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Abstract

This thesis pays special attention to the Random Forest method as an ensemble learning tech-
nique using bagging and feature sub-spacing covering three main aspects: its behavior as a
prediction tool under the presence of missing values, its role in uncertainty quantification and
variable screening. In the first part, we focus on the performance of Random Forest models in
prediction and missing value imputations while opposing it to other learning methods such as
boosting procedures. Therein, we aim to discover potential modifications of Breiman’s orig-
inal Random Forest in order to increase imputation performance of Random Forest based
models using the normalized root mean squared error and the proportion of false classifi-
cation as evaluation measures. Our results indicated the usage of a mixed model involving
the stochastic gradient boosting and a Random Forest based on kernel sampling. Regarding
inferential statistics after imputation, we were interested if Random Forest methods do de-
liver correct statistical inference procedures, especially in repeated measures ANOVA. Our
results indicated a heavy inflation of type-I-error rates for testing no mean time effects. We
could furthermore show that the between imputation variance according to Rubin’s multiple
imputation rule vanishes almost surely, when repeatedly applying missForest as an imputa-
tion scheme. This has the consequence of less uncertainty quantification during imputation
leading to scenarios where imputations are not proper. Closely related to the issue of valid
statistical inference is the general topic of uncertainty quantification. Therein, we focused on
consistency properties of several residual variance estimators in regression models and could
deliver theoretical guarantees that Random Forest based estimators are consistent. Beside
prediction, Random Forest is often used as a screening method for selecting informative fea-
tures in potentially high-dimensional settings. Focusing on regression problems, we could
deliver a formal proof that the Random Forest based internal permutation importance mea-
sure delivers on average correct results, i.e. is (asymptotically) unbiased. Simulation studies
and real-life data examples from different fields support our findings in this thesis.
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the value 0.

(M,n)
seq−→ (a, b) The sequential limit in the sense that lim

n→b
lim
M→a

.

Med(x) The median of a vector x = [x1, . . . , xn]
⊤.

V ar(X); V ar(X) V ar(X) is the covariance matrix of a random vector X ∈ Rp, p > 1
and V ar(X) the variance of a random variable X, presuming that
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E[X]; E[X] E[X] is the expectation vector of a random vector X ∈ Rp, p > 1
and E[X] the expectation of a random variable X, presuming that
both exists.

Sn Symmetric group, i.e. the set of all permutations π : {1, . . . , n} →
{1, . . . , n}.

a ∝ b Proportional sign, i.e. there is a constant c such that a = cb.

mn,M Random Forest regression function trained on a training set Dn
consisting of M decision trees.

mOOB
n,M (Xi) Random Forest Out-of-Bag prediction at Xi trained on a training

set Dn with M decision trees.

mn,∞ Random Forest regression function trained on a training set Dn with
an infinite number of decision trees.

mOOB
n,∞ (Xi) Random Forest Out-of-Bag prediction at Xi trained on a training

set Dn with an infinite number of decision trees.

tr(A) Trace of matrix a A, i.e. the sum of the diagonal elements.

Xn
P−→ X Convergence in probability, i.e. for all ϵ > 0, we have

lim
n→∞

P[∥Xn −X∥1 > ϵ] = 0.

Xn
Lr−→ X Convergence in Lr-norm for some r > 0, i.e. lim

n→∞
E[∥Xn −X∥rr] =

0.



Introduction

The 21st century is faced with several problems, where statistical science plays a key role
in finding appropriate answers and solutions. In automotive engineering, for example, the
research trend has drastically changed to autonomously driving cars. This, however, requires
complex algorithmic models in order to identify potential objects during the video record-
ing process such as neural nets in deep learning frameworks, which mimic the human brain
activities. This is partially boosted by the enhanced technology in computer science, which
has provided fast computational performance and enormous saving memories. A product
of these developments are vast amounts of data with complex dependence structures, which
require an appropriate modeling strategy. In social science, for example, companies such
as Facebook or Instagram deliver platforms where people can be globally connected while
saving personal information about each member of the platform. Analyzing these type of
data have the severe effect of learning personal traits and preferences in order to provide,
e.g., personalized commercial. As the examples show, the data being collected so far can
result into mathematical issues, where a traditional modeling strategy can be either too time
consuming for the specific problem at hand or even too complex in order to deliver satisfying
results. This has partially pushed practitioners and scientists to change the way statistical
modeling actually happens. Instead of modeling the complex data structure at hand and
finding appropriate tools for analyzing them, simply develop an algorithm that solves the
current problem at hand. This was the birth of the Machine Learning discipline. However,
this comes with the cost of difficult interpretability and the lack of inferential statistics.

The flowchart diagram in Figure 1 illustrates the different approaches data is analyzed from a
Machine Learner’s perspective and the traditional approach using statistical modeling. The
latter is focused on the correct statistical modeling of mathematical forces involved in the
data generating process resp. the underlying analysis model. In Machine Learning, an al-
gorithm is generated which is problem based and mostly led by intuition. Their difference
is of conceptual nature while both approach’s frontiers often gets blurred. Hence, there are
data analyzing problems, which can be tackled by both methods. As an illustrative example,
suppose that you want to measure the effect of a variable X on an outcome Y . From a
statistical modeling point of view, one would assume a functional relationship f between X
and Y - possibly of linear nature - and check whether e.g. the coefficients in a linear rela-
tionship between X and Y are vanishing. A Machine Learner, however, would first think of
an algorithm, that might describe the relationship between X and Y without specifying any
functional relationship between them. Therein, a possible approach would then be to permute
the values of X, and check whether the predictive accuracy of the developed algorithm has
drastically changed. However, the differences in both approaches have consequences for the
later analysis. The statistical modeling approach enables an interpretation of its outcomes,
for which statistical inference in terms of significance tests are possible. This is mainly based
on the precedent work during the modeling phase. In Machine Learing, however, the under-
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2 Abbreviations

  

Machine Learner’s PerspectiveStatistic’s Perspective

Conducting valid statistical tests.
Constructing confidence intervals.

Enables interpretability.

Statistical Inference 

Least Square Method. 
Maximum Likelihood Methods.

Penalization

Estimating Model 
Parameters

Translation of Problem in math. language.
Assume specific Data Generation Process.
Derive potential parameters of interest.
Recall or derive statistical properties .

Developing a 
Statistical Model 

 Data is considered preliminary.
 Algorithm is chosen. 

 Algorithm is fed with this data. 

Algorithm

  Aimed to minimize Loss functions.

Output

Is it possible to construct prediction 
intervals or conduct statistical tests?

Inference ?

Assumed to be 
independent and 

identically distributed

Data Set

Tuning hyperparameters to increase 
output accuracy.

Hyperparameter

Figure 1: Systematic approach of analyzing data under the perspective of a statistician and
a machine learner.

lying algorithm is often considered as a black box procedure, where direct modeling does not
take place priorly. Therefore, valid statistical inference in terms of hypothesis tests or even
deriving statistical properties such as consistency are rather difficult to tackle.

Recent statistical research has focused on the gap of statistical interpretability of black box
procedures in Machine Learning. Luc Devroye, László Györfi, Gábor Lugosi, Gérard Biau,
Erwan Scornet, Stefan Wager, Peter Bühlmann, Nicolai Meinshausen or Lucas Mentch are a
couple of researchers around the globe, that have focused on topics such as consistency, un-
certainty quantification and hypothesis tests of specific Machine Learning algorithms, see for
example Meinshausen (2006), Biau et al. (2008),Devroye et al. (2013), Scornet et al. (2015),
Scornet (2016), Mentch and Hooker (2016) and Wager and Athey (2018). The aim of this
dissertation is to contribute to these tendencies by further enlightening statistical properties
of Machine Learning algorithms making them more accessible and interpretable from a sta-
tistical perspective. In doing so, we mainly focus on algorithms containing decision trees as
key learners, or often referred to as weak learners in the Machine Learning jargon. Therein,
a more detailed look is taken towards Random Forest models. An ensemble of decision trees,
that is based on the bagging principle described later in the dissertation aiming to increase
model accuracy.
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Depending on the underlying data, the Machine Learning approach can attain different forms.
To be more precise, suppose one has a collection of independent and identically (iid) dis-
tributed random variables [X⊤

i , Yi]
⊤ ∈ Rp+1, i = 1, . . . , n summarized in a data set of the

form Dn = {[X⊤
i , Yi]

⊤ ∈ Rp+1 : i = 1, . . . , n} and an independent copy [X⊤, Y ]⊤ ∈ Rp+1.
Several questions can then be raised:

� One might be interested in detecting potential relationships between X and Y based
on Dn for the purpose of predicting the unknown outcome Y , when new observations

X′ d= X1 are given.

� Instead of only predicting new outcomes based on Dn, one might be interested in
correctly specifying the relationship between X and Y by determining the scale of
influence X has on Y .

For both type of problems, a learning algorithm requires two types of data sets: a set, which
is used to feed the algorithm with information. The latter is often referred to as the training
set. For evaluating performance measures, one requires observations, that have been unseen
so far for the underlying algorithm. From a statistical perspective, this overcomes the initial
problem of bias due to selection. The separation is often conducted using various forms of
cross-validation procedures such as the k-fold cross-validation or the jackknife method. Fur-
thermore, depending on the scale of the measurement, the learning problem can be different.
For known outcomes Y in the training set, the learning problem is called a supervised learning
problem, which can be separated into two types:

� In case of Y being interval or ratio scaled, the relationship between X and Y can be
considered as a regression problem.

� In case of Y being either ordinal or nominal, the relationship aimed to find between X
and Y can be considered as a classification problem.

Both type of problems can be faced with difficulties in the modeling phase, when the in-
formation in X ∈ Rp, or often referred to as features, are of mixed type, i.e. they contain
both, nominal or ordinal scaled data and metric data. In case of Y being unknown in the
training phase, the learning problem is called unsupervised and falls under the category of
clustering. Therefore, the demands on the algorithm used in the Machine Learning approach
can be challenging: It should be able to treat mixed type data, for both, regression and
classification issues as well as cluster methods. The Random Forest method is one possible
solution to these type of questions, especially for supervised learning.

A common problem during the data collection process is the presence of missing values, i.e.
some of the observations in the training set are not observable due to different reasons. This
can be challenging for both, regression and classification problems, if missing values occur
in the features of the underlying learning problem. Therefore, one part of this dissertation
aims to tackle the problem of partially observed data from a Machine Learner’s perspective
by considering different imputation techniques, i.e. methods, that predict missing outcomes
and evaluate their prediction accuracy. From a statistical modeling perspective, the effect of
various Machine Learning techniques on statistical significance tests after imputing missing
values is then analyzed. Therein, different statistical relations are discovered that led us to
important theoretical research questions such as quantifying uncertainty in Random Forest
models and other Machine Learning Algorithms. The issue of quantifying uncertainty can be
considered as the theoretical basis of the development of valid statistical inference procedures,
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that are also used in missing value problems or the construction of prediction intervals. In
addition, we discovered different statistical properties of variable selection procedures involved
in the Random Forest method. Therefore, one can separate the dissertation into two parts:

1. A practical part, in which prediction accuracy and valid statistical inference of Random
Forest models are considered within the framework of missing values.

2. A theoretical part, in which different mathematical properties such as consistency and
unbiasedness of different estimators arising from the Random Forest algorithm are
derived.

Both parts are related by the overall research question how uncertainty can be quantified or
statistical inference within the Random Forest model can be conducted. This is an impor-
tant field which requires a deep theoretical analysis of the Random Forest algorithm, but has
severe practical consequences. It illuminates various mathematical forces within black box
procedures such as the Random Forest and discover potential problems that are scientifically
motivated and not mainly driven by intuition.

The thesis is structured as follows: In the first chapter, we give a brief summary of theoretical
results in regression and learning problems. Therein, we make a clear distinction between
regression and classification problems and motivate it from a mathematical perspective. In
addition, the principles of Bagging and Boosting are introduced, that will be required for
understanding the Random Forest method, or other regression and classification methods
used in this dissertation. A separate chapter is devoted to the Random Forest method
including important theoretical results discovered so far for this learning algorithm. In the
second Chapter, we also give a deeper insight of possible implications our results might
have from a theoretical and methodological perspective. In addition, the underlying research
questions of the articles (P3) and (P4) listed below are thoroughly motivated. The results
can be found in Section 2.2. Note that the latter section does not cover a detailed summary
of the articles. Instead, it extends the work of these articles leading to the preparation of
additional papers yet to be published. In Chapter 3, we discuss missing value problems and
explore ways, how these can be considered as either a regression or classification problem,
which require the knowledge summarized in Chapter 1 and 2. Similarly, we extend our work
in Section 3.3 by delivering theoretical guarantees on uncertainty related issues within the
missing framework, such as the proof of a vanishing between imputation variance estimator
when using the Random Forest as an imputation tool. This work will result in additional
publications. The fourth Chapter summarizes the own contributions in the field of missing
value imputation, uncertainty quantification and variable selection in Random Forest models.
The articles (P1) - (P4) listed below are summarized in detail, where three of them has been
published and one has been submitted:

(P1) Ramosaj, B. and Pauly M., Predicting Missing Values: A comparative study on non-
parametric approaches for imputation., Computational Statistics, 34 (4): 1741− 1764,
2019.

(P2) Ramosaj B., Amro L. and Pauly M., A cautionary tale on using imputation methods
for inference in matched pairs design., Bioinformatics, 2020,
doi:10.1093/bioinformatics/btaa082.

(P3) Ramosaj, B. and Pauly M., Consistent estimation of residual variance with random
forest Out-Of-Bag errors., Statistics and Probability Letters, 151: 49− 57, 2019.
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(P4) Ramosaj B. and Pauly M., Asymptotic Unbiasedness of Permutation Importance in
Random Forest Models. arXiv preprint arXiv:1912.03306.

The four articles are included in the Appendix part (Appendix A) of the dissertation together
with the supplementary material they have been published resp. submitted. The following
diagram shows the timely development of the four articles together with a distinction between
the practical and theoretical dimension making the integration of the four contributions into
the thesis more accessible, while emphasizing potential relationships between them.

                            1                                        2                                                 3

Theoretical

Practical

Time in 
Years 

Predicting Missing Values: 
A comparative study on non-

parametric approaches for 
imputation.

A cautionary tale on 
using imputation 

methods for inference in 
matched pairs

Asymptotic 
Unbiasedness of the 
Variable Importance 
Measure in Random 

Forest Models.

Prediction and 
Imputation

Statistical Inference & 
Uncertainty 

Quantification

Consistent Estimation of 
Residual Variance with 
Random Forest Out-of-

Bag errors.

Figure 2: Timely development of the articles considered in this work together with their
integration into the wole context including potential thematic dependencies.

Before digging deeper into the thesis, we want to stress out that vectors are indicated as bold,
i.e. x = [x1, . . . , xp]

⊤ ∈ Rp indicates a p-dimensional vector, while x is simply a scalar value,
i.e. x ∈ R. Furthermore, slight notational deviations might exists between the thesis and
the annexed articles (P1) - (P4) due to the time differences the articles have been written
resp. published. For example in article (P1), Γ̂(x; Θ1) refers to a single tree within the
Random Forest ensemble trained on Dn, whereas in this thesis, we denoted the latter as
mn,1(x;Θ1,Dn). Based on the context, however, it should be clear what is meant while new
notations have been introduced throughout the thesis.



Chapter 1

Supervised Learning Problems

Supervised learning accounts for the process of extracting information from a set of obser-
vations, mainly for the purpose of prediction, where the variable of interest, or simply the
learning signal, is available. One usually distinguishes between classification and regression
learning problems. Classification problems arise in various practical fields such as in image
recognition, where the classification task is to recognize objects in particular images. Classifi-
cation is often required in different forms rather than on images, for example, when financial
institutions aim to classify people according to their credit worthiness, or in biomedical re-
search, where the aim is to predict whether patients will suffer from a specific disease (see
e.g. Keysers et al. (2007), Angelini et al. (2008) and Long et al. (2017)). Regression analysis
is slightly different: instead of classifying objects or patients into given classes, i.e. assigning
them to a finite set {1, . . . ,K},K ∈ N, the aim is to predict possibly metric values to spe-
cific informations, where the target can attain uncountable or countable and infinitely many
values. Predicting the average income based on the educational degree, the social status and
other features are practical regression problems in econometrics, see for example Hoogerheide
et al. (2012). From a mathematical perspective, both approaches differ based on the response
variable, i.e. whether it is metric or not. To be more precise, suppose one has a set of iid
random vectors Dn = {[X⊤

i , Yi]
⊤ ∈ Rp×M : i = 1, . . . , n}, n, p ∈ N defined on the probability

space (Ω,F ,P), i.e. [X⊤
i , Yi]

⊤ : (Ω,F ,P) → (Rp ×M,B(Rp) ⊗ FM). We denote with EY |X
the expectation conditioned on X, i.e. EY |X[·] = E[·|X] and assume that [X⊤, Y ]⊤ ∈ Rp×M
is an independent copy of [X⊤

1 , Y1]
⊤.

The aim in both, regression and classification problems is to predict the outcome Y based on
the information in X or to find a potential relationship ↪→, such that X ↪→ Y . This can be
usually conducted by having direct knowledge of the underlying multivariate distribution P.
Since in practice one does not have knowledge on P, but instead random vectors given in Dn,
one usually estimates the relationship ↪→ based on Dn. The difference between regression
and classification, however, can be extracted from the support of the random variable Y de-
scribed byM. In case ofM being finite countable, one usually refers to the learning problem
as a classification problem, whereas if M is either infinitely countable or uncountable, the
underlying learning problem is a regression problem. This has sever effects on both, practical
and theoretical approaches learning problems are going to be tackled. Purposely, we did not
yet specify the type of relation ↪→ one aims to find between X and Y , since this can cover
different, yet very extensive fields in statistics. For example, the relation ↪→ might perhaps
refer to a functional relationship, which aims to predict new outcomes. However, the relation
↪→ might also be an algorithm with the same purpose, namely prediction. The relation ↪→,
can cover also hidden effects, such as detecting the optimal subset among the p features, that
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truly describe the association to the response. The latter, for example, is known as variable
selection, and falls under an optimal specification of the relation ↪→.

1.1 Regression

In regression learning problems, the support M of the response variable Y is any set that
is not finitely countable. Most of the time, the relation ↪→ is then of functional nature and
the aim is to find a measurable function m : Rp −→ R, that can describe Y in the ”best”
way possible. In order to understand what best means from a statistical perspective, it is
required to have a look on loss functions. Although an official definition of the latter does
not exist, we introduce a formal definition of it and usually distinguish between regression
and classification losses.

Definition 1.1 (Regression Loss Function). A loss function ψ for a regression problem is a
measurable function ψ :M×M−→ R+ such that ψ(t1, t1) ≤ ψ(t2, t3), for all t1, t2, t3 ∈M.

The above definition is more general, since most of the considered loss functions require
convexity, in order to ease the solution of specific minimization problems. With convexity, a
local minimum results into a global minimum making the solution of an optimization problem
easier. We will shortly give some examples of loss functions, that are often used in theory
and practice. They are leaned on the examples given in Hastie et al. (2009b) on page 349.

1. The squared error loss ψ(x, y) = (x− y)2

2. The absolute loss ψ(x, y) = |x− y|

3. The Huber loss given by ψ(x, y) = ψδ(x, y) = (y−x)21{|y−x| ≤ δ}+ {2δ|y−x| − δ2} ·
1{|y − x| > δ} for some pre-defined δ > 0. The Huber loss is more robust to outliers
than the absolute loss or the squared error loss.

Then, considering the function class G = {m : Rp −→ R | EY |X[ψ(m(X), Y )] < ∞ a.s.},
best from a statistical perspective means that finding a function m∗ ∈ G, such that

m∗ = argmin
m∈G

EY |X[ψ(m(X), Y )]. (1.1)

Note that the solution to (1.1) does not always admit an analytically tractable form. This
clearly depends on the distributional law P of the random vector [X⊤, Y ]⊤ and the considered
loss function ψ. However, for the squared error loss and the absolute loss, the solution m∗

is a well-known theoretical result. Recalling the proof in Györfi et al. (2006), on page 2, one
can obtain the following solution:

m∗(x) =

{︄
E[Y |X = x], if ψ is the squared error loss,

Med[Y |X = x], if ψ is the absolute loss.
(1.2)

In theory and practice, the squared error loss has prevailed due to its smoothness and differ-
entiability property. In addition, the squared error loss simplifies later mathematical results.
Therefore, unless not otherwise stated, we will assume that ψ(x, y) = (x − y)2, such that
m∗(x) = E[Y |X = x]. Since P is in practice often unknown, the optimal solution m∗ to
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equation (1.1) can only be approximated using the knowledge given by Dn. Hence, we refer
to m∗ in the regression case as the optimal predictor or the theoretical regression function,
and denote with mn any estimator of m∗, that is based on the set Dn for approximation.
The determination of mn can happen differently. Most of the time, especially when prior
knowledge on the data generating process P is available, it is assumed that m∗ belongs to
some restricted function classes. In that case, the derivation of the approximation mn further
depends on the supportM, and the assumption on which function class one restricts its view.
This, because simply considering G does not directly deliver answers to the question, how
exactly the functional relationship might look like. For example, if the support of Y , i.e. M,
is uncountable and real-valued such thatM = R, one often refer to these regression problems
by stating the equation of

Y = f(X) + ϵ, (1.3)

where ϵ is a random variable on (Ω,F ,P) with E[ϵ|X] = 0 and E[ϵ2|X] ∈ (0,∞) almost surely
and f : Rp → R is a function from a potentially smaller function class than G such that
one assumes that m∗ = f . Such a restricted function class might be all linear functions, i.e.
f ∈ Flinear := {f : Rp → R|f(x) = x⊤β,β ∈ Rp} and an approximation to m∗ is conducted
by setting fn(x) = β⊤

nx , where

βn = argmin
β

1

n

n∑︂

i=1

ψ(Yi,X
⊤
i β).

In case of more complex regression problems, for example, when the support is finite or
countable, such as e.g. M = N, the relation between Y and X is not written in the form of
(1.3), but is rather motivated by specific link-functions g : R→ R, that are closely related to
the support given byM. That is, one usually sets

f̃(X) = g(m∗(X)). (1.4)

This can be re-expressed in terms of E[Y |X] = (g−1 ◦ f̃)(X). Relating this result to the mini-
mization problem as given in (1.1), while focusing on the squared error loss ψ(x, y) = (x−y)2,
one can see that g−1 ◦ f̃ is its optimal solution. Since g is chosen depending on the support of
Y , the minimization in (1.1) is usually conducted over the function class to which f̃ belongs.
If f̃ ∈ Flinear, then this is nothing else than a generalized linear model as given in McCullagh
and Nelder (1989). Having a countable support of Y such asM = N for example, then the
link function g is given by g(x) = log(x) and can be found in McCullagh and Nelder (1989)
on page 28 under the term Poisson regression.

Evaluating whether an estimator fn is good enough is then a central aspect in modern statis-
tical learning problems, which is addressed by the term consistency. Since several definitions
of consistency exist, we will mainly focus, similarly to Györfi et al. (2006), to the quantity

Rn := E[(mn(X)−m∗(X))2|Dn], (1.5)

which is nothing else than the L2 error. Since Rn is random, different notions of consistency
can be established. Mainly following the definitions in Györfi et al. (2006) on page 13, one
can distinguish between the following:

Definition 1.2. (Consistency)

1. A sequence of regression function estimates {mn} is called weakly consistent for a
certain distribution of [X⊤, Y ]⊤, if lim

n→∞
E[Rn] = 0.
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2. A sequence of regression function estimates {mn} is called strongly consistent for a
certain distribution of [X⊤, Y ]⊤, if P[ lim

n→∞
Rn = 0] = 1.

The above definition refers to consistency properties, that rely on specific classes of distribu-
tions, such that the property 1. or 2. of Definition 1.2 might hold for a specific distribution,
but not for all of them. In non-parametric regression, i.e. where the distribution of [X⊤, Y ]⊤

cannot be directly parametrized due to its complexity, it is important to which extent con-
sistency properties of estimators mn can be extended for all distributions, i.e. delivering a
kind of global or universal consistency definition. Therefore, leaned on the definitions given
in Györfi et al. (2006), page 13, one can set the following definition of universal consistency.

Definition 1.3. (Universal Consistency)

1. A sequence of regression function estimates {mn} is called weakly universal consis-
tent, if it is weakly consistent for all distributions of [X⊤, Y ]⊤, with E[Y 2] <∞.

2. A sequence of regression function estimates {mn} is called strongly universal con-
sistent, if it is strongly consistent for all distributions of [X⊤, Y ]⊤, with E[Y 2] <∞.

In this thesis, however, more emphasis is placed on consistency properties of the form given
in Definition 1.2 for more special classes of distributions, since a special focus is placed on
Random Forest models, for which, in order to obtain consistency, assumptions have to be
made touching on the distribution of the pair [X⊤, Y ]⊤.

1.2 Classification

In classification problems, the support M is a countable set with finite cardinality K =
card(M). In case of K > 2, the underlying classification problem is called a multi-class
classification. Similary to regression, the aim in classification is to predict the response class
Y , based on the features X using the relation ↪→. However, the relation one aims to extract
can be quite different to the regression case. In classification, one usually distinguishes
between

(C1) The process of assigning class labels for feature inputs X using a classifier g, i.e. a
measurable function g : Rp −→M. In that case, the relation ↪→ is the classifier g.

(C2) The process of estimating class probabilities, i.e. instead of finding an explicit function
g that assigns class labels, one is interested in extracting information regarding the
probability vector p(x) = [pℓ1(x), . . . , pℓK (x)]

⊤ ∈ [0, 1]K , where pℓk(x) = P[Y = ℓk|X =
x], withM = {ℓ1, . . . , ℓK}. In that case, the relation ↪→ is the probability vector as a
mapping p : Rp −→ [0, 1]K .

As mentioned in Andreas et al. (2005), the classification problem as given in (C1). is often
addressed by Machine Learners, whereas class probability estimation is usually considered
by statisticians. Regarding the first point, it is interesting to know , which measurable
function achieves best results among a class of classifier C := {g|g : Rp →M is measurable}.
Differently to the regression case, at this stage of finding a ”best” classifier, one usually
does not consider a variety of loss functions. Instead, one makes use of the advantage that
M has finite cardinality and is countable. Therefore, best in the sense of the classification
problem given in (C1). is nothing else than a classifier, that makes minimal errors, i.e. where
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g(X) ̸= Y holds in some minimal sense. Since the event {ω ∈ Ω : g(X(ω)) ̸= Y (ω)} accounts
for uncertainty, one usually aims to find the optimal classifier g∗ by setting

gopt = argmin
g∈C

E[1{g(X) ̸= Y }]

= argmin
g∈C

P[g(X) ̸= Y ]. (1.6)

The underlying error considered here is nothing else than the misclassification error, i.e. the
mapping ψ(x, y) = 1{x ̸= y}, or in practice also referred to as the 0-1 loss. At this stage of
the problem, different loss functions are usually not considered. Explicitly stating gopt can be
conducted using the Bayes rule and basic probability theory, see e.g. Devroye et al. (2013)
on page 10. Therein, the authors delivered a theoretical proof for the solution of (1.6) for
the binary classification problem, i.e. when K = 2. For completeness, we extend the result
to the multi-class problem and state that as a theorem. The proof can be found at the end
of this section:

Theorem 1.1. (Bayes Classifier) The optimal solution to the problem given in (1.6) is given
by

gopt(x) = g∗(x) := argmax
k∈M

P[Y = k|X = x].

The error probability of g∗ as mentioned in Devroye et al. (2013), page 2 is then given by

L∗ = P[g∗(X) ̸= Y ]. (1.7)

Since g∗ clearly depends on the distribution of the pair [X⊤, Y ]⊤, it is in practice often
unknown, such that g∗ remains unknown most of the time. Hence, the aim is to find an
estimate gn based on the data Dn, that comes close enough to the response Y , given the data
at hand Dn, i.e. one aims to compute the performance of gn by considering

Ln := P[gn(X) ̸= Y |Dn] = E[1{gn(X) ̸= Y }|Dn], (1.8)

which is clearly a random variable. Hence, performance assessment can be understood for a
fixed data set Dn, instead of an avaraged data set Dn, since performance is a data specific
issue rather than an averaged one. Similar to the regression case, we can call a sequence
of classifier {gn : n ≥ 0}, i.e. a rule, as good, if it is consistent according to the following
definition. The latter can be recalled in Devroye et al. (2013) on page 91:

Definition 1.4. (Consistency for Rules)

1. A rule {gn : n ≥ 1} is called weakly consistent for a certain distribution of
[X⊤, Y ]⊤, if lim

n→∞
E[Ln] = L∗.

2. A rule {gn : n ≥ 1} is called strongly consistent for a certain distribution of
[X⊤, Y ]⊤, if P[ lim

n→∞
Ln = L∗] = 1.

3. A rule {gn : n ≥ 1} is called universally weakly consistent, if it is weakly consistent
for any distribution of [X⊤, Y ]⊤.

4. A rule {gn : n ≥ 1} is called universally strongly consistent, if it is strongly
consistent for any distribution of [X⊤, Y ]⊤.
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The result in Theorem 1.1 also reveal some insights into the connection between the problems
given in (C1). and (C2). Knowledge of the kind as given in (C2). is usually stronger than
(C1)., since obtaining an estimate p̂n of p based on the set Dn can lead to the construction
of a classifier gn based on Theorem 1.1 using the plug-in principle. However, the extraction
of an estimate p̂n or p from a classifier gn or g is non-trivial.

Now, introducing loss functions into the framework of classification is usually a two-folded
problem: Since classification problems can usually be considered from both perspectives,
(C1). and (C2)., one has to distinguish between losses in both cases. Therefore, let us
start with the problem of estimating class probabilities. In that case, note that a multi-class
problem can be transformed in such a way, that the inital supportM can be transformed into
an alternative supportMp, that describes probability distributions. To be more precise, every
class label ℓk ∈ M for k ∈ {1, . . . ,K} can be represented by the K-dimensional canonical
vector ek = [0, . . . , 0, 1, 0, . . . , 0]⊤ ∈ {0, 1}K , where the integer 1 is placed at the k-th position.
This refers to saying that class label ℓk occurs with probability 1. Then the setMp is of the
form {ek : k = 1, . . . ,K}. Having in mind this situation, i.e. that the response Y is not a
class label anymore, but a probability distribution, one can set up so called probability losses
or shortly, p-losses. Therefore, similarly to Andreas et al. (2005), page 1, we introduce a
novel and more general definition of probability losses:

Definition 1.5. (Loss Function for Probabilities) A loss function for probabilities is a mea-
surable function ψ, such that ψ : P1 × P2 −→ R+, where P1 = {y ∈ {0, 1}K : ∥y∥1 = 1}
and P2 = {p ∈ [0, 1]K : ||p||1 = 1} with ψ(ek, ek) ≤ ψ(y,p) for all [y⊤,p⊤]⊤ ∈ P1 × P2 and
k ∈ {1, . . . ,K}.

The choice of loss functions during the training of a classifier is important, since this can
change the quality of the underlying classifier given the training set Dn. For example in
neural networks, where a famous practical problem is the recognition of handwritten digits,
the choice of a suitable probability loss function at the output layer might be crucial for
the performance of the whole network. Therefore, we will give short examples of probability
losses, that are based on Andreas et al. (2005), page 7 and 8.

1. The log loss or also called as theKullback Leibler information. It has the form ψ(y, ˆ︁pn(x)) =
−

K∑︁
k=1

yk · log(p̂k,n(x)), where p̂k,n(x) = ˆ︂P[Y = ℓk|X = x] is the k-th component of the

class probability estimator ˆ︁pn(x), which estimates the true class probability p(x) based
on the training set Dn and y = [y1, . . . , yK ]⊤.

2. The squared error loss given by ψ(y,p) = ||y − p||22.

3. The binary boosting loss is defined for a binary classification problem and is given by

ψ(y, p̂(x)) = y1 ·
(︂
1−p̂1(x)
p̂1(x)

)︂1/2
+ y2 ·

(︂
p̂1(x)

1−p̂1(x)

)︂1/2
, where p̂1(x) =

ˆ︂P[Y = ℓ1|X = x] is an

estimate of p1(x) = 1.

The construction of classifiers, however, is not always conducted by using plug-in estimates
for g∗ as given in Theorem 1.1. Different algorithms do exist, that are not primarily developed
based on the prediction of class probabilities. Such examples are boosting machines or support
vector machines, to name a few. Regarding the class of classifiers, that do not directly rely on
the estimation of class probabilities, the application of Definition 1.5 is not directly possible.
Usually one makes use of link-functions to connect the class assignment of such classifiers to
probability estimators. Since direct loss functions on this class of classifier clearly depend on
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the domain of the considered function involved in the classifier, we drop a formal definition
of it and refer to Andreas et al. (2005) on page 2 for an informal definition, called F-losses.
Examples based on Hastie et al. (2009b), however, are shortly given. For those, it is assumed
without loss of generality, thatM = {−1, 1}, i.e. the classification problem is binary.

1. The 0 - 1 loss, or also called as the misclassification, is given by ψf (x, y) = 1{y ·f(x) <
0}.

2. The exponential loss refers to errors made by predictions f in binary classification
problems. It is given by ψf (x, y) = exp{−y ·f(x)} and f is the corresponding functional
prediction, i.e. it is not necessarily the class prediction. As mentioned in Hastie et al.
(2009b) on page 347, ψf can be considered as a monotone continuous approximation of
the 0-1 loss.

3. The binomial deviance loss is given by ψf (x, y) = log(1 + exp{−y · f(x)}).

4. The support vector loss is given by ψf (x, y) = max{0, (1− y · f(x))}.

In this work, both, classification and regression problems are considered from a practical per-
spective. In order to understand the correct usage of implemented functions in the statistical
software R, it was important to have a deeper insight into the involvement of loss functions
in both, regression and classification. However, from a theoretical perspective, classification
problems have been a minor part of this thesis, for which regression was the main issue.

1.3 Bagging

The procedure of Bagging (bootstrapped aggregating) was initially developed by Breiman
(1996b) and aimed to reduce the variance of unstable estimators of predictors in order to
increase predictive accuracy of various models. In the regression context, a predictor might
refer to the quantity θ(x) = m(x) = E[Y |X = x], whereas in the classification context, the
predictor might refer to the classification of x, into elements ofM, i.e. θ(x) = g∗(x), where
g∗ ∈ C is the Bayes classifier. Suppose now that an estimator θ̂n(x) for the predictor θ(x)
based on the training set Dn is given. Similar to Breiman (1996b), we first pay attention to the
regression case and assume that prediction accuracy is measured by considering the squared
error loss ψ(x, y) = (x − y)2. Furthermore, denote with θ̄(x) = E[θ̂n(x)] the aggregated
predictor of θ̂n(x). Then, Breiman (1996b) argued that the aggregated version of θ̄(x) leads
to a smaller mean squared error than the estimator θ̂n(x). This results from applying for a
fixed point [x⊤, y]⊤ ∈ Rp ×M Jensen’s inequality to the following quantity:

E[(y − θ̂n(x))2] = y2 − 2yE[θ̂n(x)] + E[θ̂n(x)2]

≥ y2 − 2yE[θ̂n(x)] + E[θ̂n(x)]2

= E[(y − E[θ̂n(x)])2].

Hence, we have for the corresponding mean squared error

MSE[θ̂n(X)] = E[(Y − θ̂n(X))2] ≥ E[(Y − θ̄(X))2] =MSE[θ̄(X)].

As mentioned in Breiman (1996b), the decrease in mean squared error clearly depends on the
difference between E[θ̂n(x)2] and E[θ̂n(x)]2, such that in case of no difference, i.e. E[θ̂n(x)2] =
E[θ̂n(x)]2, the estimator is called stable. This resulted into the idea that any estimator of
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predictors can be improved in the sense of a squared error loss, if one considers the aggregated
version of it, i.e. θ̄(x). The issue in θ̄ is that knowledge on the data generating process is
required, i.e. on P, in order to compute the expectation. Therefore, an approximation of the
latter quantity was proposed, that should mimic the behavior of θ̄ using bootstrapping, i.e.
the general principle of bagging. It can be summarized in three steps:

� Draw B independent bootstrap samples of size n with replacement from Dn denoted
by D∗

n,1, . . . ,D∗
n,B.

� Compute B bootstrap estimators θ̂
∗
n,1(x), . . . , θ̂

∗
n,B(x) such that θ̂

∗
n,j(x) = θ̂n(x;D∗

n,j).

� Aggregate the results by considering θ
∗
n,B(x) =

1
B

B∑︁
j=1

θ̂
∗
n,j(x).

Note that the sampling strategy is not always restricted to sampling n points with replace-
ment from Dn. Deviations to that do exists, such as Breiman’s Random Forest model
(Breiman, 2001) or later in this thesis, were we proposed different sampling schemes within
the bagging procedure of Random Forest models. The quantity θ

∗
n,B(x) can be considered

as a Monte-Carlo approximation of the optimal, bootstrapped-bagged predictor given by
θ̂n,∞(x) = E∗[θ̂

∗
n,1(x;D∗

n)] = E[θ̂∗n,1(x;D∗
n)|Dn]. The expectation is taken over the bootstrap

measure P∗. The latter quantity should be preferred, if its extraction is analytically possi-
ble, and therefore practically available. Since otherwise, additional bias in θ

∗
n,B(x) will be

included, due to the finite choice of B, i.e. Bias∗(θ
∗
n,B(x)) = θ

∗
n,B(x) − θ̂n,∞(x) = oP∗(1).

For increasing B, this finite-B bias will vanish due to the strong law of large numbers.

Now returning to the classification case, where errors are measured using the 0− 1 loss, i.e.
ψ(x, y) = 1{x ̸= y}, the optimal classifier, i.e. the Bayes classifier, results into the lowest
error rate, which was proven in the previous section. Then for any fixed point x ∈ Rp, one
can then deduce that

r∗(x) = P[g∗(x) ̸= Y ] = 1− P[g∗(x) = Y ]

= 1−
K∑︂

k=1

P[arg max
i=1,...,k

P[Y = ℓi|X = x] = ℓk|Y = ℓk,X = x] · P[Y = ℓk|X = x]

= 1−
K∑︂

k=1

1{arg max
i=1,...,k

P (i|x) = k}P (k|x)

= 1− max
k=1,...,K

P (k|x),

where P (k|x) = P[Y = ℓk|X = x] with k = 1, . . .K such that the Bayes misclassification rate
can then be rewritten into L∗ = E[ψ(Y, g∗(X))] = P[Y ̸= g∗(X)]) = 1 − E[ max

k=1,...,K
P (k|X)].

The above computations have been conducted by our own making some additional clarifica-
tions in comparison to the work of Breiman (1996b). The latter has been mainly used for
motivational purposes. Based on these results and similar observations in Breiman (1996b)
on page 131, the following inequality can be obtained

L∗ = E[r∗(X)] = 1− E[ max
k=1,...,K

P (k|X)] ≤ P[θ̂n(X) ̸= Y ] = E[ψ(Y, θ̂n(X))] = E[Ln].

Breiman proposed for classification problems an aggregated predictor of the form θ̄(x) =
arg max

k=1,...,K
Q(k|x), where Q(k|x) = P[θ̂n(X) = ℓk|X = x], with M = {ℓ1, . . . , ℓK}. Then,
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the probability of falsely classifying a fixed input x for the aggregated predictor is given by

P[θ̄(x) ̸= Y ] = 1−
K∑︂

k=1

P[θ̄(x) = ℓk|Y = ℓk,X = x] · P[Y = ℓk|X = x]

= 1−
K∑︂

k=1

1{arg max
j=1,...,K

Q(j|x) = k} · P[Y = ℓk|X = x]

= 1− max
k=1,...,K

P (k|x),

if the classifier θ̂n(x) is order-correct, i.e. arg max
k=1,...,K

Q(k|x) = arg max
k=1,...,K

P (k|x) as men-

tioned in Breiman (1996b). Verifying order-correctness based on a data set Dn is a del-
icate issue, since knowledge on the true conditional distribution P[Y = ℓk|X = x] and
P[θ̂n(X) = ℓk|X = x] is required. There is no literature for finding appropriate strate-
gies for testing or exploring alternative conditions for order-correctness of a classifier. Under
the case of an order-correct classifier, one receives for the aggregated predictor θ̄(x) the same
misclassification rate as for the Bayes classifier, i.e.

E[ψ(θ̄(X), Y )] = E[1− max
k=1,...,K

P (k|X)] = L∗ ≤ E[ψ(θ̂n(X), Y )]. (1.9)

That means, any estimator θ̂n(x) of the predictor θ(x) can be improved, if the estimated
predictor θ̂n(x) is order-correct and one considers the aggregated predictor θ̄(x). This is
different to the regression case, where the principle of bagging always worked in the sense of
resulting into lower expected losses. For classification problems, bagging might result into
even worse classifiers, if θ̂n(x) is not order-correct for almost all points x. Hence, introducing
bagging into classification problems does not always lead to better prediction performance.
This has also been mentioned in Breiman (1996b), on page 131. Note that the definition
of order-correctness of a classifier is not directly related to the notion of stability according
to Breiman (1996b). We introduced the term order-correctness for a classifier, that can
be obtained when the underlying theoretical distribution generating Dn is known. Hence,
order-correctnes is a property, that is based on P[θ̂n(X) = ℓk|X = x], whereas stability is
based on θ̂n(X) as an estimator. Therefore, we might be in possession of a stable classifier,
which is not order correct. However, if a classifier θ̂n(x) is not stable, it makes sense to use
the bagging principle to stabilize it. The natural question arises why? The reason is that
stability as defined in Bühlmann and Yu (2002) is a weaker property compared to (pointwise)
consistency. However, if a classifier is consistent, then it is also stable and in addition,
(pointwise) consistency implies order-correctness. Therefore, bagging unstable classifiers is a
good idea.
Similarly to the regression case, a direct extraction of the bagged predictor θ̄(x) is often
not possible, since a direct knowledge on the distributional law is required. Therefore, one
approximates similarly to the regression case the aggregated predictor θ̄(x) by introducing
bootstrapping schemes, but aggregation is then put differently, i.e. we obtain the following
procedure:

� Draw B independent bootstrap samples of size n with replacement from Dn denoted
by D∗

n,1, . . . ,D∗
n,B.

� Compute B bootstrap classifier θ̂
∗
n,1(x), . . . , θ̂

∗
n,B(x) such that θ̂

∗
n,j(x) = θ̂n(x;D∗

n,j).

� Aggregate the results by considering θ̂
∗,+
n,B(x) = Mode(θ̂

∗
n,1(x), . . . , θ̂

∗
n,B(x)). In case of

ambiguities, one draws randomly an element among potential mode-candidates.
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Similary, θ̂
∗,+
n,B can be considered as a Monte-Carlo approximation of arg max

k=1,...,K
P∗[θ̂

∗
n,1(X) =

ℓk|X = x] =: arg max
k=1,...,K

Q∗(k|x).

The reason for a more detailed motivation of bagging procedures is its important role in
stabilizing predictors such as classification and regression trees (CART), see e.g. Breiman
(1996a), Breiman (1996b), Breiman (2001), Bühlmann and Yu (2002) and Sutton (2005).
The latter can be considered as an algorithm, which separates the feature space into hyper-
rectangular regions and assigns to each region a constant value. That is, a CART predictor
can be formalized as

θ̂n(x) =
J∑︂

ℓ=1

ĉn,ℓ · 1{x ∈ Ân,ℓ}, (1.10)

where Ân,ℓ =
p⨂︁
j=1

[a
(j)
n,ℓ, b

(j)
n,ℓ), with a

(i)
n,ℓ < b

(i)
n,ℓ such that Rp ⊇ supp(X) =

⋃̇︁ J

ℓ=1Ân,ℓ, and J ∈ N

being the number of leaves in a CART tree. We refer to Subsection 1.5 for a more detailed
description of CART. The estimated constant ĉn,ℓ is then, depending on the underlying

learning problem, either the mean of all responses Yi or the mode of all Yi, for whichXi ∈ Ân,ℓ.
As mentioned in Bühlmann and Yu (2002), the instability problem in estimators of predictors
of the form as given in (1.10) arises due to hard decisions represented by the indicator
function. Therefore, bagging in this case can smooth the effect of hard decisions such as in
(1.10) by averaging over indicators. Corresponding results regarding the variance reduction
effect of bagged predictors of the form (1.10), mainly for regression problems, can be found
in Bühlmann and Yu (2002), for example. The Random Forest model is an example of a
bagged predictor of the form (1.10), which will be introduced in the next chapter.

