor, respectively. Yeoh neglected the contribution of the second invariant assuming
that no serious error would arise since the contribution would be sufficiently small with respect to the
impact of the first invariant. In this work, however, the Yeoh energy potential

ψich =
3

∑
i=1

Ci[tr(C̄)− 3]i , (25)
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serves as the isochoric contribution to overall energy potential, where Ci denote the underlying material
parameters. This phenomenological material model was developed for rubber elasticity and is applied
in this work as a first choice with respect to the mentioned material behaviour. The volumetric energy
contribution ψvol is chosen in a standard manner as

ψvol =
1
2

K
[

1
2
[J2 − 1]− ln(J)

]
, (26)

where K denotes the bulk modulus of the material. The related energy contributions ψich and ψvol can,
however, be straightforwardly replaced within the general constitutive framework elaborated in this
work in order to account for different particular material characteristics.

4.2. Damage Function

The damage function mentioned in Section 3 was chosen to be of an exponential type,
following [6,29]. Thus, a damage initiation threshold, as well as a damage saturation rate can be
used in the function

fd(κ) = 1− d = exp(−ηd〈κ − κd〉) , (27)

fulfilling the requirements for the damage function to be restricted to fd : R+ → (0, 1]. Here, d denotes
the classic damage variable with d=0 indicating zero damage and d=1 for 100% damage. The variable
κ represents a related internal damage variable, while κd>0 is the damage threshold parameter, and ηd
introduces the damage saturation parameter. In addition, 〈•〉 := max{0, •} represents the Macaulay
brackets. Consequently, damage is obtained in the material if the local damage variable exceeds the
damage threshold. The damage function for the isochoric energy contribution matches this chosen
function except for the exponent niso. Thus, a relation between both functions is still given and only
adjusted via this material parameter. The evolution of the internal damage variable κ is based on the
associated form

κ̇ = λ
∂Φd(F, φ,∇X φ, κ)

∂q
, (28)

where λ denotes a proper Lagrange multiplier, Φd(F, φ,∇X φ, κ) = q(F, φ,∇X φ, κ)− κ ≤ 0 represents
the damage condition, and q = − ∂[ψloc + ψnloc]/∂d is the energy release rate. Hence, apart from the
balance of linear momentum, the Euler–Lagrange equation governing the non-local damage variable
needs to be solved simultaneously. For further information regarding this regularised damage model
and its implementation, see Ostwald et al. [6]. The implementation was performed in a user material
subroutine (UMAT) in Abaqus following [6].

4.3. Parameter Identification Based on Homogeneous States of Deformation

In the context of parameter identification procedures, it is advantageous to compute the Piola
stress tensor as a quantity, facilitating the comparison of experimental and simulated material response;
cf. Section 2. The Piola stress tensor P is related to the Piola–Kirchhoff stress tensor S and the Kirchhoff
stress tensor τ via

P = τ · Ft = F · S , (29)

where the sensitivity of the Piola stress with respect to the deformation gradient is denoted as A,
in particular,

A =
∂P
∂F

=
∂2ψloc

∂F ⊗ ∂F
, (30)
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or, expressed in index notation,

AaAbB =
∂2ψloc

∂FaA ∂FbB
. (31)

Moreover, A relates to the spatial elasticity tensor e via

AaBcD = F−1
Bb [eabcd + τacδbd]F

−1
Dd . (32)

It is noted that the tangent operator, as typically required within implicit finite element
formulations, respectively so-called constitutive drivers, is based on A = dP/dF.

The Yeoh-type hyperelastic energy function was combined with the constitutive viscoelasticity
model, presented in Section 3, including two Maxwell elements. Apart from the Yeoh material
parameters C1, C2 and C3, the viscoelastic parameters, γ1 and γ2, denoting the relation of the stiffness
of each Maxwell element with respect to the pure elastic Young’s modulus, and τ1, τ2, representing the
ratio of the viscosity to the stiffness in each Maxwell element, need to be identified. Regarding the
parameters, it has to be mentioned that the material was assumed to be nearly incompressible, and
thus, Poisson’s ratio was fixed to ν=0.49. Thus, seven material parameters needed to be identified.

