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Abstract: Shear failure is a brittle and undesirable mode of failure in reinforced concrete structures.
Many of the existing shear design equations for steel fiber reinforced concrete (SFRC) beams include
significant uncertainty due to the failure in accurately predicting the true shear capacity. Given these,
adequate quantification and description of model uncertainties considering the systematic variation
in the model prediction and measured shear capacity is crucial for reliability-based investigation.
Reliability analysis must account for model uncertainties in order to predict the probability of failure
under prescribed limit states. This study focuses on the quantification and description of model
uncertainty related to the current shear resistance predictive models for SFRC beams without shear
reinforcement. The German (DAfStB) model displayed the lowest bias and dispersion, whereas the f ib
Model 2010 and the Bernat et al., model displayed the highest bias and dispersion. The inconsistencies
observed in the resistance model uncertainties at the variation of shear span to effective depth ratio are
a major cause for concern, and differentiation with respect to this parameter is advised. Finally, in line
with the EN 1990 semi-probabilistic approach for reliability-based design, the global partial safety
factors related to model uncertainties in the shear resistance prediction of SFRC beams are proposed.

Keywords: steel fiber reinforced concrete beam; shear capacity; structural design; model uncertainty;
partial safety factors; structural reliability

1. Introduction

Over the years, the use of steel fiber reinforcements to improve the performance of reinforced
concrete (RC) members in shear and tension has been extensively researched. Many studies have
demonstrated that the inclusion of steel fiber reinforcements in concrete significantly enhances the
tensile, flexural and shear capacity; improves the ductile and post-cracking behaviour and increases
the energy absorption properties [1–6]. The various investigations conducted in [7–12] reported
that the inclusion of fiber reinforcements in reinforced concrete beams significantly improves the
shear capacity. An experimental study conducted by Rosenbusch and Teutsch [13] revealed that
fiber reinforcements could potentially substitute the minimum stirrups required in conventional
reinforced concrete members to ensure a ductile failure. The presence of steel fiber reinforcement in
concrete enhances shear resistance by resisting and redistributing inclined tensile stresses along the
diagonal cracks, improves post cracking resistance capacity and reduces the diagonal crack width
and spacing. The reduction in the crack spacing suggests that the inclusion of steel fibers could
result in a possible reduction or elimination of the size effect in beams without stirrups, where
shear capacity decreases with increasing beam effective depth [8,14,15]. The efficiency of steel fiber
reinforcements to increase shear capacity depends on several factors which include the fiber properties,
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fiber content and bond stress versus slip response of fibers [8]. Other parameters affecting the shear
resistance of SFRC beams consist of the effective member depth d, the concrete compressive strength
fc, the aggregate size dag, the shear-span to effective depth a/d, and the longitudinal reinforcement
ratio ρ [16]. The a/d has been shown to significantly influence the failure mode and mechanism of
reinforced concrete structures [17]. Three patterns of shear failure—diagonal-tension, shear-tension
and shear-compression—have generally been observed when steel fiber reinforcements are used in
beams with or without stirrup reinforcement [8].

Despite the numerous studies and findings, the behaviour of SFRC beams in shear remains a
complex phenomenon that requires further attention. Shear failure poses a crucial safety issue since it
may develop swiftly with no prior signs of damage. Consequently, shear design provisions should
be reliable and accurate. Numerous design expressions have been introduced in the current design
standards [18–20] and literature [21]. However, developing a precise and acceptable design formulation
for shear capacity of SFRC beams is still an evolving process. A summary of most of the proposed shear
design models for SFRC beams without stirrups in current literature and design guidelines can be
found in [21]. Majority of the existing shear design formulations are either empirical or semi-empirical
based, except for the models based on the Modified Compression Field Theory (MCFT) [22,23], the Dual
Potential Capacity Model [24], plasticity-based models [25,26] and the modified Multi-Action Shear
Model [27]. The comparison of the various SFRC shear resistance models, as presented in [21,27],
indicate the difficulty and complexity of the accurate prediction of shear capacity of SFRC beams.
Not only do the resistance predictions of the various procedures differ from each other, but they also
vary from the experimentally observed shear strength. Given these disparities, adequate quantification
and description of model uncertainties taking into account the differences between the predicted and
the measured shear resistance is crucial, especially for reliability-based analysis.

