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Abstract
In this work, we are searching for supersymmetric extensions of the Standard Model
(SM) of particle physics which are asymptotically safe. Such models are well-defined
at all energy scales and provide hints for the scale at which supersymmetry gets
broken. The combination of supersymmetry and asymptotic safety hereby turns out
to strongly restrict the space of possible models. Within extensions of the minimal
supersymmetric SM (MSSM), we perturbatively find candidates which all have a specific
field content and low supersymmetry-breaking scales. For extensions of the MSSM
with an extended gauge sector, we find models for which these scales appear at much
larger energies. We then investigate whether the perturbatively found models are in
agreement with non-perturbative results obtained from superconformal field theories.
The exact supersymmetric Novikov-Shifman-Vainshtein-Zakharov beta functions suggest
that these models are not asymptotically safe beyond perturbation theory. Finally, we
present a model for which the non-perturbative results suggests that the SM can be
UV-completed by this model. We also study perturbatively whether the fixed point
needed for this UV-completion is physical.

Zusammenfassung
In dieser Arbeit wird nach supersymmetrischen Erweiterungen des Standardmodells
(SM) der Teilchenphysik gesucht, welche asymptotisch sicher sind. Solche Modelle
sind für alle Energieskalen wohldefiniert und liefern Hinweise für die Skala, an welcher
Supersymmetrie gebrochen wird. Die Verbindung von Supersymmetrie mit asymptotis-
cher Sicherheit stellt sich hierbei als starke Einschränkung für die Menge an möglichen
Modellen heraus. Wir finden in Erweiterungen des minimal supersymmetrischen SM
(MSSM) perturbativ Kandidaten, welche alle einen spezifischen Feldinhalt aufweisen und
niedrige Supersymmetrie-Brechungsskalen vorhersagen. In Erweiterungen des MSSM mit
erweitertem Eichsektor werden Modelle gefunden, für welche diese Skalen bei deutlich
höheren Energien liegen. Die perturbativ gefundenen Modelle werden dann daraufhin
untersucht, ob sie im Einklang mit nichtperturbativen Ergebnissen aus superkonfor-
men Feldtheorien sind. Die exakten supersymmetrischen Novikov-Shifman-Vainshtein-
Zakharov Betafunktionen suggerieren, dass diese Modelle über die Störungstheorie
hinaus nicht asymptotisch sicher sind. Zum Schluss wird ein Modell präsentiert, für
welches die nichtperturbativen Ergebnisse suggerieren, dass das SM durch dieses Modell
UV-vervollständigt werden kann. Außerdem untersuchen wir störungstheoretisch, ob
der für diese UV-Vervollständigung benötigte Fixpunkt physikalisch ist.
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“You approximate the time curvature using a seventh order polynomial. But you made
one small error. For the distance you require, it should be at least nine.”

- Walter Bishop (Fringe S2E18)

IV



Contents

1 Introduction 1

2 Directions for BSM Physics 3
2.1 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Challenges within the Standard Model . . . . . . . . . . . . . . . . . . 8
2.3 Asymptotic Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Dark QCD With UV Fixed Points 15
3.1 Dark QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Phenomenology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Supersymmetry Basics 23
4.1 Constructing Supersymmetric Theories . . . . . . . . . . . . . . . . . . 23
4.2 The MSSM and its Features . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Superfields and superpotential of the MSSM . . . . . . . . . . . 27
4.2.2 Soft supersymmetry-breaking . . . . . . . . . . . . . . . . . . . 29
4.2.3 Gauge-mediated supersymmetry-breaking . . . . . . . . . . . . 29
4.2.4 Mass spectrum of the MSSM . . . . . . . . . . . . . . . . . . . . 30

5 Supersymmetric Renormalization Group 33
5.1 Beta Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Interacting Fixed Points . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 On the Existence of Interacting Fixed Points . . . . . . . . . . . . . . . 37

6 MSSM Extensions 39
6.1 Fixed Points Within the MSSM . . . . . . . . . . . . . . . . . . . . . . 39

6.1.1 MSSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

V



6.1.2 RPV MSSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Search Strategy For MSSM Extensions . . . . . . . . . . . . . . . . . . 43
6.3 Model Class 1: New Quark Singlets and Leptons . . . . . . . . . . . . . 44

6.3.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3.2 Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.4 Model Class 2: New Quark Doublets and Leptons . . . . . . . . . . . . 49
6.4.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.4.2 Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.5 Model Class 3: A Fourth Generation and new Leptons . . . . . . . . . 53
6.5.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.5.2 Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.6 Analysis of AS Candidates . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.6.1 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.7 Summary and Remarks on AS MSSM Extensions . . . . . . . . . . . . 61

7 MSSM Extensions with an Additional SU(N) 64
7.1 The MSSM+ Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.2 Model Scans and Matching onto the SM . . . . . . . . . . . . . . . . . 68

7.2.1 Benchmark 1 (BM1) . . . . . . . . . . . . . . . . . . . . . . . . 70
7.2.2 Benchmark 2 (BM2) . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2.3 Benchmark 3 (BM3) . . . . . . . . . . . . . . . . . . . . . . . . 75

7.3 Gauge-Mediation in the MSSM+ . . . . . . . . . . . . . . . . . . . . . 77
7.3.1 Mass scales and AS in the gauge-mediated scenario . . . . . . . 77
7.3.2 Estimate of the mass scales . . . . . . . . . . . . . . . . . . . . 79
7.3.3 Benchmark demonstration . . . . . . . . . . . . . . . . . . . . . 82

7.4 Phenomenological Aspects of the MSSM+ . . . . . . . . . . . . . . . . 86
7.4.1 Particle spectrum and dark matter candidates . . . . . . . . . . 86
7.4.2 Mass bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.4.3 Missing energy at colliders . . . . . . . . . . . . . . . . . . . . . 88

7.5 Summary and Remarks on the MSSM+ . . . . . . . . . . . . . . . . . . 88

8 Superconformal Field Theory 90
8.1 Superconformal Algebra and Unitarity Bounds . . . . . . . . . . . . . . 91
8.2 Maximization of a and the a-Theorem . . . . . . . . . . . . . . . . . . 93

8.2.1 Triangle anomalies . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.2.2 Sketch of the proof . . . . . . . . . . . . . . . . . . . . . . . . . 94

VI



9 Model Analysis Beyond Perturbation Theory 97
9.1 Perturbative AS MSSM Candidates . . . . . . . . . . . . . . . . . . . . 98
9.2 Perturbative AS MSSM+ Candidates . . . . . . . . . . . . . . . . . . . 102
9.3 MSSM Extensions with an Additional semi-simple Group . . . . . . . . 102

9.3.1 Exact UV-attractivity and unitarity . . . . . . . . . . . . . . . . 104
9.3.2 Large-N two-loop analysis . . . . . . . . . . . . . . . . . . . . . 105
9.3.3 Large-N three-loop analysis . . . . . . . . . . . . . . . . . . . . 110

9.4 Summary of our Non-Perturbative Investigations . . . . . . . . . . . . . 116

10 Conclusions 118

A On Unnatural Yukawa Beta Functions 122

B Necessary Condition for Fixed Points 124

C A Relation Between Fixed Points FP3 and FP23 127

D Beta Functions and Fixed Points Formulae 131
D.1 MSSM Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

D.1.1 Model class 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
D.1.2 Model class 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
D.1.3 Model class 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

D.2 MSSM+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Bibliography 138

VII



VIII



Chapter 1

Introduction

In search of a deeper understanding of nature, the Standard Model (SM) of particle
physics [1–4] as a quantum field theory and general relativity [5] as a classical field
theory emerged as our best descriptions of the universe, so far. On the road towards
these two pillars of modern physics, principles played important and success-bringing
roles. In this thesis, asymptotic safety (AS) as a principle for fundamental quantum
field theories, and supersymmetry (SUSY) as a symmetry principle are put forward,
and implications for extensions of the SM are investigated.

Extending the SM is necessary since, despite its many successes, the SM can at best
be viewed as a low energy approximation to a more fundamental theory of nature. Some
of the reasons for this include the absence of gravity within the SM, the absence of
dark matter candidates, and the divergence of the running U(1)Y hypercharge coupling
α1, known as the triviality problem [6, 7]. Ideas on how the SM could be extended to
tackle some of these challenges are numerous. Asymptotic safety in combination with
supersymmetry solves some of these problems and guides the search for SM extensions
of this thesis.

Prior to run 1 of the LHC between 2009 and 2013, high energy physicists expected to
find superpartners of SM particles in the O(1 TeV)-range [8, 9]. Although experimental
signals for SUSY are absent in this energy range [10, 11], there is no decisive reason for
nature not to be supersymmetric at much larger energy scales and hence SUSY remains
one of the theoretically most attractive and promising ways to extend the SM.

In the minimal supersymmetric version of the SM, the MSSM, next to α1 also
the weak SU(2)L coupling α2 diverges. Within asymptotically safe extensions, these
divergences are cured and theories are well-defined for all energies [12, 13]. Furthermore,
hints for the scale of supersymmetry-breaking are provided when the UV-complete AS
theory is matched onto the SM. Asymptotic safety refers to the scenario in which the
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2 CHAPTER 1. INTRODUCTION

couplings of a model reach an ultraviolet fixed point at infinitely large energies. In
fixed points, theories become conformal [14–16] and general results from conformal
field theories (CFTs) [17] can be applied. Away from fixed points, theories can be
viewed as spontaneously breaking the conformal symmetry [18]. In combination with
supersymmetry, fixed points constitute superconformal field theories (SCFTs) for which
additional exact results are known, some of which we explicitly make use of in this
thesis [19–23].

This thesis is organized as follows. In chapter 2, we briefly present the SM and
go into more detail regarding some remaining challenges. Furthermore, more details
on asymptotic safety and supersymmetry, as well as their historical developments are
provided. In chapter 3, a model Peter Schuh and I worked on [24] is discussed which offers
an explanation for the experimentally observed dark matter energy density. In this model,
dark matter candidates are baryon-like bound states of particles purely charged under a
new “dark QCD” SU(3)D gauge sector. The mathematics of SUSY, as well as the MSSM
and some of its features are discussed in chapter 4, while supersymmetric renormalization
group (RG) equations and some fixed point features within perturbation theory are
presented in chapter 5. With these tools at our disposal, we begin our perturbative
search for fixed points within the MSSM and extensions thereof in chapter 6. Here,
the special features of SUSY allow us to classify MSSM extensions. In chapter 7, AS
extensions of the SM with an additional non-abelian SU(N) gauge sector are investigated
within perturbation theory. Beginning with chapter 8, we expand our analysis beyond
perturbation theory. After providing non-perturbative tools valid for superconformal
field theories in this chapter, we utilize these in chapter 9 to perform consistency checks
on the AS candidates previously found within perturbation theory. In section 9.3, we
present an MSSM extension framework with an additional semi-simple gauge sector
SU(N)× SU(M) motivated by exact relations suggesting that this framework contains
models which UV-complete the SM. Comparing two-loop and three-loop results with
the corresponding exact results for different model parameters, we are able to identify
how well the loop renormalization flows approximate the exact flows. Furthermore, we
study the evolution of fixed points going towards model parameters for which the SM
becomes UV-complete. We conclude in chapter 10.



Chapter 2

Directions for Physics Beyond the
Standard Model

In this chapter, we briefly present the Standard Model and discuss some of its remaining
challenges, together with possible directions on how these may be resolved in extensions
beyond the SM.

2.1 The Standard Model

Resulting from decades of high energy physics research, the Standard Model of particle
physics presently constitutes the overall accepted and experimentally verified particle
model of nature. So far, no striking discrepancies between SM predictions and ex-
periments are observed [25]. Some detected anomalies are in agreement with being
statistical fluctuations. Future experiments will shed light on these anomalies and
possibly discover new physics beyond the SM. Until then, the Standard Model remains
our best description of nature.

The SM describes electromagnetism in the framework of quantum electrodynamics
(QED) developed by Tomonaga, Schwinger, Feynman and Dyson [26–35], as well as
the strong forces by quantum chromodynamics (QCD) [1]. At large energies, elec-
tromagnetism and the weak force combine into the elctroweak force, described by an
SU(2)L ⊗ U(1)Y gauge theory [2–4]. At low energies, this gauge symmetry is broken
by the vacuum expectation value of the Higgs field. This is known as the Higgs mecha-
nism [36–40], which also generates the masses of the elementary particles of the SM.
The discovery of the Higgs boson has been confirmed in 2012 [41, 42], completing the
Standard Model. By the usual counting, all the elementary particles are given by six

3



4 CHAPTER 2. DIRECTIONS FOR BSM PHYSICS

quarks, six leptons, one Higgs boson, one photon, eight gluons and three massive gauge
bosons W± and Z0. All other observed particles, like the proton, are bound states of
these elementary particles.

In more detail, the SM is a gauge Yukawa quantum field theory with gauge group

GSM = SU(3)C ⊗ SU(2)L ⊗ U(1)Y , (2.1)

which is spontaneously broken to SU(3)C ⊗U(1)EM by the vacuum expectation value of
the Higgs field [43]

|〈H〉| = v√
2
≈ 246 GeV√

2
≈ 174 GeV (2.2)

of the real and electrically neutral component of the Higgs field H. The (Weyl) fermion
fields and the Higgs field of the SM are shown in table 2.1 together with their gauge
representations and the chirality of their particles.

Field Chirality SU(3)C SU(2)L U(1)Y Multiplicity
Quark doublet Q Left 3 2 +1/6 3

Up-Quark u Right 3 1 +2/3 3
Down-Quark d Right 3 1 −1/3 3

Lepton doublet L Left 1 2 −1/2 3
Lepton singlet e Right 1 1 −1 3

Higgs H Left 1 2 +1/2 1

Table 2.1: All the (Weyl) fermion fields and the Higgs field of the SM with their representations
under the SM gauge group (2.1) before spontaneous symmetry breaking. Additionally, we
state the chirality of the particles described by the fields.

Additionally to the kinetic and gauge interaction terms, the SM Lagrangian contains
Yukawa interactions

LYuk = −
3∑

i,j=1
Y d
ijQiHdj −

3∑
i,j=1

Y u
ijQiH

cuj −
3∑

i,j=1
Y e
ijLiHej + h.c , (2.3)

where
Hc ≡ iσ2H∗ , (2.4)

with σ2 the second Pauli matrix and “h.c.” denoting hermitian conjugated terms. The
Higgs potential

LPot = −µ2H†H + λ(H†H)2 , (2.5)
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generates a non-vanishing vacuum expectation value for H which can be chosen to be

〈H〉 = 1√
2

(
0
v

)
, 〈Hc〉 = 1√

2

(
v

0

)
, (2.6)

generating symmetry-breaking mass terms for the W bosons, the Z boson, quarks, and
charged leptons. While the gauge boson masses originate from gauge interactions of the
Higgs field, fermions acquire their masses via the Yukawa interactions of eq. (2.3):

LYuk ⊃ −
v√
2

( 3∑
i,j=1

Y d
ijdLidj +

3∑
i,j=1

Y u
ijuLiuj +

3∑
i,j=1

Y e
ijeLiej + h.c

)
. (2.7)

Diagonalizing the quark Yukawa matrices with unitary matrices yields the mass eigen-
states

ũL = Vu,LuL , d̃L = Vd,LdL , ũR = Vu,RuR , d̃R = Vd,RdR . (2.8)

This rotation leads to mixing of up and down type quarks in weak gauge interactions,
described by the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix [44, 45]

VCKM = Vu,LV
†
d,L . (2.9)

The absolute values of the CKM matrix entries at the Z-pole mass MZ ≈ 91.2 GeV are

|VCKM(MZ)| =


|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

 ∼


0.974 0.225 0.004
0.225 0.973 0.041
0.009 0.040 0.999

 . (2.10)

The CKM matrix enters only in gauge interactions involving the W± bosons while
all other interactions stay flavor conserving. While the CKM matrix is physical, the
Yukawa matrices in eq. (2.3) are not directly measurable.

If we choose charged left lepton mass eigenstates, left up quark mass eigenstates, as
well as all right handed quarks to be gauge eigenstates, the (diagonal) mass and Yukawa
matrices are related via

Md = v√
2
Vd,LY

d , Mu = v√
2
Y u , M e = v√

2
Y e , (2.11)

where we now have Vd,L = V †CKM. Since quarks are not observable as free particles,
their pole mass cannot be measured (except for the top quark which decays before it
hadronizes). At MZ , the MS mass parameters for quarks and leptons are [46]

mu ≈ 1.27 MeV , md ≈ 2.90 MeV , ms ≈ 55.00 MeV ,

mc ≈ 0.62 GeV , mb ≈ 2.89 GeV , mt ≈ 171.70 GeV ,

me ≈ 0.49 MeV , mµ ≈ 102.72 MeV , mτ ≈ 1746.24 MeV .

(2.12)
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From eqs. (2.11), we find the Yukawa couplings

|Y d(MZ)| ∼


1.6 · 10−5 7.1 · 10−5 6.6 · 10−5

3.8 · 10−6 3.1 · 10−4 6.8 · 10−4

1.5 · 10−7 1.3 · 10−5 1.7 · 10−2

 , (2.13)

Y u(MZ) ∼


7.3 · 10−6 0 0

0 3.6 · 10−3 0
0 0 0.99

 , (2.14)

Y e(MZ) ∼


2.8 · 10−6 0 0

0 5.9 · 10−4 0
0 0 1 · 10−2

 . (2.15)

In our chosen basis, the entries of Y u are complex valued, while those of Y u and Y e are
real.

Since the top Yukawa coupling yt = 0.99 is the largest Yukawa coupling, a convenient
approximation is given by setting all the other Yukawa couplings to zero. Within this
approximation, the gauge and Yukawa couplings

α1 ≡
g2

1
(4π)2 , α2 ≡

g2
2

(4π)2 , α3 ≡
g2

3
(4π)2 , αt ≡

y2
t

(4π)2 (2.16)

run at two loop gauge and one loop Yukawa level as shown in fig. 2.1 1. The gauge
couplings g1, g2, g3 belong to the gauge sectors of GSM in (2.1). For some more details
on the concept of running couplings, see sec. 2.3. The strong coupling α3, the weak
coupling α2, as well as the top Yukawa coupling αt vanish in the far UV, making
calculations within perturbation theory predictive. This scenario is known as asymptotic
freedom [50–52]. At small energies, the strong coupling runs into a confinement pole
at µconf ∼ 0.2 GeV. This pole is proposed to be responsible for the observed quark
confinement [53]. On the other hand, α1 grows towards larger energies until it eventually
runs into a Landau pole, limiting the SM to a finite energy scale. Long before this pole
is reached, gravitational effects become significant at µ ∼ 1019 GeV. Nevertheless, the
implied breakdown of the SM due to its Landau pole constitutes the main motivation
for the searches of SM extensions within this thesis. More discussions are provided in
the subsequent sections.

1All plots of this thesis are created with Python version 3.7.4 [47] and the Matplotlib package [48].
Occasionally, some editing is done with Inkscape 1.0 [49].
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Figure 2.1: Running gauge and top Yukawa couplings of the SM as defined in (2.16) at two-
loop gauge and one-loop Yukawa level. While α3, α2 and αt vanish in the far UV (asymptotic
freedom), α1 eventually runs into a pole (not seen in the plot), signaling the breakdown of the
SM. At µconf ∼ 0.2 GeV, the strong coupling evolves a confining pole. The existence of this pole
is responsible for chiral symmetry breaking and the confinement of quarks. At µ ∼ 1019 GeV
(blue dashed line), gravitational effects become significant.
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2.2 Challenges within the Standard Model

In this section, we briefly discuss three remaining challenges within the SM, namely the
absence of gravity, the absence of dark matter and the presence of Landau poles (also
known as the triviality problem [7]).

We begin with the most striking evidence for the incompleteness of the SM, given by
its inability to describe gravity. There have been many attempts to find consistent theo-
ries of quantum gravity, some of these given by string theory (for a beginners overview,
see [54]), supergravity [55], and asymptotically safe quantized general relativity [56]. In
the asymptotic safety scenario, all running couplings flow into a fixed point in the UV.
Such theories are fundamental, even if they are not renormalizable (by power-counting),
like gravity [12]. We have more to say on asymptotic safety in sec. 2.3.

The second challenge stems from cosmological observations suggesting that the
measured dark matter energy density originates from new particles which are electrically
neutral and colorless [57]. There is a plethora of models providing dark matter candidates.
A model Peter Schuh and I worked on assumes a dark QCD-like sector described by
a new SU(N)D gauge group with a dark matter candidate given as confined fermions
purely charged under this new interaction. This model is briefly summarized in sec. 3.

While the absence of gravity and dark matter within the SM are of phenomenological
nature, the last challenge of the SM we mention comes from theoretical considerations
and constitutes the central motivation for our studies. It is given by the observation
that the electric coupling diverges at the scale µpole. At two-loop level and with the SM
matter content, this scale is given by [58]

µpole ∼ 1034 GeV . (2.17)

This Landau pole indicates the breakdown of the theory, known as the triviality prob-
lem [7], which is present even beyond perturbation theory [59]. Before electroweak
symmetry breaking, this Landau pole is present in the U(1)Y hypercharge coupling.
Hence, the SM on its own is not fundamental. One might argue that since this Landau
pole lies way beyond the Planck scale (µPlanck h 1019 GeV), gravitational effects have
to be considered. Studies suggest that indeed AS gravity might solve the triviality
problem [60]. Nevertheless, additional matter content lowers the scale at which this
Landau pole appears and in some well-motivated extensions of the SM this scale appears
below the Planck scale [58]. It has been demonstrated that the SM Landau pole can
be cured by AS without including gravity [61, 62]. This thesis deals with the task of
finding non-gravitational, asymptotically safe and supersymmetric extensions of the SM.
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In the minimal supersymmetric version of the SM, there are Landau poles not only in
the hypercharge coupling, but also in the weak SU(2)L coupling.

2.3 Asymptotic Safety
Originally put forward as a possibility for quantized general relativity to be fundamental
and predictive despite being perturbatively non-renormalizable [12], asymptotic safety
recently has been utilized as a model building tool for non-gravitational theories which
are renormalizable in perturbation theory [61–65].

Asymptotic safety refers to the scenario for which running couplings obtain finite
interacting fixed point values in the UV, generalizing the notion of asymptotic freedom
for which couplings vanish in the UV [50–52, 66]. Running couplings take on different
values at different energy scales µ

ga = ga(µ) (2.18)

and were introduced by Stückelberg and Petermann [67] and independently by Gell-
Mann and Low [68] to improve perturbation theory. Perturbation theory is valid as long
as these running couplings stay small. The perturbativity condition reads

|ga| ≤ 4π , (2.19)

to also accommodate for loop-factors of 1/(4π). Taking infinitesimally small steps
between energies µ and µ + dµ, the change of ga = ga(µ) can be described by using
so-called beta functions

dga
d ln(µ) = βa(g) , (2.20)

which depends on all the (massless) couplings g of the theory. Solving beta functions is
equivalent to a resummation of log-factors which appear when non-running couplings
are used. These log-factors spoil perturbation theory away from the scale at which
the non-running coupling is measured, and the resummation extends the validity of
perturbation theory. The set of operations which transform the physics from one energy
scale to another constitute the so-called renormalization group.

In fig. 2.2, we illustrate evolutions of couplings which either run into a Landau pole,
like in QED, become asymptotically free, like in QCD, or become asymptotically safe.
In the last two cases, the change of the couplings has to decrease as a function of energy
until this change becomes zero in the far UV, meaning that the couplings g? reached in
the far UV fulfill

0 = dga
d ln(µ)

∣∣∣
g=g?

(2.20)= βa(g?) . (2.21)
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Points in coupling space fulfilling this condition are generally called fixed points and can
be reached along different directions in coupling space either in the far UV (ln(µ)→∞)
or the far IR (ln(µ)→ −∞). Directions along which fixed points are reached in the UV
are called “relevant” or “UV-attractive”, while directions reaching fixed points in the IR
are called “irrelevant” or “IR-attractive”. The subspace of couplings flowing towards a
fixed point in the UV is referred to as the critical surface, whose dimensionality specifies
the number of independent model parameters. If the critical surface is finite dimensional,
the model becomes predictive since only a finite amount of parameters have to be fixed
experimentally. This is the reason why asymptotically safe quantized gravity (with a
finite dimensional critical surface) becomes predictive despite having infinitely many
Lagrangian terms due to its perturbative non-renormalizability. In fig. 2.3, we illustrate
a sample renormalization group flow containing three fixed points G, FP1 and FP12 in a
space spanned by two couplings g1 and g2, with arrows pointing towards the IR. For G,
the g1 direction is a relevant direction while g2 corresponds to an irrelevant direction.
Fixed point FP1 is IR-attractive in the direction of g1 and UV-attractive in a direction
pointing towards FP2. The fully-interacting fixed point FP12 is completely IR-attractive.

A more modern view on running couplings and the renormalization group was
developed by Wilson [13, 69] based on studies performed by Kadanoff [70] in the context
of critical phenomena in condensed matter. From this point of view, the physical
properties at an energy (or length) scale are obtained by averaging out the physics at
larger energy (or smaller length) scales. This perspective is the basis of the functional
renormalization group [71, 72], a non-perturbative renormalization group method largely
utilized in modern studies of quantum gravity at different energy scales.

The existence of viable UV fixed points within pure quantized general relativity has
been established in expansions around the critical spacetime dimension d = 2 + ε, where
Newtons coupling has mass dimension [GN] = −ε [12, 73–75]. Quantum gravity coupled
to N matter fields in the limit of large N also suggests the existence of physical UV
fixed points [76–78].

Motivated by these findings in 2 + ε spacetime dimensions and for large numbers of
matter fields, research interest in asymptotically safe quantum gravity increased [79–81]
and remarkable progress was made over the last decades [82–86]. Applying functional
renormalization methods, more evidence for the existence of UV fixed points in quantized
gravity has been found. Studies involving the Einstein-Hilbert action [56, 87] as well as
additional higher-derivatives implemented through functions f(R) of the Ricci scalar
R [88–95] suggest the existence of viable UV fixed points in pure quantized gravity with
couplings of lower mass dimensionality being more irrelevant, implying that canonical
mass ordering stays a valid ordering principle. The weak gravity conjecture states that
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1) Landau pole 2) Asymptotic freedom
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Figure 2.2: Three different cases of coupling evolutions. In the first case, the coupling runs
into a Landau pole, indicating the breakdown of the theory. An example for a realistic theory
having a Landau pole is quantum electrodynamics (see the blue curve in fig. 2.1). In the second
case, known as asymptotic freedom, the coupling vanishes in the far UV, making the theory
fundamental and perturbation theory valid at large energies. Quantum chromodynamics is
an example for a realistic theory showing this behavior (red curve in fig. 2.1). The last case
of asymptotic safety generalizes the concept of asymptotic freedom by letting couplings run
into interacting fixed points in the UV. Such theories are, like asymptotically free theories,
fundamental and predictive. Within the SM, asymptotic safety is absent. Quantized general
relativity as a realistic theory is speculated to be asymptotically safe [12, 79, 80, 85, 86].

gravity stays the weakest force even in the far UV [96, 97]. Under this assumption,
asymptotically safe gravity coupled to Yang-Mills theories (also including U(1) groups)
without [98] and with matter [99] have been shown to become AF.

In this thesis, we focus on AS in the context of non-gravitational, fundamental
SM extensions free from Landau poles. Studies of fermionic Gross-Neveu models in
d = 2 + ε dimensions [100, 101], in exactly d = 3 dimensions with a large number of
fermions [102], and in up d = 4 dimensions utilizing functional renormalization [103]
all unveil physical UV fixed points. Also within pure SU(NC) Yang-Mills theories in
d = 4 + ε dimensions [104, 105] up to d = 5, viable UV fixed points were discovered,
in agreement with functional renormalization studies [106]. For self-interacting O(N)
symmetric scalar field theories, the existence of an IR fixed point at dimension d = 3
has been confirmed beyond perturbation theory [107, 108] while for d > 4 UV fixed
points seem to be absent [109]. The impact of assumed UV fixed points within the
SM has been discussed in 1974 in [110]. About 40 years later, the existence of non-
supersymmetric simple [63, 111] and semi-simple [64] gauge theories in exactly four
spacetime dimensions has been established and guaranteed to all orders in perturbation
theory within a large-N limit known as the Veneziano limit [112]. In this limit, certain
degrees of freedom like the number of fields and gauge group dimensionalities go to
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12

1

Figure 2.3: Illustration of a sample RG flow for two couplings g1 and g2 containing three
fixed points G, FP1 and FP23. Arrows point towards the IR, making FP12 an IR fixed point.
G is IR-attractive in the g2 direction and UV-attractive in the direction of g1, while FP1 is
IR attractive in the direction of g1 and UV-attractive in the direction of FP12. This figure is
taken from [65] with modifications on coupling and fixed point names.

infinity while specific ratios of these degrees of freedom stay constant, allowing to bring
interacting fixed points arbitrarily close to the gaussian fixed point. Theorems for weakly
interacting fixed points have been provided which imply that Yukawa interactions [113]
and gauge interactions [114] are necessary for general gauge theories to admit UV fixed
points. Hence scalars, fermions as well as gauge bosons are required to generate weakly
interacting UV fixed points. Asymptotically safe and non-supersymmetric extensions
of the SM have been constructed with new physics scales in the TeV-range [61, 62].
Furthermore, asymptotic safety recently has been utilized to naturally explain the
anomalous magnetic moments of muons and electrons [115, 116].

In contrast to non-supersymmetric theories, supersymmetry strongly constraints
the possibility of UV fixed points [117]. With supersymmetry, simple gauge groups
do not allow for interacting UV fixed points [118] and semi-simple gauge groups are a
necessity. For supersymmetric models, the existence of semi-simple AS models has been
established within the Veneziano limit [65]. In section 5, we will discuss supersymmetric
beta functions and limitations for the existence of weakly interacting fixed points.
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2.4 Supersymmetry
Supersymmetry has been of greatest interest for the high energy community for some
decades now. Even with the LHC lacking any evidence for it [10, 11], there is no decisive
reason that nature is not supersymmetric at energies beyond the TeV-range. Due to its
theoretical attractivity, it still remains one of the most promising ways to extend the
SM.

Supersymmetry is a symmetry relating fermions and bosons

Q|fermion〉 = |boson〉, Q|boson〉 = |fermion〉 , (2.22)

with Q denoting its generator. For each fermion, there is a bosonic superpartner with
same mass, charges and gauge representations, and vice versa. Since we have not
observed any of these superpartners, supersymmetry must be broken in nature at some
unknown energy scale. In this thesis, we find hints for this energy scale when imposing
asymptotic safety and matching onto the SM.

From (2.22), we see that supersymmetry generators are fermionic and hence extend
the Lorentz algebra. As shown by the combined efforts of Coleman and Mandula in
1967, and Haag, Łopusański and Sohnius in 1975, supersymmetry in fact is the only
possibility to extend Lorentz symmetry [119, 120]. Such uniqueness is very much desired
for physical theories. The first supersymmetric model has been constructed by Wess and
Zumino in 1974 and describes a free, massless Weyl fermion and a free, massless complex
scalar [121]. Shortly after, supersymmetric gauge- as well as non-gauge interactions
have been introduced [122].

Historically, the cancellation of non-logarithmic UV regulator divergences in the
Higgs mass played a huge role in motivating low-scale supersymmetry. With SM
superpartner masses in the range of at most some TeV, the enormous difference between
the electroweak scale (∼ 200 GeV) and the Planck scale (∼ 1019 GeV) can be explained
naturally. The larger the masses of SM superpartners, the more fine-tuning is necessary
to explain this large discrepancy. This is known as the “hierarchy problem” which is
more of a philosophical than a physical problem [123, 124]. Nevertheless, it can be
argued that minimal supersymmetric SM extensions constrained by current experimental
bounds still solve the hierarchy problem [125].

