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Many economic time series exhibit persistent seasonal patterns. One approach to model
this phenomenon is given by models including seasonal unit roots and, if several time series
are considered jointly, seasonal cointegration. For quarterly time series, e.g., unit roots may
be present at frequencies ±π/2 and π, in addition to the “standard unit root” at frequency
zero. Gregoir (2010) has extended the fully modified OLS estimator of Phillips and Hansen
(1990) from the cointegrating regression to the seasonally cointegrating regression case. In
this paper, we have a similar agenda, in that we undertake the corresponding extension for
the IM-OLS estimator of Vogelsang and Wagner (2014). The benefit of the seasonal IM-
OLS estimator, or SIM-OLS estimator, is that it forms the basis not only for asymptotic
standard inference but also allows for fixed-b inference. The paper furthermore proposes a
test for seasonal cointegration at all unit root frequencies. Note here that the cointegrating
spaces in general differ across frequencies and have to be estimated separately for each
frequency. The theoretical analysis is complemented by a simulation study.
JEL Classification: C12, C13, C22, C32
Keywords: Seasonal Cointegration, Seasonal Unit Roots, SIM-OLS, Fixed-b Inference,
Cointegration Test

1. Introduction

Since the seminal paper of Hylleberg et al. (1990) cointegration at frequencies different from
zero gained popularity in the econometrics literature. Many theoretical approaches have been
developed by extending well known results for the zero frequency case. For instance, Johansen
and Schaumburg (1999) developed a cointegration theory in a vector autoregressive framework
and Gregoir (1999a,b) introduced a vector error correction model representation with seasonal
error correction terms. More recently, Bauer and Wagner (2002, 2005, 2012) developed a
state space representation for seasonal unit root processes and showed that the state space
framework is suitable for seasonal cointegration analysis. What these approaches all have in
common is the fact that they consist of parametric models for which a suitable parameterization
has to be found and which are estimated by maximum likelihood techniques. Nonparametric
approaches are also known from the literature on cointegration at frequency zero, where only
the cointegrating vectors are estimated and all other properties of the underlying processes are
regarded as nuisance parameters. Such a method, the so-called fully modified OLS estimator
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of Phillips and Hansen (1990) was generalized by Gregoir (2010) for seasonally cointegrating
regressions. In contrast to the parametric models, this so-called SFM-OLS estimator is based
on the nonparametric estimation of the spectral density at the considered frequency. This is
usually done using nonparametric kernel density estimators, which in turn require a suitable
choice of a kernel function and bandwidth.

Vogelsang and Wagner (2014) presented an estimator, the integrated modified OLS estimator,
for the parameters in a cointegrating regression at zero frequency, that does not require the
estimation of a spectral density or any other tuning parameters. In this paper we generalize this
estimator to cointegrating regressions at arbitrary frequency and label it seasonally integrated
modified OLS estimator, SIM-OLS in short.

However, inference based on the SIM-OLS estimator still requires the estimation of the spectral
density at the considered frequency. Standard asymptotic theory for kernel estimators of the
spectral density requires the bandwidth,M say, to grow with sample size T such thatM/T → 0
as T →∞. Although such assumptions yield consistent spectral density esimators the impact of
the bandwidth is not captured in finite sample distributions. Bunzel (2006) and Vogelsang and
Wagner (2014) extended asymptotic fixed-b theory from the stationary framework in Kiefer and
Vogelsang (2005) to the cointegration framework at frequency zero. Under fixed-b theory the
bandwidth M is supposed to be a fixed portion of the sample size, i.e. M = bT for b ∈ (0, 1]
which does not depend on the sample size. We follow this route and develop useful fixed-b
results for tests based on SIM-OLS.

In this paper we also present a KPSS-type (cf. Kwiatkowski et al., 1992) test for seasonal
cointegration at an arbitrary frequency. This test is similar to the zero frequency cointegration
test introduced in Shin (1994) and its extension to seasonal cointegration developed in Gregoir
(2010). We show that this test is consistent under standard asymptotic theory but not under
fixed-b asymptotics.

The theoretical analysis of the paper is complemented by a simulation study to assess the finite
sample performance of the SIM-OLS estimator as well as the tests based upon it. The perfor-
mance is benchmarked against the results obtained with the SFM-OLS estimator of Gregoir
(2010) and the textbook OLS estimator.

The paper is organized as follows: In Section 2 we present the setting, the required assumptions
and introduce the SIM-OLS estimator. Section 3 deals with standard inference based on the
the new estimator whereas we discuss fixed-b inference in Section 4. In Section 5 we present a
residual based test for seasonal cointegration. The finite sample performance of the SIM-OLS
estimator and of the resultant test statistics is assessed in Section 6. Section 7 concludes the
paper. All proofs are relegated to Appendix A. In Appendix B we recall some basic properties
of the complex normal distribution.

Throughout the paper we use the following notation: Weak convergence is denoted by ⇒ and
convergence to zero in probability is signified by oP(1), both for T →∞ if not stated otherwise.
Boundedness in probability of a random variable is signified by OP(1) and the expected value
is denoted by E. The integer part of a real number x is given by [x] and the modulus of a
complex number x = Re(x) + i Im(x) is denoted by |x|. We use the notation ‖x‖ to signify the
Frobenius norm. For a (possibly complex valued) matrix A we denote its transpose, complex
conjugate and Hermitian transpose by A′, A and A∗, respectively. The Kronecker product is
denoted by ⊗. For integrals the range of integration is the unit interval if not stated otherwise.
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For xt with t = 1, . . . , T we use L to denote the lag operator, i.e. Lxt = xt−1 and for some
frequency ω ∈ (−π, π] we denote the seasonal partial sum by Sxt,ω = e−iωt

∑t
k=1 e

iωkxk and the
seasonal first difference by ∇ωxt = xt − e−iωxt−1.

2. Cointegrating Regressions and the SIM-OLS Estimator

Consider the scalar time series process {yt}t∈N generated by

yt = d′tδ + x′tβ + ut, (1)

where dt is a q-dimensional deterministic component and {xt}t∈N is a k-dimensional vector
process that satisfies

xt = e−iωxt−1 + vt (2)

for some ω ∈ (−π, π], with initial value x0 being OP(1). The precise assumptions concerning the
deterministic components, the regressors and the regression error processes in the cointegrating
regression model (1) that are sufficient to obtain the key theoretical results in this paper are
as follows:

Assumption 1. The deterministic component can be written as dt = fte
−iωt for some deter-

ministic sequence {ft}t∈N and there exists a series of scaling matrices GD = GD(T ) ∈ Rq×q
and a q-dimensional vector of càdlàg functions D such that∫ r

0
D(s)D(s)′ ds <∞

and

lim
T→∞

T−1G−1
D

[rT ]∑
j=1

fj =

∫ r

0
D(s) ds

for all r ∈ (0, 1].

Assumption 2. The process {ηt}t∈Z = {[ut, v′t]′}t∈Z is a zero mean, real valued stationary
process if ω ∈ {0, π} and a zero mean, complex valued stationary process, if ω ∈ (0, π).
Furthermore, ηt has an infinite moving average representation of the form

ηt = Ψ(L)εt =
∞∑
j=0

ψjεt−j ,

with
∑∞

j=0 j‖ψj‖ < ∞ and det{Ψ(eiω)} 6= 0. The sequence {εt}t∈Z is a martingale difference
sequence with respect to its canonical filtration Ft = σ{εt−j , j ∈ N0} satisfying E(εtε

′
t|Ft−1) =

Σε <∞ and supt E(‖εt‖2+α|Ft−1) <∞ with probability one for some α > 0.

Remark 1. For the construction of the SIM-OLS estimator as well as for standard inference
which is discussed in Section 3 we can relax the dimensional restriction and allow yt to be
multivariate. Nevertheless, this restriction is mandatory to develop a fixed-b theory.
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The stacked process {[yt, x′t]′}t∈N usually results from filtering out all unit roots except for eiω

from a multiple frequency integrated process. An s-dimensional process {zt}t∈N is said to be
multiple frequency integrated at frequencies ω1, . . . , ωl if

l∏
k=1

∇ωkzt = µt + ξt,

with initial values being OP(1) and where {µt}t∈N is a deterministic sequence and {ξt}t∈Z is
a stationary process with Wold representation ξt = C(L)ζt. Thereby, the sequence {ζt}t∈Z is
white noise and the moving average polynomial C(z) =

∑∞
j=0Cjz

j satisfies
∑∞

j=0 j‖Cj‖ < ∞
and C(eiωk) 6= 0 for all k = 1, . . . , l. The set U = {ω1, . . . , ωl} is called unit root structure.

Remark 2. Every multiple frequency integrated process {zt}t∈N with unit root structure U =
{ω1, . . . , ωl} can be decomposed as

zt = ν1zt,1 + . . .+ νlzt,k, (3)

where ν1, . . . , νl are complex numbers different from zero and where for every k = 1, . . . , l the
process {zt,k}t∈N is defined via

zt,k =

l∏
j=1
j 6=k

∇ωjzt. (4)

Clearly, each {zt,k}t∈N is integrated solely at frequency ωk. The stacked process {[yt, x′t]′}t∈N
in (1) can be associated with a filtered process of the form (4).

Remark 3. If the stacked process {[yt, x′t]′}t∈N in (1) is derived by filtering out all unit root
frequencies except for ω ∈ (0, π) from a real valued multiple frequency integrated process
{zt}t∈N then vt = ∇ωxt is also real valued. Nevertheless, to avoid notational complexity we
assume that all components of ηt are complex valued. This simplification has no impact on the
results presented in this paper.

An important example for multiple frequency unit root processes are seasonally integrated
processes which are observed at S equidistant periods per season. For instance, the the quarterly
integrated process, {zt}t∈Z say, has unit root structure U = {0, π,±π/2}, i.e. it is defined by

(1− L)(1 + L)(1 + iL)(1− iL)zt = ξt. (5)

The first factor is the usual first difference filter that corresponds to the long-run frequency ω1 =
0 whereas the remaining three factors correspond to the seasonal frequencies. In particular,
the factor 1 + L corresponds to the so-called biannual or Nyquist frequency ω2 = π and the
last factors correspond to the complex conjugate pair of annual frequencies ω3 = π/2 and
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ω4 = −π/2. By filtering out all unit roots except those at the zero, the biannual and the
annual frequencies, respectively, one defines

zt,1 = (1 + L)(1 + iL)(1− iL)zt = zt + zt−1 + zt−2 + zt−3,

zt,2 = (1− L)(1 + iL)(1− iL)zt = zt − zt−1 + zt−2 − zt−3,

zt,3 = (1 + L)(1− L)(1− iL)zt = zt − izt−1 − zt−2 + izt−3,

zt,4 = (1 + L)(1− L)(1 + iL)zt = zt + izt−1 − zt−2 − izt−3.

Clearly, since
(1− L)zt,1 = (1 + L)zt,2 = (1 + iL)zt,3 = (1− iL)zt,4 = ξt,

it holds that {zt,k}t∈N has unit root structure Uk = {ωk} for k = 1, . . . , 4. Furthermore,

zt =
1

4
(zt,1 + zt,2 + zt,3 + zt,4) ,

i.e. the coefficients νk in (3) are given by 1/4 for k = 1, . . . , 4.

A multiple frequency integrated process {zt}t∈N with unit root structure U is (statically) coin-
tegrated if there exists γ ∈ Cs, called cointegrating vector, such that the process {γ′zt}t∈N has
unit root structure Uγ ( U . If for some ω ∈ U it holds that ω 6∈ Uγ then we say that {zt}t∈N is
seasonally cointegrated at frequency ω. The stacked process {[yt, x′t]′}t∈N in model (1) has unit
root structure U = {ω} and is seasonally cointegrated with cointegrating vector γ = [1,−β′]′.

If {zt}t∈N has a representation of the form (3) then γ ∈ Cs is a cointegrating vector that
annihilates the unit root at frequency ω if and only if γ′C(eiωk) = 0. This follows from the
so-called Beveridge-Nelson decomposition. In particular, it holds that

zt,k = µt,k + e−iωk(zt,0 + ξ̃0,k) + C(eiω)Sζω,t − ξ̃t,k,

where µt,k is deterministic and results from applying the filter on the right hand side of (4) on
the deterministic component µt and where {ξ̃t,k}t∈Z is a stationary process (see Kawka, 2020,
for further details). Hence, it holds that {γ′zt,k}t∈N is stationary if and only if γ′C(eiω) = 0 and
from (3) we deduce that this is equivalent to ω 6∈ Uγ , where Uγ denotes the unit root structure
of {γ′zt}t∈N.

Remark 4. The left null space of the matrix C(eiω) contains all cointegrating vectors at
frequency ω and is therefore called cointegrating space. In general, the null spaces of C(eiω1)
and C(eiω2) differ if ω1 6= ω2. Hence, the cointegrating spaces have to be considered seperately
for each frequency.

If a multiple frequency integrated process {zt}t∈N is real valued then C(eiω) is complex valued
for ω ∈ (0, π) implying that the corresponding cointegrating vector is usually also complex
valued. From C(e−iω) = C(eiω) we deduce that if {zt}t∈N is seasonally cointegrated at frequency
ω with cointegrating vector γ then {zt}t∈N is also seasonally cointegrated at frequency −ω with
cointegrating vector γ. Since complex quantities are hard to interpret in applied research
the concept of polynomial cointegration is usually considered for frequencies ω 6∈ {0, π}. An
s-dimensional real valued process {zt}t∈N with unit root structure U such that ω ∈ U (and
−ω ∈ U) is said to be polynomially or dynamically seasonally cointegrated at frequency ω if
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there exists a vector polynomial of degree one, p(L) = γ1 + γ2L with γ1, γ2 ∈ Rs say, such
that {p(L)′zt}t∈N has unit root structure Uγ ( U with ω 6∈ Uγ (and, consequently, −ω 6∈ Uγ).
From Bauer and Wagner (2012, Theorem 4) it follows that a polynomial of degree one is always
sufficient to jointly annihilate the unit root pair ±ω from U .

Remark 5. Let a real valued process {zt}t∈N be dynamically seasonally cointegrated at fre-
quency ω ∈ (0, π) with cointegrating polynomial p(L) = γ1 +γ2L. Then, by Gregoir (2010), the
process {∇−ωzt}t∈N is statically cointegrated with cointegrating vector γ = γ1 + eiωγ2. Hence,
there is a one-to-one relationship between dynamic cointegration of the real valued process
{zt}t∈N and static cointegration of the complex valued process {∇−ωzt}t∈N.

Remark 6. Gregoir (2010) also pointed out that if {zt}t∈N is dynamically seasonally cointe-
grated with cointegrating polynomial p(L) = γ1 + γ2L then p̃(L) = −γ2 + (γ1 + 2 cosωγ2)L
is also a cointegrating polynomial. Consequently, every linear combination of p(L) and p̃(L)
is a cointegrating polynomial. To overcome this deficit one can normalize the polynomial by
setting the first components of γ1 and γ2 to unity and zero, respectively. Since polynomial
seasonal cointegration of {zt}t∈N is equivalent to static seasonal cointegration of the filtered
process {∇−ωzt}t∈N with cointegrating vector γ = γ1 + eiωγ2 (cf. Remark 5) such normaliza-
tion corresponds to normalizing the cointegrating vector γ by setting the first component to
unity. This normalization is applied in model (1).