Since these seven material parameters could be identified via experiments of homogeneous
deformation states, strain- and stress-driven constitutive drivers were implemented in MATLAB
instead of full finite element (FE) simulations in order to reduce the computational cost within each
iteration of the parameter identification. The pseudo-codes of both types of constitutive drivers are
depicted in Algorithms 1 and 2. The fminsearch-algorithm in MATLAB was used for the parameter
identification, minimising the goal function with respect to the difference in the simulated and
experimental reaction force over all load steps, i.e.,

fobj =wT ∑
t

wT
t

∣∣∣PT,exp
t − PT,sim

t (κ)
∣∣∣2 + wR ∑

t
wR

t

∣∣∣PR,exp
t − PR,sim

t (κ)
∣∣∣2

+ wC ∑
t

wC
t

∣∣∣uC,exp
t − uC,sim

t (κ)
∣∣∣2 , (33)

where wT, wR, and wC denote the weighting factors for the tensile, creep, and relaxation test,
respectively. The additional weighting factors wT

t , wR
t , and wC

t were introduced to emphasise specific
time steps t of each experiment.

In the following, the viscoelastic material parameters are identified via the three tests based on
homogeneous deformation states, presented in Section 2.1.

If the parameters of the Yeoh-model were solely fitted with respect to the tensile test, the
simulated material response of the identified parameters matched the experimental data perfectly.
Next, the relaxation parameters were obtained with respect to the relaxation and creep test, though
the material behaviour highly depended on the previously identified Yeoh parameters. Thus, the
experimental relaxation and creep response could not be sufficiently matched via optimisation of the
relaxation parameters only. Consequently, all of the material parameters were identified simultaneously
for all three different experiments in order to obtain the best parameter set reflecting the complete
material behaviour. The comparison of the simulated and experimental material behaviour is shown
in Figure 6 for the optimised parameter set. The corresponding parameter set is presented in Table 1.

In the graphs shown in Figure 6, the experimental results of the relaxation and creep tests are
nearly perfectly matched, and only slight differences in the diagrams can be seen at certain points.
The simulated material response of the tensile test overestimated the experimental curve, but captured
the general trend. The tensile test could be captured better by increasing the associated weight within
the objective function (33) at the cost of the accuracy with which creep and relaxation tests were
captured. The focus here was set on the rate-dependent constitutive characteristics that were captured
with high accuracy. Though beyond the scope of this work, a precise capturing of tensile, creep,
and relaxation test at the same time could be achieved by introducing higher order energy functions
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and a larger number of independent Maxwell branches within the constitutive framework provided.
The accompanying increase in parameter identification complexity due to a significantly increased
number of constitutive parameters could then be dealt with using parameter correlation matrices.

Algorithm 1 Strain-driven constitutive driver (relaxation)—uni-axial stress state; see also Appendix A.

1: initialize internal variables S̃n
hyp, H(i)

n , ∀ i = 1, . . . , N.

2: get material parameters C1, C2, C3, γ1, τ1, . . . , γi, τi.

3: initialize Pn+1.

4: for every time step tn do
5: given: the stretch λ11.

6: while ‖P̂n+1‖ < tol do
7: compute (k)Fn+1, (k) Jn+1, (k)Cn+1, (k) F̂n+1, (k)Ĉn+1.

8: compute initial elastic stress Kirchhoff tensor τ
hyp
n+1.

9: compute algorithmic internal variables S̃n+1
hyp , H(i)

n+1.

10: compute (k)Sn+1 according to (A6).

11: compute the spatial tangent moduli (k)ên+1.

12: compute the Piola–Kirchhoff stress tensor (k)Pn+1.

13: compute the tangent operator (k)An+1.

14: partition the stress tensor and the deformation gradient:

15: (k)Pn+1 = (k)P11 e11 ⊗ e11 +
(k)P̂n+1

16: (k)Fn+1 = (k)F11 e11 ⊗ e11 +
(k) F̂n+1.

17: partition the tangent operator:

18: (k)Ân+1 =
(k)dP̂n+1
(k)dF̂n+1

.

