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The paper has two main contributions. First, weak convergence results are derived from
sampling moments of processes that contains a unit root at an arbitrary frequency, where,
in contrast to the previous literature, the proofs are mainly based on algebraic manipula-
tions and well known weak convergence results for martingale difference sequences. These
convergence results are used to derive the limiting distribution of the ordinary least squares
estimator for unit root autoregressions. As as second contribution, a Phillips-Perron type
test for a unit root at an arbitrary frequency is introduced and its limiting distributions are
derived. This test is further extended to a joint test for multiple unit roots and seasonal
integration. The limiting distributions of these test statistics are asymptotically equivalent
to various statistics presented earlier in the seasonal unit root literature.
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1. Introduction

Consider the n-dimensional stochastic process {xt}t∈N in discrete time generated according to
the difference equation

xt = Axt−1 + ηt, t ∈ N, (1)

A = e−iωIn,

for some frequency ω ∈ (−π, π], where we assume that the the starting value x0 is OP(1) and
where {ηt}t∈Z is a weakly stationary with mean zero. The process {xt}t∈N0 is called integrated
at frequency ω or, since eiω is the root of the equation 1− e−iωz = 0, it is also called unit root
process.
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The limiting distributions of the sample covariance matrices 1
T 2

∑T
t=1 xtx

∗
t and 1

T

∑T
t=1 xt−1η

∗
t

are important building blocks in the derivation of an asymptotic theory for unit root test
statistics as well as for inference in cointegrating systems. If the process {ηt}t∈Z fulfills a
functional central limit theorem the limiting distribution of the former can be easily derived
by an application of the continuous mapping theorem. The limiting distribution of the latter
is more complicated. In case of ω = 0 Phillips (1988b) showed under very general conditions
on the process {ηt}t∈Z that

1

T

T∑
t=1

xt−1ηt ⇒
∫ 1

0
B(r) dB(r) + Λ0,

as T →∞, where B(r) is a vector Brownian motion with covariance matrix given by the long-
run variance matrix of {ηt}t∈Z. The additive bias term Λ0 defined as the sum of all E(η0η

′
h)

over h ∈ N and is therefore also called one sided long-run covariance matrix.

Phillips’ proof, however, is quite long and one needs a very deep understanding of certain
concepts from probability theory to be able to follow it. Therefore, Phillips (1988a) presented
a much simpler proof under marginally more restrictive assumptions. In particular, he requires
{ηt}t∈Z to be a linear process of the form

ηt =
∞∑

j=−∞
ψjεt−j ,

with {εt}t∈Z being an i.i.d. sequence with zero mean and finite variance and where the coefficient
matrices satisfy

∞∑
j=1


∥∥∥∥∥∥
∞∑
k=j

ψk

∥∥∥∥∥∥+

∥∥∥∥∥∥
∞∑
k=j

ψ−k

∥∥∥∥∥∥
 <∞. (2)

Gregoir (2010) relaxed the i.i.d. assumption on {εt}t∈Z and extended Phillips’ approach by
deriving the limiting distribution for arbitrary values of ω.

The drawback of the proofs of Phillips (1988a) and Gregoir (2010) is that they are based on
the martingale approximation theory of Hall and Heyde (1980), with which many researchers
are not familiar with. Thus, one of the aims of this paper is to derive the same results, but
without making use of this theory. Instead, we use a decomposition of {xt}t∈N0 which is based
on the so-called Beveridge-Nelson decompisition, and derive a functional central limit theorem
following the approach of Phillips and Solo (1992). Furthermore, this decomposition allows us
to decompose the sample covariance matrix in such a way that we can derive its asymptotic
distribution with simple algebraic transformations and apply well known convergence results
for martingale difference sequences. As the only additional assumption we demand that the
process {ηt}t∈Z is a causal with respect to {εt}t∈Z.
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We derive the asymptotic distribution of the OLS estimator for A in the regression model (1)
as a direct application. With this result in place we generalize the approach of Phillips (1987)
and Phillips and Perron (1988) and modify the OLS estimator so that the limiting distribution
is free of nuisance parameters. We then use this modified estimator to construct a test for
unit roots at any given frequency ω. As an extension of this test we present a joint test for
multiple unit roots and for seasonal integration, similar to the tests of Hylleberg et al. (1990)
and Ghysels et al. (1994).

The remainder of this paper is organized as follows: In Section 2 we state the precise assump-
tions and present the decomposition mentioned above. In Section 3 we derive the functional
central limit theorem and the limiting distributions of the sample covariance matrices. Section 4
contains the tests for unit roots and seasonal integration. Section 5 concludes. Appendix A
contains some auxiliary algebraic results. The proofs of the main mathematical results are
relegated to Appendix B.

Throughout the paper we use the following notation: Weak convergence is denoted by ⇒
and convergence in probability is signified by P→. For convergence in probability to zero we
use the small O notation oP(1) whereas we use OP(1) to indicate stochastic boundedness.
The integer part of a real number x is given by [x] and the modulus of a complex number
x = Re(x) + i Im(x) is denoted by |x|. We use the notation ‖x‖ to signify the Frobenius
norm. For a (possibly complex valued) matrix A we denote its transpose, complex conjugate
and Hermitian transpose by A′, A and A∗, respectively. With L and ∆ω we denote the lag
operator and the seasonal first difference operator, respectively and we use the somewhat sloppy
notations Lxt = xt−1 and ∆ωxt = xt − e−iωxt−1.

2. Setup, Assumptions and Decomposition of Unit Root Processes

As mentioned in the introduction, we consider processes generated according to (1) with x0

being OP(1) and {ηt}t∈Z satisfying the following assumption.

Assumption 1. The process {ηt}t∈Z is a linear process of the form

ηt = Ψ(L)εt =

∞∑
j=0

ψjεt−j , (3)

where det(Ψ(eiω)) 6= 0 and where the coefficient matrices ψj ∈ Cn×n satisfy the summability
condition

∞∑
j=0

j‖ψj‖ <∞. (4)
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The innovation process {εt}t∈Z is a martingale difference sequence with respect to its canonical
filtration Ft = σ{εt−j , j ∈ N0} satisfying E(εtε

′
t|Ft−1) = In and supt E(‖εt‖2+δ|Ft−1) < ∞

with probability one for some δ > 0.

Remark 1. The summability condition (4) is common in the unit root literature, as it is, for
instance, fulfilled by all causal, stationary and invertible ARMA processes. In particular, since

∞∑
j=1


∥∥∥∥∥∥
∞∑
k=j

ψk

∥∥∥∥∥∥+

∥∥∥∥∥∥
∞∑
k=j

ψ−k

∥∥∥∥∥∥
 =

∞∑
j=1

∥∥∥∥∥∥
∞∑
k=j

ψk

∥∥∥∥∥∥ ≤
∞∑
j=1

∞∑
k=j

‖ψk‖ ≤
∞∑
j=0

j‖ψj‖,

it implies the previously mentioned summability condition (2).

Remark 2. The assumptions stated on the sequence {εt}t∈Z are quite general and are widely
applied in the literature. However, the restriction on the (conditional) covariance matrix
is imposed only for notational simplicity and can of course be relaxed by assuming that
E(εtε

′
t|Ft−1) = Σε where Σε is positive definite.