It is well known that under Assumption 2 the process {ηt}t∈Z possesses a finite spectral density
at all frequencies. For ω ∈ (−π, π] we define Ωω as 2π times the spectral density at ω, i.e.

Ωω =

[
Ωω,uu Ωω,uv

Ωω,vu Ωω,vv

]
=

∞∑
j=−∞

e−iωjE(ηtη
∗
t+j), (6)

where Ωω,uu is a real number (regardless of ω) and Ωω,uv = Ω∗ω,vu. Furthermore, it holds that
the matrix Ωω is positive definite, that Ωω,uu is a strictly positive real number and that the block
matrix Ωω,vv is positive definite. Hence, the process {xt}t∈N is integrated in all components
but not cointegrated (at frequency ω).

From Chan and Wei (1988, Theorem 2.2) or Kawka (2020, Theorem 1) it is known that under
Assumption 2 the following functional central limit theorem holds:

1√
T

[rT ]∑
t=1

eiωtηt ⇒ τωB(r) = Ω1/2
ω τωW (r), r ∈ (0, 1]. (7)

The definition of τω and W depends on the considered frequency ω. If ω ∈ {0, π} it holds that
τω = 1 and W is a real valued (k + 1)-dimensional standard Wiener process. On the other
hand if ω ∈ (0, π) we have τω = 1/

√
2 and W is a complex valued standard Wiener process,

i.e. W (r) = WRe(r) + iWIm(r) with two independent (real valued) standard vector Wiener
processes WRe and WIm. In any case we label the first component of W by Wu·v and the
remaining k-dimensional vector process by Wv.

Remark 7. If ω ∈ (0, π) it holds for every r ∈ (0, 1] that the random vector τωW (r) is
circularly symmetrically Gaussian with covariance matrix given by rIk. Consequently, B(r)
is also circularly symmetrically Gaussian with covariance matrix given by rΩω. For further
details on complex normal distributions we refer to Appendix B.
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We use Ω
1/2
ω of the Cholesky form

Ω1/2
ω =

[
σω,u·v λω,uv

0k×1 Ω
1/2
ω,vv

]
,

with σ2
ω,u·v = Ωω,uu−Ωω,uvΩ

−1
ω,vvΩω,vu and λω,uv = Ωω,uvΩ

−1/2
ω,vv

∗
to rewrite the limiting process

in (7) as follows:

B(r) =

[
Bu(r)
Bv(r)

]
=

[
σω,u·vWu·v(r) + λω,uvWv(r)

Ω
1/2
ω,vvWv(r)

]
.

Defining Bu·v(r) = σω,u·vWu·v(r) we can further express the process Bu as

Bu(r) = Bu·v(r) + Ωω,uvΩ
−1/2∗
ω,vv Wv(r)

= Bu·v(r) + Ωω,uvΩ
−1/2∗
ω,vv Ω−1/2

ω,vv Ω1/2
ω,vvWv(r)

= Bu·v(r) + γ′Bv(r),

with γ = (Ωω,uvΩ
−1
ω,vv)

′ = Ω
−1
ω,vvΩω,vu. Using this decomposition we can state the limiting

distribution of the OLS estimator of θ = [δ′, β′] in (1). Define x̃t = [d′t, x
′
t]
′ and let y =

[y1, . . . , yT ]′, X̃ = [x̃1, . . . , x̃T ]′. Then the OLS estimator is given by θ̂ = (X̃∗X̃)−1X̃∗y. To
obtain the limiting distribution of the OLS estimator we define the scaling matrix

AOLS =

[
T−1/2GD 0q×k

0k×q T−1Ik×k

]
.

Gregoir (2010, Proposition 4.2) and Kawka (2020, Theorem 3 and Corollary 4) generalize the
results of Phillips and Durlauf (1986, Theorem 4.1) and Park and Phillips (1988, Theorem 3.1).
In particular, under the Assumptions 1 and 2 it holds that

A−1
OLS(θ̂ − θ)⇒

(∫
J(s)J(s)′ ds

)−1(∫
J(s) dBu(s) + ∆ω,uv

)
(8)

=

(∫
J(s)J(s)′ ds

)−1(∫
J(s) dBu·v(s) +

∫
J(s) γ′dBv(s) + ∆ω,uv

)
,

where J(s) = [D(s)′, Bv(s)
′]′ and ∆ω =

∑∞
j=0 e

−iωjE(ηtη
∗
t+j).

If the process {ut}t∈Z is intertemporarily uncorrelated with {vt}t∈Z, it holds that λω,uv and
∆ω,uv are equal to zero. The former implies uncorrelatedness of Bu and Bv, which implies,
after conditioning on Bv, that the limiting distribution is circularly symmetrically normal. In
the general case, however, conditioning on Bv does not lead to a nuisance parameter free limiting
distribution. This is called second order bias, a term proclaimed by Phillips and Hansen (1990)
in their seminal paper. To obtain an asymptotically unbiased estimator we generalize the two
step procedure of Vogelsang and Wagner (2014). In a first step, computing the seasonal partial
sum of both sides of (1) yields

Syω,t = Sd′ω,tδ + Sx′ω,tβ + Suω,t = Sx̃′ω,tθ + Suω,t, (9)
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where x̃t = [d′t, x
′
t]
′ and θ = [δ′, β′]′. By stacking all observations we obtain the matrix repre-

sentation Syω = Sx̃′ω θ+Suω, where S
y
ω = [Syω,1, . . . , S

y
ω,T ]′ and Sx̃ω and Suω are defined analogously.

The OLS estimator of this seasonal partial sum regression is given by

θ̃ = (Sx̃∗ω S
x̃
ω)−1(Sx̃∗ω S

y
ω) = θ + (Sx̃∗ω S

x̃
ω)−1(Sx̃∗ω S

u
ω).

By taking seasonal partial sums the regressors and the error term in equation (1) become Iω(2)
and Iω(1) processes, respectively. The benefit of regression (9) is that the additive bias term
∆ω,uv, that appears in the limiting distribution of the OLS estimator, vanishes. However,
seasonal partial summation does not remove the correlation between the limiting processes.
Therefore, we augment regression (9) by adding xt as additional regressor, i.e.

Syω,t = Sd′ω,tδ + Sx′ω,tβ + xtγ + Suω,t = Sx̃′ω,tθ + Suω,t, (10)

with obviously redefined θ = [δ′, β′, γ′]′ and Sx̃ω,t = [Sd′ω,t, S
x′
ω,t, x

′
t]
′. This augmentation is inde-

pendent of the considered frequency ω and is therefore the same as in the IM-OLS procedure
by Vogelsang and Wagner (2014). The OLS estimator of the parameters in regression (10),
which we label the seasonally integrated modified OLS (SIM-OLS) estimator, is denoted by θ̃.
In order to derive the limiting distribution of the SIM-OLS estimator we define the scaling
matrix

ASIM =

T−1/2GD 0q×k 0q×k
0k×q T−1Ik×k 0k×k
0k×q 0k×k Ik×k

 .
The following theorem states the asymptotic distribution of the SIM-OLS estimator θ̃.

Theorem 1. Let {yt}t∈N and {xt}t∈N be generated according to (1) and (2) with Assumptions 1
and 2 in place. Then, with γ = Ω−1

ω,vvΩω,vu, it holds that

A−1
SIM (θ̃ − θ)⇒ σω,u·v

(
Πω

∫
g(s)g(s)′ dsΠ′ω

)−1

Πω

∫
g(s)Wu·v(s) ds

= σω,u·v(Π
′
ω)−1

(∫
g(s)g(s)′ ds

)−1 ∫ [
G(1)−G(s)

]
dWu·v(s)

= Ψω,

where

Πω =

τ
−1
ω Iq×q 0q×k 0q×k

0k×q Ω
1/2
ω,vv 0k×k

0k×q 0k×k Ω
1/2
ω,vv

 , g(r) =

 ∫ r0 f(s) ds∫ r
0 Wv(s) ds
Wv(r)

 , G(r) =

∫ r

0
g(s) ds.

Note that if ω = 0 the result obviously coincides with the limiting distribution of the IM-OLS
estimator of Vogelsang and Wagner (2014). Conditional on Bv, it holds that Ψω is Gaussian (if
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ω ∈ {0, π}) or circularly symmetrically Gaussian (if ω ∈ (0, π)). In both cases the conditional
covariance matrix is given by

VSIM = σ2
ω,u·v(Π

′
ω)−1

(∫
g(s)g(s)′ ds

)−1

×
(∫ [

G(1)−G(s)
]

[G(1)−G(s)]′ ds

)
(11)

×
(∫

g(s)g(s)′ ds

)−1

(Πω)−1,

where in the former case all quantities are real valued and complex conjugation is redundant.
From the properties of the complex normal distribution (cf. Appendix B) we immediately
deduce the following result.

Corollary 1. If ω ∈ (0, π) it holds, conditional on Bv, that Re(Ψω) and Im(Ψω) are jointly
zero mean Gaussian with conditional covariance matrix given by

VSIM,R =
1

2

[
Re(VSIM ) −Im(VSIM )
Im(VSIM ) Re(VSIM )

]
.

3. Standard Inference using SIM-OLS

In this section we discuss hypothesis testing based on the SIM-OLS estimator. If the data
generating process is real valued, i.e. if ω ∈ {0, π}, we consider Wald-type tests for multiple
linear hypotheses of the form

H0 : Rθ = r, (12)

where R ∈ Rl×(q+2k) with full rank l and some vector r ∈ Rl. If the data generating process is
complex valued, i.e. if ω ∈ (0, π), we consider hypotheses of the form (12) with R ∈ Cl×(q+2k)

with full rank l and r ∈ Cl.

Since the components of θ̃ converge at different rates we require an additional assumption on
R for the Wald-type statistics to be asymptotically chi-squared distributed. We adopt the
following sufficient condition from Vogelsang and Wagner (2014). There exists a nonsingular
scaling matrix AR ∈ Rl×l such that

lim
T→∞

A−1
R RASIM = RA, (13)

where RA has full rank l. Note that the matrix AR typically contains positive powers of the
sample size T but it is not necessarily diagonal.

Let σ̌2
ω,u·v denote a consistent estimator of σ2

ω,u·v. Then the asymptotic conditional covariance
matrix of the SIM-OLS estimator, VSIM , given in (11), entails estimators of the form

V̌SIM = σ̌2
ω,u·vA

−1
SIM (Sx̃∗ω S

x̃
ω)−1(C∗C)(Sx̃∗ω S

x̃
ω)−1A−1

SIM (14)

= σ̌2
ω,u·v(T

−2ASIMS
x̃∗
ω S

x̃
ωASIM )−1(T−4ASIMC

∗CASIM )(T−2ASIMS
x̃∗
ω S

x̃
ωASIM )−1,
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where C is defined by stacking

ct = eiωTS
Sx̃ω
ω,T − e

iω(t−1)S
Sx̃ω
ω,t−1.

To calculate V̌SIM we need a suitable estimator for σ2
ω,u·v. Therefore, we first estimate Ωω using

a traditional kernel estimator of the form

Ω̂ω =
1

T

T∑
t=2

T∑
s=2

e−iω(t−s)k

(
t− s
MT

)
η̂tη̂
∗
s , (15)

where η̂t = [ût,∇ωx′t]′ with ût denoting the OLS residuals of (1). After partitioning Ω̂ω in the
same way as in (6), an estimator for σ2

ω,u·v is given by

σ̂2
ω,u·v = Ω̂ω,uu − Ω̂ω,uvΩ̂

−1
ω,vvΩ̂ω,vu. (16)

The function k : R → R in (15) is the kernel weighting function and MT is the bandwidth
parameter. We impose the following assumptions on the kernel and the bandwidth.

Assumption 3. The kernel function k : R→ R is even, bounded and continuous. Furthermore,
the function k̃ : R→ R, defined by k̃(x) = supy≥|x| |k(y)| is integrable on R.

Assumption 4. The bandwidth MT satisfies M−1
T → 0 and MT /

√
T → 0 as T →∞.

Under Assumptions 3 and 4 the population quantities Ωω and σ2
ω,u·v are consistently estimated

by Ω̂ω and σ̂2
ω,u·v, respectively. This is shown in Jansson (2002) for the zero frequency case and

can be generalized for arbitrary frequencies.

The Wald-type test statistic is defined as

Ŵ = τ−2
ω (Rθ̃ − r)∗

[
RASIM V̂SIMASIMR

∗
]−1

(Rθ̃ − r). (17)

where we use the V̂SIM to indicate that σ̂2
ω,u·v is plugged into σ̌2

ω,u·v in the definition of the
general estimator (14). Motivated by Corollary 1, we can use the continuous mapping theorem
as well as standard arguments to deduce the limiting distribution of the test statistic Ŵ .

Theorem 2. Let {yt}t∈N and {xt}t∈N be generated according to (1) and (2) under Assump-
tions 1 and 2 and let the estimation of Ωω be performed under Assumptions 3 and 4. If the
matrix R fulfills (13) then

Ŵ ⇒ χ2
m,

where χ2
m is a chi-squared distributed random variable with m degrees of freedom. It holds that

m = l if ω ∈ {0, π} and m = 2l otherwise.

If ω ∈ (0, π) Corollary 1 allows us to generalize this result to test multiple linear hypothesis of
the form

H0 : RRθR = rR,
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with θR = [Re(θ)′, Im(θ)′]′, rR ∈ Rh and RR ∈ Rh×2(q+2k) with full rank h. Assumption (13) is
generalized as follows. There exists a regular scaling matrix AR,R ∈ Rh×h such that

lim
T→∞

AR,RRRASIM,R = RA,R, (18)

with RA,R being nonsingular and ASIM,R = I2 ⊗ASIM .

Corollary 2. Let for ω ∈ (0, π) the processes {yt}t∈N and {xt}t∈N be generated according
to (1) and (2) under Assumptions 1 and 2 and let the estimation of Ωω be performed under
Assumptions 3 and 4. Define θ̃R = [Re(θ̃)′, Im(θ̃)′]′ and

V̂SIM,R =
1

2

[
Re(V̂SIM ) −Im(V̂SIM )

Im(V̂SIM ) Re(V̂SIM )

]
.

If the matrix RR fulfills (18) then

ŴR = (RRθ̃R − rR)′
[
RRASIM,RV̂SIM,RASIM,RR

′
RR

]−1
(RRθ̃R − rR)⇒ χ2

h, (19)

where χ2
h is a chi-squared distributed random variable with h degrees of freedom. If h = 1, it

holds that

t̂R =
RRθ̃R − rR√

RRASIM,RV̂SIM,RASIM,RR
′
R

⇒ Z, (20)

where Z has a standard normal distribution.