Structural engineering design is performed under a certain degree of inherent uncertainty.
The influence of such uncertainties is quantified and accounted for using statistical and probabilistic
approaches [28,29]. In reliability analysis, uncertainties must be adequately considered in order to
predict the probability of failure under prescribed limit states [29,30]. Uncertainties in structural
engineering can be classified into two sources, namely aleatory (inherent random variability) and
epistemic [28]. The aleatory uncertainty is due to the natural randomness and intrinsic variability of
variables peculiar to a specific structural problem. These are uncertainties that cannot be reduced.
Structural variables such as material properties, geometry and loads are treated as aleatory uncertainties.
Conversely, epistemic uncertainty is due to limitations in knowledge or data and can be reduced
with improved mathematical modelling or increased data collection. The model uncertainty in the
mathematical formulation of a relevant limit state is considered as epistemic uncertainty [31].

Model uncertainty is a random variable describing the effects neglected in the representation
of the actual structures and the simplifications in the mathematical expressions. Model uncertainty
in shear prediction is significant and has been shown to dominate shear reliability performance [30].
The mean (bias) and variability of the model uncertainty are used as inputs in reliability analysis and
thus, will affect the reliability performance [30]. Reliability analysis is usually performed based on a
particular design situation, i.e., specific geometry, material strength and reinforcement ratio. Thus,
trends in the model uncertainty bias or variability may render the overall model uncertainty not
to be representative for a specific design situation, which will result in an erroneous evaluation of
reliability [30].

It is noted that few studies have characterised the model uncertainties in the shear prediction
models for SFRC beams (see Table 1). However, there is a lack of assessment of the consistency of these
uncertainties over the range of design situations. Also, the recent developments and studies regarding
the shear behaviour of SFRC beams resulted in the development of new and improved analytical
formulations [27] and a new database of SFRC beams failing in shear [21]. In view of these developments,
detailed treatment and quantification of model uncertainty, including the investigation of its consistency
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over design ranges are needed. The model uncertainty data can be used for the derivation of suitable
global partial safety factors accounting for the systematic effect of model uncertainty.

Table 1. Model uncertainty statistics obtained from the literature.

Model Mean (µU) SD (σU) Sample Size # Source

Fib Model Code
(MC-10) [20] 1.24 0.36 488 (Slender and

non-slender beams) [21]

DAfStB [19] 1.12 0.31 488 (Slender and
non-slender beams) [21]

Bernat et al. [27] 1.15 0.25 488 (Slender and
non-slender beams) [27]

Bernat et al. [27] 1.17 0.28 82 (Slender and
non-slender beams) [27]

Mean is obtained as the average of the ratio of experimental to predicted shear resistance obtained for each specimen.
SD denotes the standard deviation.

2. Objectives of the Investigation

This study focuses on the quantification of model uncertainty (model bias and variability)
associated to the current shear resistance predictive models for SFRC beams without stirrups and
the derivation of the corresponding global partial factors, accounting for the effect of uncertainties,
based on a semi-probabilistic methodology. The statistical characterisation of model uncertainties and
the assessment of its consistency over the range of design situations are critical objectives, as they have a
significant impact on reliability performance. The evaluation is done for three shear predictive models,
namely the best estimate (mean value) model of (1) f ib Model Code 2010 [20], (2) German guideline
(DAfStB) [19], and (3) Bernat et al. [27] mechanical model. A summary of the predictive models,
together with the assumptions made, are presented in Section 3.1. The database of experimental
observation used for computing the model uncertainty is described in Section 3.2. The mean and
design value assessments for the different models are conducted in Section 4. The different model
uncertainty statistics were obtained by comparing observed strengths (Vexp) from the assembled
experimental database to the mean shear predictions (Vpred) obtained from the different models
considered for investigation (Section 5). Statistical characterisation of model uncertainty is presented in
Section 5. These include statistical evaluation of the derived model uncertainty variables (Section 5.2),
assessment of their consistency over the range of design situations (Section 5.3), and selection of
appropriate probability distribution (Section 5.4). Subsequently, global partial safety factors for model
uncertainty are proposed, using the derived model uncertainty statistics as inputs. The partial factors
are obtained using semi probabilistic method (Section 6).