Under Assumption 1 the process {ηt}t∈Z has a continuous spectral density, f(ω) say, and we
define

Ωω = 2πf(ω) =
∞∑

h=−∞
e−iωhE(η0η

∗
h) =

∞∑
h=−∞

e−iωh
∞∑
j=0

ψjψ
∗
j+h. (5)

Note that Ωω = Ψ(eiω)Ψ(eiω)∗. Furthermore, it holds that Ωω = Σ + Λω + Λ∗ω, where

Σ = E(η0η
∗
0) =

∞∑
j=0

ψjψ
∗
j (6)

and

Λω =
∞∑
h=1

e−iωhE(η0η
∗
h) =

∞∑
h=1

e−iωh
∞∑
j=0

ψjψ
∗
j+h. (7)

If ω = 0 it is well known that the process {xt}t∈N0 can be decomposed into a pure random
walk, a stationary component and an initial value component. The following result generalizes
this decomposition to the arbitrary frequency case.

Proposition 1. Let {xt}t∈N0 be a stochastic process in discrete time generated according to the
difference equation (1) with Assumption 1 in place. Then, it holds that

xt = e−iωt(x0 + η̃0) + Ψ(eiω)e−iωt
t∑

j=1

eiωjεj − η̃t, t = 1, 2 . . . ,
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where {η̃t}t∈Z is a weakly stationary process with moving average representation

η̃t = Ψ̃(L)εt =
∞∑
j=0

ψ̃jεt−j , ψ̃j = e−iωj
∞∑

k=j+1

eiωkψk.

Remark 3. The proof of Proposition 1 is essentially an application of the so-called Beveridge-
Nelson decomposition at frequency ω. It states that a matrix polynomial A(z) with matrix
coefficients Aj satisfying

∑∞
j=0 j‖Aj‖ <∞ can be decomposed into

A(z) = A(eiω)− (1− e−iωz)B(z),

where B(z) is a matrix polynomial with absolutely summable matrix coefficients (cf. Phillips
and Solo, 1992). We present a simple algebraic proof of this decomposition in Appendix A.

3. Convergence of Sample Covariance Matrices

In this section we present a functional central limit theorem as well as several results on the
limiting distributions of sample covariance matrices of integrated processes at some arbitrary
frequency. As our main contribution we extend the result of Phillips (1988a) for processes that
are integrated at some arbitrary frequency. The following lemma is the central building block
for the subsequent results.

Lemma 1. Let {εt}t∈Z be a martingale difference sequence that satisfies Assumption 1. Then,
as T →∞, it holds that 1√

T

[rT ]∑
t=1

eiωtεt,
1

T

[rT ]∑
t=1

e−iωt
t−1∑
j=1

eiωjεjε
′
t

⇒ (
τωW (r), τ2ω

∫ r

0
W (s) dW (s)∗

)
.

where

τω =

1 if ω ∈ {0, π},
1√
2
, if ω ∈ (−π, 0) ∪ (0, π)

(8)

and W (r) is an n-dimensional standard Brownian motion if ω ∈ {0, π} and an n-dimensional
standard complex Brownian motion if ω ∈ (−π, 0) ∪ (0, π), i.e. W (r) = W1(r) + iW2(r) with
independent n-dimensional (real valued) standard Brownian motions W1(r) and W2(r).

Our first main result is a functional central limit theorem for processes that are integrated at
an arbitrary frequency.
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Theorem 1. Let {xt}t∈N0 be a stochastic process in discrete time generated according to the
difference equation (1) with Assumption 1 in place. Then, as T →∞, it holds that

eiω[rT ]√
T

x[rT ] ⇒ τωB(r), r ∈ (0, 1],

where B(r) = Ψ(eiω)W (r) with τω and W (r) defined in Lemma 1.

Theorem 1 can be extended to the following joint convergence result without any additional
effort. Let {xt,k}t∈N0 , k = 1, . . . ,K, be n-dimensional processes generated according to xt,k =

e−iωkxt−1,k + ηt with ωk 6= ωj for all k 6= j. Then, as T →∞,[
eiω1[rT ]

√
T

x[rT ],1, . . . ,
eiωK [rT ]

√
T

x[rT ],K

]
⇒ [τω1B1(r), . . . , τωKBK(r)] ,

where Bk(r) = Ψ(eiωk)Wk(r) for k = 1, . . . ,K and W1(r), . . . ,WK(r) are independent Brow-
nian motions, complex valued if the corresponding frequency ωk is different from zero or π.
Furthermore, Theorem 1 can be generalized for the weak convergence of the cumulative sum of
eiωtxt. In particular, it holds that

1

T 3/2

[rT ]∑
t=1

eiωtxt ⇒ τω

∫ r

0
B(s) ds,

as T →∞, which is a direct consequence of the continuous mapping theorem. This result can
be extended to multiple cumulative summation.

Corollary 1. Let {xt}t∈N0 be a stochastic process in discrete time generated according to the
difference equation (1) with Assumption 1 in place. Then, as T →∞, it holds that

1

T (2m+1)/2

[rT ]∑
t1=1

t1∑
t2=1

· · ·
tm−1∑
tm=1

eiωtmxtm ⇒ τω

∫ r

0

∫ s1

0
· · ·
∫ sm−1

0
B(sm) dsm dsm−1 . . . ds1,

for any m ∈ N, where the process limiting process B(r) is defined in Theorem 1.

The subsequent proposition states the limiting distribution of the sample covariance matrix
between two processes that are integrated at the same frequency as well as the asymptotic
orthogonality of two processes that are integrated at different frequencies. The former statement
follows again from Theorem 1 and the continuous mapping theorem whereas the latter is an
algebraic consequence of the fact that

∑T
t=1 e

iθt is bounded if and only if θ is different from
zero (cf. Lemma A.1 in the appendix).
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Proposition 2. Let {xt,1}t∈N0 and {xt,2}t∈N0 be two n-dimensional stochastic process, gener-
ated according to the difference equations

xt,1 = e−iω1xt−1,1 + ηt,

xt,2 = e−iω2xt−1,2 + ηt

for t ∈ N, where {ηt}t∈Z is a stationary process that satisfies Assumption 1 and the starting
values x0,1 and x0,2 are OP(1).

If ω1 = ω2 then, as T →∞ it holds that

1

T 2

T∑
t=1

xt,1x
∗
t,2 ⇒ τ2ω1

∫ 1

0
B(r)B(r)∗ dr,

with B(r) = Ψ(eiω1)W (r) being the limiting process from Theorem 1.

If ω1 6= ω2 then, as T →∞, it holds that

1

T 2

T∑
t=1

xt,1x
∗
t,2

P→ 0. (9)

Remark 4. Proposition 2 can easily be generalized to covariance matrices of more than two
integrated processes as follows. For k = 1, . . . ,K let {xt,k}t∈N0 be n-dimensional processes
where for every k the process {xt,k}t∈N0 is generated according to xt,k = e−iωkxt−1,k + ηt with
x0,k being OP(1) and where ωk 6= ωj for all k 6= j. Define

X =


x1,1 x1,2 . . . x1,K
...

...
...

xT,1 xT,2 . . . xT,K

 .
Then, as T →∞, it holds that

1

T 2
(X∗X)⇒


τ2ω1

∫ 1
0 B1(r)B1(r)

∗ dr 0 . . . 0

0 τ2ω2

∫ 1
0 B2(r)B2(r)

∗ dr . . . 0
...

...
. . .

...
0 0 . . . τ2ωK

∫ 1
0 BK(r)BK(r)∗ dr

 ,

where Bk(r) = Ψ(eiωk)Wk(r) for k = 1, . . . ,K and W1(r), . . . ,WK(r) are independent Brown-
ian motions, complex valued if the corresponding frequency ωk is different from zero or π.
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Remark 5. The statement of Proposition 2 holds also for processes {xt,1}t∈N0 and {xt,2}t∈N0

that are generated according to the difference equation (1) but with distinct processes {ηt,1}t∈Z
and {ηt,2}t∈Z, i.e.

xt,1 = e−iω1xt−1,1 + ηt,1

xt,2 = e−iω2xt−1,2 + ηt,2,

for t ∈ N with starting values x0,1 and x0,2 being OP(1). If the stacked process {[η′t,1, η′t,2]′}t∈Z
is stationary and fulfills Assumption 1 then it holds that

1√
T

[
eiω1[rT ]x[rT ],1

eiω2[rT ]x[rT ],2

]
⇒

[
B1(r)

B2(r)

]
, r ∈ (0, 1],

and, consequently, if ω1 = ω2 we obtain as T →∞,

1

T 2

T∑
t=1

xt,1x
∗
t,2 ⇒

∫ 1

0
B1(r)B2(r)

∗ dr.

whereas if ω1 6= ω2 it holds that
1

T 2

T∑
t=1

xt,1x
∗
t,2

P→ 0.