The superfield formalism allows for a suitable description of supersymmetric theories,
where fermionic and bosonic degrees of freedom are treated simultaneously as compo-
nents of superfields [126]. In section 4.1, we present in more detail how to construct
supersymmetric Lagrangians in the superfield formalism. Furthermore, some powerful
non-perturbative results like the non-renormalization theorem [127, 128] and exact
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relations valid in superconformal field theories have been provided. We will address
superconformal field theories in more detail in sec. 8. Other theoretically appealing
features of supersymmetry are that in string theory, supersymmetry is a necessity, and
that treating supersymmetry as a local symmetry yields supergravity. Both, string
theory and supergravity, are candidates for consistent theories of quantum gravity.

When supersymmetry is imposed onto the SM, we obtain the MSSM. Each particle
of the fields of tab. 2.1, as well as each gauge boson receives a superpartner. Due to
the SM Higgs receiving a fermionic superpartner, gauge anomaly cancellation is spoiled
unless we introduce a second scalar Higgs field and a second fermionic (Weyl) Higgs
field with hypercharges of opposite signs relative to the SM Higgs. This second pair of
Higgs fields is also needed to give masses to down-type quarks [129].

In summary, the (gauge-basis) particles of the MSSM are those of tab. 2.2. The
bosonic spin-0 superpartners of the quarks and leptons are the squarks and sleptons and
the fermionic spin-1/2 superpartners of the Higgs bosons are the higgsinos. Additionally
to these particles, the MSSM contains the SM gauge bosons, as well as their fermionic
spin-1/2 superpartners. Further details and features of the MSSM, like its non-gauge
interactions, its mass spectrum and supersymmetry-breaking are provided in sec. 4.2.

Spin-0 Spin-1/2 Spin-1
squarks quarks -

Q̃ = (ũL, d̃L) Q = (uL, dL) -
ũ∗R u†R -
d̃∗R d†R -

sleptons leptons -
L̃ = (ν̃, ẽL) L = (νL, eL) -

ẽ∗R e†R -
higgses higgsinos -

Hu = (H+
u , H

0
u) H̃u = (H̃+

u , H̃
0
u) -

Hd = (H0
d , H

−
d ) H̃d = (H̃0

d , H̃
−
d ) -

- photino photon
- γ̃ γ

- gluinos gluons
- g̃ g

- bino B boson
- B̃ B

- winos W bosons
- W̃ W

Table 2.2: The gauge eigenstate particles of the MSSM. Each squark, quark, slepton and
lepton comes in three flavors. The mass eigenstate spectrum is described in sec. 4.2.4.



Chapter 3

Dark QCD With UV Fixed Points

In this chapter, we briefly present a non-supersymmetric SM extension accompanied by
an additional (“dark”) QCD-like SU(3)D sector [24]. For asymptotically safe candidates,
particles beyond the SM are integrated out in such a way that bound states formed
by QCD-like confining particles carrying only “dark” colors regarding SU(3)D obtain
masses which explain the observed dark matter energy density.

3.1 Dark QCD
In our dark matter model, additionally to the strong SU(3)C sector, there is an additional
dark SU(3)D sector, so that the gauge group is given by

GDQCD = SU(3)D ⊗ SU(3)C . (3.1)

The SM particles are accommodated by further fermions and complex scalar matrices
beyond the SM, presented in tab. 3.1.

15
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Field SU(3)C SU(3)D Flavor multiplicity
SM Quark 3 1 6

joint fermion ΨJ JC JD NJ

dark fermion ΨD 1 RD ND

joint scalar SJ 1 1 NJ ×NJ

dark scalar SD 1 1 ND ×ND

Table 3.1: Field content of our dark QCD model. Dirac fermions are highlighted in gray,
while complex scalar matrices are not highlighted. The SM SU(3)C singlets are not listed in
this table.

This field content allows for Yukawa interactions

LYuk = −yJTr(ΨJSJΨJ)− yDTr(ΨDSDΨD) + h.c. , (3.2)

with Tr implying sums over flavor and gauge indices.
As in previous work from Bai and Schwaller with focus on infrared fixed points,

bound states of purely dark fermions are identified as dark matter candidates with an
assumed number density comparable to ordinary baryonic matter [130]. Complementary
to their study, we investigate dark QCD models with suitable UV fixed points. The
confinement pole of the dark coupling αD = |yD|2/(4π)2, indicating masses of dark bound
states, is set to appear at ∼ 1 GeV to generate the observed dark matter energy density
which is approximately five times larger than the visible baryonic energy density [131].

3.2 Benchmark
One asymptotically safe benchmark within the dark QCD framework described in the
previous section is given by setting the parameters in tab. 3.1 to

NJ = 70 , ND = 5 , JC = 6 , JD = 3 , RD = 8 . (3.3)

At two-loop gauge and one-loop Yukawa level, the fully interacting gauge-Yukawa fixed
point

GY=(α?3, α?D, α?yJ , α
?
yD

)≡
(
g?23

(4π)2 ,
g?2D

(4π)2 ,
|yJ |?2

(4π)2 ,
|yD|?2

(4π)2

)
≈(0.24, 0.23, 0.07, 0.21) (3.4)

is UV attractive in this benchmark. In fig. 3.1, we show a plot of the renormalization
group flow in a α3 − αD plane. Starting on the UV-safe trajectory (illustrated as a
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G

GY

Figure 3.1: RG flow of the dark QCD benchmark given by the parameters in eq. (3.3) (see
also tab. 3.1). At each point in this α3 − αD plane, the Yukawa couplings αJ , αD take on
their nullcline values, determined by vanishing of their beta functions. Arrows point towards
the IR. The green line shows the trajectory connecting GY in the UV with the gaussian fixed
point G in the IR.

green curve in fig. 3.1) near GY, and flowing towards smaller energies, we eventually
arrive at an energy corresponding to the mass MJ of the jointly charged fermions ΨJ .
At this point, these are integrated out. The evolution of the strong coupling α3 is now
as in the SM, allowing us to infer the value of MJ from α3 at the point at which we
integrate out the jointly charged fermions. At even smaller energies MD, also the purely
dark charged fermions ΨD are integrated out. Below this energy, the dark gluons drive
the evolution of the dark coupling αD, which obtains a confinement pole at µconf. The
exact scale at which confinement appears is hard to estimate and setting this scale to
µconf is a practical choice. This confinement pole is set by us to appear at µconf = 1 GeV
by the condition αD(µconf) = 1, so that for a number density of the dark bound states
comparable to that of baryonic bound states, the dark matter energy density is around
five times larger than the QCD scale µQCD ∼ 0.2 GeV (see also fig. 2.1 for the SM
running couplings).

In fig. 3.2, we present a sample evolution of the dark coupling αD with MJ ∼
36× 103 GeV and MD ∼ 429 GeV. In general, MJ 6= MD is needed since otherwise MJ

appears at energies already well-probed at the LHC, in conflict with the non-observation
of the jointly charged fermions ΨJ .
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αD*

μconf MD JM

Figure 3.2: Evolution of the dark coupling αD (blue, orange and purple curves) in the
dark QCD benchmark given by the parameters of eq. (3.3) (see also tab. 3.1). Beginning in
the far UV near fixed point GY of (3.4), αD becomes smaller towards smaller energies. At
MJ ∼ 36× 103 GeV, the jointly charged fermions ΨJ are integrated out, while the masses of
the purely dark charged fermions ΨD is given by MD. At µconf = 1 GeV, αD becomes one,
and the confinement pole appears. Near this confinement pole, dark bound states have their
masses. The value of µconf is chosen such that it is five times larger than the QCD confinement
scale µQCD ∼ 0.2 GeV (see fig. 2.1 for the SM coupling evolutions).
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3.3 Phenomenology
My main contribution to this work is the section on collider signatures, where we
set constraints on masses and representations derived from experimental data. To be
more specific, we utilize the experimentally measured evolution of the strong coupling,
R-hadron signals [132], resonant dijet production and monojets plus missing energy
signatures. While the first three of these allow to set a lower bound on the joint fermion
mass MJ , monojet plus missing energy signatures turn out to give a handle on allowed
field representations.

From the evolution of the strong coupling [133–135], we immediately infer

MJ & 1.5 TeV . (3.5)

The mass bounds obtained from non-observation of R-hadrons, long-lived bound states
formed by visible and dark partons, depends on the representation of ΨJ under GDQCD.
In tab. 3.2, some of these mass bounds for different representations are stated, inferred
by reinterpreting experimental constraints for R-hadrons formed by stable gluinos stated
to be heavier than ∼ 1.7 TeV [136, 137].

Resonant dijet production in our models is assumed to be dominated by the pro-
cess (3.6), yielding the allowed parameter space shown in fig. 3.3 when compared to
experimental data from ATLAS [138].

g

g

g

g

Ji
Ji

Ji SJii

Ji
Ji

Ji (3.6)

Mmin
J [TeV] JD = 3 JD = 6 JD = 8 JD = 10 JD = 15 JD = 15’

JC = 1 1.3 1.7 1.7 2.0 2.0 2.2
JC = 3 1.5 1.9 1.9 2.2 2.2 2.4

Table 3.2: Lower bounds on the joint fermion mass MJ in the case of NJ = 1 (Dirac) joint
fermion for different representations (JC ,JD) under (SU(3)C ,SU(3)D). These bounds are
inferred from bounds on R-hadron signals with gluinos as their long-lived colored BSM partons,
here reinterpreted for long-lived joint fermions ΨJ . The mass bounds are adopted from [61].
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Figure 3.3: Available parameter space (green) according to the 95% C.L. upper limit for
BSM contributions to dijet productions stated by ATLAS [138]. Parameter space left to the
dijet lower bounds curve, marked by thick black dots, is excluded by ATLAS. The region
marked by small black dots is outside of the scope of our models. Up to MJ ∼ 1.9 TeV (shown
in light blue), the parameter space is excluded by R-hadron searches. The green region above
8 TeV is unprobed.

In our dark QCD model, monojet plus missing energy signatures are dominated by the
Feynman diagram (3.7).

g

g gD

gD

g

J

J

J

JJ

(3.7)
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For the total cross-section at a center of mass energy
√
s = 13 TeV, we estimate

σtot ≈ 7.4× 10−9GeV−2 ·X , (3.8)

where
X ≡ N2

JS2(JC)2S2(JD)2αD(MJ)2 . (3.9)

The cross-section (3.8) turns out to be explicitly independent of the mass MJ , giving
a handle on the allowed representations and dark coupling strengths. Only indirectly,
through αD(MJ), the mass of ΨJ enters in this cross-section. Due to the exponential
dependency of MJ on the values of αD, bounds on MJ obtained in this way are not to
be trusted.

Experimental data taken at ATLAS corresponding to a data set with luminosity
36.1 fb−1 states an upper limit of 531 fb on the total cross-section (3.8) [139], translating
into

X . 0.18 . (3.10)

Assuming that statistical uncertainties for the number of events N scale with 1/
√
N ,

we find that at
√
s = 13 TeV, the upper bound on X scales with the luminosity L like

X . 0.18
(

36.1 fb−1

L

) 2
3

. (3.11)

In fig. 3.4, we have plotted these upper limits on X, together with an orange dashed line
indicating the current ATLAS luminosity of 36.1 fb−1 and the green dashed line at ten
times larger L, achievable by the HL-LHC in 2027. At this luminosity of L = 361 fb−1,
X is bounded from above by ∼ 0.006. Hence, ten times larger luminosity translates into
an upper bound on X which is 2000 times lower. From the plot 3.4, we also see that
beyond the luminosity of the HL-LHC, upper bounds do change much less significantly.
Beyond this point, increasing the center of mass energy is preferred over increasing
luminosity.
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36.1 fb
-1

361 fb
-1

Figure 3.4: Based on the upper limit for X = N2
JS2(JC)2S2(JD)2αD(MJ)2 at the LHC

luminosity corresponding to a data set of 36.1 fb−1 (orange dashed line), we estimate the upper
limit on X for other luminosities. In 2027, the HL-LHC is expected to operate at ten times
larger luminosities which would yield X . 0.006 (greed dashed line).



Chapter 4

Supersymmetry Basics

In this presentation of the very basics of supersymmetry, we at first give general recipes on
how to construct supersymmetric models. Next, the minimal Supersymmetric Standard
model, the MSSM, and the supersymmetry-breaking scenario known as “gauge-mediated
supersymmetry-breaking” are presented. Finally, the mass spectrum of the MSSM gets
discussed. Everything shown in this chapter can be found in standard literature on
supersymmetry (e.g. [140, 141]).

4.1 Constructing Supersymmetric Theories
As mentioned in sec. 2.4, supersymmetric theories are best described in terms of
superfields. Superfields are functions of superspace coordinates

{xµ, θ, θ†} , (4.1)

where xµ are the usual (bosonic) spacetime degrees of freedom and θ, θ† are newly intro-
duced, two-component (Weyl-spinor) degrees of freedom satisfying the anti-commutator
relations

{θα, θ†α̇} = {θα, θα} = {θ†α̇, θ†α̇} = 0 (α, α̇ = 1, 2) . (4.2)
These fermionic superspace coordinates are used to mathematically formulate supersym-
metric theories and are not physical extra dimensions.

Due to the anti-commutation relations (4.2), Taylor expanding a general superfield

S = S(xµ, θα, θ†α̇) (4.3)

with respect to the fermionic superspace coordinates yields only finite terms with
spacetime-dependent coefficients. These coefficients have different statistics and con-
stitute usual quantum fields. Imposing further constraints on general superfields (4.3)

23
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yields different types of superfields with which different quantum fields can be described.
We are interested in two kinds of superfields, namely chiral- and vector superfields.

Before we present these two kinds of superfields, we have to set up some notation. The
index assignment for Spin-1/2 Weyl spinors χ (like the fermionic superspace coordinates)
with α, α̇ ∈ {1, 2}, is

left-handed (1/2, 0) : χα , right-handed (0, 1/2) : χ†α̇ . (4.4)

Anti-left-handed and anti-right-handed Weyl spinors are denoted by switching the height
of the indices:

anti-left-handed : χα , anti-right-handed (0, 1/2) : χ†α̇ . (4.5)

With the epsilon tensors

ε12 = −ε21 = ε21 = −ε12 = 1 , ε11 = ε22 = ε11 = ε22 = 0 . (4.6)

Weyl spinors and anti-Weyl spinors are connected via

χα = εαβχβ , χα = εαβχ
β , χ†α̇ = εα̇β̇χ

†β̇ , χ†α̇ = εα̇β̇χ†
β̇
. (4.7)

We use the Einstein summation convention so that in (4.7) a sum over the β indices is
implied. Products with suppressed indices of two Weyl spinors χ and ξ are defined as

χξ = χαξα = χαεαβξ
β = ξβχβ = ξχ , χ†ξ† = χ†α̇ξ

†α̇ = χ†α̇ε
α̇β̇ξ†

β̇
= ξ†

β̇
χ†β̇ = ξ†χ†. (4.8)

In the same way we define contractions of electroweak SU(2)L gauge indices later on in
our study of AS MSSM extensions.

Furthermore, we define

σµ = (1, ~σ) , σµ = (1,−~σ) , (4.9)

with ~σ the three-vector composed by the Pauli matrices

σ1 =
(

0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)
. (4.10)

The index assignments to σµ and σµ are

(σµ)αα̇ , (σµ)α̇α . (4.11)
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We now have everything together to continue with our presentation of chiral- and
vector superfields and the construction of supersymmetric Lagrangians. Chiral superfields
Φ are decomposed into

Φ(x, θ, θ†) = φ(x) + iθ†σµθ∂µφ(x) + 1
4θθθ

†θ†∂µ∂
µφ(x) +

√
2θψ(x)

− i√
2
θθθ†σµ∂µψ(x) + θθF (x) ,

(4.12)

and their complex conjugates are

Φ∗(x, θ, θ†) = φ∗(x)− iθ†σµθ∂µφ∗(x) + 1
4θθθ

†θ†∂µ∂
µφ∗(x) +

√
2θ†ψ†(x)

− i√
2
θ†θ†θσµ∂µψ

†(x) + θ†θ†F ∗(x) .
(4.13)

Chiral superfields Φ are called left-handed while superfields Φ∗ are called right-handed
due to their SUSY transformation properties. A closer look into eq. (4.12) and (4.13)
shows that besides the complex scalar φ and the Weyl fermion ψ, we also have an
additional complex scalar F . This auxiliary field allows to use chiral superfields whether
they are on-shell or off-shell, since the supersymmetry algebra closes also off-shell as
required for path integrals. When constructing Lagrangians below, there will be no
kinetic terms for F so that it is allowed to always let F satisfy its classical equation of
motions. We also introduce the notation

[Φ]F = F . (4.14)

It is standard to refer to F as the “F-term” of Φ.
Vector superfields V fulfill V = V ∗ and read

V (x, θ, θ†) = θ†σµθAµ + θ†θ†θλ+ θθθ†λ† + 1
2θθθ

†θ†D , (4.15)

with Aµ and D complex scalars and λ and λ† Weyl spinors. The role of D is similar to
that of F in (4.12). We define

[V ]D = 1
2D (4.16)

as the “D-term” of V .
We now come to the construction of supersymmetric Lagrangians. The simplest

supersymmetric model, first presented by Wess and Zumino as already teased in sec. 2.4,
is given by one chiral superfield Φ and the Lagrangian

LWess = [Φ∗Φ]D = −∂µφ∗∂µφ+ iψ†σµ∂µψ + F ∗F + ... , (4.17)
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where the dots “...” imply total derivatives, not contributing to the action. This is a
theory of a free and massless Weyl-fermion and a free and massless complex scalar.

Supersymmetric models of chiral superfields Φi with non-gauge interactions are given
by Lagrangians of the form

Lnon-gauge = [Φ∗iΦi]D + ([W (Φi)]F + c.c.) , (4.18)

where the so-called superpotential W = W (Φ) is a holomorphic function of only left-
handed chiral superfields. For a model of one chiral superfield Φ with the superpotential

W = 1
2mΦΦ + 1

6yΦΦΦ , (4.19)

we obtain the supersymmetric Lagrangian

LW = LWess −
(
m2φ∗φ+ 1

2my
∗φφ∗φ∗ + 1

2m
∗yφ∗φφ+ 1

4yy
∗φφφ∗φ∗

)
︸ ︷︷ ︸

=U(φ)

− 1
2

(
mψψ + yφψψ + h.c.

)
,

(4.20)

with U being the scalar potential. This Lagrangian demonstrates the remarkable feature
of supersymmetric theories that the quartic (and trilinear) scalar couplings are related
to Yukawa and bilinear couplings. These relations are responsible for the cancellation of
non-logarithmic UV regulator divergences in the Higgs mass, which played a huge role
in the history of supersymmetry as a solution to the hierarchy problem as discussed in
sec. 2.4. Furthermore, this feature allows to calculate Higgs masses in supersymmetric
theories. Within the MSSM, the upper bound on the lightest Higgs mass is in agreement
with the measured value of the SM Higgs [142].

In order to describe gauge interactions with vector superfields V a belonging to a
gauge group

G =
∏
a

Ga (4.21)

with generators T a and gauge couplings ga, the kinetic D-term in the Lagrangian
Lnon-gauge (4.18) is modified to account for interactions between the components of chiral
and gauge vector superfields. For this, it is convenient to define the matrix

V j
i = 2gaT aji V a . (4.22)

The modified kinetic D-term is then given by[
Φ∗i (exp(2gtaV a))jiΦj

]
D

=−∇µφ
∗
i∇µφi + iψ†iσµ∇µψi −

√
2g(φ∗i taψi)λa

−
√

2gλ†a(ψ
†
i t
aφi) + F ∗i Fi + g(φ∗i taφi)Da .

(4.23)
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In order to describe self-interactions of vector superfield components, a chiral superfield
field strength tensor Waα is introduced such that we obtain the SUSY invariant F -term

∑
a

[WaαWa
α]F =

∑
a

[
DaDa + 2iλaσµ∇µλ

†a − 1
2F

aµνF a
µν + i

4ε
µνρσF a

µνF
a
ρσ

]
, (4.24)

with F a
µν the usual field strength tensor known from non-supersymmetric Yang-Mills

theories.
Combining the modified D-term (4.23) with gauge self-interactions (4.24), and

allowing for further non-gauge interactions via a superpotential W , we obtain the
general supersymmetric Lagrangian

L =
[
Φ∗i (exp(2gtaV a))jiΦj

]
D

+ 1
4
∑
a

([WaαWa
α]F + c.c.) + ([W (Φi)]F + c.c.) . (4.25)

4.2 The MSSM and its Features

4.2.1 Superfields and superpotential of the MSSM
In the MSSM, each SM field of tab. 2.1 resides within a chiral superfield, together with
their superpartners. As discussed in sec. 2.4, an additional chiral Higgs superfield with
hypercharge opposite to the SM Higgs is needed to cancel gauge anomalies. Furthermore,
each SM gauge boson field becomes a component of a vector superfield, together with
their gaugino superpartners. We then have for the MSSM the particles of tab. 2.2,
residing in the left-handed chiral superfields of tab. 4.1, and its gauge group is given by
the SM gauge group

GMSSM = GSM = SU(3)C ⊗ SU(2)L ⊗ U(1)Y . (4.26)

To obtain the MSSM, not only supersymmetry together with anomaly-cancellation is
imposed onto the SM, but also R-parity [132, 143] given by the global U(1) operations

PR = (−1)3(B−L)+2s , (4.27)

where B, L, and s denote baryon number, lepton number and spin, respectively. If
R-parity is conserved, the lightest supersymmetric particle is stable and may serve as
a dark matter candidate [144]. The superpotential of the MSSM (defined as being
R-parity conserving) reads

WMSSM = Y ij
u uiQjHu + Y ij

d diQjHd + Y ij
e eiLjHd + µHuHd , (4.28)
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(Left-handed) Superfield SU(3)C SU(2)L U(1)Y Flavor multiplicity
quark doublet Q 3 2 +1

6 3
up-quark u 3 1 −2

3 3
down-quark d 3 1 +1

3 3
lepton doublet L 1 2 −1

2 3
lepton singlet e 1 1 +1 3
up-Higgs Hu 1 2 +1

2 1
down-Higgs Hd 1 2 −1

2 1

Table 4.1: Left-handed chiral superfield content of the MSSM and their representation under
the MSSM gauge group GMSSM of eq. (4.26).

where gauge indices are suppressed, and sums over i, j = 1, 2, 3 relate to the flavor
degrees of freedom. In this work, we are mostly interested in the case where the Yukawa
matrices Ye, Yu and Yd in (4.28) are approximated by Ye ≈ 0, Yu ≈ diag(0, 0, yt),
Yd ≈ diag(0, 0, yb) with yt and yb denoting the top and bottom Yukawa couplings,
respectively. The µ-term is a mass term and does not play any role in the high energy
limit of the theory and can be ignored in our study. We therefore retain only the
following terms of the MSSM superpotential

WMSSM ≈ ytu3Q3Hu + ybd3Q3Hd . (4.29)

We include this approximation of the MSSM superpotential in our searches for asymp-
totically safe MSSM extensions of sec. 6. If R-parity is omitted, we obtain the R-parity
violating MSSM (RPV MSSM), with the superpotential

WRPV = WMSSM

+ λ′ijkdiQjLk + 1
2λ

ijkLiLjek + µ′iLiHu

+ 1
2λ
′′ijkuidjdk .

(4.30)

The first line of (4.30) is the MSSM superpotential, the terms in the second line change
lepton number by ∆L = 1 and the term in the third line changes baryon number by
∆B = 1. The µ′ term is a mass term, irrelevant in the high energy limit. We see that
violation of R-parity results in lepton and baryon number violating processes like the
proton decay. Due to the non-observation of such processes, either the λ, λ′, µ′ and λ′′
couplings in (4.30) have to be small or superpartner masses are large [143, 145–150].
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4.2.2 Soft supersymmetry-breaking

The experimental absence of SM superpartners requires supersymmetry to be broken in
nature. There are many ways of breaking supersymmetry and the results depend on the
explicit supersymmetry-breaking mechanism.

All of these different supersymmetry-breaking mechanisms can be treated in a model-
independent way by introducing effective supersymmetry-breaking terms. To restore
supersymmetry at high energies, these terms need to be “soft”, i.e. they have to have
mass dimensionalities smaller than four. In the MSSM, the general soft supersymmetry-
breaking terms are

LMSSM
soft =− 1

2(M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + h.c.)

− (ũauQ̃Hu − d̃adQ̃Hd − ẽaeL̃Hd + h.c.)

− Q̃†m2
QQ̃− L̃†m2

LL̃− ũm2
uũ
† − d̃m2

dd̃
†
− ẽm2

eẽ
†

−m2
HuH

∗
uHu −m2

Hd
H∗dHd − (bHuHd + h.c.) .

(4.31)

Note that in (4.31), there are no superfields present. The parameters M3, M2 and M1

are gaugino, bino and wino pass parameters, respectively. In the second line of (4.31),
we have trilinear scalar interactions involving 3× 3 matrices in flavor space. The third
line consists of squark and slepton mass terms, while the last line of (4.31) displays
contributions to the Higgs potential. The parameter b is necessary in order to achieve
electroweak symmetry-breaking.

In the subsequent section, we introduce a supersymmetry breaking mechanism known
as “gauge-mediated supersymmetry breaking”.

4.2.3 Gauge-mediated supersymmetry-breaking

The idea of gauge-mediated SUSY-breaking (GMSB) [151, 152] is to introduce a singlet
chiral superfield S which couples to some “messenger” superfields via Yukawa interactions.
In the most simplest gauge-mediated scenario, the chiral messenger superfields

S(1,1,1)0 , L4(1,1,2)−1/2 , L4(1,1,2)+1/2 , q4(1,3,1)−1/3 , q4(1,3,1)+1/3 ,

(4.32)
with gauge charges (SU(N), SU(3)C , SU(2)L)Y are introduced. These fields are used to
form new superpotential terms

WGMSB = ylSL4L4 + yqSq4q4 . (4.33)
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The superfield S participates in a superpotential which spontaneously breaks supersym-
metry such that the scalar component as well as the F term of S acquire VEVs 〈S〉 and
〈FS〉, respectively.

The VEVs 〈S〉 and 〈FS〉 generate masses of the messenger particles at tree-level

mfermion
f = mfermion

f
= |yf〈S〉| , mscalar

f,f
=
√
|yf〈S〉|2 ± |yf〈FS〉| , (4.34)

where f ∈ {L4, q4}. At one-loop level, we have for the soft supersymmetry-breaking
gluino, wino and bino mass parameters

M3 = α3

∣∣∣∣∣〈FS〉〈S〉
∣∣∣∣∣ , M2 = α2

∣∣∣∣∣〈FS〉〈S〉
∣∣∣∣∣ , M1 = α1

∣∣∣∣∣〈FS〉〈S〉
∣∣∣∣∣ , (4.35)

while the masses of the gauge bosons are protected by gauge symmetry such that they
vanish to all orders. A Feynman diagram contributing to gaugino masses is depicted in
fig. 4.1. At two-loop level, non-messenger soft scalar mass parameters are given by

m2
si

= 2〈FS〉
2

〈S〉2

[
C3(i)α2

3 + C2(i)α2
2 + C1(i)α2

1

]
. (4.36)

The Feynman diagram 4.2 illustrates a contribution to these scalar mass parameters.
Eqs. (4.34), (4.35), and (4.36) hold at an energy scale given by the averaged masses

of the messenger particles µmess and are only valid if the fermionic and scalar components
of the messenger superfields have approximately the same masses

mfermion
f ≈ mscalar

f ≈ mscalar
f

≡ mmess , (4.37)

i.e. , according to (4.34), for
|yf〈S〉|2 � |yf〈FS〉| . (4.38)

Note that 〈FS〉 = 0 also achieves this goal but in this case there is no SUSY-breaking.
We see from eqs. (4.35) and (4.36) that, at least at the RG scale µmess, the masses

of gauginos and sfermions are of the same order µMSSM. It is expected, that

µmess � µMSSM . (4.39)

4.2.4 Mass spectrum of the MSSM
In this presentation of the non-SM mass spectrum of the MSSM, we begin with a short
remark on electroweak symmetry-breaking. The scalar potential of the Higgs doublets

Hu = (H+
u , H

0
u) , Hd = (H0

d , H
−
d ) (4.40)
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B̃/W̃/g̃

〈FS〉

〈S〉

B̃/W̃/g̃

Figure 4.1: One-loop contribution to gaugino masses (4.35) with messenger fermions and
scalars running in the loop. Fermionic lines with wavy lines on them represent gauginos.
Gaugino-fermion-scalar vertices are provided in the Lagrangian (4.23).

Figure 4.2: Two-loop contribution to scalar mass parameters of non-messenger fields (4.36).
Fermionic lines with wavy lines on them again represent gauginos. In the upper loop, messenger
fermions and scalars are present, while the lower dashed and solid lines represent non-messenger
scalars and their fermionic superpartners, respectively.

is composed by F-terms, D-terms and the soft supersymmetry-breaking terms (4.31).
Without the latter, and in particular without b, electroweak symmetry-breaking cannot
be achieved. The vacuum expectation values can be set to

〈Hu〉0 = 1√
2

(0, vu) , 〈Hd〉0 = 1√
2

(vd, 0) , (4.41)

with
v2
u + v2

d

2 = 2m2
Z

g2
2 + g2

1
≈ (174 GeV)2 (4.42)

set to match the Higgs vacuum expectation value (2.2). Conventionally, one writes

tan(β) = vu
vd

. (4.43)

From the eight real components of the scalar Higgs doublets, three become longitu-
dinal components of Z0 and W±, labeled as G0 and G±, respectively. The other five
components combine into two CP-even real scalars h0 and H0, one CP-odd A0, one
positively charged H+ and one negatively charged scalar H−.

The neutral fermionic components of the Higgs superfields, the neutral higgsinos H̃0
u

and H̃0
d , combine with the bino B̃ and neutral wino W̃ 0 into four neutralinos Ñ1,2,3,4.
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The charged higgsinos H̃+
u and H̃−d and charged winos W̃± yield four charginos C±1,2.

The fermionic superpartners of the gluons, the gluinos g̃, are already mass eigenstates.
Squarks, as well as sleptons, in principle mix into new mass eigenstate squarks and

sleptons. Mixing within the first two generations is expected to be negligible, and the
mixing in the third generations of stops, sbottoms and staus can then be written as
(
t̃1
t̃2

)
=
(
ct̃ −s∗t̃
st̃ c∗

t̃

)(
t̃L
t̃R

)
,

(
b̃1

b̃2

)
=
c̃b −s∗b̃
s̃
b

c∗
b̃

(b̃L
b̃R

)
,

(
τ̃1

τ̃2

)
=
(
cτ̃ −s∗τ̃
sτ̃ c∗

τ̃

)(
τ̃L
τ̃R

)
, (4.44)

with the matrices being unitary and t̃1, t̃2, b̃1, b̃2, τ̃1, τ̃2 the mass eigenstates.



Chapter 5

Supersymmetric Renormalization
Group Equations

5.1 Beta Functions

In this work, we only consider supersymmetric gauge-Yukawa models which are renor-
malizable by power counting. Gauge groups G are products of a semi-simple group and
further abelian factors. We write G as

G =
∏
a

Ga , (5.1)

where a runs over the simple and abelian group factors after factorizing the semi-simple
group. The superpotentials of our models are of the general form

W = 1
6Y

ijkΦiΦjΦk , (5.2)

where the indices i, j, k run over different flavor as well as group representation degrees
of freedom. The Yukawa coupling matrix Y ijk is totally symmetric and we define its
complex conjugate as

Yijk = (Y ijk)∗ . (5.3)

Mass terms are of no relevance for our purposes and are neglected. We also omit
canonically irrelevant interactions. Such theories are renormalizable in perturbation
theory.