Remark 8. If {[ỹt, x̃′t]′}t∈N is a real valued process such that the process {[yt, x′t]′}t∈N con-
sidered in Corollary 2 fulfills [yt, x

′
t]
′ = ∇−ω[ỹt, x̃

′
t]
′ then, by Remarks 5 and 6 {[ỹt, x̃′t]′}t∈N is

dynamically seasonally cointegrated and it holds that

ỹt = d̃′tδ̃ + x̃′tα̃1 + x̃′t−1α̃2 + ϑt,

where d̃t is a real valued deterministic component, {ϑt}t∈Z is a real valued stationary process,
δ̃ ∈ Rq and α̃1, α̃2 ∈ Rk. From the one-to-one relationship α̃1+eiωα̃2 = β we deduce that α̃2 = 0
if and only if Im(β) = 0. Hence, we can test the null hypothesis of static seasonal cointegration
of {[ỹt, x̃′t]′}t∈Z against the alternative hypothesis of dynamic seasonal cointegration using the
Wald-type test in Corollary 2 with AR,R = [0k×2(k+q), Ik×k, 0k×k] and rR = 0k×1.

4. Fixed-b Inference Using SIM-OLS

In the previous section we constructed test statistics that make use of a consistent estimator
for Ωω and, hence, a consistent estimator for σ2

ω,u·v. Assumptions 3 and 4 guarantee that Ω̂ω,
given in (15), is consistent. However, as already mentioned in the introduction, relying solely
on the consistency of Ω̂ω does not reflect the impact of the choice of the kernel function and the
bandwidth parameter on the finite sample distribution of Ω̂ω and, consequently, on the limiting
distribution Ψω. Therefore, in this section we present a fixed-b estimator for σ2

ω,u·v which has
limiting distribution that is proportional to σ2

ω,u·v and which is independent of Ψω. We use this
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estimator to construct t- and Wald-type test statistics that have asymptotic nuisance parameter
free limiting distributions and for which critical values can be tabulated for hypothesis testing.

A natural candidate for a fixed-b estimator for σ2
ω,u·v is given by

σ̃2
ω,u·v =

1

T

T∑
t=2

T∑
s=2

e−iω(t−s)k

(
t− s
M

)
∇ωS̃uω,t∇ωS̃

u∗
ω,s, (21)

where the bandwidth M is given by M = bT for some fixed (independent of T ) b ∈ (0, 1] and
where S̃uω,t = Syω,t − Sx̃′ω,tθ̃ denote the residuals from the SIM-OLS regression (10). We first
present an invariance principle for these residuals and show that the resulting limiting process
is correlated with the limiting distribution of the SIM-OLS estimator θ̃.

Lemma 1. Let {yt}t∈N and {xt}t∈N be generated according to (1) and (2) under Assumptions 1
and 2 and let S̃uω,t denote the OLS residuals from regression (10). Then, the following invariance
principle holds true:

1√
T

[rT ]∑
t=2

eiωt∇ωS̃uω,t ⇒ τωσω,u·vP̃ (r), r ∈ (0, 1],

with

P̃ (r) = Wu·v(r)− g(r)′
(∫

g(s)g(s)′ ds

)−1 ∫ [
G(1)−G(s)

]
dWu·v(s),

where g(r) and G(r) are defined in Theorem 1. Furthermore, conditional upon Wv, it holds
that P̃ (r) is correlated with Ψω, the limiting distribution of the SIM-OLS estimator.

The correlation between P̃ (r) and Ψω causes σ̃2
ω,u·v to be correlated with Ψω. This makes the

fixed-b estimator infeasible. To overcome this issue we generalize the approach of Vogelsang
and Wagner (2014) by adjusting regression (10) in order to get proper modified residuals.
Consider

Syω,t = Sd′ω,tδ + Sx′ω,tβ + x′tγ + z′tκ+ Suω,t, (22)

where
zt = te−iω(t−1)eiωTSξω,T − S

Sξω
ω,t−1, ξt = [Sd′ω,t, S

x′
ω,t, x

′
t]
′. (23)

The OLS residuals from this regression are denoted by ˜̃Suω,t. It will turn out that these residuals
fulfill an invariance principle such that the limiting process is independent of Ψω. To prove this
statement, we first derive the limiting distribution of the OLS estimator of (22).

Proposition 1. Let {yt}t∈N and {xt}t∈N be generated according to (1) and (2) under Assump-
tions 1 and 2 and consider the OLS estimator for θ = [δ′, β′,ΩuvΩ

−1
vv , 0]′ in regression (22),

denoted by ˜̃θ. Then, it holds that

A−1
M (˜̃θ − θ)⇒ σω,u·v(Π

′
ω,M )−1

(∫
h(s)h(s)′ ds

)−1 ∫ [
H(1)−H(s)

]
dWu·v(s),
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where Πω,M = I2 ⊗Πω,

AM =

[
1 0
0 T−2

]
⊗ASIM , h(r) =

[
g(r)∫ r

0 [G(1)−G(s)] ds

]
, H(r) =

∫ r

0
h(s) ds.

With this proposition in place we are now able to extend Lemma 1 and derive an invariance
principle for the residuals ˜̃Suω,t with limiting process being uncorrelated with the limiting dis-
tribution of the SIM-OLS estimator.

Lemma 2. Let {yt}t∈N and {xt}t∈N be generated according to (1) and (2) under Assumptions 1
and 2 and let ˜̃Suω,t denote the OLS residuals from regression (22). Then, the following invariance
principle holds true:

1√
T

[rT ]∑
t=2

eiωt∇ω ˜̃Suω,t ⇒ τωσω,u·v
˜̃P (r), r ∈ (0, 1],

with
˜̃P (r) = Wu·v(r)− h(r)′

(∫
h(s)h(s)′ ds

)−1 ∫ [
H(1)−H(s)

]
dWu·v(s),

where

h(r) =

[
g(r)∫ r

0[G(1)−G(s)] ds

]
, H(r) =

∫ r

0
h(s) ds.

Furthermore, conditional upon Wv, it holds that the limiting distribution of the SIM-OLS esti-
mator θ̃, i.e. Ψω, is uncorrelated with ˜̃P (r).

Consider the the fixed-b estimator for σ2
ω,u·v based on the OLS residuals from the augmented

regression (22), ˜̃Suω,t, which is given by

˜̃σ2
ω,u·v =

1

T

T∑
t=2

T∑
s=2

e−iω(t−s)k

(
|t− s|
M

)
∇ω ˜̃Suω,t∇ω

˜̃Su∗ω,s. (24)

In order to describe the fixed-b limiting distribution of ˜̃σ2
ω,u·v we define the functional Q(P ) for

some stochastic process P as follows. If the kernel function k is twice continuously differentiable
and satisfies k(0) = 1 we define

Q(P ) = − 1

b2

∫ 1

0

∫ 1

0
k̈

(
r − s
b

)
P (r)P (s)∗ dr ds

+
1

b

∫ 1

0
k̇

(
1− r
b

)
(P (1)P (r)∗ + P (r)P (1)∗) dr + P (1)P (1)∗,
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with k̇ and k̈ denoting the first and second derivatives of the kernel function k. This case covers
for instance the Parzen, Daniell, Bohman or Quadratic Spectral kernels. If k is the Bartlett
kernel, i.e., k(x) = 1− |x| for |x| ≤ 1 and zero otherwise, then we define

Q(P ) =
2

b

∫ 1

0
P (r)P (r)∗ dr − 1

b

∫ 1−b

0
(P (r)P (r + b)∗ + P (r + b)P (r)∗) dr

− 1

b

∫ 1

1−b
(P (1)P (r)∗ + P (r)P (1)∗) ds+ P (1)P (1)∗.

With the definition of Q(P ) in place we can generalize the main result of Hashimzade and
Vogelsang (2007).

Proposition 2. Let {ζt}t∈Z be a stochastic process that fulfills a functional central limit theorem
of the form

1√
T

[rT ]∑
t=1

eiωtζt ⇒ P (r), r ∈ (0, 1]

and let σ̌2(ζ) be defined as

σ̌2(ζ) =
1

T

T∑
t=2

T∑
s=2

e−iω(t−s)k

(
|t− s|
M

)
ζtζ
∗
s ,

with k being either the Bartlett kernel or a twice continuously differentiable function that satisfies
k(0) = 1. The bandwidth M is defined by M = bT with b ∈ (0, 1] (independent of T ). Then, as
T →∞, it holds that

σ̌2(ζ)⇒ Q(P ).

The random variable Q(P ) is real valued regardless of P . To verify this, we only have to show
that Q(P )∗ = Q(P ), which is trivial in the second (Bartlett) case and follows by a simple
application of Fubini’s Theorem in the first (continuously differentiable kernel) case. If P is
complex valued, we can easily derive the explicit form ofQ(P ) in terms of the real and imaginary
parts of P .

Corollary 3. Assume that the limiting process P in Proposition 2 is complex valued, i.e.
P (r) = P1(r) + iP2(r). If k is twice continuously differentiable with k(0) = 1 then it holds that

Q(P ) = − 1

b2

2∑
i=1

∫ 1

0

∫ 1

0
k̈

(
r − s
b

)
Pi(r)Pi(s) dr ds

+
2

b

2∑
i=1

Pi(1)

∫ 1

0
k̇

(
1− r
b

)
Pi(r) dr +

2∑
i=1

Pi(1)2.
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Table 1: Fixed-b asymptotic critical values (Bartlett kernel) for Wald-type test in a cointegrating
regression with ω ∈ (0, π), two stochastic regressors and a deterministic component dt = e−iωt.

b 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

90% 3.0634 3.8762 4.9396 6.3171 7.9979 9.9553 12.1136 14.3180 16.4318 18.4679
95% 4.3852 5.5978 7.1601 9.1890 11.6590 14.4925 17.5678 20.8195 23.9641 26.8486
99% 7.7324 10.0245 12.9840 16.9634 21.6155 27.0050 32.6865 38.7724 44.6733 49.6200

b 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40

90% 20.1669 21.6858 23.0169 24.2313 25.4073 26.5820 27.8476 28.9854 30.1214 31.3966
95% 29.3439 31.5896 33.4533 35.2848 37.1084 38.8372 40.4885 42.2277 44.0080 45.8518
99% 54.5059 58.2774 62.1846 65.8995 69.0014 72.6234 76.0563 78.9366 82.2768 86.2823

b 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60

90% 32.6977 33.9286 35.1146 36.4037 37.6047 38.8282 39.9611 41.0836 42.1169 43.2176
95% 47.7578 49.6898 51.4977 53.3345 55.2138 56.8521 58.4270 60.1834 61.9210 63.7502
99% 89.9133 93.3340 97.4772 101.4402 104.9144 108.6211 111.1449 114.4210 117.2866 120.7045

b 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80

90% 44.2168 45.2873 46.3237 47.2857 48.2643 49.3693 50.4373 51.2936 52.2023 53.1395
95% 65.2041 66.7245 68.3009 69.8652 71.1557 72.8208 74.3809 75.7272 77.1777 78.5499
99% 123.9202 127.4599 130.6415 133.7872 136.9260 139.6952 142.6479 146.1120 149.5329 152.1242

b 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

90% 54.0310 54.9834 55.8812 56.8973 57.7842 58.7284 59.5111 60.4007 61.1553 62.0011
95% 79.9602 81.4841 82.9412 84.2464 85.5845 86.9878 88.3384 89.7000 90.9166 92.2464
99% 154.2709 156.9221 159.9765 162.9743 166.3192 169.4175 172.3358 175.1685 178.0476 180.9433

Note: Critical values for the t-tests are obtained by taking the positive square root.

If k is the Bartlett kernel it holds that

Q(P ) =
2

b

2∑
i=1

∫ 1

0
P 2
i (r) dr − 2

b

2∑
i=1

∫ 1−b

0
Pi(r)Pi(r + b) dr

− 2

b

2∑
i=1

Pi(1)

∫ 1

1−b
Pi(r) dr +

2∑
i=1

P 2
i (1).

Combining Lemma 1, Lemma 2 and Proposition 2 we can now deduce the limiting distribution
of the fixed-b estimators of σ2

ω,u·v.

Proposition 3. Let {yt}t∈N and {xt}t∈N be generated according to (1) and (2) under Assump-
tions 1 and 2 and let σ̃2

ω,u·v and ˜̃σ2
ω,u·v be the fixed-b estimators for σ2

ω,u·v, defined in (21) and
(24), with M = bT where b ∈ (0, 1] being independent of the sample size. Then it holds that
σ̃2
ω,u·v ⇒ σ2

ω,u·vτ
2
ωQ(P̃ ) and ˜̃σ2

ω,u·v ⇒ σ2
ω,u·vτ

2
ωQ( ˜̃P ), where the limiting processes P̃ and ˜̃P are

defined in Lemma 1 and 2, respectively.

We deduce that Q( ˜̃P ) and Ψω are independent whereas Q(P̃ ) and Ψω are not. Hence, replacing
σ̌2
ω,u·v in the definition of V̌SIM in (17) by ˜̃σω,u·v leads to a fixed-b Wald-type statistic which is

asymptotically pivotal.
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Theorem 3. Let {yt}t∈N and {xt}t∈N be generated according to (1) and (2) under Assump-
tions 1 and 2 and let ˜̃W denote the Wald-type test statistic (17) with σ̌2

ω,u·v being replaced by
the fixed-b estimator ˜̃σ2

ω,u·v, defined in (24). If the hypothesis matrix R satisfies (13) and if the
bandwidth M is given by M = bT with fixed b ∈ (0, 1] then

˜̃W ⇒ χ2
m

Q( ˜̃P )
,

where χ2
m is a chi-squared distribution with m degrees of freedom that is independent of the

denominator Q( ˜̃P ). Thereby, m is equal to l if ω ∈ {0, π} and to 2l otherwise.

The limiting distribution of ˜̃W obviously depends on the explicit form of ˜̃P . Hence, critical
values have to be simulated taking into account the number of regressors that contain a unit
root at frequency ω, the explicit form of the deterministic terms, the chosen kernel function
and the value of b. For ω ∈ (0, π), the kernel function being the Bartlett kernel and dt = e−iωt

the critical values of the test statistic are displayed in Table 1.

We define the test statistics ˜̃WR and ˜̃tR in the same way as in the previous section with σ̌2
ω,u·v

being replaced by ˜̃σ2
ω,u·v. The following corollary characterizes the asymptotic distributions of

the test statistics when considering hypothesis tests on the real and imaginary parts of θ.

Corollary 4. Let for ω ∈ (0, π) the processes {yt}t∈N and {xt}t∈N be generated according to
(1) and (2) under Assumptions 1 and 2 and let ˜̃WR and ˜̃tR denote the Wald- and t-type test
statistics from (19) and (20), respectively, with σ̂2

ω,u·v being replaced by the fixed-b estimator
˜̃σ2
ω,u·v, defined in (24). If the matrix RR fulfills (18) and if the bandwidthM is given byM = bT

with fixed b ∈ (0, 1] then
˜̃WR ⇒

χ2
h

Q( ˜̃P )
,

where χ2
m is a chi-squared distributed random variable with h degrees of freedom that is inde-

pendent of the denominator Q( ˜̃P ). If h = 1, it holds that

˜̃tR ⇒
Z√
Q( ˜̃P )

where Z has a standard normal distribution and is independent of Q( ˜̃P ).