The statement in Remark 4 can be extended in a similar way.

By the same arguments as in the proof of Proposition 2 we can derive the limiting distribution
of the sample covariance matrix between a process integrated at some frequency ω and a
deterministic sequence.

Corollary 2. Let {xt}t∈N0 be generated as in Theorem 1 and let {dt}t∈N0 be a p-dimensional
deterministic sequence with such that G−1D eiθ[rT ]D[rT ] ⇒ D(r), as T →∞, for some θ ∈ (−π, π],
where GD ∈ Rp×p is a scaling matrix and D(r) is a càdlàg function.

If θ = ω then, as T →∞, it holds that

1

T 3/2
G−1D

T∑
t=1

dtx
∗
t ⇒ τω

∫ 1

0
D(r)B(r)∗ dr.

If θ 6= ω then, as T →∞, it holds that

1

T 3/2
G−1D

T∑
t=1

dtx
∗
t

P→ 0.
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An important example for a deterministic sequence that satisfy the Assumptions in the Corol-
lary is {dt}t∈N0 , where dt = e−iθtft with

ft = [1, t, t2, . . . , tq]′.

Then, with GD = diag(1, T, T 2, . . . , T q) it holds that

G−1D eiθ[rT ]d[rT ] =

[
1,

[rT ]

T
,

(
[rT ]

T

)2

, . . . ,

(
[rT ]

T

)q]′
⇒ [1, r, r2, . . . , rq]′.

Hence, by setting θ = 0, it follows that the sequence of monomials dt = [1, t, t2, . . . , tq]′ is
asymptotically orthogonal to any process {xt}t∈N0 that is integrated at some frequency ω 6= 0.

Next, we discuss the limiting distribution of the sample covariance between xt−1 and ηt in
model (1), which is the main contribution of this section. If {xt}t∈N0 is scalar Phillips (1987)
showed that the limiting distribution can be easily calculated using the identity

x2t = (xt−1 + ηt)
2 = x2t−1 + η2t + 2xt−1ηt.

In particular, it holds that

1

T

T∑
t=1

xt−1ηt =
1

2T

T∑
t=1

(x2t − x2t−1)−
1

2T

T∑
t=1

η2t =
1

2T
(x2T − x20)−

1

2T

T∑
t=1

η2t .

The weak law of large numbers implies that the latter term converges to Σ/2 and it holds
that x20/T 2 converges to zero in probability as the starting value x0 is OP(1). Theorem 1, the
continuous mapping theorem and Itô’s Lemma yield

1

2T
x2T ⇒

1

2
B(1)2 =

Ω0

2
W (1)2 =

Ω0

2
(W (1)2 − 1) +

Ω0

2
= Ω0

∫ 1

0
W (r) dW (r) +

Ω0

2
.

From Ω0 = Σ + 2Λ0 we conclude that

1

T

T∑
t=1

xt−1ηt ⇒ Ω0

∫ 1

0
W (r) dW (r) +

Ω0

2
− Σ =

∫ 1

0
B(r) dB(r) + Λ0. (10)

Similarly, we can derive the limiting distribution for {xt}t∈N0 being scalar and generated ac-
cording to (1) with ω = π. In this case it holds that

x2t = x2t−1 − 2xt−1ηt + η2t
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and, using exactly the same arguments as above, we deduce that

1

T

T∑
t=1

xt−1ηt = −

(
1

2T

(
x2T − x20

)
− 1

2T

T∑
t=1

η2t

)
⇒ −

∫ 1

0
B(r) dB(r)− Λπ. (11)

We cannot apply this approach when ω ∈ (−π, 0) ∪ (0, π) since in this case it holds that

xtxt = (e−iωxt−1 + ηt)(e
iωxt−1 + ηt) = xt−1xt−1 + ηtηt + e−iωxt−1ηt + eiωηtxt−1.

Hence, as T →∞,

1

T

T∑
t=1

(e−iωxt−1ηt + eiωηtxt−1) =
1

T

T∑
t=1

(xtxt − xt−1xt−1)−
1

T

T∑
t=1

ηtηt

=
1

T
xTxT −

1

T
x0x0 −

1

T

T∑
t=1

ηtηt

⇒ B(1)B(1)− Σ.

Without any effort, for multivariate {xt}t∈N0 we obtain analogously

1

T

T∑
t=1

(e−iωxt−1η
∗
t + eiωηtx

∗
t−1)⇒ B(1)B(1)∗ − Σ. (12)

By an application of the multivariate integration-by-parts formula for Brownian motions1 and
noting that Ψ(eiω)Ψ(eiω)∗ − Σ = Λω + Λ∗ω we can rewrite (12) as

B(1)B(1)∗ − Σ =

∫ 1

0
B(r) dB(r)∗ +

∫ 1

0
dB(r)B(r)∗ + Λω + Λ∗ω.

Whilst the above considerations lead one to expect that

1

T

T∑
t=1

e−iωxt−1η
∗
t ⇒

∫ 1

0
B(r) dB(r)∗ + Λω, (13)

1The integration-by-parts formula also applies for complex Brownian motions. Let V (r) = V1(r) + iV2(r) and
Z(r) = Z1(r)+iZ2(r) be two complex Brownian motions. Then, by the definition of the complex Itô-Integral
it holds that∫ 1

0

V (r) dZ(r)∗ =

∫ 1

0

V1(r) dZ1(r) +

∫ 1

0

V2(r) dZ2(r) + i

∫ 1

0

V2(r) dZ1(r)− i

∫ 1

0

V1(r) dZ2(r).

The complex integration-by-parts formula follows from an application of the multivariate real integration-
by-parts formula for each of the integrals and rearranging the resulting terms.
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as T →∞, this claim cannot be deduced from (12). This is similar to the case where {xt}t∈N0

is multivariate with ω ∈ {0, π}. In particular, if ω = 0 it holds that

xtx
′
t = (xt−1 + ηt)(xt−1 + ηt)

′ = xt−1x
′
t−1 + ηtη

′
t + xt−1η

′
t + ηtx

′
t−1

and, instead of a multivariate version of (10), we now obtain

1

T

T∑
t=1

(xt−1η
′
t + ηtx

′
t−1)⇒ B(1)B(1)′ − Σ. (14)

If ω = π it holds that xtx′t = xt−1x
′
t−1 − xt−1ηt − ηtxt−1 + η′t and, hence,

− 1

T

T∑
t=1

(xt−1η
′
t + ηtx

′
t−1)⇒ B(1)B(1)′ − Σ. (15)

Phillips (1988a,b) has proven (13) for ω = 0. The general result for arbitrary frequencies is the
main result of this section.

Theorem 2. Let {xt}t∈N0 be a stochastic process in discrete time generated according to the
difference equation (1) with Assumption 1 in place. Then, as T →∞, it holds that

1

T

T∑
t=1

xt−1η
∗
t ⇒ eiω

(
τ2ω

∫ 1

0
B(r) dB(r)∗ + Λω

)
, (16)

where τω and Λω are introduced in (8) and (7), respectively and B(r) is defined in Theorem 1.