33
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For a running over the group factors Ga, the beta functions of the gauge and Yukawa
couplings ga and Y ijk at two- and one-loop level respectively in the DR scheme are

βga = d
dtga = g3

a

(4π)2

−Ba

2 + g2
b

(4π)2
Cab
2 −

Y ijkYijk
(4π)2

C
(a)
2 (k)
da(G)

 , (5.4)

βY ijk = d
dtY

ijk =
(
Y ijpγ(1)k

p + Y pjkγ(1)i
p + Y ipkγ(1)j

p

)
, (5.5)

with t = ln(µ) an “RG time” and µ the RG scale [153]1. Due to the supersymmetric
nonrenormalization theorem [127, 128], Yukawa terms do not receive Vertex corrections
and Yukawa couplings are only renormalized via the anomalous dimensions of chiral
superfields, as can be seen in eq. (5.5). The coefficients and the anomalous dimension
matrices in the beta functions are

Ba = 6C(a)
2 (G)− 2Sa(r) , (5.6a)

Caa = −12[C(a)
2 (G)]2 + 4C(a)

2 (G)Sa(r) + 8Sa(R)C(a)
2 (r) , (5.6b)

Cab = 8Sa(r)C(b)
2 (r) , (5.6c)

γ
(1)k
l = Y ijkYijl

2(4π)2 − 2
∑
a

g2
a

(4π)2C
(a)
2 (k)δkl . (5.6d)

Here, Sa(r) implies summation over the chiral superfield Dynkin indices of irreducible
representations r of Ga, while Sa(r)C(b)

2 (r) and Sa(r)C(a)
2 (r) imply analogous summations

over the products of the Dynkin indices and the quadratic Casimir invariants, and da(G)
is the dimension of the group factor Ga. C(a)

2 (G) denotes the Casimir invariant of the
adjoint representation of Ga. Dynkin indices Sa(r) and Casimir invariants C(a)

2 (r) are
related via

Sa(r)da(G) = C
(a)
2 (r)da(r) , (5.7)

with da(r) the dimension of the representation r. In this work, the generators of the gauge
groups are normalized such that the Dynkin index of the fundamental representation
of SU(N) equals 1/2. We refer to working with 2-loop gauge and 1-loop Yukawa beta
functions as the 2-1-approximation.

For models where we only have “natural” Yukawa beta functions, i.e. when these
beta functions are of the form

βi ∝ yi , (5.8)

1At the loop-levels considered in this work there is no difference between the schemes DR and
MS [154]
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we are able to introduce beta functions for a new set of couplings defined as

αa = g2
a

(4π)2 , αijk = |Y
ijk|2

(4π)2 . (5.9)

For these couplings, the beta functions (5.4) and (5.5) become

βg = α2
g

[
−Bg +

∑
g,g′

Cgg′αg′ −
∑
y

Dgyαy

]
, (5.10)

βy = αy

[∑
y,y′

Eyy′αy′ −
∑
h

Fygαg

]
, (5.11)

with g, g′ now running over gauge indices and y, y′ counting through Yukawa couplings.
In this study, we restrict our investigations to models yielding natural beta functions.
We guarantee this by only allowing superpotentials such that any two superpotential
terms have at most one superfield which appears in both of them. For some more details
on how unnatural Yukawa beta functions may arise, see appendix A.

Novikov, Shifman, Vainshtein and Zakharov [155] derived a formula for the infinite
order supersymmetric beta functions of couplings αa

βNSVZ
a = −2α2

a

3C(a)
2 (G)−∑i Sa(ri)(1− 2γi)

1− 2C(a)
2 (G)αa

(5.6a)= −α2
a

Ba + 4
da(G)

∑
iC

(a)
2 (ri)da(ri)γi

1− 2C(a)
2 (G)αa

,

(5.12)

where i sums over all irreducible representations ri of chiral superfields under Ga, and
γi denotes their anomalous dimension. We have more to say on the NSVZ beta function
and anomalous dimensions in chapter 8.

5.2 Interacting Fixed Points
A point α? in coupling space that fulfills

β(α?) = 0 (5.13)

for all beta functions is called a fixed point. We label a fixed point α? “physical” and
“perturbative” if its components α?i fulfill the conditions

0 ≤ α?i and α?i < 1 , (5.14)
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respectively. In the case of a simple gauge group G with gauge coupling α and vanishing
superpotential, the beta function of this gauge coupling is

β = α2[−B + Cα] . (5.15)

The fixed points of this model are the gaussian fixed point α? = 0 and the interacting
fixed point

α? = B

C
. (5.16)

The gaussian fixed point is always physical, and for B > 0 (B < 0) it is UV (IR)
attractive. The interacting fixed point in this model only becomes physical for B ·C > 0.
For B < 0 and C < 0, the interacting fixed point would be a UV fixed point. It has
been shown that

B ≤ 0 ⇒ C > 0 , (5.17)

meaning that in a simple gauge theory with matter and without any further interactions,
there are no UV fixed points at two-loop [113]. Inclusion of one Yukawa coupling αy
leads to the beta functions

β = α2[−B + Cα−Dαy] ,
βy = αy[Eαy − Fα] ,

(5.18)

with D,E, F > 0. Solving βy = 0 for αy 6= 0 (“nullcline”) and inserting this solution
into β, we obtain

β = α2[−B + C ′α] , C ′ = C − DF

E
, (5.19)

which now possibly has the interacting fixed point

α? = B

C ′
. (5.20)

In non-supersymmetric models it is then possible to flip the sign of C ′ towards negativity
for B < 0, generating a physical interacting UV fixed point [63].

In supersymmetric models on the other hand, this sign flip is not possible for B < 0,
as we will argue in sec. 5.3. The impossibility of physical interacting UV fixed points in
simple supersymmetric gauge models is well-known to be true even beyond perturbation
theory [118]. Nevertheless, using semi-simple gauge groups, supersymmetric AS models
have successfully been constructed [65].

The RG flow in the vicinity of fixed points can be approximated by

βi(α) ≈
∑
j

Mij(αj − α?j ) , (5.21)
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with the stability matrix

Mi,j ≡
∂βi
∂αj

∣∣∣∣∣
α?

. (5.22)

If M has one negative or positive eigenvalue (“critical exponent”), the fixed point α?
respectively has a UV or IR attractive direction given by the corresponding eigenvector.
For critical exponents being zero, we obtain no information from the stability matrix on
the attractivity of a fixed point in the direction of the corresponding eigenvector. This
happens for example for fixed points α? with some vanishing gauge component αa. In
this case, the corresponding beta function βa may be written as

βa = −Bα?

a,effα
2
a +O(α3

a) , (5.23)

with Bα?

a,eff obtained by inserting the non-zero components of α? into βa. For Bα?

a,eff > 0
(< 0), α? is UV (IR) attractive in αa-direction.

5.3 On the Existence of Interacting Fixed Points
We now come to a special feature of supersymmetric models which allows to infer
unphysicality of some weakly interacting fixed points just from the signs of the one-loop
coefficients Bg specified in eq. (5.6a). With the following feature, we will be able to
classify extensions of the MSSM in sec. 6.2.

In order for an N = 1 SUSY gauge-Yukawa model with gauge group G = ∏
aGa as

in (5.1) to allow for a physical interacting fixed point g? in the 2-1-approximation, it is
necessary that at least one gauge sector Ga′ corresponding to a component g?a′ 6= 0 of the
fixed point is AF at one-loop level, i.e. the one-loop coefficient Ba′ as given in (5.4)

and (5.6a) is positive.

Note that this necessary condition is true for all N = 1 supersymmetric theories, not
only for MSSM extensions. We proof this condition in appendix. B.

We can now understand why the interacting fixed point (5.20) can never simulta-
neously be physical and UV attractive for supersymmetric models with simple gauge
groups. This is because for this fixed point being UV attractive, we need B < 0 which,
according to the statement above, immediately renders this fixed point unphysical.

We illustrate some possible fixed points for a gauge group SU(3)⊗ SU(2) in fig. 5.1.
There we see that for all one-loop B-coefficients being negative, there are no interacting
fixed points possible. This can be translated into an upper limit on the number of fields
for which interacting fixed points are possible, since more fields lower the value of the
B-coefficients (see eq. (5.6a)).
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α3

α2

G FP3

FP2
FP23

(a) B3 > 0, B2 < 0 (b) B3 < 0, B2 < 0

Figure 5.1: Possible fixed points for a gauge group SU(3)⊗ SU(2). On the left side, we have
the one-loop coefficients B3 > 0 and B2 < 0, while on the right side these are both negative.
Starting on with the sign assignment of the left side and adding colored particles to the model,
we eventually end up with the picture on the right side where no interacting fixed points are
possible.

Furthermore, we are able to make some statements about the Yukawa structures
needed in order to generate physical interacting UV fixed points in supersymmetric
theories. The necessary condition above states that we need at least one AF sector to
possibly have interacting fixed points. Moreover, Yukawa interactions are a requirement
for weakly interacting UV fixed points, as discussed in sec. 5.2. This implies that
without Yukawa interactions, fields charged under many gauge sectors simultaneously
can never generate UV attractivity of interacting fixed points on their own. On the
other hand, if Yukawa interactions only contain fields charged under one gauge sector,
UV attractive interacting fixed points can also not be generated in supersymmetric
theories (see discussion in sec. 5.2). We conclude that Yukawa interactions containing
fields charged under different gauge sectors simultaneously are a necessity for weakly
interacting, UV attractive fixed points in the 2-1-approximation.



Chapter 6

MSSM Extensions

6.1 Fixed Points Within the MSSM
In this section, we investigate fixed points of the MSSM, both with and without R-parity
conservation. The left-handed chiral superfields of the MSSM are those of tab. 4.1 and
its gauge group is GMSSM from eq. (4.26):

GMSSM = GSM = SU(3)C ⊗ SU(2)L ⊗ U(1)Y . (6.1)

Taking only gauge couplings into account, there are up to seven interacting points. We
label these seven interacting fixed points and the single gaussian fixed point as shown in
tab. 6.1.

Additionally, the MSSM contains the superpotential (4.28):

WMSSM = Y ij
u uiQjHu+Y ij

d diQjHd+Y ij
e eiLjHd+µHuHd

≈ ytu3Q3Hu+ybd3Q3Hd ,
(6.2)

which we approximate in this section by only taking the top and bottom Yukawa couplings
to be non-zero. If R-parity (4.27) is not conserved, the RPV MSSM superpotential (4.30)
containing lepton and baryon number violating terms is obtained:

WRPV = WMSSM

+ λ′ijkdiQjLk + 1
2λ

ijkLiLjek + µ′iLiHu

+ 1
2λ
′′ijkuidjdk .

(6.3)
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Fixed point label α?1 α?2 α?3 ~α?y
FP0 0 0 0 ~0
FP1 α?FP1

1 0 0 ~α?FP1
y

FP2 0 α?FP2
2 0 ~α?FP2

y

FP3 α?FP3
3 0 0 ~α?FP3

y

FP12 α?FP12
1 α?FP12

2 0 ~α?FP12
y

FP13 α?FP13
1 0 α?FP13

3 ~α?FP13
y

FP23 0 α?FP23
2 α?FP23

3 ~α?FP23
y

FP123 α?FP123
1 α?FP123

2 α?FP123
3 ~α?FP123

y

Table 6.1: Classification of fixed points regarding their interacting gauge couplings for the
MSSM gauge group GMSSM of (4.26). The gauge couplings α1, α2 and α3 belong to the
gauge sectors U(1)Y , SU(2)L and SU(3)C , respectively. Yukawa couplings are summarized
into vectors ~αy.

In the MSSM, the one-loop and two-loop gauge beta coefficients of (5.4) are given by

BMSSM
1 = −22 , CMSSM

11 = 398
9 , CMSSM

12 = 18 , CMSSM
13 = 176

3 ,

BMSSM
2 = −2 , CMSSM

21 = 6 , CMSSM
22 = 50 , CMSSM

23 = 48 ,
BMSSM

3 = 6 , CMSSM
31 = 22

3 , CMSSM
32 = 18 , CMSSM

33 = 28 .
(6.4)

Negativity of BMSSM
2 and BMSSM

1 implies that the running couplings α1 and α2 both
have Landau poles at one-loop level. In this chapter, we study whether we find fixed
points in the MSSM which allow to avoid these Landau poles.

6.1.1 MSSM
For the R-parity conserving MSSM superpotential in eq. (6.2), the Yukawa beta functions
for the top and bottom couplings αt,b = |yt,b|2/(4π)2 as defined in (5.9) are respectively
given by

βt = αt

[
12αt + 2αb −

26
9 α1 − 6α2 −

32
3 α3

]
,

βb = αb

[
12αb + 2αt −

14
9 α1 − 6α2 −

32
3 α3

]
.

(6.5)

The Yukawa nullclines (for which the beta functions (6.5) vanish) are

α?t = 71
315α1 + 3

7α2 + 16
21α3 , α?b = 29

315α1 + 3
7α2 + 16

21α3 . (6.6)
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Inserting these into the gauge beta functions (5.10) with the MSSM coefficients (6.4)
and

D1t = 52
3 , D1b = 28

3 , D2t = 12 , D2b = 12 , D3t = 8 , D3b = 8 , (6.7)

we are then able to calculate the values of fixed points. For FP3, we find

FP3 = (α?FP3
1 , α?FP3

2 , α?FP3
3 , α?FP3

t , α?FP3
b ) =

(
0, 0, 63

166 ,
24
83 ,

24
83

)
≈
(
0, 0, 0.38, 0.29, 0.29

)
.

(6.8)

Hence, FP3 is physical and perturbative. The other fixed points with interacting strong
couplings turn out to be unphysical due to their following components.

FP13 : α?FP13
1 = −22755

17323 ≈ −1.31 ,

FP23 : α?FP23
2 = −29

41 ≈ −0.70 ,

FP123 : α?FP123
1 = −507900

131141 ≈ −3.87 .

(6.9)

For FP3, we may calculate the effective coefficients BFP3
1,eff and BFP3

2,eff as described in (5.23)
and obtain for them

BFP3
1,eff = −1102

83 ≈ −13.3 , BFP3
2,eff = −4242

83 ≈ −51.1 . (6.10)

These effective coefficients being negative make FP3 an IR fixed point. Hence, we do
not find any interacting UV fixed points in our search within the MSSM1.

6.1.2 RPV MSSM
In the RPV MSSM, the additional lepton and baryon number violating terms of eq. (6.3)
are present in the superpotential. Based on our discussion at the end of sec. 5.3 regarding
necessary fields in Yukawa interactions of possibly AS models, our preferred terms of
the RPV MSSM superpotential are the λ′ terms

λ′ijkdiQjLk . (6.11)

Additionally to the top and bottom Yukawa couplings of the MSSM, we introduce for
each k = 1, 2, 3 submatrices of (λ′1)ij = λ′ij1, (λ′2)ij = λ′ij2 and (λ′3)ij = λ′ij3. The

1We explicitly checked that including the Yukawa coupling yτ and further finite entries in Yu, Yd
and Ye of the MSSM superpotential (4.28) yields similar results. Fixed point FP3 stays physical and
IR attractive, while the other interacting fixed points stay unphysical.
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investigated fixed points have interacting Yukawa components corresponding to these
submatrices. In more detail, these matrices are modeled as

λ′1 =


M1 . . . 0
... ...
0 . . . 0

 , λ′2 =


M2 . . . 0
... ...
0 . . . 0

 , λ′3 =


M3 . . . 0
... ...
0 . . . 0

 , (6.12)

with the dimensionalities of the submatrices being

M1,2,3 : (rows× columns) = (Id × IQ) , (6.13)

where
1 ≤ IQ, Iu, Id ≤ 2 . (6.14)

The integers (6.14) are chosen such that we avoid unnatural Yukawa beta functions (see
appendix A for more details on unnatural Yukawa beta functions).

In our search, we have between 5 and 14 (possibly complex) Yukawa couplings. The
evolutions of the corresponding couplings

αt = |yt|2

(4π)2 , αb = |yb|2

(4π)2 , α
′
ijk = |λ

′ijk|2

(4π)2 (6.15)

are respectively governed by the three beta functions

βt = αt

[
12αt + 2αb −

26
9 α1 − 6α2 −

32
3 α3

]
,

βb = αb

[
12αb + 2αt −

14
9 α1 − 6α2 −

32
3 α3

]
,

β′λ = α′λ

[
36IdIQα′λ −

14
9 α1 − 6α2 −

32
3 α3

]
,

(6.16)

where all couplings α′ijk → α′λ evolve according to the same beta function β′λ. Inserting
the nullcline solutions of these Yukawa beta functions into the gauge beta functions (5.10)
with the MSSM coefficients (6.4) and

D1t = 52
3 , D1b = 28

3 , D1λ = 28IdIQ ,

D2t = 12 , D2b = 12 , D2λ = 36IdIQ ,
D3t = 8 , D3b = 8 , D3b = 24IdIQ ,

(6.17)
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we find again that the only physical interacting fixed point is

FP3 = (α?1, α?2, α?3, α?t , α?b , α′?λ ) =
(

0, 0, 189
274 ,

72
137 ,

72
137 ,

28
137IdIQ

)

≈
(

0, 0, 0.69, 0.53, 0.20
IdIQ

)
,

(6.18)

which again is IR attractive. Therefore we also do not find any interacting UV fixed
points within the RPV MSSM.

6.2 Search Strategy For MSSM Extensions
From the necessary condition for interacting fixed points of sec. 5.3, we are able to set
an upper limit on the colored field content beyond the MSSM. More specifically, we may
infer that

For interacting fixed points to possibly exist in MSSM extensions within the
2-1-approximation, there are only two possibilities of including colored chiral superfields

beyond the MSSM, namely
1) One SU(3)C fundamental and one SU(3)C anti-fundamental,
2) Two SU(3)C fundamentals and two SU(3)C anti-fundamentals.

We stress that the number of SU(3)C singlets is not limited by this rule. We proceed
by proving the statement on the possible colored superfields beyond the MSSM. The
one-loop B-coefficients corresponding to U(1) gauge factors are always negative, as can
be seen from eq. (5.6a). For MSSM extensions, the coefficient B2 is negative, while only
B3 may be positive. In the MSSM we have BMSSM

3 = 6, and additional superfields lower
the B-coefficients according to eq. (5.6a).

Now we examine which additional particle content is allowed to keep B3 positive.
Every additional superfield in the representation R of SU(3)C lowers B3 by 2S3(R). For
the fundamental or anti-fundamental representations one has S3 = 1/2. In order to
avoid gauge anomalies, we always have to include a pair composed by one fundamental
and one anti-fundamental superfield to the MSSM which immediately leads to the two
possible cases stated above to maintain a positive coefficient B3. What about other
representations? The sextet and anti-sextet representations have S3 = 5/2, but gauge
anomalies again dictate us to include at least two sextet superfields simultaneously
which would yield B3 = −4. The representation with the next bigger Dynkin index is
the adjoint representation with S3 = 3. Since this is a real representation, it is allowed
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to include such fields individually, but even for just one additional SU(3)C adjoint we
already obtain B3 = 0. All other representations have S3 > 3 and hence are also ruled
out. With this we have shown the statement from above.

We may now classify all possible MSSM extensions which allow for interacting fixed
points in the 2-1-approximation into three model classes with the particle contents
beyond the MSSM

• Model class 1: New quark singlets and new leptons ,

• Model class 2: Two new quark doublets and new leptons ,

• Model class 3: A fourth generation and new leptons .

In the subsequent sections, we parameterize different Yukawa interactions of fixed points
within these three model classes. Each Yukawa structure is counted as a different model.

In the our investigations, we have the gauge couplings

{α1, α2, α3} , (6.19)

defined as in eq. (5.9). Additionally, the MSSM top- and bottom Yukawa couplings
from eq. (4.29) and further BSM Yukawa couplings are present in our models. Due to
flavor symmetries in our constructed Yukawa structures, some BSM Yukawa couplings
have identical beta functions and we end up with up to 10 different BSM Yukawa beta
functions. Only counting corresponding BSM Yukawa couplings, we have altogether the
Yukawa couplings

{αt, αb, α4, ..., α13} , (6.20)

again with the couplings as defined in (5.9).

6.3 Model Class 1: New Quark Singlets and Lep-
tons

6.3.1 Framework
In our first model framework, we include quark singlets as well as lepton doublets to
the MSSM. The resulting particle content is that of table 6.2, where all possible field
multiplicities are parameterized by the parameters

nu , nd , nL , (6.21)
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counting respectively the number of up-quarks, down-quarks and lepton doublets. To
not introduce any gauge anomalies, we furthermore introduce nu − 3 anti-up-quarks,
nd − 3 anti-down-quarks and nL − 3 anti-lepton doublets. The case of two additional
quark singlets is achieved for nu + nd = 7 while in the case of four additional quark
singlets we have nu + nd = 8. In our scans we also cover models with more than four
new quark singlets to test the limit on colored fields from sec. 6.2. The number of new
fields beyond the MSSM is given by

NBSM = 2(nu + nd − 6)︸ ︷︷ ︸
=Nq,BSM

+ 2(nL − 3)︸ ︷︷ ︸
=NL,BSM

, (6.22)

with Nq,BSM and NL,BSM the numbers of new quark singlets and new lepton doublets ,
respectively.

(Left-handed) Superfield SU(3)C SU(2)L U(1)Y Model 1 MSSM
quark doublet Q 3 2 +1/6 3 3

up-quark u 3 1 −2/3 nu 3
down-quark d 3 1 +1/3 nd 3
anti-up-quark u 3 1 +2/3 nu − 3 0

anti-down-quark d 3 1 −1/3 nd − 3 0
lepton doublet L 1 2 −1/2 nL 3

anti-lepton doublet L 1 2 +1/2 nL − 3 0
lepton singlet e 1 1 +1 3 3
up-Higgs Hu 1 2 +1/2 1 1

down-Higgs Hd 1 2 −1/2 1 1

Table 6.2: Left-handed chiral superfields of model class 1 consisting of MSSM fields (see
tab. 4.1) and additional quark singlets u, d, u, d and additional lepton doublets L, L beyond
the MSSM.

The general gauge invariant superpotential we are studying is given by

W1 = Y ijkdiQjLk + Y
ijk
uiQjLk + xbybd3Q3Hd + xtytu3Q3Hu , (6.23)

with gauge indices being suppressed, i, j, k running over flavors, and xt,b ∈ {0, 1}. With
the flavor-counting parameters (6.21), there are up to

Ngeneral
Y = 3(nunL + nd(nL − 3)) + 2 (6.24)

Yukawa couplings present in (6.23).
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We focus on a subset of all possible non-zero Yukawa couplings, parameterized by

xb , xt , I12 , I13 , I1d , I2d , I3d , I1u , I2u , I3u . (6.25)

These integers are used as follows to specify which Yukawa couplings are interacting.
The bottom and top Yukawa couplings are switched on and off with xt, xb ∈ {1, 0}. Only
in these two Yukawa terms, the bottom and top quarks d3 and u3 are allowed to appear.
The number of times superfields di 6= d3 appear exactly once in the superpotential in
terms involving Q1, Q2, or Q3 is given by I1d, I2d, and I3d, respectively (the analogous
cases of fields ui 6= u3 appearing exactly once in the superpotential in connection with Q1,
Q2, or Q3 are counted respectively by I1u, I2u, and I3u). We also allow for down-quarks
di 6= d3 to be present twice in the superpotential. With I12 we count the number of
down quark superfields di 6= d3 appearing exactly twice in the superpotential, once in
terms involving Q1 and once in terms involving Q3. The cases of down quark superfields
di 6= d3 being present exactly twice in the superpotential in connection with terms
involving Q1 and Q3 are counted by the integer I13. Furthermore, each lepton doublet
L and anti-lepton doublet L may be present at most once in the superpotential.

In summary, the different cases of Yukawa terms are counted by the integers (6.25)
as:

ybd3Q3Hd : xb ,
ytu3Q3Hu : xt ,

y4diQ1Lk + y6diQ2Lk′ : I12 ,

y5diQ1Lk : I1d ,

y7diQ2Lk : I2d ,

y8diQ1Lk + y9diQ3Lk′ : I13 ,

y10diQ3Lk : I3d ,

y11uiQ1Lk : I1u ,

y12uiQ2Lk : I2u ,

y13uiQ3Lk : I3u ,

(6.26)

where all Yukawa couplings of a type i evolve with the same beta function βi due to
remaining flavor symmetries acting on quark singlets and on lepton doublets appearing in
terms of the same Yukawa coupling type. In sec. 6.6.1, we discuss these flavor symmetries
for a specific benchmark model. The 12 Yukawa beta functions βt, βb, β4, ..., β13 for the
couplings αt, αb, α4, ..., α13 are specified in appendix D.1.1.
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Some comments on the motivation behind our chosen parameterization for interacting
Yukawa couplings are in order. When not allowing for down-quarks di 6= d3 to appear
twice in the superpotential, we find no AS candidates. In further exhaustive investi-
gations, we also never find UV attractive fixed points if we allow for lepton doublets
to appear twice in the superpotential while at the same time each quark singlet may
appear at most once. On the other hand, with the above described superpotential terms
we do find AS candidates in our scan of sec. 6.3.2. Our choice of Yukawa structures
corresponds to the simplest case for which we find AS candidates.

Each of our models is then fully specified by the parameters

nu, nd, nL, xb, , xt, I12, I13, I1d, I2d, I3d, I1u, I2u, I3u , (6.27)

where the flavor-counting parameters have to be larger than the minimal values stated
in (6.30) to accommodate the Yukawa terms specified by the I-parameters.

The number of Yukawa couplings present in our investigations is

NY = 2(I12 + I13) +
3∑
i=1

(Iid + Iiu) + xt + xb . (6.28)

In our scan within the next section, NY gets up to 10% of the generally possible number
of Yukawa couplings Ngeneral

Y .

6.3.2 Scan
We scan 3434836 models within the parameter range

0 ≤ I12 , I13 , I1d , I2d , I3d , I1u , I2u , I3u ≤ 5 , I1u ≤ I2u ,

nmin
d ≤ nd ≤ 7 , nmin

u ≤ nu ≤ 7 ,
nmin
L ≤ nL ≤ 14 , 0 ≤ xt , xb ≤ 1 ,

(6.29)

with

nmin
d = max{I12 + I13 + I1d + I2d + I3d + 1 , 3} ,
nmin
u = max{I1u + I2u + I3u + 1 , 3} ,
nmin
L = max{2I12 + 2I13 + I1d + I2d + I3d , I1u + I2u + I3u + 3} .

(6.30)

For this parameter range, we have up to NY = 52 Yukawa couplings (see eq. (6.28)) out
of Ngeneral

Y = 527 generally possible ones (see eq. (6.24)). We find 114 AS candidates
with FP3 being UV attractive in α2-direction for NY = 8, 9, 10. In sec. 6.6, these 114
AS candidates are discussed in more detail.
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Figure 6.1: For each model within model class 1 (given by the chiral superfields of tab. 6.2
and the superpotential (6.23)) with physical FP3 (see tab. 6.1), we show its α3 component on
the x-axis and the number of non-zero Yukawa couplings NY of eq. (6.28) on the y-axis. We
see a pattern of branches which have different numbers of quark singlets Nq,BSM (see (6.22))
beyond the MSSM, indicated by the different colors. UV fixed points of all 114 AS candidates
are plotted as red plus signs. All other fixed points are IR fixed points. We observe that these
UV fixed points match the pattern of branches and that in each branch there is a tendency of
α?3 becoming larger for larger values of NY .

In fig. 6.1, we show the strong component of FP3 for all models where this fixed
point is physical. We see that different numbers of Nq,BSM lead to different branches,
where for each branch there is a tendency of α?3 becoming larger for larger values of
NY . The interacting fixed points FP1, FP2, FP13, FP12 and FP123 are unphysical in all
scanned models.
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6.4 Model Class 2: New Quark Doublets and Lep-
tons

6.4.1 Framework
In our second model framework, we introduce a quark doublet Q4(3,2)1/6 as well as
an anti-quark doublet Q1(3,2)−1/6 as the new colored field content beyond the MSSM.
Furthermore, we allow for nL pairs of lepton and anti-lepton doublets L(1,2)−1/2 and
L(1,2)1/2. We also include nS gauge singlet superfields S. The resulting superfield
content is summarized in table 6.3.

(Left-handed) Superfield SU(3)C SU(2)L U(1)Y Model 2 MSSM
quark doublet Q 3 2 +1/6 4 3

anti-quark doublet Q 3 2 −1/6 1 0
up-quark u 3 1 −2/3 3 3

down-quark d 3 1 +1/3 3 3
lepton doublet L 1 2 −1/2 nL 3

anti-lepton doublet L 1 2 +1/2 nL − 3 0
lepton singlet e 1 1 +1 3 3
up-Higgs Hu 1 2 +1/2 1 1

down-Higgs Hd 1 2 −1/2 1 1
gauge singlets S 1 1 0 nS 0

Table 6.3: Left-handed chiral superfields of model class 2 given by the MSSM fields (see
tab. 4.1) plus two additional quark doublets Q4 and Q1, lepton doublets L4,5,...,nL , anti-lepton
doublets L1,2,....nL−3 and gauge singlets S1,...,nS beyond the MSSM.

We study the general superpotential

W2 = Y ijkdiQjLk + Y
ijk
uiQjLk

+ Y ik
S SiQ1Qk + xbybd3Q3Hd + xtytu3Q3Hu ,

(6.31)

with i, j, k summing over all flavor indices and xt, xb ∈ {0, 1} being again parameters
which switch on and off the top and bottom Yukawa couplings of the MSSM. The first
line of (6.31) resembles the non-MSSM terms of the superpotential (6.23) of model class
1, with the difference being that here i and j run over different numbers of flavors. We
try to accommodate for the smaller amount of quark singlets, present in the Yukawa
terms of Y ijk and Y ijk, by including terms with Yukawa couplings Y ik

S involving the
new anti-quark doublet Q1.
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We again make a choice for the non-zero Yukawa couplings within our scan. For this,
we introduce additionally to the lepton- and singlet-counting parameters (see tab. 6.3)

nL , nS , (6.32)

the integers
Id , Iu , IQ , (6.33)

which are used to parameterize interacting Yukawa couplings as follows. Each L and L
may appear at most once in the superpotential. To describe our investigated Yukawa
structures, we introduce matrices Ỹ ij and Ỹ ij which encode the information of the
non-zero entries of Y ijk and Y ijk. For a given matrix Ỹ ij we construct Y ijk by choosing
k differently for each pair (i, j), and analogously for Ỹ ij and Y ijk. The counting order
of these k’s is irrelevant. For a given set of I-parameters (6.33), the new matrices and
Y ik
S are given by

Ỹ =
(

M 0 x4C

x3R 0 0

)
, Ỹ =

(
M 0 x4C

x3R 0 0

)
, Y S =


0 0 0 xSS
... ... ... 0
... ... ... ...
0 0 0 0

 , (6.34)

with M , C, R, M , C, R and S being (rows× columns) matrices of dimensionalities

M : (2× 2) , C : (Id × 1) , R : (1× IQ) ,
M : (2× 2) , C : (Iu × 1) , R : (1× IQ) , S : (nS × 1) ,

(6.35)

with C, R, C, R and S only having non-zero entries, and M and M consisting of
submatrices m and m with non-zero entries

M =


m . . . 0
... ...
0 . . . 0

 , m : (Id × IQ) , M =


m . . . 0
... ...
0 . . . 0

 , m : (Iu × IQ) . (6.36)

The “switches”
x3, x3, x4, x4, xS, xt, xb ∈ {0, 1} (6.37)

are used to individually turn on and off some of the Yukawa couplings.
With this choice of Yukawa structures, there are at most nine different Yukawa

beta functions βt, βb, β4, ..., β10 for the Yukawa couplings αi = |yi|2/(4π)2, specified in
appendix D.1.2. We are able to obtain superpotentials similar to superpotentials of
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model class 1 of sec. 6.3 for which we find asymptotically safe candidates. For example,
for

Id = Iu = IQ = nS = 1 ,
x3 = x3 = x4 = xS = xt = xb = 1, x4 = 0 ,

(6.38)

we obtain the superpotential

Y 111d1Q1L1 + Y 142d1Q4L2 + Y
111
u1Q1L1 + Y 313d3Q1L3

+ Y
312
u3Q1L2 + Y 14

S S1Q1Q4 + ybd3Q3Hd + ytu3Q3Hu︸ ︷︷ ︸
WMSSM

, (6.39)

for which we need the lepton flavor-counting parameter to fulfill

nL ≥ 5 . (6.40)

For this example model, the labeling of the beta functions in appendix D.1.2 for the
different Yukawa couplings is

Y 111 ↔ β4 , Y
142 ↔ β8 , Y

313 ↔ β6 , Y
111 ↔ β5 ,

Y
312 ↔ β4 , Y

14
S ↔ β10 , yb ↔ βb , yt ↔ βt .

(6.41)

The superpotential of (6.39) is to be compared to the superpotential (6.57) of our AS
benchmark of model 1. Neglecting hypercharge (so that d and u have the same gauge
representations), we see that these two superpotentials differ in two aspects. The first
being that in (6.39), u3 appears once outside of WMSSM, and the second being that the
term involving Q1 in (6.39) has its gauge indices contracted in a different manner than
in the superpotential of model 1, leading to slightly different coefficients in the beta
functions. Otherwise, the superpotential (6.39) is similar to that of eq. (6.57) where AS
got established.