In the Machine Learning community, the bootstrapping schemes sampling an < n data points
without replacement and sampling with replacement dominate within the bagging framework,
due to its easy and fast implementation. In this thesis, however, extensions to other boot-
strapping schemes within Random Forest models are going to be considered as well.

1.4 Boosting

Boosting was initially developed by Freund and Schapire (1997) for binary classification
problems. It aims, similarly to the bagging procedure, to increase the performance of classi-
fiers θ̂n(x) ∈M = {−1, 1} for all x ∈ Rp through the consideration of a set of classifiers, say
θ̂n,1, . . . , θ̂n,T , T ∈ N, where each classifier is not necessarily better than random guessing.
Differently to bagging, where the extraction of a set of classifiers was conducted using boot-
strapping, boosting combines classifiers θ̂n,1, . . . θ̂n,T by weighted voting, where more weight
is put to observational points that have been misclassified leading to a stronger influence of
these points. That is, the boosted classifier for a binary classification problemM = {−1, 1}
is given by

θ̂n,Boost(x) = sign

(︄
T∑︂

t=1

αt · θ̂n,t(x)
)︄
.

The weights α1, . . . , αT are chosen such that a kind of optimality criterion is met, i.e. the
boosted classifier θ̂n,Boost as a function of α1, . . . .αT minimizes the conditional probability
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error, i.e.

[α1, . . . , αT ]
⊤ = arg min

α1,...,αT

E

[︄
ψf

(︄
T∑︂

t=1

αt · θ̂n,t(X), Y

)︄⃓⃓
⃓⃓
⃓Dn

]︄
, (1.11)

where ψf is an F -loss as mentioned on page 12 of this thesis. Since the data generating
process of [X⊤, Y ]⊤ is usually unknown, the approximation of (1.11) is usually conducted by
considering its Monte-Carlo approximation

[α̂1, . . . , α̂n] = arg min
α1,...,αT

1

ntest

∑︂

i∈Itest

ψf

(︄
T∑︂

t=1

αt · θ̂n,t(Xi), Yi

)︄
, (1.12)

where the set {[X⊤
i , Yi]

⊤}i∈Itest is a test set separated initially from Dn, i.e. Itest ∪̇ Itrain =
{1, . . . , n} such that the estimators {θ̂n,t}Tt=1 are trained on the training set {[X⊤

i , Yi]
⊤}i∈Itrain

and the approximation of (1.11) is based on the test set. The separation is usually conducted
using cross validation methods and aims to not underestimate the performance of classifiers by
separating Dn into a train and test set, see Quinlan (1996), Efron and Tibshirani (1997) and
Ridgeway (2004). The choice of the loss function ψf clearly affects the solution to (1.12). In
Freund and Schapire (1997), the loss function resulting into better classification performance
in simulation experiments was the exponential loss, i.e. ψf (x, y) = exp{−y · f(x)} leading to
the basis of the well-known AdaBoost algorithm. The specific choice of the exponential loss
function has several reasons, but one can consider it as a monotone continuous approximation
of the 0 − 1 loss leading to a smooth and convex surrogate of the latter, as mentioned in
Hastie et al. (2009b) and Schapire (2013). Due to computational efficiency reasons, a direct
solution of the minimization problem given in (1.12) under the exponential loss is not directly
executed, but the additive aggregation structure within the classifier θ̂n,Boost is used in order
to obtain a greedy algorithm, i.e. an algorithm for solving problems in a stage-wise manner.
Thus, given the current states t = 1, . . . , T − 1, find the next best vote αt+1 in terms of the

exponential loss, i.e. fn,t+1 = fn,t + αt+1 · θ̂n,t+1, where fn,t =
t∑︁

ℓ=1

αℓ · θ̂n,ℓ. The logic of the

greedy minimization under the exponential loss led to the well-known AdaBoost algorithm
with a solution of the form

αt =
1

2
· log

(︃
1− ϵt
ϵt

)︃
, t ∈ {1, . . . , T}, (1.13)

where ϵt =
∑︁

i∈Itest
θ̂n,t(Xi) ̸=Yi

w
(t−1)
i ·

(︄
∑︁

i∈Itest
w

(t−1)
i

)︄−1

with w
(t)
i = w

(t−1)
i exp{−Yi ·αt · θ̂n,t(Xi)} for

some initial weights {w(0)
i }i∈Itest for all i ∈ Itest. Similarly to Schapire (2013), one obtains

the following algorithm:
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Algorithm 1: Pseudo AdaBoost Classifier

Input: Test set {[X⊤
i , Yi]

⊤
i∈Itest}; Set of classifiers {θ̂n,t}Tt=1; Initial weights w

(0)
i = 0

for all i ∈ Itest
Result: Boosted Classifier θ̂

(T )

n,Boost

1 Set w
(0)
i = 1

|Itest| and θ̂
(0)

n,Boost = 0;

2 while 1 ≤ t ≤ T do

3 Compute ϵt =
∑︁

i∈Itest
w

(t−1)
i 1{θ̂n,t(Xi) ̸= Yi} ·

(︄
∑︁

i∈Itest
w

(t−1)
i

)︄−1

;

4 Compute αt =
1
2 · log

(︂
1−ϵt
ϵt

)︂
;

5 Update θ̂
(t)

n,Boost = θ̂
(t−1)

n,Boost + αt · θ̂n,t;
6 Update w

(t)
i = w

(t−1)
i · exp{−Yi · αt · θ̂n,t(Xi)} ;

7 Set t← t+ 1 ;

8 end

Algorithm 1 refers to a greedy approximation of the minimization problem given in (1.12),
where weak learners {θ̂n,t}Tt=1 in form of, e.g. decision trees, are already given. In practice,

however, a preliminary access to estimators {θ̂n}Tt=1 is not given such that the minimization
procedure in (1.12) is usually extended to model-specific parameters, in order to obtain simul-
taneously the votes {αt}Tt=1 and the set of weak learners {θ̂n,t}Tt=1. Model-specific parameters
in decision trees, for example, are splitting variables, the split location and terminal node val-
ues, such that the minimization task is extended to these parameters as well, while focusing on
decision trees of simple structure, such as decision stumps as the default setting in Ridgeway
(2004). An important parameter to be chosen prior to the start of the algorithm is the num-
ber of weak learners T . In Algorithm 1, this was an integrated component of the set of weak
learners {θ̂n,t}Tt=1, but is usually chosen priorly. As mentioned in Bühlmann and Hothorn
(2007), a too large choice of boosting iterations T can lead to a slow overfitting problem.
Therefore, a careful choice is required in practice. The extension of the AdaBoost algorithm
to multi-class problems, i.e. K > 2, with a multi-class exponential loss was conducted in
Hastie et al. (2009a). In Breiman (1996a) and Breiman (1999), the AdaBoost algorithm was
shown to be equivalent to a steepest descent algorithm in function space, whereas Friedman
et al. (2000) and Friedman (2001) extended it to more general settings involving potentially
different loss functions than the exponential loss and referred to the boosting principle as a
stagewise additive modeling approach. It was motivated by the initial minimization problem

F ∗ = arg min
F∈A

E[ψf (Y, F (X))|X = x], (1.14)

where the underlying function class A is assumed to be of additive nature, that is, A ={︃
T∑︁
t=1

βt · h(x;at) : h(x;at) is a measurable function characterized by at, T ∈ N, βt ∈ R
}︃
, which

turns the minimization problem (1.14) for a finite data set Dn into

{βt,at}Tt=1 = arg min
{β′

t,a
′
t}

1

n

n∑︂

i=1

ψf

(︄
Yi,

T∑︂

t=1

β′th(Xi;a
′
t)

)︄
. (1.15)

Note that the parameters {at}Tt=1 refer to the parametrization of decision trees, if h is chosen
among CART learners. Therefore, its domain depends on the nature of the chosen base
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learner. Denoting with Ft(x) =
t∑︁

ℓ=1

βℓ · h(x;aℓ), the negative gradient based on the data set

required for conducting the steepest descent method is then given by

−gt(xi) = −
[︃
∂ψf (Yi, F (Xi))

∂F (Xi)

]︃

F (x)=Ft−1(x)

. (1.16)

As mentioned in Friedman (2001), the whole analytical structure of the negative gradient gt(x)
is not extractable, but is available at the data points given in Dn. Therefore, a constrained
version of the negative gradient is used in place of the unconstrained one gt(x) leading to an
approximation of the negative gradient −gt(x) by h(x;at), where

{βt,at} = argmin
a,β

n∑︂

i=1

[−gt(Xi)− β · h(Xi;a)]
2. (1.17)

The step-size ρ in the gradient descent algorithm is then conducted through a line search of
the form

ρt = argmin
ρ

n∑︂

i=1

ψf (Yi, Ft−1(Xi) + ρh(Xi;at)), (1.18)

leading to an update of the form Ft(x) = Ft−1(x) + ρt · h(x;at). The consideration of the
boosting method in form of a minimization problem over a functional space of the form A
enabled the extension of this method to regression problems as well. The requirements for
conducting boosting for regression is the differentiability of the loss function ψ = ψf , which
also coincides with the loss function used within the AdaBoost algorithm. For the latter, the
exponential loss was considered as a continuous monotone and differentiable approximation
of the 0− 1 loss. Finally, the gradient boosting method for arbitrary supervised learning
problems can then be stated as follows:

Algorithm 2: Gradient Boosting

Input: Training set Dn, stopping iteration T , loss function ψ
Result: Gradient Boosting Approximation FT (x)

1 Set F0(x) = argmin
ρ

n∑︁
i=1

ψ(Yi, ρ) ;

2 while 1 ≤ t ≤ T do

3 Compute Ỹ i = −
[︂
∂ψ(Yi,F (Xi))

∂F (x)

]︂
F (x)=Ft−1(Xi)

for all i = 1, . . . , n ;

4 Set (β,at) = argmin
a,β

n∑︁
i=1

(Ỹ i − βh(Xi;a))
2 ;

5 Set ρt = argmin
ρ

n∑︁
i=1

ψ(Yi, Ft−1(Xi) + ρ · h(Xi;at)) ;

6 Update Ft(x) = Ft−1(x) + ρt · ht(x;at) ;
7 Set t← t+ 1 ;

8 end

Note that line 6 in Algorithm 2 is often substituted by Ft(x) = Ft−1(x) + ν · ρt · ht(x;at),
where the parameter ν ∈ (0, 1] is a regularization parameter and corresponds to the learning
rate. Acording to Friedman (2001), pages 12 − 13, it aims to reduce over-fitting problems
obtained from deriving an approximation beeing too close to the data.
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For example, taking into account the squared error loss ψ(y, F ) = (y − F )2 in regression
problems, i.e. M = R, and further restricting the function class to decision trees, then
the gradient boosting method turns out to fit pseudo-residuals to the subsequent tree (see
Friedman, 2001 on page 1194). Deviations to Algorithm 2 do exist such as the stochastic
gradient boosting method, where randomness is introduced by conducting the compu-
tations within the while-loop of Algorithm 2 on subsampled data D∗

an , where an ≤ n is the
number of points randomly selected from Dn. This way, one aims to combine boosting and
bagging methodologies in one algorithm.

1.5 Classification and Regression Trees

Classification and regression trees (CART) are a class of algorithms, that enable the
treatment of both, classification and regression learning problems and count towards the
class of weak learners, if they are applied singly. That is, the prediction at X can change
drastically, if the set Dn is changed. As introduced in the previous section, this effect can
often be overwhelmed, if the process of bagging or boosting is applied to decision trees. In
this subsection, we aim to shortly introduce CART as a weak learner itself. Therefore, let
supp(X) ⊆ Rp be the support of the random vector X, i.e. the feature vector. The general
principle of CART is to separate the support of X into disjoint sets {Rn,s}Js=1 such that

supp(X) =
⋃̇︁ J

s=1An,s. In general, if the feature vector X contains only continuous variables,

then usually, An,s =
p⨂︁
j=1

[an,s,j , bn,s,j). If some of the features are ordinal or nominal, we let

Scat ⊆ {1, . . . , p} be the set of all indices, such that Xj is either nominal or ordinal for all
j ∈ Scat. Regarding nominal scales of measurements, however, most of the CART algorithms
distinguish whether they are finitely countable or infinitely countable. From a computational
perspective this means that nominal variables are treated as metric, if a specific number of
possible attributes is exceeded. In the R-package randomForest, for example, not more than
32 factor levels can be treated as nominal or ordinal (Liaw and Wiener, 2002). The region An,s

takes the form An,s =

(︄
⨂︁

j∈{1,...,p}\Scat

[an,s,j , bn,s,j)

)︄
⨂︁
(︄
⨂︁

j∈Scat

ξn,s,j

)︄
, where ξn,s,j ∈ supp(Xj)

for all j ∈ Scat. For every region An,s, s = 1, . . . , J , a constant value {ĉn,s}Js=1 is then assigned.
Constant in this sense does not exclude the possibility that ĉn,ℓ is random, but rather refers to
the function class CART belongs to, namely to the family of piecewise constant functions, i.e.

A =

{︃
J∑︁
s=1

cs1{x ∈ As} : cs ∈M,
⋃̇︁ J

s=1As = supp(X)

}︃
. Therefore, parameters of interest

in CART are the constant values {cs}Js=1, the regions {As}Js=1, and if not directly obtainable,
the number of regions J . We emphasized the dependence of these parameters towards the
data set Dn by denoting ĉn,s and An,s as kind of estimators for c and As, for all s = 1, . . . , J .
It is worth to notice that in practice, the number of regions J , also called leaves, do depend
on Dn as well, such that actually, J = Jn.

Now, define a cut within a tree as the pair [j, zj ]
⊤ ∈ {1, . . . , p} × supp(Xj), where X =

[X1, . . . , Xp]
⊤ ∈ Rp. The determination of a cut is then conducted based on some optimality

criterion, which depends on the underlying learning problem. In case of a regression problem,
the cut is conducted by maximizing the decrease in empirical variance, that is, for a cut
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j ∈ {1, . . . , p} \ Scat at tree level 1 ≤ k ≤ ⌈log2(J)⌉+ 1, one has

[j(k)n , z
(k)
jn

] =

argmax
[j,zj ]

1

Nn

(︂
A

(k)
n,s

)︂
(︄

n∑︂

i=1

(︂
Yi − Ȳ A

(k)
n,s

)︂2
· 1{Xi ∈ A(k)

n,s} −
n∑︂

i=1

(︃
Yi − Ȳ A

(k)
n,s,L(j,zj)

1{Xi,j < zj}

−Ȳ
A

(k)
n,s,R(j,zj)

1{Xi,j ≥ zj}
)︃2

· 1{Xi ∈ A(k)
n,s(j, zj)}

)︄
, (1.19)

where A
(k)
n,s,L(j, zj) = {x ∈ A

(k)
n,s : xj < zj} is the left part of the hyper-rectangular cell

A
(k)
n,s separated along the cut [j, zj ]

⊤ and A
(k)
n,s,R(j, zj) is the right part of A

(k)
n,s along the

cut [j, zj ]
⊤, i.e. A

(k)
n,s,R(j, zj) = {x ∈ A

(k)
n,s : xj ≥ zj}. Nn(A

(k)
n,s) is the cardinality of A

(k)
n,s,

i.e. the number of observations in Dn, that fall in R
(k)
n,s. Ȳ

A
(k)
n,s

, Ȳ
A

(k)
n,s,L

and Ȳ
A

(k)
n,s,R

de-

note the corresponding arithmetic mean of {Yi}i:Xi∈A
(k)
n,s

, {Yi}i:Xi∈A
(k)
n,s,L

and {Yi}i:Xi∈A
(k)
n,s,R

.

The specific choice of ⌈log2(J)⌉ + 1 as an upper bound for the tree level originates from
the fact that J refers to the tree-leaves while our trees are binary. Note that the previous
cut-representation is only valid for at least ordinal features j. The index 1 ≤ s ≤ 2k−1

denotes the corresponding region at level k, which increases exponentially, as k increases.
The determination of the cut [j, zj ]

⊤ according to (1.19) can be executed for the first cut-
dimension j ∈ {1, . . . , p}, but requires an approximation for the values of zj , since the search
of the whole region supp(Xj) can be computationally infeasible. In practice, due to the finite
amount of data points n ∈ N, the CART algorithm selects potential cut values zj among the
set Zn,j = {(Xi,j+Xi+1,j)/2 : i = 1, . . . , n−1}, if Xj is interval or ratio scaled (Loh and Shih,
1997). The minimization is then solved by computing the variance reduction as given in (1.19)
for every element in Zn,j , given a fixed value of j ∈ {1, . . . , p}. In case that Xj is nominal
or ordinal scaled, such that the number of potential attributes does not exceed a pre-defined
fixed number, the empirical cut criterion given in (1.19) slightly changes by substituting the
indicators to 1{Xi,j = ξj}, where ξj ∈ supp(Xj). The notation of the regions in the latter case

changes then to A
(k)
n,s,L(j, ξj) = {x ∈ A

(k)
n,s : xj ̸= ξj} and A(k)

n,s,R(j, ξj) = {x ∈ A
(k)
n,s : xj = ξj}

and is motivated by Breiman et al. (1984).

For classification purposes, the usage of the cut criterion as given in (1.19) is not suitable,
since neither means nor differences can be computed for nominal features. However, the
general idea in CART for classification is to obtain regions An,s, with 1 ≤ s ≤ J , such that
each region contains response observations {Yi}ni=1 that allow a clear assignment of classes
according to the majority vote logic within a region. Therefore, one requires a measure,
that is able to reflect the purity of each region accordingly. Following the same definition of
node impurity as in Breiman et al. (1984) on page 24, we state a class of measures, so called
impurity measures, that are used in CART algorithms.

Definition 1.6 (Impurity Measures). Let PK be a set of K-discrete probability measures,
i.e. probability measures on {1, . . . ,K}, which can be expressed in vector notation on the
K-dimensional simplex. An impurity measure ϕK : PK −→ R+ is a function which satisfies:

� ϕK takes its maximum for the discrete uniform distribution, i.e. arg max
P∈PK

ϕK(P) =

Dunif{1, . . . ,K}.

� ϕK attains its minimum for a K-discrete distribution of the form [p1, . . . , pK ]⊤ ∈ PK
such that ps = 1 and pt = 0 for exactly one s and for all t ̸= s with s, t ∈ {1, . . . ,K}.
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� ϕK is symmetric in its input arguments, that is, for all [p1, . . . , pK ]⊤ ∈ PK and a
permutation π : {1, . . . ,K} → {1, . . . ,K} one has ϕK(p1, . . . , pK) = ϕ(pπ(1), . . . , pπ(K)).

Now, define

pt(A
(k)
n,s) =

1

Nn(A
(k)
n,s)

∑︂

i:Xi∈A
(k)
n,s

1{Yi = ℓt}

as the proportion of observations falling in A
(k)
n,s, with class label ℓt, 1 ≤ t ≤ K and p(A

(k)
n,s) :=

[p1(A
(k)
n,s), . . . , pK(A

(k)
n,s)]⊤ ∈ [0, 1]K . Then, most of the CART algorithms make use of the

following impurity measures:

1. The Misclassification error, i.e. ϕK(p(A
(k)
n,s)) = 1− max

1≤t≤K
pt(A

(k)
n,s),

2. The Gini-index ϕK(p(A
(k)
n,s)) =

K∑︁
t=1

pt(A
(k)
n,s) · (1− pt(A(k)

n,s)),

3. The Cross-entropy or deviance ϕK(p(A
(k)
n,s)) = −

K∑︁
t=1

pt(A
(k)
n,s) · log(pt(A(k)

n,s)).

Conducting a cut in classification problems is then executed by maximizing the decrease in
node impurity, that is

[j(k)n , z
(k)
jn

] = argmax
[j,zj ]

⎧
⎨
⎩ϕK(p(A(k)

n,s))−
Nn(A

(k)
n,s,L(j, zj))

Nn(A
(k)
n,s)

· ϕK(p(A
(k)
n,s,L(j, zj)))

−
Nn(A

(k)
n,s,R(j, zj))

Nn(A
(k)
n,s)

· ϕK(p(A
(k)
n,s,R(j, zj)))

⎫
⎬
⎭ . (1.20)

The cut criterion in (1.20) is also referred to as the information gain criterion. In the Ran-
dom Forest method, for example, the Gini-index is used as an impurity measure in every tree
within the ensemble, but most of the CART algorithms allow variations by explicitly stating
the impurity measure in function calls.

After conducting the cuts until one reaches J = Jn regions A
(⌈log2(J)⌉+1)
n,s = An,s for 1 ≤ s ≤ J ,

the aim is to estimate the constant values {cs}Js=1 appropriately. For the latter, one usually
distinguishes again between regression and classification learning problems:

ĉn,s =

⎧
⎨
⎩

∑︁
i:Xi∈An,s

Yi for regression,

Mode{Yi : Xi ∈ An,s} for classification.
(1.21)

Growing a CART tree too deep, that is, choosing the number of terminal nodes J very
large, can lead to overfitting problems, see e.g. Schaffer (1993) and Hastie et al. (2009b) on
page 307. This can be seen by considering the cut criterions given in (1.19) resp. (1.20).

Since choosing J sufficiently large such that in each region An,s = A
(⌈log2(J)⌉+1)
n,s , there is at

most one observation, one can have a perfect fit of the decision tree to the learning set Dn.
However, potentially different data sets can lead to completely wrong predictions in terms of
class assignment or mean squared error for regression problems. Therefore, one possibility to
reduce the effect of overfitting for deeply grown trees is pruning. Following the explanation
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given in Hastie et al. (2009b) on page 308, pruning is the process of successively collapsing a
grown tree until the single node tree is reached. Then, denoting with Γn an already grown
tree with regions {An,s}Js=1 and constant values {ĉn,s}Js=1, pruning is conducted by collapsing
the CART tree successively among the internal nodes, starting from the internal nodes at
level k = ⌈log2(J)⌉. During the collapsing steps, one obtaines a sequence of subtrees {Γn,ℓ}ℓ,
where the aim is to find the smallest subtree Γn,ℓ∗ , such that

ℓ∗ = argmin
ℓ
Cα(Γn,ℓ) = argmin

ℓ

J(Γn,ℓ)∑︂

s=1

Nn(An,s(Γn,ℓ)) ·Qs(Γn,ℓ) + α · J(Γn,ℓ). (1.22)

J(Γn,ℓ) refers to the number of terminal nodes, or final regions, of the collapsed tree Γn,ℓ and
analogously, Nn(An,s(Γn,ℓ)) is the number of observations falling in An,s(Γn,ℓ). The tuning
parameter α ≥ 0 models the trade-off between tree depth and goodness of fit Qs(Γn,ℓ) to the
training data Dn. For regression problems, one has

Qs(Γn,ℓ) =
1

Nn(An,s(Γn,ℓ))

∑︂

i:Xi∈An,s(Γn,ℓ)

(Yi − ĉn,s)2,

whereas for classification problems, the goodness of fit measure is nothing else than the

choosen impurity measure applied on the regions {An,s}J(Γn,ℓ)
s=1 . As mentioned in Hastie et al.

(2009a), for every fixed α, there exists a unique subtree Γn,ℓ∗ = Γn,ℓ(α∗) that actually solves
(1.22) and is contained in the sequence of CART trees {Γn,ℓ}ℓ.

The process of pruning is usually conducted after obtaining a grown tree Γn. Due to the
enormous amount of possible subtrees from Γn, the solution to (1.22) can be very time con-
suming. A possibility to bypass this effect is to use bagging and to drop the cost-complexity
pruning. This is usually conducted in Random Forest models, making the latter a faster
regression and classification algorithm, see e.g. the R-packages ranger and randomForest

(Liaw and Wiener, 2002; Wright and Ziegler, 2017).
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1.6 Proofs of the Chapter

In this subsection, we formally prove that the classifier in Theorem 1.1 indeed solves the
multi-class optimization problem given in (1.6).

Proof of Theorem 1.1. Let x ∈ Rp be fixed, M = {ℓ1, . . . , ℓK} and denote with η(k|x) =
P[Y = ℓk|X = x]. Furthermore, let g ∈ C be any fixed, but arbitrary classifier and let
g∗(x) = argmax

k∈M
P[Y = k|X = x]. Then one can conduct the following computations:

P[g(X) ̸= Y |X = x] = 1− P[g(X) = Y |X = x]

= 1−
K∑︂

k=1

P[Y = ℓk, g(X) = ℓk|X = x]

= 1−
K∑︂

k=1

1{g(x) = ℓk} · P[Y = ℓk|X = x]

= 1−
K∑︂

k=1

1{g(x) = ℓk} · η(k|x).

Applying the same decomposition to P[g∗(X) ̸= Y |X = x] leads to

P[g(X) ̸= Y |X = x]− P[g∗(X) ̸= Y |X = x] =

K∑︂

k=1

η(k|x) (1{g∗(x) = ℓk} − 1{g(x) = ℓk})

≥ 0. (1.23)

The inequality follows by considering the following: Suppose that g∗(x) = ℓk0 for some fixed
k0 ∈ {1, . . . ,K}. Then, due to the definition of g∗, one can deduce that η(k0|x) ≥ η(k|x) for
all k ̸= k0 with k ∈ {1, . . . ,K}. Now distinguish between two cases

� Suppose that g takes the same decision as g∗, i.e. g(x) = ℓk0 . Then clearly,

K∑︂

k=1

η(k|x) (1{g∗(x) = ℓk} − 1{g(x) = ℓk}) = η(k0|x)(1− 1) +
K∑︂

k:k ̸=k0

η(k|x)(0− 0) = 0.

� Suppose that g(x) = ℓk1 for some fixed k1 ∈ {1, . . . ,K}, such that k1 ̸= k0, i.e. g takes
another decision. Then, one obtains:

K∑︂

k=1

η(k|x) (1{g∗(x) = ℓk} − 1{g(x) = ℓk}) = η(k0|x)(1− 0)+

K∑︂

k:k ̸=k0

η(k|x)(0− 1{g(x) = ℓk})

= η(k0|x)− η(k1|x) ≥ 0.

From inequality (1.23), we can deduce

P[g(X) ̸= Y ]− P[g∗(X) ̸= Y ] =

∫︂
{P[g(X) ̸= Y |X = x]− P[g∗(X) ̸= Y |X = x]} dPX(x)

≥ 0,

which yields to gopt = g∗.

■



Chapter 2

Random Forest Models

This chapter is solely devoted to the Random Forest model, since most of this thesis is based
on the latter algorithm. The Random Forest can be considered as an ensemble of decision
trees, which are combined using the principles of bagging. Beside the random selection of ob-
servations in Dn for the construction of each tree, the Random Forest has the characterizing
property to select a random subsetMtry ⊆ {1, . . . , p} for possible cuts. That is, the Random
Forest randomly selects mtry = |Mtry| feature indices without replacement from {1, . . . , p},
and conducts generally a cut according to the cut criterion given in Chapter 1 equation (1.19)
resp. (1.20) using the Gini-index. During the construction of decision trees according to the
general principle of the CART logic, pruning of the trees is not conducted. Instead, either a
maximal predefined number of leaves is specified, or a maximal number of observations falling
in a terminal node is set. This algorithm was initially developed in Breiman (2001) making
the Random Forest suitable for different classification and regression problems. It is worth
to notice that several modifications of the Random Forest do exist, such as modifications in
the random feature selection step, modifications in the bagging procedure or even completely
randomized trees (Geurts et al., 2006). One example has been invented and analyzed in
Ramosaj and Pauly (2019c) within the issue of missing value imputations and is part of this
thesis. Therefore, when we want to address different Random Forests as the one described in
Breiman (2001), even with slight modifications regarding the choice of hyper-parameters, we
simply say Random Forest models. In the sequel, however, we will describe the traditional
Random Forest as given in Breiman (2001), which is widely implemented in different statis-
tical software packages such as R, python or SAS.
In the sequel, we will mainly focus on the mathematical notations given in Scornet et al. (2015)
for describing hyper-parameters and mathematical forces involved in the Random Forest and
extended them appropriately. Therefore, let us first denote some important hyper-parameters
priorly chosen to the tree construction process:

(i) The number of decision trees M ∈ N in the ensemble,

(ii) The sampling strategy S∗ ,

(iii) mtry ∈ {1, . . . , p} the number of pre-selected features for conducting splits,

(iv) an the number of selected observations for constructing each tree,

(v) tn the number of leaves in each tree.

Denote with Θt = [Θ
(1)
t ,Θ

(2)
t ]⊤ ∈ {0, 1}n × {0, 1}pn×p for t = 1, . . . ,M the generic random

vector, where Θ
(1)
t is responsible for the sampling mechanism prior to tree construction and



25

Θ
(2)
t the random vector modeling feature subspacing. Note that the above notation is novel

and is introduced to clarify different mathematical forces of Random Forest models in this
thesis. It was especially required for the development of various proofs presented in this
work. In Scornet et al. (2015), however, the generic random vector is simply denoted as a
sequence of random variables {Θt}Mt=1. The dimension pn has to be understood as a potential
function of the hyper-parameter tn, which reflects the tree-depth and therefore, the row-wise

independent replications in the random matrix Θ
(2)
t . Note that the sampling mechanism

and feature subspacing happens independently of each other for every tree t = 1, . . . ,M . It
therefore immediately follows that {Θt}Mt=1 is a sequence of iid random vectors. In addition

Θ
(1)
t can be separated into [Θ

(1)
1,t , . . . ,Θ

(1)
n,t]

⊤ for all t = 1, . . . ,M , where Θ
(1)
i,t ∈ {0, 1} indicates

whether observation i ∈ {1, . . . , n} has been selected or not. This directly implies that

Θ
(1)
i,t ∼ Bernoulli(pi) for some probability pi, which depends on the sampling mechanism and

potentially on i, whereas
n∑︁
i=1

Θ
(1)
i,t = an. Similarly, one can define Θ

(2)
t = [Θ

(2)
1,t , . . . ,Θ

(2)
pn,t]

⊤ ∈

{0, 1}pn×p with Θ
(2)
k,t = [Θ

(2)
1,k,t, . . . ,Θ

(2)
p,k,t]

⊤, where Θ
(2)
j,k,t ∈ {0, 1} indicates whether feature

j ∈ {1, . . . , p} has been selected or not during the feature subspacing step at tree-level-cut

k within tree t. That is Θ
(2)
j,k,t ∼ Bernoulli(p

(2)
j ) with

p∑︁
j=1

Θ
(2)
j,k,t = mtry for all t = 1, . . . ,M

and k = 1, . . . , pn. We have to emphasize that {Θ(2)
k,t}k,t remains a sequence of iid random

vectors. In the last chapter, we denoted a decision tree as Γn, however, this notation was not
consistently used throughout the four different articles considered in the thesis, which were
prepared for different outlets. To be more precise, we denote with mn,1(x;Θt,Dn) in this
thesis a single decision tree according to the Random Forest algorithm build with random
element Θt on the training set Dn predicting the outcome at x ∈ Rp. Then, depending
whether the learning problem is a regression or classification problem, the aggregation of the
estimators mn,1(x;Θt,Dn) is denoted by mn,M (x;Θ1, . . . ,ΘM ,Dn) = mn,M (x;Θ,Dn) and is
referred to as the finite forest estimate. Hence, we have

mn,M (x;Θ1, . . . ,ΘM ,Dn) =

⎧
⎪⎨
⎪⎩

1
M

M∑︁
t=1

mn,1(x;Θt,Dn) for regression,

Mode{mn,1(x;Θt,Dn) : t = 1, . . . ,M} for classification.

(2.1)

Due to the strong law of large numbers, one can deduce for regression problems PΘ - almost
surely as M →∞, (see also Scornet et al., 2015 on page 1719), that

mn,M (x;Θ1, . . . ,ΘM ,Dn) −→ EΘ[mn,1(x;Θ,Dn)] =: mn(x;Dn) = mn,∞(x;Dn), (2.2)

where EΘ[mn,1(x;Θ,Dn)] = EΘ[mn,1(x;Θ,Dn)|Dn] denotes the expectation w.r.t. the ran-
dom vector Θ, conditioned on the data Dn. Θ is considered as an independent copy of
Θ1. The quantity mn(x;Dn) is referred to as the infinite forest estimate. Obtaining the
same result for classification problems is not directly possible. Regarding the latter, sup-
pose that one has a binary classification problem such that w.l.o.g. M = {0, 1}. Then,
the finite forest estimate for this problem can be rewritten into mn,M (x;Θ1, . . . ,ΘM ,Dn) =
1

{︃
M∑︁
t=1

1{mn,1(x;Θt,Dn) = 1} ≥M/2

}︃
. Although the strong law of large numbers can be

applied here to the sequence {1{mn,1(x;Θt,Dn) = 1}}Mt=1 leading to a limit of the form
PΘ[mn,1(x;Θt,Dn) = 1], however, this does not automatically guarantee thatmn,M (x;Θ1, . . . ,
ΘM ,Dn) converges almost surely to 1{PΘ[mn,1(x;Θ,Dn)] ≥ 1/2}.
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This is possible, if P[PΘmn,1(x;Θ,Dn)] = 1/2] = 0, i.e. vanishing the likelihood of disconti-
nuity points, which leads to the possibility of applying the continuous mapping theorem. In
this sense, the Random Forest classifier has to be understood as a plugged-in Bayes classifier.

Now returning to the present cut criterion in the Random Forest, it is nothing else than the
cut criterion mentioned in Chapter 1 in (1.19) for regression problems, and (1.20) using the
Gini index with slight modifications of the corresponding domain the maximization is taken

over. Denoting with L
(k)
n,s the cut criterion at level 1 ≤ k ≤ ⌈log2(tn) ≤⌉+ 1 using the cell in

1 ≤ s ≤ 2k−1, where C
A

(k)
n,s

denotes all possible cuts in the cell region A
(k)
n,s, we can state the

cut criterion as follows:

[j∗n, zj∗n ] = arg max
j∈M(k)

try,s

[j,z]∈C
A
(k)
n,s

L(k)
n [j, z], (2.3)

whereM(k)
try,s ⊆ {1, . . . , p} is the random subset with cardinality mtry for cell s at level k.

In most of the theoretical work for Random Forests, it is assumed that the feature domain is
restricted to the p-dimensional unit cube, i.e. supp(X) = [0, 1]p, see e.g. Biau (2012); Scornet
(2016); Scornet et al. (2015); Wager and Athey (2018). This was usually preceded by the
initial, yet unproved idea that Random Forests are invariant under monotone transformations.
To formally close this gap, we will state this as a proposition proved at the end of this chapter.
It will give the theoretical basis that restricting the support to the p-dimensional unit cube
does not have sever generalization effects.

Proposition 2.1. Let Dn = {[X⊤
i , Yi]

⊤}ni=1 be a sequence of iid random vectors such that
Xi = [X1,i, . . . , Xp,i]

⊤. Suppose that Xj,1 has either a continuous density function or it has a
finite support supp(Xj,1) for all j ∈ {1, . . . , p}. Then there exists a sequence of transforma-
tions {Fj}pj=1, Fj : supp(Xj)→ [0, 1] such that given the data set Dn and the generic random
variables Θ1, . . . ,ΘM , the finite Random Forest is invariant whether it is trained on Dn or
on ˜︁Dn, where ˜︁Dn = {[˜︁X⊤

i , Yi]
⊤}ni=1 with ˜︁Xi = [F1(X1,i), . . . , Fp(Xp,i)]

⊤. In case of metric
data, {Fj}pj=1 is monotone. The results also hold for the infinite Random Forest, conditioned
on Dn.
It is worth to notice that a Random Forest tree does not directly require that the tree is sym-
metric, i.e. separating the tree at the root, the left tree part does not need to have the same
tree depth as the right part. This might be misleading, since we denoted with 1 ≤ s ≤ 2k−1

the corresponding cell or region we want to address at level 1 ≤ k ≤ ⌈log2(tn)⌉ + 1. In this
case, 2k−1 has to be understood as an upper bound, such that for some levels within the tree
structure, one might have less than 2k−1 regions. This depends on the hyper-parameter tn,
or on the maximal number of terminal node observations one alternatively can fix, such as in
R, python or SAS. Algorithm 3 on page 27 summarizes the Random Forest using the above
notations.

For regression problems, the Random Forest has the suitable mathematical property that it
can be rewritten into the weighted summation of the response {Yi}ni=1, see e.g. Biau (2012)
and Biau and Scornet (2016):

mn,M (x;Θ1, . . . ,ΘM ,Dn) =
n∑︂

i=1

Wn,i(x;Θ1, . . . ,ΘM ) · Yi, (2.4)

mn(x;Dn) := EΘ1 [mn,1(x;Θ1,Dn)] = mn,∞(x;Dn) =
n∑︂

i=1

Wn,i(x) · Yi, (2.5)



27

where Wn,i(x;Θ1, . . . ,ΘM ) = 1
M

M∑︁
t=1

{︂
1{Xi∈An(x;Θt)}
Nn(An(x;Θt))

}︂
. Here, An(x;Θt) denotes the hyper-

rectangular cell containing the fixed point x of the Random Forest tree designed by Θt. To be

in line with the previous notations, the cell An(x;Θt) is nothing else than A
(⌈log2(tn)⌉+1)
n,s(x) for

some specific region s = s(x), that depends on x and is constructed using Θt. For the infinite

Random Forest, the weights are given byWn,i(x) = EΘ

[︂
1{Xi∈An(x;Θ1)}
Nn(An(x;Θ1))

]︂
. It is worth to notice

that the weights {Wn,i(x,Θ1, . . . ,ΘM )}ni=1 form a sequence of identically distributed random
variables, but possess complex dependency structures not only with the features X, but also
with the response Y making the Random Forest model complex in mathematical analy-
sis. Therefore, applying theoretical results similar to Barbe and Bertail (1995); Hall (1992);
Præstgaard and Wellner (1993) or Efron and Tibshirani (1994) from (weighted) bootstrap-
ping is not straightforward and face difficulties. The weights for both, the finite and infinite
Random Forest fulfill the property that P- almost surely Wn,i(x,Θ1, . . . ,Θm),Wn,i(x) ≥ 0

for all i = 1, . . . , n with
n∑︁
i=1

Wn,i(x;Θ1, . . . ,ΘM ) = 1 respectively
n∑︁
i=1

Wn,i(x) = 1.

The complexity arises due to the dependency of the weights towards the response {Yi}ni=1

originating from the usage of the data Dn in the cut criterion L
(k)
n,s for all k and s. The

representation of the Random Forest in terms of equations (2.4) and (2.5) enables the con-
sideration of the Random Forest as a nearest neighbor method, such as the authors in Biau
and Devroye (2010) have discovered.

Beside the complexity of the Random Forest construction procedure, the prediction of obser-
vations {X}ni=1 potentially being part of the training data Dn is a non-trivial undertaking.
This is usually required for evaluating the Random Forest method with regard to its perfor-
mance, as described in Chapter 1 equation (1.5) resp. (1.8). There, it was assumed that the
pair Z := [X⊤, Y ]⊤ is an independent copy of the training data Dn, such that Z is unseen for
mn,M (·;Θ1, . . . ,ΘM ,Dn) resp. mn(·;Dn). In order to evaluate prediction performance of the
Random Forest, in general, one would require to split the data set Dn into a test and training
set. This comes with the cost of potentially poor performance, especially when the sample
size is small, since the algorithm is trained on a reduced sample size. The Random Forest,
or in general any CART-like algorithm combined with the bagging procedure has the nice
property that an initial separation into a test and training set is not required. Instead, one
can make use of the Out-Of-Bag principle. That is, for predicting the outcome Yi using a
feature Xi, use only those trees among the t = 1, . . . ,M , that did not use Xi for constructing
the tree using Θt. Considering the two possible sampling strategies in Breiman’s Random
Forest, namely sampling without replacement of an < n points or sampling an ≤ n points
with replacement. Then, with positive probability, one can find at least one tree that did
not used for a fixed i ∈ {1, . . . , n} the feature Xi and Yi for training. Out-of-Bag Random
Forest predictions have therefore been a key part of theoretical analysis in this thesis, en-
abling a more realistic viewpoint in Random Forest predictions. Therefore, we denote with
mOOB
n,M (x;Θ1, . . . ,Θm,Dn) and mOOB

n (x;Dn) = mOOB
n,∞ (x;Dn) the Out-Of-Bag prediction of

the finite and infinite Random Forest. For the infinite Random Forest, the Out-Of-Bag
prediction requires a more thorough analysis, which is shifted to the upcoming subsections
emphasizing the theoretical work conducted within this thesis.
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Algorithm 3: Random Forest for regression or classification.

Input: Training set Dn, number of decision trees M , mtry ∈ {1, . . . , p},
an ∈ {1, . . . , n}, tn ∈ {1, . . . , an} and sampling strategy S∗

Output: Random forest estimate mn,M

1 for j = 1, . . . ,M do
2 Select an data points according to the resampling strategy S∗ from Dn;
3 Set nnodes = 1 ;
4 while nnodes ≤ tn do
5 Select without replacement a subsetMtry ⊆ {1, . . . , p} with |Mtry| = mtry;
6 for s = 1, . . . , k = ⌈log2(nnodes)⌉+ 1 do

7 Find (j∗s , z
∗
s ) = arg min

j∈Mtry

(j,z)∈C
A
(k)
n,s

L
(k)
n (j, z), where C

A
(k)
n,s

is the set of all possible

cuts in A
(k)
n,s. Moreover, for regression problems, we have

L(k)
n (j, z) =

1

Nn(A
(k)
n,s)

n∑︂

i=1

(Yi − Ȳ A
(k)
n,s

)21{Xi ∈ A(k)
n,s} −

1

Nn(A
(k)
n,s)
·

n∑︂

i=1

(Yi − Ȳ A
(k)
n,s,L

1{Xji < z} − Ȳ
A

(k)
n,s,R

1{Xji ≥ z})21{Xi ∈ A(k)
n,s},

8

with A
(k)
n,s,L = {x ∈ A(k)

n,s|xj < z}, A(k)
n,s,R = {x ∈ A(k)

n,s|xj ≥ z} and Ȳ A
(k)
n,ℓ

denotes the mean of the Yi’s over A
(k)
n,s. For classification problems, we

have

L(k)
n (j, z) =

⎧
⎨
⎩ϕK(p(A(k)

n,s))−
Nn(A

(k)
n,s,L)

Nn(A
(k)
n,s)

· ϕK(p(A
(k)
n,s,L))

−
Nn(A

(k)
n,s,R)

Nn(A
(k)
n,s)

· ϕK(p(A
(k)
n,s,R))

⎫
⎬
⎭ ,

where A
(k)
n,s,L = {x ∈ A(k)

n,s|xj = z}, A(k)
n,s,R = {x ∈ A(k)

n,s|xj ̸= z} and Ȳ
A

(k)
n,ℓ

denotes the mode of the Yi’s over A
(k)
n,s with

ϕK(p(A)) =
K∑︁
t=1

pt(A)(1− pt(A)) and pt(A) is the relative fraction of

observations with class label ℓt, t ∈ {1, . . . ,K} in A;
9 Cut the cell A

(k)
n,s at (j∗s , z

∗
s ) resulting into A

(k)
n,s,L and A

(k)
n,s,R ;

10 Update: A
(k+1)
n,2s−1 ←− A

(k)
n,s,L and A

(k+1)
n,2s ←− A

(k)
n,s,R ;

11 nnodes = 2nnodes ;

12 end

13 end
14 Set mn(·; Θj ,Dn) as the j-th constructed tree.