5. Testing for Cointegration using SIM-OLS

In this section we introduce a residual based tests for cointegration at frequency ω in the spirit of
Kwiatkowski et al. (1992) and Shin (1994). Therefore, we consider {yt}t∈N generated according
to

yt = d′tδ + x′tβ +mt, (25)
mt = st + ut,
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where dt is a q-dimensional deterministic component that satisfies Assumption 1. The processes
{xt}t∈N is a k-dimensional vector process and {st}t∈N is a scalar process, both satisfying

xt = e−iωxt−1 + vt, (26)

st = e−iωst−1 + wt,

for some frequency ω ∈ (−π, π] with initial values x0 and s0 being OP(1). The following
assumption on the stacked error process {[ut, v′t, wt]′}t∈Z is sufficient for the derivation of the
subsequent results.

Assumption 5. The process {ηat }t∈Z with ηat = [ut, v
′
t, wt]

′ is zero mean stationary with 2π
times the spectral density matrix at frequency ω given by

Ωa
ω =

∞∑
j=−∞

e−iωjE(ηat η
a∗
t+j) =

[
Ωω 0
0 σ2

ω,w

]
, (27)

where Ωω is defined in (6). Furthermore, {ηat }t∈Z fulfills the following functional central limit
theorem:

1√
T

[rT ]∑
t=1

eiωtηat ⇒ Ba(r) =

[
B(r)

σω,wτωWw(r)

]
, r ∈ (0, 1],

where B is a vector Brownian motion, defined in (7), and Ww a standard (complex) Wiener
process which is independent of B.

The test procedures are based on the SIM-OLS regression

Syω,t = Sd′ω,tδ + Sx′ω,tβ + xtγ + Smω,t, (28)

and on the augmented SIM-OLS regression

Syω,t = Sd′ω,tδ + Sx′ω,tβ + x′tγ + z′tκ+ Smω,t, (29)

where zt is defined in (23). We denote the OLS residuals of (28) and (29) by S̃mω,t and ˜̃Smω,t,
respectively. The test statistics are given by

K̃ =
1

T 2σ̂2
ω,u·v

T∑
t=1

|S̃mω,t|2 (30)

and

˜̃K =
1

T 2σ̂2
ω,u·v

T∑
t=1

| ˜̃Smω,t|2. (31)

Thereby, σ̂2
ω,u·v is defined as in (16) with η̂t = [m̂t,∇ωx′t]′, where m̂t denote OLS residuals from

(25). We can investigate whether {[yt, x′t]′}t∈N is seasonally cointegrated by testing the null
hypothesis H0 : σ2

ω,w = 0.

Under H0 we can easily derive the limiting distributions of the test statistics. In fact, these
follow immediately from Lemma 1 and Lemma 2 in conjunction with the continuous mapping
theorem.
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Table 2: Critical values for the cointegration tests with ω ∈ (0, π). The three block-columns correspond
to the cases without deterministic component, with constant oscillation and with constant and linearly
increasing oscillation.

dt = ∅ dt = e−iωt dt = [−e−iωt, te−iωt]′

Level: 10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A: Critical values of K̃

k = 1 0.1950 0.2612 0.4745 0.0742 0.0873 0.1204 0.0495 0.0565 0.0755
k = 2 0.0724 0.0887 0.1341 0.0448 0.0508 0.0659 0.0344 0.0388 0.0487
k = 3 0.0437 0.0508 0.0682 0.0314 0.0356 0.0448 0.0258 0.0287 0.0350
k = 4 0.0307 0.0349 0.0455 0.0239 0.0268 0.0327 0.0206 0.0228 0.0274
k = 5 0.0233 0.0262 0.0324 0.0195 0.0213 0.0254 0.0171 0.0187 0.0221

Panel B: Critical values of ˜̃K

k = 1 0.0517 0.0595 0.0783 0.0307 0.0345 0.0441 0.0209 0.0231 0.0273
k = 2 0.0239 0.0264 0.0322 0.0180 0.0198 0.0233 0.0141 0.0152 0.0179
k = 3 0.0153 0.0165 0.0195 0.0126 0.0137 0.0159 0.0105 0.0112 0.0129
k = 4 0.0111 0.0120 0.0139 0.0096 0.0103 0.0117 0.0083 0.0088 0.0100
k = 5 0.0087 0.0093 0.0105 0.0078 0.0083 0.0093 0.0069 0.0073 0.0081

Note: Critical values for the 50%, 25%, 20%, 2.5% and 0.5% levels are available upon request.

Theorem 4. Let {yt}t∈N be generated according to (25) with {xt}t∈N and {st}t∈N being gener-
ated according to (2) and (26) under Assumption 5 with σ2

ω,w = 0. If the kernel function and
the bandwidth parameter in the definition of σ̂2

ω,u·v satisfy Assumptions 3 and 4, then

K̃ ⇒ τ2
ω

∫
P̃ (s)P̃ (s)∗ ds,

˜̃K ⇒ τ2
ω

∫
˜̃P (s) ˜̃P (s)∗ ds,

where the limiting processes P̃ and ˜̃P are defined in Lemma 1 and Lemma 2, respectively.

Remark 9. The limiting distributions depend on the frequency, on the number of regressors
in (25) and on the specific form of the deterministic components. Asymptotic critical values for
both tests are depicted in Table 2 for a typical set of regressors integrated at some frequency
ω ∈ (0, π).

Next, we investigate the consistency of the tests. Therefore, we derive the limiting distributions
of the test statistics K̃ and ˜̃K under the alternative hypothesisH1 : σ2

ω,w > 0. As an preliminary
result, which may be of interest on its own, we first present the asymptotic distribution of σ̂2

ω,u·v
under the alternative hypothesis.

Lemma 3. Let {yt}t∈N be generated according to (25) with {xt}t∈N and {st}t∈N being generated
according to (2) and (26) under Assumption 5 with σ2

ω,w > 0. Then, with Assumptions 3 and
4 in place, it holds that

1

TMT
σ̂2
ω,u·v ⇒

∫ ∞
−∞

k(s) ds

∫
U(s)U(s)∗ ds,
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with

U(r) = Bw(r)− J(r)′
(∫

J(s)J(s)′ ds

)−1 ∫
J(s)Bw(s) ds,

where J is defined in (8).

After establishing the limiting distribution of σ̂2
ω,u·v for strictly positive σ2

ω,w we are now able
to derive the limiting distributions of the test statistics K̃ and ˜̃K under the alternative hypoth-
esis.

Proposition 4. Let {yt}t∈N be generated according to (25) with {xt}t∈N and {st}t∈N being gen-
erated according to (2) and (26) under Assumption 5 with σ2

ω,w > 0. Then, with Assumptions 3
and 4 in place, it holds that

MT

T
K̃ ⇒

∫
R̃(s)R̃(s)∗ ds∫∞

−∞k(s) ds
∫
U(s)U(s)∗ ds

,

MT

T
˜̃K ⇒

∫ ˜̃R(s) ˜̃R(s)∗ ds∫∞
−∞k(s) ds

∫
U(s)U(s)∗ ds

,

where

R̃(r) =

∫ r

0
Bw(s) ds− g(r)′

(∫
g(s)g(s)′ ds

)−1 ∫
g(s)

∫ s

0
Bw(u) du dr,

˜̃R(r) =

∫ r

0
Bw(s) ds− h(r)′

(∫
h(s)h(s)′ ds

)−1 ∫
h(s)

∫ s

0
Bw(u) du dr.

Thereby, g and h are defined in Theorem 1 and Proposition 1, respectively.

It follows that the test statistics K̃ and ˜̃K are consistent since T/MT diverges as T →∞. Note
that this particular rate of divergence is the same as in the tests of Kwiatkowski et al. (1992)
and Shin (1994).

Motivated by the results in the previous sections we also introduce fixed-b versions of the KPSS
statistics, labeled by K̃b and ˜̃Kb, where σ̂2

ω,u·v is replaced by

σ̃2
ω,u·v =

1

T

T∑
t=1

T∑
s=1

e−iω(t−s)k

(
t− s
bT

)
∇ωS̃mω,t∇ωS̃m∗ω,s ,

and

˜̃σ2
ω,u·v =

1

T

T∑
t=1

T∑
s=1

e−iω(t−s)k

(
t− s
bT

)
∇ω ˜̃Smω,t∇ω ˜̃Sm∗ω,s ,

respectively. The limiting distributions of the test statistics under the null hypothesis are given
in the following theorem.

Theorem 5. Let {yt}t∈N be generated according to (25) with {xt}t∈N and {st}t∈N being gen-
erated according to (2) and (26) under Assumption 5 with σ2

ω,w = 0. Furthermore, let K̃b and
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˜̃Kb denote the fixed-b versions of the test statistics (30) and (31) with fixed b ∈ (0, 1]. Then, it
holds that

K̃b ⇒ τ2
ω

Q(P̃ )

∫
P̃ (s)P̃ (s)∗ ds,

˜̃Kb ⇒ τ2
ω

Q( ˜̃P )

∫
˜̃P (s) ˜̃P (s)∗ ds,

where Q is defined in Section 4 and P̃ and ˜̃P are defined in Lemma 1 and 2, respectively.

Although the limiting distributions of the fixed-b test statistics are free of nuisance parameters
the tests are not consistent. In particular, the following theorem states that K̃b and ˜̃Kb converge
to a non-degenerative distribution under the alternative hypothesis with the same rate as under
the null hypothesis.

Proposition 5. Let {yt}t∈N be generated according to (25) with {xt}t∈N and {st}t∈N being
generated according to (2) and (26) under Assumption 5 with σ2

ω,w > 0. Furthermore, let K̃b

and ˜̃Kb denote the fixed-b versions of the test statistics (30) and (31) with fixed b ∈ (0, 1].
Then, it holds that

K̃b ⇒ 1

Q(R̃)

∫
R̃(s)R̃(s)∗ ds,

˜̃Kb ⇒ 1

Q( ˜̃R)

∫
˜̃R(s) ˜̃R(s)∗ ds,

where Q is defined in Section 4 and where R̃ and ˜̃R are defined in Proposition 4.

Proposition 5 implies that the power of fixed-b tests does not converge to unity with increasing
sample size. Hence, we do not recommend to use this test in applied work since the test decision
is based solely on asymptotic critical values.

6. Simulation Study

We compare, in this section, the finite sample performance of the SIM-OLS estimator with
the SFM-OLS estimator of Gregoir (2010) by means of a simulation study. The results are
benchmarked against the (complex) OLS estimator. We use the following data generating
process:

yt = e−iωtδ + x1,tβ1 + x2,tβ2 + ut, (32)

xk,t = e−iωxk,t−1 + εk,t, xk,0 = 0, k = 1, 2, (33)

with
ut = ρ1e

−iωut−1 + ρ2(ε1,t−1 + ε2,t−1) + ε3,t, u0 = 0,
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Table 3: Finite sample bias and RMSE for the real part of β1, ρ2 = 0, T = 100.

ρ3 ρ1 OLS SIM-OLS SFM-OLS, Bartlett kernel

M = 6 10 30 50 70 90 100 NW

Panel A: Bias

0.0 0.0 0.0004 -0.0005 0.0002 0.0001 0.0004 0.0004 0.0004 0.0005 0.0005 0.0003
0.3 0.0006 -0.0007 0.0002 0.0001 0.0005 0.0005 0.0006 0.0006 0.0006 0.0004
0.6 0.0007 -0.0012 0.0002 0.0000 0.0006 0.0006 0.0007 0.0007 0.0007 0.0006
0.9 0.0015 -0.0006 0.0010 0.0007 0.0013 0.0011 0.0013 0.0014 0.0014 0.0006

0.5 0.0 0.0202 -0.0003 0.0067 0.0096 0.0166 0.0185 0.0191 0.0193 0.0193 0.0034
0.3 0.0282 0.0012 0.0107 0.0140 0.0233 0.0259 0.0266 0.0270 0.0271 0.0095
0.6 0.0464 0.0079 0.0230 0.0256 0.0385 0.0426 0.0439 0.0444 0.0446 0.0254
0.9 0.1310 0.0818 0.1082 0.1051 0.1141 0.1216 0.1249 0.1263 0.1266 0.1087

Panel B: RMSE

0.0 0.0 0.0248 0.0345 0.0268 0.0267 0.0256 0.0253 0.0251 0.0250 0.0250 0.0263
0.3 0.0345 0.0488 0.0376 0.0374 0.0357 0.0351 0.0349 0.0348 0.0348 0.0368
0.6 0.0561 0.0832 0.0629 0.0627 0.0586 0.0573 0.0568 0.0567 0.0566 0.0614
0.9 0.1529 0.2513 0.1781 0.1816 0.1670 0.1583 0.1559 0.1553 0.1552 0.1701

0.5 0.0 0.0383 0.0318 0.0278 0.0304 0.0364 0.0376 0.0378 0.0379 0.0379 0.0251
0.3 0.0532 0.0451 0.0397 0.0429 0.0506 0.0523 0.0525 0.0526 0.0527 0.0373
0.6 0.0860 0.0781 0.0695 0.0726 0.0825 0.0847 0.0851 0.0852 0.0853 0.0691
0.9 0.2254 0.2668 0.2241 0.2258 0.2256 0.2250 0.2249 0.2251 0.2251 0.2259

where

εt =

ε1,t

ε2,t

ε3,t

 ∼ NID
0

0
0

 ,
 1 ρ3 ρ3

ρ3 1 ρ3

ρ3 ρ3 1

 .

Throughout, we consider the frequency ω = π/2 and set the regression parameters to δ = 1+2i,
β1 = 3+4i and β2 = 5+6i. The values for ρ1 and ρ2 are chosen from the set {0, 0.3, 0.6, 0.9} and
ρ3 is either zero or 1/2. The parameter ρ1 controls the distance of the zero of the autoregressive
polynomial of ut to the unit root eiω. The second parameter, ρ2, controls the amount of
intertemporal correlation between the regression errors and the regressor innovations. The
third parameter, ρ3, controls the amount of contemporaneous correlation in εt. Hence, if either
ρ2 or ρ3 is different from zero then there is regressor endogeneity and the OLS estimator of
the parameters in (32) gets contaminated by a second order bias. We consider sample sizes
T ∈ {50, 100, 200, 500, 1000} and the number of replications is 5000.

Spectral density estimators that are required for the computation of the SFM-OLS estimator
are computed via (15) for which we choose the Bartlett, the Parzen and the Quadratic Spectral
(QS) kernels. The bandwidth parameter is set to M = bT with b chosen from an equidistant
grid on the unit interval. Additionally, we compute the bandwidth according to the data
dependent bandwidth selection rule of Gregoir (2006, 2010).1
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6.1. Estimation Performance

We briefly summarize the simulation results for the bias and the root mean squared error
(RMSE) of Re(β1) which are given in Table 3. The SFM-OLS results are very similar for all
kernel functions, so we only report the results for the Bartlett kernel. For brevity, only the
results for ρ2 = 0 and T = 100 are presented.