3. Shear Formulations and Experimental Database for SFRC Beams without
Shear Reinforcements

3.1. Shear Resistance Formulation

This section presents a summary of the current shear design provisions for SFRC beams without
stirrups from design guidelines and recently published literature. The design and mean shear resistance
predictions of the different procedures are compared using a database of experimental tests in Section 4.
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3.1.1. German Guideline (DAfStB) [19]

The design shear resistance of SFRC beam is obtained as a summation of shear resistance of the
concrete contribution and fiber contribution expressed as Equation (1).

VDA f StB =
0.15
γc

kbwd(100ρl. fck)
1
3 +
∝

f
c f f

ct,Rubwh

γ
f
ct

(1)

f f
ct,Ru = k f

Fk f
G0.37 f f

c f I,L2 (2)

To obtain the values of f f
c f I,L2, the expressions in Equation (3) are used [32]. This is also adopted in

the assessment conducted in [21]
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where bw and d is the width and effective depth of beam cross-section, respectively. k is the size effect
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(
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ct,Ru is the tensile strength of SFRC. ρl is the reinforcement ratio. k f
F is fiber

orientation factor taken as 0.5 for shear. f f
c f I,L2 is the post-cracking flexural strength for a deflection

of 3.5 mm. A f
ct is the effective area expressed as A f

ct = bw ∗ min(d, 1.5m). k f
G is the fiber size factor

expressed as k f
G = 1.0 + 0.5A f

ct ≤ 1.7. ∝ f
c is the factor accounting for the long-term effects. F is the fiber

factor. γc is the partial factor for concrete taken as 1.5. γ f
ct is the partial factor for tensile strength of

fiber-reinforced concrete taken as 1.25. h is the height of cross-section.

3.1.2. Model Code 2010 [20]

The design shear resistance of SFRC beams without stirrups is expressed as Equation (4).

VMC−10 =
0.18kbwd

γc

[
100ρl. fck

(
1 + 7.5.

fFtu

fctk

)] 1
3

(4)

where fctk is the tensile strength of concrete without fiber, and fFtu is the ultimate tensile strength for the
fiber reinforced concrete. Since the information on the tensile strength is not reported in the database
considered in this investigation, fFtu is estimated similarly as the German guideline.

3.1.3. Bernat et al. [27] Mechanical Model

The proposed model for estimating the mean shear strength of SFRC beam without stirrups,
according to Bernat et al. [27], is expressed as Equation (5).

VBernat et al. =

[
ζ

(
0.84− 0.10

σtu

fctm

)
x
d
+ 0.08 + 1.10

σtu

fctm

]
fctmbwd (5)

The average residual tensile stress σtu is obtained using Equation (6)

σtu

fct
= 2η0η1F (6)

where x is the neutral axis of plain concrete. ζ is the size and slenderness effect factor. η0 is the fiber
orientation factor taken as 0.405. η1 is the length efficiency factor for fiber
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3.2. Experimental Database SFRC Slender Beams

A large database of 488 experimental studies on SFRC beams without stirrups was recently
compiled by [21]. From the originally collected 488 experiments, a total of 162 beams with the
shear-flexure mode of failure and shear-span to effective depth ratio a/d < 2.5 (non-slender beams)
were filtered out, resulting in a subset of 326 experimental tests investigated in this study. The resulting
database of 326 experiments was adopted for the analysis conducted in this study. Specimens in the
evaluation database consist of slender beams with a flanged and rectangular cross-section.

All the beam specimens in the database failed majorly by shear-compression and diagonal tension
and had an a/d ratio greater or equal to 2.5. The experimental database covers a wide variety of shear
configurations from small to large geometry and low to high reinforcement. The statistical properties of
the main parameters of the evaluation database are presented in Table 2. The main parameters include
the shear capacity VR, the a/d ratio, beam effective depth d, beam width bw, longitudinal reinforcement
ρl ratio, concrete strength fc, aggregate size da, and the steel fiber factor Fs f . The steel fiber factor is a
function of the percentage volume V f , diameter d f and length of fibers L f (see Equation (7)).

Fs f =
V f L f

d f
(7)

Table 2. Statistical summary of the experimental evaluation database (326).

Parameters Range Min Max Mean S.D. C.o.V.