15 end
Result: Collection of M decision trees {mn,1(·;Θj ,Dn)}Mj=1 used to obtain the

aggregate regression estimate mn,M in
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Beside point predictions, the Random Forest method can also be considered as a tool for
variable selection, see e.g. Biau and Scornet (2016); Breiman (2001); Gregorutti et al. (2017);
Ishwaran (2007); Louppe et al. (2013). The latter refers to the procedure of extracting an
informative feature subset S ⊆ {1, . . . , p} such that the regression function ˜︁m(x) resp. the
classifier ˜︁g(x) can be reduced to a smaller domain, say xS ∈ Rs, with s = |S| and ˜︁m(x) =
m(xS) resp. ˜︁g(x) = g(xS) for all xS ∈ Rs, with xS = (xi)i∈S , x = (xi)

p
i=1. Hence, the term

informative arises from the fact that features in {1, . . . , p} \S are not required for predicting
the outcome for every x ∈ Rp, such that they can be left out. Following the description given
in Biau and Scornet (2016), the Random Forest delivers actually two measures, that can be
used for variable selection procedures in both, regression and classification procedures:

1. The Mean Decrease in Impurity (MDI) measures for every variable j ∈ {1, . . . , p} its
total decrease in node impurity averaged over the forest. That is, for all j ∈ {1, . . . , p}
with L

(k)
n,s = L

(k)
n,s,Θt

being the cut criterion constructed with Θt (see Algorithm 3 for
its definition), we have

MDIn,M (j) =
1

M

M∑︂

t=1

∑︂

k,s

|Nn(A
(k)
n,s(·;Θt))|
n

· L(k)
n,s(j, zj)·

1
{︂
L(k)
n,s[j, zj ] ≥ L(k)

n,s[ℓ, zℓ], ∀ℓ ̸= j, zj , zℓ

}︂
. (2.6)

2. The Mean Decrease Accuracy or permutation importance (I) measures the decrease in
accuracy for each tree t = 1, . . . ,M after permuting the values of a feature j ∈ {1, . . . , p}
among the set of Out-of-Bag samples and averages the result over the forest. Denoting

with D−(t)
n = D−(t)

n (Θt) the index set of Out-of-Bag samples in tree t with cardinality
γn such that πj,t is a permutation along the j-th feature in tree t, then the permutation
importance for the variable j ∈ {1, . . . , p} is given by

IOOBn,M (j) =
1

γnM

M∑︂

t=1

∑︂

i∈D(−t)
n

{︁
ψ
(︁
Yi,m

OOB
n,M (X

πj,t
i ;Θt)

)︁
− ψ

(︁
Yi,m

OOB
n,M (Xi;Θt)

)︁}︁
,

(2.7)

where ψ(x, y) = (x − y)2 is used for regression , i.e. the mean squared error. For
classification problems, ψ(x, y) = 1{x ̸= y} as the misclassification error is used.

For practical problems, lower values ofMDI resp. I indicate less informative features. How-
ever, a well-founded statistical inference procedure in terms of hypothesis tests for selecting
variables j ∈ {1, . . . , p} based on these measures are rather sparse resp. do not exist so
far. One part of this thesis aims to close this gap by proving statistical properties of such
measures that are necessary for constructing suitable test statistics based on MDIn,M resp.
IOOBn,M in the future.

2.1 Overview of Theoretical Results

This section aims to shortly summarize the theoretical work conducted so far for Random
Forest models. They have mainly focused on central limit theorems and consistency proper-
ties such as that described in Chapter 1. First, we will recapture consistency results for both,
regression and classification Random Forest models and then state central limit theorems
developed for Random Forest models, too.
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A. Consistency:

For classification purposes, a formal attend to prove consistency of Random Forest models
has been conducted in Biau et al. (2008). Therein, universal weak or strong consistency
according to Definition 1.4 in Chapter 1 could not be established. Instead, weak consistency
(not in L1-sense, but in probability) for a smaller class of distributions could be shown,
such as features having support on [0, 1]p or having non-atomic marginals. As shown in
Proposition 2.1, the assumption that features are supported on [0, 1]p is not severe, such that
this restriction does not have a great impact. However, the drawbacks of their results are
simplifying assumptions on the tree constructing process of the Random Forest. Basically,
they aim to destroy the original dependencies in the cut criterion by introducing random
split-point selection procedures being independent of Dn. To be more precise, Biau et al.
(2008) could prove weak consistency for certain distributions for the following modifications
of the Random Forest:

� For the purely Random Forest classifier : During the tree construction process, the split
direction j and the split value z = zj are chosen uniformly at random from {1, . . . , p}
resp. from the range of the current cell at consideration. Starting from the root cell, the
procedure for cutting a cell and conducting the next cut is also random by uniformly
selecting the corresponding leave. The procedure is stopped after κ ≥ 1 iterations,
where κ is a fixed and pre-defined parameter. The aggregation to the final prediction
is conducted similarly to the Random Forest.

� For the scale-invariant Random Forest classifier : The tree construction procedure of
the scale-invariant Random Forest classifier is similar to the purely Random Forest
classifier, except the procedure for selecting the cut value z = zj . Therein, a more
data-dependent cutting strategy is thought. At the current leave, select at random an
index i among, lets say N ≤ n observations in that leave, and determine the cutting
value z = zj such that the i smallest values of these N observations fall in one cell, and
the rest in the other cell (see Biau et al., 2008, page 2020).

Note that the above simplifications of the Random Forest are again different to the extremely
randomized tree algorithm Extra-Trees in Geurts et al. (2006), where subsampling or boot-
strapping during bagging is dropped and additional randomization is introduced within each
node of a tree in the ensemble. In Extra-Trees, the split-points are chose uniformly at random
from each range of (Xj)j∈E and E is randomly chosen subset of {1, . . . , p}. The optimal cut is
then conducted based on the same impurity measure as in the Random Forest. In the work
of Biau et al. (2008), the authors could show that Breiman’s Random Forest classifier is not
weakly universally consistent. For both, fully and not fully grown trees (i.e. tn < an resp.
tn = an), they could find a distribution, such that Breiman’s Random Forest classifier is not
consistent.

For regression problems, a consistency attempt has been made in Biau (2012) again making
simplifying assumptions on the tree construction process. Therein, Biau could prove that the
centered Random Forest is weakly consistent for distributions with finite second response mo-
ment and feature support on [0, 1]p. The type of Random Forest considered in the latter work
assumes that the split direction j ∈ {1, . . . , p} is chosen with a potentially data dependent
probability pn,j ∈ (0, 1). The cut value z = zj is then chosen as the midpoint of the current
node at consideration. This type of Random Forest will exactly result into 2k leaves, where
k is some initial hyper-parameter. However, in Scornet et al. (2015), the consistency result
could be extended to Breiman’s original Random Forest. Therein, the authors could prove
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for fully and not fully grown trees weak consistency for a certain class of distribution. To be
more precise, the results in Scornet et al. (2015) can be summarized as follows: Assuming
that

Y =

p∑︂

j=1

mj(Xj) + ϵ, (2.8)

wheremj : [0, 1] −→ R is supposed to be continuous, X ∼ Unif([0, 1]p) and that ϵ ∼ N(0, σ2)
with σ2 ∈ (0,∞), the infinite Random Forestmn(·;Dn) = mn,∞(·;Dn) is weakly consistent for
distributions resp. data generating processes originating from (2.8), provided that an →∞,
tn → ∞ and tn(log(an))

9/an → ∞. For fully grown trees, i.e. tn = an, two additional as-
sumptions were required to establish the weak consistency. However, they are rather difficult
to verify in practice and can be recalled in Scornet et al. (2015) on page 1723.

B. Central Limit Theorems:

Central limit theorems based on Random Forest models have mainly been established for
regression learning problems. Considering the work of Mentch and Hooker (2016), the finite
Random Forest estimate at a fixed prediction point x ∈ Rp can be considered as an infinite
order U-statistics with random kernel, since

mn,Mn(x;Θ1, . . . ,ΘMn ,Dn) =
1

Mn

Mn∑︂

t=1

mn,1(x;Θt,Dn)

=
1

Mn

Mn∑︂

t=1

mn,1(x;Θ
(2)
t ,D∗

an(Θ
(1)
t )),

where D∗
an(Θ

(1)
t ) is the resampled data set depending on Θ

(1)
t . They make the number of

decision treesM =Mn depending on the sample size n. Assuming a Lindeberg-type condition
together with the side conditions that n/Mn → 0 and an/

√
n → 0 as n → ∞, a pointwise

convergence to the standard normal distribution of the following sequence of statistics could
be obtained:

√︁
Mn ·

mn,Mn(x;Θ1, . . . ,ΘMn ,Dn)− E[mn,Mn(x;Θ1, . . . ,ΘMn ,Dn)]√︁
a2nζ1,an

d−→ N(0, 1), (2.9)

where ζ1,an = Cov(mn,1(X1,X2, . . . ,Xan ;Θ1),mn,1(X1,X
′
2, . . . ,X

′
an ,Θ

′
1)), with X′

i and Θ′
1

being independent copies of Xi and Θ1 for i = 2, 3, . . . , an.
In Wager and Athey (2018) a similar result was proven, but for different underlying as-
sumptions. There, the authors assumed that the data generating process is of the following
form:

1. m(x) = E[Y |X = x] and E[Y 2|X = x] is assumed to be Lipschitz-continuous with
[X⊤

i , Yi]
⊤ ∈ [0, 1]p × R,

2. V ar(Y |X = x) = σ2(x) ∈ (0,∞),

3. E[|Y −m(x)|2+δ|X = x] ≤ C for some constants δ, C > 0, uniformly over all x ∈ [0, 1]p.

Moreover, additional assumptions on the decision trees used in the Random Forest are set
such as:
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� The decision trees are honest, that is, for every sample point i = 1, . . . , n it uses the
response variable Yi only for the computation of leave values or for the decision where
to place splits, but not for both.

� The decision trees are α-regular with α ≥ 0.2, that is, each split leaves at least a fraction
α of the accessible training examples on each sides of the splitting node and trees are
grown to depth k ∈ N for some priorly chosen k such that each leaves contains between
k and 2k − 1 observations.

� The decision trees are symmetric, that is, the prediction does not depend on the index
ordering of the training examples.

� The decision trees are random-split trees, that is, the probability that the j-th feature
with j ∈ {1, . . . , p} characterizes the next split is bounded below by ν/p for some
0 < ν ≤ 1.

Given these assumptions and that an/n
β → 1 for some β with 1−

(︂
1 + p

ν ·
log(α−1)

log((1−α)−1)

)︂−1
<

β < 1 as n → ∞, Wager and Athey (2018) show asymptotic normality of the Random
Forest and that its variance can be consistently estimated using the infinitesimal jackknife
estimator proposed in Wager et al. (2014). To be more precise, there exists a sequence σn(x)
of estimators such that the following asymptotic holds under the above assumptions:

mn,∞(x;Dn)−m(x)

σn(x)

d−→ N(0, 1), (2.10)

as n → ∞, where σn(x) can be consistently estimated. However, their result is slightly
different to the one given in Mentch and Hooker (2016). The latter delivers a central
limit theorem for the quantity E[mn,Mn(x;Θ1, . . . ,ΘMn ,Dn)] using the finite Random Forest
mn,Mn(x;Θ1, . . . ,ΘMn ,Dn). These results enable the construction of asymptotic prediction
intervals for fixed points x. The latter is an important research question for Machine Learn-
ing algorithms, since it combines the procedure of prediction with statistical properties such
as uncertainty quantification. This, because having a prediction interval at hand, one can
deliver statements within what range the prediction at x might lie given a certain level, say
1 − α, α ∈ (0, 1) of coverage. However, the results given in (2.9) and (2.10) lead to differ-
ent asymptotic prediction intervals. Denoting with mn,Mn(x) = mn,Mn(x;Θ1, . . . ,ΘMn ,Dn)
such that

C(1)n,1−α(x) =

[︄
mn,Mn(x)−

√︁
a2nζ1,an√
Mn

z1−α/2, mn,Mn(x) +

√︁
a2nζ1,an√
Mn

z1−α/2

]︄

is an interval with z1−α/2 as the 1 − α/2 quantile of the standard normal distribution for
α ∈ (0, 1), we can deduce with the proven results in Mentch and Hooker (2016) that

P[E[mn,Mn(x;Θ1, . . . ,ΘMn)] ∈ C(1)n,1−α(x)] −→ 1− α, as n→∞. (2.11)

Hence, the set C(1)n,1−α(x) can be considered as an asymptotic prediction interval for the
quantity E[mn,Mn(x;Θ1, . . . ,ΘMn ,Dn)], which might be potentially different to m(x). In
order to extend the result of Mentch and Hooker (2016) for prediction intervals covering the
interesting quantity m(x) with certainty 1− α, one needs to establish pointwise consistency
of the Random Forest predictor mn,Mn(x;Θ1, . . . ,ΘMn ,Dn), which is in general not directly
given. Therefore, given the assumption for establishing the result in (2.9), one cannot directly
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deduce that C(1)n,1−α(x) is an asymptotic prediction interval for m(x), one might be interested
in. This is different to the result given in (2.10). Therein, the interval

C(2)n,1−α = [mn,∞(x;Dn)− σn(x) · z1−α, mn,∞(x;Dn) + σn(x) · z1−α]

can be considered as an asymptotic prediction interval for the interesting quantity m(x), i.e.

P[m(x) ∈ C(2)n,1−α(x)] −→ 1− α, as n→∞. (2.12)

This, however, comes with the costs of much stronger assumptions affecting also the tree
construction process of the Random Forest, which might neither be verifiable nor valid.
Especially in practical problems, for which Breiman’s original Random Forest is used, sim-
plifying assumptions on the tree construction process such as those stated above are rarely
met.

In Scornet (2016) a central limit theorem for the infinite Random Forest could be established.
Therein, Scornet shows that for M →∞ and conditioned on Dn, one has

√
M · (mn,M (x;Θ1, . . . ,ΘM ,Dn)−mn,∞(x;Dn)) d−→ N(0, ˜︁σ2(x)), (2.13)

where ˜︁σ2(x) = V arΘ[mn,1(x;Θ,Dn)] = V ar[mn,1(x;Θ,Dn)|Dn] ≤ 4 · max
1≤i≤n

Y 2
i while assum-

ing some side conditions regarding the kernel function of the Random Forest. Scornet also
extended the result of the pointwise convergence as given in (2.13) to the whole functional
mn,M (·;Θ1, · · · ,ΘM ,Dn) resulting into convergence to a Gaussian process. Constructing
pointwise prediction intervals based on the result given in (2.13) is not straight forward,
since convergence holds conditioned on Dn for an increasing number of decision trees M in
the ensemble. For the purpose of completion, we state the following corollary, which extends
the result in (2.13) to prediction intervals:

Corollary 2.1. Consider Breiman’s original Random Forest for regression problems on the

data set Dn with P[|Y | <∞] = 1 and let x ∈ [0, 1]p be fixed. Then, the random set C(3)n,M,1−α(x)
given by

[mn,M (x;Θ1, . . . ,ΘM ,Dn)− z1−α/2 · ˜︁σ2(x), mn,M (x;Θ1, . . . ,ΘM ,Dn) + z1−α/2 · ˜︁σ2(x)]

is a valid 1 − α pointwise and asymptotic prediction interval for the quantity mn,∞(x;Dn),
as M →∞ for any finite n and given Dn.

Note that equation (2.13) was not primarily invented for its usage within prediction intervals
as proven in Corollary 2.1, but can be considered as a theoretical tool for illuminating the
interaction between the finite and infinite Random Forest. However, our result shows that
it can be extended to prediction intervals for the quantity mn,∞(x) given the data Dn. The
pleasant property that the sequence {Θt}Mt=1 is iid given the dataDn can lead to the estimation
of a consistent estimator ˆ︁σ2n,M for ˜︁σ2(x) given the data Dn using the strong law of large
numbers, i.e. we have for M →∞ in almost sure sense given Dn

ˆ︁σ2n,M (x) =
1

M − 1

M∑︂

t=1

(mn,1(x;Θt,Dn)−mn,M (x;Θ1, . . . ,ΘM ,Dn))2 −→ σ̃2(x). (2.14)

This also allows to account for heteroscedasticity in the residual variance. A potential problem
of the above result is the conditioning of the prediction interval on the training set Dn. For



34 Chapter 2 ■ Random Forest Models

a different training set, say D′
n, one can potentially obtain a completely different prediction

interval C(3)n,M,1−α(x) such that the latter is only valid for the training set at hand, namely Dn.
Nevertheless, an interesting result in Scornet (2016) under the assumption that Y = m(x)+ϵ,
where ϵ is a centered Gaussian noise with variance σ2 ∈ (0,∞) and ∥m∥∞ := sup

x
|m(x)| <∞

is the inequality

0 ≤ R(mn,M )−R(mn,∞) ≤ 8

M
·
(︁
∥m∥2∞ + σ2(1 + log(n))

)︁
, (2.15)

with R(mn,M ) = E[(mn,M (X;Θ1, . . . ,ΘM ,Dn)−m(X))2] and R(mn) = E[(mn(X)−m(X))2].
Equation (2.15) can be used to estimate or bound the error made for choosing a finite number
of decision trees. In addition, it can also be used for choosing an appropriate number of
decision trees M , while controlling for accuracy. For example, bounding the error by a fixed
number, say err > 0, one can chose M , such that

M ≥ 8

err
·
(︁
∥m∥2∞ + σ2(1 + log(n))

)︁
.

Regarding the above inequality, the quantities ∥m∥∞ and σ2 are unknown in practice. How-
ever, ∥m∥∞ can be estimated through max

1≤i≤n
|mOOB

n,M (Xi)|, while a consistent estimator for the

residual variance can be proposed through our work in (P3) resp. the additional work in
Section 2.2.
In addition, we will use equation (2.15) in Section 2.2 for the estimation of potential bias
resulting from the choice of finite M in uncertainty quantification.

C. Other interesting theoretical results:

So far, we have recalled theoretical properties of Random Forest models that relate to consis-
tency and central limit theorems. Closely connected to the issue of constructing prediction
intervals for regression learning problems, the work of Meinshausen (2006) enables the con-
struction of point-wise prediction intervals without explicitly stating (asymptotic) limiting
distributions of test statistics depending on the Random Forest predictor. Instead, the quan-
tity of interest in the work of Meinshausen (2006) is the α-Quantile function

Qα(x) = inf{y | F (y|X = x) ≥ α}, (2.16)

where F (y|X = x) = P[Y ≤ y|X = x] is the conditional distribution function of Y given
the prediction point x and α ∈ (0, 1). Estimating or extracting knowledge of Qα requires
knowledge of the conditional distribution function F (y|X = x). However, Meinshausen used
the fact that F (y|X = x) = E[1{Y ≤ y}|X = x], which is the conditional expectation of
a modified random variable ˜︁Y (y) = 1{Y ≤ y}. Since Random Forest models for regression
learning problems aim to approximate the conditional mean E[Y |X = x] by a weighted sum
of the form as given in (2.4) resp. (2.5), his idea was to approximate F (y|X = x) also by a
weighted sum. That is, F (y|X = x) is approximated by

F̂n,M (y|x) =
n∑︂

i=1

Wni(x;Θ1, . . . ,ΘM ) · 1{Yi ≤ y}, (2.17)

where the weights are extracted from a Random Forest trained on the initial data set Dn and
afterwards, the response values are substituted by the random variables ˜︁Yi(y) = 1{Yi ≤ y},
for all i = 1, . . . , n. In order to establish consistency of the form

sup
y∈R
|F̂n,M (y|X = x)− F (y|X = x)| P−→ 0, as n→∞, (2.18)
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Meinshausen required Lipschitz-continuity and strict monotonicity in y of the conditional
distribution function F (y|X = x), while the features X are uniformly distributed on [0, 1]p.
In addition, assumptions similar to the α-regularity of the underlying decision trees with
α ∈ (0, 1/2] together with the random-split property are set while the node-size behavior is
controlled. Empirical results regarding the usage of Meinshausen’s quantile regression forest
has been conducted in Vaysse and Lagacherie (2017), for example. The results in Meinshausen
(2006) have the impact that asymptotic 1−α prediction intervals at x can be computed, i.e.

C(4)n,1−α(x) := [ ˆ︁Qn,α/2(x), ˆ︁Qn,1−α/2(x)],

where Q̂n,α = inf{y ∈ R|F̂n,M (y|X = x) ≥ α} is the plug-in estimate of the quantile function

Qα(x) using F̂n,M (y|X = x). Due to the result given in (2.18), one has Qn,α(x) −→ Qα(x)
in probability, as n → ∞, for arbitrary but fixed x ∈ Rp, and α ∈ (0, 1). Hence, one has
P[Y (x) ∈ [ ˆ︁Qn,α/2(x), ˆ︁Qn,1−α/2(x)]] −→ 1− α, as n→∞, assuming Y (x) = m(x) + ϵ. Again,

C(4)n,1−α(x) is different to C(1)n,1−α(x), C
(2)
n,1−α(x) and C(3)n,M,1−α(x) for not being a prediction

interval of m(x), E[mn,Mn(x;Θ1, . . . ,ΘMn)] or mn,∞(x;Dn) (the latter for fixed Dn), but
rather for the true value Y (x). The latter is actually of primary interest when constructing
prediction intervals.

2.2 Overview and Implications of Theoretical Results in this
Thesis

Our research on theoretical properties of the Random Forest method has mainly focused on
two aspects: First, we aimed to quantify uncertainty for Breiman’s original Random Forest
for the purpose of prediction. This can also cover the construction of prediction intervals.
Secondly, we were interested in theoretical properties of the variable selection mechanism, for
which Breiman’s original Random Forest method is often used as a tool for feature extraction
and thus interpretability in potentially high-dimensional settings. Note that this subsection
is not directly devoted to the summary of research articles written during the doctoral study
program, but rather emphasizes theoretical implications of the developed results including
additional findings after their publication and the motivational background that led us to
these research fields. Regarding the latter, Chapter 4 will give more insights on the two
articles

� Ramosaj, B. and Pauly M., Consistent estimation of residual variance with random
forest Out-Of-Bag errors., Statistics and Probability Letters, 151: 49− 57, 2019,

� Ramosaj B. and Pauly M., Asymptotic Unbiasedness of Permutation Importance in
Random Forest Models. arXiv preprint arXiv:1912.03306,

closely connected to the theoretical findings in the upcoming sections.

Uncertainty Quantification

The short summary of theoretical results obtained for Random Forest models have revealed
that most of the scientific work has been focused on consistency and uncertainty quantifi-
cation in Random Forest models. Especially for the latter, rather strict assumptions on
the tree construction process have been imposed in order to establish central limit theorems
for regression problems, that might either be not verifiable, resp. not valid for the original
Random Forest considered in Breiman (2001). Also for the consistency results obtained in
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Biau et al. (2008) and Biau (2012), rather simplifying assumptions on the tree construction
process have been set. An exception was the work of Scornet (2016), which established weak
consistency by means of (1.2) for the infinite Random Forest mn(·;Dn). Given these results
one research question aimed to be tackled in this thesis is

(H1) Is it possible to construct (asymptotic) prediction intervals for Breiman’s original Ran-
dom Forest without imposing stringent assumptions on the tree construction process ?

We focused on regression learning problems, for which we assume that the relationship be-
tween the response Y and the features X are of the form

Y = m(X) + ϵ, (2.19)

where X is independent of ϵ such that E[ϵ] = 0, V ar(ϵ) = σ2 ∈ (0,∞) and supp(X) = [0, 1]p.
For this case, we considered general prediction intervals for Y (x), x ∈ [0, 1]p of the form

C(x) = [m(x) + qα/2 · σ, m(x) + q1−α/2 · σ], (2.20)

where qα is the α- quantile of ϵ/σ with α ∈ (0, 1). Since the quantities m(x), qα and σ are in
general not known, one requires estimators of them, say ˆ︁mn(x) and ˆ︁σ2n, fulfilling

(i) ˆ︁mn(x) −→ m(x) in probability, as n→∞,

(ii) ˆ︁σ2n −→ σ2 in probability, as n→∞.

(iii) In addition, knowledge on the quantiles qα for α ∈ (0, 1) is required.

Under these assumptions, one might construct a valid and asymptotic (1 − α) prediction
interval for the response Y (x) for fixed x the following way:

Cn,1−α(x) = [ˆ︁mn(x) + qα/2 · ˆ︁σ2n, ˆ︁mn(x) + q1−α/2 · ˆ︁σ2n]. (2.21)

For the sake of completion, we state the asymptotic validity of the prediction interval Cn,1−α(x)
as a proposition and a formal proof is given at the end of this chapter.

Proposition 2.2. Let α ∈ (0, 1) and x ∈ [0, 1]p be fixed but arbitrary and assume the
regression model given in (2.19) together with the assumptions (i) and (ii). Denoting with qα
the α-quantile of the scaled residuals ϵ/σ. Then, Cn,1−α(x) is an asymptotic (1−α) prediction
interval for Y (x).

Proposition 2.2 enables the construction of valid, asymptotic prediction intervals, if beside
our current framework, the assumptions given in (i) and (ii) are given together with Scor-
net’s result of weak consistency such as the one proven in Scornet et al. (2015). The aim
was to construct prediction intervals of the form Cn,1−α(x) using Breiman’s original Random
Forest method. Regarding (i), the work of Scornet et al. (2015) can be considered as an
initial step for fulfilling this assumption. It is worth to notice that Scornet et al. (2015)
did not establish pointwise consistency as requested in (i), but establishes an averaged ver-
sion of consistency, i.e. ˆ︁mn,∞(X) → m(X) in L2-sense and thus in probability under some
side conditions mentioned one pages 29 − 30 of this thesis. Note that the generalization of
condition (i) to an averaged convergence, i.e. to ˜︁mn(X) −→ m(X) in probability does not
prohibit us in constructing prediction intervals. Although it does not allow us to construct
pointwise intervals as Cn,1−α(x), one can still construct a prediction interval for the averaged
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version of Cn,1−α(x). Denoting with a(x) and b(x) the left and right boundaries of the pre-
diction interval as given in (2.21), an averaged version of the latter is given by Cn,1−α = [a, b],
where a =

∫︁
supp(X)

a(x)dFX(x) and b =
∫︁

supp(X)

b(x)dFX(x). Regarding assumption (ii), no

well-founded theoretical work based on Breiman’s Random Forest method could be found.
Therefore, our first theoretical work was focused on deriving an estimator σ̂2n for σ2, which
makes use of the Random Forest method and is consistent in the sense of (ii). A preliminary
work for different residual variance estimators using the Random Forest method was given
in Mendez and Lohr (2011) applying those to a bunch of simulation studies and different
empirical data. However, no theoretical guarantees regarding its validity could be delivered.

In the article titled Consistent estimation of residual variance with random forest Out-Of-
Bag errors, which has been published in Statistics and Probability Letters (see Ramosaj and
Pauly, 2019b), we proposed three residual variance estimators and prove their consistency
in L1-sense, which implies consistency in the sense of (ii). They are given by the following
estimators:

1. ˆ︁σ2RF := 1
n

n∑︁
i=1

(ˆ︁ϵi − ϵ̄·)2, where ˆ︁ϵi = Yi −mOOB
n,∞ (Xi;Dn) and ϵ̄· = 1

n

n∑︁
i=1
ˆ︁ϵi,

2. ˆ︁σ2RFboot := ˆ︁σ2RF− ˆ︁RB(mOOB
n,∞ ), where ˆ︁RB(mOOB

n,∞ ) is a bootstrapped estimator of the Bias
of σ2RF using the Random Forest. For more details on this, we refer to the summary
chapter in this thesis resp. to Ramosaj and Pauly (2019b).

3. ˆ︁σ2RFfast = ˆ︁σ2RF ·
(︂
1− 1

a2n

)︂
.

All three estimators can be considered as a preliminary step in answering (H1). We assumed
weak consistency in the sense of Definition 1.2 such as proven in Scornet et al. (2015) for the
infinite Random Forest mn(·;Dn), that is,

lim
n→∞

E[(mn(X)−m(X))2] = 0. (2.22)

Then, together with some side conditions regarding the sampling strategy and the sub-
sampling rate, we have shown that all three estimators are L1 - consistent. Note that the
result does not yet allow to model heteroscedastic variance in the sense that the residual
variance σ2 is not admitted to depend on x ∈ Rp with x ∈ supp(X). A byproduct of our
theoretical results regarding the consistency of ˆ︁σ2RF , ˆ︁σ2RFfast and ˆ︁σ2RFboot are the consistency

results for the Out-of-Bag Random Forest estimator mOOB
n,M resp. mOOB

n,∞ . We could show

that under the assumption (2.22), the Out-of-Bag estimator mOOB
n,∞ is consistent in the sense

of Definition 1.2. A more detailed description can be found in Chapter 4, resp. in Ramosaj
and Pauly (2019b). However, digging a little deeper than in (P3) and (P4), new information
regarding the interpretation of the limiting quantity mOOB

n,∞ can be established. In order to
unify the frameworks of both articles (P3) and (P4), we set the following proposition and
prove it in the last section:

Proposition 2.3. For any regression problem with training set Dn on which the Random
Forest according to Algorithm 3 is applied, it holds PΘ - almost surely that

lim
M→∞

mOOB
n,M (Xi;Θ1, . . . ,ΘM ,Dn) −→ EΘ1 [mn,1(Xi;Θ1,Dn)|Θ(1)

i,1 = 0]. (2.23)

Furthermore, if ∥m∥∞ <∞ and P[|Y1| <∞] = 1 holds, then for any independent copy X of
X1, condition (2.22) implies the consistency of the finite Random Forest in the sense that

E[(mn,M (X;Θ1, . . . ,ΘM ,Dn)−m(X))2] −→ 0, as (M,n)
seq−→ (∞,∞). (2.24)
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Proposition 2.3 reveals that the infinite OOB Random Forest is nothing else than a sort of
conditional expectation over the generic random element Θ. In (P3), this has been denoted
as the infinite Random Forest estimate on the reduced training set Dn−1 := Dn \ {[X⊤

i , Yi]
⊤}

for fixed i ∈ {1, . . . , n} (see Ramosaj and Pauly (2019b), Lemma 1). In (P4), we denoted
the infinite Random Forest as EΘ[i]

[mn,1(Xi;Θ[i],Dn)], where Θ[i] refers to all those random
elements Θ, that did not select the i-th observation. Having in mind the first part of Proposi-
tion 2.3, the two quantities in (P3) and (P4) referring to the infinite Random Forest actually
indicate the infinite OOB Random Forest as the conditional expectation. The second part
of Proposition 2.3 reveals that condition (i) is also given for the finite Random Forest, if
condition (2.22) together with the two side-conditions on m and Y are true, while the limit
acts sequentially. Therefore, constructing (asymptotically) valid prediction intervals also for
the finite Random Forest should be possible with Proposition 2.3 and the upcoming work
regarding condition (ii). Based on our consistency results of ˆ︁σ2RF , ˆ︁σ2RFfast and ˆ︁σ2RFboot, while
assuming that the residuals follow a Gaussian distribution with mean 0 and residual variance
σ2 ∈ (0,∞), we can now obtain for every fixed i = 1, . . . , n the following random sets:

Cn,1−α,RF = [mOOB
n,∞ (Xi)− z1−α/2 · ˆ︁σ2RF , mOOB

n,∞ (Xi) + z1−α/2 · ˆ︁σ2RF ],
Cn,1−α,RFboot = [mOOB

n,∞ (Xi)− z1−α/2 · ˆ︁σ2RFboot, mOOB
n,∞ (Xi) + z1−α/2 · ˆ︁σ2RFboot],

Cn,1−α,RFfast = [mOOB
n,∞ (Xi)− z1−α/2 · ˆ︁σ2RFfast, mOOB

n,∞ (Xi) + z1−α/2 · ˆ︁σ2RFfast].

In addition, we could also show that ˆ︁σ2RF ≥ ˆ︁σ2RFfast ≥ ˆ︁σ2RFboot holds P-almost surely which
then yields to

P[Cn,1−α,RFboot ⊆ Cn,1−α,RFfast ⊆ Cn,1−α,RF ] = 1. (2.25)

We are now ready to state a theorem, which enables a possible solution for the research
question given in (H1).

Theorem 2.1. Let α ∈ (0, 1) be fixed and assume the regression model given in (2.19) such
that the residual variance is Gaussian with zero mean and variance σ2 ∈ (0,∞). Then we
have:

1. lim
n→∞

P[Yi ∈ Cn,1−α,RF ] ≥ 1− α for all i ∈ {1, . . . , n}, provided that (2.22) is valid.

2. Additionally assume that the Random Forest is trained using the sampling without re-
placement scheme of an < n observations such that a2n/n→∞ and assume the validity
of (2.22), then lim

n→∞
P[Yi ∈ Cn,1−α,RFfast] ≥ 1−α and lim

n→∞
P[Yi ∈ Cn,1−α,RFboot] ≥ 1−α.

Note that Theorem 2.1 together with equation (2.25) enables a formal ranking of the random
sets Cn,1−α,RF , Cn,1−α,RFboot and Cn,1−α,RF leading to an optimal choice when Cn,1−α,RFboot
is chosen. However, this comes with the cost of additional computational time for the es-
timation of the bias ˆ︁RB(mOOB

n ) using a Random Forest - based bootstrapping scheme as
described in Chapter 4, resp. Mendez and Lohr (2011) and Ramosaj and Pauly (2019b).
Regarding the interpretability of the intervals Cn,1−α,RF , Cn,1−α,RFboot resp. Cn,1−α,RFfast,
we cannot conclude that given a fixed observational point, say X = x ∈ supp(X), it holds
that P[Y (x) ∈ Cn,1−α,RF ],P[Y (x) ∈ Cn,1−α,RFboot],P[Y (x) ∈ Cn,1−α,RFfast] ≥ 1 − α. This

would require the construction of pointwise prediction intervals such as C(1)n,1−α(x), C
(2)
n,1−α(x),

C(3)n,M,1−α resp. C(4)n,1−α(x) which are closely related to pointwise consistency of Breiman’s
original Random Forest. Our derived intervals, however, can be considered as an average
prediction interval for Y (X) = m(X) + ϵ, since the probability measure P is also taken over
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the feature X. This is different to the pointwise case, where P is taken over all random com-
ponents for fixed X = x ∈ supp(X). Regarding the interpretability of the derived intervals
Cn,1−α,RF , Cn,1−α,RFboot and Cn,1−α,RFfast, one can say that on average, future predictions
using Breiman’s originial Random Forest might lie within the corresponding range with a
probability of at least 1−α. Hence, average prediction intervals for Breiman’s original Ran-
dom Forest can be constructed for regression learning problems, since the assumptions for
the validity of 2.22 do not exclude the assumptions considered in our work resp. Theorem
2.1. The coverage strength of the derived prediction intervals for practical problems will be
considered in a future work. We plan to conduct an extensive simulation study for potential
publication.

Additional Results for Residual Variance Estimators

The proposed estimators ˆ︁σ2RF and ˆ︁σ2RFboot have been analyzed regarding their performance
within an extensive simulation study in Mendez and Lohr (2011). However, their simulation
study is focused on feature dimensions being not larger than p = 6. Nonetheless, the Random
Forest method is well-known for its capability of treating high-dimensional data, such as
p ≈ n and p > n problems as well. Therefore, an interesting practical question regarding the
performance of the three estimators ˆ︁σ2RF , ˆ︁σ2RFboot and ˆ︁σ2RFfast for features being larger than
6 resp. approaching the number of observations n might be of interest. We could find out
that the three estimators tend to be positively biased, as the number of feature dimensions
increases. Although this seems to be in conflict with the derived theoretical results such as
their L1-consistency, the estimators should be asymptotically unbiased. Now, recalling the
theoretical results for the consistency of the residual variance estimators of the last section,
there is one potential source of bias, that is controlled in the theoretical part, but not when
it comes to the implementation of them in statistical software-packages such as R, SAS or
python: The finiteness of the number of decision trees M . Within the construction of the
estimators ˆ︁σ2RF , ˆ︁σ2RFboot and ˆ︁σ2RFfast, it has always been assumed that the number of decision
trees tends to infinity, i.e. for constructing each of them, we took the infinite Random Forest
estimator mn,∞. In the sequel, we call the effect of biased introduced by a finite choice of M
for bagged learners as the finite-M -bias theoretically given by mOOB

n,M (X1;Θ1, . . . ,ΘM ,Dn)−
mOOB
n,∞ (X1;Dn). Analytically simplifying the finite-M -bias is not directly possible, but we

aim to find an upper bound for it and use it as an estimator for the finite-M -bias. Note that
the finite-M -bias has also been identified in Wager et al. (2014) as a serious source of inflation

for estimators of V ar(mOOB
n,∞ (X1)) resp. V ar(mOOB

n,M (X1)). Considering ˆ︁σ2˜︃RF,M = 1
n

n∑︁
i=1
ˆ︁ϵ2i,M

such that ˆ︁ϵi,M = Yi −mOOB
n,M (Xi;Θ1, . . . ,ΘM ,Dn) we can set up the following proposition:

Proposition 2.4. Assume the regression model (2.19) while ∥m∥∞ =: K <∞ together with
(2.22). Then the estimator ˆ︁σ2˜︃RF,M is a consistent estimator of σ2 in the following sense

lim
n→∞

lim
M→∞

E[ˆ︁σ2˜︃RF,M ] = σ2.

If the residuals are additionally centered Gaussian with variance σ2, then we have

E[ˆ︁σ2˜︃RF,M − ˆ︁σ
2
˜︃RF,∞] ≤ 8

M
·
(︁
∥m∥2∞ + σ2(1 + log(n))

)︁
.

The second part of Proposition 2.4 uses the result given in Scornet (2016), inequality (2.15)
in order to upper-bound the expected value of the finite-M -bias of the residual variance
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estimators. It enables the construction of a finite-M -bias corrected estimator given by

ˆ︁σ2Mcorrect,M = ˆ︁σ2˜︃RF,M −
8

M
·
(︄(︃

max
i=1,...,n

|mn,M (Xi;Θ1, . . . ,ΘM ,Dn)|
)︃2

+ ˆ︁σ2˜︃RF,M (1 + log(n))

)︄
.

In addition to the finite-M -bias-corrected estimator ˆ︁σ2Mcorrect, we derive another residual
variance estimator aimed to control the finite-M -bias in the estimation ˆ︁σ2˜︃RF,M . This, be-

cause ˆ︁σ2Mcorrect uses an upper bound for the averaged finite-M -bias, which might lead to an
overestimation of the finite-M -bias. Our idea is based on the following heuristics, which we
call the one-step-estimation procedure:

1. Fit Breiman’s Random Forest method with finite M ∈ N to the training data Dn and
use the obtained residuals {ˆ︁ϵi,M}ni=1 to compute ˆ︁σRF,M as an estimator of σ2, where
ˆ︁σ2RF,M is the same residual variance estimator as ˆ︁σ2RF , but only with a finite choice of
M within the Random Forest.

2. Modify the training data by setting ˜︁Yi = ˆ︁ϵi,M for all i = 1, . . . , n and denote with

D(1)
n,M = {[X⊤

i ,
˜︁Yi]}ni=1 the modified training data.

3. Fit the same Random Forest model to the modified training data D(1)
n,M and compute

its residual variance estimator according to the same logic as for ˆ︁σ2RF,M . Denote the

obtained residual variance estimator at this stage with ˜︁σ2RFstep,M .

Step 3 in the one-step-estimation procedure aims to capture potential bias in the estimation
of ˆ︁σ2˜︃RF,M by refitting Breiman’s Random Forest using the same hyper-parameter choice as in

the initial fitting step. If the sample size and the number of trees is sufficiently large while
assuming the validity of (2.22) and the finiteness of the supremum norm of the regression
function m, we can guarantee that there exists a sequence of random vectors, that converges

in probability to the random vectors contained in D(1)
∞,∞ = {[X⊤

i , ϵi]
⊤}i∈N. The latter consists

of iid random vectors due to model assumptions and has to be understood as a theoretical
set, which is rarely accessible in practice. This has the severe effect that conducting a

second Random Forest on D(1)
∞,∞ while assuming the regression model given in (2.19), we

can automatically deduce that a Random Forest based residual variance estimator will be
at σ2. Any deviations to this result can be modeled as potential bias covering not only
the finite-M -bias, but also finite-n-bias. We will shortly summarize this observation in a
proposition.

Proposition 2.5. Assume the regression model (2.19) together with (2.22) and ∥m∥∞ =:
K < ∞. Denoting with Zi,n,M = [X⊤

i , ϵ̂i,n,M ]⊤, there exist a sequence of iid random vectors
{Zi,∞,∞}i∈N such that for every fixed i ∈ N,

Zi,n,M
P−→ Zi,∞,∞, as (M,n)

seq−→∞. (2.26)

The one-step-estimation procedure enables us to construct a potentially finite-M -bias esti-
mator, then given by

ˆ︁σ2RFiter,M = ˆ︁σ2RF,M −
⃓⃓
ˆ︁σ2RF,M − ˆ︁σ2RFstep,M

⃓⃓
. (2.27)

Establishing consistency for ˆ︁σ2RFiter requires the consistency of the residual variance estimator

ˆ︁σRFstep,M in the one-step-estimation procedure. However, since the underlying data set D(1)
n,M

is not independent for finite choices of M resp. n, the establishment of consistency result for
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this type of estimator is a delicate issue. If the sample size n and the number of decision trees
M is large enough, however, we can assume that P[Zi,n,M ∈ A,Zj,n,M ∈ B] ≈ P[Zi,n,M ∈
A] · P[Zj,n,M ∈ B] for A,B ∈ F such that P[Zi,n,M ∈ ∂A],P[Zj,n,M ∈ ∂B] = 0 for all
i ̸= j ∈ {1, . . . , n}. Note that the sequence {Zi,n,M}ni=1 is identically distributed for all
choices of n, M , since the random vectors in Dn share the same property of being identically
distributed. Considering the data set D∞,∞ = {Zi,∞,∞}i∈N, Proposition 2.5 indicates that
the latter consists of independent and identically distributed random vectors, which is a
requirement for the validity of a regression model of similar type as in (2.19). Having a
closer look at the proof of Proposition 2.5, the random vectors in D∞,∞ are nothing else
than [X⊤

i , ϵi]
⊤ such that a corresponding regression model would be of the simple form

ϵi = g(Xi)+ ϵi, where g ≡ 0. By the validity of the regression model (2.19) in the initial step,
we can also conclude that Xi is independent of ϵi for the regression problem ϵi = g(Xi) + ϵi.
Therefore, a Random Forest trained on D∞,∞ would theoretically lead to a residual variance
estimator of σ2. In addition to the estimators ˆ︁σ2RFiter,M and ˆ︁σ2Mcorrect,M , we propose a
weighted residual variance estimator of the form

ˆ︁σ2RFmiddle,M =
1

2

(︁
ˆ︁σ2RFiter,M + ˆ︁σ2Mcorrect,M

)︁
, (2.28)

which aims to smooth potential negative bias of the estimator ˆ︁σ2Mcorrect,M . The negative

bias can especially occur in ˆ︁σ2Mcorrect,M due to the averaged upper-bound for the finite-M -

bias, which has been used for its estimation. However, it is yet unknown whether ˆ︁σ2RFiter,M
will show positive or negative bias such that the choice of ˆ︁σ2RFmiddle,M is more of heuristic

nature. In order to evaluate the performance of the three estimators ˆ︁σ2Mcorrect,M , ˆ︁σ2RFiter,M
and ˆ︁σ2RFmiddle,M , we conducted a simulation study covering the regression problem as given

in (2.19) while the residuals are assumed to be centered Gaussian with finite variance σ2 ∈
(0,∞). As we could show in the article Ramosaj and Pauly (2019a), potential drivers for the
accuracy of the estimation quality using the Random Forest method is the signal-to-noise
ratio formally given by

SN =
V ar(m(X))

σ2
. (2.29)

It is important to note that the feature dimension p plays an influential role on the signal-to-
noise ratio SN . This happens through the regression function m : Rp → R, where an additive
structure of the latter yields potentially larger signal-to-noise ratios, when the feature dimen-
sion p increases. This is the case for informative features and features that are independent or
show non-negative correlation, i.e. Cov(mj(Xj),mi(Xi)) ≥ 0 for all i, j ∈ {1, . . . , p}, where
m(x) =

∑︁p
j=1mj(xj). Therefore, we have SN = SN(p, σ2) in fact. Setting the signal-to-

noise ratio to SN ∈ {0.5, 1, 2}, we determined the scale of the residual variance by considering
the following regression functions with β = [β1, . . . , βp]

⊤ and x = [x1, . . . , xp] ∈ [0, 1]p:

� The linear case, i.e. m(x) = β⊤x,

� The polynomial case, i.e. m(x) =
p∑︁
j=1

βjx
j
j ,

� The trigonometric case, i.e. m(x) = 2 · sin(β⊤x+ 2),

� The non-continuous case, i.e. m(x) =

⎧
⎪⎨
⎪⎩

β1x1 + β2x2 + β3x3, if x3 > 0.5,
p∑︁
j=4

βjxj + 3, if x3 ≤ 0.5,
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while using equation (2.29) with X ∼ Unif([0, 1]p). We have chosen the same class of re-
gression functions as in our article (P4). Regarding the feature dimension, we assumed
that p ∈ {10, 20, 50, 100} whereby βp=10 = β0 ∈ R10, βp=20 = [β⊤

0 ,β
⊤
0 + 2]⊤ ∈ R20,

βp=50 = [β⊤
0 ,β

⊤
0 + 2,β⊤

0 − 4,β⊤
0 + 3,β⊤

0 + 4]⊤ and βp=100 = [β⊤
p=50, 2β

⊤
p=50]

⊤ with β0 =

[2, 4, 2,−3, 1, 3, 4, 1, 5,−5]⊤. Under this data generating process, different sample sizes n ∈
{50, 500, 1000} have been created using MC = 1, 000 Monte-Carlo iterations. Regarding the
number of base learners in the ensemble, we have chosen to use M = 1, 000 decision trees in
the Random Forest model throughout every simulation set up while restricting the sampling
strategy to sampling without replacement of ⌈0.632 · n⌉ observations. Although the default
number of decision trees in the R-function randomForest is 500 (Liaw and Wiener, 2002),
we doubled its number due to the reasonable increase in computational time. According to
the derived results, it is desirable to include more trees in the ensemble rather than less.
The latter is only contrary to additional computational time costs (Scornet, 2016). There-
fore, M = 1, 000 should be a reasonable choice. Furthermore, the choice of M = 1, 000
decision trees was motivated by the interesting question whether the finite-M -bias corrected
estimators are capable in smoothening the bias effect while saving computational time for a
smaller choice of decision trees. In addition to that, the residual variance estimator based
on the sampling variance of the residuals using the least-square estimate for both, the linear
case and the polynomial case have been considered for comparison issues. Thus, a correct
model specification for the estimation of the residual variance in the linear and polynomial
case was assumed. It will be used as a benchmark estimator for the corresponding regression
model. Note that the scale of the y-axis of the boxplots (i.e. its range) have been adapted
correspondingly, throughout our simulation results.