If ρ3 = 0 (no regressor endogeneity) and if there is no seasonal autocorrelation in the regression
errors (ρ1 = 0) then all estimators exhibit a bias similar in magnitude. This bias increases
slightly when ρ1 get larger. This effect is, however, much more prominent for the SFM-OLS
estimator, especially when a larger bandwidth parameter is used. This effect is amplified if
ρ3 = 0.5. In this case the bias of the SIM-OLS estimator is still small in magnitude whereas
the bias of the OLS and SFM-OLS estimators get comparatively large. Again, the latter gets
larger with increasing bandwidth parameter. This effect is not surprising because in case of
regressor endogeneity the limiting distribution of the OLS estimator is contaminated by an
additive bias. The SFM-OLS corrects for this bias. However, this bias correction crucially
relies on the estimation of Ωω and ∆ω which might be poor in small samples or when the
bandwidth parameter is chosen inappropriately. The advantage of the SIM-OLS is that it does
not hinge upon any nonparametric corrections.

The RMSE of SFM-OLS estimator gets higher with increasing ρ1, where the bandwidth pa-
rameter does not seem to have any impact on the estimation performance. This changes when
comparing the estimation results for different values of ρ3. In this case the RMSE differences
become apparent only if the estimation is performed with a large bandwidth parameter. The
results for the OLS estimator are comparable to those of the SFM-OLS estimator with large
bandwidth. The RMSE of the SIM-OLS estimator is, apart from a few exceptions, consistently
higher than the RMSE of the OLS or SFM-OLS estimator. This is because the variance of the
SIM-OLS estimator is larger than the variance of the other two estimators, see Vogelsang and
Wagner (2014, Proposition 2)2.

6.2. Inference using SIM-OLS

We now provide some simulation results for the hypothesis tests introduced in Sections 3 and 4.
Tables 4 and 5 report the empirical sizes of the t-test for the null hypothesis H0 : Re(β1) = 3
against the two-sided alternative H1 : Re(β1) 6= 3 for sample sizes T = 100 and T = 500,
respectively. For the computation of the bandwidth parameter we apply the data dependent
bandwidth selection rule of Gregoir (2006, 2010).

When the parameters ρ1, ρ2 and ρ3 are equal to zero all three estimators perform well with
OLS showing the best performance. The empirical sizes get more distorted when at least one of
the parameters increases. Clearly, the OLS-based textbook t-test suffers from the highest size
distortions as it does neither correct for the endogeneity bias nor for the autocorrelation in the
regression error terms. The empirical sizes of the t-tests based upon the SFM-OLS estimator

1Gregoir generalizes the bandwidth selection rule of Newey and West (1994), but without considering the QS
kernel. However, an extension for this particular kernel function can be derived analogously.

2Vogelsang and Wagner show that the variance that corresponds to the δ and β parts of the SIM-OLS estimator
is larger (in terms of the Loewner order) than the variance of the SFM-OLS estimator. Although they consider
the zero frequency case only it can be shown that their result remains valid for the general frequency case.
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Table 4: Empirical null rejection probabilities for H0 : Re(β1) = 3 against the two-sided alternative,
data dependent bandwidth, T = 100, 5% level.

ρ1 ρ2 OLS SFM-OLS SIM-OLS

Bartlett Parzen QS Bartlett Parzen QS

Panel A: ρ3 = 0

0.0 0.0 0.0500 0.0802 0.0964 0.0928 0.0596 0.0674 0.0652
0.3 0.0648 0.0778 0.0896 0.0868 0.0486 0.0616 0.0580
0.6 0.0814 0.0754 0.0858 0.0814 0.0238 0.0390 0.0378
0.9 0.0912 0.0712 0.0820 0.0764 0.0120 0.0224 0.0224

0.3 0.0 0.1630 0.1464 0.1290 0.1308 0.1200 0.1024 0.1010
0.3 0.1726 0.1488 0.1318 0.1298 0.0998 0.0884 0.0868
0.6 0.2042 0.1506 0.1232 0.1224 0.0626 0.0624 0.0596
0.9 0.2258 0.1580 0.1216 0.1218 0.0300 0.0344 0.0330

0.6 0.0 0.3280 0.2340 0.1974 0.2028 0.2112 0.1704 0.1756
0.3 0.3440 0.2392 0.1962 0.2034 0.1964 0.1538 0.1584
0.6 0.3720 0.2336 0.1952 0.2048 0.1418 0.1176 0.1212
0.9 0.3918 0.2262 0.2006 0.2034 0.0970 0.0868 0.0880

0.9 0.0 0.5808 0.3722 0.3350 0.3328 0.3948 0.3374 0.3292
0.3 0.6074 0.4078 0.3622 0.3610 0.4076 0.3532 0.3442
0.6 0.6318 0.4372 0.3904 0.3898 0.4290 0.3680 0.3586
0.9 0.6422 0.4690 0.4210 0.4150 0.4344 0.3766 0.3664

Panel B: ρ3 = 0.5

0.0 0.0 0.1430 0.0736 0.0946 0.0884 0.0502 0.0546 0.0540
0.3 0.1414 0.0774 0.0930 0.0882 0.0294 0.0384 0.0372
0.6 0.1378 0.0756 0.0846 0.0802 0.0074 0.0178 0.0174
0.9 0.1332 0.0716 0.0822 0.0724 0.0022 0.0078 0.0086

0.3 0.0 0.2912 0.1582 0.1384 0.1386 0.1052 0.0834 0.0864
0.3 0.2850 0.1666 0.1376 0.1370 0.0728 0.0618 0.0644
0.6 0.2800 0.1666 0.1308 0.1322 0.0266 0.0286 0.0290
0.9 0.2754 0.1696 0.1274 0.1258 0.0084 0.0128 0.0118

0.6 0.0 0.4692 0.2736 0.2280 0.2318 0.1926 0.1486 0.1562
0.3 0.4654 0.2816 0.2334 0.2420 0.1586 0.1272 0.1308
0.6 0.4596 0.2720 0.2298 0.2356 0.0988 0.0838 0.0874
0.9 0.4546 0.2586 0.2256 0.2268 0.0612 0.0554 0.0580

0.9 0.0 0.7130 0.4514 0.4224 0.4250 0.3684 0.3408 0.3430
0.3 0.7034 0.4640 0.4318 0.4338 0.3716 0.3410 0.3410
0.6 0.6982 0.4856 0.4482 0.4468 0.3964 0.3590 0.3570
0.9 0.6984 0.5066 0.4696 0.4626 0.4170 0.3716 0.3660

are considerably higher than those based upon the SIM-OLS estimator. Interestingly, both
tests tend to underreject the null hypothesis if ρ2 increases. We observe this in particular for
the SIM-OLS based test in small samples. It is also remarkable that the choice of the kernel
function affects the results heavily. In particular, when we use the Bartlett kernel the tests
perform worse than with the Parzen or QS kernel. However, the SIM-OLS based tests do not
react as sensitive to the kernel choice as the SFM-OLS based tests.

Next we investigate the performance of the fixed-b version of the t-type test and demonstrate
its superiority over conventional tests. For the calculation of σ̂2

ω,u·v and ˜̃σ2
ω,u·v we set the

bandwidth parameter to M = bT with 50 equidistantly distributed values on the unit interval
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Table 5: Empirical null rejection probabilities for H0 : Re(β1) = 3 against the two-sided alternative,
data dependent bandwidth, T = 500, 5% level.

ρ1 ρ2 OLS SFM-OLS SIM-OLS

Bartlett Parzen QS Bartlett Parzen QS

Panel A: ρ3 = 0

0.0 0.0 0.0490 0.0560 0.0640 0.0608 0.0546 0.0572 0.0562
0.3 0.0684 0.0522 0.0598 0.0592 0.0466 0.0538 0.0536
0.6 0.0884 0.0456 0.0556 0.0524 0.0266 0.0456 0.0436
0.9 0.1026 0.0354 0.0418 0.0414 0.0126 0.0322 0.0326

0.3 0.0 0.1530 0.0926 0.0784 0.0778 0.0924 0.0704 0.0716
0.3 0.1774 0.0940 0.0738 0.0740 0.0742 0.0638 0.0636
0.6 0.2146 0.0862 0.0648 0.0656 0.0448 0.0486 0.0498
0.9 0.2338 0.0822 0.0540 0.0538 0.0230 0.0322 0.0328

0.6 0.0 0.3382 0.1562 0.1130 0.1204 0.1464 0.1046 0.1118
0.3 0.3552 0.1440 0.1112 0.1126 0.1206 0.0930 0.0966
0.6 0.3880 0.1274 0.1008 0.0984 0.0724 0.0636 0.0664
0.9 0.4124 0.0980 0.0850 0.0860 0.0390 0.0412 0.0418

0.9 0.0 0.6504 0.2938 0.2084 0.2094 0.2874 0.1918 0.1998
0.3 0.6586 0.2920 0.2098 0.2064 0.2578 0.1760 0.1836
0.6 0.6836 0.2530 0.2008 0.2096 0.1634 0.1248 0.1406
0.9 0.7044 0.2210 0.1926 0.2086 0.0950 0.0890 0.1012

Panel B: ρ3 = 0.5

0.0 0.0 0.1464 0.0618 0.0680 0.0668 0.0550 0.0560 0.0568
0.3 0.1470 0.0550 0.0640 0.0634 0.0368 0.0460 0.0468
0.6 0.1468 0.0414 0.0478 0.0478 0.0096 0.0298 0.0302
0.9 0.1444 0.0326 0.0358 0.0340 0.0026 0.0132 0.0138

0.3 0.0 0.2912 0.1052 0.0844 0.0826 0.0894 0.0688 0.0708
0.3 0.2930 0.0992 0.0774 0.0784 0.0562 0.0526 0.0536
0.6 0.2940 0.0904 0.0628 0.0630 0.0186 0.0288 0.0304
0.9 0.2892 0.0820 0.0532 0.0510 0.0052 0.0106 0.0120

0.6 0.0 0.4672 0.1844 0.1352 0.1344 0.1340 0.0978 0.1008
0.3 0.4740 0.1770 0.1270 0.1244 0.0920 0.0708 0.0710
0.6 0.4718 0.1508 0.1100 0.1080 0.0394 0.0362 0.0378
0.9 0.4724 0.1172 0.0926 0.0884 0.0116 0.0126 0.0116

0.9 0.0 0.7330 0.2676 0.2208 0.2624 0.1600 0.1350 0.1780
0.3 0.7284 0.3192 0.2394 0.2574 0.1666 0.1226 0.1450
0.6 0.7344 0.3794 0.2696 0.2462 0.1390 0.0948 0.0938
0.9 0.7318 0.2792 0.2242 0.2398 0.0650 0.0548 0.0606

for b. Figure 1 illustrates the impact that the bandwidth has on the empirical null rejection
probabilities of the t-type tests. We only display results where we use the Bartlett kernel since
there are only small qualitative differences when using the Parzen or the QS kernel3. SFM-OLS
and SIM-OLS based tests that rely on the conventional estimator σ̂2

ω,u·v are labeled by SFM-
OLS and SIM-OLS (O), respectively. In both cases the tests are carried out using standard
normal critical values. Test statistics that include ˜̃σ2

ω,u·v are labeled by SIM-OLS (N) and SIM-
3Although the results are qualitatively similar we have to mention that the tests based upon the Bartlett kernel
suffer from the highest size-distortions. This is not surprising as we have already observed this phenomenon
for the conventional tests in Tables 4 and 5. The results for the Parzen and QS kernel are available upon
request.
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Figure 1: Empirical null rejection probabilities, t-test for Re(β1), T = 100, Bartlett kernel.

OLS (Fb), respectively. The former is carried out using standard normal critical values and is
included only as benchmark whereas the latter uses fixed-b critical values from Table 1.

The empirical null rejection probabilities of the SFM-OLS based tests are always higher than
those of SIM-OLS (Fb), especially if ρ3 = 0.5. As expected, SIM-OLS (N) tests exhibit the high-
est size distortions since these are carried out using wrong critical values. The SIM-OLS (Fb)
tests perform quite decently if ρ1 = ρ2 = 0.6. Nevertheless, the empirical sizes are around
13% for nearly all values of b (except for very small values where they are slightly higher). If
ρ1 = ρ2 = 0.9 the all tests fail miserably in holding the significance level. However, the value
of b impacts the empirical sizes of the SIM-OLS (fb) tests only marginally.

Figure 2 illustrates how the size distortions of the SIM-OLS (fb) tests vanish asymptotically.
If T = 200 and ρ1 = ρ2 = 0.6 the empirical sizes drop below 10% for all values of b and they
approach the nominal 5% level for T = 500. If ρ1 = ρ2 = 0.9 the test statistics struggle to
reach the nominal significance level for moderate sample sizes but evidently approach 5% when
T = 1000.
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Figure 2: Empirical null rejection probabilities, fixed-b t-type test for Re(β1), Bartlett kernel.

We now turn to the power properties of the tests. Starting from the true value of Re(β1) = 3 we
consider under the alternative Re(β1) ∈ (3, 4] using 20 values generated on an equidistant grid
with mesh 0.05. We focus on the size-corrected power since it is a useful tool for theoretical
comparisons as it overcomes potential over- (and under-) rejection problems under the null
hypothesis. For brevity, we only report the results for T = 100, ρ1 = ρ2 = 0.6 and ρ3 = 0.
Figure 3 displays the power curves, starting at 5% under the null hypothesis, for the t-type tests
based upon the estimators considered previously. The SFM-OLS and SIM-OLS (O) tests use
the data dependent bandwidth rule for spectral density estimation and we display the power
curves for the fixed-b versions using b = 0.02, b = 0.3 and b = 1. The left and right panel display
the power curves when the corresponding test statistics are calculated using the Bartlett and
QS kernel, respectively. Two main observations can be made. First, the power curves of the
SFM-OLS and the OLS based tests are fairly indistinguishable whereas the SIM-OLS (O) test
exhibits slightly lower size corrected power. For SIM-OLS (Fb) tests we have to distinguish
between the chosen kernel function. If the Bartlett kernel is used then the fixed-b tests have
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Figure 3: Size corrected power of t-type tests for Re(β1), T = 100, ρ1 = ρ2 = 0.6 and ρ3 = 0.
Data dependent bandwidth selection rule for spectral density estimation used for SFM-OLS and SIM-
OLS (O).
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Figure 4: Size corrected power of t-type tests for Re(β1), T = 100, ρ1 = ρ2 = 0.6 and ρ3 = 0. Tests
are based on the fixed-b version of SIM-OLS for various values of b.

almost the same power, irrespective of b. On the other hand, if the QS kernel4 is used the
power drops drastically for higher values of b. To illustrate this effect Figure 4 displays the
power curves for the fixed-b tests for eight different values of b. Obviously, there are virtually no
power differences when the Bartlett kernel is used but a large power decrease with increasing b
when we use the QS kernel. Similar observations regarding the sensitivity of the QS kernel (as
well as the Daniell kernel) to the choice of b have already been made by Kiefer and Vogelsang
(2005) and Vogelsang and Wagner (2014).