Remark 6. As mentioned in the introduction this result has also been established by Gregoir
(2010). However, his proof is a generalization of the proof of Phillips (1988a) and therefore
it crucially relies on the martingale approximation of Hall and Heyde (1980). Our proof of
Theorem 2 is much simpler as we only require weak convergence results for martingale difference
sequences, presented in Lemma 1, and the decomposition stated in Proposition 1.

By the same arguments as in the proof of Theorem 2 we can also derive the limiting distribution
of the sample covariance matrix between {ηt}t∈Z and a deterministic sequence.

Corollary 3. Let {ηt}t∈Z be a stochastic process that fulfills Assumption 1 and let {dt}t∈N0 be
a deterministic sequence that satisfies the assumptions stated in Corollary 2. Then, as T →∞,
it holds that

1

T 1/2
G−1F

T∑
t=1

dtη
∗
t ⇒ τω

∫ 1

0
D(r) dB(r)∗.

Note that there is no additive bias appearing in the limiting distribution which is due to the
obvious independence between deterministic sequences and stochastic processes.
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At the end of this section we present the limiting distribution of the ordinary least squares
estimator (OLS) for A in (1), given by

Â =

(
T∑
t=1

xtx
∗
t−1

)(
T∑
t=1

xt−1x
∗
t−1

)−1
, (17)

which is an important building block for the asymptotic theory of seasonal unit root tests
discussed in the next section.

Theorem 3. Let {xt}t∈N0 be a stochastic process in discrete time generated according to the
difference equation (1) with Assumption 1 in place. Then, as T →∞, it holds that

T (Â−A)⇒ e−iω
(
τ2ω

∫ 1

0
dB(r)B(r)∗ + Λ∗ω

)(
τ2ω

∫ 1

0
B(r)B(r)∗ dr

)−1
, (18)

where Λω and τω are introduced in (7) and (8), respectively and B(r) is defined in Theorem 1.

We can extend this result for unit root processes that contain a deterministic component. In
particular, consider the n-dimensional stochastic process {yt}t∈N0 generated according to

yt = Bddt + xt, t ∈ N, (19)

where the process {xt}t∈N0 is generated according to (1) and {dt}t∈N0 is a deterministic sequence
satisfying the assumptions stated in Corollary 2 and Corollary 3. Clearly, (19) is equivalent
to

yt = Bddt +Bxxt−1 + ηt, t ∈ N, (20)

where Bx = e−iωIn. Setting zt = [d′t, x
′
t−1]

′ the OLS estimator for B = [Bd, Bx] is given by

B̂ =

(
T∑
t=1

ytz
∗
t

)(
T∑
t=1

ztz
∗
t

)−1
.

The limiting distribution of the scaled and centered OLS estimator follows now from several
results presented previously in this section. Note that from the different convergence rates
required in Proposition 2 and Corollary 2 as well as in Theorem 2 and Corollary 3 we deduce
that the coefficient estimates must also converge at different rates. We therefore define the
scaling matrix

G =

[
Gd 0

0 T 1/2In

]
,

where Gd is defined in Corollary 2.
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Corollary 4. Let {yt}t∈N0 be defined as in (20) where {xt}t∈N0 is generated according to (1)
and {dt}t∈N0 is a deterministic sequence satisfying the assumptions stated in Corollary 2. Then,
as T →∞, it holds that

√
T (B̂ −B)G⇒ e−iω

(
τ2ω

∫ 1

0
dB(r) J(r)∗ + [0n×p,Λ

∗
ω]

)(
τ2ω

∫ 1

0
J(r)J(r)∗ dr

)−1
,

where J(r) = [τ−1ω eiωD(r)′, B(r)′]′ with D(r) and B(r) defined in Theorem 1 and Corollary 2,
respectively.

4. Testing for Unit Roots

As an application of the results in Section 3 we generalize the tests of Phillips (1987) and
Phillips and Perron (1988) to test for unit roots at an arbitrary frequency. Additionally, we
extend our approach to test for seasonal integration by jointly testing for unit roots at multiple
seasonal frequencies in the spirit of Hylleberg et al. (1990) and Ghysels et al. (1994).

4.1. A Phillips-Perron Type Test for a Unit Root

Let {xt}t∈N0 be a scalar process be generated according to (1) for some ω ∈ (−π, π] and {ηt}t∈Z
being a stationary process that satisfies Assumption 1. Subtracting e−iωxt−1 on both sides of
(1) yields to the equivalent representation

∆ωxt = (A− e−iω)xt−1 + ηt (21)

with A− e−iω = 0. Hence, a test for a unit root at frequency ω can be carried out by testing
the null hypothesis H0 : γ = 0 in the linear regression model

∆ωxt = γxt−1 + ηt. (22)

The OLS estimator for γ is given by

γ̂ =

∑T
t=1 xt−1∆ωxt∑T
t=1 |xt−1|2

.

Note that ∆ωxt = ηt under the null hypothesis. Hence, using the identity Λω = Λ−ω we
immediately deduce from Theorem 3 that, as T →∞,

T γ̂ ⇒
e−iω

(
τ2ω
∫ 1
0 B(r) dB(r) + Λ−ω

)
τ2ω
∫ 1
0 |B(r)|2 dr

,

13



where B(r) = Ψ(eiω)W (r) with W (r) = W1(r) + iW2(r) as in Lemma 1.

The Phillips-Perron type modification of the OLS estimator hinges upon the consistent estima-
tion of the additive bias term Λ−ω. Consider the kernel estimator for Λω of the form

Λ̂ω =
1

T

T−1∑
h=1

k

(
h

MT

)
e−iωh

1

T

T−h∑
t=1

η̂tη̂t+h, (23)

where η̂t are the OLS residuals from (22), MT is the so-called bandwidth parameter and k is
the kernel weighting function. We impose the following assumption, which is due to Jansson
(2002), on the kernel function and the bandwidth parameter:

Assumption 2. The kernel function k : R→ R is even, bounded and continuous. Furthermore,
the function k̃ : R → R, defined by k̃(x) = supy≥|x| |k(y)| is integrable on R. The bandwidth
parameter MT satisfies M−1T → 0 and MT /T

1/2 → 0 as T →∞.

Under Assumption 2 the convergence results of Jansson (2002) for the frequency ω = 0 can be
easily extended to the arbitrary frequency case, i.e.

Λ̂ω
P→ Λω, (24)

as T → ∞. With this consistency result we can modify the estimator γ̂ in order to obtain an
asymptotically nuisance parameter free limiting distribution. In particular, a Phillips-Perron
type modification of γ̂ is given by

γ̂+ =

(∑T
t=1 xt−1∆ωxt − Te−iωΛ̂−ω

)
∑T

t=1 |xt−1|2
. (25)

The following proposition states the limiting distribution of γ̂+.

Proposition 3. Let {xt}t∈N0 be a scalar stochastic process generated according to the difference
equation (21) with Assumption 1 in place. Let Λ̂ω be defined as in (23) with bandwidth parameter
MT and kernel function k(r) satisfying Assumption 2. Then, as T →∞, it holds that

T γ̂+ ⇒
e−iω

∫ 1
0W (r) dW (r)∫ 1

0 |W (r)|2 dr
,

with Brownian motion W (r), defined in Lemma 1.
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Remark 7. If W (r) is a complex Brownian motion, i.e. W (r) = W1(r) + iW2(r), it holds for
the real and imaginary parts of the stochastic integral and for the denominator that appears
in the limiting distribution that

Re

{∫ 1

0
W (r) dW (r)

}
=

∫ 1

0
W1(r) dW1(r) +

∫ 1

0
W2(r) dW2(r),

Im

{∫ 1

0
W (r) dW (r)

}
=

∫ 1

0
W1(r) dW2(r)−

∫ 1

0
W2(r) dW1(r)

and ∫ 1

0
|W (r)|2 dr =

∫ 1

0
W 2

1 (r) dr +

∫ 1

0
W 2

2 (r) dr.