19: update the transverse deformation gradient:

20: (k+1) F̂n+1 ← (k) F̂n+1 − (k)Ân+1 : (k)P̂n+1.

21: end while
22: assemble the deformation gradient and the stress tensor Fn+1, Pn+1

23: update internal variables {S̃n+1
hyp , H(i)

n+1} ← {S̃
n
hyp, H(i)

n }.
24: end for

Considering the curve of the tensile test, especially the values and the signs of the Yeoh parameters
are important, since the first parameter C1 weights the linear behaviour of the stress strain-response,
whereas C2 scales the quadratic term of the isochoric energy contribution resulting in the decreasing
slope. The third parameter C3 corresponds to the third-order polynomial contribution of the energy
function and thus yields the increasing slope at the end of the loading path. Thus, different values
for the Yeoh parameters would probably fit the tensile response way better; the dependence on the
relaxation parameters, however, would result in a worse fit of the relaxation and creep behaviour.
Higher order contributions to the Helmholtz free energy, in particular the isochoric contribution,
would therefore provide a potential in order to capture the tensile test response better.

Table 1. Optimised set of material parameters for the Yeoh material model, as well as the relaxation
parameters for the two Maxwell elements.

Parameter C1 C2 C3 γ1 γ2 τ1 τ2

Value 0.19550588 0.11198637 0.00685930 0.12862148 0.36026686 1879.5892 68.729741



Materials 2020, 13, 3156 13 of 20

Algorithm 2 Stress-driven constitutive driver (creep)—uni-axial stress state; see also Appendix A.

1: initialize internal variables S̃n
hyp, H(i)

n , ∀ i = 1, . . . , N.
2: get material parameters C1, C2, C3, γ1, τ1, . . . , γi, τi.
3: initialize Fn+1.
4: for every time step tn do
5: given: Piola–Kirchhoff stress tensor Pexp.
6: while ‖P− Pexp‖ < tol do
7: compute (k)Fn+1, (k) Jn+1, (k)Cn+1, (k) F̂n+1, (k)Ĉn+1.
8: compute initial elastic Kirchhoff stress tensor τ

hyp
n+1.

9: compute algorithmic internal variables S̃n+1
hyp , H(i)

n+1.
10: compute (k)Sn+1 according to (A6).
11: compute the spatial tangent moduli (k)ên+1.
12: compute Piola–Kirchhoff stress tensor (k)Pn+1.
13: compute tangent operator (k)An+1.
14: compute (k)∆Pn+1 = (k)Pn+1 − (k)Pexp

n+1.
15: update the deformation gradient
16: (k+1)Fn+1 ← (k)Fn+1 − (k)An+1 : (k)∆Pn+1

17: end while
18: update internal variables {S̃n+1

hyp , H(i)
n+1} ← {S̃

n
hyp, H(i)

n }
19: end for
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(c) Creep test—comparison of experimental and simulated material response.

Figure 6. Comparison of experimental and simulation results of the (a) tensile, (b) relaxation, and (c)
creep tests for uni-axial stress states, using the optimised set of material parameters; cf. Table 1.



Materials 2020, 13, 3156 14 of 20

The identified viscoelastic material parameters were used as fixed values for the subsequent
optimisation of the damage-related parameters.

4.4. Parameter Identification Based on Inhomogeneous States of Deformation

In the following, the previously identified Yeoh and relaxation parameters are used to identify the
damage-related material parameters ηd, κd, niso, and cd via the tensile test with inhomogeneous
deformation states presented in Section 2.2. In contrast to the identification of the viscoelastic
parameters, the constitutive driver is not sufficient enough to capture the material behaviour of
the gradient-enhanced damage model. Thus, a finite element (FE) formulation is required. Therefore,
the material model was implemented into a UMAT in Abaqus, as already mentioned in Section 4.2.