6.4.2 Scan
We scan 114480 models, covering the parameter space

0 ≤ Id , Iu ≤ 2 , 1 ≤ IQ ≤ 2 , 1 ≤ nS ≤ 5 ,
0 ≤ x3 , x3 , x4 , x4 , xS , xt , xb ≤ 1 , nL,min ≤ nL ≤ 11 ,

(6.42)

with the minimal value of the lepton-counting parameter nL given by

nL,min = max{(1 + x4)Id + x3, (1 + x4)Iu + x3 + 3} , (6.43)
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Figure 6.2: The α3 values of FP3 (see tab. 6.1) for all scanned models of model class 2 (given
by the chiral superfields of tab. 6.3 and the superpotential (6.31)). In our search, FP3 turns
out to always be an IR fixed point. There is a tendency for the strong component of FP3
becoming larger for larger number of Yukawa couplings NY of eq. (6.46).

and find no UV attractive interacting fixed points. For all models, FP3 is physical,
perturbative and IR attractive with

0.03 . α?FP3
3 . 0.08 , (6.44)

while all the other interacting fixed points are unphysical. The number of generally
possible non-zero Yukawa couplings in the superpotential (6.31) is

Ngeneral
Y = 12nL + 12(nL − 3) + 4nS + 2 Our scan= 250 , (6.45)

while the number of Yukawa couplings present in our scans is bounded by

NY = (Id + Iu + x3 + x3)IQ + x4Id + x4Iu + xSnS + xt + xb
Our scan
≤ 22 . (6.46)

In fig. 6.2, we show the value of α3 of FP3 against the number of Yukawa couplings NY

of all scanned models.
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6.5 Model Class 3: A Fourth Generation and new
Leptons

6.5.1 Framework
The third and last possibility to include colored fields to the MSSM without B3 becoming
negative is given by a new quark doublet Q4 and two additional quark singlets d4 and
u4, which constitute a fourth quark generation. To avoid gauge anomalies, also a fourth
lepton generation consisting of a lepton doublet L4 and a lepton singlet e4 is needed. In
addition to this fourth particle generation, we allow for nL − 4 new pairs of leptons and
anti-leptons (L,L). The arising superfield content of model class 3 is summarized in
tab. 6.4.

(Left-handed) Superfield SU(3)C SU(2)L U(1)Y Model 3 MSSM
quark doublet Q 3 2 +1/6 4 3

up-quark u 3 1 −2/3 4 3
down-quark d 3 1 +1/3 4 3

lepton doublet L 1 2 −1/2 nL ≥ 4 3
anti-lepton doublet L 1 2 +1/2 nL − 4 0

lepton singlet e 1 1 +1 4 3
up-Higgs Hu 1 2 +1/2 1 1

down-Higgs Hd 1 2 −1/2 1 1

Table 6.4: Left-handed chiral superfields of model class 3 given by the MSSM fields (see
tab. 4.1), a fourth generation with superfields Q4, u4, d4, L4, additional lepton doublets
L5,...,nL and additional anti-lepton doublets L1,...,nL−4 beyond the MSSM. The lepton-counting
parameter nL is taken to be larger or equal to four to include the fourth lepton generation
which guarantees anomaly cancellation.

The general superpotential of interest for model class 3 reads

W3 = Y ijkdiQjLk + Y
ijk
uiQjLk + ybd3Q3Hd + ytu3Q3Hu , (6.47)

which looks exactly the same as the general superpotential (6.23) of model class 1 with
the differences being that the fourth quark doublet Q4 appears only in (6.51), and that
we now always have the top- and bottom Yukawas interacting in fixed points, whereas
in (6.23) these can be turned off.

Our parameterized Yukawa structures are also analogous to the ones of model class
1. Each lepton doublet Li and each anti-lepton doublet L may appear at most once in
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the superpotential and each di 6= d3 may appear zero times, once or twice. The number
of times down-quark singlets appear once in a term with Q1 or with Q3 is counted by
I1d and I3d, respectively. Appearances of one down-quark in two terms involving Q1

and Q2, or Q1 and Q3, or Q1 and Q4 are respectively counted by the parameters I12,
I13 and I14. On the other hand, we let each up-quark ui 6= u3 appear at most once in
our investigated superpotentials. Up-quarks appear I1u times in terms with Q1, and I4u

times in terms with Q4. In summary, the parameters of model class 3 are given by the
lepton-counting parameter and the I-parameters

nL, I12, I13, I14, I1d, I3d, I1u, I4u . (6.48)

Again, flavor symmetries reduce the number of beta functions to be at most 12. These
beta functions βt, βb, β4, ..., β13 are shown in appendix D.1.3.

6.5.2 Scan

In a scan over the parameters (6.48), the constraints

nL ≥ nL,min = max{2I13 + 2I13 + 2I14 + I1d + I3d, I1u + I4u + 4} , (6.49)

and
0 ≤ I12 + I13 + I14 + I1d + I3d ≤ 3 , 0 ≤ I1u + I4u ≤ 3 (6.50)

have to be fulfilled in order to have enough flavors to write down the superpotentials.
We see from the last two constraints, that the I-parameters all may at most be three.

Scanning 13948 models within the parameter range

0 ≤ I12, I13, I14, I1d, I3d, I1u, I4u ≤ 3 , nL,min ≤ nL ≤ 30 , (6.51)

we find similar results compared to model class 2. For all scanned models, FP3 is
physical, perturbative and IR attractive with

0.03 . α?FP3
3 . 0.10 , (6.52)

with the other interacting fixed points all being non-physical. Hence, we do not find
any AS candidates within model 3.

In our scans, the largest number of non-zero Yukawa couplings present is

NY = 2(I12 + I13 + I14) + I1d + I3d + I1u + I4u + 2
Our scan
≤ 11 (6.53)
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Figure 6.3: The α3 values of FP3 (see tab. 6.1) for all scanned models within model class 3
(given by the chiral superfields of tab. 6.4 and the superpotential (6.51)). As in model class 2,
all these fixed points turn out to be IR fixed points, and there is a tendency for the strong
component of FP3 becoming larger for larger number of Yukawa couplings NY of eq. (6.53).

out of the generally possible amount of non-zero Yukawa couplings

Ngeneral
Y = 16nL + 16(nL − 4) + 2 Our scan= 898 . (6.54)

In fig. 6.3, we present the α3 values of FP3 for all scanned models in dependence of the
number of present Yukawa couplings NY . Again, we see a tendency of α3 becoming
larger for larger numbers of Yukawa couplings.

6.6 Analysis of AS Candidates
In this section, we analyze all 114 AS candidates found perturbatively in the previous
sections, all of which appear within model class 1 of sec. 6.3 and have exactly two quark
singlets beyond the MSSM. We present one benchmark model and discuss matching
onto the SM.

The model-specifying parameters (6.21) and (6.25) of all 114 AS candidates together
with the number of superfields NBSM beyond the MSSM, the amount of interacting
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Yukawa couplings NY , and the strong component α?3 of FP3 are given in tab. 6.5. In all
these 114 cases, FP3 is automatically perturbative and FP23 is always physical and IR
attractive with

α?FP23
3 > α?FP3

3 & 0.43 . (6.55)

In fig. 6.4, we show the α?3 values of FP3 and FP23 of the 114 AS candidates. For
five candidates, the strong component of FP23 is larger than one.
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Figure 6.4: The α3 values of FP3 and FP23 (see tab. 6.1) for all 114 found AS candidates
presented in tab. 6.5. All these AS candidates appear within model class 1 of sec. 6.3 and have
exactly two quark singlets beyond the MSSM. There is a tendency for the strong component
of FP23 to increase when the strong component of FP3 becomes larger. The black line marks
α3 = 1, which is exceeded by FP23 for five models.

The model specifying parameters (6.21) and (6.25) of all 114 AS candidates are
shown in tab. 6.5. For all AS models, we have I12 +I13 +I1d+I2d+I3d+I1u+I2u+I3u = 5,
and the sum I12 + I13 being either 1, 2 or 3. Furthermore, we always find xt = xb = 1
for all AS candidates, implying that the MSSM top and bottom Yukawa couplings are
always interacting in the UV. We summarize some of these results in tab. 6.6.
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No. nu nd nL I12 I13 I1d I2d I3d I1u I2u I3u NBSMNY α?3
1 3 4 5 0 1 1 1 0 0 1 1 6 8 0.431
2 3 4 5 1 0 0 2 0 1 1 0 6 8 0.431
3 3 4 5 1 0 1 1 0 0 2 0 6 8 0.431
4 3 4 5 0 1 0 1 1 1 1 0 6 8 0.431
5 3 4 5 0 1 1 0 1 0 2 0 6 8 0.431
6 3 4 5 1 0 2 0 0 1 1 0 6 8 0.431
7 3 4 5 0 1 0 2 0 1 1 0 6 8 0.458
8 3 4 5 0 1 1 1 0 0 2 0 6 8 0.458
9 3 4 5 1 0 0 1 1 1 1 0 6 8 0.458
10 3 4 5 1 0 1 0 1 0 2 0 6 8 0.458
11 3 4 5 1 0 1 0 1 1 1 0 6 8 0.458
12 3 4 5 1 0 1 1 0 0 1 1 6 8 0.458
13 3 4 5 1 0 2 0 0 0 1 1 6 8 0.458
14 3 4 5 0 1 1 1 0 1 1 0 6 8 0.473
15 3 4 5 1 0 1 1 0 1 1 0 6 8 0.473
16 3 4 5 1 0 2 0 0 0 2 0 6 8 0.473
17 3 4 5 0 1 2 0 0 0 2 0 6 8 0.473
18 3 4 5 0 2 1 0 0 1 1 0 6 9 0.452
19 3 4 5 2 0 0 1 0 0 2 0 6 9 0.468
20 3 4 5 0 2 0 0 1 0 2 0 6 9 0.468
21 3 4 5 0 2 0 1 0 0 1 1 6 9 0.468
22 3 4 5 2 0 0 1 0 0 0 2 6 9 0.488
23 3 4 5 2 0 1 0 0 0 0 2 6 9 0.488
24 3 4 5 2 0 0 0 1 0 1 1 6 9 0.488
25 3 4 5 1 1 0 0 1 0 2 0 6 9 0.514
26 3 4 5 1 1 0 1 0 0 1 1 6 9 0.514
27 3 4 5 1 1 0 1 0 0 2 0 6 9 0.514
28 4 3 6 1 1 0 0 0 0 2 1 8 9 0.514
29 4 3 6 1 1 0 0 0 0 3 0 8 9 0.514
30 3 4 6 1 1 0 0 1 0 2 0 8 9 0.514
31 3 4 6 1 1 0 1 0 0 1 1 8 9 0.514
32 3 4 6 1 1 0 1 0 0 2 0 8 9 0.514
33 3 4 5 0 2 0 1 0 0 2 0 6 9 0.526
34 3 4 5 2 0 0 0 1 0 2 0 6 9 0.526
35 3 4 5 2 0 0 1 0 0 1 1 6 9 0.526
36 4 3 6 0 2 0 0 0 0 3 0 8 9 0.526
37 3 4 6 0 2 0 1 0 0 2 0 8 9 0.526
38 4 3 6 2 0 0 0 0 0 2 1 8 9 0.526
39 3 4 6 2 0 0 0 1 0 2 0 8 9 0.526
40 3 4 6 2 0 0 1 0 0 1 1 8 9 0.526
41 3 4 5 1 1 0 0 1 1 1 0 6 9 0.528
42 3 4 5 1 1 1 0 0 0 1 1 6 9 0.528
43 4 3 6 1 1 0 0 0 1 1 1 8 9 0.528
44 3 4 6 1 1 0 0 1 1 1 0 8 9 0.528
45 3 4 6 1 1 1 0 0 0 1 1 8 9 0.528
46 3 4 5 1 1 1 0 0 1 1 0 6 9 0.547
47 3 4 6 1 1 1 0 0 1 1 0 8 9 0.547
48 3 4 5 2 0 1 0 0 1 1 0 6 9 0.561
49 3 4 6 2 0 1 0 0 1 1 0 8 9 0.561
50 3 4 5 0 2 0 1 0 1 1 0 6 9 0.561
51 3 4 5 0 2 1 0 0 0 2 0 6 9 0.561
52 3 4 5 2 0 0 1 0 1 1 0 6 9 0.561
53 3 4 5 2 0 1 0 0 0 2 0 6 9 0.561
54 4 3 6 0 2 0 0 0 1 2 0 8 9 0.561
55 3 4 6 0 2 0 1 0 1 1 0 8 9 0.561
56 3 4 6 0 2 1 0 0 0 2 0 8 9 0.561
57 4 3 6 2 0 0 0 0 1 2 0 8 9 0.561

No. nu nd nL I12 I13 I1d I2d I3d I1u I2u I3u NBSMNY α?3
58 3 4 6 2 0 0 1 0 1 1 0 8 9 0.561
59 3 4 6 2 0 1 0 0 0 2 0 8 9 0.561
60 3 4 5 2 0 0 0 1 1 1 0 6 9 0.591
61 3 4 5 2 0 1 0 0 0 1 1 6 9 0.591
62 4 3 6 2 0 0 0 0 1 1 1 8 9 0.591
63 3 4 6 2 0 0 0 1 1 1 0 8 9 0.591
64 3 4 6 2 0 1 0 0 0 1 1 8 9 0.591
65 4 3 7 2 0 0 0 0 1 1 1 10 9 0.591
66 3 4 7 2 0 0 0 1 1 1 0 10 9 0.591
67 3 4 7 2 0 1 0 0 0 1 1 10 9 0.591
68 3 4 5 1 1 0 1 0 1 1 0 6 9 0.598
69 3 4 5 1 1 1 0 0 0 2 0 6 9 0.598
70 4 3 6 1 1 0 0 0 1 2 0 8 9 0.598
71 3 4 6 1 1 0 1 0 1 1 0 8 9 0.598
72 3 4 6 1 1 1 0 0 0 2 0 8 9 0.598
73 4 3 7 1 1 0 0 0 1 2 0 10 9 0.598
74 3 4 7 1 1 0 1 0 1 1 0 10 9 0.598
75 3 4 7 1 1 1 0 0 0 2 0 10 9 0.598
76 3 4 6 0 3 0 0 0 1 1 0 8 10 0.519
77 3 4 6 2 1 0 0 0 0 0 2 8 10 0.533
78 3 4 6 1 2 0 0 0 0 1 1 8 10 0.594
79 3 4 7 1 2 0 0 0 0 1 1 10 10 0.594
80 3 4 6 0 3 0 0 0 0 2 0 8 10 0.652
81 3 4 6 3 0 0 0 0 0 2 0 8 10 0.652
82 3 4 7 0 3 0 0 0 0 2 0 10 10 0.652
83 3 4 7 3 0 0 0 0 0 2 0 10 10 0.652
84 3 4 8 0 3 0 0 0 0 2 0 12 10 0.652
85 3 4 8 3 0 0 0 0 0 2 0 12 10 0.652
86 3 4 6 3 0 0 0 0 0 0 2 8 10 0.655
87 3 4 7 3 0 0 0 0 0 0 2 10 10 0.655
88 3 4 8 3 0 0 0 0 0 0 2 12 10 0.655
89 3 4 6 1 2 0 0 0 1 1 0 8 10 0.680
90 3 4 7 1 2 0 0 0 1 1 0 10 10 0.680
91 3 4 8 1 2 0 0 0 1 1 0 12 10 0.680
92 3 4 6 2 1 0 0 0 0 1 1 8 10 0.705
93 3 4 7 2 1 0 0 0 0 1 1 10 10 0.705
94 3 4 8 2 1 0 0 0 0 1 1 12 10 0.705
95 3 4 6 3 0 0 0 0 1 1 0 8 10 0.722
96 3 4 7 3 0 0 0 0 1 1 0 10 10 0.722
97 3 4 8 3 0 0 0 0 1 1 0 12 10 0.722
98 3 4 9 3 0 0 0 0 1 1 0 14 10 0.722
99 3 4 6 2 1 0 0 0 0 2 0 8 10 0.738
100 3 4 7 2 1 0 0 0 0 2 0 10 10 0.738
101 3 4 8 2 1 0 0 0 0 2 0 12 10 0.738
102 3 4 9 2 1 0 0 0 0 2 0 14 10 0.738
103 3 4 6 1 2 0 0 0 0 2 0 8 10 0.738
104 3 4 7 1 2 0 0 0 0 2 0 10 10 0.738
105 3 4 8 1 2 0 0 0 0 2 0 12 10 0.738
106 3 4 9 1 2 0 0 0 0 2 0 14 10 0.738
107 3 4 6 3 0 0 0 0 0 1 1 8 10 0.750
108 3 4 7 3 0 0 0 0 0 1 1 10 10 0.750
109 3 4 8 3 0 0 0 0 0 1 1 12 10 0.750
110 3 4 9 3 0 0 0 0 0 1 1 14 10 0.750
111 3 4 6 2 1 0 0 0 1 1 0 8 10 0.767
112 3 4 7 2 1 0 0 0 1 1 0 10 10 0.767
113 3 4 8 2 1 0 0 0 1 1 0 12 10 0.767
114 3 4 9 2 1 0 0 0 1 1 0 14 10 0.767

Table 6.5: All 114 MSSM extensions with interacting UV fixed points, appearing exclusively
within model class 1 of sec. 6.3 and containing two quark singlets beyond the MSSM. For each
model, we show the number of left-handed up-type quark singlets (nu), down-type singlets (nd),
and lepton (nL) chiral superfields, the parameters (6.25) characterizing the superpotential, the
total number of superfields NBSM beyond the MSSM (6.22), the total number of non-trivial
Yukawa couplings NY (6.28), and the fixed point values α?3 of FP3 (see tab. 6.1). For all
AS candidates, the top and bottom Yukawa couplings are interacting in the UV. Models are
ordered according to increasing NY , α?3, and NBSM.
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Scanned No. AS models Common features
models FP23 ≤ 1 FP23 > 1 of AS models

3434836 109 5 I12 + I13 +
3∑
i=1

(Iid + Iiu) = 5 xt=xb=1 FP23 IR α?FP23
3 >α?FP3

3 & 0.43

Table 6.6: Some features of all 114 perturbatively discovered AS candidates presented in
tab. 6.5. From the ∼ 3.4 million scanned models within model class 1 of sec. 6.3, only these
114 models have interacting UV fixed points FP3 (see tab. 6.1). Five of these AS candidates
have non-perturbative couplings larger than one. The I-integers used as model specifying
parameters within model class 1 (see (6.27)) always sum up to five. The parameters xt, xb
being one for all AS candidates implies that the top and bottom Yukawa couplings are both
interacting in the UV. Furthermore, FP23 is always IR attractive and its strong coupling is
always larger than the strong coupling of FP3.
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6.6.1 Benchmark
As an AS benchmark within model class 1 of sec. 6.3, we choose model No. 7 from
tab. 6.5 given by the parameters

nu = 3 , nd = 4 , nL = 5 , xb = xt = 1 ,
I12 = 0 , I13 = 1 , I2d = 2 , I1d = I3d = 0 , I1u = I2u = 1 , I3u = 0 ,

(6.56)

which correspond to the particle content shown in tab. 6.7 and the superpotential

Superfield SU(3)C SU(2)L U(1)Y Flavor multiplicity
quark doublet Q 3 2 +1/6 3

up-quark u 3 1 −2/3 3
down-quark d 3 1 +1/3 3

lepton doublet L 1 2 −1/2 3
lepton singlet e 1 1 +1 3
up-Higgs Hu 1 2 +1/2 1

down-Higgs Hd 1 2 −1/2 1
BSM quark d4 3 1 +1/3 1

BSM anti-quark d1 3 1 −1/3 1
BSM lepton doublet L4,5 1 2 −1/2 2

BSM anti-lepton doublet L1,2 1 2 +1/2 2

Table 6.7: Left-handed chiral superfield content of our AS MSSM benchmark, model No. 7
of tab. 6.5. The last four rows show additional superfields beyond the MSSM.

W = Y 411d4Q1L1 + Y 432d4Q3L2 + Y 124d1Q2L4 + Y 225d2Q2L5

+ Y
211
u2Q1L1 + Y

122
u1Q2L2 + ytu3Q3Hu + ybd3Q3Hd .

(6.57)

Every term of the superpotential (6.57) contains exactly one superfield beyond the MSSM.
Hence even though R-parity violation is a crucial feature of the superpotential (6.23),
we can stay within experimental bounds in our benchmark model if the masses of these
fields beyond the MSSM are large enough [143, 145–150].

For the eight Yukawa couplings in (6.57), there are only seven different beta functions
due to the flavor symmetry

(d1, L4)↔ (d2, L5) . (6.58)
We have the following correspondence between the Yukawa couplings of (6.57) and the
seven out of 12 possible beta functions βt, βb, β4, ..., β13 (compare with (6.26)):

Y 411 → β8, Y
432 → β9, Y

124, Y 225 → β7,

Y
211 → β11, Y

122 → β12, yt → βt, yb → βb.
(6.59)
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The components (α?3, α?2, α?1, α?Y 411 , α?Y 432 , α?Y 124 , α?Y 225 , α?
Y

211 , α?
Y

122 , α?yt , α
?
yb

) of the physi-
cal fixed points of our benchmark model are given by

FP3 ≈ (0.458, 0, 0, 0.278, 0.208, 0.306, 0.306, 0.361, 0.306, 0.319, 0.319) ,
FP23 ≈ (0.474, 0.025, 0, 0.296, 0.222, 0.326, 0.326, 0.385, 0.326, 0.341, 0.341) ,

(6.60)

with all non-zero components of FP23 being slightly larger than the corresponding
couplings of FP3.

In fig. 6.5, we present the RG flow of our benchmark model in an α3-α2-plane where
the Yukawa values are given by their nullcline values, for which Yukawa beta functions
vanish. The RG flows of the other AS candidates consistently look similar. Next to the
gaussian fixed point G, we show FP3 and FP23, as well as the SM trajectory which is
approximated at two loop level involving the top Yukawa coupling at one-loop level. In
this plot we see that the UV-safe trajectory (orange) intersect with the SM trajectory
at a point corresponding to an energy scale in the O(100 MeV) range. Due to the large
value of α?FP3

3 ∼ 0.43 shown in eq. (6.55), all AS candidates have such low matching
scales. Further investigations show that for all scanned models, we have BFP3

1,eff and
BFP23

1,eff positive. From the non-physicality of the fixed points FP1, FP12, FP13, FP123 for
all scanned models we infer that all UV-safe trajectories have vanishing hypercharge
coupling. Hence, our AS candidates cannot be matched onto the SM.
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Figure 6.5: The general RG flow of AS MSSM extensions. The plot depicts the RG flow of the
benchmark model with the particle content shown in table 6.7 and the superpotential (6.57).
The Yukawa values in every point of the plot are given by their nullcline values for which Yukawa
beta functions vanish. Additionally the SM trajectory, calculated in the 2-1-approximation
including the top Yukawa coupling, is shown as a black dashed line.

6.7 Summary and Remarks on AS MSSM Exten-
sions

As discussed in sec. 6.1, no UV attractive fixed points were found to exist within the
MSSM itself, with and without R-parity (4.27) [132, 143].

We performed scans within three classes of MSSM extensions in sections 6.3, 6.4
and 6.5, containing the MSSM superfields and

• Model class 1: New quark singlets and new leptons ,

• Model class 2: Two new quark doublets and new leptons ,

• Model class 3: A fourth generation and new leptons .

Since only for models with at most four quarks beyond the MSSM interacting fixed
points can exist within the 2-1-approximation, as discussed in sec. 6.2, we covered all
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possible colored field contents allowing for AS in MSSM extensions. Various Yukawa
structures were parameterized with the aim of generating interacting UV fixed points.

We indeed found 114 AS MSSM extensions with FP3 (see tab. 6.1) being UV
attractive. All of these AS candidates occur within model class 1 and have exactly
two quark singlets and between four and ten leptons beyond the MSSM. The model
parameters characterizing these AS candidates are listed in tab. 6.5.

In our scan within model class 1 covering the parameter space (6.29), we went up to
16 quarks beyond the MSSM and 22 leptons beyond the MSSM. In fig. 6.1, we show the
strong component of all physical FP3 found within our scan of model class 1, plotted
against the number of interacting Yukawa couplings NY of eq. (6.28). Three distinct
branches, and a tendency for the strong coupling of FP3 becoming larger for more
interacting Yukawa couplings are observed.

In our AS benchmark model (model No. 7 of tab. 6.5), presented in sec. 6.6.1,
we find that the intrinsic R-parity violation of superpotential W1 from (6.23) can be
tuned such that it stays within experimental limits by making BSM masses large [143,
145–150]. The RG flow of this AS benchmark is depicted in fig. 6.5, where we find
that supersymmetry-breaking matching scales are in the O(100 MeV) range, in conflict
with experimental non-observation of SM superpartners at such energy scales [43].
Furthermore, we find that α1 = 0 along the UV-safe trajectory connecting FP3 and
FP23, implying that the hypercharge coupling cannot be matched onto the SM. This
RG-flow behavior is qualitatively the same for all AS candidates. From the gauge beta
functions (5.10) we find that the value of α?FP3

3 is always bounded from below by

α?FP3
3 = B3

C33 −
∑
yD3yαy

D3y≥0
≥ B3

C33
≥ 3

110 ≈ 0.027 , (6.61)

where for the last inequality we inserted the values for B3 and C33 obtained for the
MSSM fields plus four quarks beyond the MSSM, using eqs. (5.6a) and (5.6b). This
lower bound at best enables matching scales in the range of O(1 GeV). Higher loop
orders and gravitational corrections might change this picture such that α1 becomes
interacting along UV-safe trajectories, and matching scales are pushed towards larger
energies, not in conflict with phenomenology anymore.

In the other two model classes 2 and 3, no AS candidates were found. As seen in
figs. 6.2 and 6.3, here the strong component of FP3 is always much smaller than in the
AS cases of model class 1 . This is due to the larger amount of colored fields in the
model classes 2 and 3, compared to the AS cases of model class 1. Nevertheless, also in
these last two cases a tendency of the strong component of FP3 becoming larger with
more interacting Yukawa couplings is observed.
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Within our model scans, we observed for FP3 and FP23 that

FP23 physical⇔ FP23 physical and IR attractive
⇔ FP3 physical and UV attractive⇔ α?FP23

3 > α?FP3
3 ,

(6.62)

which we prove in appendix C to be true for all MSSM extensions in the 2-1-approximation.



Chapter 7

MSSM Extensions with an
Additional SU(N) Gauge Sector

Our searches within MSSM extensions of chapter 6 yield AS candidates with supersymmetry-
breaking matching scales in conflict with phenomenological observations. Furthermore,
we always find in our search that the hypercharge coupling α1 vanishes on UV-safe
trajectories, prohibiting matching onto the SM at all.

With a new non-abelian SU(N) gauge factor, new fixed points are available which
allow for small (or even vanishing) MSSM gauge couplings, which is preferred for
matching onto the SM at large energies. Fields charged under this new SU(N) (N ≥ 2)
may have hypercharges allowing for UV-safe trajectories to develop interacting α1-values
along them, so that matching onto the SM becomes possible.

In our following analysis, we present a model framework extending the MSSM
by including an additional SU(N) gauge sector and some fields beyond the MSSM,
which we call the “MSSM+”. Within this framework, we indeed find candidates
exhibiting the desired feature of supersymmetry-breaking matching scales above 1 TeV.
For three benchmark models, we demonstrate matching onto the SM. We then proceed to
implement supersymmetry-breaking via gauge-mediation and find that we still maintain
AS models within the MSSM+ framework.

7.1 The MSSM+ Framework

In the MSSM+ framework, we consider gauge anomaly-free MSSM extensions with
gauge groups

GMSSM+ = SU(N)⊗ SU(3)C ⊗ SU(2)L ⊗ U(1)Y , (7.1)

64
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which we scan for AS models. In the following investigation, we have additionally to
the gauge couplings

{α+, α3, α2, α1} , (7.2)

up to eight Yukawa couplings
{α4, ..., α11} , (7.3)

and focus on fixed points

FP+ =
(
α∗+, 0, 0, 0, α∗4, ..., α∗11

)
, (7.4)

which only have α+ and some Yukawa couplings interacting.
The left-handed chiral superfields of the MSSM+ are shown in tab. 7.1. The general

superpotential we focus on reads

WMSSM+ = Y ijkΨiξjχk + Y
ijkΨiξjχk , (7.5)

where we have suppressed gauge indices, and the indices i, j, k summing over all flavors.
For some specific values of the hypercharge Y of the χ and ξ fields (see tab. 7.1),
like Y = ±1/2, Yukawa couplings involving fields within and beyond the MSSM
simultaneously exist. In this study we demand that such Yukawa couplings are absent.
For generic values of Y , the absence of such terms is automatically given by gauge
invariance, while in all other cases we implement a Z2 flavor symmetry to prohibit these
terms. This symmetry assigns the following values to the different chiral superfields:

χ, χ, ξ, ξ : −1 ,
Ψ, Ψ, MSSM fields : +1 .

(7.6)

Furthermore, Yukawa terms involving only fields uncharged under the new SU(N) gauge
symmetry, like the MSSM superpotential terms, generally appear in the superpotential.
In this study, we focus on fixed points FP+ (see (7.4)) for which the only interacting
gauge component corresponds to the new SU(N) factor. These fixed points are unaffected
by Yukawa terms involving only fields uncharged under the new SU(N). Hence we
do not include such superpotential terms, and in particular do not include the MSSM
superpotential.



66 CHAPTER 7. MSSM EXTENSIONS WITH AN ADDITIONAL SU(N)

Superfield SU(N) SU(3)C SU(2)L U(1)Y Multiplicity
Q 1 3 2 +1

6 3

MSSM

u 1 3 1 −2
3 3

d 1 3 1 +1
3 3

L 1 1 2 −1
2 3

e 1 1 1 +1 3
Hu 1 1 2 +1

2 1
Hd 1 1 2 −1

2 1
χ 1 1 2 +Y m

χ 1 1 2 −Y m

ξ N 1 2 −Y 2
}
joint

ξ N 1 2 +Y 2
Ψ N 1 1 0 n

}
hiddenΨ N 1 1 0 n

Table 7.1: Chiral superfield content of the gauge anomaly-free MSSM+. Additionally to the
MSSM fields we include two kinds of SU(2)L doublets χ and χ, as well as jointly charged fields
ξ and ξ, and purely hidden fields Ψ and Ψ. We set the hypercharge of the superfields Ψ,Ψ to
zero.

We parameterize the possible interacting Yukawa couplings with the integers

I12 , I1 , I2 , I12 , I1 , I2 , (7.7)

which count the following Yukawa terms. Each field Ψ and Ψ may appear up to two
times in the superpotential. The number of times Ψ-fields appear once and in terms
involving ξ1 or ξ2 is I1 or I2, respectively (analogously, the number of times that the
fields Ψ appear once and in terms involving ξ1 or ξ2 is I1 or I2, respectively). For the
fields Ψ being present twice in the superpotential, once in a term involving ξ1 and once
in a term involving ξ2, we use I12 to count the number of such cases (analogously, for
Ψ appearing twice in the superpotential, once in a term involving ξ1 and once in a
term involving ξ2, we use I12). Each χ and each χ may appear at most once in the
superpotential.