The limiting distribution in Proposition 3 is a complex valued distribution if ω ∈ (−π, 0)∪(0, π)

and, hence, the null hypothesis can be equivalently stated as

H0 : Re{γ} = 0 and Im{γ} = 0.

To test this hypothesis we consider the following F -type statistic:

Fω =
|γ̂+|2

Ω̂ω

T∑
t=1

|xt−1|2, (26)

where Ω̂ω = Σ̂ + Λ̂ω + Λ̂−ω with Λ̂ω defined in (23) and Σ̂ denoting the consistent sample
covariance estimator, i.e.

Σ̂ =
1

T

T∑
t=1

η̂tη̂t.

Since Σ̂
P→ Σ and Λ̂ω

P→ Λω it holds that Ω̂ω is a consistent estimator for Ωω = |Ψ(eiω)|2.
Proposition 3 and the continuous mapping theorem immediately imply that

T 2|γ̂+|2 ⇒
Re
{∫ 1

0W (r) dW (r)
}2

+ Im
{∫ 1

0W (r) dW (r)
}2

(∫ 1
0 |W (r)|2 dr

)2 .

Furthermore, from Proposition 2 we deduce that

1

T 2Ω̂ω

T∑
t=1

|xt−1|2 ⇒
τ2ω
Ωω

∫ 1

0
|B(r)|2 dr = τ2ω

∫ 1

0
|W (r)|2 dr.

The continuous mapping theorem and the identities stated in Remark 7 yield the limiting
distribution of the test statistic Fω under the null hypothesis.
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Theorem 4. Under the assumptions of Proposition 3 it holds for T →∞ that

Fω ⇒

(∫ 1
0W (r) dW (r)

)2
∫ 1
0W

2(r) dr
,

with standard Brownian motion W (r) if ω ∈ {0, π} and

Fω ⇒
1

2

(∫ 1
0W1(r) dW1(r) +

∫ 1
0W2(r) dW2(r)

)2
∫ 1
0W

2
1 (r) dr +

∫ 1
0W

2
2 (r) dr

+
1

2

(∫ 1
0W1(r) dW2(r)−

∫ 1
0W2(r) dW1(r)

)2
∫ 1
0W

2
1 (r) dr +

∫ 1
0W

2
2 (r) dr

,

where W1(r) and W2(r) are independent standard Brownian motions if ω ∈ (−π, 0) ∪ (0, π).

In practice time series models of the form (1) or (21) with ω ∈ (−π, 0)∪ (0, π) are found rather
rarely, as these models are complex valued by design. Instead, one often assumes that the
observed time series is a realization of a process, {yt}t∈N0 say, of the form

yt = 2 cos(ω)yt−1 + yt−2 + ηt, (27)

with {ηt}t∈Z satisfying assumptions such as Assumption 1. The process {yt}t∈N0 is integrated
at both frequencies ω and −ω since (27) can be rewritten equivalently as

∆ω∆−ωyt = (1− e−iωL)(1− eiωL)yt = ηt.

Define {yt,1}t∈N0 and {yt,2}t∈N0 via yt,1 = ∆−ωyt and yt,2 = ∆ωyt, respectively. Then, it holds
that yt,1 = yt,2 and yt = µ1yt,1 + µ2yt,2 with

µ1 =
e−iω

e−iω − eiω

and µ2 = µ1. Note that µ = 0 if and only if µ = 0 and, consequently, testing for a unit root
at frequency ω is equivalent to testing for a unit root at frequency −ω. In particular, we can
either test H0 : γ1 = 0 in the regression model

∆ωyt,1 = γ1yt−1,1 + ηt

using the test statistic Fω defined in (26) or we can test H0 : γ2 = 0 in the regression model

∆−ωyt,2 = γ2yt−1,2 + ηt

using the test statistic F−ω. Clearly, since ∆ωyt,1 = ∆−ωyt,2 and yt−1,2 = yt−1,1 it holds that
γ2 = γ1 and Fω = F−ω, which once again implies the equivalence of both test approaches.
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4.2. Testing Multiple Unit Roots and Seasonal Integration

Let now {xt}t∈N0 be a real valued scalar process, observed in S equidistant periods per season,
e.g a series which is observed quarterly (S = 4) or monthly (S = 12) within a year or daily
(S = 7) within a week. If the process is non-stationary and generated according to the difference
equation

xt = αxt−S + ηt, t ∈ N, (28)

with α = 1, where {ηt}t∈Z is a stationary process satisfying Assumption 1 and the initial values
x0, . . . , x−S+1 are assumed to be OP(1) then we say that {xt}t∈N0 is seasonally integrated. If
{ηt}t∈Z is a martingale difference sequence, i.e. ηt = σεt for σ ∈ R and {εt}t∈Z satisfying
Assumption 1 then {xt}t∈N0 is said to be a saisonal random walk. For the remainder of this
section we focus on quarterly seasonally integrated process, i.e. S = 4.

Define the processes {xt,j}t∈N0 , j = 1, . . . , 4 via

xt,1 = xt + xt−1 + xt−2 + xt−3,

xt,2 = xt − xt−1 + xt−2 − xt−3,

xt,3 = xt + ixt−1 − xt−2 − ixt−3,

xt,4 = xt − ixt−1 − xt−2 + ixt−3.

By simple algebra we deduce that xt,1 = xt−1,1 + ηt, xt,2 = −xt−1,2 + ηt, xt,3 = −ixt−1,3 + ηt

and xt,4 = ixt−1,4 + ηt or, equivalently,

∆0xt,1 = ∆πxt,2 = ∆π/2xt,3 = ∆−π/2xt,4 = ηt.

Hence, {xt,j}t∈N0 , j = 1, . . . , 4, satisfy (21) with ω1 = 0, ω2 = π, ω3 = π
2 and ω4 = −π

2 ,
respectively. Obviously, it holds that xt,3 = xt,4 and one easily verifies that

xt =
1

4
(xt,1 + xt,2 + xt,3 + xt,4) . (29)

We can therefore test the null hypothesis of seasonal integration by testing separately, using
the test statistic Fω presented in (26), whether {xt,1}t∈N0 is integrated at frequency ω = 0,
{xt,2}t∈N0 is integrated at frequency ω = π and {xt,3}t∈N0 is integrated at frequency ω = π

2 or,
equivalently, whether {xt,4}t∈N0 is integrated at frequency ω = −π

2 .

We can also test the seasonal integration hypothesis in the spirit of Hylleberg et al. (1990)
Ghysels et al. (1994) by carrying out multiple tests for different unit roots jointly. In particular,
consider the test regression

yt = xt−1,1γ1 + xt−1,2γ2 + xt−1,3γ3 + xt−1,4γ4 + ηt, t = 1, . . . , T, (30)
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where yt = xt−xt−4. Setting Γ = [γ1, γ2, γ3, γ4]
′ we can rewrite this equation in matrix notation

as
y = XΓ + η,

where

y =


y1
...
yT

 , X =


x0,1 x0,2 x0,3 x0,4
...

...
...

...
xT−1,1 xT−1,2 xT−1,3 xT−1,4

 , η =


η1
...
ηT

 .
A multivariate extension of the estimator γ̂+ is given by

Γ̂+ = (X∗X)−1(X∗y − T Θ̂), (31)

where
Θ̂ =

[
Λ̂0,−Λ̂π,−iΛ̂−π/2, iΛ̂π/2

]′
.