4Similar observations are also made for the Parzen kernel.

27



Table 6: Empirical null rejection probabilities of cointegration tests, QS kernel, 5% level.

ρ1 = ρ2 M = 4 8 12 16 20 Auto

Panel A: T = 100

KG 0.0 0.0318 0.0256 0.0322 0.1100 0.3656 0.0358
0.3 0.0368 0.0236 0.0234 0.0614 0.2562 0.0776
0.6 0.0778 0.0248 0.0196 0.0358 0.1376 0.1534
0.9 0.5982 0.1372 0.0510 0.0456 0.0996 0.1432

K̃ 0.0 0.0898 0.3282 0.8278 0.9630 0.9876 0.0724
0.3 0.0888 0.1922 0.5972 0.8606 0.9402 0.1226
0.6 0.1270 0.1430 0.3390 0.6318 0.7890 0.1920
0.9 0.7348 0.3924 0.4040 0.5684 0.7282 0.5208

˜̃K 0.0 0.1728 0.6622 0.8330 0.8994 0.9416 0.1044
0.3 0.0756 0.3786 0.6368 0.7644 0.8502 0.1128
0.6 0.0258 0.0848 0.2544 0.4096 0.5380 0.0726
0.9 0.0058 0.0008 0.0046 0.0218 0.0522 0.0408

Panel B: T = 200

KG 0.0 0.0444 0.0392 0.0358 0.0340 0.0370 0.0440
0.3 0.0494 0.0344 0.0314 0.0292 0.0286 0.0538
0.6 0.1046 0.0380 0.0266 0.0220 0.0192 0.1056
0.9 0.8568 0.3332 0.1410 0.0688 0.0416 0.1960

K̃ 0.0 0.0682 0.0996 0.1732 0.3492 0.6208 0.0702
0.3 0.0742 0.0806 0.1176 0.2020 0.3872 0.0858
0.6 0.0962 0.0654 0.0726 0.0966 0.1516 0.1054
0.9 0.8550 0.4144 0.2464 0.2028 0.2076 0.2950

˜̃K 0.0 0.0738 0.1956 0.4916 0.6906 0.7884 0.1004
0.3 0.0624 0.0982 0.2844 0.4782 0.6188 0.0934
0.6 0.0630 0.0452 0.0898 0.1862 0.2912 0.0792
0.9 0.0630 0.0066 0.0038 0.0040 0.0084 0.0052

The block-rows KG report the results from using the test statistic of the SFM-OLS based cointegration test
of Gregoir (2010). The block-rows K̃ and ˜̃K report the results from using the test statistics introduced in
section 5 with critical values given in Table 2.

6.3. Cointegration Tests

Let us now briefly turn to cointegration testing. Table 6 displays the empirical null rejection
probabilities of the cointegration tests introduced in Section 5 where the data is once again
simulated according to (32). We compare the SIM-OLS residuals based tests, denoted by K̃
and ˜̃K, with the SFM-OLS residuals based test of Gregoir (2010), labeled by KG. For brevity,
we only report the results for ρ1 = ρ2, ρ3 = 0 and for σ̂2

ω,u·v being computed using the QS
kernel. For the latter we use fixed bandwidths as well as the data dependent bandwidth rule
of Gregoir (2010).

We first summarize our findings when the data dependent bandwidth rule is used. If T = 100
and if the parameters ρ1 and ρ2 are at most 0.3 then the size distortions of the KG test are close
to the nominal 5% level. Otherwise the tests exhibit empirical sizes at around 15%. The K̃
test yields acceptable empirical sizes only for ρ1 = ρ2 = 0 and overrejects the null hypothesis in
all other scenarios. If ρ1 = ρ2 = 0.9 the empirical null rejection probability even exceeds 50%.
On the contrary, the ˜̃K test has problems to keep the significance level for low values of ρ1 and
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Figure 5: Size-corrected power of cointegration tests. Data generating process with ρ1 = 0.3, ρ2 = 0.3
and ρ3 = 0. Spectral density estimate with QS kernel and data dependent bandwidth selection rule.

ρ2 whereas the empirical sizes are close to 5% for higher parameter values. In case of T = 200
the empirical null rejection probabilities of the K̃ test improve for all parameter constellations.
However, for ρ1 = ρ2 = 0.9 the empirical size is sill very high with 29.5%. The empirical sizes
of the ˜̃K test do not improve with the higher sample size except in case ρ1 = ρ2 = 0.9, where
the test strongly underrejects. The performance results of the KG test are mixed. If ρ1 and ρ2

are at most 0.6 the test still performs extremely well. However, when the parameters are equal
to 0.9 the empirical size jumps to 19.6% (compared to 14.3% when T = 100), an observation
that is unexpected when the sample size increases.

If we use fixed bandwidths the picture gets cloudy, especially for the small sample size T = 100.
For example, if M = 4 the KG test improves (compared to the automatic bandwidth selection
case) for values of ρ1 and ρ2 up to 0.6 but breaks down to an empirical null rejection probability
of around 60% if the parameters are set to 0.9. This is not surprising as the spectral density
requires a higher parameter the closer the roots of the autoregressive polynomial approach the
unit circle. Therefore it is also not surprising that the empirical null rejection probabilities of
the KG test drop closely to the nominal level if the bandwidth is set to M = 12 or M = 16.
On the other hand, if M = 16 and ρ1 = ρ2 = 0 the empirical size rises up to 11%. The K̃
test performs very badly for M ≥ 8, even if ρ1 is high. If M = 4 the test exhibits only small
size distortions for small values of ρ1 and ρ2 but fails miserably if these parameters are set
to 0.9. The ˜̃K test shows once again some strange behavior. If ρ1 and ρ2 are equal to zero
this test is massively overrejecting the null hypothesis whereas it heavily underrejects the null
hypothesis if the parameters get large. If T = 200 we observe that the KG test is close to
5% (but slightly below) if ρ1 and ρ2 are zero or 0.3, irrespective of the choice of M . It still
overrejects the null hypothesis when the parameters are large and the bandwidth is chosen too
small. The empirical sizes of the K̃ test also improve for the larger sample size but this test
still suffers from severe size distortions if large bandwidths are used. The performance of the
˜̃K test is quite decent for M = 4. If however, larger bandwidths are used the test drastically
overrejects (underrejects) the null hypothesis if the parameters ρ1 and ρ2 are small (large).
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Figure 6: Size-corrected power of cointegration tests. Data generating process with ρ1 = 0.3, ρ2 = 0.3
and ρ3 = 0. Spectral density estimate with QS kernel and various fixed bandwidths (in parenthesis).

We close this section by investigating the size corrected power of the cointegration tests. There-
fore, we add σω,wzt to the regression error ut, where we generate zt according to (26) with z0 = 0
and i.i.d. standard normally distributed wt, which are independent of ut and vt. We vary σω,w
on an equidistant grid of 21 values on [0, 0.4], where σω,w = 0 corresponds to the null hypothesis
of seasonal cointegration. For brevity, we restrict our report to the case ρ1 = ρ2 = 0.3.

We start by depicting our observations when the bandwidths are chosen according to the data
dependent bandwidth rule. Figure 5 displays the power curves of the three considered tests for
T = 100 and T = 200, repsectively. There are two main findings here. First, the ˜̃K test seems
to have no power at all. Second, the power curves of the KG and K̃ tests initially rise with
increasing σω,w and reach a local maximum at about σω,w = 0.2, from where they begin to fall.
The reason for this strange behaviour is the data dependent bandwidth rule which is designed
to deliver appropriate bandwidths under the null hypothesis. Under the alternative hypothesis,
however, it is not clear if the tests are still consistent when the data dependent bandwidth
rule is used. Similar observations have been made by Xiao and Phillips (2002). If we use fixed
bandwidths the picture gets more familiar. Figure 6 displays the power curves for the KG and
the K̃ tests5 for four different bandwidths. The power of both tests increases with increasing
sample size, regardless of the chosen bandwidth. Furthermore, the power curves of the KG and
K̃ tests are nearly equal for bandwidths M = 4 and M = 8. For larger bandwidths, however,
the KG test has clearly more power than the K̃ test.

7. Conclusion

This paper presents the integrated modified OLS estimator for seasonally cointegrating re-
gressions at an arbitrary frequency. In contrast to the SFM-OLS estimator of Gregoir (2010)

5We do not present the power curves for the ˜̃K test since they are similar in shape to the power curve
in Figure 5. If T = 1000 (or higher) the test has higher power and the power curves increase slowly.
Corresponding simulation results are available upon request.
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the SIM-OLS estimator does not require any tuning parameters to have an zero-mean mixed
(complex) Gaussian limiting distribution. This limiting distribution forms the basis for pa-
rameter inference. However, consistent spectral density estimation is still necessary for test
construction.

Typically, spectral densities are estimated by kernel estimators that require an appropriate
choice of a kernel function and a bandwidth parameter. Since the latter in particular has a
major impact on the outcome of hypothesis tests we also introduce fixed-b tests. To construct
fixed-b test statistics we first have to augment the SIM-OLS regression with an additionally
constructed regressor. The residuals resulting from this augmented regression are incorporated
into the construction of the test statistics in a second step. These fixed-b test statistics have an
asymptotically nuisance parameter free limiting distribution which depends on the choice of b
but can be tabulated and used for t- or Wald-type tests.

Additionally, we also introduce a KPSS-type cointegration test. We show that tests based
upon the residuals of both the standard and the augmented fixed-b regressions are consistent.
However, estimation of the spectral density has to be performed by classical methods as it turns
out that the fixed-b versions are not consistent.

The theoretical results are complemented by a simulation study where we compare the perfor-
mance of the SIM-OLS estimator and test statistics based upon it with OLS and SFM-OLS.
Similar to the zero-frequency case the bias of the SIM-OLS estimator is usually smaller than
the bias of the OLS and the SFM-OLS estimators whereas its RMSE is slightly larger than the
RMSE of the OLS and SFM-OLS estimators. In terms of empirical sizes tests based upon the
SIM-OLS estimator outperform tests upon SFM-OLS especially if there is a high amount of
contemporal regressor endogeneity. The fixed-b versions of the tests clearly exhibit the smallest
size distortions with only a minor power loss. Overall, the simulation results for the estimation
performance and the hypothesis tests support the findings in Vogelsang and Wagner (2014) for
the zero-frequency case. However, the simulation results for the cointegration tests indicate
that SIM-OLS residual based tests perform poorer than tests based on SFM-OLS residuals
both in terms of finite sample sizes as well as in terms of size corrected power. Therefore, we
do not recommend to use these tests in applied work.
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A. Proofs

Proof of Theorem 1. The proof is a direct generalization of the proof of Theorem 2 of Vogelsang
and Wagner (2014). Let θ0 = [δ′, β′, 0]. We consider the centered and scaled OLS estimator of
regression (10),

A−1
SIM (θ̃ − θ0) = A−1

SIM (Sx̃∗ω S
x̃
ω)−1(Sx̃∗ω S

u
ω)

= (T−2ASIMS
x̃∗
ω S

x̃
ωASIM )−1(T−2ASIMS

x̃∗
ω S

u
ω). (34)

We investigate the limits of both terms of the right hand side of (34) separately. The func-
tional central limit theorem (7) in conjunction with Assumption 1 and the continuous mapping
theorem yields T−1G−1

D

∑[rT ]
t=1 e

iωtdt

T−3/2
∑[rT ]

t=1 e
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Consequently, we obtain from the continuous mapping theorem

(T−2ASIMS
x̃∗
ω S

x̃
ωASIM )−1 ⇒

(
τ2
ωΠω

∫
g(r)g(r)′ drΠ′ω

)−1

.

The second term in (34) is treated similarly. By the functional central limit theorem (7) and
the continuous mapping theorem we obtainT−1G−1
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Consequently, we have
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where the last equation follows from integration by parts. Since W (r) is the last block entry
of g(r) we can rewrite the last term as follows:

(
τ2
ωΠω
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g(r)g(r)′ drΠ′ω
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τ2
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Using simple matrix algebra we conclude that

(Π′ω)−1

0q×1

0k×1

λ′ω,uv
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 0q×1

0k×1

Ω
−1
ω,vvΩω,vu

 ,
which shows the claim.

Proof of Theorem 2. We prove, conditional upon Bv, the convergence of the estimator V̂SIM
to VSIM . From Theorem 1 we deduce that

T−2ASIMS
x̃∗
ω S

x̃
ωASIM ⇒ Πω

∫
g(s)g(s)′ dsΠ′ω.

Thus, we only have to show convergence of the inner term. From

T−1/2eiω[rT ]ASIMS
x̃
ω,[rT ] ⇒ g(r)
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we deduce, iteratively applying the continuous mapping theorem, that
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implying
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Since the convergence is only conditional upon Bv, we also have convergence in probability.
Hence, together with σ̂2

ω,u·v ⇒ σ2
ω,u·v, Slutsky’s Theorem yields V̂SIM ⇒ VSIM .

The limiting distribution of Ŵ is now obtained using standard arguments. It holds that
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By condition (13) and using Theorem 1, we conclude that, conditional upon Bv,
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Hence, by the properties of the complex normal distribution, we obtain Ŵ ⇒ χ2
m.

Proof of Lemma 1. Let S̃uω,t denote the OLS residuals from (10), i.e.,
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we obtain

1√
T

[rT ]∑
t=1

eiωt∇ωS̃uω,t =
1√
T

[rT ]∑
t=1

eiωtut −
1√
T

[rT ]∑
t=1

eiωtΞ′tASIMA
−1
SIM (θ̃ − θa)

⇒ τωBu(r)− τωg(r)′Π′ω

{
σω,u·v(Π

′
ω)−1

×
(∫

g(s)g(s)′ ds

)−1 ∫ [
G(1)−G(s)

]
dWu·v(s) + γ̃

}
= τωσω,u·vP̃ (r) + τωΩω,uv

(
Ω−1/2
ω,vv

)∗
Wv(r)− τωg(r)′Π′ωγ̃,

where

γ̃ =

[
0(q+k)×1

Ω
−1
ω,vvΩω,vu

]
.

Since

g(r)′Π′ωγ̃ = g(r)′

τ
−1
ω Iq×q 0q×k 0q×k

0k×q Ω
1/2′
ω,vv0k×k

0k×q 0k×k Ω
1/2′
ω,vv


 0q×1

0k×1

Ω
−1
ω,vvΩω,vu


= Wv(r)

′Ω1/2′
ω,vvΩ

−1
ω,vvΩω,vu

= Ωω,uv

(
Ω−1
ω,vv

)∗
Ω1/2
ω,vvWv(r)

= Ωω,uvΩ
−1
ω,vvΩ

1/2
ω,vvWv(r)

= Ωω,vu

(
Ω−1/2
ω,vv

)∗
Wv(r),

the statement of the lemma follows.