VR (kN) 686.64 12.89 699.53 134.44 128.75 0.96

Fsf (-) 1.90 0.10 2.00 0.51 0.31 0.62

da (mm) 21.60 0.40 22.00 9.94 5.23 0.53

ρl 0.053 0.004 0.057 0.03 0.01 0.38

fc (MPa) 205.23 9.77 215.00 49.33 26.94 0.55

a/d (-) 3.50 2.50 6.00 3.37 0.66 0.20

bw (mm) 255.00 55.00 310.00 151.96 57.77 0.38

d (mm) 837.75 85.25 923.00 264.15 160.46 0.61

S.D. denotes standard deviation, C.o.V. denotes the coefficient of variation, Max denotes maximum,
Min denotes minimum.

The range of parameters of the database corresponds to what can be found in practical design
situations. Although data for large beam sizes are few, the dataset is deemed representative of most
real applications and of design situations covered by current design provisions.

4. Deterministic Performance Assessment of Shear Design Formulations for SFRC Beams

The mean and design shear resistance obtained for MC-10, DAfStB and Bernat et al., models are
compared to experimental observations as presented in Figures 1 and 2. The design equations for
the various models are presented in Section 2 (Equations (1)–(6)). The mean or best estimate shear
resistance predictions are obtained by making all the values of the safety elements or partial factors
included in the design equations equal to one, and using the mean values of their material strength
(e.g., concrete strength fcm).
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Figure 1. (a) Plot of the correlation between the experimentally observed shear strength Vexp and mean
shear resistance predictions Vpred. (b) Plot of the correlation between the experimentally observed shear
strength Vexp and mean shear resistance predictions Vpred (resistance up to 300 kN only).
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Figure 2. (a) Plot of the design shear resistance predictions against experimental observations. (b). 
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Figure 2. (a) Plot of the design shear resistance predictions against experimental observations. (b) Plot of
the design shear resistance predictions against experimental observations (resistance up to 300 kN only).
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The plot of the correlation between the experimentally observed shear strength Vexp and mean or
best estimate shear resistance predictions Vpred provided by the different procedures is presented in
Figure 1. Generally, the predicted capacity by the various resistance models deviate from the ‘perfect
line’ (defined as the point where Vexp = Vpred). This trend of results agrees with the observation
reported in [21,27]. The trend lines of DAfStB and Bernat et al., models are the closest to the ‘perfect
line’. MC-10 shear method provided more conservative predictions compared to the other methods.

Figure 2 presents the plot of the design shear resistance predictions from the various design
approaches against experimental observations. Bernat et al. [27] model only provides a mean estimate
of shear resistance; therefore, it is not considered in the design value assessment. The trend line of
MC-10 and DAfStB design capacities, as presented in Figure 2, seems to be reasonably conservative
when compared to that of experimental shear capacities. The plots indicate the complexity in predicting
the shear capacity of SFRC beams accurately. The resistance predictions from the various procedures
differ from each other and also from the experimentally observed shear strength. The shear equations
include wide-spread uncertainties due to failure in reflecting the phenomenology of shear resistance
accurately. Some of the possible uncertainties include the uncertainty in the basic random variables and
the uncertainty associated with the predictive model formulation itself. Given these, quantification of
model uncertainties for the different shear models for SFRC beams and subsequent reliability-based
performance evaluation is of high significance. This will ensure the effects of uncertainties are
adequately taken into account.

5. Quantification of Model Uncertainties in SFRC Shear Resistance Models

5.1. Methodology to Assess the Resistance Model Uncertainties

Model uncertainty is described as the deficiency of a model to accurately represent a physical
phenomenon due to lack of comprehension of the phenomenon, conservative assumptions and
mathematical simplifications [30,31]. The model uncertainties related to the MC-10, DAfStB and the
Bernat et al. [27] shear models are investigated in this section. The model uncertainty assessment
is intended to reveal the inherent bias (if there is any) of their mean value/best estimate expression.
For this reason, the partial safety factors in the various models are taken as one, and the material
strength is simply taken at their mean values when calculating the model uncertainties.

For the predictive models considered in this study, the model uncertainty associated with a
single experiment x is obtained as the ratio of the experimental Vexp, to predicted shear strength Vpred,
expressed in Equation (8) [28,30],

Ux =
Vexp,

Vpred,x(X)
(8)

where, Ux is the model uncertainty for a single beam test x in shear, and X represents the input variables
for the predictive model (a/d, d, bw, ρl, fcm, da and Fs f ).

The model uncertainty Ux, using Equation (8), is obtained for each test in the experimental
database presented in Section 3.2, in order to derive the various statistical parameters of model
uncertainty, such as the mean, coefficient of variation and standard deviation. A model uncertainty
mean value µU > 1 indicates that the model predicted a lower value of ultimate shear resistance than
was measured and thus underpredicts. Conversely, µU < 1 implies that it overpredicts the actual
shear resistance.