Using the asymptotic orthogonality of the processes {xt,j}t∈N0 , j = 1, . . . , 4, stated in Proposi-
tion 2 and Remark 4, we can easily derive the asymptotic distribution of Γ̂+.

Proposition 4. Let {xt}t∈N0 be a scalar stochastic process generated according to the difference
equation

xt = xt−4 + ηt, t ∈ N,

with x0, x−1, x−2, x−3 being OP(1) and {ηt}t∈Z satisfying Assumption 1. Let Λ̂ω be defined as
in (23) with bandwidth parameter MT and kernel function k(r) satisfying Assumption 2. Then,
as T →∞, it holds that

T Γ̂+ ⇒

[∫ 1
0W1(r) dW1(r)∫ 1

0W
2
1 (r) dr

,−
∫ 1
0W2(r) dW2(r)∫ 1

0W
2
2 (r) dr

,−i
∫ 1
0W c(r) dWc(r)∫ 1
0 |Wc(r)|2 dr

, i

∫ 1
0Wc(r) dW c(r)∫ 1
0 |Wc(r)|2 dr

]′
,

with Wc(r) = W3(r) + iW4(r) and where W1(r), . . . ,W4(r) are independent standard Brownian
motions.

Remark 8. Note that since xt,1 and xt,2 are real valued and xt,4 = xt,3 it holds that γ̂4 = γ̂3.
Hence, one might wonder whether it is necessary to keep both xt−1,3 and xt−1,4 as independent
variables in the regression model (30), especially since both regressors are asymptotically or-
thogonal due to Proposition 2. However, omitting one of these regressors causes γ̂1 and γ̂2 to
be complex valued. Since the asymptotic distributions are real valued, which implies that the
imaginary parts are oP(1), one should work with real valued estimators.

We can now perform a joint test of the hypothesis

H0 : Γ = 0
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for investigating whether {xt}t∈N0 contains unit roots at all of the four considered frequencies.
To this end we define X̃ = XΦ̂−1 with

Ψ̂ =


Ω̂
1/2
0 0 0 0

0 Ω̂
1/2
π 0 0

0 0 Ω̂
1/2
π/2 0

0 0 0 Ω̂
1/2
π/2

 .

Then, an extended version of the statistic Fω is given by

F = Γ̂∗+(X̃∗X̃)Γ̂+.

Using the asymptotic orthogonality from Remartk 4 we obtain the following limiting distribu-
tion of the test statistic F under the null hypothesis.

Theorem 5. Under the assumptions of Proposition 4 it holds for T →∞ that

F ⇒

(∫ 1
0W1(r) dW1(r)

)2
∫ 1
0W

2
1 (r) dr

+

(∫ 1
0W2(r) dW2(r)

)2
∫ 1
0W

2
2 (r) dr

+

(∫ 1
0W3(r) dW3(r) +

∫ 1
0W4(r) dW4(r)

)2
∫ 1
0W

2
3 (r) dr +

∫ 1
0W

2
3 (r) dr

+

(∫ 1
0W3(r) dW4(r)−

∫ 1
0W4(r) dW3(r)

)2
∫ 1
0W

2
3 (r) dr +

∫ 1
0W

2
4 (r) dr

,

where W1(r), . . . ,W4(r) are independent standard Brownian motions.

Remark 9. Consider the following test statistic which results from adding the Fω statistics
calculated at the four frequencies separately, i.e.

F̃ = F0 + Fπ + Fπ/2 + F−π/2,

where F0 is calculated from xt,1, Fπ is calculated from xt,2, and so on. According to Proposi-
tion 2 the off-diagonal elements of X̃∗X̃ in the definition of the test statistic F vanish asymp-
totically implying that F = F̃ + oP(1). Hence, both test statistics F and F̃ have the same
asymptotic distribution.

We can easily modify the testing approach in order to test for unit roots at ω = ±π/2 only.
The corresponding test statistic is given by

F±π/2 = (R±π/2Γ̂+)∗(R±π/2X̃
∗X̃∗R′±π/2)(R±π/2Γ̂+),

with

R±π/2 =

[
0 0 1 0

0 0 0 1

]
.
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It holds that F±π/2 = Fπ/2 + F−π/2 + oP(1) and it holds that

F±π/2 ⇒

(∫ 1
0W3(r) dW3(r) +

∫ 1
0W4(r) dW4(r)

)2
∫ 1
0W

2
3 (r) dr +

∫ 1
0W

2
3 (r) dr

+

(∫ 1
0W3(r) dW4(r)−

∫ 1
0W4(r) dW3(r)

)2
∫ 1
0W

2
3 (r) dr +

∫ 1
0W

2
4 (r) dr

.

Similarly, we can easily modify the testing approach in order to test for seasonal unit roots
only, i.e. to test whether {xt}t∈N0 is integrated at ω = ±π/2 and ω = π. The corresponding
test statistic is given by

FS = (RSΓ̂+)∗(RSX̃
∗X̃∗R′S)(RSΓ̂+),

with

RS =

0 1 0 0

0 0 1 0

0 0 0 1

 .
Clearly, it holds that FS = F̃S+oP(1) where F̃S = Fπ+Fπ/2+F−π/2 and the limiting distribution
of FS follows immediately.

Remark 10. The previously discussed tests can be extended by adding deterministic regressors
in (30) to capture deterministic cyclical patterns or time trends under the alternative hypothesis.
In particular, consider the regression model

yt = d′tδ + xt−1,1γ1 + xt−1,2γ2 + xt−1,3γ3 + xt−1,4γ4 + ηt, t = 1, . . . , T.

The deterministic term dt might contain an intercept, a linear trend, seasonal dummies or a
combination of those. Note that since {xt,j}t∈N0 , j ∈ {2, 3, 4}, are integrated at frequencies
other than zero they are asymptotically orthogonal to constants and linear trends (cf. Corol-
lary 3). Hence, including these deterministic terms only changes the limiting distribution of
F0. In particular, if dt = 1 then the Brownian motion that appears in the limiting distribution
of F0 is replaced by a demeaned Brownian motion and if dt = [1, t]′ then the Brownian motion
is replaced by a detrended Brownian motion. On the other hand, if dt contains a full set of
seasonal dummies then all Brownian motions in the limiting distributions F0, Fπ, Fπ/2 and
F−π/2 have to be replaced by demeand ones.

Remark 11. The testing approach of Hylleberg et al. (1990) and Ghysels et al. (1994) is similar
to our test procedures. However, they consider the test real valued test regression

yt = xt−1,1π1 + xt−1,2π2 + xt−2,5π3 + xt−1,5π4 + ηt, t = 1, . . . , T, (32)

where {xt,1}t∈N0 and {xt,2}t∈N0 are defined as above and {xt,5}t∈N0 is defined via

xt,5 = ∆0∆πxt = xt − xt−2.
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Clearly, it holds that ∆0∆πxt,5 = ηt so that {xt,5}t∈N0 has unit roots at both annual frequencies
ω = π/2 and ω = −π/2. From the discussion at the end of Subsection 4.1 it becomes apparent
that [

yt,1

yt,2

]
=

[
1 −eiω

1 −e−iω

][
yt

yt−1

]
.

Hence, testing the null hypothesis H0 : π3 = 0, π4 = 0 in the regression model (32) is equivalent
to test the null hypothesis H0 : γ3 = 0, γ4 = 0 in the regression model (30).