The number of Yukawa terms NY in our superpotentials is then

NY = 2(I12 + I12) + I1 + I2 + I1 + I2 . (7.8)
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In summary, the I-parameters (7.7) count the different possible Yukawa terms as

y4Ψiξ1χk + y5Ψiξ2χk′ : I12 ,

y6Ψiξ1χk : I1 ,

y7Ψiξ2χk : I2 ,

y8Ψiξ1χk + y9Ψiξ2χk : I12 ,

y10Ψiξ1χk : I1 ,

y11Ψiξ2χk : I2 ,

(7.9)

with y4, ..., y11 being eight different types of Yukawa couplings having the same beta
function per type due to remaining flavor symmetries acting on the Ψ, Ψ, χ and χ fields
appearing in terms of the same Yukawa type. The beta functions of the MSSM+ are
presented in appendix (D.2).

When doing scans, the number of (χ, χ) and (Ψ,Ψ) pairs m and n have to be large
enough to accompany for all Yukawa terms, i.e. they have to fulfill

m ≥ max{2I12 + I1 + I2, 2I12 + I1 + I2} = mmin ,

n ≥ max{I12 + I1 + I2, I12 + I1 + I2} = nmin .
(7.10)

With this, a specific model within the MSSM+ framework is classified completely by
the parameters

m , n , I12 , I1 , I2 , I12 , I1 , I2 . (7.11)

We stress that we couple the hidden sector only via the electroweak forces to the visible
sector. In an analogous model involving also colored joint fields, we do not find AS
MSSM extensions.

In the vicinity of FP+, defined in (7.4), the MSSM gauge beta functions are approxi-
mated by

β3

∣∣∣
FP+
≈ −BFP+

3,eff α
2
3 , β2

∣∣∣
FP+
≈ −BFP+

2,eff α
2
2 , β1

∣∣∣
FP+
≈ −BFP+

1,eff α
2
1 , (7.12)

with
B

FP+
3,eff = B3 − C3+α

∗
+ +

11∑
i=4

D3iα
∗
i , (7.13)

B
FP+
2,eff = B2 − C2+α

∗
+ +

11∑
i=4

D2iα
∗
i , (7.14)

B
FP+
1,eff = B1 − C1+α

∗
+ +

11∑
i=4

D1iα
∗
i . (7.15)
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Details on the coefficients are given in appendix D.2. For all BFP+
i,eff > 0 (i = 3, 2, 1), FP+

is UV attractive in the α3-, α2- and α1-directions, suggesting that matching onto the SM
is possible. Hence in the following section we scan for (perturbative and physical) fixed
points FP+, for which these effective B-coefficients are positive. We call such models
“asymptotically safe in our sense”.

7.2 Model Scans and Matching onto the SM
We perform model scans for different discrete hypercharges Y of the BSM fields χ and ξ
(see tab. 7.1) within the range

Y ∈ [0, 2] . (7.16)

For each Y , we scan ∼ 11.7 million anomaly-free models within the parameter range

2 ≤ N ≤ 10 , 0 ≤ I12, I1, I2, I12, I1, I2 ≤ 5 , mmin ≤ m ≤ 21 , nmin ≤ n ≤ 16 ,
with I1 ≤ I2 , I1 ≤ I2 ,

(7.17)

and find that for each N ≥ 4, there exists a minimal hypercharge value Ymin of Y such
that AS models in our sense do exist, presented in table 7.2. We also state the number
of AS candidates for each listed value of Y as well as the approximate value of Ymin for
each N . We observe that Ymin gets smaller for lager N .

From eq. (7.8) we see that we have at most

Nmax
Y = 40 (7.18)

Yukawa couplings present within our scans. For our scanned values of m and n, there
are generally up to

Ngeneral
Y = 1344 (7.19)

Yukawa couplings present in the superpotential (7.5).
We choose three AS benchmark models (see below), with each model possessing

different features of interest for us. We also demonstrate that all of these benchmark
models can be matched onto the SM at a common mass scale µMSSM. Since we are
interested in new physics above ∼ 1 TeV, we verify that matching is indeed possible at
1 TeV, 100 TeV and 106 TeV by calculating trajectories starting at SM coupling values
and seeing that these all flow towards FP+ in the UV for our three benchmark scenarios.
For the calculation of the UV-safe trajectories, we choose the starting values for the
couplings α+, α4, ..., α11 6= 0 such that their beta functions vanish (nullcline values) as
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N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 #AS

Y=0.0 X X X X X X X X X 0
Y=0.1 X X X X X X X X X 0
Y=0.15 X X X X X X X

√ √
398

Y=0.2 X X X X X
√

X
√ √

5153
Y=0.5 X X X

√ √ √ √ √ √
60606

Y=1.0 X X
√ √ √ √ √ √ √

88627
Y=1.5 X X

√ √ √ √ √ √ √
95506

Y=2.0 X X
√ √ √ √ √ √ √

96506
Y=5.0 X X

√ √ √ √ √ √ √
96506

Ymin ≈ - - 1.0 0.5 0.5 0.2 0.5 0.15 0.15

Table 7.2: AS candidates in our sense within the parameter range (7.17). These models
have physical and perturbative FP+ of (7.4) with positive coefficients BFP+

3,eff , BFP+
2,eff and BFP+

1,eff
as defined in eqs. (7.13)-(7.15). A “

√
” implies that such candidates are found, while a “X”

implies the contrary. In the very right column, we show the number of AS models found for
each listed hypercharge Y of the χ and ξ fields of tab. 7.1. Additionally, the approximate
value of the lower bound Ymin in order to have AS candidates for each N is presented in the
very last row.
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functions of the couplings α3, α2, α1, which in turn are determined by their starting
point on the SM trajectory. When calculating UV-safe trajectories, we rely on the
approximations (7.12) for β3, β2 and β1 since solving for trajectories flowing towards
FP+ is numerically unstable. For given starting conditions αi(µMSSM), the approximated
beta functions have the exact solutions

αi(µ) = αi(µMSSM)
1 +B

FP+
i,eff αi(µMSSM) ln

(
µ

µMSSM

) , i = 3, 2, 1 . (7.20)

Due to the smallness of the SM gauge couplings (below the Planck scale), the new gauge
coupling α+ as well as the Yukawa couplings α4, ..., α11 begin at the matching scale in
the vicinity of FP+, making (7.20) a sufficient approximation1.

Below µMSSM, the coupling α+ runs on its own and may develop a divergence at a scale
µconf < µMSSM. Taking the scalar and fermionic components of the chiral superfields Ψ
and Ψ to be massless (or sufficiently light), they all participate in a QCD-like confinement
resulting in (dark) baryons with masses mDB near the confinement scale

mDB ∼ µconf . (7.21)

The vanishing hypercharge of the chiral superfields Ψ and Ψ guarantees that the bound
states are electrically neutral and hence may serve as dark matter candidates (partially)
responsible for the observed dark matter energy density ΩDM.

7.2.1 Benchmark 1 (BM1)
Our first benchmark, BM1, is an AS candidate within the parameter range (7.17). In
the gauge-mediated scenario of section 4.2.3, it is no longer an AS candidate. BM1 is
given by the parameters

N = 4, Y = 1.5, I12 = 2, I1 = 0, I2 = 3, I12 = 3, I1 = 1, I2 = 1,m = 8, n = 5, (7.22)

which translate into the particle content of table 7.3 and the superpotential

WBM1 =
2∑
i=1

Y i1iΨiξ1χi +
2∑
i=1

Y i2(i+2)Ψiξ2χi+2 +
5∑
i=3

Y i2(i+2)Ψiξ2χi+2

+
3∑
i=1

Y
i1iΨiξ1χi + Y

414Ψ4ξ1χ4 +
3∑
i=1

Y
i2(i+4)Ψiξ2χi+4 + Y

528Ψ5ξ2χ8 ,

(7.23)

1We also checked for our three following benchmark models that within the MSSM+, β3, β2, and β1
of appendix D.2 are all negative at µMSSM with the couplings α+, α4, ..., α11 given by their nullcline
values at this energy. Hence we have guaranteed that we start on the SM trajectory at points which
flow towards FP+ in the UV. We confirm this behavior for all energies above 1 TeV for our benchmark
models.
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where we have the following Yukawa couplings evolving with the beta functions of
appendix D.2

Y 111, Y 212 : β4 ,

Y 123, Y 224 : β6 ,

Y 325, Y 426, Y 527 : β7 ,

Y
111
, Y

212
, Y

313 : β8 ,

Y
414 : β9 ,

Y
125
, Y

226
.Y

327 : β10 ,

Y
528 : β11 .

(7.24)

In Benchmark 1, the components of FP+ are given by

α
?FP+
+ ≈ 0.88 , α

?FP+
4 ≈ 0.73 , α

?FP+
6 ≈ 0.40 , α

?FP+
7 ≈ 0.65 ,

α
?FP+
8 ≈ 0.54 , α

?FP+
9 ≈ 0.72 , α

?FP+
10 ≈ 0.54 , α

?FP+
11 ≈ 0.72 ,

(7.25)

which is close to being non-perturbative.
The one-loop B-coefficients and the effective B-coefficients read

B3 = 6 , BFP+
3,eff = 6 ,

B2 = −34 , BFP+
2,eff = 1.72 ,

B1 = −310 , BFP+
1,eff = 11.51 .

(7.26)

In fig. 7.1, we show the matching onto the SM at 1 TeV, 103 TeV, and 106 TeV for
the gauge couplings α3, α2 and α1. The Yukawa couplings α4, ..., α11 approximately
take on their fixed point values along their trajectories.
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Superfield SU(4) SU(3)C SU(2)L U(1)Y Multiplicity
Q 1 3 2 +1

6 3

MSSM

u 1 3 1 −2
3 3

d 1 3 1 +1
3 3

L 1 1 2 −1
2 3

e 1 1 1 +1 3
Hu 1 1 2 +1

2 1
Hd 1 1 2 −1

2 1
χ 1 1 2 +1.5 8
χ 1 1 2 −1.5 8
ξ 4 1 2 −1.5 2

}
joint

ξ 4 1 2 +1.5 2
Ψ 4 1 1 0 5

}
hiddenΨ 4 1 1 0 5

Table 7.3: Chiral superfields of the AS MSSM+ benchmark BM1. The superpotential of
BM1 is given in (7.23).
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Figure 7.1: Running of the gauge couplings α3, α2, α1 matched from BM1 (see tab. 7.3) onto
the SM at 1 TeV (orange), 103 TeV (green) and 106 TeV (purple). Dashed lines show coupling
evolutions within the SM at two-loop gauge and one-loop Yukawa order including the top
Yukawa, while solid lines are trajectories within BM1.
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7.2.2 Benchmark 2 (BM2)
The second AS benchmark, BM2, is even closer than BM1 to being non-perturbative, but
it is still an AS candidate in the gauge-mediated scenario of sec. 4.2.3. The parameters
of BM2 are

N = 4, Y = 1.5, I12 = 1, I1 = 1, I2 = 3, I12 = 4, I1 = 0, I2 = 1,m = 9, n = 5 , (7.27)

which translate into the particle content of table 7.4 and the superpotential

WBM2 = Y 111Ψ1ξ1χ1 + Y 212Ψ2ξ1χ2 + Y 123Ψ1ξ2χ3 +
5∑
i=3

Y i2(i+1)Ψiξ2χi+1

+
4∑
i=1

Y
i1iΨiξ1χi +

4∑
i=1

Y
i2(i+4)Ψiξ2χi+4 + Y

529Ψ5ξ2χ9 ,

(7.28)

where we have the following correspondence between Yukawa couplings and beta func-
tions of appendix D.2

Y 111 : β4 ,

Y 212 : β5 ,

Y 123 : β6 ,

Y 324, Y 425, Y 526 : β7 ,

Y
111
, Y

212
, Y

313
, Y

414 : β8 ,

Y
125
, Y

226
, Y

327
, Y

428 : β10 ,

Y
529 : β11 .

(7.29)

In Benchmark 2, the components of FP+ are given by

α
?FP+
+ ≈ 0.96 , α

?FP+
4 ≈ 0.76 , α

?FP+
5 ≈ 0.92 , α

?FP+
6 ≈ 0.49 ,

α
?FP+
7 ≈ 0.75 , α

?FP+
8 ≈ 0.62 , α

?FP+
10 ≈ 0.53 , α

?FP+
11 ≈ 0.73 ,

(7.30)

which is even closer to being non-perturbative than BM1.
The one-loop B-coefficients and the effective B-coefficients are given by

B3 = 6 , BFP+
3,eff = 6 ,

B2 = −36 , BFP+
2,eff = 3.95 ,

B1 = −328 , BFP+
1,eff = 31.53 .

(7.31)

In fig. 7.2, we show the matching onto the SM at 1 TeV, 103 TeV and 106 TeV for
the gauge couplings α3, α2 and α1. The Yukawa couplings again are approximately
constant.
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Superfield SU(4) SU(3)C SU(2)L U(1)Y Multiplicity
Q 1 3 2 +1

6 3

MSSM

u 1 3 1 −2
3 3

d 1 3 1 +1
3 3

L 1 1 2 −1
2 3

e 1 1 1 +1 3
Hu 1 1 2 +1

2 1
Hd 1 1 2 −1

2 1
χ 1 1 2 +1.5 9
χ 1 1 2 −1.5 9
ξ 4 1 2 −1.5 2

}
joint

ξ 4 1 2 +1.5 2
Ψ 4 1 1 0 5

}
hiddenΨ 4 1 1 0 5

Table 7.4: Chiral superfields of the AS MSSM+ benchmark BM2. This second benchmark
has the superpotential (7.28)
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Figure 7.2: An analogous plot to fig. 7.1, here with solid lines showing coupling evolutions
within BM2 (see tab. 7.4), and dashed lines again showing coupling evolutions within the SM.
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7.2.3 Benchmark 3 (BM3)
Our last benchmark, denoted as BM3, is AS for Y = 3/2 as well as for Y = 1/2 in
both, the MSSM+ and also in the gauge-mediated scenario of sec. 4.2.3. Furthermore,
it has the smallest α+ value for FP+ found in the parameter regime (7.17), making it
perturbatively more viable than BM1 and BM2. BM3 is given by the parameters

N = 9, I12 = 4, I1 = 5, I2 = 5, I12 = 4, I1 = 4, I2 = 4, m = 18, n = 14,
Y = 0.5 or Y = 1.5 ,

(7.32)

which translate into the field content of table 7.5 and the superpotential

WBM3 =
4∑
i=1

Y i1iΨiξ1χi +
9∑
i=5

Y i1iΨiξ1χi +
4∑
i=1

Y i2(i+9)Ψiξ2χi+9 +
14∑
i=10

Y i2(i+4)Ψiξ2χi+4

+
4∑
i=1

Y
i1iΨiξ1χi +

8∑
i=5

Y
i1iΨiξ1χi +

4∑
i=1

Y
i2(i+8)Ψiξ2χi+8 +

12∑
i=9

Y
i2(i+4)Ψiξ2χi+4 .

(7.33)

The Yukawa couplings of BM3 evolve according to the following beta functions of
appendix D.2.

Y 111, Y 212, Y 313, Y 414 : β4 ,

Y 515, Y 616, Y 717, Y 818, Y 919 : β5 ,

Y 1 2 10, Y 2 2 11, Y 3 2 12, Y 4 2 13 : β6 ,

Y 10 2 14, Y 11 2 15, Y 12 2 16, Y 13 2 17, Y 14 2 18, : β7 ,

Y
111
, Y

212
, Y

313
, Y

414 : β8 ,

Y
515
, Y

616
, Y

717
, Y

818 : β9 ,

Y
129
, Y

2 2 10
, Y

3 2 11
, Y

4 2 12 : β10 ,

Y
9 2 13

, Y
10 2 14

, Y
11 2 15

, Y
12 2 16 : β11 .

(7.34)

In Benchmark 3, the components of FP+ are given by

α
?FP+
+ ≈ 0.23 , α

?FP+
4 ≈ 0.18 , α

?FP+
5 ≈ 0.21 , α

?FP+
6 ≈ 0.18 , α

?FP+
7 ≈ 0.21 ,

α
?FP+
8 ≈ 0.19 , α

?FP+
9 ≈ 0.22 , α

?FP+
10 ≈ 0.19 , α

?FP+
11 ≈ 0.22 ,

(7.35)

independently of the value of the hypercharge Y . We see that BM3 is much closer to
being perturbative than BM1 and BM2.
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Superfield SU(9) SU(3)C SU(2)L U(1)Y Multiplicity
Q 1 3 2 +1

6 3

MSSM

u 1 3 1 −2
3 3

d 1 3 1 +1
3 3

L 1 1 2 −1
2 3

e 1 1 1 +1 3
Hu 1 1 2 +1

2 1
Hd 1 1 2 −1

2 1
χ 1 1 2 +0.5/+ 1.5 18
χ 1 1 2 −0.5/− 1.5 18
ξ 9 1 2 −0.5/− 1.5 2

}
joint

ξ 9 1 2 +0.5/+ 1.5 2
Ψ 9 1 1 0 14

}
hiddenΨ 9 1 1 0 14

Table 7.5: Chiral superfields of the AS MSSM+ benchmark BM3, which has the superpoten-
tial (7.33).

The one-loop B-coefficients and the effective B-coefficients of BM3 are given by

B3 = 6 , BFP+
3,eff = 6 ,

B2 = −74 , BFP+
2,eff = 23.83 ,

Y = 0.5 : B1 = −94 , BFP+
1,eff = 3.83 ,

Y = 1.5 : B1 = −670 , BFP+
1,eff = 210.45 .

(7.36)

In fig. 7.3a, we show the matching onto the SM at 1 TeV, 103 TeV, and 106 TeV for
the gauge couplings α3, α2 and α1 with Y = 0.5, while fig. 7.3b presents the case for
Y = 1.5. The Yukawa couplings again are approximately constant and take on their
fixed point values along their trajectories.
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(a) Y = 0.5
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Figure 7.3: Coupling evolutions analogous to figs. 7.1 and 7.2, with solid lines here showing
evolutions within BM3 (see tab. 7.5). On the left side we have Y = 0.5, while on the right
hand side the hypercharge parameter is given by Y = 1.5.

We conclude that within our parameter range (7.17) we find many AS models in the
MSSM+ framework which can be matched onto the SM for energies µMSSM ≥ 1 TeV.

7.3 Gauge-Mediation in the MSSM+
In this section, we utilize gauge-mediated supersymmetry-breaking, presented in sec. 4.2.3,
within the MSSM+ to generate the matching scale µMSSM. Within the gauge-mediated
scenario, there is a second messenger mass scale µmess. We show that we still find AS
candidates in the GMSB scenario. We then use a rough estimate to provide values for
the two matching scales µMSSM and µmess within our benchmark BM2 of sec. 7.2.2.

7.3.1 Mass scales and AS in the gauge-mediated scenario
When we apply the gauge-mediation mechanism to the MSSM+, the chiral superfields
Ψ and Ψ as well as the gauge bosons and gauginos of SU(N) stay massless. The fields
χ, χ, ξ, and ξ obtain a mass splitting between their scalar and fermionic components
comparable to the mass splitting µMSSM between SM particles and their superpartners.
From the non-observation of the χ and ξ fields we know that their scalar and fermionic
components both have to be massive, but within our framework we are not able to
state these masses. We expect to find that their masses are of the same order if we set
some components to have masses around µMSSM. Statements on the masses within the
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Higgs sector are out of the scope of this work. We also do not model the potential of
the SUSY-breaking singlet superfield S and hence cannot state its mass. In practice,
we find a difference between the mass parameters of the messengers L4, L4 and of the
messengers q4 and q4 as seen in the subsequent section, with the latter being larger. In
figure 7.4, we visualize the expected mass pattern.

μ

0

μ
MSSM

μ
mess

ψ ψ, , +
g

+
g,~ ,SM gauge bosons and neutrinos

Massive SM particles

L4,

SM Superpartners,(χ,χ,ξ,ξ)

L4

q4,q4

S

Figure 7.4: Expected mass pattern of gauge-mediated supersymmetry-breaking within the
the MSSM+ framework. The chiral superfields Ψ, Ψ, χ, χ, ξ, ξ are MSSM+ fields beyond
the MSSM shown in tab. 7.1. The chiral superfields q4, q4, L4 and L4 are the messenger
fields of eq. (4.32), and S is the singlet chiral superfields whose scalar and F term acquire
SUSY-breaking VEVs. With g+, g̃+, respectively the gauge bosons and gauginos of the new
SU(N) sector are denoted.

We now have to check whether we still find AS models when the fields (4.32) and the
superpotential terms (4.33) are included to the MSSM+. We are interested in models
where FP+ is a UV fixed point, for which yχi and yq vanish. Nevertheless, for the
generation of the mass scales, these terms are crucial. The two additional messenger
lepton doublets L4, L4, and the two additional messenger quark singlets q4, q4 change
some one- and two-loop gauge coefficients of the MSSM+ beta functions of appendix D.2.
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The change of these coefficients is

∆B3 = −2 , ∆C33 = 68
3 , ∆C31 = 8

9 ,

∆B2 = −2 , ∆C22 = 38 , ∆C21 = 2 ,

∆B1 = −10
3 ,∆C11 = 97

27 ,∆C13 = 64
9 ,∆C12 = 6 .

(7.37)

All the other in the beta functions of the MSSM+ are unchanged. Furthermore, the
beta functions of the Yukawas couplings αl and αq (αyl,q = |yq,l|2/(4π)2) are given by

βl = αl(8αl + 6αq − 6α2 − 2α1) ,

βq = αq(10αq + 4αl −
32
3 α3 −

8
9α1) ,

(7.38)

which mix into the beta functions β3, β2 and β1 via the new terms

β+
3 = −α2

3D3qαq , β
+
2 = −α2

2D2lαl , β
+
1 = −α2

1(D1lαl +D1qαq) , (7.39)

with
D2l = 12 , D3q = 8 , D1l = 4 , D1q = 8

3 . (7.40)

Here, β+
i are new terms that appears in the beta function βi of the MSSM+. As already

mentioned, FP+ remains unaffected by the messenger Yukawa couplings.
Scanning again over the parameters (7.17) with Y = +3/2 in our gauge-mediated

scenario yields 91899 models which are AS in our sense, all of them having N ≥ 4. The
model within this parameter range possessing the smallest value for α∗FP+

+ ≈ 0.23 is
given by benchmark 3 of sec. 7.2.3. For Y = 1/2, we still find 56227 AS models (to be
compared with the non-GMSB case presented in tab. 7.2).

7.3.2 Estimate of the mass scales
To approximate the mass scales in the GMSB scenario, we assume that between µMSSM

and µmess, 〈FS〉 and 〈S〉 do not run, and that the eqs. (4.35) and (4.36) are valid
anywhere between these two mass scales and not only at µmess. We then are able to
estimate values for the mass scales as described in the following four steps.

1. Choose the matching scale µMSSM. We calculate the gauge couplings α3, α2, α1 at
this scale by using the SM running of these couplings. We then obtain

αMSSM
3 = α3(µMSSM) , αMSSM

2 = α2(µMSSM) , αMSSM
1 = α1(µMSSM) . (7.41)
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Demanding that the mass of gluinos M3 in (4.35) equals the mass scale µMSSM,
allows us to infer the ratio |〈FS〉/〈S〉|:

µMSSM ∼M3
(4.35)⇒

∣∣∣∣∣〈FS〉〈S〉
∣∣∣∣∣ fixed. (7.42)

2. We then proceed to calculate the soft SUSY-breaking mass parameters using
the formulas (4.35) for the remaining gauginos as well as eq. (4.36) for all mass
splittings between SM fermions and sfermions.

3. We choose the mass scale µmess > µMSSM and run the gauge couplings α3, α2, and
α1 up to this scale using eq. (7.20) with the coefficients BFP+

i,eff given within the
MSSM+. With these couplings

αmess
3 = α3(µmess) , αmess

2 = α2(µmess) , αmess
1 = α1(µmess) , (7.43)

we set the values of αl and αq at µmess to be given by the nullcline condition

αmess
l = αl(µmess) = 0.2619αmess

1 + 1.0714αmess
2 − 1.1429αmess

3 ,

αmess
q = αq(µmess) = −0.01587αmess

1 − 0.42857αmess
2 + 1.52381αmess

3 ,
(7.44)

which we obtain by setting (7.38) to zero and solving for αl, αq 6= 0. This choice
ensures that αl and αq flow into FP+ in the UV. Setting the mass of the fermionic
component of L4 to be equal to µmess then allows us to state a value for |〈S〉|,
using eq. (4.34):

µmess ∼ mfermion
L4

(4.34)⇒ |〈S〉| . (7.45)

There is an obstacle in doing this since eqs. (7.44) in general do not provide
positive values for αmess

l and αmess
q . We find in our benchmarks that αmess

q is always
positive while αmess

l only becomes positive above a minimal value of µmess which
we denote as µmin

mess. A sample plot of the values of αmess
l and αmess

q for BM2 with
µMSSM = 106 GeV at different values of µmess is shown in fig. 7.5. We find that
µmin
mess becomes smaller for larger µMSSM. At µmin

mess, we have exactly αl = 0 and
hence mL4 = 0. We only show the mass parameters of q4 at this minimal messenger
scale µmin

mess. Slightly above µmin
mess, αl 6= 0 and mL4 obtains very quickly values which

are somewhat comparable to the mass parameters of q4.
We then proceed to determine the other mass parameters of the messenger particles
with eqs. (4.34). When the fermionic and scalar masses of the messengers coincide,
we are in a regime where the formulas of gauge-mediation is valid. At this point, we
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may come across a new obstacle where some messenger mass parameters become
imaginary (and their squares negative). In this case, we expect a phase transition
due to spontaneous symmetry breaking. We do not consider this case here and
exclude such combinations of µMSSM and µmin

mess from our investigations. We indeed
find that scalar messenger masses become imaginary as soon as µMSSM exceeds a
specific energy scale which allows us to infer an upper limit on µMSSM.

4. We run all couplings towards higher energies to demonstrate that they eventually
reach FP+ in the UV. The gauge couplings α3, α2, and α1 run according to
eq. (7.20) with the coefficients BFP+

i,eff given within the MSSM+ above µMSSM, and
within the gauge-mediated scenario above µmess. The couplings α+, α4, ... , α11,
αl, and αq are given by their nullcline conditions in the different energy regimes.
Below µmess, αl and αq are constant, while α4, ... , α11 are constant below µMSSM,
where α+ runs independently from all the other couplings. There we calculate the
trajectory of α+ numerically.

The fields Ψ, Ψ as well as the new gauge bosons and new gauginos stay massless.
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min

ℓ

q

Figure 7.5: Starting values αmess
l and αmess

q of eq. (7.44) in dependence of the messenger
scale µmess for µMSSM = 106 GeV. The point at which αl becomes positive marks µmin

mess. Below
µmin
mess, the αl Yukawa coupling becomes unphysical, and we discard the theory as being physical.

Qualitatively, the shown curves behave similar at different values of µMSSM.

7.3.3 Benchmark demonstration

We now apply the procedure described in the previous section to our benchmark model
BM2 given by the parameters (7.27). In table 7.6, we show the mass parameters for
different chosen superpartner scales µMSSM. The messenger scale µmess is always given
by its required minimal value µmin

mess to produce physical values for αmess
l and αmess

q , as
discussed in the previous section.

For µMSSM = 1 TeV, the evolution of the gauge and Yukawa couplings is shown in
fig. 7.6. We also present the same plots but extended to a much larger UV scale to show
that the couplings αl and αq indeed run (slowly) towards zero in the UV as required
for FP+. Figure 7.7 shows analogous plots for µMSSM = 106 TeV. We observe that µmess

becomes smaller for larger µMSSM. Above a certain scale for µMSSM, scalar messenger
masses become imaginary and we expect spontaneous symmetry breaking. We do not
consider this case here and exclude such combinations of µMSSM and µmin

mess. In fig. 7.8,
we present as a green area combinations of µMSSM and µmess for which αmess

l and αmess
q
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Parameter Value/GeV ∼
µMSSM 1000 1× 106 1× 109



MSSM

M3 1000 1× 106 2× 109

M2 350 5× 105 7× 108

M1 200 4× 105 6× 108

M
Q̃

1700 2× 106 2× 109

M
ũ

1600 2× 106 2× 109

M
d̃

1600 2× 106 2× 109

M
L̃

450 7× 105 9× 108

M
ẽ

270 5× 105 8× 108

µmin
mess 7× 1031 3× 1028 7× 1024 MessengersMqf4
/Mqf4

2× 1035 6× 1031 5× 1027

Mqs4
2× 1035 6× 1031 5× 1027

Mqs4
2× 1035 6× 1031 5× 1027∣∣∣ 〈FS〉〈S〉 ∣∣∣ 140000 2× 108 3× 1011

|〈S〉| 4× 1035 1× 1032 1× 1028

Table 7.6: Mass parameters and (minimal) messenger scales for different input values of
the superpartner scale µMSSM in benchmark BM2 (see sec. 7.2.2). We discuss in sec. 7.3.2
how these masses are estimated. The mass parameters are M3, M2, M1 of gluinos, winos and
binos (eq. (4.35)), M

Q̃
, M

ũ
, M

d̃
, M

L̃
, M

ẽ
of left-handed squarks, right-handed up-squarks,

right-handed down-quarks, left-handed sleptons, and right-handed charged sleptons (eq. (4.36)),
and M

qf4
, M

qf4
, Mqs4

and Mqs4
of scalar messengers (eq. (4.34)), respectively. The minimal

messenger scales µmin
mess are determined by searching for the lowest energy scale at which the

messenger Yukawa couplings αmess
l and αmess

q of eq. (7.44) become positive (see fig. 7.44 for
their µmess dependence at µMSSM = 106 GeV). Our procedure to estimate the VEVs of the
scalar component |〈S〉| and the F -term |〈FS〉| of the singlet chiral superfield S in (4.32) is
described in eqs. (7.42) and (7.45) and the main text there.

of eq. (7.44) are physical, while spontaneous symmetry breaking occurs within the red
area. We find an upper bound on µMSSM given by

µMSSM . 1013 GeV , (7.46)

independently of µmess.
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μ
MSSM

μ
mess

(a) Gauge couplings

μ
MSSM

μ
mess

(b) Gauge couplings, larger energy range

ℓ

μ
MSSM

μ
mess

(c) Yukawa couplings

ℓ

μ
MSSM

μ
mess

(d) Yukawa couplings, larger energy range

Figure 7.6: The evolution of the gauge and Yukawa couplings for µMSSM = 103 GeV (blue
dotted lines) in BM2 (see sec. 7.2.2). The value of the messenger scale µmess (orange dotted
lines) is here given by its minimal value of 7× 1031 GeV as stated in tab. 7.6. On the right
hand side, we present the couplings evolutions at larger energy ranges to confirm that αl and
αq indeed run towards zero in the UV.
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μ
MSSM

μ
mess

(a) Gauge couplings

μ
MSSM

μ
mess

(b) Gauge couplings, larger energy range

ℓ

μ
MSSM

μ
mess

(c) Yukawa couplings

ℓ

μ
MSSM

μ
mess

(d) Yukawa couplings, larger energy range

Figure 7.7: Analogously to fig. 7.6 we present the evolution of the gauge and Yukawa
couplings in BM2, here for µMSSM = 109 GeV (blue dotted lines) . The messenger scale takes
on its minimal value µmess = 7× 1024 GeV (orange dotted lines) such that the messenger
Yukawa couplings αq and αl are physical (compare with tab. 7.6). On the right hand side,
we again present the couplings evolutions at larger energy ranges to confirm that αl and αq
indeed run towards zero in the UV.



86 CHAPTER 7. MSSM EXTENSIONS WITH AN ADDITIONAL SU(N)

Figure 7.8: Superpartner and messenger scales µMSSM and µmess with positive values of
αmess
l and αmess

q of eq. (7.44) (green and red area combined). The blue line represents the
diagonal µMSSM = µmess. We find real messenger masses in the green area while in the red
area scalar messenger mass parameters become imaginary. We observe that the latter case
occurs above µMSSM ∼ 1013 GeV, independently of µmess.