The results for the linear model (see Figure 2.1) indicate that the weighted combination
ˆ︁σ2RFmiddle,1000 of ˆ︁σ2RFiter,1000 and ˆ︁σ2Mcorrect,1000 is on average very close to the true residual
variance, even for small sample sizes and increasing feature dimensions. It even outperforms
the benchmark estimator under correct model specification, if the sample size is small and the
feature dimension increases (see e.g. n = 50 for p ∈ {10, 20, 50, 100}). For cases where p ≥ n,
the benchmark estimator is not even available, while Random Forest based residual variance
estimator deliver results that are, on average, close enough to the true residual variance,
depending on the SN as well. The residual variance estimators based on Random Forest
residuals ˆ︁σ2RF,1000 and ˆ︁σ2RFfast,1000 tend to overestimate the true residual variance. The box-

plots also indicate that the speed of convergence of ˆ︁σ2RF,1000 resp. ˆ︁σ2RFfast,1000 is rather slow.
The positive bias is a result of equation (2.15) using a finite choice of decision trees in the
estimation of ˆ︁σ2RF,1000 during the simulation procedure, as the boxplots show. Even for larger

sample sizes, the estimators ˆ︁σ2RF,1000 and ˆ︁σ2RFfast,1000 showed positive bias. For larger signal-

to-noise ratios, i.e. SN ≥ 1, the weighted residual variance estimator ˆ︁σ2RFmiddle,1000 tend to
slightly overestimate the true residual variance. However, the effect vanishes independent of
the feature dimension, as the sample size increases (see Appendix-Section 2.4, Figures 2.5
and 2.9).
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Figure 2.1: Simulation results for the linear model with various sample sizes and feature
dimensions under a signal-to-noise ratio of SN = 0.5 using 1, 000 Monte-Carlo iterations.
The residual variance estimators are encoded as 1 : ˆ︁σ2

RF 2 : ˆ︁σ2
RFfast 3 : ˆ︁σ2

RFiter 4 :

ˆ︁σ2
Mcorrect,1000 5 : ˆ︁σ2

RFmiddle,1000 6 : Benchmark. The red dotted line inidcates the true
residual variance.

Regarding the polynomial model under a signal-to-noise ratio of SN = 0.5 (see Figure
2.2), the weighted residual variance estimator ˆ︁σ2RFmiddle,1000 and ˆ︁σ2Mcorrect,1000 reveal prefer-
able results being on average close to the true residual variance for small to moderate sample
sizes, i.e. n ∈ {50, 500}, but revealed a slight inflation when the feature dimension p in-
creased. For larger feature dimensions (p ≥ 50), the weighted residual variance estimator
ˆ︁σ2RFmiddle,1000 was slightly overestimating the residual variance. The residual variance es-

timators ˆ︁σ2Rfiter,1000, ˆ︁σ2Mcorrect,1000 and ˆ︁σ2RFmiddle,1000 beat the benchmark estimator under
correct model specification for small and larger sample sizes. In the case of larger sample
sizes, the estimator ˆ︁σ2Mcorrect,1000 was slightly downsized, but this effect vanished with an
increasing feature dimension p. For larger signal-to-noise ratios, i.e. SN ≥ 1 (see Appendix-
Section 2.4, Figures 2.6 and 2.10), the estimators ˆ︁σ2RFiter,1000, ˆ︁σ2Mcorrect,1000 and ˆ︁σ2RFmiddle,1000
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Figure 2.2: Simulation results for the polynomial model with various sample sizes and
feature dimensions under a signal-to-noise ratio of SN = 0.5 using 1, 000 Monte-Carlo iter-
ations. The residual variance estimators are encoded as 1 : ˆ︁σ2

RF 2 : ˆ︁σ2
RFfast 3 : ˆ︁σ2

RFiter

4 : ˆ︁σ2
Mcorrect,1000 5 : ˆ︁σ2

RFmiddle,1000 6 : Benchmark. The red dotted line inidcates the
true residual variance.

were slightly upsized, when the feature dimension was larger, i.e. p ≥ 50. However, the effect
seemed to vanish, if the sample size was sufficiently large. Under all scenarios, the Random
Forest residual variance estimator ˆ︁σ2RF,1000 was positively biased indicating the finite-M -bias,
even for larger sample sizes.

Turning to the trigonometric model, all Random Forest based estimators overestimated
the true residual variance for all considered signal-to-noise ratios (see Figure 2.3 and in the
Appendix-Section 2.4, Figures 2.7 and 2.11). However, for smaller sample sizes, i.e. n = 50,
the estimator ˆ︁σ2RFiter,1000 resulted into the most preferable results being on average close to
the true residual variance, even for larger dimensions p ≥ 50. For larger sample sizes, the
finite-M -bias corrected residual variance estimator ˆ︁σMcorrect,1000 was close to the true resid-
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ual variance. Moreover, the weighted residual variance estimator ˆ︁σ2RFmiddle,1000 can be still
considered as a favorable choice. Similar to the previous results, the Random Forest residual
variance estimators ˆ︁σ2RF,1000 and ˆ︁σ2RFfast,1000 overestimated the residual variance stronger
than the other residual variance estimators. This is due to the finite choice of the number of
decision trees resulting into a finite-M -bias.
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Figure 2.3: Simulation results for the trigonometric model with various sample sizes
and feature dimensions under a signal-to-noise ratio of SN = 0.5 using 1, 000 Monte-Carlo
iterations. The residual variance estimators are encoded as 1 : ˆ︁σ2

RF 2 : ˆ︁σ2
RFfast 3 :

ˆ︁σ2
RFiter 4 : ˆ︁σ2

Mcorrect,1000 5 : ˆ︁σ2
RFmiddle,1000. The red dotted line inidcates the true

residual variance.

Regarding the non-continuous model, the weighted residual variance estimator ˆ︁σ2RFmiddle,1000
resulted into the most preferable results across all signal-to-noise ratios (see Figure 2.4 and
Figures 2.8 and 2.12 in the Appendix Section 2.4). Nonetheless, ˆ︁σ2RFiter can also be consid-
ered as a potential competitor showing similar strong results. Under this model, however, the
Random Forest estimators had difficulties in cases where the feature dimension was turning
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larger, while the sample size was small (see the cases p ≥ 20 and n = 50 for larger signal-
to-noise ratios, e.g. Figure 2.12 in the Appendix Section 2.4). The estimator ˆ︁σ2Mcorrect,1000

underestimated the residual variance for larger sample sizes leading to a more suitable choice
when the averaged estimator ˆ︁σ2RFmiddle,1000 was used. Similar to the previous results, the

Random Forest residual variance estimators ˆ︁σ2RF,1000 and ˆ︁σ2RFfast,1000 overestimated the true
residual variance for all considered scenarios, indicating biasedness due to a finite choice ofM .
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Figure 2.4: Simulation results for the non-continuous model with various sample sizes
and feature dimensions under a signal-to-noise ratio of SN = 0.5 using 1, 000 Monte-Carlo
iterations. The residual variance estimators are encoded as 1 : ˆ︁σ2

RF 2 : ˆ︁σ2
RFfast 3 :

ˆ︁σ2
RFiter 4 : ˆ︁σ2

Mcorrect,1000 5 : ˆ︁σ2
RFmiddle,1000. The red dotted line inidcates the true

residual variance.
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In summary, the finite choice of decision trees in the estimation of the residual variance has
to be considered as a serious source of bias. Controlling this effect is therefore important, in
order to deliver more accurate results. We derived three residual variance estimators, that
aim to control for finite-M -bias, namely ˆ︁σ2RFiter,M , ˆ︁σ2Mcorrect,M and ˆ︁σ2RFmiddle,M . Our simu-

lation results revealed that the estimator ˆ︁σ2Mcorrect,M tend to underestimate the true residual

variance, while the estimator ˆ︁σ2RFiter,M tend to slightly overestimate the residual variance.

Therefore, the equal weighting of both estimators leading to ˆ︁σ2RFmiddle,M led to favorable
results under various regression functions.

Variable Selection

As mentioned earlier, the Random Forest models are not only used for delivering point pre-
dictions. It is also used as a variable selection tool in regression and classification learning
problems in both, low and high-dimensional settings. Variable selection plays a key role in
many applications, such as the extraction of disease-specific gene expressions in biomedical
research or the extraction of main drivers for economic issues such as the interaction of edu-
cational level and wealth. For such issues, traditional statistics make use of significance tests
for formally testing whether features are related to the response Y by testing whether the
corresponding regression coefficient is vanishing. However, such approaches are rather sparse
resp. not possible for Machine Learning algorithms such as the Random Forest method, since
a proper modeling of the underlying learning problem has not happened prior to fitting. In-
stead, other measures such as the mean decrease impurity or the permutation measure play
the role of a (vanishing) regression coefficient. Reviewing the literature on the feature ex-
traction mechanism using the measures mean decrease impurity or the permutation measure
of the Random Forest, we found out that most of the work focused on practical applications
of these measures. In Strobl et al. (2007) for example, potential bias could be detected in
the permutation measure during an extensive simulation study, especially for classification
problems. The authors in Gregorutti et al. (2017) considered a formalized version of the per-
mutation importance measure used in Breiman’s original Random Forest and prove different
identities for the latter. Focusing again on regression learning problems of the form given in
(2.19), we were interested in the following research question:

(H2) Beside the criticism on variable importance measures in Random Forest models, can we
set up circumstances such that the variable importance measures based on Breiman’s
Random Forest correctly select informative features ? If so, can we deliver theoretical
guarantees ?

Regarding research question (H2), we found out in Ramosaj and Pauly (2019a) that the
permutation importance measure based on Out-of-Bag samples, which is the default measures
in statistical software packages such as in R, SAS or python, is asymptotically unbiased, given
the following assumptions:

(A1) There is at least one informative feature,

(A2) The permutation class is restricted to V = {π ∈ Sγn : π(i) ̸= i},

(A3) The features are mutual independent,

(A4) The regression function is bounded,

(A5) The infinite Random Forest is L2 consistent in the sense of Definition 1.2.
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To be more precise, we have found out that there exists a measure I = [I(1), . . . , I(p)]⊤ ∈ Rp,
for which it holds

I(j) =

{︄
cj , if j is informative,

0, if j is not informative,
(2.30)

for some cj > 0 defined later such that E[IOOBn,M (j)] = 0 = I(j) for non-informative features

j, and for informative features j it holds lim
M→∞

E[IOOBn,M (j)] −→ I(j) as n → ∞. The the-

oretical findings also indicate that simply permuting the observations allowing all kind of
permutations might not lead to correct variable selection procedures. The reason to this was
the fact that by positive chance, there are observations in the Out-of-Bag set, that will not
be permuted, such that the decrease in model accuracy as computed in (2.7) results into
vanishing terms, but is then divided by the full cardinality of the Out-of-Bag set. If this
effect is sufficiently large, then the convergence to the constant cj for informative features
might not be guaranteed such that instead, it will converge to 0. This theoretical result can
be considered as a preliminary step for the following research question, that is not going to
be tackled in this thesis, but will be considered for later research:

(H3) Is it possible to use Breiman’s originial Random Forest method together with a modified
permutation importance measure to conduct statistical inference tests regarding feature
significance ?

The research question (H3) requires the finding of a test statistic, that involves both, the
theoretical quantity I and the Random Forest permutation importance measure (RFPIM)
IOOBn,M in order to be as close as possible to Breiman’s original Random Forest. To be more
precise, we set for every j ∈ {1, . . . , p} the following null-hypothesis

H0 : I(j) = 0 vs. H1 : I(j) ̸= 0 (2.31)

and wonder whether there exist a sequence {bn}n∈N such that bn ↗∞ as n→∞ and under
the validity of the null-hypothesis, it holds

lim
n,M→∞

√︁
bn · (IOOBn,M (j)− I(j)) d−→ Z, (2.32)

where E[Z] = 0 and V ar(Z) = ζ ∈ (0,∞). Such a sequence is likely to be found using central
limit theorems. Regarding the latter, we can make use of our findings that E[IOOBn,M (j)] = I(j)
under the null-hypothesis and we are currently working on deriving such results.
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2.3 Proofs of the Chapter

Proof of Proposition 2.1. Let j ∈ {1, . . . , p} be fixed but arbitrary. In order to establish
the proof, it is necessary to formally define the sequence of transformations {Fj}pj=1, which
depends on the scale of the corresponding random variable. Therefore, we distinguish between
the following three cases:

(i) Suppose that Xj is continuous, i.e. it has a continuous density function fXj . Then
define Fj(x) = Fj |supp(Xj)

(x) as the distribution function of Xj restricted to its support

supp(Xj). Hence, Fj : supp(Xj)→ [0, 1] is strictly increasing.

(ii) Suppose that Xj is metric, but not continuous and has finite support, i.e. |supp(Xj)| <
∞. In this case, we assume that Xj is ordinal such that a natural ordering of the
elements in supp(Xj) is allowed. Then, we can uniquely define aj < ∞ and bj < ∞
such that aj ≤ x and bj ≥ x for all elements x ∈ supp(Xj). Hence, we define the

function Fj(x) =
x−aj
bj−aj , which is strictly increasing as well.

(iii) Assume that Xj is not continuous and not metric, e.g. ordinal or nominal, and it has
finite support. Without loss of generality, assume that supp(Xj,1) = {a1, . . . , aKj}.
Then, we can define a mapping Fj : supp(Xj,1) → [0, 1] where Fj(aℓ) = 1 − ℓ/Kj for
ℓ ∈ {1, . . . ,Kj} such that F−1 is the unique function mapping the values {1−1/Kj , 1−
2/Kj , . . . , 0} ⊂ [0, 1] to supp(Xj,1).

We first consider the case for finite M . Therefore, let t ∈ {1, . . . ,M} be fixed but arbitrary.
Since we condition on the random vector Θt and the set Dn, the re-sampled data D∗

n and the

set for feature subspacing M(k)
try at every level 1 ≤ k ≤ ⌈log2(tn) ≤⌉ + 1 are already known.

Therefore, the maximization procedure as given in (2.3) turns out to be deterministic. Since

the Random Forest constructs hyper-rectangular cells, we obtain for features j ∈ M(k)
try,s of

type (i) and (ii) a region of the form A
(k)
n,s,j = [a

(k)
n,s,j , b

(k)
n,s,j). Transforming the features either

of type (i) or (ii) using Fj will lead to cells of the form ˜︁A(k)
n,s,j = [Fj(a

(k)
n,s,j), Fj(b

(k)
n,s,j)). At

every tree level 1 ≤ k ≤ ⌈log2(tn)⌉ + 1, the Random Forest algorithms applies its cut cri-

terion on the set {Yi : Xi ∈ A
(k)
n,s =

⨂︁

r∈M(k)
try

A
(k)
n,s,r}. Now, consider its corresponding index

set, i.e. I(k)n,s := {i : Xi ∈ A(k)
n,s} and the index set of the transformed features of the type

(i) or (ii) ˜︁I(k)n,s = {i : [F1(X1,i), . . . , Fp(Xp,i)]
⊤ ∈ ˜︁A(k)

n,s}, where ˜︁A(k)
n,s is defined analogously for

the transformed features. We need to show that I(k)n,s = ˜︁I(k)n,s for every tree level k and cell

s. Therefore, let i ∈ I(k)n,s . Since Fj is strictly increasing for both type of features (i) and

(ii) given the data Dn, it immediately follows that Fj(a
(k)
n,s,j) ≤ Fj(Xj,i) < Fj(b

(k)
n,s,j), hence

i ∈ ˜︁I(k)n,s . On the other hand, if i ∈ ˜︁I(k)n,s , then we know that Fj(a
(k)
n,s,j) ≤ Fj(Xj,i) < Fj(b

(k)
n,s,j).

Applying F−1 on the inequalities, it follows that an,s,j ≤ Xj,i < b
(k)
n,s,j , since F

−1 exists and
is strictly increasing given the data Dn for both type of features (i) and (ii).

In case that j ∈ M(k)
try,s is the feature index for features of type (iii) for some tree level

k and region s, the cells in the Random Forest are then of the form A
(k)
n,s,j = {ξ(k)n,s,j} for

ξ
(k)
n,s,j ∈ supp(Xj,1). The transformed cells have the form ˜︁A(k)

n,s,j = {Fj(ξ
(k)
n,s,j)}. The mapping

Fj as given in (iii) can therefore be considered as a re-labeling procedure shrinking the do-

main to the interval [0, 1]. Therefore, I(k)n,s = ˜︁I(k)n,s .
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In order to complete the proof for the finite choice of M , we need to show that the terminal
node values for trees trained on Dn or ˜︁Dn are the same, given {Θt}Mt=1 and Dn. Therefore,
consider a terminal node, i.e. k∗ = ⌈log2(tn)⌉ + 1 and for some s∗ ∈ {1, . . . , tn}, we can

immediately follow that I(k
∗)

n,s∗ = ˜︁I(k
∗)

n,s∗ according to the above results. Hence, the predicted

value cn,s∗ according to (1.21) in Chapter 1 remains for both, Dn and ˜︁Dn the same, given Dn
and {Θt}Mt=1. This leads to mn,M (x;Θ1, . . . ,ΘM ,Dn) = mn,M (x;Θ1, . . . ,ΘM , ˜︁Dn) given Dn
and {Θt}Mt=1 for all x ∈ Rp , i.e. finite Random Forests are invariant under the monotone
transformations Fj , for all j ∈ {1, . . . , p}, given Dn and Θ1, . . . ,ΘM .

For an infinite choice ofM , we will receive the infinite Random Forest estimator mn,∞(·;Dn).
Since the above result is not only valid for j ∈M(k)

try,s, but for all j ∈ {1, . . . , p}, we can obtain
for fixed Dn the following computations for every x ∈ Rp:

mn,∞(x;Dn) = E[mn,1(x;Θ,Dn)|Dn] = E[E[mn,1(x;Θ,Dn)|Θ,Dn]|Dn]
= E[E[mn,1(x;Θ, ˜︁Dn)|Θ,Dn]|Dn]
= E[mn,1(x;Θ, ˜︁Dn)|Dn]
= E[mn,1(x;Θ, ˜︁Dn)| ˜︁Dn]
= mn,∞(x; ˜︁Dn). (2.33)

The first equality follows from the definition of the infinite Random Forest. The second
equality follows from the measurability of mn,1(x;Θ,Dn) towards the sigma field generated
by Θ and Dn and the computation rules of the conditional expectation. The third equality
follows from the above results for finite M showing that mn,1(x;Θ,Dn) = mn,1(x;Θ, ˜︁Dn)
holds, given Dn and Θ. mn,1(x;Θ, ˜︁Dn) remains measurable w.r.t. the sigma field generated

by Θ and Dn, since ˜︁Dn and its elements are transformed values of elements in Dn using
measurable transforms {Fj}pj=1, i.e. ˜︂Dn = {[F1(X1,i), . . . , Fp(Xp,i), Yi]

⊤}ni=1. Hence, the
second last equality holds.

■

Proof of Corollary 2.1. Consider Breiman’s original Random Forest as prescribed in Algo-
rithm 3 and let α ∈ (0, 1), x ∈ [0, 1]p be fixed. Denote with z1−α/2 the 1 − α/2 quantile of

the standard normal distribution. Note that {Θt}Mt=1 form a sequence of iid random vectors.
In addition, we have almost surely

EΘ[mn,1(x;Θ,Dn)2] = EΘ

⎡
⎣
(︄

n∑︂

i=1

Wn,i(x;Θ) · Yi
)︄2
⎤
⎦

=

n∑︂

i=1

EΘ[Wn,i(x;Θ)2] · Y 2
i +

∑︂

i ̸=j
EΘ[Wn,i(x;Θ)Wn,j(x;Θ)] · YiYj

≤ n · max
1≤i≤n

Y 2
i + n(n− 1)

(︃
max
1≤i≤n

|Yi|
)︃2

= n2 max
1≤i≤n

|Yi|2 <∞, (2.34)

where the last inequality follows from the assumption that P[|Y | < ∞] = 1. Using the
iid property of {Θ}Mt=1 and equation (2.34), we can make use of the classical central limit
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theorem, while conditioning on Dn in order to get for M →∞
√
M · (mn,M (x;Θ1, . . . ,ΘM ,Dn)−mn,∞(x;Dn))

=
√
M ·

(︄
M∑︂

t=1

mn,1(x;Θt,Dn)− EΘ[mn,1(x;Θ,Dn)]
)︄

d−→ N(0, ˜︁σ(x)2), (2.35)

where ˜︁σ(x)2 = V arΘ(mn,1(x;Θ,Dn)). Therefore, setting C(3)n,M,1−α(x)

[mn,M (x;Θ1, . . . ,ΘM ,Dn)− z1−α/2 · ˜︁σ2(x), mn,M (x;Θ1, . . . ,ΘM ,Dn) + z1−α/2 · ˜︁σ2(x)]
while conditioning on Dn, we can deduce that

lim
M→∞

PΘ[mn,∞(x;Dn) ∈ C(3)n,M,1−α(x)] := lim
M→∞

EΘ[1{mn,∞(x;Dn) ∈ C(3)n,M,1−α(x)}] = 1− α.

This leads for any finite n ∈ N given Dn to

lim
M→∞

P[mn,∞(x;Dn) ∈ C(3)n,M,1−α(x)] = lim
M→∞

E[E[1{mn,∞(x;Dn) ∈ ˜︁Cn,M,1−α(x)}|Dn]]

= E[ lim
M→∞

EΘ[1{mn,∞(x;Dn) ∈ C(3)n,M,1−α(x)}]]

= E[1− α] = 1− α.
The second equality follows from applying Lebesgue’s dominated convergence theorem, since
EΘ[1{mn,∞(x;Dn) ∈ ˜︁Cn,M,1−α(x)}|Dn] is bounded by 1. ■

Proof of Proposition 2.2. Let x ∈ Rp and α ∈ (0, 1) be fixed but arbitrary such that Y (x) =
m(x)+ ϵ. Consider the estimators ˆ︁mn(x) and ˆ︁σ2n such that ˆ︁mn(x)→ m(x) and ˆ︁σ2n → σ2 > 0,

each in probability, as n → ∞. Hence, we can deduce that Zn := m(x)−ˆ︁mn(x)
σ −→ 0 in

probability, as n → ∞ by applying the continuous mapping theorem. Therefore, for every
sub-sequence {ni}, there exist a further common sub-sequence {nij} such that Znij

−→ 0,

P-almost surely and ˆ︁σ2nij
−→ σ2, P-almost surely. This yields to σ/ˆ︁σnij

−→ 1, P- almost

surely by the continuous mapping theorem. Hence,

Tnij
=
m(x)− ˆ︁mnij

(x)

σ
· σ

ˆ︁σnij

−→ 0, (2.36)

P-almost surely. Similarly, we can deduce that ϵ/ˆ︁σnij
−→ ϵ/σ, P-almost surely, as n → ∞,

which yields Tnij
+ ϵ/ˆ︁σn −→ ϵ/σ, P - almost surely. Hence, Tn+ ϵ/ˆ︁σn −→ ϵ/σ in probability,

as n→∞. Now, fix δ0 > 0 and set Wn = Tn + ϵ/ˆ︁σn. Then we have for n→∞

P[Y (x) ∈ Cn,1−α] = P
[︃
qα/2 ≤

m(x)− ˆ︁mn(x) + ϵ

ˆ︁σn
≤ q1−α/2

]︃

= P
[︁
qα/2 ≤ Tn + ϵ/ˆ︁σn ≤ q1−α/2

]︁

= P[{qα/2 ≤Wn ≤ q1−α/2} ∩ {|Wn − ϵ/σ| ≤ δ0}]+
P[{qα/2 ≤Wn ≤ q1−α/2} ∩ {|Wn − ϵ/σ| > δ0}]

= P[{qα/2 ≤ (Wn − ϵ/σ) + ϵ/σ ≤ q1−α/2} ∩ {|Wn − ϵ/σ| ≤ δ0}]+
P[{qα/2 ≤Wn ≤ q1−α/2} ∩ {|Wn − ϵ/σ| > δ0}]

= P[{qα/2 − δ0 ≤ ϵ/σ ≤ q1−α/2 + δ0} ∩ {|Wn − ϵ/σ| ≤ δ0}]+
P[{qα/2 ≤Wn ≤ q1−α/2} ∩ {|Wn − ϵ/σ| > δ0}]

−→ P[qα/2 − δ0 ≤ ϵ/σ ≤ q1−α/2 + δ0].
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The convergence follows, since P[|Wn− ϵ/σ| > δ0]→ 0 and therefore, P[|Wn− ϵ/σ| ≤ δ0]→ 1.
Letting δ0 ↓ 0 and using the right-continuity property and the monotonicity of the distribution
function F of ϵ/σ, we have for n→∞

P[qα/2 − δ0 ≤ ϵ/σ ≤ q1−α/2 + δ0]
n→∞−→ F (q1−α/2 + δ0)− F (qα/2 − δ0) ≥ F (q1−α/2 + δ0)− F (qα/2)

= F (q1−α/2)− α/2
δ0↓0−→ F (q1−α/2)− α/2
= 1− α.

Hence, we have

lim
n→∞

P[Y (x) ∈ Cn,1−α(x)] ≥ 1− α.

■

Proof of Proposition 2.3 . Consider an arbitrary regression problem given by a training set
Dn consisting of iid observations [X⊤

i , Yi] for i = 1, . . . , n. Fix i ∈ {1, . . . , n} and let Zi =
Zi(M) be the number of M regression trees not containing the i-th observation. Then, we

can conclude that Zi(M) =
M∑︁
t=1

1{Θ(1)
i,t = 0}, where {Θ(1)

i,t = 0} refers to the event that the

i-th observation has not been selected. Since {Θ(1)
i,t }Mt=1 is a sequence of iid random variables,

we can conclude by the strong law of large numbers that Zi(M)/M = 1
M

M∑︁
t=1

1{Θ(1)
i,t = 0} −→

E
Θ

(1)
i,1

[1{Θ(1)
i,1 = 0}] = P[Θ(1)

i,1 = 0] =: cn, whereas

cn =

{︄
1− an/n for subsampling,

(1− 1/n)n for bootstrapping with replacement.

Assume w.l.o.g. that the first {Zi}Mi=1 trees do not contain the i-th observation. Then, for
the Random Forest Out-of-Bag predictions at Xi it holds for M → ∞, PΘ - almost surely
that

mOOB
n,M (Xi;Θ1, . . . ,ΘM ,Dn) =

1

Zi(M)

Zi(M)∑︂

t=1

mn,1(Xi;Θt,Dn)

=
1

Zi(M)/M
· 1

M

M∑︂

t=1

mn,1(Xi;Θt,Dn)1{Θ(1)
i,t = 0}

−→ 1

cn
· EΘ[mn,1(Xi;Θ,Dn) · 1{Θ(1)

i,t = 0}]

=
1

cn
· P[Θ(1)

i,1 = 0] · EΘ[mn,1(Xi,Θ,Dn)|Θ(1)
i,1 = 0]

= EΘ[mn,1(Xi,Θ,Dn)|Θ(1)
i,1 = 0]. (2.37)

The first equality is nothing else than the definition of the finite OOB Random Forest. The
convergence follows from the strong law of large numbers, since the sequence {mn,1(Xi;Θt,Dn)·
1{Θ(1)

i,t = 0}}Mt=1 is iid. The second-last equality follows from appplying the law of total ex-
pectation.
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Regarding the second part of Proposition 2.3, it is assumed that sup
x∈[0,1]p

|m(x)| =: K < ∞.

Therefore, we can conclude for any independent copy X of X1 almost surely that

(m(X)−mn,M (X;Θ1, . . . ,ΘM ,Dn))2 ≤ m2(X) + 2|m(X)| · |mn,M (X;Θ1, . . . ,ΘM ,Dn)|
+ |mn,M (X;Θ1, . . . ,ΘM ,Dn)|2

≤ K2 + 2K max
1≤i≤n

|Yi|+
(︃
max
1≤i≤n

|Yi|
)︃2

=: C <∞.

The inequality follows from using the alternative representation of the finite Random Forest
as the weighted sum of the response, i.e.

|mn,M (X;Θ1, . . . ,ΘM ,Dn)| =
⃓⃓
⃓⃓
⃓
n∑︂

i=1

Wn,i(X;Θ1, . . . ,ΘM ) · Yi
⃓⃓
⃓⃓
⃓

≤
n∑︂

i=1

Wn,i(X;Θ1, . . . ,ΘM )|Yi|

= max
1≤i≤n

|Yi| ·
n∑︂

i=1

Wn,i(X;Θ1, . . . ,Θm) = max
1≤i≤n

|Yi|.

Note that the quantity C is independent ofM and Θ such that given Dn and X, C is constant
and finite. Therefore, applying Lebesgue’s dominated convergence theorem yields to

lim
n→∞

lim
M→∞

E[(m(X)−mn,M (X;Θ1, . . . ,ΘM ,Dn))2]

= lim
n→∞

E
[︃

lim
M→∞

(m(X)−mn,M (X;Θ1, . . . ,ΘM ,Dn))2
]︃

= lim
n→∞

E[(m(X)−mn(X))2] = 0.

The second last equality follows from the continuity of the quadratic function and the last
equality from condition (2.22) proved in Scornet et al. (2015). ■

Proof of Theorem 2.1. Consider the first case where the residual variance estimator ˆ︁σ2RF is
considered. We could show in Ramosaj and Pauly (2019b) that given the assumption that
Random Forests are consistent in the sense of (2.22), such as Breiman’s original Random
Forest as proven in Scornet et al. (2015), while assuming a regression model of the form
(2.19), the residual variance estimator ˆ︁σ2RF is L1-consistent, which implies consistency in
probability. Hence, assumption (ii) is valid for constructing prediction intervals of the form
(2.20). Assumption (i) is implied by (2.22), which yields to mn(X) −→ m(X) in probability,
as n → ∞. Assuming that the residuals are Gaussian with mean 0 and residual variance
σ2 ∈ (0,∞) fulfills the assumption given in (iii) such that qα/2 = −z1−α/2 due to the sym-
metry of the Gaussian distribution and q1−α/2 = z1−α/2, where zα is the α-quantile of the
standard normal distribution. The validity of Proposition 2.2 is not restricted to fixed fea-
tures X = x, but can be extended to the unconditional version as well. Assuming that (i)
holds also for the unconditional version ˆ︁mn(X), Proposition 2.2 should still be valid. Since
this is the case, we can immediately follow that P[Y (X1) ∈ Cn,1−α,RF ] ≥ 1 − α. Therefore,
Cn,1−α,RF can be considered as an average prediction interval for Y (X1).
Now considering the second case, i.e. 2., we could show under these assumptions that the
residual variance estimators ˆ︁σ2RFboot and ˆ︁σ2RFfast are both L1- consistent and therefore im-
plying consistency in probability such that (ii) is valid. Since (2.22) is also assumed, we
can immediately deduce that (i) is valid leading to P[Y (X) ∈ Cn,1−α,RFboot],P[Y (X) ∈
Cn,1−α,RFfast] ≥ 1− α by the same argumentation as in the first case. ■
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Proof of Proposition 2.4. Let Y = m(X) + ϵ such that ∥m∥∞ = K <∞. Consider the finite
Random Forest estimate using OOB samples, i.e.

mOOB
n,M (X1;Θ1, . . . ,ΘM ,Dn) =

n∑︂

i=1

WOOB
n,i (X1;Θ1, . . . ,ΘM ;Dn)Yi, (2.38)

whereWOOB
n,i (X1;Θ1, . . . ,ΘM ,Dn) = 1

Z1(M)

Z1(M)∑︁
t=1

Wn,i(X1;Θt,Dn) andWOOB
n,i (X1;Θt,Dn) =

1{Xi∈AOOB
n (X1;Θt)}

Nn(AOOB
n (X1;Θt))

. In this representation, we used w.l.o.g. that the first Z1(M) trees have

not used observation {[X⊤
1 , Y1]

⊤}. This representation enables us to find an upper bound of
mOOB
n,M , that is independent of M , i.e.

⃓⃓
mOOB
n,M (X1;Θ1, . . . ,ΘM ,Dn)

⃓⃓
≤

n∑︂

i=1

WOOB
n,i (X1;Θ1, . . . ,ΘM ,Dn) · |Yi|

≤ max
1≤i≤n

|Yi| =: fn <∞. (2.39)

Setting mn,M (X1) = mn,M (X1;Θ1, . . . ,ΘM ,Dn) and using (2.39) will lead to

|m(X1)−mn,M (X1)| ≤ |m(X1)|+ |mOOB
n,M | < K + fn <∞. (2.40)

It follows that |m(X1)−mn,M (X1)|2 < (K + fn)
2 due to the monotonicity of the quadratic

function on the non-negative real line. The obtained upper bound is independent of M , such
that Lebesgue’s dominated convergence theorem can be used to obtain

lim
M→∞

E[ˆ︁σ2˜︃RF,M ] = lim
M→∞

{︄
1

n

n∑︂

i=1

E[(m(Xi) + ϵi −mOOB
n,M (Xi;Θ1, . . . ,ΘM ,Dn))2]

}︄

= lim
M→∞

{︁
E[(m(X1)−mOOB

n,M (X1))
2] + 2E[ϵ1 · (m(X1)−mn,M (X1))] + σ2

}︁

= lim
M→∞

E[(m(X1)−mOOB
n,M (X1))

2] + σ2

= E[(m(X1)−mOOB
n (X1))

2] + σ2. (2.41)

The second equality follows from the identical distribution of the sequence {ˆ︁ϵ2i,M}ni=1, while

the third equality from the independence of ϵ1 andm
OOB
n,M (X1) together with E[ϵ1] = 0 and the

finiteness of E[m(X1) −mOOB
n,M (X1)]. Using the result given in Ramosaj and Pauly (2019b)

which implies the weak convergence of the OOB Random Forest estimate in the sense of
Definition 1.2, when condition (2.22) is fulfilled, will lead to the convergence of the estimator
ˆ︁σ2˜︃RF,M to σ2, i.e.

lim
n→∞

E[ˆ︁σ2˜︃RF,M ] = σ2 + lim
n→∞

E[(m(X1)−mOOB
n (X1))

2] = σ2. (2.42)

If the residuals are Gaussian with finite variance σ2 ∈ (0,∞), then we can make use of
Theorem 3.3 in Scornet (2016), in particular inequality (2.15) which leads to

E[ˆ︁σ2˜︃RF,M − ˆ︁σ
2
˜︃RF,∞] = E[(Y1 −mOOB

n,M (X1))
2 − (Y1 −mOOB

n (X1))
2]

= E[(m(X1)−mOOB
n,M (X1))

2]− E[(m(X1)−mOOB
n (X1))

2]

≤ 8

M
·
(︁
∥m∥2∞ + σ2(1 + log(n))

)︁
. (2.43)

The second equality follows from applying Y1 = m(X1) + ϵ1 together with the independence
of ϵ1 and mOOB

n,M (X1) resp. ϵ1 and mOOB
n (X1). ■
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Proof of Proposition 2.5. Let Zi,n,M = [X⊤
i ,ˆ︁ϵi,n,M ]⊤ and define Zi,∞,∞ = [X⊤

i , ϵi]
⊤, where

ˆ︁ϵi,n,M = Yi −mOOB
n,M (Xi). Recall from the proof construction in Proposition 2.4 , especially

equations (2.41) and (2.42) that

lim
n→∞

lim
M→∞

E[(m(X1)−mOOB
n,M (X1))

2] = 0. (2.44)

The identity applies here as well, since regression model (2.19), condition (2.22) and ∥m∥∞ <
∞ holds. Therefore, take δ > 0 and i ∈ {1, . . . , n}. Then we have

lim
n→∞

lim
M→∞

P[∥Zi,n,M − Zi,∞,∞∥ > δ] = lim
n→∞

lim
M→∞

P[|ˆ︁ϵi,M − ϵi| > δ]

= lim
n→∞

lim
M→∞

P[|Yi −mOOB
n,M (Xi)− Yi +m(Xi)| > δ]

= lim
n→∞

lim
M→∞

P[|m(Xi)−mOOB
n,M (Xi)| > δ]

≤ lim
n→∞

lim
M→∞

E[|m(Xi)−mOOB
n,M (Xi)|2]

δ2

= 0. (2.45)

The inequality follows by applying Markov’s inequality and the last step from (2.44). Hence,

Zi,n,M
P−→ Zi,∞,∞ as (M,n)

seq−→ (∞,∞). Since {Xi}i∈N and {ϵi}i∈N are both independent
and identically distributed, the data set D∞,∞ = {Zi,∞,∞}i∈N consists of independent and
identically distributed random vectors, too. ■
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2.4 Appendix of the Chapter
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Figure 2.5: Simulation results for the linear model with various sample sizes and feature
dimensions under a signal-to-noise ratio of SN = 1 using 1, 000 Monte-Carlo iterations. The
residual variance estimators are encoded as 1 : ˆ︁σ2

RF 2 : ˆ︁σ2
RFfast 3 : ˆ︁σ2

RFiter 4 :

ˆ︁σ2
Mcorrect,1000 5 : ˆ︁σ2

RFmiddle,1000 6 : Benchmark. The red dotted line inidcates the true
residual variance.
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Figure 2.6: Simulation results for the polynomial model with various sample sizes and
feature dimensions under a signal-to-noise ratio of SN = 1 using 1, 000 Monte-Carlo itera-
tions. The residual variance estimators are encoded as 1 : ˆ︁σ2

RF 2 : ˆ︁σ2
RFfast 3 : ˆ︁σ2

RFiter

4 : ˆ︁σ2
Mcorrect,1000 5 : ˆ︁σ2

RFmiddle,1000 6 : Benchmark. The red dotted line inidcates the
true residual variance.
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Figure 2.7: Simulation results for the trigonometric model with various sample sizes
and feature dimensions under a signal-to-noise ratio of SN = 1 using 1, 000 Monte-Carlo
iterations. The residual variance estimators are encoded as 1 : ˆ︁σ2

RF 2 : ˆ︁σ2
RFfast 3 :

ˆ︁σ2
RFiter 4 : ˆ︁σ2

Mcorrect,1000 5 : ˆ︁σ2
RFmiddle,1000. The red dotted line inidcates the true

residual variance.
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Figure 2.8: Simulation results for the non-continuous model with various sample sizes
and feature dimensions under a signal-to-noise ratio of SN = 1 using 1, 000 Monte-Carlo
iterations. The residual variance estimators are encoded as 1 : ˆ︁σ2

RF 2 : ˆ︁σ2
RFfast 3 :

ˆ︁σ2
RFiter 4 : ˆ︁σ2

Mcorrect,1000 5 : ˆ︁σ2
RFmiddle,1000. The red dotted line inidcates the true

residual variance.
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Figure 2.9: Simulation results for the linear model with various sample sizes and feature
dimensions under a signal-to-noise ratio of SN = 2 using 1, 000 Monte-Carlo iterations. The
residual variance estimators are encoded as 1 : ˆ︁σ2

RF 2 : ˆ︁σ2
RFfast 3 : ˆ︁σ2

RFiter 4 :

ˆ︁σ2
Mcorrect,1000 5 : ˆ︁σ2

RFmiddle,1000 6 : Benchmark. The red dotted line inidcates the true
residual variance.
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Figure 2.10: Simulation results for the polynomial model with various sample sizes
and feature dimensions under a signal-to-noise ratio of SN = 2 using 1, 000 Monte-Carlo
iterations. The residual variance estimators are encoded as 1 : ˆ︁σ2

RF 2 : ˆ︁σ2
RFfast 3 :

ˆ︁σ2
RFiter 4 : ˆ︁σ2

Mcorrect,1000 5 : ˆ︁σ2
RFmiddle,1000 6 : Benchmark. The red dotted line

inidcates the true residual variance.
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Figure 2.11: Simulation results for the trigonometric model with various sample sizes
and feature dimensions under a signal-to-noise ratio of SN = 2 using 1, 000 Monte-Carlo
iterations. The residual variance estimators are encoded as 1 : ˆ︁σ2

RF 2 : ˆ︁σ2
RFfast 3 :

ˆ︁σ2
RFiter 4 : ˆ︁σ2

Mcorrect,1000 5 : ˆ︁σ2
RFmiddle,1000. The red dotted line inidcates the true

residual variance.
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Figure 2.12: Simulation results for the non-continuous model with various sample sizes
and feature dimensions under a signal-to-noise ratio of SN = 2 using 1, 000 Monte-Carlo
iterations. The residual variance estimators are encoded as 1 : ˆ︁σ2

RF 2 : ˆ︁σ2
RFfast 3 :

ˆ︁σ2
RFiter 4 : ˆ︁σ2

Mcorrect,1000 5 : ˆ︁σ2
RFmiddle,1000. The red dotted line inidcates the true

residual variance.