Remark 12. If {ηt}t∈Z is white noise then the OLS estimators for [γ1, . . . , γ4]
′ in the regression

model (30) is pivotal. In this case there is no need for a Γ̂+ type correction and textbook OLS-
based F -statistics are sufficient to test the hypotheses discussed above. Furthermore, from
Remark 11 we deduce that such OLS based F -statistics are identical to the corresponding
OLS-based F -statistics in the regression model (32). If, however, {ηt}t∈Z is not white noise
Hylleberg et al. (1990) suggest to augment the test regression (32) by adding additional lagged
values of yt to whiten the regression errors. This procedure is identical to the well known
augmentation of the test regression in the unit root test of Dickey and Fuller (1979), which is
widely known as ADF-test. Therefore, the test of Hylleberg et al. (1990) can be interpreted
as a seasonal extension of the ADF-test whereas our test procedure is obviously a seasonal
extension of the Phillips-Perron test.

Remark 13. The test statistics presented in this section or straightforward modifications of
them have the same asymptotic distributions as the tests statistics presented in Hylleberg et al.
(1990) and Ghysels et al. (1994) (see also Engle et al., 1993, Ghysels and Osborn, 2001). In
particular, the test statistics F0 and Fπ are asymptotically equivalent to the squared t-statistics
for the parameters π1 and π2 in Hylleberg et al. (1990), respectively. The test statistic Fπ/2 has
exactly the same asymptotic distribution as the joint F statistic for the parameters π3 and π4
in Hylleberg et al. (1990). The test statistics F and FS are asymptotically equivalent to four
times the test statistic F1234 and three times the test statistic F234 in Ghysels et al. (1994),
respectively.

5. Conclusion

In this paper we have derived several limiting results processes that are integrated at an arbi-
trary frequency. In particular, we have established a functional central limit theorem and the
limiting distribution of sample covariance matrices 1

T 2

∑T
t=1 xtx

∗
t and 1

T

∑T
t=1 xt−1η

∗
t . Where

the former follows quite easily from the functional central limit theorem and the continuous
mapping theorem, the proof of the latter is somewhat more demanding. In contrast to Phillips
(1988a) and Gregoir (2010), our proof is mainly based on algebraic manipulations and we do
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not rely on the martingale approximation theory of Hall and Heyde (1980). As a direct applica-
tion of these results, we have presented unit root tests for arbitrary frequencies, which rely on
a Phillips-Perron-like modification of the OLS estimator. These estimators are asymptotically
equivalent to the estimators of Hylleberg et al. (1990) and Ghysels et al. (1994), so we did not
need to simulate critical values.
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A. Auxiliary Resuls

In this section we provide some algebraic auxiliary results that are required for the proofs of the
main results. The first result is states that the cumulative the summation of eiωt for t = 1, . . . , T

is bounded for every T ∈ N if and only if ω 6= 0. This algebraic property is the reason why
processes that are integrated at different frequencies are asymptotically orthogonal.

Lemma A.1. For T ∈ N it holds that

sup
t∈N

∣∣∣∣∣
T∑
t=1

eiωt

∣∣∣∣∣ ≤ C <∞

if and only if ω 6= 0.

Proof. For ω 6= 0 the sum formula for a geometric progression yields∣∣∣∣∣
T∑
t=1

eiωt

∣∣∣∣∣ =

∣∣∣∣∣eiω
T−1∑
t=0

eiωt

∣∣∣∣∣ =

∣∣∣∣ eiω

1− eiω
(
1− eiωT

)∣∣∣∣ ≤ ∣∣∣∣ eiω

1− eiω

∣∣∣∣ ∣∣1− eiωT ∣∣ ≤ 2

|1− eiω|
,
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which is bounded and independent of T . The statement for ω = 0 is trivial.

The next lemma is a generalization of the summation by parts formula (sometimes referred to
as Abel’s Lemma).

Lemma A.2. For two sequences {at}t∈Z and {bt}t∈Z with at, bt ∈ Cn×n it holds that

T∑
t=1

atb
∗
t = e−iωT

T∑
t=1

eiωtatb
∗
T − e−iω

T∑
t=1

e−iω(t−1)
t−1∑
j=1

eiωjaj∆ωb
∗
t .

Proof. Using simple algebra we deduce that

T∑
t=1

atb
∗
t =

T∑
t=1

∆ω

e−iωt
t∑

j=1

eiωjaj

 b∗t

=

T∑
t=1

e−iωt t∑
j=1

eiωjaj − e−iωe−iω(t−1)
t−1∑
j=1

eiωjaj

 b∗t

=

T∑
t=1

e−iωt
t∑

j=1

eiωjajb
∗
t −

T∑
t=1

e−iωe−iω(t−1)
t−1∑
j=1

eiωjajb
∗
t

=
T∑
t=1

e−iωt
t∑

j=1

eiωjajb
∗
t −

T−1∑
t=0

e−iωe−iωt
t∑

j=1

eiωjajb
∗
t+1. (33)

The first sum in (33) can be decomposed into

T∑
t=1

e−iωt
t∑

j=1

eiωjajb
∗
t = e−iωT

T∑
j=1

eiωjatb
∗
T +

T−1∑
t=1

e−iωt
t∑

j=1

eiωjajb
∗
t . (34)

The sum of the the second term on the right hand side of (33) and the term sum on the right
hand side of (34) is equal to

T−1∑
t=1

e−iωt
t∑

j=1

eiωjaj(b
∗
t − e−iωb∗t+1) = −e−iω

T−1∑
t=1

e−iωt
t∑

j=1

eiωjaj(b
∗
t+1 − eiωb∗t )

= −e−iω
T−1∑
t=1

e−iωt
t∑

j=1

eiωjaj∆ωb
∗
t+1

= −e−iω
T∑
t=1

e−iω(t−1)
t−1∑
j=1

eiωjaj∆ωb
∗
t ,

as claimed.
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The last auxiliary result is the Beveridge-Nelson decomposition at some arbitrary frequency.
This decomposition has been excessively discussed in the literature for the case ω = 0 where a
simple algebraic proof is given in Neusser (2016). However, to our knowledge the general case
has yet not been proven using only simple algebra.

Lemma A.3 (Beveridge-Nelson Decomposition). Let A(z) =
∑∞

j=0 αjz
j be a matrix polynomial

with αj ∈ Cn×n. Then, it holds that

A(z) = A(eiω)− (1− e−iωz)B(z),

where B(z) =
∑∞

j=0 βjz
j is a matrix polynomial with coefficient matrices Bj ∈ Cn×n given by

Bj = e−iωj
∞∑

k=j+1

Bke
iωk,

with
∑∞

j=0 ‖Bj‖ < ∞. If the coefficient matrices Aj satisfy
∑∞

j=0 j
l‖Aj‖ < ∞ for some l ∈ N

then it holds that
∑∞

j=0 j
l−1‖Bj‖ <∞.

Proof of Lemma A.3. It holds that

Ψ(L)−Ψ(eiω) =
∞∑
j=0

ψjL
j −

∞∑
j=0

ψje
iωj =

∞∑
j=0

ψj
(
Lj − eiωjIn

)
.

By simple algebra we deduce that

Lj − eiωjIn = −
(
In − e−iωL

) j−1∑
k=0

eiω(j−k)Lk.

Hence,

Ψ(L)−Ψ(eiω) = −
∞∑
j=0

ψj
(
In − e−iωL

) j−1∑
k=0

eiω(j−k)Lk

= −
(
In − e−iωL

) ∞∑
j=0

j−1∑
k=0

eiω(j−k)Lk

= −
(
In − e−iωL

) ∞∑
k=0

e−iωk
∞∑

j=k+1

ψje
iωjLk

= −
(
In − e−iωL

) ∞∑
k=0

ψ̃kL
k,

where the last equation follow from a change of variables.
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Note that for some arbitrary l ∈ N it holds that

∞∑
j=0

jl−1‖ψ̃j‖ =
∞∑
j=0

jl−1

∥∥∥∥∥∥e−iωj
∞∑

k=j+1

eiωkψk

∥∥∥∥∥∥ ≤
∞∑
j=0

jl−1
∞∑

k=j+1

‖ψk‖ ≤
∞∑
j=0

jl‖ψj‖,

where we used the fact that |eix| = 1 for all x ∈ R. This concludes the proof.