In addition, a parameter identification tool was implemented in Python, using the
Nelder–Mead-Simplex algorithm of the scipy-package. In contrast to the calibration of the Yeoh
and relaxation parameters, it did not suffice to solely consider the difference in the Piola stress
P11 or the (clamping) displacement u1, depending on the experiment, for the goal function fobj
of the optimisation. Since the gradient terms—capturing the mesh-objectivity of damage—of the
regularised damage framework are activated by inhomogeneous deformation states, the difference in
the displacement field between the simulated and experimental material response needs to be added
to the goal function apart from the difference in the reaction force

fobj = ∑
t

nnp

∑
i=1

wu

∥∥∥uexp
ti − usim

ti (κ)
∥∥∥2

+ ∑
t

wF

∣∣∣Fexp
t − Fsim

t (κ)
∣∣∣2 , (34)

where nnp denotes the number of node points considered, wu the weighting factor for the displacement
contribution, and wF the weighting factor for the impact of the reaction force. The number of node
points was the element nodes on the surface of the specimen in the FE simulations. The experimental
data was interpolated onto those node points via a 2D-interpolation scheme prior to the parameter
identification following Kleuter [13].

For the purpose of reducing the computational cost of the FE simulation within each iteration
of the parameter identification, the symmetry properties of the sample were used; cf. Figure 7a.
Furthermore, considering the material properties of the soft polymer, only the segment shown in the
figure was used to exclude boundary effects of the clamping jaws. In order to still use the experimental
boundary conditions in the simulations, the experimentally measured displacements, taken via the
CCD camera system, were applied to the right boundary of the specified segment. As can be seen from
the photos of the specimen during the experiment (cf. Figure 5) and from the sketch of the segment,
the displacements were not uniform over the boundary of the chosen segment of the sample.

The initial guess for the damage-related model parameters was ηd = 0.002, κd = 0.4, niso = 1.0,
and cd = 0.04 and resulted in no damage initiation in the material; cf. Figure 8a. In Figure 7b,
the comparison of the load-displacement curves is presented. Since the stress-strain path of the
homogeneous tensile test already overestimated the experimental curve, the simulated response for
the tensile test with inhomogeneous deformation states lied above the experimental result as well.
Furthermore, considering the large total stretch values present in combination with the identified Yeoh
material parameters, the increasing response for the reaction force was triggered by the parameters C2

and C3 weighting the hyperelastic energy contributions of second and third order.
Since parameter niso strongly influences the simulated deformation behaviour of the specimen in

each iteration, niso was fixed to 1.0 in a first step, thereby neglecting a different damage contribution
of the volumetric and isochoric part. The corresponding optimised parameter set, denoted as Final
#1, ηd=0.202531, κd=0.15185, and cd=0.52593, was rounded to five decimal places. Considering the
load-displacement curves, the response of the final set lied closer to the experimental behaviour
than the initial guess; see Figure 7b. The stress distribution of the initial guess and the final set was
comparable; the magnitude of the final set, however, was less than half of the stress of the initial
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set; cf. Figure 9. The von Mises stress distribution within the specimen—with the maximum stress
value obtained at the upper surface, corresponding to the region dominated by the initially circular
notch—was in line with observations made by, e.g., Kleuter [13].

The contour plot of the damage value d in Figure 8 compares the damage value obtained for the
initial parameter set with the damage value obtained for the Final #1 set. Initially, no damage was
initiated, and with the Final #1 set, a damage value of nearly 75% occurred in the symmetry plane of
the loading direction.

In Figures 7b and 10, the influence of the different damage functions for the volumetric and
isochoric contributions is visible. The set Final #2 included niso=0.9, and Final #3 considered niso=1.1.
A higher value for niso flattens the load-displacement curve, while a lower value provides an increased
path. Another important impact of the parameter is indicated in Figure 10. Apart from the difference
in the stress magnitude, the deformation of the sample was already different for slight changes in the
parameter with regard to the necking of the sample at the symmetry plane of the loading direction.