Chapter 3

Missing Values and Multiple
Imputation

The issue of partially observed data can have an irritating effect on the statistical anal-
ysis one aims to conduct. An intuitive idea of overcoming this issue is to simply delete
those observations containing missing values (complete case analysis). However, this comes
with the cost of loosing important (partial) information, especially when the sample size is
small and missing rates are relatively high (White and Carlin, 2010). Another approach is
to adopt statistical methods being capable of treating missing values. For example, if the
aim is to deliver ML-estimators for regression coefficients, then the corresponding likelihood
function should be adopted in order to cover missing values (Enders, 2001; Stubbendick and
Ibrahim, 2006; Zhang and Rockette, 2005). We refer to the latter class of methods as data ad-
justed methods. During the adoption of statistical analysis models, it is important to model
the mechanism that is responsible for the generation of missing values, called the missing
mechanism. According to Rubin (1976), the missing mechanism has been modeled from a
probabilistic, Bayesian viewpoint. That is, assuming that the data set Dn consists of iid
observations Zi = [Zi1, . . . Zip+1]

⊤ = [Yi,X
⊤
i ]

⊤ ∈ Rp+1, we denote with Y the corresponding
data matrix containing the observations in Dn = {Zi}ni=1 in a row-wise fashion. That is,
Y = [Z1, . . . ,Zn]

⊤ ≡ [K1, . . . ,Kp+1]
⊤ ∈ Rn×p+1 is the corresponding data matrix. Note

that K1 = [Y1, . . . , Yn]
⊤ and Kj = [Xj1, . . . , Xjn]

⊤, 2 ≤ j ≤ p, represents the column-wise
notation of the data matrix Y. When missing values do occur, the data matrix Y can usually
be separated into Y = [Yobs,Ymis], whereas one does not have access to Ymis, since this
part is missing, but one has full access to the observed part Yobs. In order to build a bridge
towards the column- and row-wise notation of the data matrix Y, Ymis has to be understood
as all those entries in Y, that are missing such that Ymis may contain entries of Zi resp. Kj ,
1 ≤ i ≤ n, 1 ≤ j ≤ p + 1. The process of generating missing values is then modeled by the
matrix R = [R1, . . . ,Rn]

⊤ ∈ Rn×p+1, where each entry Ri = [Ri,1, . . . , Ri,p+1]
⊤ is a random

vector indicating whether observation i ∈ {1, . . . , n} in variable j ∈ {1, . . . , p+1} is observed
(Rij = 1) or not observed, i.e. missing (Rij = 0). Regarding the probability measure P, it
requires to emphasize that in fact P ∈ {Pθ : θ ∈ Ξ}, i.e. the probability distribution P can
be of parametric and non-parametric nature. Supposing that the generation of the missing
data matrix R is conducted from a probability distribution with unknown parameter ξ on the
same probability space as Z1, then the missing mechanism can be separated in the following
three cases according to Rubin (1976):

1. The missing mechanism is called missing completely at random (MCAR), if P[R|Y, ξ] =
P[R|ξ] for all ξ and Ymis.
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2. The missing mechanism is called missing at random (MAR), if P[R|Y, ξ] = P[R|Yobs, ξ]
for all ξ and Ymis.

3. The missing mechanism is called missing not at random (MNAR), if P[R|Y, ξ] =
P[R|Yobs,Ymis, ξ] ̸= P[R|Yobs, ξ] for all ξ and Ymis.

Deriving data adjusted methods requires therefore assumptions under which mechanism miss-
ing values do occur. From a practical perspective, all three types can have consequences on
the later statistical analysis. Suppose for example, that during the electronic collection pro-
cess of survey data, the machine has lost some of the observations due to a malfunctioning
wireless connection. This can be considered as an MCAR example and has less effect on the
model complexity during the theoretical development of data adjusted methods. Suppose
that the study participants only deliver information regarding their income, if they are male
and additionally, the gender is known for all study participants. Then, the missing mecha-
nism in this case is said to be MAR. More delicate is the issue when missing data is generated
under the MNAR mechanism, that is, if survey participant reply on an income-related study
question only, if their income is either not too low or not too high, for example. In biomedical
research, for example, MNAR mechanisms are often present, especially when the patient’s
information is not available, due to the information itself, i.e. one aims to measure the choles-
terol level, but the patient passes away due to a heart attack resulting from a relatively high
cholesterol level. Note that the MCAR and MAR mechanism can be sorted in an hierarchical
order, that is, the MCAR mechanism implies the MAR mechanism. However, the MNAR
mechanism never implies the MAR or MCAR mechanism and vice-versa. Another, yet im-
portant part beside the missing mechanism is the missing pattern. The latter distinguishes
from the missing mechanism by describing the location and structural distribution of missing
values in the data matrix Y rather than the description of the occurrence of missing values
as a probabilistic model. According to Enders (2010), missing patterns can be categorized
into six different types:

1. The missing pattern is called monotone, if whenever Rij = 0, then Rik = 0 for all
k > j with 1 ≤ i ≤ n and 1 ≤ j, k ≤ p + 1. That is, after a suitable, column-wise
rearrangement of the variables, once a missing value occurs for a unit in a certain
variable, then the upcoming features are missing, too.

2. The missing pattern is called univariate, if there exists only a single variable Kj ∈ Rn
and 1 < k0 < n, such that Rij = 0 for all i > k0 and Rij = 1 for all i ≤ k0.

3. The missing pattern is unit nonresponsively, if for a sequence of variables, sayKs1 , . . . ,Ksk

with 1 < s1, . . . , sk < p, it holds Risℓ = 0 for all i > i0 and 1 ≤ ℓ ≤ k with 1 < i0 < n.
That is, for a certain unit group, the same variables are missing.

4. The missing pattern is called latent, if there exists a variable 1 ≤ j0 ≤ p, such that
Rij0 = 0 for all 1 ≤ i ≤ n.

5. The missing pattern is called planned, if missing values occur due to a planned mecha-
nism.

6. The missing pattern is called general, if missing values are scattered throughout the
data such that the pattern does not fall into one of the groups mentioned before.

Beside row-wise deletion and data adjustment methods, another, yet intuitive idea, is to
impute missing values and conduct later statistical analysis as if missing values have not
occurred so far. Regarding the development of suitable imputation methods, the missing
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pattern usually plays a more important role than the missing mechanism. The latter is
rather important for the later statistical validity of the obtained results. For example, having
a missing data matrix Y that contains a monotone missing pattern, this can result into the
sequential application of regression and classification models trained on the fully observed
part of Y, while missing parts in Y are then predicted using the trained model. However,
simply imputing missing values (once) and conducting the statistical analysis on the imputed
data set can have severe consequences in terms of the validity of later statistical methods.
This, because imputation assigns values to missing cases, that will be treated as known and
fixed for later statistical analysis without involving potential uncertainty originating from
the fact that missing values are present. That is, once missing values are singly imputed,
it is assumed that the data analyst afterwards treats the imputed value as certainly known,
although the imputation value itself is a guess with uncertainty, too. The lack of uncertainty
quantification in the later statistical analysis will therefore be not suitable in terms of a valid
statistical inference procedure, see e.g. Rubin (2004), pages 11−15. Therefore, Donald Rubin
came across the idea to multiply impute data sets and conduct the later statistical analysis
on each obtained and imputed data set. In order to introduce the procedure of multiple
imputation, suppose that one is interested in a scientific quantity, say Q ∈ Rk, k ∈ N, which
would be given, if the entire population would be present. As an example, think of the
multivariate normal distribution, i.e. P = Ns(µ,Σ), where θ = (µ,Σ) ∈ Rs × Rs×s = Θ. In
the latter case, Q might either refer to µ or to Σ, depending on the viewpoint of the data
analyst. In case of Q = Σ, the latter has then to be understood in vectorized notation instead
of a matrix, i.e. Q ∈ R(s2−s)/2 such that k = (s2 − s)/2. The quantity Q is written in vector
notation, in order to emphasize the possibility of capturing multivariate quantities during
multiple imputation procedures. However, Q can also represent scalar quantities. It is worth
to notice that for multivariate Q, V ar(Q) has to be understood as the covariance matrix of Q
within the Bayesian viewpoint. In order to motivate Rubin’s idea of multiple imputation, we
introduce a stage model to clarify the theoretical thoughts involved in multiple imputation.
The stage-model has rather to be understood as a heuristic or philosophic motivation rather
than a technical one.

1. Stage 1 is theoretically the ideal situation, where everything is known and uncertainty
is completely deleted. This is the case, if one would have access to the whole population
leading to certain knowledge about Q. At this stage, statistics is not required at all,
since Q is always known. In practice, however, this is almost never the case, since
sample sizes are finite and do not reveal knowledge on the whole population, but rather
a part of it. Hence, missing value issues can be considered as a common problem for
the next stage.

2. At Stage 2, one just has access to a finite sample size of the whole population, such
that at this stage, the quantity Q is not known and is modeled by P[Q|Y] resp. P[Q]
(Bayesian perspective) or estimated by ˆ︁Qn (frequentist’s perspective). Uncertainty
regarding the estimation of Q via ˆ︁Qn from a frequentist’s perspective is then expressed
in terms of a variance, say U = V ar(ˆ︁Qn). Uncertainty has been implicitly accounted
in P[Q|Y] resp. P[Q] under the Bayesian perspective. Missing values considered in
this thesis are not of stage-2-type. This stage is commonly present in statistics, where
missingness is defined here mainly through the lack of knowledge for Q because of, e.g.,
a finite sample size. The randomness generated at this stage arises from the sampling
mechanism.

3. Stage 3 describes the case where missing values are present in the sense that even
the finite sample as prescribed in Stage 2 is lacking partial information. Therefore,
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the distribution P[Q|Y] resp. P[Q] (Bayesian viewpoint) or ˆ︁Qn and U are unknown
and require to be either estimated (frequentist’s perspective) or modeled (Bayesian
perspective). At this stage, beside the sampling mechanism as a source of randomness,
the missing mechanism plays a crucial role introducing additional randomness into the
observations. Note that the parameter to be estimated increases at this stage to the
estimands ˆ︁Qn and U .

4. Stage 4 is imputation specific, and occurs only, if the imputer chooses a finite number
of imputations m ∈ N. The choice of a finite number of imputation results into missing
values of Stage-2-type within this stage.

Introducing the idea of multiple imputation from a mathematical perspective, we follow the
same motivation as in Rubin (2004) and Van Buuren (2018) and focus first on the imputation
procedure itself, i.e. making Stage 3 complete in the sense of Stage 2. Doing this is mainly
motivated by the Bayesian perspective assuming a Bayesian Model regarding Q. Hence,
extracting knowledge for the estimand Q requires knowledge from P[Q|Y], the posterior of
the hypothetical complete data, which is not directly accessible. Instead, one can have at
most knowledge from P[Q|Yobs], which itself can be decomposed in the following way

P[Q|Yobs] =

∫︂
P[Q|Yobs,Ymis] · P[Ymis|Yobs]dYmis. (3.1)

Equation (3.1) enables the explanation of multiple imputation procedures from a mathemat-
ical perspective. Suppose that one can draw imputed values, say Y∗

mis from the predictive
posterior distribution P[Ymis|Yobs]. Then, one can use these values to compute the quantity
of interest Q from the imputed data set Yimp = [Yobs,Y

∗
mis] and consider the latter as a draw

from the posterior P[Q|Yobs,Ymis]. In practice, obtaining knowledge for P[Q|Yobs,Ymis] is
rather hard. Instead, one could restrict the attention to moments of the posterior distribution.
Recalling that the posterior mean of P[Q|Yobs] can be rewritten into

E[Q|Yobs] = E[E[Q|Yobs,Ymis]|Yobs], (3.2)

this will give final practical advice in how to conduct multiple imputation: Generate m ∈ N
imputed values {Y∗

mis,t}mt=1 in order to obtain m data sets D(1)
n , . . . ,D(m)

n , each consisting of
Yimp,t = [Yobs,Y

∗
mis,t]. Based on equation (3.1), compute the quantity Q on each data set as

if missing values never occurred and denote them with ˆ︁Qn,1, . . . , ˆ︁Qn,m. The combining rule for
obtaining a final estimate for Q is given by equation (3.2), which can be approximated by the
strong law of large numbers, if the imputed values are independent draws from P[Ymis|Yobs],
i.e.

Q̄n,m =
1

m

m∑︂

t=1

ˆ︁Qn,t. (3.3)

Quantifying uncertainty in terms of finding appropriate estimators for the posterior variance
of P[Q|Yobs] is not straight forward. However, making use of the law of total variance (Weiss,
2006), one can decompose the posterior variance into

V ar(Q|Yobs) = E[V ar(Q|Yobs,Y mis)|Yobs] + V ar(E[Q|Yobs,Ymis]|Yobs). (3.4)

According to Rubin (2004) pages 35, 76 and 84 − 85, the first component is the average of
the variance estimator based on the complete data set Y = [Yobs,Ymis] and is referred to as
the within imputation variance. The second component indicates the variance between the
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posterior means of the completed data. This decomposition enables the consideration of the
following total variance estimator for V ar(Q|Yobs) within the multiple imputation procedure:

ˆ︃V ar(Q|Yobs) = T n,m :=
1

m

m∑︂

t=1

Un,t +

(︃
1 +

1

m

)︃
· 1

m− 1

m∑︂

t=1

(ˆ︁Qn,t − Q̄n,m)(ˆ︁Qn,t − Q̄n,m)
⊤

= Ūn,m +

(︃
1 +

1

m

)︃
·Bn,m, (3.5)

where Un,t is an estimate of the variance of ˆ︁Qn,t and the factor (1 + 1/m) adjusts for the
usage of a finite number of multiple imputations m ∈ N (Stage 4 in the stage-model), instead
of an infinite one (Stage 3). Equation (3.3) and (3.5) are the combination rules in the
multiple imputation procedure and are referred to as Rubin’s rule. These rules together with
the description of conducting multiple imputations as draws from the predictive posterior
distribution enables the implementation of statistical inference procedures under partially
observed data. For example, suppose that in case of no missing values, i.e. Y = Y obs, one can
obtain an estimator ˆ︁Qn, such that (Q− ˆ︁Qn) ∼ Nk(0,U) holds. When aiming to test for, say
H0 : Q = Q0, as shown in Rubin (2004), the test statistic Dn,m = (Q̄n,m−Q0)

⊤T−1
n,m(Q̄n,m−

Q0)/k follows under H0 using a distribution-preserving multiple imputation procedure an F -
distribution with (k, ν) degrees of freedom, where ν = (m−1)(1+1/rm)

2 and rm = (1+1/m)·
tr(Bn,m · Ū−1

n,m)/k is the relative increase in variance due to non-response, see e.g. Rubin
(2004) on pages 77 − 78. In this context, we refer to a distribution-preserving imputation
scheme as a method, which generates multiple imputations independently under the same
Bayesian model as the data analyst does during the analysis phase. In order to understand
Rubin’s terminology of relative increase in variance due to non-response, think of a scalar
Q = Q. Then, the total variance would consist only of the first part in the decomposition
given in (3.4) and therefore, only of Ūn,m = Ūn,m. Thus, the between imputation correction
(1 + 1/m)Bn,m = (1 + 1/m)Bn,m accounts for the additional uncertainty originating from

the presence of missing entries. Therefore, the fraction r = (1 + 1/m) · tr(Bn,m · Ū−1
n,m)/k =

(1+1/m)Bn,m

Ūn,m
for the scalar case, i.e. k = 1, refers to the ratio of both quantities capturing the

additional variance increase due to the presence of missing values. Hence, the term relative
increase in variance due to non-response.

3.1 Validity of Multiple Imputation Procedures

In the previous section, we have introduced different methods when dealing with missing
values during the analysis of incomplete data, while a special focus has been set on multiple
imputation procedures based on Rubin (1996), Rubin (2004) and Van Buuren (2018). As
mentioned in the previous section, multiple imputation procedures have mainly been moti-
vated by equation (3.1), where the complete-case analysis is conducted based on imputed
draws from the predictive posterior distribution P[Ymis|Yobs]. In practice, however, draws
from the predictive posterior distribution are rarely possible. Instead one assumes a model,
the so called imputation model, where imputation draws are generated from the latter. An
important research question arising from the idea of multiple imputation is then the following:

(R1) When does multiple imputation deliver valid statistical inference procedures ?

Regarding research question (R1), general answers have been delivered in Rubin (2004) and
Van Buuren (2018). However, there is some ambiguity involved in the question stated,
that seems not be clear at first hand. When referring to statistical inference, one usually
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thinks of different quantities involved during traditional hypothesis testing. The latter is
usually conducted from the frequentist’s perspective, where the quantity of interest, here
Q, is fixed and statistical hypothesis testing is mainly based on the unknown, complete-
case tuple (ˆ︁Qn,U), where ˆ︁Qn is an estimate of Q, if no missing values were present and U
its corresponding variance-(covariance) matrix. If statistical inference is conducted from a
Bayesian perspective, than the interesting quantity is the unknown complete-case posterior
P[Q|Y]. The different viewpoints have already been introduced within the stage-model (see
Stage 1 - Stage 4). Note that in practice, when missing values do occur, the posterior
distribution of Q is actually given by P[Q|Yobs,R], which is slightly different to the result
obtained in equation (3.1). The latter does not involve the missing mechanism R being
responsible for the generation of the missing data and therefore ignores the missing mechanism
as one would be at Stage 2, although Stage 3 resp. 4 should be addressed. In order to clarify
circumstances, under which one can indeed consider P[Q|Yobs] instead of P[Q|Yobs,R] within
Bayesian inferential statistics, Rubin (2004) has introduced an ignorable missing mechanism,
which we will state as a definition.

Definition 3.1 (Ignorability). The missing mechanism is said to be ignorable, if at least
MAR holds and the joint prior of θ and ξ decomposes into the product of marginal priors,
i.e. P[θ, ξ] = P[θ] · P[ξ].

Returning to equation (3.1), it has been mentioned that imputations should be draws from the
predictive posterior distribution P[Ymis|Yobs]. Similarly to the problem of having P[Q|Yobs,R]
instead of P[Q|Yobs], the predictive posterior distribution under partially observed data does
also depend on the missing mechanism R. Hence, one actually has P[Ymis|Yobs,R]. Rubin
(2004) and Van Buuren (2018) have mentioned that under the MAR mechanism, the predic-
tive posterior distribution does not depend on the missing mechanism, without delivering a
formal proof. Therefore, we prove the result and state this as a proposition for completion.

Proposition 3.1. Assume at least the MAR condition. Then the missing mechanism in the
predictive posterior distribution can be ignored, that is P[Ymis|Yobs,R] = P[Ymis|Yobs].

Note that the quantity Q can be considered as a potential function of the data generating pa-
rameter θ, i.e. Q = f(θ) for a measurable function f . Therefore, drawing Bayesian inference
for the quantity Q involves drawing Bayesian inference for the data generating parameter
θ based on P[Q|Yobs,R]. There are several factors that can distort the validity of multi-
ple imputation during Bayesian and frequentist’s inference procedures. Note that statistical
inference in Bayesian analysis is conducted based on P[Q|Yobs,R], wheres in frequentist’s
analysis, statistical inference is mostly based on the tuple (ˆ︁Qn,U) and treats the estimand Q
as fixed. Following the general considerations as in Rubin (2004), one can list the following
factors:

1. The missing mechanism, if not correctly specified, can distort statistical inference. Since
modeling the latter can be challenging and is in general not possible, a preferable
situation is the condition of ignorability according to Definition 3.1.

2. Since imputations are constructed based on some model, one has to guarantee that the
imputed values are independent draws from the predictive posterior distribution under
the posited response mechanism. Therefore, they have to be draws from P[Ymis|Yobs,R].
Hence, a possible source of distortion is a stationary distribution of imputed values, that
is different to P[Ymis|Yobs,R]. The same holds for non-stationary distributions, i.e. if
(multiply) imputed draws do not share the same distribution yielding to a mixture of
distributions after aggregation according to (3.3).
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3. In case of incorrect complete-case statistical inference, multiple imputation cannot over-
come the distortion by making multiple imputation inference correct again.

4. Multiple imputation intends to conduct complete-case analysis on artificially completed
data sets through imputation. Therefore, two models are actually involved during sta-
tistical inference procedures: The imputation model, that is responsible for drawing im-
putations from the predictive posterior distribution P[Ymis|Yobs,R] under the posited
response mechanism, and the analysis model, that accounts under Bayesian inference,
for the posterior P[Q|Yobs,R] resp. the distribution of ˆ︁Qn −Q under the frequentist’s
perspective. If both models differ, potential distortion regarding statistical inference
might be present.

Having summarized potential sources of distortion for valid statistical inference procedures,
we first aim to clarifiy circumstances, under which Bayesian inference procedures based on the
posterior P[Q|Yobs,R] are indeed valid. Although it has been mentioned by several authors
such as Brand (1999), Rubin (2004) and Van Buuren (2018) that multiple imputation delivers
valid Bayesian inference procedures, however, clear circumstances and a formal proof were
not given. Therefore, we will state the latter as a theorem and proof it in the last section of
the chapter.

Theorem 3.1 (Bayesian Validity of Multiple Imputations). Assume that the missing mecha-
nism is ignorable and imputations are independent draws from the predictive posterior distri-
bution P[Ymis|Yobs]. Suppose that the imputer’s model and the analyst model coincide. Then
the posterior distribution P[Q|Yobs,R] using the infinite-m multiple imputation procedure can
be fully recovered such that Bayesian inference based on P[Q|Yobs,R] are valid.

According to Rubin (1996), achieving Bayesian validity is far more difficult such that the
application of Theorem 3.1 might be limited in practice. However, statistical valid inference
is often conducted from the frequentist’s perspective. Therein, the interesting quantity Q
is treated as fixed and statistical inference is conducted by means of statistical hypothesis
testing, i.e. having

H0 : Q = Q0 vs. H1 : Q ̸= Q0, (3.6)

for a fixed Q0 ∈ Rk in mind, for example. The aim in complete-case analysis is to find a
test statistic τn that follows a certain distribution under the null-hypothesis either exactly
or asymptotically, as n → ∞ such that their quantiles are known. Suppose that ˆ︁Qn is a
complete-case estimator for Q such that, similarly to Rubin (2004), the normality assumption
holds, i.e.

(ˆ︁Qn −Q) ∼ Nk(0,U). (3.7)

Assumption (3.7) is placed, in order to simplify statistical inference procedures by focusing
on the tuple (ˆ︁Qn,U) while making the theoretical verifications in Rubin (2004) regarding
the validity of multiple imputation from a frequentist’s perspective applicable. Deviations
towards the normality assumption as given in (3.7) are shortly discussed in Brand (1999),
page 76, where (3.7) can also be seen as fulfilled, if the sample size n is sufficiently large to
approximate the sampling distribution of ˆ︁Qn. Regarding the variance U , it is assumed that
under the absence of missing values (i.e. Stage 2), one would have access to a consistent
estimator ˆ︁Un, i.e. for n→∞ we have

ˆ︁Un
P−→ U . (3.8)
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Statistical validity of multiple imputation procedures from the frequentist’s perspective, using
an infinite number of imputations, then concerns with the question whether

(Q̄n,∞ −Q) ∼ Nk(0,T n,∞) (3.9)

holds, since the data analysts after imputing missing values by the imputer conducts statis-
tical inference based on (3.9). Potential distortions to (3.9) under (3.7) will yield to invalid
statistical inference procedures caused by the usage of the multiple imputation logic. Assum-
ing that the imputations are independent repetitions from a Bayesian model P[Y ∗

mis|Yobs,R]
under which posterior means and variances exists, one has by the strong law of large numbers

Q̄n,∞ := lim
m→∞

Qn,m = E[Qn,1(Yobs,Y
∗
mis,R)|Yobs,R],

Ūn,∞ := lim
m→∞

Ūn,m = E[Un,1(Y obs,Y
∗
mis,R)|Yobs,R],

B̄n,∞ := lim
m→∞

Bn,m = E[Bn,1(Yobs,Y
∗
mis,R)|Yobs,R].

Note that the normal distribution in (3.9) has to be understood under both, the response
mechanism and the sampling mechanism. Establishing theoretical guarantees for the validity
of (3.9) has been done in Rubin (2004) in Chapter 4, page 119 (therein, see Result 4.1). Beside
the assumptions that inference procedures are valid under the absence of missing values (i.e.
condition (3.7)), a crucial requirement was proper imputations. The formal definition of a
proper imputation is given in Rubin (2004) on pages 118-119. However, we will use the
simplified version of the latter given in Rubin (1996) resp. Van Buuren (2018).

Definition 3.2. A multiple imputation procedure is called proper for a set of complete data
statistics (ˆ︁Qn, ˆ︁Un) and posited response mechanism, if the following three conditions hold:

1. The multiple imputation point estimate is unbiased for ˆ︁Qn. That is, E[Q̄n,∞|Y ] =

E[ˆ︁Qn(Y,R)|Y] = ˆ︁Qn holds P-almost surely. E[Q̄n,∞|Y] has to be understood as the
expectation over the response mechanism, i.e. over the conditional distribution P[R|Y].

2. The within-variance estimator of the multiple imputation variance V ar(Q̄n,∞) is unbi-

ased for ˆ︁Un. That is, E[Ūn,∞|Y] = ˆ︁Un holds P - almost surely.

3. The between imputation variance of the infinite-m multiple imputation procedure is for
V ar(Q̄n,∞|Y) unbiased. That is, E[Bn,∞|Y] = V ar(Q̄n,∞|Y) holds P-almost surely.

Based on Definition 3.2 together with some other assumptions that aim to bring the analyst’s
frequentist perspective in virtual agreement with the imputer’s Bayesian perspective, Rubin
could show in Chapter 4 the validity of statistical inference procedures even under the fre-
quentist’s perspective using the multiple imputation logic (therein, Result 4.1). In order to
verify the application of Rubin’s theoretical results in this thesis, we emphasize that a crucial
property for the validity of multiple imputation procedures under the frequentist’s perspective
requires among others proper imputations and the inferential validity under complete-data
(validity at Stage 2). In the next section, we will show that this is not necessarily the case
for some Random Forest models used as imputation procedures.

Returning to the process of generating missing values, it is practically difficult to guarantee
that imputations are draws from P[Ymis|Yobs]. However, under a monotone missing pattern,
imputation methods can be designed to actually draw from the predictive posterior distri-
bution P[Ymis|Yobs] by sequentially applying regression resp. classification tasks on each
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of the variables, see e.g Brand (1999), page 48, Raghunathan et al. (2001) or Van Buuren
(2018), pages 103 - 105. Regarding the latter missing pattern, we refer to the Montone Data
Imputation strategy described in Van Buuren (2018) on pages 102 - 104. For general missing
patterns, one usually categorizes imputation methods into two cases, see e.g. Van Buuren
(2018):

(i) Joint modeling (JM), which assumes a pre-specified multivariate distribution for the
data matrix Y. That is, the data matrix Y is row-wise rearranged so that sub-groups
of missing patterns are obtained. Then, for every missing pattern, a joint distribu-
tion is assumed in order to be able to draw from it. For example, assume that af-
ter sorting the rows of Y, a specific group G ⊆ {1, . . . , n} of missing pattern in Y
has the form Ri = [0, 0, 0, 1, . . . , 1]⊤ for all i ∈ G. Then, a distribution model for
P[Yi, Xi1, Xi2|Xi3, . . . , Xip, θ1,2,3] using the observations prescribed by G is assumed,
where θ1,2,3 is a parameter for the trivariate conditional distribution. A famous ex-
ample of a joint modelling strategy is the data augmentation algorithm developed by
Tanner and Wong (1987).

(ii) Fully conditional specification (FCS) is different to the joint modeling strategy by as-
suming for every variable in the data matrix Y a model such that imputation actually
happens on a variable-by-variable basis. That is, for every variable 1 ≤ j ≤ p+1, a dis-
tributional model for P[Z1j |Z−j , θj ] is assumed, where Z−j = [Z11, . . . , Z1j−1, Z1j+1, . . . ,
Z1p+1]

⊤ ∈ Rp and θj is a model parameter. Missing values are then drawn from

P[Z1j |Z−j , ˆ︁θj ], where ˆ︁θj is estimated from the observed data. The process is then it-
erated until all variables have been treated. A famous example of an FCS approach is
the multiple imputation using chained equations (MICE) algorithm implemented in R
under the package mice (Van Buuren and Groothius-Oudshoorn, 2009).

Practical disadvantages for JM approaches are given, when the joint conditional distribution
involves the treatment of mixed-type data. That is, if missing values in specific missing
patterns capture both, continuous and non-continous (e.g. nominal) features. This makes
the specification of a joint conditional distribution rather hard, where usual assumptions
such as multivariate normality are clearly not met. FCS overcomes this issue by specify-
ing a model for every variable such that missing values are imputed in an iterative fashion
until all variables have been treated. Then, just the single scale of one feature determines
the nature of the conditional distribution P[Z1j |Z−j , θj ], which makes a suitable choice easier.

In practice, it is often the case that more information is actually available then initially needed
for the underlying statistical analysis. Considering for example the breast cancer gene study
used as an empirical data example in article (P2), various gene expressions beside the ones
identified as potential markers for breast cancer are available. Simply ignoring them during
the imputation can lead to potential issues:

1. In case that the data analyst conducts additional statistical analyses including variables
not considered during imputation, the imputed values will not reflect potential depen-
dencies towards these variables. Therefore, the (stationary) distribution from which
imputations are draws can be misspecified.

2. Not including additional information during imputation can lead to information loss.
The latter has to be understood as the barrier to conduct valid statistical analyses after
imputation, because of the involvement of these variables during additional statistical
analyses. Since imputation itself is derived through the Bayesian perspective, but the
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analyst conducts statistical inference from a frequentist’s perspective, the two models
can differ, especially when additional variables are missing within the imputation model.
In Meng (1994), this has been termed as inferential uncongeniality.

Additional variables considered in the imputation model but not directly in the analysis
model are called auxiliary variables. Formally speaking, the data set Y, based on which
the analyst will conduct its statistical procedures, will be extended by auxiliary variables,
say W = [W1, . . . ,Ws] ∈ Rn×s such that Wℓ ∈ Rn for all 1 ≤ ℓ ≤ s and s ∈ N. Then,
imputations are drawn from the extended imputation model PI [Ymis|Yobs,W]. Conditions,
under which the latter model agrees with the predictive posterior distribution P[Ymis|Yobs]
are given in Meng (1994). Following Meng’s thoughts, the aim of including auxiliary variables
is to achieve an imputation model, that is more general and covers potential (sub-) models
used during the analysis phase. This is especially in line with Theorem 3.1, which requires
the conformity of the imputation model and the analyst model. Recent developments in the
Machine Learning community, especially the possibility of the Random Forest method to
treat mixed-type data in various prediction and variable screening tasks simultaneously, have
made its application as a general tool for missing value imputation popular (see e.g. Lunetta
et al. 2004, Hudak et al. 2008, Stekhoven and Bühlmann 2012, Hapfelmeier et al. 2012, Shah
et al. 2014, Doove et al. 2014 and Deng et al. 2016). The next section aims to cover the
involvement of Random Forest models in missing value imputation.

3.2 Multiple Imputation and the Random Forest

So far, important results of multiple imputation procedures have been summarized and clar-
ified. A special focus has been set on the validity of the multiple imputation procedure as
a general tool for statistical inference. Since machine learning algorithms are currently used
in different industrial and practical applications, it is interesting to know the benefits of
them within partially observed data and the multiple imputation procedure. Recalling the
advantages of the Random Forest method, this section will summarize the potential usage
of the Random Forest method as an imputation algorithm within the multiple imputation
framework. Since Random Forest models are mainly based on univariate responses, JM as a
general imputation class can be ignored. Therefore, imputing missing values using the Ran-
dom Forest method is usually conducted within the FCS framework. The Random Forest
method itself has first been implemented as an imputation model within the statistical soft-
ware R under the function missForest and is based on the work of Stekhoven and Bühlmann,
see e.g. Stekhoven and Bühlmann (2012). Therein, the imputation task is considered as a
prediction task, where a Random Forest is trained on observed values of the data matrix
Y and missing values are predicted using the trained Random Forest model. In order to
precise the strategy of missing value imputation using the Random Forest method, we will
state the algorithm defined in Stekhoven and Bühlmann (2012). The latter has been used in
a variety of missing value issues, due to its flexible usage within mixed-type data formats.
Similarly to the notation used in our article (P1), let π : {1, . . . , p + 1} → {1, . . . , p + 1} be
a permutation and denote with Kobs

j for j ∈ {1, . . . , p+ 1} the sub-vector of Kj , that do not

contain any missing values, while iobsj = {i ∈ {1, . . . , n} : Rij = 1} is the index-set of observed
values in Kj such that Kobs

j ∈ R|iobsj |. Analogously, Kmis
j and imisj is defined. The rest of the

matrix is given by Yobs
−j resp. Ymis

−j . That is Yobs
−j is the sub-matrix of Y that contains all

observations given in iobsj , while excluding variable Kj . Similarly, Ymis
−j is the sub-matrix of

Y, that contains all observations given in imisj , with the variable Kj excluded.
Regarding the performance of Algorithm 4 as an imputation method, the authors in Stekhoven
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Algorithm 4: Missing Value Imputation according to missForest.

Input: Data matrix Y with missing values, maxIter.
Result: Imputed data matrix Yimp.

1 Sort the p columns of the data matrix Y based on the missing rate in ascending
order resulting into a permutation π(1), ..., π(p+ 1) of the p+ 1 outcome variables;

2 Initially impute mean resp. mode values for missing continuous resp. categorical
realizations of random variables;

3 Starting with the first permuted column Xπ(1), separate the permuted data matrix
Yπ into four parts using the previous notation:

[︄
Kobs
π(1) Yobs

−π(1)
Kmis
π(1) Ymis

−π(1)

]︄
∈ R(|iobs

π(1)
|+|imis

π(1)
|)×(1+(p))

.

Train a Random Forest method using the sub-matrix Yobs
−π(j) as covariates and

Kobs
π(j) as response variable;

4 Impute the missing values of Kπ(j) using the trained Random Forest and predict
them with Ymis

−π(1) as covariate values. Then move to the next variable and repeat

steps 3 and 4 until all variables have been treated;

5 As long as the L2-error of the newly and previously imputed data set has not
increased for the first time or the number of iterations is less than maxIter, return
to step 3;

and Bühlmann (2012) have considered the normalized root means squared error (NRMSE)
resp. the proportion of false classification (PFC) of the imputed missing values as potential
measures for evaluation. Suppose that the set of features can be decomposed into sets of

continuous and non-continuous variables, i.e. {1, . . . p} = Cc ∪̇ Cnc. Denoting with N
(c)
mis

the set of all missing instances for continuous outcomes, i.e. N
(c)
mis = {(i, j) ∈ {1, . . . , n}×Cc :

Rij = 0} while N (nc)
mis = {(i, j) ∈ {1, . . . , n} × Cnc : Rij = 0} is the set of all missing instances

for non-continuous outcomes. Furthermore, denote with Y imp
ij the imputed values and Y mis

ij

the missing instances for (i, j) ∈ N
(c)
mis ∪ N

(nc)
mis . Then, the NRMSE is usally used as an

evaluation criterion for continuous outcomes, while the PFC is the evaluation criterion for
non-continuous outcomes, which are both defined by

NRMSE =

√︄ ∑︁

(i,j)∈N(c)
mis

(︂
Y imp
ij − Y mis

ij

)︂2

√︄ ∑︁

(i,j)∈N(c)
mis

(Y mis
ij − Ȳ mis

·· )2
, (3.10)

PFC =
1

|N (nc)
mis |

∑︂

(i,j)∈N(nc)
mis

1{Y imp
ij ̸= Y mis

ij }. (3.11)

It has been reported in Stekhoven and Bühlmann (2012) that imputation performance using
Algorithm 4 and the Random Forest method showed preferable results compared to the
nearest neighbor method or mice in terms of low NRMSE resp. PFC, for both, homogeneous
(i.e. Cc = ∅ or Cnc = ∅) and mixed-type data. Note that Algorithm 4 was initially invented
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within the single-imputation framework. Extending it to the multiple imputation procedure
can be conducted through the following two approaches:

1. The intuitive idea is to apply the imputation strategy using the missForest method

repeatedly m-times, in order to achieve m complete data sets D(1)
n , . . . ,D(m)

n and apply
Rubin’s multiple imputation procedure for aggregation. This is also motivated by the
recommendation of Rubin to use independent draws for imputed values. This strategy
will guarantee that given the data Dn, imputed values should be independent. In this
thesis, we refer to this method as the RF MI procedure.

2. A more general idea of the expansion of the Random Forest imputation procedure is
given in Doove et al. (2014) and is implemented within the R- function mice. The idea
is similar to Algorithm 4, but differs in three essential points: Step 2 in Algorithm 4
is replaced by random draws among elements in Kobs

π(j) for all j ∈ {1, . . . , p}. Step 4
in Algorithm 4 is also replaced by not predicting imputation values as averages over
the ensemble of trees, but rather as random draws from observations falling in leaves
of the whole ensemble. Step 5 in Algorithm 4 is finally replaced by a fixed, pre-defined
number of iterations as a stopping criterion, instead of a mixed version. Throughout
the thesis, we will refer to this method as the RF MICE procedure.

A certain tendency towards using modern machine learning tools for statistical analysis due
to the increased complexity of data generating processes have led us to the following two
research questions, which will be tackled in this thesis:

(H4) Is it possible to extend missing value imputation procedures not only to the Random
Forest method, but also to other learning algorithms such as boosting procedures ? Do
we receive better results in terms of NRMSE or PFC ?

(H5) Using Random Forest models such as those implemented in RF MI and RF MICE
as potential imputation schemes, does this always lead to correct statistical inference
procedures ?

Regarding research question (H4), answers could be delivered in the first research paper (P1)
by introducing different bagging and boosting methods. Therein, a detailed prescription of
the working principles of the considered algorithms have been delivered and enriched with
simulation studies and empirical examples, also outside the framework of Algorithm 4. Re-
garding the latter, an incremental imputation algorithm scheme proposed by Conversano and
Siciliano (2009) has been appropriately modified. However, no additional statistical theory
has been developed in article (P1). The summary of the research article can be found in
Chapter 4 of this thesis. Regarding research question (H5), answers could be found within
the research article (P2) under special designs such as paired data and repeated measure-
ments ANOVA. The research article is summarized in Chapter 4 of this thesis and puts its
focus more on the methodological and practical aspects of different imputation methods in-
cluding RF MI and RF MICE.
Regarding article (P2), other imputation methods than Random Forest based models have
been used for reasons of comparisons. In order to make them understandable, we will shortly
introduce the norm and the pmm approaches within the mice package in R. They can also
be found in Van Buuren (2018) on pages 58, 73 and 110. We will refer to these imputation
methods as NORM and PMM. Here, mice is the R implementation of the MICE-procedure
(multivariate imputation by chained equations) and belongs to the class of FCS imputation
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models. It conducts imputations similarly to Algorithm 4, but by randomly sampling ini-
tial values for all missing cases from their corresponding set of observed values. Then, for
every variable, an univariate response imputation model is assumed in accordance with the
description given in 2. The model is trained based on the observed block similarly defined as
Yobs

−j , j ∈ {1, . . . , p} and missing values are then imputed by using that model as a prediction
model. One iteration then consists of one cycle through all variables such that, by default 5
iterations are then conducted in the R-function mice for imputation. The iteration process
mimics the burn-in period of a Markovian chain for achieving a stabilizing posterior distri-
bution (cf. Schafer, 1997, pages 91 and 119). mice has the advantage that it runs parallel
in order to construct m imputation draws. Regarding the model, we additionally focused in
this thesis on two non Random Forest based imputation schemes:

1. NORM is a Bayesian regression model and assumes for the model fitting tasks that
the relation between response (i.e. the variable to impute; similarly to Kobs

j ) and

the covariates (the variables similarly to Yobs
−j ) is linear yielding the usual least-square

estimate ˆ︁βLS for the regression coefficient β in a linear model. Then, for the residual
variance σ2, a suitable prior is assumed such as the χ2 distribution, while for the
regression coefficients, a (multivariate) normal distribution with parameters as given in
Van Buuren (2018) on page 58 is assumed. Imputations are then not draws from the
directly trained model, but from a linear model with regression coefficient and residual
variance drawn from the chosen prior distribution. Algorithm 3.1 in Van Buuren (2018)
on page 58 gives more details on this.

2. PMM is a predictive mean matching imputation scheme, which imputes missing values
as potential draws from a set of donors. The latter are usually defined as d ∈ {1, . . . , n}
observed values, which come closest to the predicted values using the same modeling
strategy as in NORM. In mice, the default number of donors is set to d = 3 while using
a form of stochastic matching distance for evaluating closeness. Then, imputations are
random draws from the set of donors. We refer to Van Buuren (2018), on page 73,
Algorithm 3.3 for a detailed description.

The next section will extend the work given in (P2) by theoretically deriving potential sources
of incorrect statistical inference procedures when using Random Forest based imputation
schemes.

3.3 Validity of Random Forest Multiple Imputation Proce-
dures

This section extends the work in (P2) theoretically, by identifying and verifying potential
sources of statistical invalidity when using the RF MI procedure. Suppose that one has a
collection of iid bivariate random vectorsXi = [X1i, X2i]

⊤ ∈ R2 with E[X1] = µ = [µ1, µ2]
⊤ ∈

R2 and Cov(X1) = Σ > 0. Our aim is to test for no time effect in the means, i.e. we consider
the two-sided alternative given by

H0 : µ1 = µ2 vs. H1 : µ1 ̸= µ2. (3.12)

A formal testing procedure for the null-hypothesis is given by the paired t-test, which is
formalized by φn,complete = 1{|τn| ≥ tn−1,1−α/2}, where tn−1,1−α/2 is the 1− α/2-quantile of
the t-distribution with n− 1 degrees of freedom and α ∈ (0, 1). The test statistic τn is given
by τn =

√
n · d̄·/ {ˆ︁σn} with di = X1i − X2i for i ∈ {1, . . . , n}, d̄· the mean of the di’s and
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ˆ︁σ2n = 1/(n− 1)
n∑︁
i=1

(di− d̄·)2 the estimated variance of the di’s. In order to bring the notation

in line with the ones from the previous sections, we have ˆ︁Qn = ˆ︁Qn = d̄· and ˆ︁Un = ˆ︁σ2n at this
stage (Stage 2). The statistical test φn,complete follows under H0 a tn−1 distribution, if the
bivariate vector X1 is multivariate normal distributed. The latter can also be dropped for
the cost of obtaining an asymptotically exact test φn,complete, such that the assumption of a
normal distribution is not of utmost importance. Within the framework of incomplete paired
data, we consider the case where only the first component is partly missing, i.e. we have

[︄
X

(c)
11

X
(c)
21

]︄
, . . . ,

[︄
X

(c)
1n1

X
(c)
2n1

]︄

⏞ ⏟⏟ ⏞
X(c)

,

[︄
NA

X
(i)
21

]︄
, . . . ,

[︄
NA

X
(i)
2n2

]︄
,

⏞ ⏟⏟ ⏞
X(i)

(3.13)

where n = n1 + n2. Throughout the section, we assume a constant missing rate of r ∈ (0, 1),
i.e. we have n1 = ⌈(1− r) · n⌉ complete-pair observations and n2 = n− n1 observations with
missing values in the first component. We additionally assume that the imputer has access
to additional information, beside the one given in (3.13). Thus, we assume that auxiliary
variables are available such that the extended data matrix has the form

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X11 X21 W11 . . . Ws1

X12 X22 W12 . . . Ws2
...

...
...

...
...

X1n1 X2n1 W1n1 . . . Wsn1

NA X2n1+1 W1n1+1 . . . Wsn1+1
...

...
...

...
...

NA X2n W1n . . . Wsn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rn×(s+2). (3.14)

Note that Algorithm 4 makes use of a similar structure as model assumption (3.13) resp.
(3.14) at every iteration step. Hence, during the imputation of missing values within Algo-
rithm 4, we will be faced with data structures similar to (3.13). In case of higher feature
dimensions, Algorithm 4 will still be using a data structure similar to (3.14), but without the
initial iid assumption due to the mean imputation in Step 2. Hence, assuming model (3.13)
resp. (3.14) will make the theoretical analysis more accessible while keeping the initial data
structure of (3.14). Denoting with Vi = [X2i,W1i, . . . ,Wsi]

⊤ ∈ Rs+1 for i = 1, . . . , n and
˜︁Yi = X1i for i = 1, . . . , n1, missing values according to Algorithm 4 are imputed by training
a Random Forest on Dn1 = {[V⊤

i ,
˜︁Yi]⊤ : i = 1, . . . , n1} and predicting missing cases by using

{Vi : i = n1 + 1, . . . , n} and the trained Random Forest model. Imputing missing instances
multiple times while obtaining complete-case estimators for the mean difference and its vari-
ance for plugging them into the test statistic τn can cause potential sources of invalidity of
the test φn,complete. We mention two main potential sources:

(i) The distribution of τn under the null-hypothesis H0 requires that the samples are
iid. This is clearly not met, since imputations are predicted using a Random For-
est mn1,M (·;Θ1, . . . ,ΘM ,Dn1), which itself is trained on the samples in Dn1 . Hence,
Algorithm 4 resp. RF MI imposes additional, unknown dependencies among the obser-
vations. Overcoming this source theoretically is a delicate issue, since central limit theo-
rems for triangular arrays cannot be directly applied here. This, because row-wise inde-
pendence for imputed values ˆ︁X1,i = mn1,M (Vi;Θ1, . . . ,ΘM ,Dn1) for i = n1 + 1, . . . , n
is not directly given.
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(ii) Incorrectly reflecting the uncertainty, i.e. the variance of the difference X1i − X2i

can lead to type-I-error inflation resp. deflation. Within the framework of missing
values, the uncertainty involved in the imputation has also to be reflected correctly.
This was emphasized by Definition 3.2, which especially required that the between
imputation variance is approximately V ar(Q̄n,∞|Y). This was summarized under the
term properness. Within the framework of model (3.13), Q is scalar and is nothing
else than E[X11 − X21] = µ1 − µ2. Estimating Q using RF MI will lead to a scalar
estimator that depends on the sample size n, the number of imputations m and the
number of decision treesM . It will be denoted by Qn,m,M and refers to the aggregated,
completed statistics d̄· using RF MI as an imputation scheme within the multiple
imputation aggregation logic. Note that Q̄n,m = Q̄n,m = Q̄n,m,M in this case, while
Ūn,m = Un,m = Un,m,M is the aggregated, completed variance estimator similarly to
ˆ︁σ2n, but estimated on the imputed data set using RF MI with M decision trees.