5.2. Statistical Properties of the Model Uncertainty Random Variable

Statistical properties of the model uncertainty variables determined (the mean µU,
standard deviation σU, coefficient of variation VU, skewness ηU, range, minimum value Mmin and
maximum value Mmax), using the experimental database of SFRC slender beams, are presented in
Table 3 and Figure 3. The best model is the model with the lowest bias (i.e., mean value closest to 1) and
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minimum dispersion (standard deviation closest to zero). Such a model is suitable as a probabilistic
model for shear reliability analysis

Table 3. Statistical properties of the model uncertainty variables.

Parameters MC-10 DAfStB Bernat et al.

Number of experiments 326 326 326

Mean µU 1.13 1.08 1.13

Standard deviation σU 0.34 0.31 0.33

Coefficient of variation VU 30% 29% 29%

Skewness (ηU) 0.65 0.84 0.99

Range 2.03 2.16 2.56

Minimum ( Mmin) 0.30 0.22 0.15

Maximum (Mmax) 2.33 2.38 2.71Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 21 

 

 
Figure 3. Mean and coefficient of variation for model uncertainty. 

  

Figure 3. Mean and coefficient of variation for model uncertainty.

The model uncertainty variable related to the DAfStB model has a mean value of µU = 1.08 with
a conservative bias of 8% (the closest to the optimal value of 1). Concerning dispersion, the model
produces the lowest standard deviation of all the models investigated with σU = 0.31. MC-10 and Bernat
et al., shear model, on the other hand, have the highest mean value of µU = 1.13 (largest conservative
bias) and the most substantial dispersion with σU = 0.34. The JCSS [33] recommended a general
mean value of µU = 1.0 and standard deviation of σU = 0.1 for model uncertainties related to shear
failure. The model uncertainty statistics presented in this study are higher than what is suggested
by the JCSS [33] but comparable to those obtained by other authors in Table 1. Underprediction of
the dispersion of the model uncertainty may result in an overprediction of the associated reliability
level. The model uncertainty statistics presented here can serve as inputs in reliability analysis and
derivation of partial safety factors for shear resistance uncertainties.

5.3. Assessment of Model Uncertainty Independence and Correlations

The trend in the performance of the various models is investigated by correlating the model
uncertainty with model parameters. The correlation coefficients for the relevant parameters are
presented in Table 4. As observed from the table, the model uncertainty related to the Bernat et al.,
model showed weak to moderately weak trend with the major parameters investigated. On the
other hand, the MC-10 and DAfStB models showed some correlation of the model uncertainty with
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the beam effective depth d, the a/d ratio and the reinforcement ratio ρl, corresponding to unwanted
trends in the model uncertainty with these parameters. The a/d ratio is the most influential parameter.
The strong decreasing trend of safety bias as the a/d ratio increases, is a cause for concern (Figure 4).
It is recommended to differentiate it with respect to this parameter.

Table 4. Pearson correlation matrix between model and shear parameters.

MC-10 DAfStB Bernat et al.

bw 0.22 0.07 0.17

d 0.34 0.10 0.15

ρl 0.13 0.33 0.29

a/d −0.38 −0.34 −0.29

fcm 0.15 0.14 0.08

Fsf 0.22 0.14 −0.31

Further assessment of this trend is conducted by computing model uncertainty statistics for
various subsets of beams with a/d ratio as presented in Table 5. This is done to quantify the impact of
a/d ratio on the model uncertainty bias and variability. The histogram of the shear span to effective
depth ratio for the full database showing the different range of a/d ratio is presented in Figure 5.
The limits for the different ranges of a/d ratio (short, medium and slender shear span length) as
presented in the table and figures are adopted from [34]. Sample sizes are n = 109, 180 and 37 for
short, medium and slender shear span length, respectively. The parameter range analyses (see Table 5)
conducted indicate that the statistics of the model uncertainty (µU, σU, VU) decreases with increasing
a/d ratio.

Table 5. Model uncertainty statistics for different subsets of beams.

MC-10 DAfStB Bernat et al.