The advantage of the regularised damage framework is the mesh objectivity of the simulated
material response. To demonstrate this feature, the boundary value problem was calculated with three
different meshes for the optimised parameter set. In addition to the mesh containing 1548 elements,
used for the results in Figures 7–10, a coarser mesh with 1092 and a finer mesh with 2613 elements were
used in order to analyse the mesh sensitivity of the results. As can be seen in Figure 11, only marginal
differences in the contour plots of the damage function values and the von Mises stress, as well as the
load-displacement curves are visible. Thus, the gradient-enhanced damage model is working properly.
In contrast, it is noted that the local damage model diverged at different load steps, depending on the
mesh discretisation. In the case of the fine mesh, the solution diverged at a displacement of 3.2 mm,
for the basis mesh at 3.375 mm and for the coarse mesh at 3.415 mm. The displacement was taken from
the bottom node of the right boundary in the symmetry plane.
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(a) Sketch of the simulated part of the specimen (b) Load-displacement-curves, comparing the
using symmetry properties of the sample. experimental to the simulated material response for the

initial guess and the final parameter set including two
variations. The shown displacement is taken from the
bottom node of the right boundary in the symmetry plane.

Figure 7. (a) Sketch of the chosen segment of the specimen with the applied boundary conditions.
(b) Comparison of the load-displacement curves of the experiment with the results of the initial
parameter set, the optimised Parameter Sets #1 (niso =1.0), #2 (niso =0.9), and #3 (niso =1.1).
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(a) Damage values for initial guess. (b) Damage values for Final #1.

Figure 8. Comparison of the contour plot of the damage value d at the final load step for (a) the initial
parameter set and (b) the optimised Parameter Set #1.

(a) von Mises stress for the initial guess. (b) von Mises stress for Final #1.

Figure 9. Comparison of the contour plot of the von Mises stress at the final load step for (a) the initial
parameter set and (b) the optimised Parameter Set #1.

(a) von Mises stress for Final #2. (b) von Mises stress for Final #3.

Figure 10. Comparison of the contour plot of the von Mises stress at the final load step for (a) the
optimised Parameter Set #2 with niso =0.9 and (b) the optimised Parameter Set #3 with niso =1.1.

5. Conclusions

In this work, a parameter identification framework for gradient-enhanced damage in
rate-dependent materials under finite strains was introduced. In order to identify the set of over 12
material parameters, an efficient scheme for the process was carried out. At first, the basic constitutive
model parameters, namely elastic parameters, were calibrated with respect to experiments displaying
homogeneous states of deformation. Considering the deformation states, the computational cost of the
identification was further reduced by using constitutive drivers for the simulations of all three required
types of experiments within each iteration of the calibration process. In the next step, the already
identified parameters were fixed during the identification of the damage-related material parameters.

For the purpose of developing a general framework for the calibration of rate-dependent materials
coupled to damage, the constitutive viscoelasticity model by Simo and Hughes [5] was coupled to
the gradient-enhanced damage formulation. Thus, the advantages of both models were combined,
enabling different types of hyperelastic energy formulations—considering the energy-independent
viscoelastic derivations by Simo and Hughes [5]—as well as mesh-independent results with respect to
the damage evolution due to the damage regularisation framework by Ostwald et al. [6].
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(a) Damage values for a coarser mesh with 1092
elements.

(b) von Mises stress for a coarser mesh with
1092 elements.

(c) Damage values for the basis mesh with 1548
elements.

(d) von Mises stress for the basis mesh mesh with
1548 elements.

(e) Damage values for a finer mesh with 2613
elements.

(f) von Mises stress for a finer mesh with
2613 elements.
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(g) Load-displacement curves for different discretisations. The
displacement shown was taken from the bottom node of the
right boundary in the symmetry plane.

Figure 11. Contour plots of the damage function values and the von Mises stress, as well as
load-displacement curves regarding the parameter set Final #1 for different discretisations.

To investigate whether the framework works even for very large deformations, a self-diagnostic
elastomer incorporating the mechanophore units within the polymeric microstructure was chosen as
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an application. With regard to the material behaviour of the soft polymer, the hyperelastic model by
Yeoh and Fleming [27] was applied to the viscoelastic damage model.

The results of the parameter identification in Section 4 showed that the general framework of the
implemented material model, as well as the parameter identification tool works properly. Even though
the chosen self-diagnostic elastomer was only a first attempt for the application of the framework,
the experimental results were already basically matched; cf. Figures 6 and 7b. Since the simulations for
the experiments with inhomogeneous deformation states were conducted before the sample started
to tear in the necking region, the damage distribution with the optimised parameter set—showing
damage evolution of nearly 75% in the symmetry plane of the loading direction, i.e., the necking
region—reflected such a material behaviour.