We will not go into more detail regarding source (i). Instead, we will focus on source (ii) and
state an example for potential implications regarding (ii).

Example 3.1. Suppose that under a specific null-hypothesis H0, Tn fulfills the following

central-limit type convergence in distribution:
√
nTn

H0−→ σZ ∼ N(0, σ2) as n → ∞ with
σ2 > 0 and Z ∼ N(0, 1). Then, an asymptotically exact testing procedure under a two-sided
alternative is given by φn = 1{|√nTn| > σz1−α/2}, where zα denotes the α-quantile of the
standard normal distribution, with α ∈ (0, 1). Suppose that γ̂n is an inconsistent estimator of

σ such that γ̂n
P−→ γ ∈ (0, σ) with ratio c := σ/γ > 1. Assume furthermore that there exists

a consistent estimator ˆ︁σn for σ, such that ˆ︁σn P−→ σ, as n→∞. Then, for the following two
test statistics, it follows under the null-hypothesis and from Slutzsky’s theorem that

T ′
n :=

√
n
Tn
γ̂n
−→ cZ, ˜︁Tn :=

√
n
Tn
σ̂n
−→ Z as n→∞.

Since c > 1, the limiting distribution of T ′
n is stochastically greater than the limiting dis-

tribution of T̃n on the non-negative real-line, i.e. FcZ(x) ≤ FZ(x) for all x ∈ R+ and
FcZ(x) < FZ(x) for at least one x ∈ R+. Here, F denotes the corresponding distribution
function under the null-hypothesis. Suppose that the imputer is unaware about the incon-
sistent estimation of the sampling variance σ2 by γ̂n, whereas γ̂n is a sampling variance
estimator after imputation. Therefore, the imputer conducts the statistical analysis as if
there has not been any missing values by believing that T ′

n is standard normally distributed.
However, the imputer’s p-value pimp experience a deflation under the null-hypothesis due to
the following inequality using the property that T ′

n is stochastically greater than T̃n on the
non-negative real-line and the symmetry of the normal distribution:

pimp = 2 · P[Z > |T ′
n|] = 2 · (1− FZ(|T ′

n|)) ≤ 2 · (1− FcZ(|T ′
n|)) = 2 · P[cZ > |T ′

n|] =: ptrue,

where ptrue is the correct p-value after imputation. But this will lead to an inflated type-I
error, because we then obtain the following inequality:

T imperror := EH0 [1{pimp < α}] ≥ EH0 [1{ptrue < α}] =: T trueerror.

Hence, inconsistent sample variance estimators can lead to inflated type-I errors.

Example 3.1 shows that underestimating the true variance of a
√
n-consistent estimator can

lead to an inflated type-I-error rate. The upcoming theorem shows that this actually happens,
if one uses RF MI as an imputation method.
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Theorem 3.2. Assume model (3.13) together with potential auxiliary variables as prescribed
in (3.14). Then for any finite choice of multiple imputations m ∈ N and a constant missing
rate r ∈ (0, 1), the between variance estimator of RF MI tends to zero almost surely, as the
number of decision trees increases. That is

P[ lim
M→∞

Bn,m,M = 0] = 1,

where Bn,m,M is the between variance estimator as prescribed in (3.5) for Q̄n,m,M .

Theorem 3.2 reveals that if the number of decision trees is sufficiently large, then the between
imputation variance will vanish, if one makes use of the imputation procedure RF MI. If
one denotes with Bn,∞,∞ the between variance estimate of an infinite multiple imputation
procedure using RF MI in the sense that Bn,∞,∞ = lim

m→∞
lim
M→∞

Bn,m,M , then this will lead to

E[Bn,∞,∞|Y] = 0. The above result enables us to simplify the properness assumption as given
in Definition 3.2, which was an essential presumption for the validity of inference procedures in
frequentist’s perspective. Note that under model (3.13) together with the hypothesis (3.12),
but with complete cases instead, one would have an estimator ˆ︁Qn for Q = µ1 − µ2, that
simply takes the average over the n complete paired differences {X1i − X2i}ni=1. Recalling
that the RF MI leads to imputation estimators potentially depending on both, the number
of iterations m and the number of decision treesM , we will denote its completed estimator as
Q̄n,m,M , instead of Q̄n,m as in the previous section. We can formulate the following corollary:

Corollary 3.1. Under model (3.13) together with potential auxiliary variables as prescribed
in (3.14), the RF MI procedure fulfills condition 1. and 3. of Definition 3.2, if and only if
Q̄n,∞,∞ = ˆ︁Qn, where lim

m→∞
lim
M→∞

Qn,m,M = lim
M→∞

lim
m→∞

Qn,m,M =: Qn,∞,∞ exists.

Corollary 3.1 guarantees that RF MI partly fulfills the condition of properness (Definition
3.2) under the design of (3.13), if at least Q̄n,∞,∞ = ˆ︁Qn holds. Small deviations to this
property will automatically lead to improper imputations and therefore, its correctness in
terms of statistical inference from the frequentist’s perspective cannot be guaranteed. This
can easily happen, as our simulation examples have shown in (P2). Think of the following
example: Suppose that the first pair in model (3.13) is independent of the second pair and
independent of the auxiliary variables. We denote with {X1i}ni=n1+1 the true values of the

missing cases in M. Then, properness of RF MI for the complete estimators ( ˆ︁Qn, ˆ︁Un) would
yield the validity of condition 1 and 3 in Definition 3.2 and therefore, under Corollary 3.1 the
equality of both estimators, Q̄n,∞,∞ and ˆ︁Qn. This will result into the following implications,
where we use equation (3.30) in the proof of Corollary 3.1:

Q̄n,∞,∞ = ˆ︁Qn

1

n

⎧
⎨
⎩
∑︂

i≤n1

(X1i −X2i) +
∑︂

i>n1

(mn,∞(Vi;Dn1)−X2i)

⎫
⎬
⎭ =

1

n

n∑︂

i=1

(X1i −X2i)

1

n

⎧
⎨
⎩
∑︂

i≤n1

(X1i −X2i) +
∑︂

i>n1

(mn,∞(Vi;Dn1)−X2i)

⎫
⎬
⎭ =

1

n

⎧
⎨
⎩
∑︂

i≤n1

(X1i −X2i) +
∑︂

i>n1

(X1i −X2i)

⎫
⎬
⎭

∑︂

i>n1

X1i =
∑︂

i>n1

mn1,∞(Vi;Dn1)

∑︂

i>n1

X1i =
∑︂

i>n1

n1∑︂

ℓ=1

Wn1,ℓ(Vi) ·X2ℓ.
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The above result imposes dependence structures between {X1i}i>n1 and {Vi}i>n1 . This is
a violation towards the initial independence assumption. Therefore, ˆ︁Qn = Q̄n,∞,∞ cannot
hold such that RF MI is not proper, at least for this scenario. Other scenarios have been
discovered in (P2) as well through simulation.

In summary, we can make the following conclusions regarding RF MI based on Theorem 3.2
and Corollary 3.1:

1. As the short example for uncorrelated pairs above has shown, RF MI cannot guarantee
properness according to Definition 3.2. Therefore, RF MI does not guarantee the cor-
rect validity of statistical inference from the frequentist’s perspective, since properness
is an unavoidable assumption for statistical validity after imputation (see Result 4.1 in
Rubin, 2004).

2. The result that the between variance estimator vanishes almost surely as the number
of decision trees in Breiman’s Random Forest increases yields that RF MI behaves in
its limit (M →∞) as a single imputation scheme. This will ignore Rubin’s initial idea
of accounting for uncertainty due to the presence of missing values, and therefore acts
like as one would be at Stage 2, although one is living at Stage 3 resp. Stage 4. Hence,
according to Rubin (2004), pages 12 - 13, the lack of considering the extra variability
due to missing cases can cause variance underestimation as given in Example 3.1 (see
also the variance decomposition (3.4) valid at Stage 3). This is different to the general
principle in Machine Learning prediction, where additional decision trees in Breiman’s
Random Forest are recommended and are only contrary to computational time (cf.
Wager et al., 2014, Scornet, 2016). However, in case of statistical inference, it can also
be contrary to statistical validity as an imputation scheme, which has been revealed by
our theoretical and practical work. Therefore, adding additional trees in RF MI for
the purpose of statistical inference in missing frameworks is not recommended.
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3.4 Proofs of the Chapter

Proof of Proposition 3.1. Let the missing mechanism be at least MAR, that is P[R|Y, ξ] =
P[R|Yobs, ξ]. Then we have

P[Ymis|Yobs,R] =

∫︂
P[Ymis|Yobs,R, ξ] · P[ξ]dξ

=

∫︂
P[R|Y, ξ]

P[Yobs,R, ξ]
· P[Y, ξ] · P[ξ]dξ

=

∫︂
P[R|Yobs, ξ]

P[Yobs,R, ξ]
· P[Y, ξ] · P[ξ]dξ

=

∫︂
P[Y, ξ]

P[Yobs, ξ]
· P[ξ]dξ

=

∫︂
P[Ymis|Yobs, ξ] · P[ξ]dξ = P[Ymis|Yobs]. (3.15)

The third equality follows from applying the definition of MAR. ■

Proof of Theorem 3.1. We first show that under the ignorability assumption, the missing
mechanism can be neglected when conducting Bayesian statistical inference in hypothesis
testing. Then we will show that infinite imputation draws enables us to reconstruct the
posterior P[Q|Yobs], on which Bayesian inference is then conducted. Therefore, let us start
with the Bayes Theorem and the assumption of ignorability, which implies the independence
of Q = f(θ) towards ξ. Then we can deduce that

P[f(θ), ξ|Yobs,R] = c−1 · P[R,Yobs|f(θ), ξ] · P[f(θ)] · P[ξ], (3.16)

where c is a normalizing constant independent of θ and ξ. On other words, P[f(θ), ξ|Yobs,R] ∝
P[R,Yobs|f(θ), ξ] · P[θ] · P[ξ]. Recalling equation (12) in Schafer (1997) on page 12, one has

P[R,Yobs|ξ, f(θ)] =
∫︂

P[R|Y, ξ] · P[Y|f(θ)]dYmis, (3.17)

which yields under the MAR assumption to

P[R,Yobs|ξ, f(θ)] = P[R|Yobs, ξ] ·
∫︂

P[Y|f(θ)]dYmis

= P[R|Yobs, ξ] · P[Yobs|f(θ)]. (3.18)

Since the quantity Q can be considered as a function of the data generating parameter θ, we
have Q = f(θ) for some measurable function f . Finally, we can deduce that

P[Q|Yobs,R] = P[f(θ)|Yobs,R] =

∫︂
P[f(θ), ξ|Yobs,R]dξ

= c−1

∫︂
P[R,Yobs|f(θ), ξ] · P[f(θ)] · P[ξ]dξ

= P[Yobs|f(θ)] · P[f(θ)] · c−1

∫︂
P[R|Yobs, ξ] · P[ξ]dξ

= c∗ · P[Yobs|f(θ)] · P[f(θ)]
= c∗ · P[Yobs|Q] · P[Q]

= c∗ · P[Q|Yobs] · P[Yobs], (3.19)
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where c∗ = c−1 ·
∫︁
P[R|Yobs, ξ] · P[ξ]dξ is independent of θ resp. Q. The third equality

follows from applying equation (3.16) and the fourth equality from (3.18) as given in Schafer
(1997) on page 12. Therefore, we can deduce that P[Q|Yobs,R] ∝ P[Q|Yobs]. Hence, the
missing mechanism can be ignored when considering the posterior distribution P[Q|Yobs,R],
i.e. considering P[Q|Yobs] suffices for Bayesian inference.

Now, return to the predictive posterior distribution P[Ymis|Yobs,R]. Since the missing mech-
anism is ignorable and thus at least MAR, we know from Proposition 3.1 that P[Ymis|Yobs,R]

= P[Ymis|Yobs]. Therefore, the imputed draws {Y(t)
mis}mt=1 from P[Ymis|Yobs] are actually in-

dependent draws from P[Ymis|Yobs,R]. If we denote with PA the Bayesian model of the
analyst and PI the Bayesian model of the imputer, then we have PA = PI =: P due to model
assumptions. The imputation procedure will then lead to the preservation of the posterior
distribution, since

∫︂
PA[Q|Yobs,Ymis] · PI [Ymis|Yobs]dYmis =

∫︂
P[Q|Yobs,Ymis] · P[Ymis|Yobs]dYmis

= P[Q|Yobs]. (3.20)

Hence, Bayesian inference should not be distorted and is therefore valid. This result can now
be applied to simulate the actual posterior distribution of Q using the independent draws

{Y(t)
mis}mt=, m ∈ N for missing cases. Similarly to Rubin (2004), page 82, let C be some

(measurable) region. Then, we have

PA[Q ∈ C|Yobs] = lim
m→∞

1

m

m∑︂

t=1

PA[Q ∈ C|Yobs,Y
(t)
mis]

= lim
m→∞

1

m

m∑︂

t=1

P[Q ∈ C|Yobs,Y
(t)
mis]

= P[Q ∈ C|Yobs], (3.21)

where the last equality follows from (3.20). Hence, P[Q|Yobs] can be recovered within the
multiple imputation strategy using an infinite number of imputations. ■

Proof of Theorem 3.2. Let m ∈ N be the number of imputations, which is assumed to be
fixed. Denote with ˆ︁X1i,M for i = n1 + 1, . . . , n the Random Forest prediction using data set

Dn1 and a finite choice of decision treesM ∈ N. That is, ˆ︁X1i,M = mn1,M (Vi;Θ1, . . . ,ΘM ,Dn1),
where Vi = [X2i,W1i, . . . ,Wsi]

⊤. In fact, if one replicates the Random Forest method in or-
der to obtain multiple imputations according to Algorithm 4, this will result into m Random

Forest estimates {m(ℓ)
n1,M
}mℓ=1. Therefore, we will have m imputations each with exactly n2

point predictions { ˆ︁X(ℓ)
1i,M}ni=n1+1. Since all of them are trained on the data set Dn1 , they

will only differ w.r.t. the realizations of the vectors Θ1, . . . ,ΘM , which are responsible for
the sampling mechanism and the feature sub-spacing procedure. Therefore, we have to write

m
(ℓ)
n1,M

(·) = mn1,M (·;Θ(ℓ)
1 , · · · ,Θ(ℓ)

M ,Dn1) for every ℓ = 1, . . . ,m. Since imputations are con-

ducted independent of each other, we can conclude that the sequence {Θ(ℓ)
t }t,ℓ is a sequence

of independent and identically distributed random vectors, given the training set Dn1 . Now,
denote with

d
(obs)
i = X1i −X2i, i = 1, . . . , n1, (3.22)

d
(imp)
i,ℓ,M = ˆ︁X(ℓ)

1i,M −X2i, i = n1 + 1, . . . , n, ℓ = 1, . . . ,m, (3.23)
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the complete and imputed paired differences. The complete-case estimator based on each
computed data set is then given by

ˆ︁Qn,ℓ,M =
1

n

(︄
n1∑︂

i=1

d
(obs)
i +

n∑︂

i=n1+1

d
(imp)
i,ℓ,M

)︄

= αd̄
(obs)
· + (1− α)d̄(imp)·,ℓ,M , (3.24)

where α = n1/n = α(r) = ⌈(1 − r)⌉ is constant, since the missing rate is assumed to be

constant. d̄
(obs)
· and d̄

(imp)
·,ℓ,M denote the corresponding means of {d(obs)i }n1

i=1 and {d(imp)i,ℓ,M }ni=n1+1.

If we consider the average of 1
n2

n∑︁
i=n1+1

ˆ︁X(ℓ)
1i,M over the m-repeated imputations while setting

M ′ = mM , we can observe for every i = n1 + 1, . . . , n the following:

1

m

m∑︂

ℓ=1

ˆ︁X(ℓ)
1i,M =

1

m

m∑︂

ℓ=1

mn1,M (Vi;Θ
(ℓ)
1 , . . . ,Θ

(ℓ)
M ,Dn1)

=
1

m

m∑︂

ℓ=1

1

M

M∑︂

t=1

mn1,1(Vi;Θ
(ℓ)
t ,Dn1)

=
1

M ′

m∑︂

ℓ=1

M∑︂

t=1

mn1,1(Vi;Θ
(ℓ)
t ,Dn1)

=
1

M ′

M ′∑︂

t=1

mn1,1(Vi;Θt,Dn1)

= mn1,M ′(Vi;Θ1, . . . ,ΘM ′ ,Dn1), (3.25)

where {Θt}M ′
t=1 is obtained after renumbering {Θ(ℓ)

t }t,ℓ. {Θt}M ′
t=1 remains a sequence of iid

random vectors given the data set Dn1 , as explained in the beginning of the proof. Because
of the strong law of large numbers and the fact that lim

M→∞
M ′/M = m is constant, we can

deduce PΘ -almost surely that

lim
M→∞

mn1,M ′(Vi;Θ1, . . . ,ΘM ′ ,Dn1) = lim
M ′→∞

mn1,M ′(Vi;Θ1, . . . ,ΘM ′ ,Dn1)

= EΘ[mn1,1(Vi;Θ,Dn1)] = mn1,∞(Vi;Dn1). (3.26)

Returning now to the between imputation variance, we can deduce that the latter depends
on the sample size n, the number of imputations m and the number of decision trees M
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according to Algorithm 4. Therefore, we obtain the following computations

Bn,m,M =
1

m− 1

m∑︂

ℓ=1

(︂
ˆ︁Qn,ℓ,M − ˆ︁Qn,·,M

)︂2

=
1

m− 1

m∑︂

ℓ=1

(︂
αd̄

(obs)
· + (1− α)d̄(imp)·,ℓ,M −

{︂
αd̄

(obs)
· + (1− α)d̄(imp)·,·,M

}︂)︂2

=
1

m− 1

m∑︂

ℓ=1

(︂
(1− α)d̄(imp)·,ℓ,M − (1− α)d̄(imp)·,·,M

)︂2

=
(1− α)2
m− 1

m∑︂

ℓ=1

(︄
1

n2

n∑︂

i=n1+1

{︄(︂
ˆ︁X(ℓ)
1i,M −X2i

)︂
− 1

m

m∑︂

ℓ=1

(︂
ˆ︁X(ℓ)
1i,M −X2i

)︂}︄)︄2

=
(1− α)2
m− 1

m∑︂

ℓ=1

(︄
1

n2

n∑︂

i=n1+1

{︄
ˆ︁X(ℓ)
1i,M −

1

m

m∑︂

ℓ=1

ˆ︁X(ℓ)
1i,M

}︄)︄2

=
(1− α)2
m− 1

m∑︂

ℓ=1

(︄
1

n2

n∑︂

i=n1+1

{︂
mn1,M (Vi;Θ

(ℓ)
1 , . . . ,Θ

(ℓ)
M ,Dn1)−

mn1,M ′(Vi;Θ1, . . . ,ΘM ′ ,Dn1)
}︁)︁2

, (3.27)

where the last equality follows from applying equation (3.25) and plugging in the alternative

representation of the imputed values ˆ︁X(ℓ)
1i,M as a Random Forest prediction. Using the result

given in (3.26) and plugging it into (3.27) we can finally obtain PΘ - almost surely that

lim
M→∞

Bn,m,M =
(1− α)2
m− 1

m∑︂

ℓ=1

(︄
1

n2

n∑︂

i=n1+1

lim
M→∞

∆n1,M,M ′(Vi)

)︄2

=
(1− α)2
m− 1

m∑︂

ℓ=1

(︄
1

n2

n∑︂

i=n1+1

mn1,∞(Vi;Dn1)−mn1,∞(Vi;Dn1)

)︄2

= 0, (3.28)

where∆n1,M,M ′(Vi) = mn1,M (Vi;Θ
(ℓ)
1 , . . . ,Θ

(ℓ)
M ,Dn1)−mn1,M ′(Vi;Θ1, . . . ,ΘM ′ ,Dn1). Since

1 = PΘ[ lim
M→∞

Bn,m,M = 0] = E[1{ lim
M→∞

Bn,m,M = 0}|Dn1 ], we can extend the almost sure

convergence to the whole measure P, by conducting the following computations:

P[ lim
M→∞

Bn,m,M = 0] = E[1{ lim
M→∞

Bn,m,M = 0}] = E[E[1{ lim
M→∞

Bn,m,M = 0}|Dn1 ]]

= E[1] = 1.

■

Proof of Corollary 3.1. Denote with Y the truly completed data matrix of M. From Theo-
rem 3.2, we know that the between imputation variance for infinite-m multiple imputation
procedure using missForest and an infinite number of decision trees vanishes almost surely,
i.e. Bn,∞,∞ := lim

m→∞
lim
M→∞

Bn,m,M = 0, P-almost surely. First, we show the existence of

Q̄n,∞,∞. Following the same logic and notation as in the proof of Theorem 3.2, we know that
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{Θ(ℓ)
t }t,ℓ is iid given the data Dn. Then, we have

Q̄n,m,M =
1

m

m∑︂

ℓ=1

ˆ︁Qn,ℓ,M =
1

m

1

n

m∑︂

ℓ=1

{︄
n1∑︂

i=1

d
(obs)
i + d

(imp)
i,ℓ,M

}︄

=
1

n

n∑︂

i=1

d
(obs)
i +

1

n

n∑︂

i=1

{︄
1

m

m∑︂

ℓ=1

mn1,M (Vi;Θ
(ℓ)
1 , . . . ,Θ

(ℓ)
M ,Dn1)−X2i

}︄

=
1

n

n∑︂

i=1

d
(obs)
i +

1

n

n∑︂

i=1

{︁
mn1,M ′(Vi;Θ1, . . . ,ΘM ′ ,Dn1)−X2i

}︁
, (3.29)

where the last equality follows from equation (3.25). Since

lim
m→∞

lim
M→∞

mn,M ′(Vi;Θ1, . . . ,ΘM ′ ,Dn1) = EΘ[mn1,1(Vi;Θ,Dn1)] = mn1,∞(Vi;Dn1)

= lim
M→∞

lim
m→∞

mn,M ′(Vi;Θ1, . . . ,ΘM ′ ,Dn1),

we can deduce from (3.29) that lim
m→∞

lim
M→∞

Q̄n,m,M = lim
M→∞

lim
m→∞

Q̄n,m,M holds such that

Q̄n,∞,∞ =
1

n

n1∑︂

i=1

(X1i −X2i) +
1

n

n∑︂

i=n1+1

(mn1,∞(Vi;Dn1)−X2i) (3.30)

in almost sure sense.
Suppose now that RF MI fulfills condition 1. and 3. of Definition 3.2. Then, by the third
characteristic of the latter definition, we have that 0 = E[Bn,∞,∞|Y] = V ar(Q̄n,∞,∞|Y).
Hence, we have

0 = V ar(Q̄n,∞,∞|Y) = E[(Q̄n,∞,∞ − E[Q̄n,∞,∞|Y])2|Y],

which implies that E[Q̄n,∞,∞|Y] = Q̄n,∞,∞. However, according to the first characteristic

of Definition 3.2, this will yield to ˆ︁Qn = E[Q̄n,∞,∞|Y] = Q̄n,∞,∞. For the other direction,

assume that ˆ︁Qn = Q̄n,∞,∞. We consider condition 1. and 3. from Definition 3.2.

1. Regarding the first condition of Definition 3.2, we can deduce that

E[Q̄n,∞,∞|Y] = E[ ˆ︁Qn|Y] = ˆ︁Qn. (3.31)

The first equality follows from Q̄n,∞,∞ = ˆ︁Qn. The second equality from the measura-

bility of ˆ︁Qn towards the sigma field generated by Y.

2. The last property of Definition 3.2 requires that E[Bn,∞,∞|Y] = V ar(Q̄n,∞,∞|Y). Since
the assumptions of Theorem 3.2 are met, we can conclude that Bn,∞,∞ = 0 holds almost
surely. Therefore, E[Bn,∞,∞|Y] = 0. Similarly, we can obtain in almost sure sense that

V ar(Q̄n,∞,∞|Y) = V ar( ˆ︁Qn|Y) = E[ ˆ︁Q2
n|Y]− E[ ˆ︁Qn|Y]2 = ˆ︁Q2

n − ˆ︁Q2
n = 0.

Therefore, E[Bn,∞,∞|Y] = 0 = V ar(Q̄n,∞,∞|Y).

■



Chapter 4

Summary of the Scientific Articles

4.1 Article 1: Prediciting Missing Values: A comparative
study on non-parametric approaches for imputation.

In this article, we have focused on research question (H4) that has been stated and motivated
in Chapter 3. The aim was to use Algorithm 4 as a starting point for implementing other
imputation schemes than the Random Forest model within the statistical software R. The key
idea was to use CART-based algorithms for imputation, since the latter can be easily adopted
to mixed-type data and are easy to tune during choices of potentially suitable hyperparam-
eters. Furthermore, the restriction to CART-based algorithms are comparably faster than
other complex Machine Learning algorithms such as neural nets. The latter, however, can
still be regarded as a potential field for future research as novel imputation schemes have been
mainly focused on the bagging and boosting principles together with nearest neighbor meth-
ods (cf. Conversano and Siciliano, 2009, Wang and Feng, 2010, Stekhoven and Bühlmann,
2012). We considered the following algorithms within the scheme of Algorithm 4:

1. The stochastic gradient tree boosting as explained in Chapter 1, Section 1.4 for both
types of data, categorical and continuous outcomes. The algorithm is also capable
of treating both types simultaneously, which has been done during an empirical data
analysis. The package gbm within the statistical software R has been used.

2. The C5.0 classifier implemented in the R package C50 has been used to impute missing
cases for categorical outcomes only. The latter is not able to treat continuous outcomes
such that its usage is restricted to classification problems. The working principle follows
the explanation given in Chapter 1, Section 1.5 while using the cross-entropy as an
impurity measure (see Definition 1.6). Differently to the Random Forest, post-pruning
will take place. That is, the decision tree is fully grown and then collapsed according
to the criterion given in equation (1.22) without using bagging principles and feature
sub-spacing.

3. The Random Forest method as explained in Algorithm 3, but using stratified sam-
pling during the bagging procedure. The stratified Random Forest (Liaw and Wiener,
2002) is used for classification procedures to represent low-frequent outcomes appropri-
ately during the training phase. Therefore, we implemented this method in R only for
categorical outcomes.

4. For continuous outcomes, we proposed different re-sampling strategies during the bag-
ging step of the Random Forest method as explained in Algorithm 3. Instead of simply
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focusing on subsampling and resampling with replacement, we extended the possibil-
ity to use parametric bootstrapped samples from a multivariate normal distribution,
where its mean vector and covariance matrix are estimated based on [Kobs

π(j),Y
obs
−π(j)]

as given in step 3 of Algorithm 4. This procedure will be abbreviated as the normal
Random Forest. In addition, we changed the re-sampling step to a multivariate kernel
sampling procedure, in which we used a multivariate normal kernel together with a
normal-scaled bandwidth-matrix estimator. This procedure is referred to as the kernel
Random Forest.

5. We included also Bayesian procedures for imputing missing values using CART ap-
proaches. The CART construction process as explained in Chapter 1, Section 1.5 is
modified by assuming that each characterizing element of decision trees is imposed by
a suitable prior distribution. Each tree is then aggregated under an additive mod-
elling scheme similarly to the boosting principle. The method has been developed in
Chipman et al. (2010) and implemented in the R-package BART (Bayesian Additive
Regression Trees).

6. Classical imputation schemes such as the mice-package using the predictive mean-
matching approach and the missForest package have been considered as well.

7. The proposed methods have also been implemented within an alternative Algorithm
other than Algorithm 4 and are referred to as the Incremental Imputation Algorithm
(IIA) developed by Conversano and Siciliano (2009).

Our simulation study can be separated in two parts: First, we artificially generated seven
different data sets with dimensions (n, p) = (250, 15) consisting either categorical or con-
tinuous variables, where missing values have been artificially inserted under the MCAR or
MAR scheme with various missing rates underMC = 500 Monte-Carlo iterations. Regarding
mixed-type data, we considered the German Credit Data from the UCI Machine Learning
Repository, which consisted of n = 1, 000 observations with p = 20 variables. In addition,
Facebook data was taken into consideration from the myPersonality.com Facebook applica-
tion app, which consisted of n = 463 participants with p = 13 variables. Both data sets
have continuous and categorical outcomes. Our results revealed that imputation accuracy in
terms of NRMSE and PFC as defined in (3.10) and (3.11) could be improved by the stochastic
gradient tree boosting for categorical variables, while the kernel Random Forest performed
comparably better for continuous outcomes. This is the case when using the scheme of Algo-
rithm 4, instead of the IIA and the missForest as the benchmark model. Superiority towards
the benchmark model using the NRMSE and PFC as performance measures have been in-
ferred by the Brunner-Munzel test. Therefore, we proposed the missBooPF-Algorithm, that
combines the stochastic gradient boosting method and the kernel Random Forest as an im-
putation scheme, depending on the scale of the variables to be imputed. This comes with the
cost of additional computational time loads, which originates from the modified re-sampling
scheme among others.

Finally, we could conclude that imputation error in terms of NRMSE and PFC could be
reduced when changing Algorithm 4 by using a combination of the kernel Random Forest
and the stochastic gradient boosting method, depending on the outcome scale. However,
the usage of the NRMSE as a universal measure for evaluating imputation schemes can be
misleading, as our next article (P2) will show, especially under aspects of inferential statistics.
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4.2 Article 2: A cautionary tale on using imputation meth-
ods for inference in matched pairs design.

In this work, we mainly focused on research question (H5) by paying special attention to
bivariate data with missing cases in both arms. The idea was to compare different multiple
imputation procedures together with a recently proposed testing procedure developed by
Amro and Pauly (2017) for testing equal means in bivariate data with missing cases. We
wanted to know whether test decisions are distorted when data is partially observed compared
to the complete-observation case. Therefore, we considered a collection of n ∈ N iid bivariate
random vectors {Xi}ni=1 such that E[X] = µ = [µ1, µ2]

⊤ ∈ R2 with an arbitrary, positive
definite covariance matrix Σ > 0. Missing cases will appear in both arms such that n =
n1 + n2 + n3 with

[︄
X

(c)
11

X
(c)
21

]︄
, . . . ,

[︄
X

(c)
1n1

X
(c)
2n1

]︄

⏞ ⏟⏟ ⏞
X(c)

,

[︄
X

(i)
11

NA

]︄
, . . . ,

[︄
X

(i)
1n2

NA

]︄[︄
NA

X
(i)
21

]︄
, . . . ,

[︄
NA

X
(i)
2n3

]︄
.

⏞ ⏟⏟ ⏞
X(i)

(4.1)

We focused on statistical inference from a frequentist’s perspective by considering the null-
hypothesis of no mean time effect, i.e.

H0 : µ1 = µ2 vs. H1 : µ1 ̸= µ2.

A possible testing procedure for the null-hypothesis is the paired t-test, which should maintain
exact or asymptotically exact type-I error results under the complete-case framework of (4.1).
However, the procedure faces difficulties under the incomplete framework as given in (4.1).
Amro and Pauly (2017) proposed a weighted combination test as a data adjusted method by
considering the paired t-statistic for X(c) and the Welch-type statistic for X(i), i.e. TML =√
aTt(X

(c)) +
√
1− aTw(X(i)). Tt(X

(c)) is in this case the test statistic of the paired t-test
based on the samples given in X(c) and Tw(X

(i)) is the test statistic of the Welch’s t-test
treating the incomplete pairs in X(i) as two samples. The weighting coefficient a is then
given by a = 2n1/(n+ n1) and critical values for TML have been computed under a specific
permutation scheme permuting complete cases X(c) and incomplete cases X(i) separately.
From the field of multiple imputation procedures, we considered the following schemes:

1. The FCS approach implemented in R under the package mice using the Bayesian linear
regression method ”norm” as an imputation scheme. The procedure has been explained
in detail in Chapter 3 and is referred to as NORM.

2. The FCS approach implemented in R under the package mice using the predictive mean-
matching method ”pmm” as an imputation scheme. The procedure has been explained
in detail in Chapter 3 and is referred to as PMM.

3. The Random Forest imputation scheme introduced in Algorithm 4 of Chapter 3 and
implemented in R under the package missForest by Stekhoven and Bühlmann (2012)
while repeatedly applying this procedure (RF MI).

4. The Random Forest imputation scheme implemented in mice. This has been explained
in detail in Chapter 3 and was referred to as RF MICE.

Following the explanations given in Chapter 3, we applied Rubin’s combining rule for multiply
imputed data sets, where in our case, the quantity of interest Q is the mean difference, i.e.
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Q = µ1 − µ2. We conducted an extensive simulation study, where data has been generated
under the following data generating process

Xi = Σ1/2ϵi + µ (4.2)

with various covariance matrices and different distributions for ϵi = [ϵ1i, ϵ2i]
⊤ with differ-

ent sample sizes n ∈ N. Missing cases have been artificially inserted representing different
forms for the triple (n1, n2, n3) under the MCAR framework while repeating the process over
nsim = 10, 000 times.

Our results indicated a heavy inflation of the type-I-error rate when using RF MI as a mul-
tiple imputation rule under various simulation settings. Similar, but less extreme were the
results under the RF MICE imputation scheme. The PMM approach revealed a slightly
more conservative behavior while NORM and the data adjusted method TML were close to
the chosen significance level of α = 0.05. Regarding the NRMSE as a performance measure
for evaluating imputation schemes, we could see that the latter is not suitable when evaluating
them in terms of valid statistical inference results. This, because RF MI yielded on average
the smallest NRMSE values, but inflated type-I-error heavily. We could verbally identify
three sources for the inflation of the type-I-error rate such as the partial violation of the
independence assumption when using the paired t-test, the (asymptotic) normality when im-
puting missing cases with the Random Forest as well as the consistency of the complete-case
variance estimator after imputation. In the previous Chapter, Section 3.3 we could especially
show that the between-variance estimator based on RF MI vanishes almost surely (Theorem
3.2) such that Rubin’s condition of properness for the validity of multiple imputation proce-
dures is not met. In addition, this result reveals that uncertainty from the imputation itself
has not been covered sufficiently well, such that the true variance under a posited response
mechanism might be underestimated yielding to inflated type-I-errors. Furthermore, this
shows that RF MI behave in its limits (as the number of decision trees tends to infinity) like
a single imputation scheme. Note that this theoretical result is not covered within (P2), but
was established additionally in Chapter 3. In our article, we extended the simulation scenario
to repeated measures ANOVA with four endpoints and received similar results while focusing
on Wald-Type quadratic forms as a test statistic for testing no mean time effects. This was
also the case for the traditionally used last observation carried forward approach, where miss-
ing instances are imputed by the last available observational point during the four time points.

In addition to the simulation results, we considered gene expressions from a breast cancer
study. Therein, the main idea was to identify gene markers for indicating potential breast
cancer tissue. For n = 112 breast cancer patients, both, normal and tumor tissue samples
have been extracted and potential genes isolated. Similarly to the simulation study, the paired
t-test has been used for testing equal mean gene expression. We then artificially introduced
missing values under the MCAR mechanism for various missing rates. The results indicated
slightly different test-decisions when using multiple imputation procedures such as RF MI,
RF MICE, PMM or NORM, even when using additional information such as auxiliary
variables during imputation.

Finally, we could conclude that modern Machine Learning techniques such as the Random
Forest procedure can fail to control type-I-error rates in bivariate data with missing cases in
both arms. Therefore, these procedures can be considered as unsuitable in its basic imple-
mentation form for inference procedures in multiple imputation settings, at least in bivariate
data designs such as the one described in (4.1). However, when aiming to solely conduct
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prediction during the analysis phase, as our article (P1) could illustrate, Random Forest
imputation models can still be used for reducing NRMSE. Whether high predictive accuracy
and low NRMSE values are closely related to each other remains future research work we are
currently focused on.
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4.3 Article 3: Consistent estimation of residual variance
with Random Forest Out-of-Bag errors.

Following the same notation as in Chapter 2 for Random Forests, we considered arbitrary
regression problems of the form

Y = m(X) + ϵ, (4.3)

where the support of X is assumed to be the unit-cube [0, 1]p and the regression function m :
Rp → R is a measurable function such that E[|m(X)|2] <∞ while E[ϵ] = 0 and V ar(ϵ) = σ2.
Furthermore, it is assumed that ϵ is independent of X. Starting from this data generating
process, we assume that Dn = {[X⊤

i , Yi]
⊤
: i = 1, . . . , n} is a collection of iid random vectors.

The main idea of the article was to show that residuals obtained from the Random Forest
method using Out-of-Bag samples can be used to construct consistent estimates for the
residual variance σ2. This will smooth the way towards a solution for the research question
given in (H1), which has been analyzed in more detail in Chapter 2, under Theorem 2.2.
In a first step, we could show that the finite Random Forest estimate based on Out-of-Bag
samples mOOB

n,M converges almost surely to its infinite Out-of-Bag analogon mOOB
n = mOOB

n,∞
(see Lemma 1 in the main article (P3)). Assuming that X is an independent copy of X1 such
that

lim
n→∞

E[(m(X)−mn,∞(X))2] = 0 (4.4)

holds together with model assumption (4.3), we could formally show that ˆ︁σ2RF introduced in
Chapter 2 is L1-consistent (see Theorem 1 in (P3)). Condition (4.4) has been proven to be
valid for the Random Forest method in Scornet et al. (2015) under side conditions, that are
stronger than the one we have set. However, they are not exclusive, i.e. substituting condition
(4.4) by the ones given in Scornet et al. (2015) and combining them with our additional
assumptions will not lead to any mathematical contradictions such that the theoretical results
remain valid. Beside the traditional estimation of the residual variance estimator based on the
empirical variance of the sequence {Yi −mOOB

n (Xi)}ni=1, we considered different estimators
for σ2 as well. Simulation studies in Mendez and Lohr (2011) have shown that the residual
variance estimator ˆ︁σ2RF can be positively biased. Therefore, we focused on the Random Forest
based bootstrap scheme given in Mendez and Lohr (2011) in order to estimate the bias due
to finite sample sizes:

1. Given the training set Dn, generate ϵ∗1, . . . , ϵ∗n iid (parametric) bootstrapped residuals
such that E[ϵ1|Dn] = 0 and V ar(ϵ∗1|Dn) = ˆ︁σ2RF . This can be done by the normal
distribution, for example, i.e. ϵ∗1 ∼ N(0, ˆ︁σ2RF ).

2. Use the bootstrapped residuals ϵ∗1, . . . , ϵ
∗
n in order to compute Y ∗

1 , . . . , Y
∗
n then given by

Y ∗
i = mOOB

n (Xi) + ϵ∗i .

3. Make use of the tree resp. forest structure ofmOOB
n and substitute terminal-node values

with the bootstrapped samples Y ∗
1 , . . . , Y

∗
n . Sincem

OOB
n represents the infinite Random

Forest, tree resp. forest structure has to be understood in terms of the representation
given in (2.5) of Chapter 2 using weights.

4. Repeat steps 1. − 3. B-times in order to obtain a Random Forest based bootstrap
sequence {mOOB

n,b }Bb=1 as predictions from 3 using the features {Xn
i=1}.
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5. Estimate the bias then given by ˆ︁RB(mn) :=
1
nB

B∑︁
b=1

n∑︁
i=1

(mOOB
n,b (Xi) −mOOB

n (Xi))
2 and

set the bias-corrected estimator for the residual variance as ˆ︁σ2RFboot = ˆ︁σ2RF − ˆ︁RB(mn).

We could additionally show that under the assumption of (4.4) and the regression model (4.3),
together with the condition that a2n/n −→ 0 as n→∞, the Random Forest bootstrap-based
residual variance estimator ˆ︁σ2RFboot is L1-consistent, see Theorem 2 in (P3). Since the latter
estimator can result into more computational time loadings, we proposed a slight correction
given by ˆ︁σ2RFfast = ˆ︁σ2RF (1 + 1/a2n). The latter choice has been motivated by Theorem 3 in

(P3), which shows that ˆ︁RB(mn) ≥ ˆ︁σ2RF /a2n almost surely conditioned on Dn, as the number
of bootstrap replicates B tends to infinity. Note that there is a typo in equation (12) in
the main article (P3) where a square root is missing due to the Cauchy-Schwarz inequality.
This does not have any further consequences and was caused by the production team of the
journal during publication.

4.3.1 Additional Clarifications

In this article, especially under Theorem 1 and Theorem 2, we have shown L1 - consistency
of the residual variance estimators ˆ︁σ2RF respectively ˆ︁σ2RFboot. Note that if ˆ︁σ2RF is consistent,
then under the considered framework in article (P3), ˆ︁σ2RFfast will be L1-consistent as well.
In this subsection, we want to clarify the interaction between (asymptotic) unbiasedness and
L1-consistency, which has been used throughout the proofs, perhaps without emphasizing it
sufficiently enough due to page limitations of the journal.