7.4 Phenomenological Aspects of the MSSM+
In this section, we discuss the particle spectrum of the MSSM+ and experimental mass
bounds. Furthermore, we present two missing energy scenarios. We assume

Y = ±1
2 , (7.47)

and implement the Z2 flavor symmetry (7.6) to not have Yukawa couplings mixing fields
within and beyond the MSSM, as in our previous investigations.

7.4.1 Particle spectrum and dark matter candidates
The chiral superfields of the MSSM+ are those of tab. 7.1. Next to the SM particles,
our models contain their superpartners, the squarks sup ũ, sdown d̃, scharm c̃, sstrange
s̃, stop t̃, sbottom b̃, the charged sleptons selectron ẽ, smuon µ̃, stau τ̃ and their
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Particle Lower bound [GeV]
ũ, d̃, c̃, s̃ 1570

t̃ 1450
b̃ 950
l̃ 440
ν̃τ 1900
g̃ 2100
C̃±1 1160
Ñ0

1 1000
Ñ0

2 1160
Ñ0

3 635

Table 7.7: Largest lower bounds on the masses of the non-SM MSSM particles, taken from
the particle data group [43].

corresponding sneutrinos ν̃e,µ,τ , as well as four Higgs scalars H0, A0, H+, H−, gluinos g̃,
four neutralinos Ñ1,2,3,4 and charginos C̃±1 , C̃±2 . Additionally, each doublet pair (χ, χ)
leads to two neutral scalars χ̃0, χ̃0, two charged scalars χ̃± and two (Dirac) fermions χ,
χ†. The same goes for each SU(N) component of each pair (ξ, ξ).

The dark matter candidates of the MSSM+ are

• Bound states of the scalars and fermions of the chiral superfields Ψ,Ψ (see sec. 7.2),

• The lightest neutralino,

• Electrically neutral scalars and fermions from χ, χ, ξ, ξ.

7.4.2 Mass bounds

The MSSM+ of section 7.1 contains in particular the MSSM particle content for which
the largest lower mass bounds, stated by the particle data group [43], are shown in
tab. 7.7. For the masses ML of the leptons beyond the MSSM, formed by the χ, χ and
ξ, ξ fields, the LEP bound [156]

ML > 103 GeV (7.48)

holds.
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7.4.3 Missing energy at colliders

Due to the new gauge sector, missing energy signatures at colliders are of greatest
interest with respect to the MSSM+. In our setup, there are two dominant processes
for this.

The first process yields a monojet/monophoton plus missing energy signal. The
Feynman diagram (7.49) contributes to this process at tree-level. Due to the scalars and
fermions of the chiral superfields Ψ,Ψ forming bound states with masses around µMSSM,
we expect this missing energy signal to heavily increase around that energy scale. The
neutral particles beyond the MSSM are effectively not detectable.

q/e

q/e

χ0/ξ0

Ψ

Ψ
χ0/ξ

0

g/γ

γ/Z0 ξ0/χ0

ξ
0
/χ0

(7.49)

The second process yields as a signal dileptons plus missing energy, as illustrated
by the Feynman diagram (7.50). The end state consists of neutrinos, charged dileptons
and neutral particles beyond the MSSM (W± → `±ν). The missing energy comes from
the neutrinos and new neutral particles.

q/e

q/e

χ0/ξ0

W+

W−

χ0/ξ
0

γ+/Z+
0 ξ−/χ−

ξ/χ

(7.50)

7.5 Summary and Remarks on the MSSM+
In the MSSM+ framework of sec. 7.1, which extends the MSSM by an additional SU(N)
gauge sector

GMSSM+ = SU(N)⊗ SU(3)C ⊗ SU(2)L ⊗ U(1)Y ,
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we found candidates for which FP+ from (7.4) becomes physical, perturbative and UV
attractive in the directions of the MSSM gauge couplings. We refer to such a scenario
as being “asymptotically safe in our sense”.

The resulting amount of such candidates found within scans over the parameter
space (7.17) are summarized in tab. 7.2 for different fixed values Y of the χ and ξ

hypercharges (see tab. 7.1). Candidates which are asymptotically safe in our sense
occur only for N ≥ 4. For the three benchmark models BM1, BM2 and BM3, presented
respectively in sections 7.2.1, 7.2.2 and 7.2.3, we demonstrated direct matching from
the MSSM+ onto the SM for energies above 1 TeV, depicted in figures 7.1, 7.2 and 7.3.

In the MSSM+ framework, we studied the general superpotential (7.5) which only
involves fields beyond the MSSM. Imposing the Z2 flavor symmetry of eq. (7.6), Yukawa
terms composed by fields charged under the MSSM as well as the new SU(N) are
prohibited. Since we focused on FP+ being the fixed point which gets reached in the
UV for which the MSSM gauge couplings become non-interacting, including the MSSM
superpotential does not change any of our results. In our framework, we are not able
to explain the observed Yukawa structures of the SM, and they rather are generated
randomly along UV-safe trajectories.

Incorporating gauge-mediated supersymmetry-breaking (see sec. 4.2.3) into the
MSSM+, the additional singlet and messenger chiral superfields

S(1,1,1)0 , L4(1,1,2)−1/2 , L4(1,1,2)+1/2 , q4(1,3,1)−1/3 , q4(1,3,1)+1/3

with gauge charges (SU(N), SU(3)C , SU(2)L)Y are present. For N ≥ 4, we still find AS
candidates (see sec. 7.3.1). Within the GMSB scenario, two mass scales µMSSM and
µmess are present, where the former indicates masses of SM superpartners, and the latter
messenger masses. We estimate the mass scales µMSSM and µmess in benchmark model
BM2, which are shown in tab. 7.6. Furthermore we find that above

µMSSM ∼ 1013 GeV ,

messenger mass parameters become imaginary, indicating a quantum phase transition
due to spontaneous symmetry breaking (see fig. 7.8).

The particle content and the formation of dark bound states were briefly presented
in sec. 7.4.1, and experimental mass bounds were stated in tab. 7.7. As in the dark
QCD model, presented in sec. 3, bound states of fields only charged under the new
SU(N) serve as dark matter candidates. For the hypercharge parameters Y = ±1/2,
missing energy with monojets, monophotons or dileptons in the final state are promising
signals to occur not only within the MSSM+, but for new physics with hidden sectors in
general. Contributions to these processes within the MSSM+ are given by the Feynman
diagrams (7.49) and (7.50).



Chapter 8

Superconformal Field Theory

In fixed points, quantum field theories are scale-invariant since the change of couplings
with the energy scale vanishes by definition (5.13). In general, scale-invariant field
theories are also conformally invariant [14–16]. Hence, fixed points of supersymmetric
theories constitute superconformal field theories (SCFTs) for which non-perturbative
results are known.

The bosonic part of the four-dimensional N = 1 superconformal algebra includes an
abelian symmetry U(1)R, whose generators are referred to as R-charges. The fermionic
superspace coordinates θ and θ† from eq. (4.2) get assigned the R-charges +1 and
−1, respectively. For chiral superfields with R-charges RΦ, we infer from the Taylor
expansion (4.12) that their bosonic component has the same R-charge Rφ = RΦ, while
their fermionic components and F -terms have R-charges RΨ = RΦ−1 and RF = RΦ−2,
respectively. Vector superfields V are real and hence always have R-charge zero (no
U(1)R transformations possible except for the identity operation). From (4.15), we then
immediately see that gauge bosons also have RAµ = 0 and gauginos and the D-term
have respectively Rλ = 1 and RD = 0. In table 8.1, we summarize the different R-charge
assignments.

Superfield S RS Bosonic component Fermionic component Auxiliary term
Chiral Φ RΦ Rφ = RΦ RΨ = RΦ − 1 RF = RΦ − 2
Vector V RV =0 RAµ = 0 Rλ = 1 RD = 0

Table 8.1: Summary of the R-charge assignments for the different components of chiral and
vector superfields.

In this chapter, theN = 1 SCFT algebra in four dimensions and a connection between
R-charges and scaling dimensions D within superconformal models are discussed, and

90
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the central charges a and c are introduced. Furthermore, we sketch the proof of a
theorem which states that superconformal R-charges locally maximize the central charge
a [21], and present the a-theorem [157–159] as well as the conformal collider bounds [22,
23].

Finally, we explain how the discussed non-perturbative results are used in chapter 9
to check whether AS candidates found in MSSM extensions of chapter 6 and within the
MSSM+ framework of chapter 7 may exist beyond perturbation theory.

8.1 Superconformal Algebra and Unitarity Bounds

Ignoring supersymmetry at first, the generators of the four dimensional conformal group
may be represented on a scalar one-particle Hilbert space in positional eigenbasis as

Mµν = −i(xµ∂ν − xν∂µ) , Pµ = −i∂µ ,
Kµ = −i(x2∂µ − 2xµxν∂ν) , D = −ixν∂ν ,

(8.1)

with Mµν and P µ the generators of Lorentz transformations and spacetime translations
and Kµ and D the generators of conformal transformations and dilations, respec-
tively [160]. The unitary, irreducible representations of the superconformal group
generated by the generators (8.1) may be labeled by their SU(2)⊗ SU(2) Lorentz rep-
resentation indices (j, j′) and their scaling dimension D. The scaling dimension D of
renormalized operators O appears in their µ-dependency

O(µ) ∼ µD , (8.2)

where D = D(µ) itself is µ-dependent. Anomalous dimensions γO are defined via

D(µ) ≡ [O] + γO(µ) , (8.3)

with [O] the mass dimension of O.
From unitarity, it is possible to set lower bounds on the scaling dimensions D of

different gauge invariant (j, j′) operators [161]. These lower bounds are for scalar (0, 0),
spinor (1/2, 0) or (0, 1/2) and vector (1/2, 1/2) representations respectively given by

Dscalar ≥ 1 , Dspinor ≥
3
2 , Dvector ≥ 3 . (8.4)

The only exception is the scalar identity operator which has D = 0.
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Now we additionally consider supersymmetry. For chiral superfields, superconfor-
mality yields a connection between chiral superfield R-charges RΦ = Rφ of tab. 8.1 and
the scaling dimension D of their components, given by [141, 160, 162–164]

D = 3
2RΦ . (8.5)

Equating (8.5) and (8.3) and using [φ] = 1 for scalar fields, we obtain

RΦ = 2
3(1 + γΦ) . (8.6)

We stress an observation regarding the triangle anomaly for R ⊗ Ga ⊗ Ga with Ga a
simple gauge factor of (5.1). Since only fermions contribute to anomalies, and according
to tab. 8.1 gluinos have Rλ = 1 and fermionic components of chiral superfields have
RΨ = RΦ− 1, we obtain for the R⊗Ga⊗Ga anomaly of a supersymmetric gauge theory
containing chiral superfields Φi

Tr[R⊗Ga ⊗Ga] = C
(a)
2 (G) +

∑
i

RΨiSa(Ri) = C
(a)
2 (G) +

∑
i

(RΦi − 1)Sa(Ri)

(8.6)= 1
3[3C(a)

2 (G)−
∑
i

Sa(Ri)(1− 2γi)] .
(8.7)

The exact NSVZ beta functions (5.12) are proportional to the square bracket in (8.7).
Hence, a superconformal theory as a fixed point α∗ always has R ⊗Ga ⊗Ga ‘t Hooft
anomalies vanishing for all a with α∗a 6= 0. A further constraint on superconformal
R-charges comes from the R-charge of the superpotential being necessarily two, i.e.

R(W ) = 2 . (8.8)

This is because we use the F -term (4.14) of the superpotential to construct supersym-
metric Lagrangians and the fermionic superspace coordinate θ has R(θ) = +1.

The central charge a of conformal field theories appears as a coefficient in front of
the curvature term of the trace of the energy-momentum tensor

T µ
µ ⊃ −aRµνρλR

µνρλ , (8.9)

with Rµνρλ the Riemann curvature tensor. Anselmi et. al. [19, 20] showed that for SCFTs,
a can be expressed in terms of the U(1)R ‘t Hooft anomalies involving superconformal
R-charges via

a = 3
32(3Tr(R3)− Tr(R)) . (8.10)

In the next section, we sketch the proof of a powerful theorem shown by Intriligator and
Wecht which states that superconformal R-charges locally maximize a = a(R) in (8.10)
with R subject to the constraints given by vanishing of the R⊗Ga ⊗Ga anomalies and
the R-charge of the superpotential R(W ) = 2 [21].
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8.2 Maximization of a and the a-Theorem

8.2.1 Triangle anomalies
Before we sketch the proof of a-maximization, we present some basics of triangle
anomalies. According to the Noether theorem, a given symmetry S with generators T aS
of a Lagrangian classically yields conserved currents JaµS with

∂µJ
aµ
S = 0 . (8.11)

Quantum mechanically these symmetries can be broken, leading to non-conservation of
the currents JaµS . We refer to such broken symmetries as “triangle anomalies” [165, 166].
In general, triangle anomalies receive contributions from chiral fermions charged under
S. Left-handed and right-handed fermions contribute with opposite signs to triangle
anomalies so that vectorlike fermions do not yield any anomalous contributions. Also,
fermions and their conjugates contribute with opposite signs and real and pseudoreal
representations do not exhibit triangle anomalies [167]. Hence we may only consider
generators T acting on left-handed fields and hermitian conjugated fields of right-handed
fermions. Triangle anomalies of the currents JaµS in an arbitrary gauge background A are
completely determined by one-loop triangle Feynman diagrams as presented in (8.12),
with Gi indicating gauge groups and TGi their generators. Hence the name triangle
anomaly. The formula in (8.12) is taken from chapter 22 of [168].

〈∂µJaµS 〉A ⊃
GS

G1

G2

=
∑
b,c

1
16π2

Tr({T aST bG1}T
c
G2)

2 F bµν
G1 F̃

c
G2µν .

(8.12)
Dual field strength tensors F̃ are defined in terms of field strength tensors F by

F̃ a
µν ≡

1
2εµνρλF

aρλ . (8.13)

Global symmetries S being anomalous when taken as local symmetries are called ‘t
Hooft anomalies. We sometimes also refer to just the factor

Tr({T aST bG1}T
c
G2)

2 (8.14)

as the ‘t Hooft anomaly. In the case of flavor anomalies, for which the flavor generators
T aS commute with gauge symmetry generators, the ‘t Hooft anomaly is simply given by
the trace

Tr(T aST bG1T
c
G2) . (8.15)
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8.2.2 Sketch of the proof
Now we sketch the proof that superconformal R-charges locally maximize a from
eq. (8.10), originally presented by Intriligator and Wecht in [21]. For this we consider a
general theory with U(1)I flavor symmetries with generators QI and currents JµI . The
‘t Hooft anomaly for the U(1)I flavor symmetries in background flavor gauge fields AµI ,
AµL, as well as a general metric gµν is given by

〈∂µJµI 〉AµI,L,gµν = Tr(Q3
I)

48π2 FIF̃I +
∑
L6=I

(
Tr(QIQIQL)

16π2 FIF̃L + Tr(QIQLQL)
16π2 FLF̃L

)

+ Tr(QI)
384π2 RR̃ ,

(8.16)

where all flavor symmetries are viewed as being gauged. The flavor field strengths F
and F̃ are related as in eq. (8.13), while the Riemann curvature tensor Rµνλρ and its
dual tensor are multiplied in (8.16) as

RR̃ = 1
2ε

µνλρRµνσδRσδ
λρ . (8.17)

The first three terms of (8.16) are just the anomalies coming from Feynman diagrams
as in (8.12), with the first factor possessing an additional symmetry factor of three. The
last term comes from the coupling to the metric via the Riemann curvature tensor which
leads to a different factor as for the first three terms. For completeness, we visualize the
four terms of (8.16) with the Feynman diagrams

I

I,I,L,R

I,L,L,R

, (8.18)

where every diagram has the gauge current I attached on the left and the gauge pairs
on the right are given for the different diagrams by (I, I), (I, L), (L,L) and (R,R).

In supersymmetric theories, the currents mentioned so far also appear as components
of chiral superfields. For example, the super-stress tensor contains as its θ = 0 component
the superconformal U(1)R symmetry, as its components linear in θ and θ† the SUSY
currents and as its other components the energy-momentum tensor. From this connection,
Anselmi et al. derived the equation (8.10) expressing the central charge a in terms of
the superconformal R-charges. Analogously, flavor currents JµI appear as components of
suitable chiral superfields whose other components contain the Riemann curvature tensor
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and the other flavor currents. In superconformal theories, R-symmetry also appears as
one on these flavor symmetries. Considering only the gauge field of the superconformal
R-(flavor) symmetry AµR and the metric as non-trivial, yields the expression

〈∂µJµI 〉AµR,gµν = Tr(QI)
384π2

(
RR̃+ 8

3FRF̃R
)
, (8.19)

with FR the R-symmetry field strength. Comparing (8.19) with (8.16) for I = L = R

then gives the relation
Tr(QI) = 9Tr(QIRR) , (8.20)

where R now denotes the generator of the R-symmetry U(1)R. The relation (8.20) is
sufficient to infer that the superconformal R-charges make the central charge a stationary.
The reasoning goes as follows. The superconformal R-charge of a theory can be written
as a linear combination of an arbitrarily chosen R-charge R0 and the other non-R flavor
charges as

R = R0 +
∑
I

cIQI . (8.21)

Inserting this into equation (8.10) for the superconformal central charge a and differen-
tiating with respect to cI yields

∂a

∂cI
= 32

3 (9Tr(R2QI)− Tr(QI))
(8.20)= 0 , (8.22)

which shows that superconformal R-charges make a stationary. To see that they even
locally maximize a, the relation

Tr(RQIQL) = −τIL3 , (8.23)

valid for superconformal theories, is needed [17]. Unitarity requires τ to be positive
definite, which means that Tr(RQIQL) is a negative definite matrix. Furthermore, this
means that the second partial derivative matrix

∂2a

∂cI∂cL

(8.10),(8.21)= 27
16Tr(RQIQL) (8.24)

is also negative definite, i.e. has a local maximum at the superconformal R-charges.
With this, a-maximization by superconformal R-charges has been proved.

For a theory flowing from the UV with central charge aUV towards the IR with
central charge aIR, the a-theorem states that [157–159]

aUV > aIR . (8.25)
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To date, all explicitly investigated models turn out to indeed satisfy (8.25), as for
example investigated in [169]. Furthermore, it has been shown that physical theories
satisfy the conformal collider bound [22, 23]

1
2 ≤

a

c
≤ 3

2 , (8.26)

with c given for superconformal field theories by the R-charges

c = 1
32(9TrR3 − 5TrR) . (8.27)



Chapter 9

Model Analysis Beyond
Perturbation Theory

In this chapter, we check whether the 114 AS candidates of tab. 6.5, found in our
search within MSSM extensions of chapter 6, as well as some selected AS candidates
of tab. 7.2, found within the MSSM+ framework of chapter 7, are in agreement with
non-perturbative results of chapter 8. Furthermore, the infinite-order NSVZ beta
functions (5.12) are utilized to check for UV-attractivity of our perturbative UV fixed
points.

More specifically, we numerically locally maximize a of eq. (8.10) for each model
to obtain the superconformal R-charges of chiral superfields for different fixed points.
Hereby, different fixed points yield different constraints to be respected when maximizing
a. These constraints are given by vanishing of the ‘t Hooft anomalies (8.7) for each
interacting gauge coupling, and by the R-charge (8.8) of superpotential terms for
each interacting Yukawa coupling. From the unitarity bounds (8.4), we infer that our
numerically obtained chiral superfield R-charges have to satisfy the bound

R ≥ 1
3 . (9.1)

Furthermore, we demand that the a-theorem (8.25), as well as the conformal collider
bound (8.26) are fulfilled within our models. From the infinite-order NSVZ beta
functions (5.12) and the relation (8.6) between R-charges and anomalous dimension we
obtain infinite order effective B-coefficients

BNSVZ
a,eff = Ba + 4

d(Ga)
∑
i

C
(a)
2 (ri)da(ri)γi , (9.2)

utilized in fixed points with vanishing αa-coupling. Analogously to the perturbative
effective B-coefficients defined in (5.23), a positive BNSVZ

a,eff suggest UV-attractivity in

97
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αa-direction, while a negative BNSVZ
a,eff implies the contrary. We also check the signs of

these infinite order effective B-coefficients within our models.
Finally, we study a new model which demonstrates that discrepancies present between

two-loop and infinite-loop order are lifted when going to three-loop order. Furthermore,
we are able to investigate the evolution of fixed points when model parameters approach
values needed for UV attractivity thereof.

9.1 Perturbative AS MSSM Candidates
We begin with our non-perturbative checks by analyzing the 114 AS candidates of
tab. 6.5, found in our searches for AS MSSM extensions of chapter 6.

In tab. 9.1, we show the models for which we succeed in maximizing a for FP3 such
that the unitarity bound (9.1) is fulfilled for all chiral superfields. We also display a,
c, a/c, B2, BFP3

2,eff and BFP3,NSVZ
2,eff for FP3. The central charge information obtained for

models for which we are able to maximize a in FP23, and for which the unitarity bounds
are fulfilled, are presented in tab. 9.2. In tab. 9.3, we show ∆a for models for which we
succeeded in numerically maximizing a in FP3 and FP23, simultaneously.

We observe that when we can maximize a for FP23, we can also maximize a for FP3,
and in these cases the a-theorem and the conformal collider bounds are always fulfilled.
Surprisingly, we always find BFP3,NSVZ

2,eff to be negative. To not be in conflict with the
a-theorem, there either exists no trajectory connecting FP3 and FP23, or at least one of
the fixed points FP3 and FP23 does not exist in the exact RG flow.
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No. α?FP3
3 a c a/c B2 BFP3

2,eff BFP3,NSVZ
2,eff

1 0.431 3.328 3.905 0.852 -6.000 0.054 -4.262
2 0.431 3.328 3.905 0.852 -6.000 0.054 -4.262
3 0.431 3.328 3.905 0.852 -6.000 0.054 -4.262
4 0.431 3.328 3.905 0.852 -6.000 0.054 -4.262
5 0.431 3.328 3.905 0.852 -6.000 0.054 -4.262
6 0.431 3.328 3.905 0.852 -6.000 0.054 -4.262
7 0.458 3.325 3.897 0.853 -6.000 0.833 -4.143
8 0.458 3.325 3.897 0.853 -6.000 0.833 -4.143
9 0.458 3.325 3.897 0.853 -6.000 0.833 -4.143
10 0.458 3.325 3.897 0.853 -6.000 0.833 -4.143
11 0.458 3.325 3.897 0.853 -6.000 0.833 -4.143
12 0.458 3.325 3.897 0.853 -6.000 0.833 -4.143
13 0.458 3.325 3.897 0.853 -6.000 0.833 -4.143
14 0.473 3.324 3.895 0.853 -6.000 1.252 -4.112
15 0.473 3.324 3.895 0.853 -6.000 1.252 -4.112
16 0.473 3.324 3.895 0.853 -6.000 1.252 -4.112
17 0.473 3.324 3.895 0.853 -6.000 1.252 -4.112
18 0.452 3.322 3.960 0.839 -6.000 0.664 -4.034
19 0.468 3.321 3.958 0.839 -6.000 1.090 -4.015
20 0.468 3.321 3.958 0.839 -6.000 1.090 -4.015
21 0.468 3.321 3.958 0.839 -6.000 1.090 -4.015
22 0.488 3.317 3.948 0.840 -6.000 1.652 -3.859
23 0.488 3.317 3.948 0.840 -6.000 1.652 -3.859
24 0.488 3.317 3.948 0.840 -6.000 1.652 -3.859
25 0.514 3.316 3.945 0.840 -6.000 2.380 -3.814
26 0.514 3.316 3.945 0.840 -6.000 2.380 -3.814
27 0.514 3.316 3.945 0.840 -6.000 2.380 -3.814
28 0.514 3.399 3.973 0.856 -8.000 0.380 -5.814
29 0.514 3.399 3.973 0.856 -8.000 0.380 -5.814
30 0.514 3.399 3.973 0.856 -8.000 0.380 -5.814
31 0.514 3.399 3.973 0.856 -8.000 0.380 -5.814
32 0.514 3.399 3.973 0.856 -8.000 0.380 -5.814
33 0.526 3.315 3.943 0.841 -6.000 2.718 -3.787
34 0.526 3.315 3.943 0.841 -6.000 2.718 -3.787
35 0.526 3.315 3.943 0.841 -6.000 2.718 -3.787
36 0.526 3.398 3.971 0.856 -8.000 0.718 -5.787
37 0.526 3.398 3.971 0.856 -8.000 0.718 -5.787
38 0.526 3.398 3.971 0.856 -8.000 0.718 -5.787
39 0.526 3.398 3.971 0.856 -8.000 0.718 -5.787
40 0.526 3.398 3.971 0.856 -8.000 0.718 -5.787
41 0.528 3.315 3.943 0.841 -6.000 2.773 -3.791
42 0.528 3.315 3.943 0.841 -6.000 2.773 -3.791
43 0.528 3.398 3.971 0.856 -8.000 0.773 -5.791
44 0.528 3.398 3.971 0.856 -8.000 0.773 -5.791
45 0.528 3.398 3.971 0.856 -8.000 0.773 -5.791
46 0.547 3.314 3.941 0.841 -6.000 3.313 -3.756
47 0.547 3.398 3.969 0.856 -8.000 1.313 -5.756
48 0.561 3.314 3.940 0.841 -6.000 3.709 -3.734
49 0.561 3.397 3.967 0.856 -8.000 1.709 -5.734
50 0.561 3.314 3.940 0.841 -6.000 3.709 -3.734
51 0.561 3.314 3.940 0.841 -6.000 3.709 -3.734
52 0.561 3.314 3.940 0.841 -6.000 3.709 -3.734
53 0.561 3.314 3.940 0.841 -6.000 3.709 -3.734
54 0.561 3.397 3.967 0.856 -8.000 1.709 -5.734
55 0.561 3.397 3.967 0.856 -8.000 1.709 -5.734
56 0.561 3.397 3.967 0.856 -8.000 1.709 -5.734
57 0.561 3.397 3.967 0.856 -8.000 1.709 -5.734

No. α?FP3
3 a c a/c B2 BFP3

2,eff BFP3,NSVZ
2,eff

58 0.561 3.397 3.967 0.856 -8.000 1.709 -5.734
59 0.561 3.397 3.967 0.856 -8.000 1.709 -5.734
60 0.591 3.311 3.933 0.842 -6.000 4.545 -3.630
61 0.591 3.311 3.933 0.842 -6.000 4.545 -3.630
62 0.591 3.394 3.960 0.857 -8.000 2.545 -5.630
63 0.591 3.394 3.960 0.857 -8.000 2.545 -5.630
64 0.591 3.394 3.960 0.857 -8.000 2.545 -5.630
65 0.591 3.478 3.988 0.872 -10.000 0.545 -7.630
66 0.591 3.478 3.988 0.872 -10.000 0.545 -7.630
67 0.591 3.478 3.988 0.872 -10.000 0.545 -7.630
68 0.598 3.311 3.932 0.842 -6.000 4.744 -3.624
69 0.598 3.311 3.932 0.842 -6.000 4.744 -3.624
70 0.598 3.394 3.960 0.857 -8.000 2.744 -5.624
71 0.598 3.394 3.960 0.857 -8.000 2.744 -5.624
72 0.598 3.394 3.960 0.857 -8.000 2.744 -5.624
73 0.598 3.478 3.988 0.872 -10.000 0.744 -7.624
74 0.598 3.478 3.988 0.872 -10.000 0.744 -7.624
75 0.598 3.478 3.988 0.872 -10.000 0.744 -7.624
76 0.519 3.396 4.036 0.841 -8.000 0.521 -5.704
77 0.533 3.392 4.027 0.842 -8.000 0.926 -5.581
78 0.594 3.390 4.021 0.843 -8.000 2.645 -5.487
79 0.594 3.473 4.048 0.858 -10.000 0.645 -7.487
80 0.652 3.388 4.015 0.844 -8.000 4.265 -5.405
81 0.652 3.388 4.015 0.844 -8.000 4.265 -5.405
82 0.652 3.471 4.043 0.859 -10.000 2.265 -7.405
83 0.652 3.471 4.043 0.859 -10.000 2.265 -7.405
84 0.652 3.554 4.071 0.873 -12.000 0.265 -9.405
85 0.652 3.554 4.071 0.873 -12.000 0.265 -9.405
86 0.655 3.384 4.006 0.845 -8.000 4.350 -5.273
87 0.655 3.467 4.034 0.860 -10.000 2.350 -7.273
88 0.655 3.551 4.062 0.874 -12.000 0.350 -9.273
89 0.680 3.385 4.009 0.844 -8.000 5.038 -5.315
90 0.680 3.469 4.037 0.859 -10.000 3.038 -7.315
91 0.680 3.552 4.065 0.874 -12.000 1.038 -9.315
92 0.705 3.383 4.003 0.845 -8.000 5.746 -5.227
93 0.705 3.466 4.031 0.860 -10.000 3.746 -7.227
94 0.705 3.550 4.059 0.875 -12.000 1.746 -9.227
95 0.722 3.384 4.006 0.845 -8.000 6.215 -5.269
96 0.722 3.468 4.034 0.860 -10.000 4.215 -7.269
97 0.722 3.551 4.062 0.874 -12.000 2.215 -9.269
98 0.722 3.634 4.090 0.889 -14.000 0.215 -11.269
99 0.738 3.382 4.001 0.845 -8.000 6.671 -5.195
100 0.738 3.466 4.029 0.860 -10.000 4.671 -7.195
101 0.738 3.549 4.057 0.875 -12.000 2.671 -9.195
102 0.738 3.632 4.084 0.889 -14.000 0.671 -11.195
103 0.738 3.382 4.001 0.845 -8.000 6.671 -5.195
104 0.738 3.466 4.029 0.860 -10.000 4.671 -7.195
105 0.738 3.549 4.057 0.875 -12.000 2.671 -9.195
106 0.738 3.632 4.084 0.889 -14.000 0.671 -11.195
107 0.750 3.382 4.000 0.845 -8.000 7.000 -5.175
108 0.750 3.465 4.028 0.860 -10.000 5.000 -7.175
109 0.750 3.549 4.055 0.875 -12.000 3.000 -9.175
110 0.750 3.632 4.083 0.889 -14.000 1.000 -11.175
111 0.767 3.382 3.999 0.846 -8.000 7.489 -5.167
112 0.767 3.465 4.027 0.860 -10.000 5.489 -7.167
113 0.767 3.548 4.055 0.875 -12.000 3.489 -9.167
114 0.767 3.632 4.083 0.890 -14.000 1.489 -11.167

Table 9.1: The model numbers (No.) as stated in tab. 6.5 for which we succeeded in numerically maximizing a of
eq. (8.10) in the UV fixed point FP3 (see tab. 6.1). We present its perturbative α3 value, as well as c of eq. (8.27) and a/c,
which needs to satisfy the conformal collider bound (8.26). Furthermore, the one-loop coefficient B2 of eq. (5.6a), the
effective loop-coefficient BFP3

2,eff of eq. (5.23), and the exact effective coefficient BFP3,NSVZ
2,eff of eq. (9.24) for each of these

models are shown. We see that the conformal collider bound is always fulfilled and that the exact effective coefficients
are negative, in contrast to the corresponding loop coefficients, implying that AS is lost at infinite-loop order.
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No. a c a/c

2 3.124 2.949 1.059
3 3.124 2.949 1.059
6 3.124 2.949 1.059
9 3.121 2.951 1.058
10 3.121 2.951 1.058
11 3.121 2.951 1.058
12 3.121 2.951 1.058
13 3.121 2.950 1.058
15 3.121 2.951 1.058
16 3.121 2.951 1.058
28 3.134 2.948 1.063
29 3.134 2.948 1.063
30 3.133 2.948 1.063
31 3.134 2.948 1.063
32 3.134 2.948 1.063
38 3.134 2.949 1.063
39 3.133 2.948 1.063
40 3.134 2.949 1.063
43 3.134 2.948 1.063
44 3.135 2.949 1.063
45 3.134 2.948 1.063
47 3.134 2.949 1.063
49 3.136 2.950 1.063
57 3.135 2.950 1.063
58 3.135 2.950 1.063
59 3.135 2.950 1.063
62 3.138 2.952 1.063
63 3.139 2.951 1.063
64 3.138 2.952 1.063
65 3.153 2.911 1.083
66 3.153 2.911 1.083
67 3.153 2.911 1.083
70 3.138 2.953 1.063
71 3.138 2.952 1.063
72 3.138 2.953 1.063
73 3.153 2.912 1.083

No. a c a/c

74 3.153 2.912 1.083
75 3.153 2.912 1.083
77 3.090 2.928 1.055
78 3.086 2.927 1.055
79 3.153 2.950 1.069
81 3.083 2.926 1.054
85 3.153 2.914 1.082
86 3.072 2.925 1.050
87 3.164 2.951 1.072
88 3.152 2.915 1.081
89 3.078 2.925 1.052
90 3.159 2.950 1.071
91 3.152 2.915 1.081
92 3.071 2.924 1.050
93 3.165 2.951 1.073
94 3.152 2.916 1.081
95 3.075 2.924 1.052
96 3.162 2.952 1.071
97 3.152 2.915 1.081
98 3.144 2.921 1.076
99 3.069 2.924 1.050
100 3.169 2.953 1.073
101 3.152 2.916 1.081
102 3.144 2.921 1.076
103 3.069 2.924 1.050
104 3.166 2.953 1.072
105 3.152 2.916 1.081
106 3.144 2.921 1.076
107 3.068 2.923 1.049
108 3.169 2.954 1.073
109 3.152 2.916 1.081
110 3.144 2.921 1.076
111 3.068 2.923 1.050
112 3.170 2.953 1.074
113 3.152 2.916 1.081
114 3.144 2.921 1.076

Table 9.2: The model numbers (No.) as in tab. 6.5, for which we succeeded in maximizing
a of eq. (8.10) in FP23 (see tab. 6.1). The conformal collider bound (8.26) again is always
fulfilled.
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No. ∆a
2 0.204
3 0.204
6 0.204
9 0.204
10 0.204
11 0.204
12 0.204
13 0.204
15 0.204
16 0.204
28 0.265
29 0.265
30 0.266
31 0.265
32 0.265
38 0.264
39 0.265
40 0.264

No. ∆a
43 0.265
44 0.264
45 0.265
47 0.263
49 0.262
57 0.262
58 0.262
59 0.262
62 0.256
63 0.256
64 0.256
65 0.325
66 0.325
67 0.325
70 0.256
71 0.256
72 0.256
73 0.325

No. ∆a
74 0.325
75 0.325
77 0.302
78 0.303
79 0.320
81 0.304
85 0.402
86 0.312
87 0.303
88 0.398
89 0.308
90 0.309
91 0.400
92 0.312
93 0.301
94 0.397
95 0.309
96 0.305

No. ∆a
97 0.399
98 0.490
99 0.313
100 0.297
101 0.397
102 0.488
103 0.313
104 0.299
105 0.397
106 0.488
107 0.314
108 0.296
109 0.396
110 0.488
111 0.314
112 0.294
113 0.396
114 0.488

Table 9.3: The model numbers (No.) as in tab. 6.5 for which we succeed in numerically
maximizing a in FP3 and FP23 (see tab. 6.1) simultaneously. The positivity of ∆a = aUV−aIR
is in agreement with the a-theorem (8.25) for FP3 being reached in the UV and with FP23
being IR attractive.
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9.2 Perturbative AS MSSM+ Candidates
Next, we perform our non-perturbative checks for the 398 AS candidates found for
Y = 0.15, stated in tab. 7.2.