Description of
the Sample µU σU VU µU σU VU µU σU VU

Short shear span
length ( a

d =2.5−3)
n=109

1.21 0.32 0.26 1.13 0.31 0.28 1.19 0.32 0.27

Medium Shear
Span Length

( a
d =3−4) n=180

1.18 0.32 0.27 1.12 0.29 0.26 1.15 0.31 0.27

Slender Shear
Span Length

( a
d =4−8) n=37

0.78 0.16 0.21 0.83 0.18 0.21 0.99 0.26 0.26

5.4. Probabilistic Model for Model Uncertainty

In structural reliability theory, the basic variables such as actions, material properties and geometric
data are considered as random variables with appropriate distribution type. One of the major objectives
of this investigation is to establish the most appropriate distribution function for the model uncertainties
related to the shear resistance models for SFRC beams. The most prevalently used distributions to
describe actions, material properties and geometrical data, in reliability investigation, are the normal
and lognormal distributions [33,35]. In the current study, only the suitability of the normal and
lognormal distribution is investigated in order to achieve an adequate representation of the actual
probability distribution for the model uncertainty observations. Also, the skewness coefficients (ηU)

obtained for the models, as presented in Table 3, indicate that the underlying distributions of the
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derived model uncertainties are closer to what is expected from a positively skewed distribution
(such as lognormal).Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 21 
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Figure 4. Variation of model uncertainty with shear span to effective depth ratio a/d. (a) Plot for MC-10
model. (b) Plot for Bernat et al., model [27]. (c) Plot for DAfStB model.
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The type of probability distribution has been shown to play a key role in reliability performance
assessment [28,35]. The choice of the appropriate distribution for the model uncertainty variable was
evaluated based on the chi-square goodness-of-fit test. The hypothesis that the model uncertainty
distribution is similar to the choice of probability distribution (normal or lognormal) is rejected if the
significance p-value< 0.05. The p-value is a measure of the goodness-of-fit, with larger values indicating
a better fit. The magnitude of the p-value obtained based on the chi-square goodness of fit test suggests
that the lognormal distribution is a better fit with p-value greater than 0.05. Previous studies [28,29]
and the Probabilistic Model Code by the Joint Committee on Structural Safety (JCSS) [33] have
also recommended the lognormal distribution as the most suitable distribution function for model
uncertainty. The model uncertainty theoretical PDF and histogram plots for the models are presented
in Figure 6.
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6. Derivation of Partial Safety Factor for Resistance Model Uncertainties

The Eurocode EN 1992-2 [36] and Fib Model Code 2010 [20] recommended various global
partial factors γRd for model uncertainty for nonlinear analysis. In the case of Eurocode, γRd = 1.06,
whereas for Fib Model Code 2010 γRd = 1.0− 1.1 (for models with zero to high uncertainties). However,
various studies [35,37] have shown that these values are inadequate and should be related to the
specific failure mode under consideration.

The partial safety factors for model uncertainty related to the MC-10, Bernat et al., and DAfStB
are proposed in this section. The global safety assessment of an SFRC structure for the ultimate limit
state is performed based on the design requirement that the design action Ed is lower than the design
structural resistance Rd (See Equation (9)) [20,38].

Ed < Rd (9)

In line with the EN 1990 [38], the partial safety factor γRd for model uncertainties is generally
incorporated into the design equation through the expression in Equation (10) [38].

Rd = R
[
η

Xk
γm

; ad . . . .
]
/γRd (10)

where Rd is the design resistance. Xk is the characteristic values of the variable. η is a conversion factor
appropriate to the material property. γm is the material property factor. ad is the design geometric
parameter. γRd is global partial factor for resistance.

Based on a lognormal probability distribution, the global partial safety factor representing the
resistance model uncertainties γRd can be obtained from Equation (11) [37]. For the shear predictive
models investigated in this study, the probability distribution for the model uncertainty random
variables is taken as a lognormal distribution based on the assessment presented in Section 5.4.

γRd = 1/[µU.exp.(−αR.β.VU)] (11)

where αR denotes the FORM sensitivity factor = 0.8× 0.4 = 0.32 [38] (0.4 is the factor for non-dominant
resistance variable and 0.8 is the sensitivity factor for resistance). β is the target reliability, according
to EN 1990. µU and VU are the mean and coefficient of variation of the model uncertainty random
variable, respectively.