Considering the proof of Theorem 1, we decomposed the residual variance estimator ˆ︁σ2RF into

ˆ︁σ2RF =
1

n

n∑︂

i=1

(ˆ︁ϵi,n − ϵ̄·,n)2 =
1

n

n∑︂

i=1

ˆ︁ϵ2i,n − ϵ̄2·,n, (4.5)

where ˆ︁ϵi,n = Yi−mOOB
n,∞ (Xi;Dn) and ϵ̄·,n = 1

n

n∑︁
i=1
ˆ︁ϵi,n. L1-consistency of ˆ︁σ2RF can be shown, if

1
n

n∑︁
i=1
ˆ︁ϵ2i,n and ϵ̄2·,n are both L1-consistent, for example. Note that ϵ̄2·,n is non-negative such that

(asymptotic) unbiasedness implies L1-consistency, if the limiting quantity is 0. This has been
shown in the second part of Theorem 1 in (P3). Hence, ϵ̄2·,n is L1-consistent. Regarding the

first quantity 1
n

n∑︁
i=1
ˆ︁ϵ2i,n, we state the following decomposition (see proof of Theorem 1 in (P3)):

1

n

n∑︂

i=1

ˆ︁ϵ2i,n =
1

n

n∑︂

i=1

(Yi −mn,∞(Xi;Dn))2 =
1

n

n∑︂

i=1

(∆OOB
n,∞ (Xi) + ϵi)

2

=
1

n

n∑︂

i=1

∆OOB
n,∞ (Xi)

2 +
1

n

n∑︂

i=1

ϵi ·∆OOB
n,∞ (Xi) +

1

n

n∑︂

i=1

ϵ2i , (4.6)

where ∆OOB
n,∞ (Xi) := m(Xi)−mOOB

n,∞ (Xi;Dn). Using the decomposition (4.6), L1-consistency

of 1
n

n∑︁
i=1
ˆ︁ϵ2i,n is then established by showing that 1

n

n∑︁
i=1

∆OOB
n,∞ (Xi)

2 and 1
n

n∑︁
i=1

ϵi · ∆OOB
n,∞ (Xi)

converge in L1-sense, while
1
n

n∑︁
i=1

ϵ2i is an L1-consistent estimator for σ2. Regarding the first
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part, we can deduce that

0 ≤ E

[︄
1

n

n∑︂

i=1

∆OOB
n,∞ (Xi)

2

]︄
= E[∆OOB

n,∞ (X1)
2] −→ 0, as n→∞, (4.7)

where the first equality follows from the identical distribution of {∆OOB
n,∞ (Xi)}ni=1, as argued

in the proof of Theorem 1 in (P3) and the convergence from condition (4.4). Regarding the
second part of the decomposition (4.6), we can conclude that

0 ≤ E

[︄⃓⃓
⃓⃓
⃓
1

n

n∑︂

i=1

ϵi ·∆OOB
n,∞ (Xi)

⃓⃓
⃓⃓
⃓

]︄
≤ 1

n

n∑︂

i=1

E
[︁⃓⃓
ϵi ·∆OOB

n,∞ (Xi)
⃓⃓]︁

≤ 1

n

n∑︂

i=1

E[ϵ2i ]1/2 · E[∆OOB
n,∞ (Xi)

2]1/2

= σ · E[∆OOB
n,∞ (X1)

2]1/2 −→ 0. (4.8)

Similarly to the proof of Theorem 1 in (P3), the second inequality results from applying the
triangular inequality, while third equality is the application of the Cauchy-Schwarz inequality.
The convergence is a consequence of assumption (4.4). Therefore, result (4.8) implies L1-
consistency which itself implies convergence in probability. Establishing L1-consistency of

1
n

n∑︁
i=1

ϵ2i can be conducted by using Vitali’s convergence theorem (Rudin, 1987, page 166,

Klenke, 2008, page 141). To apply the latter, note that 1
n

n∑︁
i=1

ϵ2i converges almost surely to

σ2 <∞ due to the iid structure of {ϵi}ni=1. This implies convergence in probability. Together
with

E

[︄⃓⃓
⃓⃓
⃓
1

n

n∑︂

i=1

ϵ2i

⃓⃓
⃓⃓
⃓

]︄
=

1

n

n∑︂

i=1

E[ϵ2i ] = σ2 <∞ (4.9)

and

lim
n→∞

E

[︄
1

n

n∑︂

i=1

ϵ2i · 1{A}
]︄
≤ lim

n→∞

1

n

n∑︂

i=1

E[ϵ2i ] = σ2 <∞, (4.10)

for all A ∈ F , it follows that 1
n

n∑︁
i=1

ϵ2i is uniformly integrable. Hence, by Vitali’s convergence

theorem, we can guarantee that

E

[︄⃓⃓
⃓⃓
⃓
1

n

n∑︂

i=1

ϵ2i − σ2
⃓⃓
⃓⃓
⃓

]︄
−→ 0, as n→∞. (4.11)

Note that the first inequality in (4.10) follows from ϵ2i1{A} ≤ ϵ2i almost surely, since ϵ2i ≥ 0
almost surely for all i = 1, . . . , n. This will make the L1-consistency of ˆ︁σ2RF clearer. Estab-
lishing L1-consistency in Theorem 2 in (P3) has been conducted by the usage of Theorem 1
in (P3) among others.

Regarding the proof of Theorem 2 in (P3) on page 55, we concluded that
∑︂

j ̸=ℓ
E[WOOB

n,j (Xi)W
OOB
n,ℓ (Xi)ϵjϵℓ] ≤ a2n−1/(n− 1)E[ϵjϵℓ], (4.12)
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where i ∈ {1, . . . , n} is fixed but arbitrary. The inequality, however, is true, if the residuals are
non-negative. In order to show the convergence of (4.12), we need to set up two additional
conditions in order for Theorem 2 to hold under the model (4.3). Following the notation

introduced in Chapter 2, we note that pn as the row-dimension of Θ
(2)
t , t ∈ {1, . . . ,M} is

actually a function of the number of terminal nodes tn of tree t and it holds pn ≥ tn − 1.
We denote the coupling probability of Xi and Xj lying in the same cell due to the feature

subspacing procedure at node k as P
Θ

(2)
k,t

[Xi

Θ
(2)
k,t↔ Xj ] and set the following two conditions:

(E1) Assume that there exists γ ∈ [0, 1) such that P
Θ

(2)
k,t

[Xi

Θ
(2)
k,t↔ Xj ] ≤ γ.

(E2) The sampling rate an and the number of leaves in each tree tn behaves assymptotically
in the following sense: a2nγ

tn → 0 as n→∞.

A necessary condition for (E1) to hold ismtry < p, because otherwise, the coupling probability
will take values in {0, 1}. A sufficient condition for (E2) to hold is to set the number of leaves
in each tree in at least o(n)-order. In this case, a2n/tn = a2n/n · n/tn −→ 0, as n → ∞, i.e.
tn grows faster to ∞ as a2n does which yields (E2) due to γ ∈ [0, 1). Under the stated
assumptions in Theorem 2 of (P3) together with (E1) and (E2), we can now guarantee its
validity. This is due to the following conclusions:

WOOB
n,j (Xi) ≤ max

1≤i≤n
PΘt [Xi

Θt↔ Xj ] = max
1≤i≤n

P
Θ

(1)
t
[Xi

Θ
(1)
t↔ Xj ] · PΘ

(2)
t
[Xi

Θ
(2)
t↔ Xj ]

≤ an−1

n− 1
· max
1≤i≤n

PΘ(2) [Xi
Θ(2)

↔ Xj ] =
an−1

n− 1
max
1≤i≤n

pn∏︂

k=1

P
Θ

(2)
k,t

[Xi

Θ
(2)
k,t↔ Xj ]

≤ an−1

n− 1

pn∏︂

k=1

γ ≤ an−1

n− 1
γtn−1. (4.13)

The first equality follows from the independence of Θ
(1)
t and Θ

(2)
t , while the second inequality

from (11) on page 55 of (P3). The second equality follows from the fact that {Θ(2)
k,t}

pn
k=2 is a

sequence of iid random vectors, whereas the last inequality follows from pn ≥ tn − 1. Using
the Cauchy-Schwarz inequality together with the result in (4.13), we can now obtain

∑︂

j ̸=ℓ
E[WOOB

n,j (Xi)W
OOB
n,ℓ (Xi)|ϵjϵℓ|] ≤

∑︂

j ̸=ℓ
E[ϵ2jϵ2ℓ ]1/2E[WOOB

n,j (Xi)
2WOOB

n,ℓ (Xi)
2]1/2

= σ2
∑︂

j ̸=ℓ
E[WOOB

n,j (Xi)
2WOOB

n,ℓ (Xi)
2]1/2

≤ σ2 · n(n− 1)
a2n−1

(n− 1)2
γ2(tn−1)

≤ σ2n(n− 1)

(n− 1)2
a2nγ

tn−1 −→ 0, as n→∞. (4.14)

The first equality follows from the independence of ϵj and ϵℓ, since j ̸= ℓ, whereas the second
inequality follows from (4.13). The convergence results obviously from (E2).
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4.4 Article 4: Asymptotic Unbiasedness of the Permutation
Importance Measure in Random Forest Models.

In our last work, we paid special attention to the feature selection process of the Random
Forest method as described in Algorithm 3 of Chapter 2 while aiming to solve research
question (H2). We assume a regression model of the form

Y = ˜︁m(X) + ϵ, (4.15)

where X is again assumed to have [0, 1]p as support and is independent of ϵ such that E[ϵ] = 0
and V ar(ϵ) = σ2 ∈ (0,∞). Regarding the measurable regression function ˜︁m : Rp −→ R, we
assumed that there exists an informative subset S ⊆ {1, . . . , p} such that (4.15) can be
further simplified into m(XS), where XS ∈ Rs with s = |S| is the reduced vector consisting
of only those covariates, that are relevant according to the composition of the index set S.
Extracting relevant features according to the set S is in practice a challenging tasks. Within
the Random Forest method, however, there exist several approaches how relevant features can
be extracted such as the permutation measure of the Random Forest method, even for p > n
problems (see e.g. Jiang et al., 2004,Dı́az-Uriarte and De Andres, 2006,Menze et al., 2009 or
Qi, 2012 pages 307-323 ). The idea is to randomly permute variables in a specific feature j for
observations not being considered during the training phase of the Random Forest method,
the so called Out-of-Bag samples. Then the decrease in empirical mean squared error is

computed and used for assessing the importance of a particular feature. Denoting with D−(t)
n

the Out-of-Bag set for decision tree t ∈ {1, . . . ,M}, while πj,t is the permutation for variable
j ∈ {1, . . . , p} in decision tree t, we can state the Random Forest permutation importance
measure (RFPIM) based on Out-of-Bag samples for feature j ∈ {1, . . . , p} by

IOOBn,M (j) =
1

Mγn

M∑︂

t=1

∑︂

i∈D−(t)
n

{︁
(Yi −mn,1(X

πj,t
i ;Θt,Dn))2 − (Yi −mn,1(Xi;Θt,Dn))2

}︁
.

(4.16)

We could show that under model (4.15) together with assumptions (A1), (A3) and (A4) there
exists a limiting quantity I(j) for j ∈ {1, . . . , p} that enables the discrimination between
variables in S and variables not in S (see Proposition 2 in (P4)). This is given by

I(j) =

{︄
E[(m(X1)−m(Xj,1))

2], if j ∈ S,
0, else .

(4.17)

Finally, we then could show that for uninformative variables, i.e. j ∈ SC , the RFPIM reveals
unbiased results while for informative ones, the RFPIM showed an asymptotic unbiasedness.
That is,

E[IOOBn,M (j)] = I(j) = 0, if j ∈ SC , while lim
M→∞

E[IOOBn,M (j)] −→ I(j) for j ∈ S as n→∞

has been proven under the assumptions (A1) - (A5) in Theorem 1 in the main article (P4). Es-
pecially assumption (A2) reveals some novel insights into the operating mode of the RFPIM.
Instead of allowing all kind of permutations, we thereby had to restrict the permutations to a

sub-class, that excludes the possibility that πj,t = id and πj,t(i) = i for i ∈ D−(t)
n . Without the

latter assumptions, it is unclear whether Theorem 1 in (P4) holds or not. Therefore, simply
permuting features might not be suitable for assessing variable importance in Random Forest.
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In addition, we could identify potential sources that might distort the RFPIM, especially
for finite choices of M and n. Beside the large number of decision trees needed and the
large samples for obtaining optimal results in terms of Theorem 1, noisy data can affect
the convergence rate of IOOBn,M (j) especially for variables j ∈ S. Hence, we focused on the
signal-to-noise ratio given by

SN =
V ar(˜︁m(X))

σ2
(4.18)

and could show that if the Random Forest cuts are cut-consistent, than the effect of the noise

represented by its variance σ2 vanishes from the cut-criterion L
(k)
n (j, z) given in Algorithm 3.

If the systematic signal coming from the regression function ˜︁m is strong enough, i.e. larger
than the noise, than the signal-to-noise ratio will be correspondingly larger than 1. This
effect, together with the results given in (P3) leads to the consistent estimation of SN using
various residual variance estimators proposed in this thesis.

In order to support our theoretical findings, we have conducted an extensive simulation study
under scenarios where p < n and p > n. Considering the same regression functions as in
Chapter 2, Section 2.1 under a sparse regression framework, the simulation results supported
our findings for all four considered regression functions: the linear case, the polynomial case,
the trigonometric case and the non-continuous case. Especially for non-informative features,
the RFPIM was on average vanishing, while for informative ones, i.e. j ∈ S, RFPIM slowly
seemed to converge to I(j). In order to emphasize the effect of the signal-to-noise ratio on
the RFPIM, we have chosen simulation settings such that SN ∈ {0.5, 1, 3, 5}. Larger values
of SN indicated a clearer distinction between variables in S and SC on average.

Although it has been reported that the Random Forest for classification purposes reveals
importance measures that are biased for categorical variables with larger domain cardinalities,
we could theoretically close this gap for regression problems under the assumptions (A1) -
(A5). Hence, Random Forest regression reveals an unbiased importance measure and this
can be extended to p > n problem types unless these assumptions are not violated. We plan
to extend our work by allowing correlation among the features, which can not be covered
from our theoretical results yet.



Chapter 5

Conclusion and Outlook

In the first part of this thesis, we considered the application of Random Forest models and
Boosting methods as imputation models for partially observed data. In the second part, we
focused on some crucial properties such as uncertainty quantification and feature selection in
sparse regression problems using Random Forest. In a first simulation study, we could show
that the traditionally used Random Forest with sub-sampling or resampling can be enhanced
as an imputation method when switching to a kernel-based bootstrapping procedure. This
resulted in better imputation performance for continuous outcomes using the normalized root
mean squared error as a performance measure. In case of mixed-type data, our results re-
vealed that the inclusion of the stochastic gradient boosting method enhanced the imputation
procedure leading to the proposal of a mixed model consisting of the Random Forest and
the stochastic gradient boosting (see (P1)). In terms of statistically valid inference proce-
dure, we could find out that modern Machine Learning tools such as the Random Forest as
an imputation scheme led to an inflation of type-I-errors in subsequent mean comparisons
in repeated measure designs. The results suggest that inflation might happen for repeated
measures designs in general, when testing mean time effects (see (P2)). We extended the
findings in article (P2) by proving that the RF MI as an imputation schemes leads to almost
surely vanishing between variance estimators according to Rubin’s combining rule, see e.g.
Chapter 3, Section 3.3. Hence, the method does not correctly reflect uncertainty originating
form the fact that missing cases are present. Furthermore, this revealed that RF MI is not
proper therefore not meeting the assumptions for an inferentially valid imputation method,
at least for monotone and univariate missing patterns. We are currently preparting another
paper on this result.

Regarding uncertainty quantification, which plays a crucial role in statistical inference pro-
cedures for delivering variance estimators in central-limit-type theorems, we could show that
the L2-consistent Random Forest can lead to consistent residual variance estimators for re-
gression problems. The latter requirement of L2-consistency according to Definition 1.2 has
been tackled in Biau et al. (2008) and Scornet et al. (2015) already, where we extended that
result by setting this as a theoretically verifiable assumption. In (P3), we proposed different
estimators and proved its consistency when using Random Forests. We extended the estima-
tors proposed in (P3) in this thesis correcting them for potentially finite-M -bias as a source
of distortion, see e.g. Chapter 2, Section 2.2. The latter originates from a finite choice of
decision trees in the Random Forest ensemble and we also plan to publish this result together
with extensive simulations.

Random Forest models are not only used as a prediction tool, but as a variable selection tool
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in potentially high-dimensional regression and classification problems. Recent scientific work
has been focused on addressing potential failures of Random Forest internal variable selection
measures such as the permutation measure. In (P4), we could show that the RFPIM can
lead to correct variable screening procedures under specific assumptions for regression-type
problems. They reveal that simply permuting features among the Out-of-Bag set might not
guarantee the delivery of (asymptotically) correct variable selection measures. Instead, one
has to consider certain sub-classes of potential permutations.

The last theoretical result in (P4) enables the consideration of central-limit-type theorems
for the RFPIM. We conjecture that it is possible to show that there exists a non-negative
sequence an ↗∞ such that either of the following holds

√
an(I

OOB
n,M (j)− I(j)) d−→ Z, as n→∞, j ∈ {1, . . . , p} (5.1)

√
an(I

OOB
n,∞ (j)− I(j)) d−→ Z, as n→∞, j ∈ {1, . . . , p} (5.2)

where Z follows a known distribution, for example the normal distribution. Then one would
be equipped to conduct hypothesis tests of the form

H0 : I(j) = 0 vs. H1 : I(j) ̸= 0 (5.3)

using the Random Forest method. This could also be conducted for cases where p > n unless
the assumptions in (P4) are not violated. Note that the null-hypothesis that variables are
unimportant according to the definition given in (P4) implies the the null-hypothesis H0 in
(5.3). Therefore, rejecting H0 leads to the rejection of the initial hypothesis that variables are
unimportant. In cases where Z ∼ N(0, σ2), we then need to find suitable estimators for σ2,
that may be motivated by the work in (P3) and Chapter 2. Thus, based on the results (5.1)
or (5.2) one can construct an asymptotically valid test for testing H0 in (5.3) with modern
Machine Learning tools such as the Random Forest. The idea can be considered as a future
research work, for which the author is currently preparing a grant proposal that will indeed
extend the results in this thesis and make Machine Learning tools more interpretable in terms
of Figure 1.

Regarding the results that Random Forest methods in its traditional form might be unsuitable
as an imputation scheme in partially observed data led us to the question in which cases the
latter should still be used as an imputation scheme. Therefore, we are currently focusing on
prediction schemes with missing covariates and analyze prediction accuracy of various bagging
and boosting methods under partially observed covariates in another research project.
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Abstract

Variable selection in sparse regression models is an important task as applications ranging from biomedical

research to econometrics have shown. Especially for higher dimensional regression problems, for which

the link function between response and covariates cannot be directly detected, the selection of informative

variables is challenging. Under these circumstances, the Random Forest method is a helpful tool to predict

new outcomes while delivering measures for variable selection. One common approach is the usage of the

permutation importance. Due to its intuitive idea and �exible usage, it is important to explore circumstances,

for which the permutation importance based on Random Forest correctly indicates informative covariates.

Regarding the latter, we deliver theoretical guarantees for the validity of the permutation importance measure

under speci�c assumptions and prove its (asymptotic) unbiasedness. An extensive simulation study veri�es

our �ndings.

Keywords: Random Forest, Unbiasedness, Permutation Importance, Out-of-Bag Samples, Statistical

Learning

1. Introduction

Random Forest is a non-parametric classi�cation and regression algorithm being known for its good

predictive performance and simple applicability under various settings. The method is based on constructing

each tree in the forest by bagging procedures, which enables the construction of several estimators based

on Out-of-Bag principles, such as prediction points or variance estimates. Main advantages of the Random5

Forest method compared to other Machine Learning tools is its relative ease in hyper-parameter tuning while

delivering internal estimates of the mean squared error. Due to its complicated mathematical description,

including data-dependent weighting, theoretical results such as consistency or central limit theorems have

only been derived recently, see e.g. [1, 2, 3, 4].

Beyond its usage for prediction, Random Forest models can also be used as a tool for variable selection.10

Especially in high dimensional learning problems, where the number of variables exceeds the number of ob-
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servations, the extraction of an informative feature subset is bene�cial from three perspectives: Firstly, a

reduced and simpli�ed model is more accessible and interpretable than models of higher dimensions leading

to faster and easier data collection processes. Secondly, model accuracy can sometimes even be enhanced

under lower dimensional models bypassing the possibility of over�tting. Thirdly, a reduced model makes15

well-known statistical inference procedures applicable. As mentioned in [5], the Random Forest model can

be considered as an embedded model, where variable selection is an integral part of the tree construction. In

selecting variables, the Random Forest method delivers two measures: The permutation importance as well

as the mean decrease impurity. For classi�cation, the mean decrease impurity summarizes the decrease of the

Gini impurity after conducting a cut over the whole tree structure and averages the result over all trees. For20

regression problems, this measure turns into the summation of the decrease in variance after conducting a cut

at every node of the tree, averaged over the forest. The principle of the permutation importance is slightly

di�erent: In order to mimic the e�ect of a variable on the response, its values from the set of Out-of-Bag

samples are randomly permuted and the decrease in model accuracy averaged over all trees is measured.

25

Although simple to apply and intuitive, both measures have been criticized. In [6], for example, the

authors could illustrate that the Gini importance for classi�cation problems tends to prefer variables with

larger numbers of categories and scale measurements. Furthermore, di�erent results could be obtained when

switching the sampling procedure in the bagging step to sampling with replacement instead of without re-

placement. In [7], additional criticism was addressed towards the permutation importance, arguing that the30

permutation of the corresponding feature does not only break the relation with the response variable, but also

with other potentially correlated covariates. This e�ect of correlated features has since been part of several

research [6, 8, 9, 10, 11, 12, 13]. Nevertheless, several authors such as [6, 11] claimed that the permutation

importance led to more accurate results than the importance measure based on decrease in node impurities.

However, theoretical guarantees for the validity of the traditional Random Forest method regarding its im-35

portance measures are rather sparse. An exception is given in [14], where a theoretical approach has been

conducted within the framework of correlated features in additive regression models. Therein, the authors

showed di�erent identities of a formalized version of the Random Forest permutation importance measure

(RFPIM).

40

The contributions of this paper are twofold: First, we aim to clarify the criticism on the RFPIM from

a theoretical perspective. Therefore, we state assumptions, for which the permutation importance measure

does correctly select informative features and prove its (asymptotic) unbiasedness. This way, we also close

the gap between the formalized version of the permutation measure as considered in [14] and the empirical

permutation measure computed in a Random Forest model. Secondly, we identify main drivers for the quality45

of the RFPIM and support our �ndings by an extensive simulation study covering high-dimensional settings,

too.
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2. Model Framework and Random Forest

Our framework covers regression models, for which the covariable space is assumed to lie on the p-

dimensional unit space, i.e. X ∈ [0, 1]p. In fact, this assumption does not have sever generalization e�ects,

since Random Forest models are invariant under (strictly) monotone transformations. For discrete distribu-

tions of X, one could alternatively assume a �nite support, such that a [0, 1]-standardization exists for every

feature j = 1, . . . , p. Furthermore, we will assume that the relationship between the response variable Y and

the covariates X can be modeled through

Y = m̃(X) + ε, (1)

where m̃ : [0, 1]p −→ R is a measurable function and X is independent of ε with E[ε] = 0, V ar(ε) ≡ σ2 ∈
(0,∞). For sparse learning problems, not all of the given covariates are necessary, that is, there is a subset S
with cardinality s less than p that covers all the information about Y . Assuming without loss of generality

that S = {1, . . . , s}, the regression model (1) can then be reduced to

Y = m(XS) + ε, (2)

where XS = [X1, . . . , Xs] andm : [0, 1]s −→ R is another measurable function such that m̃(X) = m(XS). The

speci�cation of S, or also known as variable selection, feature selection or subset selection, can be challenging,

especially when the relationship is not linear or not deducible at all. Formally speaking, we refer to a variable

j ∈ {1, . . . , p} as informative or important, if the corresponding regression model given in (1) can be reduced to

a regression model of the form (2). This leads to the independence of Y towards Xj given all other covariates

for features j /∈ S. That is Y |= Xj |X1, . . . , Xj−1, Xj+1, . . . , Xp. For di�erentiable link-functions m̃, one can

alternatively de�ne a variable as unimportant or uninformative, if for hj = [0, . . . , 0, h, 0, . . . , 0]> ∈ Rp, with

h ∈ R lying at the j-th position, it holds

∂m̃(x)

∂xj
:= lim
‖hj‖→0

m̃(x + hj)− m̃(x)

‖hj‖
= 0. (3)

Then a feature j ∈ {1, . . . , p} is said to be informative or important, if it is not uninformative or unimportant.

Under the scenario of a di�erentiable link function m̃, both de�nitions given in (2) and (3) for an informative

or important variable can be shown to be equivalent using a Taylor expansion of m̃.

Although there are several approaches in extracting informative features, di�culties exist if the underlying

link function is of complex analytical structure. The Random Forest method enables the extraction of

informative features during the training phase of the algorithm. To accept this, let us shortly recall the

Random Forest. Given a training set

Dn = {[X>i , Yi]> ∈ [0, 1]p × R : i = 1, . . . , n}, (4)

of iid pairs [X>i , Yi]
>, i = 1, . . . , n, the Random Forest method estimates the functional relationship of

m̃ by piecewise constant functions over random partitions of the feature space. To be more precise, the

Random Forest model for regression is a collection of M ∈ N decision trees, where for each tree, a bootstrap
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sample is taken from Dn using with or without replacement procedures. This is denoted as the resampling

strategy P. Furthermore, at each node of the tree, feature sub-spacing is conducted selecting vtry ∈ {1, . . . , p}
features for possible split direction. Denote with Θ the generic random variable responsible for both, the

bootstrap sample construction and the feature sub-spacing procedure. Then, Θ1, . . . ,ΘM are assumed to be

independent copies of Θ responsible for this random process in the corresponding tree, independent of Dn.
The combination of the trees is then conducted through averaging. i.e.

mn,M (x; Θ1, . . .ΘM ,Dn) =
1

M

M∑

j=1

mn,1(x; Θj ,Dn) (5)

and is referred to as the �nite forest estimate of m̃, where x ∈ [0, 1]p is a �xed point. Here, mn,1(·; Θj ,Dn)

refers to a single tree in the Random Forest build with Θj , j = 1, . . . ,M . As explained in [3], the strong law

of large numbers (for M →∞) allows to study EΘ[mn(x; Θ,Dn)] instead of (5). Hence, we set

mn(x) = mn(x;Dn) = EΘ[mn(x; Θ,Dn)], (6)

where EΘ denotes the expectation over Θ given the training setDn, i.e. EΘ[mn(x; Θj ,Dn)] = E[mn(x; Θ,Dn)|Dn].

Similar to [3], we refer to the Random Forest algorithm by ident�ying three parameters responsible for the50

Random Forest tree construction:

� vtry ∈ {1, . . . , p}, the number of pre-selected directions for splitting,

� an ∈ {1, . . . , n}, the number of sampled points in the bootstrap step and

� tn ∈ {1, . . . , an}, the number of leaves in each tree.

A detailed algorithm is given on page 1720 in [3], for example.

An advantage of the Random Forest method is the delivery of internal measures such as predictions or

prediction accuracy without initially separating the training set Dn such as in cross-validation procedures.

This is possible by making use of the bagging principle and Out-Of-Bag (OOB) samples. The latter extracts

all random trees that have not used a �xed observation Xi in the set Dn during training and averages the

prediction results over all those trees. In the sequel, we will denote with mOOB
n,M (Xi) the OOB prediction

of Xi ∈ Dn using the �nite forest estimate and mOOB
n (Xi) = EΘ[i]

[mn,1(Xi; Θ[i],Dn)] the corresponding

in�nite forest OOB prediction, where Θ[i] is the generic random vector, which has not selected observation

i ∈ {1, . . . , n}. Note that the authors in [15] could show that even for the OOB �nite forest prediction, it

holds PΘ - almost surely that

mOOB
n,M (Xi) −→ mOOB

n (Xi), as M →∞.

In the sequel, it is required to have a look at a certain averaging step in the random tree ensemble of the55

Random Forest and its asymptotic behavior in case of M →∞. For later use, we state this as a Proposition.
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Proposition 1. Assume regression model (1) and �x i ∈ {1, . . . , n}. Then it holds PΘ - almost-surely that

1

M

M∑

t=1

mn,1(Xi; Θt,Dn) · 1{Xi has not been selected} −→ cn ·mOOB
n (Xi), as M →∞,

where

cn =





1− an/n, if observations are subsampled (draws without replacement),

(1− 1/n)n, if observations are bootstrapped with replacement.

3. Permutation Importance of the Random Forest

Returning to the extraction of relevant features, the Random Forest permutation importance makes use of

the Out-of-Bag principle. That is, for every tree constructed in the forest, the increase of mean squared error

evaluated on the corresponding Out-of-Bag sample after permuting its observations along the j-th variable is

measured, with j ∈ {1, . . . , p}. Hence, the measure clearly depends on the sampling strategy P chosen prior

to tree construction. This could be seen in [6] for example, where di�erent results were obtained depending

on the sampling strategy given in P. Formally speaking, the permutation importance can be de�ned as

IOOBn,M (j) :=
1

Mγn

M∑

t=1

∑

i∈D−(t)
n

{
(Yi −mn,1(X

πj,t

i ; Θt))
2 − (Yi −mn,1(Xi; Θt))

2
}

(7)

for all j ∈ {1, . . . , p}, where D−(t)
n = D−(t)

n (Θt) is the Out-of-Bag sample for the t-th tree, i.e. the set of

observations not selected for training mn,1(·; Θt,Dn). The cardinality γn of D−(t)
n clearly depends on the

sampling strategy P. Moreover, πj,t is the non-trivial permutation of observations in D−(t)
n along the j-th

variable in decision tree t ∈ {1, . . . ,M}. In [16] and [14], a theoretical version of IOOBn,M (j), j ∈ {1, . . . , p} was
given by

I(j) := E[(Y1 − m̃(Xj,1))2]− E[(Y1 − m̃(X1))2]

= E[(Y1 − m̃(Xj,1))2]− σ2, (8)

where Xj,1 = [X1,1, . . . , Xj−1,1, Zj , Xj+1,1, . . . , Xp,1]> and Zj is an independent copy of Xj,1, independent

of Y1. The intuition behind the de�nition in (8) is that I(j), j = 1, . . . , p measures the increase in variation

after eliminating potential dependencies between the j-th variable and the response.

Assuming an additive regression model, i.e. m̃(x) =
p∑
j=1

m̃j(xj), [14] proved that

I(j) =





2 · Cov(Y, m̃j(Xj))−
∑
k 6=j

Cov(m̃j(Xj), m̃k(Xk)) if E[m̃j(Xj)] = 0,

2 · V ar(m̃j(Xj)), else,

(9)

for j ∈ {1, . . . , p}, where I(j) can be further simpli�ed in case of a multivariate normal distribution for

[X>, Y ]> ∈ Rp+1, see e.g. Proposition 2 in [14]. So far, however, it is completely unclear in which sense60

the quantities IOOBn,M = [IOOBn,M (1), . . . , IOOBn,M (p)]> and I = [I(1), . . . , I(p)]> relate to each other. This is of
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important interest, since I can, e.g., be considered as a key quantity for future signi�cance tests during

feature extraction. Below, we will study their relation in detail under a more general set-up not requiring

the additivity of the link function m̃. Instead, we set up some more general assumptions, under which we

can guarantee asymptotically, that In,M is an unbiased estimator of I. This will open new paths for feature65

selection tests using Random Forest.

Assumptions.

(A1) There is at least one informative variable, i.e. |S| ≥ 1,

(A2) Permutations are restricted to the class V = {π ∈ Sγn : π(i) 6= i}, where Sγn is the symmetric group,

(A3) The features X = [X − 1, . . . , Xp]
> are mutual independent.70

(A4) sup
x
|m̃(x)| <∞,

(A5) In�nite Random Forests are L2-consistent, i.e. lim
n→∞

E[(m̃(X)−mn(X))2] = 0, where X is an indepen-

dent copy of X1.

Condition (A1) ensures that the random forest is not forced to select among non-informative variable.

This can happen if |S| = 0, since the tree construction process will continue until either a pre-de�ned number75

of leaves tn is reached or each leave in a tree consists of at most a pre-speci�ed number of observations.

Condition (A2) is important from a technical perspective, in order to achieve (asymptotic) unbiasedness.

Furthermore, this condition reveals some drawbacks of the traditional permutation approaches: considering

arbitrary permutations π ∈ Sγn , we cannot guarantee the (asymptotic) unbiasedness of the RFPIM. Hence,

one should carefully consider implementations of RFPIM in statistical software packages such as R or python80

with regard to this assumption. Condition (A3) is essential in this context. The permutation used in

IOOBn,M aims to break the relationship between the response variable and the corresponding covariate. In

case of dependency structures among the other covariables, however, this dependency is then also broken

clouding the primary e�ect of dependencies between the response and the covariable of interest. Note that

assumption (A3) implies the assumption of no multicolinearity. Condition (A4) is rather technical. Instead,85

one could replace it with m̃ being continuous, since the domain of X is the p-dimensional unit cube [0, 1]p. An

important assumption is (A5), which was formally proven to be valid for Random Forest models in [3]. There,

the authors proved the L2 - consistency of the same Random Forest method as considered in our work. Note

that their assumptions for the validity of (A5) do not exclude (A3) and (A4). Instead, one could completely

overtake the assumptions given in Theorem 1 or Theorem 2 listed in [3] and replace them with (A3) - (A5).90

Assumptions (A1) and (A2) have then to be considered as additional assumptions in this context. A formal

proof of this is given in the Appendix. However, for generality and as we also state non-asymptotic results,

we decided to work with ours.

Our �rst result shows an alternative expression of the quantity I de�ned in (8), which makes variable selection

possible for the Random Forest permutation importance.95
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Proposition 2. Assume the regression model (1) and conditions (A1), (A3) and (A4). Then for every

variable j ∈ {1, . . . , p} it holds

I(j) =




E[(m̃(X1)− m̃(Xj,1))2], if j ∈ S,

0, else .

This property allows us to de�ne the permutation importance as unbiased or asymptotically unbiased, if

E[IOOBn,M ] = I resp. lim
M→∞

E[IOOBn,M ] −→ I, as n→∞. Proposition 2 can be considered as an extension of the

results given in equation (9), since the assumption for the link-function being additive is dropped. Anyhow,

the above considerations �nally lead to the main result of the current paper: the (asymptotic) unbiasedness

of RFPIM.100

Theorem 1. Under model (1) and conditions (A1) - (A5) while sampling is restricted to sampling without

replacement, the RFPIM is unbiased for j ∈ SC = {1, . . . , p}\S and asymptotically unbiased for j ∈ S. That
is for j ∈ SC it holds

E[IOOBn,M (j)] = 0 = I(j)

and for j ∈ S we have

lim
M→∞

E[IOOBn,M (j)] −→ I(j), as n→∞.

Theorem 1 and equation (9) under the assumption of an additive link function reveal some important

insights about the RFPIM. In case of non-informative variables, i.e. Y is independent of Xj or equivalently,

∂m̃(x)/∂xj ≡ 0, the empirical variable importance does not select on average across non-informative variables.

However, if the variable is informative, that is ∂m̃(x)/∂xj 6= 0 andXj depends on Y , this will lead to I(j) > 0,

such that on average, their is enough discriminating power between informative and non-informative variables.

Furthermore, the theoretical results obtained from Theorem 1 and equation (9) allow the sorting of variables

according to their signal strength, if the underlying link-function is assumed to be additive. Hence, under

the assumptions (A1) - (A5) together with the assumption that m̃ decomposes into an additive expansion

of measurable functions, the RFPIM does not only detect informative variables, but also delivers an internal

ranking across variables in S. In addition, the theoretical results in Theorem 1 also reveal that unimportant

variables tends to 0 stronger than important ones, since the unbiasedness is exact in that case for any sample

size n ∈ N and number of base learnersM ∈ N. The theoretical �ndings also indicate that the discriminating

power of the permutation importance depends on the sample size of the training set Dn and the number

of base learners M . Larger sample sizes with a relatively large number of decision trees in the Random

Forest should deliver stronger discriminating power between variables in S and {1, . . . , p} \ S. Note that

the theoretical �ndings do not reveal insights into the rate of convergence of the asymptotic. However, an

important factor in�uencing the discriminating power of the permutation importance measure that cannot be

directly extracted from the theoretical �ndings so far is the random noise arising from the residuals ε. These

contaminate the data especially depending on the scale of their variance σ2. Nonetheless, if the systematic
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signal arising from the link functionm(x) is strong enough, the e�ect of noise can be appeased. Thus, keeping

an eye on the ratio

SN =
V ar(m̃(X))

σ2
(10)

is an important task during the computation of the RFPIM. We refer to this meaasure as the signal-to-noise

ratio, which is formally de�ned in [17]. Although this factor cannot be directly detected based on the results

in Theorem 1, a closer look at the speci�c cut criterion used in the Random Forest will deliver some insights

into the interaction of SN and the permutation measure IOOBn,M = [IOOBn,M (1), . . . , IOOBn,M (p)]> ∈ Rp. Recall

that the empirical cut criterion of the Random Forest model within the construction of each tree is given by

L
(k)
n,t(j, z) =

1

Nn(A
(k)
` )

n∑

i=1

(Yi − ȲA(k)
`

)21{Xi ∈ A(k)
` }

− 1

Nn(A
(k)
` )

n∑

i=1

(Yi − ȲA(k)
`,L

1{Xji < z} − Ȳ
A

(k)
`,R

1{Xji ≥ z})21{Xi ∈ A(k)
` } (11)

for t = 1, . . . ,M . Here A(k)
` = A

(k)
` (Θt) ⊂ [0, 1]p denotes the hyper-rectangular cell obtained after cutting

the tree at level k ∈ {1, . . . , dlog2(tn)e + 1}, A(k)
`,L = A

(k)
`,L(Θt) denotes the left hyper-rectangular cell after

cutting A(k)
` on variable j in z, i.e. A(k)

`,L = {x ∈ A(k)
` : xj < z} and A(k)

`,R = A
(k)
`,R(Θt) is the corresponding

right hyper-rectangular cell {x ∈ A(k)
` : xj ≥ z}. Moreover, ȲA is the mean of all Y 's, that belong to the cell

A and Nn(A) refers to the number of observations falling into cell A. As stated in [3], the strong law of large

numbers for n→∞ leads to the consideration of

L(k)(j, z) = V ar[Y1|X1 ∈ A(k)
` ]− P[Xj,1 < z|X1 ∈ A(k)

` ]� · V ar[Y |X1 ∈ A(k)
` , Xj,1 < z]

− P[Xj,1 ≥ z|X1 ∈ A(k)
` ] · V ar[Y1|X1 ∈ A(k)

` , Xj,1 ≥ z] (12)

such that L(k)
n,1(j, z) −→ L(k)(j, z) holds P - almost surely for all (j, z) ∈ {1, . . . , p} × [0, 1]. If we oppose the

cut criterion of the Random Forest to the variance decomposition of the response, we obtain

V ar(Y1) = V ar(m̃(X1)) + σ2. (13)

Assuming that the Random Forest is cut-consistent, that is

(jn, zn) := arg max
j,z

L
(k)
n,t(j, z) −→ (j, z) = arg max

j,z
L(k)(j, z), P− almost surely, (14)

the in�uence of the signal-to-noise ratio on the cuts (jn, zn) reduces immediately, since the residual

variance drops out of the theoretical cut criterion which is then given by L(k)(j, z) = V ar[m̃(X1)|X1 ∈
A

(k)
` ]− P[Xj,1 < z|X1 ∈ A(k)

` ] · V ar[m̃(X1)|X1 ∈ A(k)
` , Xj,1 < z]− P[Xj,1 ≥ z|X1 ∈ A(k)

` ] · V ar[m̃(X1)|X1 ∈
A

(k)
` , Xj,1 ≥ z]. For a formal proof, we refer to the Appendix. However, this clearly depends on the sample

size and the assumption that Random Forest cuts are consistent M-estimators in the sense of (14). The proof

of the latter should therefore be considered in future research. In case of σ2 being larger than V ar(m̃(X)),

the cut (jn, zn) conducted by the Random Forest might be in�ated in terms of potentially selecting non-

informative variables. The estimation of SN can therefore be considered as an additional control mechanism
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in computing IOOBn,M . The authors in [15] proved the consistency of several estimators for σ2, which are based

on the sampling variance of residuals obtained from the Random Forest model using Out-of-Bag samples.

These results enables practitioners to consistently estimate the signal-to-noise ratio given by

ŜNn =
|σ̂2
Y − σ̂2

RF |
σ̂2
RF

, (15)

where σ̂2
Y is the sampling variance of the response Y and σ̂2

RF an residual variance estimator as given in [15]. In

the sequel, we simply restrict our attention to the residual sampling variance estimator σ̂2
RF = 1/n

n∑
i=1

(ε̂i−¯̂εn)2

for σ2 as described in [15], where ε̂i = Yi −mOOB
n (Xi) and ¯̂εn is its corresponding mean.

4. Simulation Study

In order to provide practical evidence for the theoretical results of the previous section, we simulated105

arti�cial data and computed the empirical variable importance measure based on Out-of-Bag estimates for

every variable. In doing so, several regression functions have been considered that are in line with the

assumptions of the previous section. We �rst consider p = 10 covariates whose in�uence on Y is described

by means of a regression coe�cient vector β0 = [2, 4, 2,−3, 1, 0, 0, 0, 0, 0]>. The data is then generated under

the following frameworks:110

1. For the simplest case, we assume a linear model, i.e. m(xi) = x>i β0, for i = 1, . . . , n.

2. Here, we assume a polynomial relationship, that is, m(xi) =
p∑
j=1

β0,jx
j
i,j for i = 1, . . . , n.

3. In order to capture recurrent e�ects, a trigonometric function is assumed, i.e. m(xi) = 2 · sin(x>i β0 +2)

for i = 1, . . . , n.

4. Finally, the e�ect of non-continuous functions is considered, that is

m(xi) =




β0,1xi,1 + β0,2xi,2 + β0,3xi,3, if xi,3 > 0.5

β0,4xi,4 + β0,5xi,5 + 3 if xi,3 ≤ 0.5

for i = 1, . . . , n.115

We used MC = 1, 000 Monte-Carlo iterations to approximate the expectation of IOOBn,M . That is, for every

mc ∈ {1, . . . ,MC}, we generated Dmc
n = {[Xmc>

i , Y mc
i ]> : i = 1, . . . , n}, where Xmc

i ∼ Unif([0, 1]p) and

Yi = m(Xmc
i ) + εi for every i = 1, . . . , n and mc = 1, . . . ,MC. On every generated data set Dmcn , the

empirical permutation importance based on Out-of-Bag samples IOOBn,M ;mc
(j), j ∈ {1, . . . , p} is then computed.

By the strong law of large number, we can guarantee almost surely that

ĪOOBn,M ;·(j) :=
1

MC

MC∑

mc=1

IOOBn,M ;mc
(j) −→ E[IOBBn,M (j)], (16)

as MC → ∞, which should give some practical insights into Theorem 1. Di�erent sample sizes of the form

n ∈ {50, 100, 500, 1000} should also re�ect the behavior of the permutation importance as prescribed in
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Theorem 1. Throughout our simulations, we used M = 1, 000 decision trees in the Random Forest model

and trained it using sampling without replacement of an = d2/3ne < n data points.

Regarding the noise ε, a centered Gaussian distribution with homoscedastic variance σ2 is assumed. As120

explained at the end of Section 3, the discriminative power of the permutation importance measure clearly

depends on the signal-to-noise ratio. In order to explore this e�ect, a signal-to-noise ratio of SN ∈ {0.5, 1, 3, 5}
is considered. That is, the residual variance σ2 is determined by setting σ2 = V ar(m(X1)) · SN−1.

We additionally generated data under high-dimensional settings, i.e. for β1 = [2, 4, 2,−3, 1,0>]> ∈ Rn+5 and

n ∈ {50, 100, 500, 1000}, we generated Dmc
n and computed the permutation importance for every Monte-Carlo125

set Dmc
n . This leads to regression problems of the type p > n, for which Theorem 1 - unless not any of the

given assumptions are violated - should also be valid.

4.1. Simulation Results

In this section, we present the simulation result for all four models 1. − 4. with p = 10 and a sample

size of n ∈ {50, 1000}. The results for the other sample sizes are moved to the supplement. Note that the130

solid black lines in the boxplots represented in Figure 1 to 4, refer not to the median, but to the empirical

mean ĪOOBn,M ;·(j) as computed in (16). The blue star point ? in the plots refer to the expected value of the

permutation importance based on Out-of-Bag samples. For additive models such as the linear and polynomial

model, a direct computation of I could be obtained using equation (9). For non-additive link-functions, such

as in the trigonometric or non-continuous case, the results given in Proposition 2 are used and approximated135

with additional 1, 000 Monte-Carlo iterations.