We are able to numerically determine the exact R-charges in FP+ for all of these
398 AS candidates. The unitarity bound (9.1) is satisfied by all chiral superfields for all
AS candidates. Also, all obtained fractions of central charges a/c are in agreement with
the conformal collider bound (8.26). Furthermore, we check for the values of the exact
effective coefficients

B
FP+,NSVZ
2,eff = B2 + 4

3TrγC
R2
2 ,

B
FP+,NSVZ
3,eff = B3 + 4

3TrγC
R2
2 ,

(9.3)

and find that both of these coefficients are negative for all models, contrary to the
corresponding loop results.

Explicitly, for our three benchmarks BM1, BM2 and BM3 of sections 7.2.1, 7.2.2
and 7.2.3 we find

BM1: a
c
≈ 0.84 , BFP+,exact

2,eff ≈ −29.6 , BFP+,exact
1,eff ≈ −270.3 ,

BM2: a
c
≈ 0.84 , BFP+,exact

2,eff ≈ −31.5 , BFP+,exact
1,eff ≈ −287.9 ,

BM3 (Y = 0.5): a
c
≈ 0.80 , BFP+,exact

2,eff ≈ −56.5 , BFP+,exact
1,eff ≈ −76.5 ,

BM3 (Y = 1.5): a
c
≈ 0.80 , BFP+,exact

2,eff ≈ −56.5 , BFP+,exact
1,eff ≈ −512.9 .

(9.4)

Hence the three benchmark models are consistent with non-perturbative results and
may exist beyond perturbation theory. As for the perturbative candidates of the MSSM
extensions in chapter 6, the NSVZ beta functions (5.12) suggest that asymptotic safety
is lost at infinite-loop order for the AS candidates within the MSSM+ framework of
chapter 7.

9.3 MSSM Extensions with an Additional semi-simple
Gauge Group SU(N)×SU(M) without Superpo-
tentials

So far, all models found to be asymptotically safe within perturbation theory in chapter 6
and chapter 7 turned out to be in agreement with the exact relations from SCFTs
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presented in chapter 8, but lose asymptotic safety according to the infinite-order NSVZ
beta functions (5.12), as seen in the previous sections 9.1 and 9.2.

In this section, we present a model which extends the MSSM by two additional
gauge sectors SU(N) and SU(M) and some chiral superfields. This model contains no
superpotential. Exact SCFT relations and the NSVZ beta functions then suggest that
we find a fixed point which UV completes the SM. The infinite order NSVZ beta function
breaks down for large coupling values due to the pole induced by the denominator, and
we have to check whether we are on the physical side of this pole. For this, we compare
exact and infinite order expressions with two-loop and three-loop order results.

This new model has the gauge group

G = SU(N)⊗ SU(M)⊗ SU(3)C ⊗ SU(2)L ⊗ U(1)Y , (9.5)

with gauge couplings gN , gM , g3, g2, g1. The chiral superfield content of our gauge
anomaly-free model is given by the MSSM chiral superfield content plus two chiral super-
fields χ, χ and n pairs of superfields Ψ,Ψ beyond the MSSM, which have representations
as shown in tab. 9.4.

(Left-handed) Superfield SU(N) SU(M) SU(3)C SU(2)L U(1)Y Multiplicity R-charge
quark doublet Q 1 1 3 2 +1

6 3 RQ

up-quark u 1 1 3 1 −2
3 3 Ru

down-quark d 1 1 3 1 +1
3 3 Rd

lepton doublet L 1 1 1 2 −1
2 3 RL

lepton singlet e 1 1 1 1 +1 3 Re

up-Higgs Hu 1 1 1 2 +1
2 1 RHu

down-Higgs Hd 1 1 1 2 −1
2 1 RHd

χ N 1 1 2 +Y nχ Rχ

χ N 1 1 2 −Y nχ Rχ

Ψ N M 1 1 0 nΨ RΨ

Ψ N M 1 1 0 nΨ RΨ

Table 9.4: MSSM chiral superfields and chiral superfields beyond the MSSM of our MSSM
extension with two additional gauge sectors. Fixed point FMNM (see tab. (9.5)) develops UV-
attractivity in the direction of the SM couplings g2 and g1 for M > N and large |Y |, according
to the infinite-loop NSVZ beta functions (5.12) (see eqs. (9.8) and (9.9)). UV-attractivity in
the direction of g3 is automatic.

The parameters of our model are

(N,M, nχ, nΨ, Y ) . (9.6)
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We have no superpotential in our model and only gauge interactions. We work with the
new gauge couplings

αN = g2
NN

(4π)2 , αM = g2
MM

(4π)2 , αi = g2
i

(4π)2 , i = 3, 2, 1 . (9.7)

Of special interest for this study are the three interacting fixed points FPM , FPN and
FPNM , described in tab. 9.5 together with the gaussian fixed point G.

9.3.1 Exact UV-attractivity and unitarity

Fixed point α?N α?M α?3 α?2 α?1 Rχ RΨ RMSSM

G 0 0 0 0 0 2/3 2/3 2/3
FPN X 0 0 0 0 1− N

2nχ+2M 1− N
2nχ+2M 2/3

FPM 0 X 0 0 0 2/3 1− M
NnΨ

2/3
FPNM X X 0 0 0 1 + M2−N2

2Nnχ 1− M
NnΨ

2/3

Table 9.5: The three fixed points of special interest for this study, and the gaussian fixed
point G. An “X” implies that the corresponding coupling is interacting in the fixed point.
MSSM fields are free in these fixed points and their R-charges of tab. 9.4 take on the free field
value 2/3, i.e. RMSSM = RQ = Ru = Rd = RL = Re = RHu = RHd = 2/3.

From the vanishing ‘t Hooft anomalies (8.7), we obtain the R-charges shown in
tab. 9.5. In FPNM , we find for the effective NSVZ B-coefficients (9.24):

BFPNM ,NSVZ
3,eff = 6 ,

BFPNM ,NSVZ
2,eff = −2 + 3

(
M2 −N2

)
,

BFPNM ,NSVZ
1,eff = −22 + 12Y 2

(
M2 −N2

)
.

(9.8)

We see that for
M > N and |Y | >

√
11

6(M2 −N2) , (9.9)

we always achieve positive infinite order effective B-coefficients, implying that FPNM
serves as a fixed point reached in the UV when starting on the SM trajectory, assuming
that FPNM exists.

In tab. 9.5, we see that for the conditions (9.9), all R-charges except for RΨ auto-
matically satisfy the unitarity bound (9.1). In order for RΨ to be in agreement with
unitarity, we furthermore need

nΨ ≥
3M
2N . (9.10)
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9.3.2 Large-N two-loop analysis
At 2-loop, the system of beta functions relevant for fixed points FPN , FPM and FPNM
reads

βN = α2
N [−BN + CNNαN + CNMαM ] ,

βM = α2
M [−BM + CMMαM + CMNαN ] .

(9.11)

We perform the large-N Veneziano limit

N , M , nχ →∞ , (9.12)

with the ratios
r ≡ M

N
> 0 , X ≡ nχ

N
> 0 (9.13)

being held constant. In this limit, r and X become real numbers. From (9.9) we see
that for r > 1, the SM can be UV completed with FPNM being reached in the UV. The
beta coefficients in (9.11) read in this limit (9.12)

BN = 6− 4X − 2nΨr , BM = 6− 2nΨ
r
,

CNN = −12 + 4(4X + 2nΨr) , CNM = 4nΨr ,

CMM = −12 + 8nΨ
r
, CMN = 4nΨ

r
.

(9.14)

Due to the general relations [113]

BN ≤ 0⇒ CNN > 0 , BM ≤ 0⇒ CMM > 0 , (9.15)

and since CNM , CMN > 0 (see eq. (5.6c)), we infer from the beta function system (9.11)
that in order for FPNM to possibly exist within perturbation theory, we need

BN > 0 , BM > 0 , (9.16)

which can be translated into the conditions

nΨ <
3− 2X

r
, nΨ < 3r . (9.17)

The second condition is automatically fulfilled for r > 1 when the first condition is
satisfied. Together with (9.10), we find

3
2r < nΨ <

3− 2X
r

, (9.18)

which for r > 1 can only be fulfilled for integer values of nΨ by

nΨ = 2 , (9.19)



106 CHAPTER 9. MODEL ANALYSIS BEYOND PERTURBATION THEORY

and only for

X <
1
2 , r ∈

(
1, 3

2 −X
)
. (9.20)

Eqs. (9.19) and (9.20) constitute all conditions for which R-charges are unitary, FPNM
is UV-attractive in the direction of MSSM couplings, and for which FPNM possibly
exists at two-loop order.

The non-vanishing couplings within the interacting fixed points of tab. 9.5 are given
at two-loop order by

α?FPNN = BN

CNN
,

α?FPMM = BM

CMM

,

α?FPNMN = BNCMM −BMCNM
CNNCMM − CNMCMN

, α?FPNMM = BMCNN −BNCMN

CNNCMM − CNMCMN

.

(9.21)

When the interacting fixed points (9.21) vanish, the corresponding R-charges of tab. 9.5
acquire the free field value R = 2/3. To see this, we at first express the R-charges by
means of r and X ( and with nΨ = 2 as in (9.19)) as

RFPN
χ = RFPN

Ψ = 1− 1
2(X + r) ,

RFPM
Ψ = 1− r

2 ,

RFPNM
χ = 1 + r2 − 1

2X , RFPM
Ψ = 1− r

2 .

(9.22)

In perturbation theory, FPN vanishes for 2(X + r) = 3, yielding the free field value
RFPN
χ = RFPN

Ψ = 2/3. Fixed point FPM becomes gaussian for r = 2/3, corresponding to
RFPM

Ψ = 2/3. Vanishing of both, α?FPNMN and α?FPNMM , can be shown to be equivalent
to r = 2/3, X = 5/6, for which we again obtain RFPNM

χ = RFPM
Ψ = 2/3. Hence, the

formulae for perturbative fixed point values (9.21) and for R-charges (9.22) agree when
interacting fixed points approach the gaussian fixed point.

Furthermore, we find parameters X, r within (9.20), for which FPNM indeed exists
at two-loop order. In fig. 9.1, we show for X = 0.01 the r-dependency of αN and αM of
FPNM . There we see that for r ∈ {1, 1.076}, FPNM is physical in a regime for which
non-perturbative and infinite order results suggest that the SM can be UV completed
by FPNM .



9.3. MSSM EXTENSIONS WITH AN ADDITIONAL SEMI-SIMPLE GROUP 107

Nevertheless, we find discrepancies between two-loop and exact RG flows. The
effective B-coefficients at two-loop order are

BFPN ,2-loop
M,eff = BM − CMNα

?FPN
N ,

BFPM ,2-loop
N,eff = BN − CNMα?FPMM ,

(9.23)

and corresponding infinite-order B-coefficients obtained from the NSVZ beta func-
tions (5.12) are

BFPN ,NSVZ
M,eff = BM + 12

r

(
RFPN

Ψ − 2
3

)
,

BFPM ,NSVZ
N,eff = BN + 12r

(
RFPM

Ψ − 2
3

)
.

(9.24)

We find within (9.20) that, as soon as FPNM exists perturbatively, also the fixed points
FPN and FPM exist, with the loop coefficients BFPN ,2-loop

M,eff and BFPN ,2-loop
M,eff both being

negative. On the other hand, the NSVZ coefficients can be shown to have the signs

BFPN ,NSVZ
M,eff > 0 , BFPM ,NSVZ

N,eff < 0 (9.25)

for r > 1. Hence we find a disagreement between two-loop and infinite order perturbation
theory. Caveats remain from our 2-loop analysis whether FPNM remains physical at
infinite-loop level.

Furthermore, we find for the a-charges (8.10) of the benchmark in fig. 9.1 with
X = 0.01 and r > 1 that

aG > aN > aM > aNM . (9.26)

The a-theorem (8.25) suggests that RG flows from G to FPN to FPNM , from G to FPM
to FPM to FPNM , and from G to FPNM are possible. We see that the 2-loop RG-flow
of our benchmark (see fig. 9.2) is in conflict with the a-theorem.
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1.076

Figure 9.1: The two-loop couplings αN and αM of FPNM (see tab. 9.5) in dependency of r
for X = 0.01. For the definitions of r and X, see (9.13). We see that within (9.20), we find
a regime (highlighted in green) for which FPNM becomes physical. In this regime, FPNM
becomes UV-attractive in the directions of MSSM couplings, suggesting that it can be reached
when starting on the SM trajectory, and hence UV-completing the SM.
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Figure 9.2: Two-loop RG flow for X = 0.01 and r = 1.05, as defined in eq. (9.13). Here,
FPN (orange), FPM (green) and FPNM (red) are physical. For more information on these
fixed points, see tab. 9.5. Since r > 1, FPNM would be UV-attractive in the directions of the
MSSM couplings (see eq. (9.8)) if it still exists at infinite-loop order.
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9.3.3 Large-N three-loop analysis
At three-loop level, the beta functions for interacting αN and αM read

βN = α2
N [−BN + CNNαN + CNMαM +KNNNα

2
N +KNMMα

2
M +KNNMαNαM ] ,

βM = α2
M [−BM + CMMαM + CMNαN +KMMMα

2
M +KMNNα

2
N +KMNMαNαM ] ,

(9.27)

with the loop coefficients in the Veneziano limit (9.12) given by (9.14) and

KNNN = 24− 4n2
Ψr

2 + 48X − 16X2 − 16XnΨr + 20nΨr ,

KNMM = −4nΨ(nΨ − 2r) , KNNM = 4nΨr ,

KMMM = −24 + 16nΨ

r
+ 4nΨ

r2 (2− nΨ) ,

KMNN = 4nΨ

(
2
r
− nΨ

)
, KMMN = 4nΨ

r
.

(9.28)

For the benchmark
X = 0.01 , r = 1.05 , (9.29)

we find the RG flow shown in fig. 9.3 with

BFPN ,3-loop
M,eff > 0 , BFPM ,3-loop

N,eff < 0 , (9.30)

in agreement with the exact NSVZ B-coefficient signs of eq. (9.25). Furthermore, the RG
flow at three-loop order of fig. 9.3 is in agreement with the a-theorem (8.25) for a-charges
as in eq. (9.26). This suggests that the exact RG flow is sufficiently approximated at
three-loop order. We find that FPNM is not physical at this loop order, in contrast to
the two-loop result of the previous section (see fig. 9.1).

We now try to understand how FPNM becomes unphysical at three-loop order when
starting at parameters for which r < 1 so that FPNM is not UV-attractive in the
directions of all MSSM couplings and then going to parameters for which r > 1. We
also check whether the 3-loop approximation is consistent with the infinite-loop order
picture.

We introduce the new parameters

ε ≡ BN ≥ 0 , εP ≡ BM ≥ 0 , (9.31)

where ε and P have to be positive in order for FPNM to possibly exist. The new
parameters and the ratios r and X of (9.13) are related via

r = 2nΨ

6− Pε , X = (6− ε)(6− Pε)− 4n2
Ψ

24− 4Pε . (9.32)
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Figure 9.3: Three-loop RG flow for the benchmark with X = 0.1, r = 1.05 (see (9.13)),
analogous to the two-loop picture in fig. 9.1. As in the two-loop case, FPN and FPM (see
tab. 9.5) are here physical. However, FPNM is unphysical at three-loop order, contrary to the
findings at two-loop level. The signs of BFPN ,3-loop

M,eff > 0 and BFPM ,3-loop
N,eff < 0 are in agreement

with the corresponding infinite-order coefficients (9.25). This suggests that the three-loop RG
flow sufficiently approximates the infinite-order RG flow and that FPNM is not physical for
our benchmark model.
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From the positivity of r and X, we find from (9.32) that

nΨ = 1, 2 . (9.33)

In tab. 9.6, we set nΨ = 1 and start at ε = 0.5 and P = 2, for which r = 0.4
and X = 1.18. The hierarchy of a-charges is compatible with the a-theorem and the
three-loop RG-flow. The signs of the effective B coefficients agree at three-loop and
at infinite-loop order. Hence we conclude that the three-loop RG flow sufficiently
approximates the exact RG flow. Since FPNM is physical at three-loop order (see
fig. 9.4a), we suspect that it is also physical at infinite-loop order. When increasing ε
and P , FPNM wanders towards FPM (see fig. 9.4b), until it evolves negative αN values
above P ' 2.3 at three-loop order (see fig. 9.4c). The sign-discrepancy of BN,effFPM

at three-loop and at infinite-loop suggests that at infinite-order, FPNM might still be
physical. At P = 2.5, the sign discrepancy vanishes and three-loop and infinite-loop
results agree again. Hence we conclude that for nΨ = 1 and ε = 1.2, P ' 2.5, for
which we have r ≈ 2/3, FPNM becomes unphysical at infinite-loop order. Note that
this is incidentally the same bound (9.10) coming from unitarity. Keeping P = 2.2 and
increasing ε beyond 1.2 yields that FPNM becomes complex for ε = 1.3 at three-loop
order (see fig. 9.4d). The sign discrepancy in BN,effFPM again suggests that at infinite-loop
order, FPNM might still be physical. For ε = 1.4 the sign discrepancy vanishes again,
suggesting that now also at infinite-loop order FPNM became complex.

In tab. 9.7, an analogous behavior is found for nΨ = 2. Here, we are able to achieve
r = 0.81 for ε = 0.7 and P = 1.6, before FPNM becomes unphysical at three-loop and
infinite-loop order.

We conclude that the exact RG flow is sufficiently approximated at three-loop order
and that FPNM becomes unphysical before it can UV complete the SM.
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(a) ε = 0.5, P = 2 ↔ r = 0.4, X = 1.18.
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(b) ε = 1.2, P = 2.2 ↔ r = 0.6, X = 0.9.
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(c) ε = 1.2, P = 2.3 ↔ r = 0.61, X = 0.89.
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(d) ε = 1.3, P = 2.2 ↔ r = 0.63, X = 0.85.

Figure 9.4: Three-loop RG flows for nΨ = 1 (see tab. 9.4) and for different parameters ε and
P , defined in eq. (9.31). The shown plots correspond to the parameters listed in tab. 9.6. The
red circles indicate the couplings at which FPNM is identified from the RG flow lines. (a)
FPNM is physical. (b) We observe that FPNM approaches FPM . (c) Here, FPNM crossed
FPM (green) and developed negative αN components, making it unphysical. For a slightly
larger P = 2.5 (see fourth row in tab. 9.6, the three-loop RG flow stays almost identical. (d)
The fully interacting FPNM does not appear anymore at three-loop, implying that it developed
complex couplings. For ε = 1.38 (sixth row of tab. 9.6), the three-loop RG flow is (almost) the
same.
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ε P r X a BFPN ,3-loop
M,eff BFPN ,NSVZ

M,eff BFPM ,3-loop
N,eff BFPM ,NSVZ

N,eff RG FP3-loop
NM FPNSVZ

NM

0.5 2 0.4 1.18 aG>aN>aM>aNM > 0 > 0 > 0 > 0 9.4a phys phys
1.2 2.2 0.6 0.9 aG>aN>aM>aNM > 0 > 0 > 0 > 0 9.4b phys phys
1.2 2.3 0.61 0.89 aG>aN>aM>aNM > 0 > 0 < 0 > 0 9.4c unphys phys
1.2 2.5 0.66 0.87 aG>aN>aM>aNM > 0 > 0 < 0 < 0 9.4c unphys unphys
1.3 2.2 0.63 0.85 aG>aN>aM>aNM > 0 > 0 < 0 > 0 9.4d unphys phys
1.38 2.2 0.67 0.82 aG>aN>aM>aNM > 0 > 0 < 0 < 0 9.4d unphys unphys

Table 9.6: Benchmarks with nΨ = 1, specified by the parameters ε and P defined in eq. (9.31).
For each benchmark, r and X from (9.32) are stated, as well as the hierarchy of exact a-charges.
Furthermore, the signs of the effective 3-loop and infinite-loop (NSVZ) B coefficients in FPN
and FPM are stated. In the column “RG”, the figure number to the corresponding RG flow is
provided. Furthermore, we specify whether we find that FPNM is physical or unphysical at
three-loop level and use the signs of the effective B-coefficients to infer information on the
physicality of FPNM at infinite-loop order. We see that we reach at most r ∼ 0.66 before
FPNM becomes unphysical. To have FPNM UV attractive in the direction of the MSSM
couplings, r > 1 is needed.

ε P r X a BFPN ,3-loop
M,eff BFPN ,NSVZ

M,eff BFPM ,3-loop
N,eff BFPM ,NSVZ

N,eff RG FP3-loop
NM FPNSVZ

NM

0.1 1.5 0.68 0.79 aG>aN>aM>aNM > 0 > 0 > 0 > 0 9.5a phys phys
0.7 1.5 0.81 0.52 aG>aN>aM>aNM > 0 > 0 > 0 > 0 9.5b phys phys
0.7 1.6 0.82 0.51 aG>aN>aM>aNM > 0 > 0 < 0 < 0 9.5c unphys unphys
0.8 1.5 0.83 0.47 aG>aN>aM>aNM > 0 > 0 < 0 < 0 9.5d unphys unphys

Table 9.7: An analogous table to tab. 9.6 for nΨ = 2. Qualitatively, we observe the same
behavior as for nΨ = 1, with the difference being that we achieve r ∼ 0.81 before FPNM
becomes unphysical which is still not sufficient to make FPNM UV attractive in the directions
of the MSSM couplings for which r > 1 is needed.



9.3. MSSM EXTENSIONS WITH AN ADDITIONAL SEMI-SIMPLE GROUP 115

0.000 0.002 0.004 0.006 0.008 0.010

N

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

M

FPNG

FPM

FPNM

(a) ε = 0.1, P = 1.5 ↔ r = 0.68, X = 79.

0.00 0.02 0.04 0.06
N

0.00

0.05

0.10

0.15

M

G

FPM

FPN

FPNM
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Figure 9.5: RG flows at three-loop level for nΨ = 2 and for different parameters ε and P .
The shown plots correspond to the parameters listed in tab. 9.7. The red circles indicate the
couplings at which FPNM is identified from the RG flow lines. Three-loop and infinite-order
results are in agreement for all four cases. (a) FPNM is physical. (b) We observe that FPNM
comes closer to FPM . (c) Here, FPNM crossed FPM and evolved negative αN couplings,
making FPNM unphysical. (d) FPNM again evolved negative αM couplings.
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9.4 Summary of our Non-Perturbative Investigations

For our investigations beyond perturbation theory we utilized exact results coming from
superconformal field theories, provided in chapter 8, as well as the infinite order NSVZ
beta functions (5.12).

With these relations at hand, we checked the perturbative AS candidates of the
MSSM extensions in chapter 6 and within the MSSM+ framework of chapter 7. We
obtained the exact R-charges of chiral superfields in fixed points by maximizing the
central charge a (8.10) which all had to fulfill the unitarity bound R ≥ 1/3 (9.1) as well
as the conformal collider bound 1/2 ≤ a/c ≤ 3/2 (8.26). Furthermore, the RG flow
between two fixed points had to fulfill the a-theorem aUV > aIR (8.25). We found that
the perturbative AS candidates are consistent with these exact SCFT results.

The effective NSVZ coefficients (9.24) turned out to be all negative for the perturba-
tive UV fixed points of the candidate models, implying that AS is lost at infinite-loop
order (see secs. 9.1 and 9.2). We conclude that there are major discrepancies between
the exact RG flow and its 2-1-approximation.

In sec. 9.3, we presented an MSSM extension with the two additional gauge sectors,
so that its gauge group is (9.5):

G = SU(N)⊗ SU(M)⊗ SU(3)C ⊗ SU(2)L ⊗ U(1)Y . (9.34)

The chiral superfield content of this model is shown in tab. 9.4.
At two-loop level, we found in sec. 9.3.2 that the fixed point FPNM (see tab. 9.5)

exists for model parameters for which it becomes UV attractive in the direction of the
MSSM couplings α1, α2, α3 according to the infinite order NSVZ beta functions. In
fig. 9.1, a subset of this parameter window is given by the green area. Nevertheless, the
two-loop picture again is in conflict with exact results since the two-loop and infinite-loop
effective B-coefficients (9.23) and (9.24) have different signs and the two-loop RG flow
shown in fig. 9.2 is in conflict with the a-theorem (8.25) and the superconformal a-charge
hierarchy (9.26).

Going to three-loop order in sec. 9.3.3, we find RG flows which are in good agreement
with the superconformal relations. We conclude that the three-loop RG flow sufficiently
approximates the exact RG flow. Furthermore, we studied the evolution of FPNM
along parameters which approach a regime in which FPNM becomes UV attractive
in the direction of the MSSM couplings (see tabs. 9.6, (9.7) and the corresponding
plots 9.4, 9.5). We find that FPNM becomes unphysical before it UV-completes the SM.
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Our non-perturbative investigations suggest that asymptotically safe MSSM exten-
sions could be found within perturbation theory when working at three-loop gauge level.
Yukawa beta functions should then be approximated at two-loop level.



Chapter 10

Conclusions

Outside of its original application in quantized general relativity [12, 79–81, 86], asymp-
totic safety lately developed into a practical model building tool for non-gravitational,
realistic theories which complete the standard model in the UV [61, 62]. The SM itself is
not fundamental due to the U(1)Y Landau pole. Another application of asymptotic safety
was found in the natural explanation of the measured anomalous magnetic moments of
muons and electrons [115, 116].

Recent theoretical advances yield theorems for weakly interacting gauge theories [113].
Sample models for which asymptotic safety could be established to all orders of pertur-
bation theory, with and without supersymmetry, were constructed [63–65]. In the latter
case of supersymmetry, asymptotic safety becomes very restrictive [117].

In this thesis, supersymmetric renormalizable extensions of the MSSM were inves-
tigated with the goal of finding supersymmetric SM UV completions via asymptotic
safety. Within perturbation theory, we found strong limitations on the number of
colored chiral superfields beyond the MSSM for which interacting UV fixed points may
exist at two-loop gauge and one-loop Yukawa level (see chapter 6). Explicitly, the
amount of additional quark singlet chiral superfields beyond the MSSM may at most
be four. In exhaustive searches within sections 6.3, 6.4 and 6.5, we were able to find
asymptotically safe supersymmetric SM extensions, all of which turned out to contain
exactly two quark singlets beyond the MSSM. In the discussions of sec. 6.6 on these
AS candidates, R-parity violation and low-scale supersymmetry breaking are found.
In our approximations, supersymmetry-breaking occurs at energy scales O(1 GeV) in
conflict with phenomenology [43], and the hypercharge coupling vanishes on UV-safe
trajectories. Higher loop-orders or gravitational corrections might change this picture to
enable matching onto SM at phenomenologically viable matching scales.

Extending the MSSM gauge group by a new SU(N) gauge sector offered new UV fixed
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points for which matching onto SM at larger energies became possible (chapter 7). Within
a model framework which we call “MSSM+” (see sec. 7.1), we explicitly demonstrated
this matching onto the SM for energies above 1 TeV for three benchmark scenarios BM1,
BM2 and BM3 in sections 7.2.1, 7.2.2 and 7.2.3, respectively. Furthermore, we were
able to successfully incorporate gauge-mediated supersymmetry-breaking (see sec. 4.2.3)
into the MSSM+ such that UV-completion of the SM stayed intact, as demonstrated in
sec. 7.3. We found an upper limit on the mass of superpartners around

µMSSM ∼ 1013 GeV .

Beyond this bound, messenger mass parameters become imaginary signaling a quantum
phase transition due to spontaneous symmetry breaking (see fig. 7.8).

As in our non-supersymmetric dark QCD model, presented in chapter 3, new dark
matter candidates within the MSSM+ appear as bound states of particles charged only
under the new SU(N) gauge sector. The masses of these bound states are comparable
to the confining scale µconf at which the SU(N) gauge coupling α+ diverges in the IR.
For BM2, we see in figs. 7.6 and 7.7 that this confining scale is close to the mass of the
SM superpartners,

µconf ∼ µMSSM .

Mass bounds on the MSSM+ particles and missing energy signals at colliders were
presented in sec. 7.4.

In studies going beyond perturbation theory, results from superconformal field
theories were presented in chapter 8 and utilized in chapter 9 to check the AS candidates
found within perturbation theory for non-perturbative consistency. For these models,
superconformal R-charges are in agreement with the unitarity bound R ≥ 1/3 (9.1),
and the a-theorem (8.25) as well as the conformal collider bound (8.26) were satisfied.
However, the infinite-order NSVZ beta functions (5.12) suggest that asymptotic safety
is lost beyond perturbation theory (secs. 9.1 and 9.2).