Proof of Proposition 1. The proof is in line with the proof of Lemma 1 in Vogelsang and Wagner
(2014). First, we establish an invariance principle for the regressor zt = [zS

d′
t , zS

x′
t , zx′t ]′. It holds

that

eiω[rT ]

T 3
G−1
D zS

d

[rT ] =
[rT ]

T 3
G−1
D

T∑
t=1

eiωtSdω,t −
1

T 3
G−1
D

[rT ]∑
t=1

t∑
j=1

eiωjSdω,j

=
[rT ]

T

1

T

T∑
t=1

1

T
G−1
D

t∑
j=1

eiωjdj −
1

T

[rT ]∑
t=1

1

T

t∑
j=1

1

T
G−1
D

j∑
l=1

eiωldl

⇒ r

∫ 1

0

∫ s

0
f(u) du ds−

∫ r

0

∫ s

0

∫ u

0
f(w) dw du ds.
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Next, we obtain

eiω[rT ]

T 7/2
zS

x

[rT ] =
[rT ]

T 7/2

T∑
t=1

eiωtSxω,t −
1

T 7/2

[rT ]∑
t=1

t∑
j=1

eiωjSxω,j

=
[rT ]

T

1

T

T∑
t=1

1

T

t∑
j=1

1√
T

j∑
l=1

eiωlvl −
1

T

[rT ]∑
t=1

1

T

t∑
j=1

1

T

j∑
l=1

1√
T

l∑
w=1

eiωwvw

⇒ τωr

∫ 1

0

∫ 1

0
Bv(u) du ds− τω

∫ r

0

∫ s

0

∫ u

0
Bv(w) dw du ds

= τωrΩ
1/2
ω,vv

∫ 1

0

∫ 1

0
Wv(u) du ds− τωΩ1/2

ω,vv

∫ r

0

∫ s

0

∫ u

0
Wv(w) dw du ds

and similarly

eiω[rT ]

T 5/2
z[rT ] =

[rT ]

T 5/2

T∑
t=1

eiωtxt −
1

T 5/2

[rT ]∑
t=1

t∑
j=1

eiωjxj

=
[rT ]

T

1

T

T∑
t=1

1√
T

t∑
j=1

eiωjvt −
1

T

[rT ]∑
t=1

1

T

t∑
j=1

1√
T

j∑
l=1

eiωlvl

⇒ rτωΩ1/2
ω,vv

∫ 1

0
Wv(s) ds− τωΩ1/2

ω,vv

∫ r

0

∫ s

0
Wv(u) du ds.

Combined, we can write

eiω[rT ]

T 5/2
ASIMz[rT ] ⇒ τωΠωr

∫ 1

0
g(s) ds− τωΠω

∫ r

0

∫ s

0
g(u) du ds

= τωΠωrG(1)− τωΠω

∫ r

0
G(s) ds

= τωΠω

∫ r

0
[G(1)−G(s)] ds.

Consequently, we obtain for the cross-product of the regressors and the error terms that

e−iω[rT ]

T 5/2
ASIMz[rT ]

eiω[rT ]

√
T

Su∗ω,[rT ] ⇒ τ2
ωΠω

∫ r

0

[
G(1)−G(s)

]
dsBu(r).

We combine these results with those of Theorem 1. Let θa = [δ′, β′, 01×k, 01×(q+2k)]
′, then

A−1
M (˜̃θ − θa)⇒ (Π′ω,M )−1

(∫
h(s)h(s)′ ds

)−1 ∫
h(s)Bu(s) ds

= σω,u·v(Π
′
ω,M )−1

(∫
h(s)h(s)′ ds

)−1 ∫
h(s)Wu·v(s) ds+ ˜̃γ

= σω,u·v(Π
′
ω,M )−1

(∫
h(s)h(s)′ ds

)−1 ∫ [
H(1)−H(s)

]
dWu·v(s) + ˜̃γ,
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with

˜̃γ =

 0(q+k)×1

Ω
−1
ω,vvΩω,vu

0(q+2k)×1

 .
The second equation follows from the first one by the same arguments as used in Theorem 1.
The last equation follows in the same spirit as in the proof of Theorem 1 from integration by
parts.

Proof of Lemma 2. The proof is based on Proposition 1 and is basically in line with the proof
of Lemma 1. Let ˜̃Suω,t denote the OLS residuals from (22), i.e.,

˜̃Suω,t = Syω,t − S
ξ′
ω,t

˜̃θ = Suω,t − SΞ′
ω,t(

˜̃θ − θa)

with Ξt = [Sd′ω,t, S
x′
ω,t, x

′
t, z
′
t]
′ and θa defined in the proof of Proposition 1. By the definition of

Bu(r) we obtain

1√
T

[rT ]∑
t=1

eiωt∇ω ˜̃Suω,t =
1√
T

[rT ]∑
t=1

eiωtut −
1√
T

[rT ]∑
t=1

eiωtΞ′tASIMA
−1
SIM (˜̃θ − θa)

⇒ τωBu(r)− τωh(r)′Π′ω,M

{
σω,u·v(Π

′
ω,M )−1

×
(∫

h(s)h(s)′ ds

)−1 ∫ [
H(1)−H(s)

]
dWu·v(s) + ˜̃γ

}
= τωσω,u·v

˜̃P (r) + τωΩω,uv

(
Ω−1/2
ω,vv

)∗
Wv(r)− τωh(r)′Π′ω,M ˜̃γ,

where ˜̃γ is defined in the proof of Proposition 1. The first part of the Lemma follows since

h(r)′Π′ω,M ˜̃γ = h(r)′


τ−1
ω Iq×q 0 0 0

0 Ω
1/2′
ω,vv 0 0

0 0 Ω
1/2′
ω,vv 0

0 0 0 Π′ω




0
0

Ω
−1
ω,vvΩω,vu

0

 = Ωω,vu

(
Ω−1/2
ω,vv

)∗
Wv(r),

where the last equation is obtained by the same steps as in the proof of Lemma 1.

It remains to show that, conditional upon Wv, the limiting distribution of the SIM-OLS esti-
mator, Ψω, is uncorrelated with ˜̃P (r). Note that all conditional quantities can be treated as
non-stochastic. Hence, it suffices to show that the conditional covariance between

Ψa
ω =

∫ [
G(1)−G(s)

]
dWu·v(s)

and ˜̃P (r) is equal to zero. It holds that

Cov
(

˜̃P (r),Ψa
ω

)
= Cov (Wu·v(r),Ψ

a
ω)− Cov (R(r),Ψa

ω) , (35)
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with

R(r) = h(r)′
(∫

h(s)h(s)′ ds

)−1 ∫ [
H(1)−H(s)

]
dWu·v(s).

For the first term in (35) it holds that

Cov (Wu·v(r),Ψ
a
ω) = τ2

ω

∫ r

0
[G(1)−G(s)]′ ds.

Up to the scaling factor τ2
ω this expression corresponds to the transpose of the second block

entry of h(r), which we label by h2(r) for brevity. For the second term in (35), we deduce that

Cov (R(r),Ψa
ω) = τ2

ωh(r)′
(∫

h(s)h(s)′ ds

)−1 ∫ [
H(1)−H(s)

]
[G(1)−G(s)]′ ds

= τ2
ωh(r)′

(∫
h(s)h(s)′ ds

)−1 ∫
h(s)h2(s) ds

= τ2
ωh(r)′

[
0q+2k

Iq+2k

]
= τ2

ωh2(r)′,

where the second equation follows from∫ [
H(1)−H(s)

]
[G(1)−G(s)]′ ds =

[
H(1)−H(r)

]
h2(r)′

∣∣∣r
r=0

+

∫
h(s)h2(s)′ ds

=

∫
h(s)h2(s)′ ds.

Hence, both terms on the right hand side of (35) coincide, concluding the proof.

Proof of Proposition 2. The proof is similar to the proof of the main result in Hashimzade and
Vogelsang (2007). First we define

Kt,s = k

(
|t− s|
bT

)
= k

(
t− s
bT

)
= k̃

(
t− s
T

)
∇2Kt,s = (Kt,s −Kt,s+1)− (Kt+1,s −Kt+1,s+1).

It holds that

σ̌2
ω,u·v(ζ) =

1

T

T∑
t=1

T∑
s=1

k

(
|t− s|
bT

)
eiω(t−s)ζtζ

∗
s =

1

T

T∑
t=1

T∑
s=1

eiωtζtKt,se
−iωsζ∗s =

1

T

T∑
t=1

atb
∗
t

with

at = ζte
iωt, bt =

T∑
s=1

Kt,se
iωsζs.
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One can easily show the following summation-by-parts formula for complex valued sequences
at and bt:

T∑
t=1

atb
∗
t =

T−1∑
t=1

t∑
s=1

as(bt − bt+1)∗ +
T∑
t=1

atb
∗
T . (36)

Hence, we obtain

T∑
t=1

atb
∗
t =

T−1∑
t=1

t∑
s=1

ζse
iωs

 T∑
j=1

Kt,je
iωjζj −

T∑
j=1

Kt+1,ke
iωjζj

∗ +
T∑
t=1

ζje
iωj

(
T∑
s=1

KT,se
iωsζs

)∗

=

T−1∑
t=1

t∑
s=1

ζse
iωs

 T∑
j=1

(Kt,j −Kt+1,j)e
iωjζj

∗ +

T∑
t=1

ζte
iωt

(
T∑
s=1

KT,se
iωsζs

)∗

=

T−1∑
t=1

Λζω,tC
∗
1 + Λζω,TC

∗
2 ,

where

Λζω,t =

t∑
j=1

eiωjζj

C1 =

T∑
j=1

(Kt,j −Kt+1,k)e
iωjζj

C2 =
T∑
s=1

KT,se
iωsζs.

Using (36) once again we rewrite C1 as follows:

C1 =

T−1∑
j=1

{
j∑
s=1

eiωsζs [(Kt,j −Kt+1,j)− (Kt,j+1 −Kt+1,j+1)]

}

+
T∑
j=1

eiωjζj(Kt,T −Kt+1,T )

=

T−1∑
j=1

Λζω,j∇
2Kt,j + Λζω,T (Kt,T −Kt+1,T ),

where we used the defined quantities Λζω,t and ∇2Kt,j . Similarly, for C2 we obtain

C2 =

T−1∑
s=1

 s∑
j=1

eiωjζj(KT,s −KT,s+1)

+

T∑
s=1

eiωsζsKT,T

=
T−1∑
s=1

Λζω,s(KT,s −KT,s+1) + Λζω,T ,
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where the last equation follows from KT,T = 1. Noting that Kt,s = Ks,t, we put everything
together and get the following expression for σ̌2

ω,u·v:

σ̌2
ω,u·v(ζ) =

1

T

T−1∑
t=1

1

T

T−1∑
j=1

(
1√
T

Λζω,t

)(
1√
T

Λζ∗ω,j

)(
T 2∇2Kt,j

)
+

1

T

T−1∑
t=1

(
1√
T

Λζω,t

)
(T (Kt,T −Kt+1,T ))

(
1√
T

Λζ∗ω,T

)

+

(
1√
T

Λζω,T

)
1

T

T−1∑
s=1

(
1√
T

Λζ
∗
ω,s

)
(T (Ks,T −Ks+1,T ))

+

(
1√
T

Λζω,T

)(
1√
T

Λζ∗ω,T

)
(37)

Let r ∈ (0, 1]. By assumption,

1√
T

Λζω,[rT ] =
1√
T

[rT ]∑
t=1

eiωtζt ⇒ P (r).

Furthermore, if the kernel function is even, twice differentiable with continuous second deriva-
tive, it holds that

lim
T→∞

T (K[rT ],T −K[rT ]+1,T ) = lim
T→∞

k̃
(

[rT ]
T − 1

)
− k̃

(
[rT ]
T − 1 + 1

T

)
1
T

= − ˙̃
k(r − 1)

and

lim
T→∞

T 2∇2K[rT ],[sT ] = lim
T→∞

[
(K[rT ],[sT ] −K[rT ]+1,[sT ])− (K[rT ],[sT ]+1 −K[rT ]+1,[sT ]+1)

]
= lim

T→∞

1

T 2

[{
k̃

(
[rT ]− [rS]

T

)
− k̃

(
[rT ]− [sT ] + 1

T

)}
−
{
k̃

(
[rT ]− [sT ]− 1

T

)
− k̃

(
[rT ]− [sT ]

T

)}]
= −¨̃

k(r − s)

With this in mind we can rewrite expression (37) as follows

σ̌2
ω,u·v =

∫ ∫ (
1√
T

Λζω,[rT ]

)(
1√
T

Λζ∗ω,[sT ]

)(
T 2∇2K[rT ],[sT ]

)
dr ds

+

∫ (
1√
T

Λζω,[rT ]

)(
T (K[rT ],T −K[rT ]+1,T )

)
dr

(
1√
T

Λζ∗ω,T

)
+

(
1√
T

Λζω,T

)∫ (
1√
T

Λζ
∗

ω,[rT ]

)(
T (K[rT ],T −K[rT ]+1,T )

)
dr

+

(
1√
T

Λζω,T

)(
1√
T

Λζ∗ω,T

)
.
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The functions k̇ and ˙̃
k are odd whereas k̈ and ¨̃

k are even. Hence,

− ˙̃
k(r − 1) = −1

b
k̇

(
r − 1

b

)
=

1

b
k

(
1− r
b

)
,

¨̃
k(r) =

1

b2
k

(
r − s
b

)
.

The statement of the theorem now follows directly from the continuous mapping.

If k is the Bartlett kernel we have by definition

Kt,s = k

(
t− s
bT

)
=

(
1− |t− s|

bT

)
1{|t−s|≤bT}.

Consequently, it holds that

∇2Kt,j =


2
bT , t = j,

− 1
bT , t = j ± bT,

0, otherwise.

Thus, we can rewrite the first term in (37) as follows:

1

T

T−1∑
t=1

1

T

T−1∑
j=1

(
1√
T

Λζω,t

)(
1√
T

Λζ∗ω,j

)(
T 2∇2Kt,j

)
=

2

bT

T−1∑
t=1

(
1√
T

Λζω,t

)(
1√
T

Λζ∗ω,t

)

− 1

bT

T−[bT ]−1∑
j=1

(
1√
T

Λζω,j+[bT ]

)(
1√
T

Λζ∗ω,t

)

− 1

bT

T−[bT ]−1∑
t=1

(
1√
T

Λζω,t

)(
1√
T

Λζ∗ω,t+[bT ]

)
.

By the continuous mapping theorem, these terms converge to the first two summands of Q(P ).
Using

Kt,T −Kt+1,T = − 1

bT
1{T−bT≤t≤T−1},

we can rewrite the second term in (37) and obtain

T−1∑
t=1

(
1√
T

Λζω,t

)
(Kt,T −Kt+1,T )

(
1√
T

Λζ∗ω,T

)
= − 1

bT

T−1∑
t=T−[bT ]

(
1√
T

Λζω,t

)(
1√
T

Λζ∗ω,T

)
.

The third term is rewritten analogously. Both terms converge, once again by the continuous
mapping theorem, to the third summand of Q(P ). This completes the proof.