Figure 1 gives boxplots of the permutation importance of all ten variables over all Monte-Carlo iterations for

the linear model. It is apparent that in case of small sample sizes (left panel), the permutation importance

had di�culties in clearly distinguishing informative and non-informative variables. This is in line with the

asymptotic results obtained in Theorem 1. The simulation results reveal that this depends on the signal-to-140

noise ratio and the scale of the regression coe�cient, as discussed in Section 3. For a signal-to-noise ratio less

than 1, a clear distinction was rather hard. Under the same sample size, with a signal-to-noise ratio larger than

1, the permutation importance could distinguish informative and non-informative variables clearer. Smaller

regression coe�cients being close to 0 such as β0,5 resulted into lower permutation importance values. This

is in line with equation (9), which results into I(5) = β2
0,5/6 = 1/6 ≤ min

j∈{1,...,5}
I(j). For larger sample145

sizes (right panel), the distinction power of the permutation importance is stronger making the dependence

towards the signal-to-noise ratio weaker, as shown in Section 3, considering the asymptotic of IOOBn,M (j), j ∈ S.
Regarding the polynomial model, the distinction power of the permutation importance increased, which

can be extracted from Figure 2. Under this setting, a su�ciently large signal-to-noise ratio could lead to a

stronger distinction even for small sample sizes like n = 50 (left panel). Larger sample sizes emphasized the150

distinction making the selection clearer and more independent towards the signal-to-noise ratio as shown in

Section 3 by considering the cut criterion used in the Random Forest. In addition, the empirical mean of the

simulated result approached its theoretical, asymptotic counterpart I as proven in Theorem 1.
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Figure 1: Permutation importance with various signal-to-noise ratios under a linear model as described in 1. usingMC = 1, 000

Monte-Carlo iterations with a sample size of (a) n = 50 and (b) n = 1, 000. The solid line refers to the empirical mean ĪOOB
n,M ;·

and ? to its expectation.
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Figure 2: Permutation importance with various signal-to-noise ratios under a polynomial model as described in 2. using

MC = 1, 000 Monte-Carlo iterations with a sample size of (a) n = 50 and (b) n = 1, 000. The solid line refers to the empirical

mean ĪOOB
n,M ;· and ? to its expectation.
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Figure 3: Permutation importance with various signal-to-noise ratios under a trigonometric model as described in 3. using

MC = 1, 000 Monte-Carlo iterations with a sample size of (a) n = 50 and (b) n = 1, 000. The solid line refers to the empirical

mean ĪOOB
n,M ;· and ? to a Monte-Carlo approximation of its expectation.
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Figure 4: Simulation results for the permutation importance with various signal-to-noise ratios under a non-continuous model

as described in 4. using MC = 1, 000 Monte-Carlo iterations with a sample size of (a) n = 50 and (b) n = 1, 000. The solid line

refers to the empirical mean ĪOOB
n,M ;· and ? to a Monte-Carlo approximation of its expectation.

For the polynomial model, we can also make use of equation (9), which will lead us to I(j) = 2β2
j

(
1

2j+1 − 1
(j+1)2

)

for j ∈ S. This justi�es the relatively small values of IOOBn,M (5), which should lie around 25/198 ≈ 0.13.155
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Regarding the trigonometric link function, the permutation importance measure lost in separating force

when the sample size was relatively small. Here, a larger signal-to-noise ration was helpful, but for weak

signals such as β5, a clear distinction was rather hard. The results turned quickly into the right direction,

when the sample size increased (right panel), as illustrated in Figure 3. In the latter scenario, the per-

mutation importance was able to distinguish between elements in S and {1, . . . , p} \ S while the empirical160

mean approached its theoretical counterpart I. This was rather independent of the signal-to-noise ratio, as

discussed in Section 3. Note that under this model, equation (9) cannot be applied. However, it seems that

a stronger or weaker signal resulted into lower or higher permutation importance.

Moving to the non-continuous case with linear sub-functions, a stronger distinction power could be ob-

tained compared to the linear link function. This, although equation 9 is not applicable. A detailed result of165

the permutation importance measure under this setting can be extracted from Figure 4. There, the boxplot

indicated a strong discriminative power towards non-informative variables for larger data sets, independent of

the signal-to-noise ratio. The empirical mean of the simulated importance measures approached its theoret-

ical counterpart I for an increased sample size. In addition, more importance is put on variable 3 compared

to the other frameworks. This arises from the usage of the third variable for both, the localization of the170

discontinuity point and its contribution to the response through the linear sub-function. However, this e�ect

should vanish asymptotically according to Theorem 1, as long as the assumptions are met.

Under all settings, it is worth to notice that the permutation importance resulted into larger variability, if the

variables were informative. For non-informative variables, the Random Forest was sure which variables were

non-informative, especially when sample size increased. In fact, under all simulation settings, the RFPIM175

attained values very close to zero. This supports the �ndings in Theorem 1 for unimportant features, as the

permutation importance is exactly unbiased in this case.

The boxplots of the permutation importance for the high-dimensional settings are summarized in

Figures 5 - 8 given in the supplement. Under this framework, the linear model (see Figure 5 in the supplement)180

lost in distinction power compared to p < n problems, especially when the sample size was relatively small.

Although p > n, an increase in n led to an increase in separation force between variables in S and {1, . . . , p}
making the results clearer for n ≥ 500. The empirical mean of the permutation importance moved closer to

its theoretical counterpart I(j), j = 1, . . . , 5. For j ∈ {6, . . . , 10}, they were almost exactly to zero as proven

in Theorem 1. There is also an increase in variation under the high-dimensional setting. Regarding the185

polynomial model (see Figure 6 in the supplement), similar results could be obtained compared to the p < n

regression problem. However, the permutation importance was slightly downsized for all variables, but the

distinction force was similar. Under the trigonometric function with p > n (see Figure 7 in the supplement),

the permutation importance lost in separation force when the sample size was small. Evaluable results could

be obtained for n = 1, 000, but the permutation measure was again downsized for all variables compared to190

its analogon under p < n. The simulation reveals that the convergence of the expectation is slower compared

to its p < n analogon. The non-continuous case (see Figure 8 in the supplement) led to similar results than
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under the scenario of p being less than n, with the exception that the permutation importance was again

slightly downsized for all variables again.

Final Thoughts. Under both settings, i.e. p < n and p > n, the permutation importance measure ranked195

the variables correctly according to the results given in equation (9) for the linear and polynomial model. The

ranking remained the same for the trigonometric case, but was slightly changed when the sample size was

rather small in high-dimensional settings. The ranking of the variables changed under the non-continuous

model, where additional importance was set to variable 3 for playing the role of a discontinuity point and its

systematic in�uence on Y through the sub-function. However, according to our �ndings, this e�ect should200

vanish asymptotically.

5. Conclusion

We proved the (asymptotic) unbiasedness of the permutation importance measure originating from the

Random Forest for regression models. Our results are mainly based on assuming that features are inde-

pendent, and hence uncorrelated while requiring that the Random Forest is L2-consistent. Furthermore, we205

identi�ed main drivers for the quality of the variable selection process such as the signal-to-noise ratio by

explicitly considering the cut criterion of the Random Forest model. An extensive simulation study has been

conducted for low- (p < n) and high-dimensional (p > n) regression frameworks. The results support our

theoretical �ndings: even under high-dimensional settings, the permutation importance was able to correctly

select among informative features, when the sample size was su�ciently large. Our �ndings also indicate210

that potential future research is worth to be conducted on (i) the consistency of the involved cut-criterion

and (ii) the (asymptotic) distribution of the Random Forest permutation importance as a preliminary step

towards the construction of valid statistical testing procedures for feature selection.
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6. Appendix

In this section we state the proofs of Propositions 1 and 2 and Theorem 1. Additional proofs mentioned

in the article are shifted at the end of this section.

Proof of Proposition 1. Let i ∈ {1, . . . , n} be �xed and Xi ∈ Dn. Let {Θt}Mt=1 be the sequence of iid generic220

random vectors on the probability space (ΩΘ,FΘ,PΘ) being responsible for the sampling procedure and the

feature sub-spacing in the Random Forest algorithm. Note that the generic random vector can then be

decomposed into Θt = [Θ
(1)
t ,Θ

(2)
t ]>, where Θ

(1)
t ∈ {0, 1}n indicates whether a certain observation has been

selected in tree t and Θ
(2)
t models feature sub-spacing. Furthermore, denote with Zi = Zi(M) the number

of the M regression trees not containing the i-th observation. Then we can conclude that225
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Zi(M) ∼ Bin(M, cn), where cn =





1− an/n for subsampling,

(1− 1/n)n for bootstrapping with replacement,

with cn > 0. Since Zi(M) =
M∑
`=1

B`, with B` ∼ Bernoulli(cn) independent and identically distributed under

PΘ, it follows by the strong law of large numbers that Vn,M := Zi(M)/M
a.s.−→ E[B1] = cn, as M →∞. This

implies that Zi(M)
a.s.−→ ∞, as M → ∞. Assuming without loss of generality that the �rst Zi(M) decision

trees do not contain the i-th observation, this will yield to

Rn,M :=
1

Zi(M)

Zi(M)∑

t=1

mn,1(Xi; Θt,Dn) −→ mOOB
n (Xi) PΘ − a.s. as M →∞, (17)

where mOOB
n (Xi) = EΘ[i]

[mn,1(Xi; Θ[i],Dn)] with Θ[i] = [Θ(1),Θ(2)], such that Θ
(1)
i = 0. Now, let Kn,M =

[Vn,M , Rn,M ]> ∈ R2 and set N = N1 ∪ N2, where N1 = {ω ∈ ΩΘ : Vn,M (ω) 9 cn} and N2 = {ω ∈
ΩΘ : Rn,M (ω) 9 mOOB

n (Xi)}. Since PΘ(N1) = PΘ(N2) = 0, it follows immediately that 0 ≤ PΘ(N) =

PΘ(N1) + PΘ(N2) = 0, i.e. N is a null-set. Hence,

Kn,M −→ [cn,m
OOB
n (Xi)]

>, PΘ − almost-surely as M →∞. (18)

Since {Θt}Mt=1 is a sequence of iid random variables, we can again assume without loss of generality, that

the �rst Zi(M) do not contain the i-th observation. Therefore, we can conclude that

1

M

M∑

t=1

mn,1(Xi; Θt)1{Xi has not been selected} =
Zi(M)

M

1

Zi(M)

Zi(M)∑

t=1

mn,1(Xi; Θt)

−→ cn ·mOOB
n (Xi), (19)

PΘ − almost-surely as M → ∞. The convergence follows by applying the continuous mapping theorem on

the function g(x, y) = x · y using Kn,M and (18).

Proof of Proposition 2. Let X = [X1, . . . , Xp]
> ∈ Rp be an independent copy of X1 such that Y = m̃(X) + ε

as in regression model (1). Furthermore, Let j ∈ {1, . . . , p} \ S, i.e. j is non-informative. According to our

de�nition of being non-informative and the assumption that there are no dependencies among the features

{Xj}pj=1, this will lead us to Y being indepdendent of Xj , while Xj is also independent towards all other

features X`, ` 6= j ∈ {1, . . . , p}. Denoting with Xj = [X1, . . . , Xj−1, Zj , Xj+1, . . . , Xp]
> ∈ Rp, while Zj is

an independent copy of Xj , independent of X` and Y for all ` 6= j, this will yield to [X>j , Y ]>
d
= [X>, Y ]>.

Hence, we will obtain

I(j) = E[(Y − m̃(Xj))
2]− E[(Y − m̃(X))2]

= E[(Y − m̃(X))2]− E[(Y − m̃(X))2]

= 0. (20)
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On the other hand, if j ∈ S, i.e. j is informative, than we can deduce the following computations, where

the third equation follows from the independence of X and ε together with E[ε] = 0. The second last equality

follows from assumption (A3) leading to Xj
d
= X.

I(j) = E[(Y − m̃(Xj))
2]− E[(Y − m̃(X))2]

= E[(Y − m̃(X) + m̃(X)− m̃(Xj))
2]− E[(Y − m̃(X))2]

= E[(m̃(X)− m̃(Xj))
2] + 2E[ε(m̃(X)− m̃(Xj)))]

= E[(m̃(X)− m̃(Xj))
2]. (21)

Proof of Theorem 1. Let j ∈ {1, . . . , p}, i ∈ {1, . . . , n} and t ∈ {1, . . . ,M} be �xed but arbitrary and

assume that the Random Forest sampling mechanism is restricted to sampling an ∈ {1, . . . , n} points without
replacement such that an < n. Denote with D(t)

n the collection of points selected for tree t ∈ 1, . . . ,M . Then

we denote with D−(t)
n = Dn \ D(t)

n the subset of Dn in tree t ∈ {1, . . . ,M} with cardinality γn for which its

elements have not been selected during the sampling procedure. Note that the cardinality of D−(t)
n remains

�xed for all t = 1, . . . ,M and is given by γn = n − an, which is di�erent to sampling with replacement. In

addition, we set D−(t)
n,X = {Xi : [X>i , Yi]

> ∈ D−(t)
n } to be the set of all features X that belong to D−(t)

n , i.e.

that have been selected during resampling. Then we recall from (7) that the permutation variable importance

based on OOB estimates is given by

IOOBn,M (j) =
1

Mγn

M∑

t=1

∑

i∈D−(t)
n

{
(Yi −mn,1(X

πj,t

i ; Θt))
2 − (Yi −mn,1(Xi; Θt))

2
}

=
1

Mγn

M∑

t=1

n∑

i=1

{
(Yi −mn,1(X

πj,t

i ; Θt))
2 − (Yi −mn,1(Xi; Θt))

2
}
1{Xi ∈ D−(t)

n }, (22)

where πj,t is a real permutation of the j-th covariable in D−(t)
n,X , where we call a permutation as real, if

πj,t ∈ {π ∈ Sγn : π(i) 6= i} =: V and Sγn is the symmetric group. Although we did not yet specify the

dependence of D(t)
n and D−(t)

n towards the generic random vector Θt in the Random Forest mechanism, it is

worth to notice that in fact, D(t)
n = D(t)

n (Θt) and D−(t)
n = D−(t)

n (Θt).

Then, the following results can be obtained:

E[(Yi − m̃(Xi))
21{Xi ∈ D−(t)

n,X }] = E[E[(Yi − m̃(Xi))
21{Xi ∈ D−(t)

n,X }|Dn]]

= E[(Yi − m̃(Xi))
2P[Xi ∈ D−(t)

n,X (Θt)|Dn]]

= E[(Yi − m̃(Xi))
2(1− P[Xi /∈ D−(t)

n,X (Θt)|Dn])]

=

(
1−

(
n−1
an−1

)
(
n
an

)
)
E[(Yi − m̃(Xi))

2]

=
n− an
n

E[(Yi − m̃(Xi))
2] (23)

The second equality follows from the measurability of (Yi−m(Xi)) and P[Xi /∈ D−(t)
n,X (Θt)|Dn] is the probabil-

ity of not selecting a �xed observation i among n elements, when resampling is conducted without replacement.230
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Returning to the sequence of iid generic random vectors {Θt}Mt=1, we recall that we can separate each

generic random vector into Θt = [Θ
(1)
t ,Θ

(2)
t ], where Θ

(1)
t models the sampling mechanism prior to tree

construction and Θ
(2)
t is the random variable modeling feature sub-spacing during the tree construction.

Note that in case of mtry = p, it follows that Θt = Θ
(1)
t . Furthermore, Θ

(1)
t can be decomposed into235

Θ
(1)
t = [Θ

(1)
1,t , . . . ,Θ

(1)
n,t]
> ∈ {0, 1}n, (24)

where each entry Θ
(1)
`,t , 1 ≤ ` ≤ n is Bernoulli distributed indicating whether observation ` has been selected

during the sampling procedure. For sampling without replacement the sequence {Θ(1)
`,t }n`=1 does not consist

of independent random variables. However, it holds that
n∑
`=1

Θ`,t = an and that Θ
(1)
t is independent of

(Xi, Yi,Θ
(2)
t ) for all t = 1, . . . ,M and all i = 1, . . . , n. Let ∆n(Xi, Yi,Θt) = ∆n(Xi, Yi,Θ

(1)
t ,Θ

(2)
t ) :=

(m̃(Xi) − mn,1(Xi,Θ
(1)
t ,Θ

(2)
t ))2, declare X′i as an independent copy of Xi independent of mn,1 and set

G = {[v1, . . . , vn]> ∈ {0, 1}n : v1 + · · ·+ vn = an} and Gi := {v ∈ G : vi = 0}. Then we observe the following

equality

E[∆n(Xi, Yi,Θ
(1)
t ,Θ

(2)
t )1{Θ(1)

i,t = 0}] =
∑

`∈G
E[∆n(Xi, Yi,Θ

(1)
t ,Θ

(2)
t )1{Θ(1)

i,t = 0}|Θ(1)
t = `] · P[Θ

(1)
t = `]

=
∑

`∈Gi
E[∆n(Xi, Yi,Θ

(1)
t ,Θ

(2)
t )|Θ(1)

t = `] · P[Θ
(1)
t = `]

=
∑

`∈Gi
E[∆n(X′i, Y

′
i ,Θ

(1)
t ,Θ

(2)
t )|Θ(1)

t = `] · P[Θ
(1)
t = `]

= E[∆n(X′i, Y
′
i ,Θ

(1)
t ,Θ

(2)
t )1{Θ(1)

i,t = 0}], (25)

where the second last equality follows from the independence of Θ(1)
t and (Xi, Yi,Θ

(2)
t ) and (Xi, Yi,Θ

(1)
t ,Θ

(2)
t )

d
=

(X′i, Y
′
i ,Θ

(1)
t ,Θ

(2)
t ). Now, using (25), we obtain

0 ≤ E[(m̃(Xi)−mn,1(Xi; Θt))
21{Xi ∈ D−(t)

n,X }] = E[∆n(Xi, Yi,Θ
(1)
t ,Θ

(2)
t )1{Xi ∈ D−(t)

n,X }]

= E[∆n(Xi, Yi,Θ
(1)
t ,Θ

(2)
t )1{Θ(1)

i,t = 0}]

= E[∆n(X′i, Y
′
i ,Θ

(1)
t ,Θ

(2)
t )1{Θ(1)

i,t = 0}]

= E[∆n(X′i, Y
′
i ,Θ

(1)
t ,Θ

(2)
t )1{Xi ∈ D−(t)

n,X }]

= E[(m̃(X′i)−mn,1(X′i; Θt))
21{Xi ∈ D−(t)

n,X }]

=: Cn,i,t. (26)

Note that the random tree estimate mn,1(X′i; Θt) can be rewritten into

mn,1(X′i; Θt) =
n∑

j=1

Wn,j(X
′
i; Θt)Yj , (27)

where Wn,j(X
′
i; Θt) =

1{Xj∈An(X′i;Θt)}
Nn(An(X′i;Θt))

with An(X′i; Θt) being the hyper-rectangular cell containing X′i

under the random tree constructed by Θt and Nn(An(X′i; Θt)) the number of observations falling in that
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hyper-rectangular cell. This way, one can deduce that 0 ≤ Wn,j(X
′
i; Θt) ≤ 1 for all j = 1, . . . , n and

n∑
j=1

Wn,j(X
′
i; Θt) = 1. Since K := sup

x
|m̃(x)| < ∞ by (A4) one obtains E[Y 2

1 ] = E[m̃(X1)2] + σ2 <

K2 + σ2 <∞ and together with the Cauchy-Schwarz inequality, it holds for all n ∈ N that

Cn,i,t ≤ E[(|m̃(X′i)−mn,1(X′i; Θt)|)2] ≤ E[(|m̃(X′i)|+ |mn,1(X′i; Θt)|)2]

≤ K2 + 2K · E




∣∣∣∣∣∣

n∑

j=1

Wn,j(X
′
i; Θt)Yj

∣∣∣∣∣∣

2



1/2

+ E




∣∣∣∣∣∣

n∑

j=1

Wn,j(X
′
i; Θt)Yj

∣∣∣∣∣∣

2



≤ K2 + 2K · E







n∑

j=1

Wn,j(X
′
i; Θt)|Yj |




2



1/2

+ E







n∑

j=1

Wn,j(X
′
i; Θt)|Yj |




2



≤ K2 + 2K · E







n∑

j=1

|Yj |




2



1/2

+ E







n∑

j=1

|Yj |




2



≤ K2 + 2Kn(E[Y 2
1 ])1/2 + n2E[Y 2

1 ] <∞. (28)

Set ∆n,i(Θt) = m̃(Xi) −mn,1(Xi; Θt) and recall that εi = Yi − m̃(Xi) according to model (1). Then it

follows from the law of total probability that

E[(Yi − m̃(Xi))(m̃(Xi)−mn,1(Xi; Θt))1{Xi ∈ D−(t)
n,X }] = E[εi ·∆n,i(Θt)1{Xi ∈ D−(t)

n,X }]

= P[Θ
(1)
i,t = 0] · E[εi ·∆n,i(Θt)|Θ(1)

i,t = 0]

=
γn
n
· E[εi|Θ(1)

i,t = 0] · E[∆n,i(Θt)|Θ(1)
i,t = 0]

= 0, (29)

since given the condition Xi ∈ D−(t)
n,X , or equivalently, Θ

(1)
i,t = 0, εi is independent of ∆n,i(Θt). Furthermore

note that we used the independence of εi towards Xi and Θ
(1)
i,t leading to E[εi|Θ(1)

i,t = 0] = E[εi] = 0.

240

Hence, combining the results from (23), (26) and (29), we obtain

E[(Yi −mn,1(Xi; Θt))
21{Xi ∈ D−(t)

n,X }] = E[(Yi − m̃(Xi))
21{Xi ∈ D−(t)

n,X }]

+ 2E[(Yi − m̃(Xi))(m̃(Xi)−mn,1(Xi; Θt))1{Xi ∈ D−(t)
n,X }]

+ E[(m̃(Xi)−mn,1(Xi; Θt))
21{Xi ∈ D−(t)

n,X }]

=
n− an
n

E[(Yi − m̃(Xi))
2] + Cn,i,t (30)

De�ning X̃j,i = [X1,i, . . . Xj−1,i, Zj , Xj+1,i, . . . , Xp,i]
> for i = 1, . . . , n, where Zj is independent of

[X1,i, . . . , Xj−1,i, Xj+1,i, . . . , Xp,i] and εi and Yi, but has the same marginal distribution as Xj
d
= Xj,i,

we can deduce that for any arbitrary measurable function f : Rp −→ R and π ∈ V, it holds:

E[f(X1,i, . . . , Xj,π(i), . . . , Xp,i)] = E[E[f(X1,i, . . . , Xj,π(i), . . . , Xp,i)|π]]

= E[f(X̃j,i)], (31)
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since E[f(X1,i, . . . , Xj,π(i), . . . , Xp,i)|π]
d
= E[f(X̃j,i)] due to the independence of the samples.

Now, following exactly the same calculation rules as in the derivation of equation (23), while also using (31),

we receive

E[(Yi − m̃(X
πj,t

i ))21{Xi ∈ D−(t)
n,X }] =

n− an
n

E[(Yi − m̃(X
πj,t

i ))2]

=
n− an
n

E[(Yi − m̃(X̃j,i))
2]. (32)

Now denote with X̃′j,i an independent copy of X̃j,i independent of mn,1. Since sampling is restricted

to without replacement, the permutation πj,t is independent of Θt, Dn and hence independent of D−(t)
n,X .

This would be di�erent if sampling is conducted with replacement, since the cardinality of D−(t)
n,X would be

random leading to the dependence of πj,t towards Θt. This independence allows us to conduct the following

computations

0 ≤ E[(m̃(X
πj,t

i )−mn,1(X
πj,t

i ; Θt))
21{Xi ∈ D−(t)

n,X }]

= E[(m̃(X̃j,i)−mn,1(X̃j,i; Θt))
21{Θ(1)

i,t = 0}] (33a)

= E[(m̃(X̃′j,i)−mn,1(X̃′j,i; Θt))
21{Θ(1)

i,t = 0}] (33b)

= E[(m̃(X′i)−mn,1(X′i; Θt))
21{Θ(1)

i,t = 0}]

= E[(m̃(X′i)−mn,1(X′i; Θt))
21{Xi ∈ D−(t)

n,X }] = Cn,i,t, (33)

where equality (33a) follows from applying (31), equality (33b) from the calculation results obtained from

equation (25) and (26) and the second last equality from X′i
d
= X̃′j,i together with the independence property

towards all other random elements, under the event that Θ
(1)
i,t = 0.

Similarly, set ∆̃
(j)
n,i(Θt) = m̃(X̃j,i)−mn,1(X̃j,i; Θt) and ε̃j,i = Yi − m̃(X̃j,i). Then, recall from model (1)

that

E[ε̃j,i|Xi ∈ D−(t)
n,X ] = E[Yi − m̃(X̃j,i)|Θ(1)

i,t = 0]

= E[m̃(Xi) + εi − m̃(X̃j,i)|Θ(1)
i,t = 0]

= E[m̃(Xi)|Θ(1)
i,t = 0] + E[εi|Θ(1)

i,t = 0]− E[m̃(X̃j,i)|Θ(1)
i,t = 0]

= E[εi] + E[m̃(Xi)]− E[m̃(X̃j,i)] = E[m̃(Xi)]− E[m̃(Xi)]

= 0, (34)

where we explicitly used assumption (A3) in the second-last equality equality and the independence of Θ
(1)
t

towards εi and Xi in the fourth equality. Now, consider245
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E[ε̃j,i · ∆̃(j)
n,i(Θt) · 1{Θ(1)

i,t = 0}] = E[εi · ∆̃(j)
n,i(Θt) · 1{Θ(1)

i,t = 0}]+

+ E[(m̃(Xi)− m̃(X̃j,i))(m̃(X̃j,i)−mn,1(X̃j,i; Θt)) · 1{Θ(1)
i,t = 0}]

= P[Θ
(1)
i,t = 0] · E[εi] · E[∆̃

(j)
n,i(Θt)|Θ(1)

i,t = 0]

+ E[(m̃(Xi)− m̃(X̃j,i))(m̃(X̃j,i)−mn,1(X̃j,i; Θt)) · 1{Θ(1)
i,t = 0}]

= E[(m̃(Xi)− m̃(X̃j,i))(m̃(X̃j,i)−mn,1(X̃j,i; Θt)) · 1{Θ(1)
i,t = 0}]

= P[Θ
(1)
i,t = 0] · E[(m̃(Xi)− m̃(X̃j,i))(m̃(X̃j,i)−mn,1(X̃j,i; Θt))|Θ(1)

i,t = 0]

=
γn
n
· Cov

Θ
(1)
i,t =0

(
{m̃(Xi)− m̃(X̃j,i)}; {(m̃(X̃j,i)−mn,1(X̃j,i; Θt))}

)

=:
γn
n
· ξ(j)
n,i(Θt) (35)

The second equality follows from the law of total expectation and the independence of εi and ∆̃
(j)
n,i under the

event that Θ
(1)
i,t = 0, i.e. that the i-th observation has not been selected during training. The third equality

follows from equation (34). The second last equality follows from the fact that E[m̃(Xi) − m̃(X̃j,i)] =

E[m̃(Xi)]− E[m̃(X̃j,i)] = 0, since m̃(Xi)
d
= m̃(X̃j,i). Finally, we can now obtain

E[(Yi − m̃(X
πj,t

i ))(m̃(X
πj,t

i )−mn,1(X
πj,t

i ; Θt))1{Xi ∈ D−(t)
n,X }]

= E[(Yi − m̃(X̃j,i))(m̃(X̃j,i)−mn,1(X̃j,i; Θt))1{Θ(1)
i,t = 0}]

= E[ε̃i,j · ∆̃(j)
n,i(Θt) · 1{Θ(1)

i,t = 0}]

=
γn
n
· ξ(j)
n,i(Θt) (36)

In the second equality, we used (31), while the last equality follows from applying equation (35).

Using the results from (32), (33) and (36), one can now obtain:

E[(Yi −mn,1(X
πj,t

i ; Θt))
21{Xi ∈ D−(t)

n,X }] = E[(Yi − m̃(X
πj,t

i ))21{Xi ∈ D−(t)
n,X }]

+ E[(m̃(X
πj,t

i )−mn,1(X
πj,t

i ; Θt))
21{Xi ∈ D−(t)

n,X }]

+ 2E[ε̃i,j · ∆̃(j)
n,i(Θt)1{Xi ∈ D−(t)

n,X }]

=
n− an
n

E[(Yi − m̃(X̃j,i))
2] + Cn,i,t +

2γn
n
· ξ(j)
n,i(Θt) (37)

Finally, using (30) and (37) together with (28), we obtain

E[I
(OOB)
n,M (j)] =

1

Mγn

M∑

t=1

n∑

i=1

E[{(Yi −mn,1(X
πj,t

i ; Θt))
2 − (Yi −mn,1(Xi; Θt))

2}1{Xi ∈ D−(t)
n,X }]

=
1

Mγn

M∑

t=1

n∑

i=1

{
n− an
n
{E[(Yi − m̃(X̃j,i))

2]− E[(Yi − m̃(Xi))
2]}+ Cn,i,t − Cn,i,t +

2γn
n
· ξ(j)
n,i(Θt)

}

=
n− an
γn

{
E[(Y1 − m̃(X̃j,1))2]− E[(Y1 − m̃(X1))2]

}
+

2

γn

n∑

i=1

(
1

M

M∑

t=1

γn
n
ξ

(j)
n,i(Θt)

)

= E[(Y1 − m̃(X̃j,1))2]− E[(Y1 − m̃(X1))2] + 2 ·
(

1

M

M∑

t=1

ξ
(j)
n,1(Θt)

)
(38)
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where the second last equality follows from the identical distribution (in i) of the sequence {Yi −
m(X̃j,i)}ni=1, respectively {Yi −m(Xi)}ni=1. The last equality follows from the identical distribution of the

sequence {ξ(j)
n,i(Θt)}ni=1.

Without loss of generality, assume that the �rst 1 ≤ s ≤ p features are informative, i.e. S = {1, . . . , s}250

and de�ne Xi;S = [X1,i, X2,i, . . . , Xs,i]
> ∈ Rs, the i-th random vector reduced to informative features

characterized by S. Similarly, let X̃j,i;S be the reduced random vector of X̃j,i, in which the j-th position is

substituted by Zj , with 1 ≤ j ≤ s .
We distinguish between two cases: First, let j ∈ SC = {1, . . . , p} \ S. Under this scenario, we know that

m̃(X̃j,1) = m̃(X1) = m(X1;S). Hence, we have

ξ
(j)
n,1(Θt) = Cov

Θ
(1)
1,t=0

(
{m̃(X1)− m̃(X̃j,1)}; {(m̃(X̃j,1)−mn,1(X̃j,1; Θt)) · 1{Θ(1)

1,t = 0}}
)

= Cov
Θ

(1)
1,t=0

(
0; {(m̃(X̃j,1)−mn,1(X̃j,1; Θt)) · 1{Θ(1)

1,t = 0}
)

= 0. (39)

Therefore, it immediately follows by applying (38) and (39) that

E[I
(OOB)
n,M (j)] = E[(Y1 − m̃(X̃j,1))2]− E[(Y1 − m̃(X1))2]

= E[(Y1 −m(X1;S))2]− E[(Y1 −m(X1;S))2]

= 0 = I(j). (40)

Secondly, let j ∈ S be informative. Then notice that

γn
n

1

M

M∑

t=1

ξ
(j)
n,1(Θt) =

γn
n

1

M

M∑

t=1

Cov
Θ

(1)
i,t =0

(
{m̃(X1)− m̃(X̃j,1)}; {m̃(X̃j,1)−mn,1(X̃j,1; Θt))}

)

=
γn
n

1

M

M∑

t=1

E[(m(X1;S)−m(X̃j,1;S)) · (m̃(X̃j,1)−mn,1(X̃j,1; Θt))|Θ(1)
1,t = 0]

=
1

M

M∑

t=1

E[(m(X1;S)−m(X̃j,1;S)) · (m̃(X̃j,1)−mn,1(X̃j,1; Θt)) · 1{Θ(1)
1,t = 0}]

= E
[
(m(X1;S)−m(X̃j,1;S)) · Z1(M)

M
·
(
m(X̃j,1)−mOOB

n,M (X̃j,1)
)]
, (41)

where Z1(M) =
M∑
t=1

1{Θ(1)
1,t = 0} =

M∑
t=1

1{X1 has not been selected under Θt} is the number of times the

�rst observation has not been selected during the sampling procedure and

mOOB
n,M (X̃j,1) = 1

Z1(M)

M∑
t=1

mn,1(X̃j,1; Θt) · 1{Θ(1)
i,t = 0}. Due to assumption (A4), we can deduce that

|m(X1;S)−m(X̃1,j;S)| ≤ 2K <∞ (42)

On the other hand, we observe the following bound:
∣∣∣∣
Z1(M)

M
·
(
m̃(X̃1,j)−mOOB

n,M (X̃1,j)
)∣∣∣∣ ≤ K +

n∑

`=1

Wn,`(X̃1,j ; Θ1, . . . ,ΘM ) · |Y`|

≤ K + max
1≤`≤n

|Y`| =: K + fn, (43)
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where Wn,`(·; Θ1, . . . ,ΘM ) = 1
M

M∑
t=1

Wn,`(·; Θt). Hence, we can deduce by applying (42) and (43) that

|fn,M | :=
∣∣∣∣(m(X1;S)−m(X̃j,1;S)) · Z1(M)

M
·
(
m̃(X̃j,1)−mOOB

n,M (X̃1,j)
)∣∣∣∣ ≤ 2K(K + fn) =: gn, (44)

i.e. gn is a �nite upper bound for |fn,M |, independent of M such that EΘ[|gn|] = 2K · (K + fn) <∞, where

fn := max
1≤`≤n

|Y`|. Applying Lebesgue's dominated convergence theorem while using Proposition 1 under the

sampling without replacement scheme with cn = 1 − an/n = γn/n and using Z1(M)/M −→ cn as M → ∞
due to (19), we obtain

lim
M→∞

E
[
(m(X1;S)−m(X̃j,1;S)) · Z1(M)

M

(
m̃(X̃j,1)−mOOB

n,M (X̃j,1)
)]

=
γn
n
E[(m(X1;S)−m(X̃j,1;S))(m̃(X̃j,1)−mOOB

n (X̃j,1))]

=:
γn
n
Jn (45)

Note that Jn can be bounded the following way using the Cauchy-Schwarz inequality:

Jn ≤ |Jn| ≤
√
E[|m(X1;S)−m(X̃j,1;S)|2]

√
E[|m̃(X̃j,1)−mOOB

n (X̃j,1)|2] (46)

Since Jn ≥ −|Jn| and due to assumption (A5), we can deduce that lim
n→∞

Jn = 0. Note that the L2 consistency

of the Random Forest estimate mOOB
n for Out-of-Bag samples follows by (A5) and a Corollary given in [15].

Finally, we can conclude with (41) and (45) that

lim
n→∞

lim
M→∞

1

M

M∑

t=1

ξ
(j)
n,1(Θt) = lim

n→∞
n

γn

γn
n
Jn = lim

n→∞
Jn = 0, (47)

which completes the proof.

255

In the sequel, we will shortly deliver proofs for the following claims, that have been mentioned in the

main article: (i) We argued that a variable j ∈ {1, . . . , p} is important, if the partial derivate of m̃(x) w.r.t.

xj vanishes, i.e. we claimed the equivalence of both de�nitions (2) and (3) mentioned in the article. (ii) We

claimed that the assumptions given in [3] can replace (A3)− (A5). (iii) We claimed that the theoretical cut

criterion L(k)(j, z) is independent of the residual noise σ2.260

Proof of (i). Suppose that being important is de�ned through (2) and assume without loss of generality, that

the �rst s ≤ p features are important, i.e. m̃(x) = m(xS), where xS = [x1, . . . , xs]
> ∈ Rs. Then it follows

immediately that ∂m̃(x)
∂xj

= 0 for all j ∈ {1, . . . , p} \ S, since m̃(x) = m(xS) does not depend on j. Hence,

variable j ∈ {1, . . . , p} \ S is unimportant according to the de�nition given in (3).

For the other direction, de�ne the set C := {k ∈ {1, . . . , p} : ∂m̃(x)
∂xk

6= 0} and suppose that j ∈ {1, . . . , p} is
informative in the sense that j ∈ C. Then, let a ∈ Rp be �xed but arbitrary. Using the multivariate Taylor

expansion of m̃ at a, one has

m̃(x) ≈ m̃(a) +∇m̃(a)>(x− a)

= m̃(a) +
∑

s∈C
m̃′s(as)(xs − as) =: m(xC) (48)
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which yields to S = C, i.e. the function m̃ can be reduced to a function of potentially lower dimension, since

a is chosen arbitrary and (48) holds for any �xed a.

Proof of (ii). Recalling some of the assumptions given in [3] in order to establish L2 consistency, we have

1. m̃(x) =
p∑
k=1

m̃k(xk), where {mk(xk)}pk=1 is a sequence of univariate and continuous functions.265

2. The feature vector X = [X1, . . . , Xp]
> ∈ Rp is assumed to be uniformly distributed over [0, 1]p.

3. The residuals are assumed to be centered Gaussian with variance σ2 ∈ (0,∞), independent of X.

4. Sampling is restricted to sampling without replacement such that an →∞, tn →∞ and tn·(log(an))9

an
→ 0

as n→∞.

Now, since m̃k is continuous for every k ∈ {1, . . . , p} according to 1., it immediately follows that m̃ resp.270

|m̃(x)| is continuous. Hence, since [0, 1]p as the support of X is compact, so is the set {m̃(x) : x ∈ [0, 1]p},
which then yields to sup

x∈[0,1]p
m̃(x) = max

x∈[0,1]p
m̃(x) = K < ∞. This is nothing else than assumption (A4).

Furthermore, we have from 2. that X ∼ Unif([0, 1]p), which yields to fX(x1, . . . xp) = 1{x ∈ [0, 1]p} =
p∏
j=1

1{Xj ∈ [0, 1]} =
p∏
j=1

fUnif(0,1)(xj), i.e. the multivariate density decomposes into the product of univariate

densities. Therefore, the sequence of random variables {Xj}pj=1 is mutual independent. Hence, assumption275

(A3) follows. Assuming that the residuals are centered Gaussian with �nite variance σ2 as given in 3. is

nothing else than the speci�cation of our assumption that E[ε] = 0 and V ar(ε) ∈ (0,∞) by imposing explicitly

the Gaussian distribution. Assumption (A5) then immediately follows by using Theorem 1 in [3] and the

assumptions 1 - 4. Assumptions (A1) and (A2) are not required in [3], and hence, they do not prohibit us to

use Theorem 1 in [3]. Therefore, they can be taken over additionally.280

Proof of (iii). Consider the theoretical cut criterion L(k)(j, z) at level 1 ≤ k ≤ dlog2(tn)e + 1 with 1 ≤ ` ≤
2k−1. Then we can see that this is independent of σ2:

L(k)(j, z) = V ar[Y1|X1 ∈ A(k)
` ]− P[Xj,1 < z|X1 ∈ A(k)

` ]� · V ar[Y1|X1 ∈ A(k)
` , Xj,1 < z]

− P[Xj,1 ≥ z|X1 ∈ A(k)
` ] · V ar[Y1|X1 ∈ A(k)

` , Xj,1 ≥ z]

= V ar[m̃(X1)|X1 ∈ A(k)
` ] + V ar[ε1|X1 ∈ A(k)

` ]− P[Xj,1 < z|X1 ∈ A(k)
` ] ·

{
V ar[m̃(X1)|X1 ∈ A(k)

` , Xj,1 < z] +

V ar[ε1|X1 ∈ A(k)
` Xj,1 < z]

}
− P[Xj,1 ≥ z|X1 ∈ A(k)

` ] ·
{
V ar[m̃(X1)|X1 ∈ A(k)

` , Xj,1 ≥ z]+

V ar[ε1|X1 ∈ A(k)
` , Xj,1 ≥ z]

}

= V ar[m̃(X1)|X1 ∈ A(k)
` ] + σ2 − P[Xj,1 < z|X1 ∈ A(k)

` ] ·
{
V ar[m̃(X1)|X1 ∈ A(k)

` , Xj,1 < z] + σ2
}
−

P[Xj,1 ≥ z|X1 ∈ A(k)
` ] ·

{
V ar[m̃(X1)|X1 ∈ A(k)

` , Xj,1 ≥ z] + σ2
}

= V ar[m̃(X1)|X1 ∈ A(k)
` ]− P[Xj,1 < z|X1 ∈ A(k)

` ] · V ar[m̃(X1)|X1 ∈ A(k)
` , Xj,1 < z]−

P[Xj,1 ≥ z|X1 ∈ A(k)
` ] · V ar[m̃(X1)|X1 ∈ A(k)

` , Xj,1 ≥ z],
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where the third equality follows from the independence of ε1 and X1.
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1. Results for p < n Problems
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(b) n = 500

Figure 1: Simulation results for the permutation importance with various signal-to-noise ratios under a linear model as

described in (1) of the main article using MC = 1, 000 Monte-Carlo iterations with a sample size of (a) n = 100 and (b)

n = 500. The solid lines refer to the empirical mean and ? to its expectation.
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Figure 2: Simulation results for the permutation importance with various signal-to-noise ratios under a polynomial model

as described in (1) of the main article using MC = 1, 000 Monte-Carlo iterations with a sample size of (a) n = 100 and (b)

n = 500. The solid lines refer to the empirical mean and ? to its expectation.
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Figure 3: Simulation results for the permutation importance with various signal-to-noise ratios under a trigonometric model

as described in (1) of the main article using MC = 1, 000 Monte-Carlo iterations with a sample size of (a) n = 100 and (b)

n = 500. The solid lines refer to the empirical mean and ? to a Monte-Carlo approximation of its expectation.
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Figure 4: Simulation results for the permutation importance with various signal-to-noise ratios under a non-continuous model

as described in (1) of the main article using MC = 1, 000 Monte-Carlo iterations with a sample size of (a) n = 100 and (b)

n = 500. The solid lines refer to the empirical mean and ? to a Monte-Carlo approximation of its expectation.

n = 50 n = 100

SN = 0.5 1 3 5 0.5 1 3 5

M
od

el

linear 0.189 0.364 0.807 1.001 0.248 0.509 1.181 1.528

polynomial 0.184 0.362 0.807 1.033 0.243 0.5 1.197 1.594

trigonometric 0.1 0.1 0.1 0.1 0.061 0.064 0.102 0.119

non-continuous 0.158 0.309 0.726 0.936 0.204 0.473 1.152 1.523

n = 500 n = 1, 000

SN = 0.5 1 3 5 0.5 1 3 5

M
od

el

linear 0.365 0.743 1.937 2.781 0.400 0.808 2.178 3.240

polynomial 0.365 0.754 1.995 2.919 0.395 0.812 2.246 3.400

trigonometric 0.098 0.215 0.451 0.549 0.170 0.335 0.7 0.862

non-continuous 0.357 0.759 2.094 3.153 0.395 0.829 2.376 3.714

Table 1: Estimator ŜNn as given in equation (14) of the main article under various sample sizes and signal-to-noise ratios using

MC = 1, 000 Monte-Carlo iterates for the p < n regression problem.

Table 1 refers to the estimator ŜNn of SN as proposed in the main article under various sample sizes.

One can see that ŜNn tends to be smaller than SN , but slowly moves to SN for an increased sample size.
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2. Results for p > n Problems
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Figure 5: Simulation results for the permutation importance with various signal-to-noise ratios under a linear model as

described in (1) of the main article using MC = 1, 000 Monte-Carlo iterations under the high-dimensional setting. The solid

lines refer to the empirical mean and ? to its expectation.
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Figure 6: Simulation results for the permutation importance with various signal-to-noise ratios under a polynomial model as

described in (1) of the main article using MC = 1, 000 Monte-Carlo iterations under the high-dimensional setting. The solid

lines refer to the empirical mean and ? to its expectation.

5



SN =  3 , n =  50 SN =  5 , n =  50

SN =  0.5 , n =  50 SN =  1 , n =  50

2 4 1 3 7 9 10 5 6 8 2 4 1 3 7 9 10 5 6 8

0

1

2

3

0

1

2

3

SN =  3 , n =  100 SN =  5 , n =  100

SN =  0.5 , n =  100 SN =  1 , n =  100

2 4 1 3 9 6 5 8 7 10 2 4 1 3 9 6 5 8 7 10

0

1

2

3

0

1

2

3

SN =  3 , n =  500 SN =  5 , n =  500

SN =  0.5 , n =  500 SN =  1 , n =  500

2 4 3 1 5 6 10 8 7 9 2 4 3 1 5 6 10 8 7 9

0

1

2

3

0

1

2

3

SN =  3 , n =  1000 SN =  5 , n =  1000

SN =  0.5 , n =  1000 SN =  1 , n =  1000

2 4 3 1 5 7 6 10 9 8 2 4 3 1 5 7 6 10 9 8

0

1

2

3

0

1

2

3

Figure 7: Simulation results for the permutation importance with various signal-to-noise ratios under a trigonometric model

as described in (1) of the main article using MC = 1, 000 Monte-Carlo iterations under the high-dimensional setting. The

solid lines refer to the empirical mean and ? to a Monte-Carlo approximation of its expectation.
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Figure 8: Simulation results for the permutation importance with various signal-to-noise ratios under a non-continuous model

as described in (1) of the main article using MC = 1, 000 Monte-Carlo iterations under the high-dimensional setting. The

solid lines refer to the empirical mean and ? to a Monte-Carlo approximation of its expectation.
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