For the model of sec. 9.3 which involves two additional gauge sectors SU(N) and
SU(M), we were able to study the evolution of fixed points for different model parameters.
Approaching parameters for which FPNM (see tab. 9.5) serves as a fixed point which
UV-completes the SM, we find at three-loop order in sec. 9.3.3 that this fixed point
becomes unphysical before the SM can be UV-completed in this way (see tab. 9.6, 9.7
and the corresponding plots 9.4, 9.5). At this loop order, we find good agreement with
the a-theorem (8.25), as well as with the signs of the effective NSVZ B-coefficients (9.24).
We conclude that the three-loop RG flow sufficiently approximated the exact RG flow
and that our model does not UV-complete the SM since FPNM becomes unphysical
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before this UV-completion is possible. In the two-loop studies of sec. 9.3.2, we find
discrepancies with the exact relations. This matches our finding that candidate models
with UV fixed points in the 2-1-approximation are no longer asymptotically safe beyond
perturbation theory.

This thesis lays the foundation for further work on supersymmetric UV-completions
of the Standard Model via asymptotic safety. Especially the three-loop investigations
motivate further searches at three-loop gauge and two-loop Yukawa level for such UV-
completions, analogous to our investigations in the 2-1-approximation. At two-loop
gauge and one-loop Yukawa level, this thesis constraints the model space for suitable
AS candidates.
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Appendix A

On Unnatural Yukawa Beta
Functions

When computing the Yukawa beta functions (5.5), it can happen that the beta function of
a Yukawa coupling yi is not proportional to itself, but instead has some additional terms
which do not include yi at all. Consider for example a model with the superpotential

W = y1ABC + y2ABD + y3EFC + y4EFD, (A.1)

involving chiral superfields A,B,C,D,E and F . Then the Feynman diagram (A.2)
yields a contribution ∝ y2y

∗
4y3 to βy1 .

βy1 ⊃

A

D

E

F

C

B

∝ y2y
∗
4y3. (A.2)

More explicitly, the system of Yukawa beta functions for the superpotential (A.1) reads

βy1 = 1
(4π)2 (y1(3|y1|2 + 3|y2|2 + |y3|2) + y2y

∗
4y3 − y1A1),

βy2 = 1
(4π)2 (y2(3|y2|2 + 3|y1|2 + |y4|2) + y1y

∗
3y4 − y2A2),

βy3 = 1
(4π)2 (y3(3|y3|2 + 3|y4|2 + |y1|2) + y4y

∗
2y1 − y3A3),

βy4 = 1
(4π)2 (y4(3|y4|2 + 3|y3|2 + |y2|2) + y3y

∗
1y2 − y4A4),

(A.3)
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with
Ai = Ai(g2) (A.4)

linear functions of the gauge coupling squares g2 [113]. In the absence of the proportionality-
breaking terms in (A.3), one obtains a system of linear equations for the new couplings
αyi ∼ |yi|2, αgi ∼ g2

i from the fixed point condition β(α∗) = 0 for all beta functions.
Otherwise one cannot rewrite the beta functions (A.3) as functions of the newly defined
couplings and ends up with a system of non-linear equations of third order.
There is one crucial exception to this argumentation. In the presence of certain flavor
symmetries we still obtain linear equations within fixed points even when some beta
function βyi are not proportional to yi. This is for example the case for (A.1) which we
may rewrite as

W = y(A,E)
(
B B

F F

)(
C

D

)
. (A.5)

Due to the global U(2) symmetry(
A

E

)
→ U

(
A

E

)
,

(
B

F

)
→ U

(
B

F

)
,

(
C

D

)
→ U

(
C

D

)
, U ∈ U(2) (A.6)

interacting fixed points have
y∗1 = y∗2 = y∗3 = y∗4, (A.7)

which yields a system of linear equations in the newly defined couplings αyi ∼ |yi|2,
αgi ∼ g2

i . A flavor symmetry-breaking term in (A.1) would prohibit this behavior. An
example is given by a model with the superpotential

W = y1ABC + y2ABD + y3EFC + y4EFD + y5EDG, (A.8)

where only for fixed points with y∗5 = 0 the fixed point conditions are reduced to a
system of linear equations. Due to computational limitations we restrict ourselves
in this work to models with superpotentials possessing flavor structures which yield
system of linear equations for their fixed point conditions. For example, in the case
of the superpotential (A.8) we would then begin by setting y5 = 0 before doing any
calculations.



Appendix B

Necessary Condition for Interacting
Fixed Points

We proof the statement of sec. 5.3 stating that

In order for a N = 1 SUSY gauge-Yukawa model with the gauge group G = ∏
aGa as

in (5.1) to have a non-gaussian fixed point g? in the 2-1-approximation, it is necessary
that at least one gauge sector Ga′ corresponding to a component g?a′ of the fixed point
with g?a′ 6= 0 is AF at one-loop level, i.e. the one-loop coefficient Ba′ as given in (5.4)

and (5.6a) has to be positive.

The proof of this condition is basically already provided in [117], with the difference
that in there higher order terms are ignored which in fact are non-negligible in interacting
fixed points. This is because in an interacting fixed point the one- and two-loop
contributions in the gauge beta function cancel each other and are therefore of the same
magnitude. We now repeat the proof without neglecting higher orders.

We start with the RG-time derivative of the summed squares of the Yukawa couplings
d
dt
(
Y ijkYijk

)
= 6Y ijkYijlγ

(1)l
k , (B.1)

where we used (5.5) to obtain the right-hand side. With the one-loop result for the
anomalous dimension matrix (5.6d), we can write this as

d
dt
(
Y ijkYijk

)
= 12(4π)2

(
γ

(1)k
l + 2

∑
a

g2
aC

(a)
2 (k)δkl

)
γ

(1)l
k , (B.2)

where a runs over all gauge factors Ga of G. At a fixed point g? and with γ(1)k
l chosen

diagonal at this fixed point, eq. (B.2) reads

0 =
∑
r

dr|γ(1)
r |2 + 2

∑
a

g?2a C
(a)
2 (k)γ(1)k

k , (B.3)
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where r sums over the representations of the whole gauge group of the chiral superfields
and dr denotes their dimensions.1

Before we continue with (B.3), we first derive a second expression. For this, we
multiply the anomalous dimension matrix in eq. (5.6d) with C(a)

2 (k), set l = k (implying
summation over k) and obtain

Y ijkYijkC
(a)
2 (k) = 2(4π)2γ

(1)k
k C

(a)
2 (k) + 4

∑
d,k

g2
dC

(d)
2 (k)C(a)

2 (k) , (B.4)

where d is chosen as an index that runs over all the gauge factors Gd to distinguish it
from a. Inserting this into the beta function (5.4) of a gauge coupling ga′ and evaluating
it at an interacting fixed point g? with g?a′ 6= 0 and some other (possibly) non-zero
components g?b′ , g?d′ 6= 0 leads to the equation

0 = −Ba′

2 + Ca′b′

2
g?2b′

(4π)2 − 2γ(1)k
k

C
(a′)
2 (k)
da′(G) −

4
(4π)2 g

?2
d′
C

(d′)
2 (k)C(a′)

2 (k)
da′(G) . (B.5)

Rearranging this equation so that we can insert 2γ(1)k
k C

(a′)
2 (k) into eq. (B.3) yields the

condition

0 =
∑
r

dr|γ(1)
r |2

+
∑
a′
g?2a′ da′(G)

−Ba′

2 + Ca′b′

2
g?2b′

(4π)2 − 4 g?2d′

(4π)2
C

(d′)
2 (k)C(a′)

2 (k)
da′(G)

 .
(B.6)

Since the first term is positive, the term in the square brackets has to be negative for
at least one a′ with g?a′ 6= 0. Rewriting the last term in these brackets as a sum over
representations of the whole gauge group indicated by the index r instead of a sum over
all chiral superfield components we end up with the condition

− Ba′

2 + Ca′b′

2
g?2b′

(4π)2 − 4
∑
r

g?2d′

(4π)2dr
C

(d′)
2 (r)C(a′)

2 (r)
da′(G) < 0 (B.7)

for at least one a′ with g?a′ 6= 0. Inserting the explicit formulas for Ca′b′ given in (5.6b)
and (5.6c), rewritten as a sum over representations r of the whole gauge group as

Ca′a′ = −12C(a′)
2 (G)2 + 4C(a′)

2 (G)
∑
r

Sa′(r) dr
da′(r) + 8

∑
r

Sa′(r)C(a′)
2 (r) dr

da′(r) , (B.8a)

Ca′b′ = 8
∑
r

Sa′(r)C(b′)
2 (r) dr

da′(r) , (B.8b)

1e.g. for a left-handed quark superfield Q in the MSSM we have dQ = 6.
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and using the relation (5.7) between Dynkin indices and Casimir invariants, finally gives
the condition

− Ba′

2 +
[
−6C(a′)

2 (G)2 + 2C(a′)
2 (G)

∑
r

Sa′(r) dr
da′(r)

]
g?2a′

(4π)2 < 0 (B.9)

for at least one a′ with g?a′ 6= 0. The equation for the coefficient Ba′ given in (5.6a) rewrit-
ten as a rum over r tells us that the term within square brackets is just −C(a′)

2 (G)Ba′ ,
and hence the condition is just equivalent to

Ba′

[
1 + 2C(a′)

2 (G) g?2a′

(4π)2

]
> 0⇔ Ba′ > 0 (B.10)

for at least one a′ with g?a′ 6= 0. Thus we have shown the necessary condition stated at
the beginning of this appendix.



Appendix C

A Relation Between Fixed Points
FP3 and FP23

In this appendix, we show the relation (6.62) between the fixed points FP3 and FP23 of
tab. 6.1, valid in the 2-1-approximation for MSSM extensions. This relation, which we
confirm in all our model investigations of sec. 6, states that

FP23 physical⇔ FP23 physical and IR attractive
⇔FP3 physical and UV attractive.⇔ α?FP23

3 > α?FP3
3 ,

(C.1)

or, phrased in a way more suitable for our proof,(
FP23 is physical⇔ FP3 is physical and BFP3

2,eff > 0
)
⇒ α?FP23

3 > α?FP3
3 , (C.2)

with BFP3
2,eff defined in (5.23). In general, FP23 and FP3 stand for a class of fixed points

which differ by different non-zero Yukawa components. The fixed points in (C.2) are to
be understood to have the same Yukawa components non-vanishing. Furthermore we
are arguing for models with superpotentials composed by Yukawa terms of the form

W =
∑
m

ym(qQL)m , (C.3)

involving quark singlets q, quark doublets Q, and lepton doublets L. The index m is
counting the different Yukawa terms. Such superpotentials are used in our investigations
of sec. 6 and have fixed point Yukawa couplings given by

α?ym = (F3α3 + F2α2)Xm , (C.4)

with some α3, α2-independent Xm and

F3 = 32
3 , F2 = 6 . (C.5)
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The gauge beta functions (5.10) read here

β3 = α2
3

[
−B3 + C33α3 + C32α2 −D3

∑
m

αym
]
, (C.6)

β2 = α2
2

[
−B2 + C22α2 + C23α3 −D2

∑
m

αym
]
, (C.7)

with
D3 = 8, D2 = 12 , (C.8)

and

C33 = −108 + 34
3

∑
i,SU(3)

d2(i), C22 = −48 + 7
∑

i,SU(2)
d3(i),

C32 = 6
∑

i,SU(3)⊗SU(2)
1, C23 = 16

∑
i,SU(3)⊗SU(2)

1,
(C.9)

where ∑
i,SU(3)

,
∑

i,SU(2)
and ∑

i,SU(3)⊗SU(2)
imply summation over fields charged under SU(3)C ,

SU(2)L and SU(3)⊗ SU(2), respectively. With d3(i) and d2(i), the dimensions of the
representations of the field i under respectively SU(3)C and SU(2)L are denoted.

In a fixed point, with eq. (C.4) inserted, we obtain the fixed point conditions

0 = α2
3[−B3 + C ′33α3 + C ′32α2] , (C.10)

0 = α2
2[−B2 + C ′22α2 + C ′23α3] , (C.11)

with the modified coefficients given by

C ′33 = C33 −
∑
m

D3F3Xm = C33 −
256
3
∑
m

Xm ,

C ′22 = C22 −
∑
m

D2F2Xm = C22 − 72
∑
m

Xm ,

C ′32 = C32 −
∑
m

D3F2Xm = C32 − 48
∑
m

Xm ,

C ′23 = C23 −
∑
m

D2F3Xm = C23 − 128
∑
m

Xm .

(C.12)

The effective coefficient BFP3
2,eff , as defined in eq. (5.23), is here given by

BFP3
2,eff = B2 − C ′23α

?FP3
3 . (C.13)

Due to the negativity of B2 in the MSSM and all of its extensions, we infer from the
necessary condition of sec. 5.3 the unphysicality ofFP2, with its α2 coupling given by

α?FP2
2 = B2

C ′22
, (C.14)
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from which we immediately find that

C ′22 > 0 . (C.15)

We now have all the tools together to start our proof of (C.2). We begin with

FP23 is physical⇒ FP3 is physical . (C.16)

For this we assume that the contrary is true, i.e. that if FP23 exists, FP3 does not. MSSM
extensions allowing for interacting fixed points in the 2-1-approximation necessarily
have B3 > 0, as discussed in sec. 6.2. The assumption of FP3 being unphysical is then
equivalent to C ′33 < 0. Physicality of FP23 yields the conditions C32′ > 0 and C23′ < 0,
as seen from (C.11). Using the form of the coefficients given in (C.12) we may then infer

C23
C′

23<0
< 128

∑
m

Xm = 8
3 · 48

∑
m

Xm

C′
32>0
<

8
3C32 . (C.17)

Inserting C23 and C32 from eq. (C.9), we can rewrite the above inequality as

16 < 16 , (C.18)

which is false. Hence our assumption was wrong and we have shown (C.16).
Next we show that

α?FP23
3 > α?FP3

3 , (C.19)

as soon as FP23 exists. For this we note that the rearranged fixed point conditions (C.11)
for FP23, together with the positivity of C ′22 (C.15) and negativity of B2 for MSSM
extensions implies C ′23 < 0 for physical FP23. Using this last inequality together with
the modified coefficients (C.12), we obtain

C ′32 = C32 − 48
∑
m

Xm = C32 −
3
8 · 128

∑
m

Xm

C′
23<0
< C32 −

3
8C23. (C.20)

Inserting again the explicit formulas (C.9) for C23 and C32, we find

C ′32 < (6− 6) ·
∑

SU(3)C⊗SU(2)L

1 = 0 , (C.21)

for all MSSM extensions for which FP23 exists. The sum implies summation over all
fields simultaneously charged under SU(3)C and SU(2)L. From (C.11) we can then infer

α?FP23
3 = B3

C33
− C ′32

α?FP23
2
C ′33

C′
32<0,C′

33>0
>

B3

C ′33
= α?FP3

3 , (C.22)
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which we had set out to prove.
The next claim

FP23 is physical ⇒ BFP3
2,eff > 0 (C.23)

follows straightforwardly from rearranging (C.11) for positive α?FP23
2

0 < α?FP23
2 = B2

C ′22
− C ′23

α?FP23
3
C ′22

(C.15)⇔ C ′23 <
B2

α?FP23
3

(C.24)

and using this inequality in BFP3
2,eff as defined in (C.13)

BFP3
2,eff = B2 − C ′23α

?FP3
3 > B2

(
1− α?FP3

3

α?FP23
3

)
(C.19)
> 0 , (C.25)

where in the last inequality we used that the strong component of FP23 is bigger than
the strong component of FP3 (C.19).

To complete our proof of (C.2) we show that

FP3 is physical and BFP3
2,eff > 0⇒ FP23 is physical. (C.26)

From the physicality of FP3 we get C ′33 > 0 while BFP3
2,eff > 0 is equivalent to B2 >

C ′23α
?FP3
3 , which in particular implies that C ′23 < 0 since B2 < 0 for all MSSM extensions.

At first we may then estimate

C ′32
(C.12)= C32 − 48

∑
m

Xm = C32 −
3
8 · 128

∑
m

Xm

C′
23<0
< C32 −

3
8C23

(C.9)= 0. (C.27)

C ′32 being negative implies α?FP23
3 > 0 with α?FP23

3 > α?FP3
3 , as can be seen in (C.11).

With this we can furthermore infer from BFP3
2,eff > 0 that

B2 > C ′23α
?FP3
3

C′
23<0
>

α
?FP23
3 >α

?FP3
3

C ′23α
?FP23
3

C′
22>0⇔ B2

C ′22
− C ′23

α?FP23
3
C ′22

> 0 , (C.28)

which means that α?FP23
2 > 0, comparing with (C.11). With this we have shown all

claims of (C.2).



Appendix D

Beta Functions and Fixed Points
Formulae

In this appendix, we present the beta functions of our MSSM extensions from sec. 6
and in the MSSM+ of sec. 7.1. In general, the Yukawa beta functions at one-loop are
given by

βi = αi[Eijαj − Figαg] , (D.1)

with i, j indices counting Yukawa couplings and g gauge couplings. Appearance of two
indices implies summation over them. In gauge-Yukawa fixed points, where all Yukawa
couplings are non-vanishing, we can solve (D.1) for the fixed point Yukawa couplings

α?i = E−1
ij Fjgα

?
g (D.2)

in dependence of the fixed point gauge couplings (assuming that the matrix E is
non-singular). The beta functions of the gauge couplings

αg = α2
g[−Bgαg + Cgg′αg′ −Dgiαi] , (D.3)

reduces in fixed points to the equation

0 = −Bgα
?
g + C ′gg′α?g′ (D.4)

for each non-zero gauge coupling. The modified coefficients C ′gg′ are obtained by plugging
in the Yukawa nullcline condition (D.2) and read

C ′gg′ = Cgg′ −DgiE
−1
ij Fjg′ . (D.5)
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D.1 MSSM Extensions

In our MSSM extensions of sec. 6, the gauge group is given by SU(3)C⊗SU(2)L⊗U(1)Y
and hence g = 1, 2, 3. In the subsequent sections we present the matrices E,F,C,D as
well as the coefficients Bg for each of our three model classes.

The gauge components of the possibly physical fixed points FP3, FP23, FP13 and
FP123 are in terms of the modified coefficients given for FP3 by

α?FP3
3 = B3

C ′33
, α?FP3

2 = 0 , α?FP3
1 = 0 , (D.6)

in FP13 by

α?FP13
3 = B3C

′
11 −B1C

′
31

C ′11C
′
33 − C ′13C

′
31
, α?FP13

2 = 0 , α?FP13
1 = B1C

′
33 −B3C

′
13

C ′11C
′
33 − C ′13C

′
31
, (D.7)

at FP23 by

α?FP23
3 = B3C

′
22 −B2C

′
32

C ′33C
′
22 − C ′32C

′
23
, α?FP23

2 = B2C
′
33 −B3C

′
23

C ′33C
′
22 − C ′32C

′
23
, α?FP23

1 = 0 , (D.8)

and for FP123 by

α?FP123
3 = B3(C ′12C

′
21 − C ′11C

′
22)−B1(C ′21C

′
32 − C ′22C

′
31)−B2(C ′12C

′
31 − C ′11C

′
32)

C ′12C
′
21C

′
33 − C ′12C

′
23C

′
31 − C ′13C

′
21C

′
32 + C ′13C

′
22C

′
31 + C ′11C

′
23C

′
32 − C ′11C

′
22C

′
33
,

α?FP123
2 = B1(C ′21C

′
33 − C ′23C

′
31) +B2(C ′13C

′
31 − C ′11C

′
33)−B3(C ′13C

′
21 − C ′11C

′
23)

C ′12C
′
21C

′
33 − C ′12C

′
23C

′
31 − C ′13C

′
21C

′
32 + C ′13C

′
22C

′
31 + C ′11C

′
23C

′
32 − C ′11C

′
22C

′
33
,

α?FP123
1 = B1(C ′23C

′
32 − C ′22C

′
33) +B2(C ′12C

′
33 − C ′13C

′
32)−B3(C ′12C

′
23 − C ′13C

′
22)

C ′12C
′
21C

′
33 − C ′12C

′
23C

′
31 − C ′13C

′
21C

′
32 + C ′13C

′
22C

′
31 + C ′11C

′
23C

′
32 − C ′11C

′
22C

′
33
.

(D.9)

D.1.1 Model class 1

Due to flavor symmetries in our investigated Yukawa structures we end up with 12
different Yukawa beta functions βt, βb, β4, ..., β13. The labeling of Yukawa couplings
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possessing the same beta functions is

ybd3Q3Hd : xb ,
ytu3Q3Hu : xt ,

y4diQ1Lk + y6diQ2Lk′ : I12 ,

y5diQ1Lk : I1d ,

y7diQ2Lk : I2d ,

y8diQ1Lk + y9diQ3Lk′ : I13 ,

y10diQ3Lk : I3d ,

y11uiQ1Lk : I1u ,

y12uiQ2Lk : I2u ,

y13uiQ3Lk : I3u ,

(D.10)

where for a Yukawa coupling of type yi, the beta function of αi is βi. The 12× 12 matrix
E acting of the coupling space with elements (αt, αb, α4, ..., α13) reads

E=



12 2xb 0 0 0 0 0 2I13 2I3d 0 0 2I3u
2xt 12 0 0 0 0 0 2I13 2I3d 0 0 2I3u
0 0 10+2I12 2I1d 4 0 2I13 0 0 2I1u 0 0
0 0 2I12 10+2I1d 0 0 2I13 0 0 2I1u 0 0
0 0 4 0 10+2I12 2I2d 0 0 0 0 2I2u 0
0 0 0 0 2I12 10+2I2d 0 0 0 0 2I2u 0
0 0 2I12 2I1d 0 0 10+2I13 4 0 2I1u 0 0

2xt 2xb 0 0 0 0 4 10+2I13 2I3d 0 0 2I3u
2xt 2xb 0 0 0 0 0 2I13 10+2I3d 0 0 2I3u
0 0 2I12 2I1d 0 0 2I13 0 0 10+2I1u 0 0
0 0 0 0 2I12 2I2d 0 0 0 0 10+2I2u 0

2xt 2xb 0 0 0 0 0 2I13 2I3d 0 0 10+2I3u


,

(D.11)

and the 12 × 3 matrix F mapping from the gauge coupling space (α1, α2, α3) into
(αt, αb, α4, ..., α13) is given by

F =


26
9

14
9

14
9

14
9

14
9

14
9

14
9

14
9

14
9

26
9

26
9

26
9

6 6 6 6 6 6 6 6 6 6 6 6
32
3

32
3

32
3

32
3

32
3

32
3

32
3

32
3

32
3

32
3

32
3

32
3


T

. (D.12)

The gauge coefficients Bg are

B3 = 18− 2(nu + nd) , B2 = 4− 2nL , B1 = 4− 16
3 nu −

4
3nd − 2nL , (D.13)
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and the 3× 3 matrix C acting on the gauge coupling space (α1, α2, α3) is given by

C =


8 + 256

27 nu + 16
27nd + 2nL 6nL −48 + 256

9 nu + 64
9 nd

2nL 8 + 14nL 48
−6 + 32

9 nu + 8
9nd 18 −108 + 68

3 (nu + nd)

 . (D.14)

At last, the 3×12 matrix D acting on the coupling space with elements (αt, αb, α4, ..., α13)
and mapping into coupling space of the elements (α1, α2, α3) reads

D =


52
3 xt

28
3 xb

28
3 I12

28
3 I1d

28
3 I12

28
3 I2d

28
3 I13

28
3 I13

28
3 I3d

28
3 I1u

52
3 I2u

52
3 I3u

12xt 12xb 12I12 12I1d 12I12 12I2d 12I13 12I13 12I3d 12I1u 12I2u 2I3u

8xt 8xb 8I12 8I1d 8I12 8I2d 8I13 8I13 8I3d 8I1u 8I2u 8I3u

 .

(D.15)

D.1.2 Model class 2
In model 2, the number of different Yukawa beta functions is nine. The relation between
these functions βt, βb, β4, ..., β10 and the Yukawa couplings are

αb : βb , αt : βt , αM : β4 ,

αM : β5 , αM : β4 , αM : β5 ,

αR : β6 , αR : β7 , αC : β8 ,

αC : β9 , αS : β10 ,

(D.16)

where all entries of a matrix have the same beta function. The matrices parameterize
the Yukawa couplings as shown in (6.34).

In the Yukawa coupling basis (αt, αb, α4, ..., α10), we have for model 2

E=



12 2xb 0 0 0 4IQx3 0 0 0
2xt 12 0 0 4IQx3 0 0 0 0
0 0 (10+2Id)IQ 2IuIQ 2IQx3 2IQx3 4x4 0 0
0 0 2IdIQ (10+2Iu)IQ 2IQx3 2IQx3 0 4x4 0
0 4xb 2IdIQ 2IuIQ 12IQ 2IQx3 0 0 0

4xt 0 2IdIQ 2IuIQ 2IQx3 12IQ 0 0 0
0 0 4IQ 0 0 0 10+2Id 2Iux4 2nSxS
0 0 0 4IQ 0 0 2Idx4 10+2Iu 2nSxS
0 0 0 0 0 0 2Idx4 2Iux4 16nS


, (D.17)

and

F =


26
9

14
9

14
9

26
9

14
9

26
9

14
9

26
9

2
9

6 6 6 6 6 6 6 6 6
32
3

32
3

32
3

32
3

32
3

32
3

32
3

32
3

32
3


T

, (D.18)
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with F mapping from the gauge coupling space (α1, α2, α3). The one-loop gauge
coefficients Bg are given by

B3 = 2 , B2 = −8− 2nL , B1 = −56
3 − 2nL , (D.19)

and the matrix C acting on the same space reads

C =


1196
27 + 2nL 20 + 6nL 368

9
20
3 + 2nL 92 + 14nL 80

70
9 30 220

3

 . (D.20)

For the matrix D going from Yukawa coupling space (αt, αb, α4, ..., α10) to the gauge
coupling space (α1, α2, α3) we have in model 2

D =


52
3 xt

28
3 xb

28
3 IdIQ

52
3 IuIQ

28
3 IQx3

52
3 IQx3

28
3 Idx4

52
3 Iux4

4
3nSxS

12xt 12xb 12IdIQ 12IuIQ 12x3IQ 12x3IQ 12x4Id 12x4Iu 12xSnS
8xt 8xb 8IdIQ 8x1IuIQ 8x3IQ 8x3IQ 8x4Id 8x4Iu 8xSnS

 ,

D.1.3 Model class 3

Model 3 is in many ways similar to model 1. The labeling of Yukawa couplings and the
case-counting I-parameters are here given by

ybd3Q3Hd ,

ytu3Q3Hu ,

y4diQ1Lk + y5diQ2Lk′ : I12 ,

y6diQ1Lk + y7diQ3Lk′ : I13 ,

y8diQ1Lk + y9diQ4Lk′ : I14 ,

y10diQ1Lk : I1d ,

y11diQ3Lk : I3d ,

y12uiQ1Lk : I1u ,

y13uiQ4Lk : I4u ,

(D.21)

with i 6= 3 and the top- and bottom Yukawas always present in our investigation.
In Yukawa coupling space we have chosen the basis for which the elements read
(βt, βb, β4, ..., β13), while in gauge coupling space the basis is such that its elements
are (α1, α2, α3).
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Matrix E, acting on Yukawa coupling space, is given by

E=



12 2 0 0 0 2I13 0 0 0 2I3d 0 0
2 12 0 0 0 2I13 0 0 0 2I3d 0 0
0 0 10+2I12 4 2I13 0 2I14 0 2I1dI1d ,0 2I1u 0
0 0 4 10+2I12 0 0 0 0 0 0 0 0
0 0 2I12 0 10+2I13 4 2I14 0 2I1d 0 2+I1u ,0
2 2 0 0 4 10+2I13 0 0 0 2I3d 0 0
0 0 2I12 0 2I13 0 10+2I14 4 2I1d 0 2I1u 0
0 0 0 0 0 0 4 10+2I14 0 0 0 2I4u
0 0 2I12 0 2I13 0 2I14 0 10+2I1d 0 2I1u 0
2 2 0 0 0 2I13 0 0 0 10+2I3d 0 0
0 0 2I12 0 2I13 0 2I14 0 2I1d 0 10+2I1u 0
0 0 0 0 0 0 0 2I14 0 0 0 10+2I4u


,

(D.22)

and matrix F , mapping from gauge coupling space into Yukawa coupling space, reads

F =


26
9

14
9

14
9

14
9

14
9

14
9

14
9

14
9

14
9

14
9

26
9

26
9

6 6 6 6 6 6 6 6 6 6 6 6
32
3

32
3

32
3

32
3

32
3

32
3

32
3

32
3

32
3

32
3

32
3

32
3


T

. (D.23)

The one-loop gauge coefficients Bg are

B3 = 2 , B2 = 2− 2nL , B1 = −65
3 − 2nL , (D.24)

and C, acting on gauge coupling space, is

C =


1358
27 + 2nL −2 + 6nL 704

9
−2

3 + 2nL 15 + 14nL 64
88
9 24 220

3

 . (D.25)

Finally, matrix D mapping from Yukawa to coupling space, reads

D =


52
3

28
3

28
3 I12

28
3 I12

28
3 I13

28
3 I13

28
3 I14

28
3 I14

28
3 I1d

28
3 I32

52
3 I1u

52
3 I4u

12 12 12I12 12I12 12I13 12I13 12I14 12I14 12I1d 12I32 12I1u 12I4u

8 8 8I12 8I12 8I13 8I13 8I14 8I14 8I1d 8I32 8I1u 8I4u

 .

(D.26)

D.2 MSSM+
In the MSSM+ of sec. 7.1, the gauge group is SU(N)⊗ SU(3)C ⊗ SU(2)L ⊗ U(1)Y so
that g = +, 1, 2, 3. For FP+, the gauge components read

α
?FP+
+ = B+

C ′+
, α

?FP+
3 = α

?FP+
2 = α

?FP+
1 = 0 . (D.27)
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The 8× 8 matrix E, acting on Yukawa space (α4, ..., α11), is

E=



4+2I12+2N 2I1 4 0 0 0 0 0
2I12 4+2I1+2N 0 0 0 0 0 0

4 2I2 4+2I12+2N 2I2 0 0 0 0
0 0 2I12 4+2I2+2N 0 0 0 0
0 0 0 0 4+2I12+2N 2I1 4 0
0 0 0 0 2I12 4+2I2+2N 0 0
0 0 0 0 4 0 4+2I12+2N 2I2
0 0 0 0 0 0 2I12 4+2I2+2N

 ,

(D.28)
while F mapping from gauge coupling space (α+, α3, α2, α1) onto (α4, ..., α11) is given by

F =



4N2−1
N

0 6 8Y 2

4N2−1
N

0 6 8Y 2

4N2−1
N

0 6 8Y 2

4N2−1
N

0 6 8Y 2

4N2−1
N

0 6 8Y 2

4N2−1
N

0 6 8Y 2

4N2−1
N

0 6 8Y 2

4N2−1
N

0 6 8Y 2


. (D.29)

The one-loop gauge coefficient read

BD = 6N − 8− 2n ,
B3 = 6 ,
B2 = −2− 2m− 4N ,

B1 = −22− 2(4m+ 8N)Y 2 ,

(D.30)

and the two-loop gauge coefficient matrix acting on (α+, α3, α2, α1) is

C =


−12N2 + 22N2−1

N
(8 + 2n) 0 24 4(8 + 2n)Y 2

0 28 18 22
3

8(N2 − 1) 48 50 + 7(2m+ 4N) 6 + 4(2m+ 4N)Y 2

32(N2 − 1)Y 2 176
3 18 + 6(4m+ 8N)Y 2 182

9 + 8(4m+ 8N)Y 4

 .

(D.31)
Finally, the matrix D reads

D=


8I12 8I1 8I12 8I2 8I12 8I1 8I12 8I2

0 0 0 0 0 0 0 0
4NI12 4NI1 8I12 4NI2 4NI12 4NI1 4NI12 4NI2

16NI12Y 2 16NI1Y 2 16I12Y 2 16NI2Y 2 16NI12Y 2 16NI1Y 2 16NI12Y 2 16NI2Y 2

 .

(D.32)
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