Nevertheless, further improvements could be achieved for example by using different weighting
factors for the contributions of the three different experiments with homogeneous deformation states to
the goal function of the optimisation in order to improve the calibration of the parameters with respect
to the tensile test. However, after all, the largest improvement could be achieved by a refinement
of the experiments. The material properties led to difficulties in the sample manufacturing—such
as uniformly cutting the shape—and in the clamping of the specimen, since the clamping jaws
already generated deformations in the soft polymer. An improvement would be if the samples were
directly moulded or if clamping were conducted with a very accurate torque spanner. Furthermore,
experimental data based on different strain rates could be included in the identification framework.

In addition, in the next step, the load path for the inhomogeneous experiments could be changed
to cyclic loading, improving the damage characterisation, though increasing the computational cost
within each iteration of the parameter identification procedure. Nevertheless, further experiments
including unloading should be included in the calibration process to enhance the accuracy. Until now,
only damage activated prior rupture has been taken into account. As a long-term goal, the current
framework should be combined with a rupture model to improve the overall prediction of the material
behaviour.

After all, the general parameter identification framework provides an efficient scheme for the
calibration of gradient-enhanced damage in rate-dependent material models under finite strains. In the
future, an interesting extension of the parameter identification framework is the incorporation of the
self-diagnostic properties of the elastomer in terms of additional field data that is considered within
the objective function.
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Appendix A. Numerical Time-Integration of the Local Constitutive Relations

In order to transform the convolution integral expression obtained in Section 3.2 to a standard
recurrence formula, we adopt the following internal algorithmic variables,

H(i)(t) :=
∫ t

−∞
exp[−(t− s)/τi]

d
ds
(

f niso
d (κ)DEV (2 ∂C̄ψich(C̄(s)))

)
ds , (A1)
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where H(i)(t), i = 1, 2, . . . , N, i.e., we have one stress-type tensor-valued internal variable H(i) for each
Maxwell element considered in the generalised relaxation model; cf. Simo and Hughes [5].

Using the semigroup property exp([t + ∆t]/a) = exp(∆t/a) exp(t/a) and the property of the
additivity of the integral over the interval of integration, we obtain the recurrence relation

H(i)(tn+1) = exp[−∆tn/τi] H(i)(tn)

+
∫ tn+1

tn
exp[−(tn+1 − s)/τi]

d
ds
(

f niso
d (κ)DEV (2 ∂C̄ψich(C̄(s)))

)
ds .

(A2)

Finally, the integral (A2) is approximated using the midpoint rule, so that

H(i)
n+1 = exp(−∆t/τi) H(i)

n + f niso
d (κ) exp(−∆t/2 τi)

(
S̃n+1

hyp − S̃n
hyp
)

, (A3)

using the abbreviations

S̃n+1
hyp := DEVn+1(2 ∂C̄ψich(C̄n+1)) and S̃n

hyp := DEVn(2 ∂C̄ψich(C̄n)) , (A4)

where DEVn and DEVn+1 are computed with respect to Cn and Cn+1, respectively, consistent with

DEVn+1(•) = [•]− 1
3
[[•] : Cn+1]C−1

n+1 . (A5)

The algorithmic approximation of the Piola–Kirchhoff stress tensor at time tn+1 then takes the form

Sn+1 = Jn+1 fd(κn+1) ∂Jψvol(Jn+1)C−1
n+1

+ γ∞ f niso
d (κn+1) S̃n+1

hyp +
N

∑
i=1

γi J−
2
3

n+1 DEVn+1(H(i)
n+1) (A6)

with S̃n+1
hyp representing relation (A4) evaluated at the current time tn+1 and with κn+1 the (updated)

internal variable representing the evolution of damage within the material. For details on the
straightforward time-integration of κ via a standard Euler backward scheme, the reader may refer
to, e.g., [6,29]. The spatial counterpart of (A6), i.e., the current approximation of the Kirchhoff stress
tensor, is then computed using a standard push-forward operation in terms of

τn+1 = Fn+1 · Sn+1 · Ft
n+1 . (A7)
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