Figures 7 and 8 present the variation of the obtained model uncertainty global partial factor γRd
with target reliability β for the various models and the considered parametric range of shear span to
effective depth ratio. The range of target reliability presented in the figures covers the target reliabilities
for 50 years of design working life period for the ultimate limit states for structures. As shown in the
figures, the model uncertainty factor γRd increases as the target reliability β increases. The recommended
model uncertainty partial factor γRd obtained for the investigated models is presented in Table 6.
The recommended value is obtained as the average of the partial safety factors for the range of shear
span to effective depth ratio considered.
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Table 6. Model uncertainty global partial factor γRd for parameter range.

Parameter
Range MC-10 Bernat et al. [27] DAfStB

Range of model
uncertainty partial

factor γRd

Recommended value
Range of model

uncertainty
partial factor γRd

Recommended value
Range of model

uncertainty
partial factor γRd

Recommended value

Short shear
span length 1.06–1.19 ≈1.13 1.08–1.23 1.16 1.16–1.31 ≈1.23

Medium
shear span

length
1.10–1.24 ≈1.17 1.13–1.27 1.20 1.15–1.29 ≈1.22

Slender
shear span

length
1.57–1.72 ≈1.64 1.30–1.45 1.38 1.47–1.62 ≈1.55

7. Conclusions

Uncertainties are inevitable in any structural engineering problems. Uncertainties may arise from
the properties of the material parameters, random nature of the loadings, imperfect resistance modelling,
lack of experience and human factors. Previous studies have shown that the resistance predictions from
the existing shear design models for SFRC beams differ from the experimentally observed shear strength.
The shear models contain significant uncertainty due to the failure to represent the phenomenology
of shear resistance accurately. Proper modelling and description of model uncertainties are critical
since model uncertainty significantly influences reliability performance [29,35]. The present study is
focused on the quantification of model uncertainty related to the current shear resistance predictive
models for SFRC beams without shear reinforcement. The study also presents a systematic derivation
of global partial safety factors to account for the effects of model uncertainties in the shear resistance of
SFRC beams following the semi-probabilistic approach recommended in EN 1990 for reliability-based
design. The models investigated include the best estimate predictive model of (1) fib Model Code 2010,
(2) German guideline (DAfStB), and (3) Bernat et al. [27] mechanical model. The model uncertainty
statistics were developed by comparing mean predicted shear capacity with experimental capacity.
The best model is the model with the lowest bias (i.e., mean value closest to 1), minimum dispersion
(standard deviation closest to zero) and milder sensitivities to shear parameters. The following
concluding remarks are drawn:

• The model uncertainty related to the DAfStB model has a mean value of µM = 1.08 (the closest to
the optimal value of 1) and the lowest dispersion (σM = 0.31). On the other hand, the MC-10 and
Bernat et al., models displayed the highest mean value (µM = 1.13) (largest conservative bias)
and the most substantial dispersion, comparatively.

• The Bernat et al., model showed weak to moderately weak trend with all the shear parameters
investigated in this study. MC-10 and DAfStB models showed some correlation of the model
uncertainty with the beam effective depth d, shear span to effective depth a/d and the reinforcement
ratio ρl, corresponding to unwanted trends in the model uncertainty with these parameters.

• The shear span to effective depth ratio a/d was found to be the most influential parameter
(highest correlation coefficient). The strong decreasing trend of safety bias as the shear span to
effective depth ratio a/d increases, is a cause for concern. Further assessment of this trend was
conducted by computing model uncertainty statistics for different subsets of beams with a/d ratio.
The parameter range analysis indicates that the statistics of the model uncertainty (mean value,
standard deviation and coefficient of variation) decreases with increasing a/d ratio.

• The probability distribution fitting indicates that the derived model uncertainty random variables
can be modelled using a lognormal distribution.

• Global partial safety factors accounting for the model uncertainty in shear resistance models for
SFRC beams were proposed. Partial safety factors ranging from 1.13–1.23, 1.17–1.22 and 1.38–1.64
were recommended for beams with short, medium and slender shear span lengths, respectively.
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It is important to note that improved values of the global partial safety factors can be obtained
using a fully probabilistic approach.

• The derived model uncertainty variables and related partial safety factors obtained in this study
are associated with the specific database considered, which may change noticeably should the
database change. However, the database presented in this study may be regarded as representative
of practical design situations.

• The use of partial factors ensures a consistent level of reliability over a range of structures.
This enables engineers with no knowledge of probability and reliability theory to produce designs
at a prescribed level of reliability.
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