Proof of Proposition 3. The limiting distributions of σ̃2
ω,u·v and ˜̃σ2

ω,u·v follow immediately from
Proposition 3 in conjunction with Lemma 1 and Lemma 2, respectively.
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Proof of Theorem 3. By the same arguments as in the proof of Theorem 2 we obtain, using the
statement of Proposition 3, that

˜̃W = τ−2
ω (Rθ̃ − r)∗

[
RASIM

˜̃VSIMASIMR
∗
]−1

(Rθ̃ − r)

⇒ τ2
ω(RAΨω)∗

[
τ2
ωQ( ˜̃P )RAVSIMR

∗
A

]−1
(RAΨω) =

χ2
m

Q( ˜̃P )
,

where the independence of numerator and denominator can be directly deduced from the inde-
pendence of Ψω and Q( ˜̃P ).

Proof of Theorem 4. Note that mt = ut under the null hypothesis of cointegration. Hence, the
limiting distributions of K̃ and ˜̃K follow from the continuous mapping theorem in conjunction
with Lemma 1 and Lemma 2.

Proof of Lemma 3. It holds that

1

TMT
σ̂2
ω,u·v =

1

TMT
Ω̂ω,mm −

1

(TMT )1/2
Ω̂ω,mvΩ̂

−1
ω,vv

1

(TMT )1/2
Ω̂ω,vm, (38)

where

Ω̂ω =
1

T

T∑
t=2

T∑
s=2

k

(
t− s
MT

)
η̂tη̂
∗
s =

[
Ω̂ω,mm Ω̂ω,mv

Ω̂ω,vm Ω̂ω,vv

]
,

with η̂t = [m̂t,∇ωx′t]′ with mt denoting the OLS residuals from (25). We can rewrite Ω̂ω,mm as
follows:

1

TMT
Ω̂ω,mm =

1

TMT

(
Σ̂mm + Λ̂ω,mm + Λ̂∗ω,mm

)
,

with
1

TMT
Σ̂mm =

1

T 2MT

T∑
t=1

m̂tm̂
∗
t ,

which converges to zero in probability and

1

TMT
Λ̂ω,mm =

1

MT

T−1∑
h=1

k

(
h

MT

)
1

T

T−h∑
t=1

eiω(t+h)

√
T

m̂t+h
e−iωt√
T
m̂∗t

=

∫ T−1
MT

0

∫ 1− [xMT ]

T

0
k

(
[xMT ]

MT

)
eiω([rT ]+[xMT ])

√
T

m̂[rT ]+[xMT ]
e−iω[rT ]

√
T

m̂∗[rT ] dr dx

=

∫ ∞
0

∫ 1

0
FT (x, r)

eiω([rT ]+[xMT ])

√
T

m̂[rT ]+[xMT ]
e−iω[rT ]

√
T

m̂∗[rT ] dr dx (39)

with
FT (x, r) = k

(
[xMT ]

MT

)
1[

0,T−1
MT

)(x)1[
0,1− [xMT ]

T

)(r).
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If we denote the OLS estimator of θ = [δ′, β′]′ by θ̂, we derive the following invariance principle:

eiω[rT ]

√
T

m̂[rT ] =
eiω[rT ]

√
T

m[rT ] −
eiω[rT ]

√
T

x̃′rT (θ̂ − θ)

=
eiω[rT ]

√
T

m[rT ] −
eiω[rT ]

√
T

x̃′rTAOLSA
−1
OLS(θ̂ − θ)

=
eiω[rT ]

√
T

m[rT ] −
√
Teiω[rT ]x̃′rTAOLS

(
AOLS

T∑
t=1

x̃tx̃
′
tAOLS

)−1(
1

T
AOLS

T∑
t=1

x̃tmt

)

⇒ Bw(r)− J(r)′
(∫

J(s)J(s)′ ds

)−1 ∫
J(s)Bw(s) ds = U(r).

Since MT /T → 0 it follows that

eiω([rT ]+[xMT ])

√
T

m̂[rT ]+[xMT ] ⇒ U(r)

as well. Note that k([xMT ]/MT ) converges uniformly to k(x) and the product of the indicators
converges to 1[0,1)(r) in the Skorohod topology. Hence, FT also converges to

F (x, r) = k(x)1[0,1)(r)

in the Skorohod topology. Therefore, by Billingsley (1968, Theorem 4.1) and the continuous
mapping theorem we deduce that

1

TMT
Λ̂ω,mm ⇒

∫ ∞
0
k(x) dx

∫
U(r)U(r)∗ dr.

Since the kernel function is even it follows that

1

TMT
Ω̂ω,mm ⇒ 2

∫ ∞
0

k(x) dx

∫
U(r)U(r)∗ dr.

It remains to show that (TMT )−1/2Ω̂ω,mv converges to zero in probability. It holds that

E

∥∥∥∥∥ 1√
TMT

T−1∑
h=1

k

(
h

MT

)
1

T

T−h∑
t=1

eiω(t+h)m̂t+he
−iωtv∗t

∥∥∥∥∥
≤ MT√

T

(
1

MT

T−1∑
h=1

∣∣∣∣k( h

MT

)∣∣∣∣
)

max
1≤h<T

E

∥∥∥∥∥ 1

T

T−h∑
t=1

m̂t+hv
∗
t

∥∥∥∥∥
2
1/2

.

From Jansson (2002, Lemma 1) it follows that the second term is bounded. Using similar
arguments as in Gregoir (2010, Theorem 2.1) we deduce that the last term is bounded in
probability regardless of h. Since MT /

√
T → 0 as T → ∞ by the whole expression converges

to zero which concludes the proof.
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Proof of Proposition 4. With θa and SΞ
ω,t being defined in the proof of Theorem 1 it holds that

eiω[rT ]

T 3/2
S̃mω,t =

eiω[rT ]

T 3/2
Smω,t −

eiω[rT ]

T 3/2
SΞ′
ω,t(θ̃ − θa)

=
1

T

[rT ]∑
t=1

eiωj√
T
mj −

1√
T

[rT ]∑
j=1

eiωjΞ′jASIMA
−1
SIM (θ̃ − θa)

1

T
.

Under the alternative hypothesis it holds that

1

T
A−1
SIM (θ̃ − θa) =

(
ASIM

T∑
t=1

SΞ
ω,tS

Ξ′
ω,tASIM

)−1(
1

T
ASIM

T∑
t=1

SΞ
ω,tS

m
ω,t

)

=

(
1

T

T∑
t=1

1√
T
ASIMSΞ

ω,tS
Ξ′
ω,tASIM

1√
T

)−1(
1

T

T∑
t=1

ASIM
1√
T
Sω,t

Ξ
Smω,t

1

T 3/2

)

⇒
(∫

g(s)g(s)′ ds

)−1 ∫
g(s)

∫ s

0
Bw(u) du ds.

Consequently, we obtain

eiω[rT ]

T 3/2
S̃mω,t ⇒

∫ r

0
Bw(s) ds− g(r)′

(∫
g(s)g(s)′ ds

)−1 ∫
g(s)

∫ s

0
Bw(u) du ds = R̃(r)

and, by the continuous mapping theorem,

1

T 4

T∑
t=1

S̃mω,tS̃
m∗
ω,t =

1

T

T∑
t=1

eiωt

T 3/2
S̃mω,t

e−iωt

T 3/2
S̃m∗ω,t ⇒

∫
R̃(r)R̃(r)∗ dr.

Similarly, we derive
1

T 4

T∑
t=1

˜̃Smω,t
˜̃Sm∗ω,t ⇒

∫
˜̃R(r) ˜̃R(r)∗ dr.

The limiting distributions of K̃ and ˜̃K now follow from Lemma 3.

Proof of Theorem 5. From the proof of Proposition 3 we deduce that σ̃2
ω,u·v and ˜̃σ2

ω,u·v are
continuous functionals of S̃uω,[rT ] and

˜̃Suω,[rT ], respectively. Since

1

T 2

T∑
t=1

S̃uω,tS̃
u∗
ω,t =

∫
eiω[rT ]

√
T

S̃uω,[rT ]

e−iω[rT ]

√
T

S̃u∗ω,[rT ] dr

and
1

T 2

T∑
t=1

˜̃Suω,t
˜̃Su∗ω,t =

∫
eiω[rT ]

√
T

˜̃Suω,[rT ]

e−iω[rT ]

√
T

˜̃Su∗ω,[rT ] dr
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are continuous functionals of these processes, we conclude that K̃b and ˜̃Kb are also continuous
functionals. Hence, the theorem follows from Lemma 1 and Lemma 2 in conjunction with the
continuous mapping theorem.

Proof of Proposition 5. In order to derive the limiting distributions of the fixed-b statistics
under the alternative hypothesis, we only have to verify the claim for the denominator. It
holds that

1

T 2
σ̃2
ω,u·v =

1

T 3

T∑
t=2

T∑
s=2

eiω(t−s)k

(
t− s
M

)
∇ωS̃mω,t∇ωS̃m∗ω,s

=
T∑
t=2

T∑
s=2

k

(
t− s
M

)
eiωt

T 3/2

e−iωs

T 3/2
∇ωS̃mω,t∇ωS̃m∗ω,s .

Straightforward calculations show that

eiω[rT ]

T 3/2

[rT ]∑
t=2

∇ωS̃mω,t =
eiω[rT ]

T 3/2
S̃mω,[rT ] + oP(1)⇒ R̃(r).

Hence, the proof for K̃b follows from Proposition 3. The limiting distribution ˜̃Kb is proven
similarly.

B. Complex Normal Distributions

This section contains some definitions and properties of complex normal distributions. We start
with the main definition.

Definition B.1. Let X,Y be random vectors in Rk, such that [X ′, Y ′]′ is a 2k-dimensional
normally distributed vector. Then

Z := X + iY

has a complex normal distribution.

It is well known that the real normal distribution is entirely described by two parameters, the
mean vector and the covariance matrix. For the complex normal distribution these quantities
are defined by

µ = E(Z) = E(X) + iE(Y )

Γ = E((Z − µ)(Z − µ)∗) = ΓXX + ΓY Y + i(ΓY X − ΓXY ), (40)

where

ΓXX = E((X − E(X))(X − E(X))′)

ΓY Y = E((Y − E(Y ))(Y − E(Y ))′)

ΓXY = E((X − E(X))(Y − E(Y ))′)

ΓY X = E((Y − E(Y ))(X − E(X))′)
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Note that ΓXY = Γ′Y X and Γ = Γ∗. However, the real normal distribution of the 2k vector
[X ′, Y ′]′ is not entirely described by µ and Γ. Hence, we need an additional matrix, the so-called
relation matrix or pseudo-covariance matrix, defined by

C = E((Z − µ)(Z − µ)′) = ΓXX − ΓY Y + i(ΓXY + ΓY X), (41)

to completely describe the complex normal distribution. It is often useful to consider complex
normal distributions that have an additional property, called circularity or circular symmetry.

Definition B.2. Let Z ∈ Ck be a zero mean complex normal random vector. The distribution
of Z is said to be circular symmetric if for all φ ∈ R, eiφZ has the same distribution as Z.

Clearly, every circular symmetric random vector Z must fulfill E(Z) = 0. It is also obvious,
that multiplication by eiφ is not changing the covariance matrix of some random vector Z,
since

E((eiφZ)(eiφZ)∗) = E(eiφZZ∗e−iφ) = E(ZZ∗) = Γ.

For the relation matrix C, however, it holds that

E((eiφZ)(eiφZ)′) = e2iφE(ZZ ′) = e2iφC,

which is equal to C for all φ ∈ R if and only if C = 0. We summarize this in the following
proposition.

Proposition B.1 (Gallager, 2008). Assume that Z is a complex normal random vector. Then
Z is circularly symmetric if and only if C = 0. In this case the distribution of Z is entirely
determined by Γ.

Hence, for a complex normal distribution to be circular symmetric it is sufficient and necessary
that the relation matrix is equal to zero. In the following we denote a circularly symmetric
complex normal distribution with covariance matrix Γ by CN (0,Γ).

With this result we can easily connect the covariance matrix Γ of a CN (0,Γ) distributed random
vector Z = X+ iY and the covariance matrix of [X ′, Y ′]′, Σ say. From (40) and (41) we obtain
the following relations:

ΓXX + ΓY Y = Re(Γ),

ΓY X − ΓXY = Im(Γ),

ΓXX − ΓY Y = 0,

ΓXY + ΓY X = 0.

Hence, the covariance matrix of [X ′, Y ′]′ is given by

Σ =
1

2

[
Re(Γ) −Im(Γ)
Im(Γ) Re(Γ)

]
.

An important and in fact trivial example of circular symmetric normal random vectors is
W = [W1, . . . ,Wk]

′, where Wi = Xi + iYi and all Xi and Yi are i.i.d. N (0, 1/2)-distributed
random variables. Clearly, it holds µ = E(Z) = 0, Γ = E(WW ∗) = Ik and C = E(WW ′) = 0
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and we can use the somewhat familiar notation W ∼ CN (0, Ik). Let M ∈ Cm×k denote some
nonsingular complex matrix and define Z = MW . Then it holds that E(Z) = 0,

ΓZ = E((MW )(MW )∗) = E(MWW ∗M∗) = ME(WW ∗)M∗ = MM∗

and
CZ = E((MW )(MW ′) = E(MWW ′M ′) = ME(WW ′)M ′ = 0.

Hence, Z ∼ CN (0,MM∗). On the other hand, if Z ∼ CN (0,Γ) with positive definite covariance
matrix Γ, there exists a matrix R such that RR∗ = Γ. This can be summarized in the following
proposition.

Proposition B.2 (Gallager, 2008). A necessary and sufficient condition of a random vector Z
to have a circular symmetric normal distribution is that Z = AW where W ∼ CN (0, I) and A
is an arbitrary complex matrix.

We deduce an important property from this proposition: Let Z ∼ CN (0,Γ) and let A be such
that AA∗ = Γ. Then there exists W ∼ CN (0, Ik) and it holds that W = AZ. Consequently,

2Z∗Γ−1Z = 2(AW )∗(AA∗)−1(AW ) = 2W ∗A∗(A∗)−1A−1AW = 2W ∗W ∼ χ2
2k,

since

2W ∗W = 2
k∑
l=1

WlW l = 2
k∑
l=1

Re(Wl)
2 + Im(Wl)

2 =
2k∑
l=1

W̃ 2
l ,

with W̃l being i.i.d. standard normally distributed.

At the end of this section we briefly link the theory of complex normal distributions to complex
Brownian motions that frequently occurred in the main text as limiting processes of functional
central limit theorems of the form

1√
T

[rT ]∑
t=1

eiωtηt ⇒
1√
2
B(r) =

1√
2

Ω1/2
ω W (r),

with W (r) = WRe(r) + iWIm(r), where WRe and WIm are independent standard Wiener pro-
cesses. Since WRe(r) ∼ N (0, rI) and WIm(r) ∼ N (0, rI), we obtain W (r) ∼ CN (0, 2rI) and
by Proposition B.2,

1√
2

Ω1/2
ω W (r) ∼ CN (0, rΩω),

since Ω
1/2
ω Ω

1/2
ω

∗
= Ωω.
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