B. Proofs of the Main Results

Proof of Proposition 1. Solving the difference equation 1 recursively leads to

xt = e−iωtxt + e−iωt
t∑

j=1

eiωjηj .

Since ηt = Ψ(L)εt we can apply the Beveridge-Nelson decomposition (cf. Lemma A.3) on the
lag polynomial Ψ(L) and obtain

xt − e−iωtx0 = e−iωt
t∑

j=1

eiωjηj

= e−iωt
t∑

j=1

eiωjΨ(L)εj

= Ψ(eiω)e−iωt
t∑

j=1

eiωjεj − e−iωt
t∑

j=1

eiωj∆ωΨ̃(L)εj

= Ψ(eiω)e−iωt
t∑

j=1

eiωjεj − Ψ̃(L)εt + e−iωtΨ̃(L)ε0

It remains to show that the process {η̃t}t∈Z defined by η̃t = Ψ̃(L)εt is stationary. Therefore, it
is sufficient to show that the coefficient matrices ψ̃j are absolutely summable. This, however,
follows immediately from Lemma A.3 with l = 1.

Proof of Lemma 1. Define the sequence of continuous time processes {WT (r); r ∈ [0, 1]}T∈N0

as

WT (r) =
1√
T

[rT ]∑
t=1

eiωtεt.
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It is well known from Chan and Wei (1988) that WT (r) ⇒ τωW (r). Clearly, the process
{Xt,T }0≤t≤T , defined via Xt,T = WT (t/T ), is a martingale with respect to its canonical filtra-
tion. Hence, with

IT (r) =

[rT ]∑
t=1

Xt−1,T (Xt,T −Xt−1,T )∗,

it follows from Hansen (1992) and Kurtz and Protter (1991) (with Cn ' R2n) that

(WT (r), IT (r))⇒
(
τωW (r), τ2ω

∫ r

0
W (r) dW (r)∗

)
.

Since

I(r) =

[rT ]∑
t=1

WT

(
t− 1

T

)[
WT

(
t

T

)
−WT

(
t− 1

T

)]∗

=
1

T

[rT ]∑
t=1

t−1∑
j=1

eiωjεj

 t∑
j=1

eiωjεj −
t−1∑
j=1

eiωjεj

∗

=
1

T

[rT ]∑
t=1

t−1∑
j=1

eiωjεj
(
eiωtεt

)∗
,

the stated result follows.

Proof of Theorem 1. From Proposition 1 we immediately deduce that

eiω[rT ]√
T

x[rT ] =
1√
T

(x0 + η̃0) + Ψ(eiω)
1√
T

[rT ]∑
j=1

eiωjεj −
eiω[rT ]√

T
η̃[rT ].

It follows from Lemma 1 that

Ψ(eiω)
1√
T

[rT ]∑
t=1

eiωtεt ⇒ τωΨ(eiω)W (r),

whereW (r) is a real valued standard Brownian motion if ω ∈ {0, π} andW (r) = W1(r)+iW2(r)

with independent standard Brownian motions W1(r) and W2(r) if ω ∈ (0, π). It remains to
show that (cf. Billingsley, 1968, Theorem 4.1)

sup
r∈[0,1]

∥∥∥∥∥∥e
iω[rT ]

√
T

x[rT ] −Ψ(eiω)
1√
T

[rT ]∑
t=1

eiωtεt

∥∥∥∥∥∥ P→ 0. (35)
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It holds that∥∥∥∥∥∥e
iω[rT ]

√
T

x[rT ] −Ψ(eiω)
1√
T

[rT ]∑
t=1

eiωtεt

∥∥∥∥∥∥ ≤ 1√
T
‖x0‖+

1√
T
‖η̃0‖+

1√
T

∥∥η̃[rT ]∥∥ ,
which vanishes asymptotically if and only if

max
0≤t≤T

1√
T
‖η̃t‖

P→ 0,

since x0 is OP(1). Let δ > 0 be such that supt E(‖εt‖2+δ|Ft−1) <∞. Then, it holds that

‖η̃t‖ =

∥∥∥∥∥∥
∞∑
j=0

ψ̃jηt−j

∥∥∥∥∥∥
≤
∞∑
j=0

‖ψ̃j‖
1+δ
2+δ ‖ψ̃j‖

1
2+δ ‖εt−j‖

≤

 ∞∑
j=0

‖ψ̃j‖

 1+δ
2+δ
 ∞∑
j=0

‖ψ̃j‖‖εt−j‖2+δ
 1

2+δ

,

by Hölder’s inequality. This implies

max
0≤t≤T

E(‖η̃t‖2+δ|Ft−1) ≤

 ∞∑
j=0

‖ψj‖

2+δ

max
0≤t≤T

E(‖εt‖2+δ|Ft−1) <∞. (36)

For some arbitrary α > 0 it holds that

P
(

max
0≤t≤T

1√
T
‖η̃t‖ > α

)
≤

T∑
t=0

P
(
‖η̃t‖ > α

√
T
)
≤ 1

T δ/2

T∑
t=0

E‖η̃t‖2+δ

α2+δT

by the Bonferroni and Markov inequalities. This expression converges to zero since (36) implies
that the expected value is uniformly bounded. This concludes the proof.
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Proof of Proposition 2. If ω1 = ω2 the statement follows immediately from Theorem 1 and
the continuous mapping theorem. To prove the statement for ω1 6= ω2 generalize the proof of
Johansen and Schaumburg (1999). Let

x̃t,1 = eiω1txt,1,

x̃t,2 = eiω2txt,2,

Et =
t∑

j=1

ei(ω2−ω1)t.

Using the identity ei(ω2−ω1)t = ∆0Et it holds that

1

T 2

T∑
t=1

xt,1x
∗
t,2 =

1

T 2

T∑
t=1

x̃t,1e
i(ω2−ω1)tx̃∗t,2

and we have to verify that the right hand side is oP(1). It holds that

1

T 2

T∑
t=1

x̃t,1x̃
∗
t,2∆0Et =

1

T 2

T∑
t=1

x̃t,1x̃
∗
t,2Et −

1

T 2

T∑
t=1

(∆0xt,1 + x̃t−1,1)(∆0x̃t,2 + x̃t−1,2)
∗Et−1

=
1

T 2

T∑
t=1

x̃t,1x̃
∗
t,2Et −

1

T 2

T∑
t=1

x̃t−1,1x̃
∗
t−1,2Et−1 −

1

T 2

T∑
t=1

∆0x̃t,1∆0x̃
∗
t,2Et−1

− 1

T 2

T∑
t=1

x̃t−1,1∆0x̃
∗
t,2Et−1 −

1

T 2

T∑
t=1

∆0x̃t,1x̃
∗
t−1,2Et−1 (37)

The first two terms are equal to

1

T 2

T∑
t=1

(
x̃t,1x̃

∗
t,2Et − x̃t−1,1x̃∗t−1,2Et−1

)
=

1√
T
x̃T,1

1√
T
x̃∗T,2

1

T
ET ,

which is oP(1) since T−1/2x̃t,1 and T−1/2x̃t,2 are OP(1) by Theorem 1 and ET /T → 0 by
Lemma A.1.

For the third term in (37) it holds that

E

∥∥∥∥∥ 1

T 2

T∑
t=1

∆0x̃t,1∆0x̃
∗
t,2Et−1

∥∥∥∥∥ ≤ max
0≤t≤T

|Et|
1

T 2

T∑
t=1

E‖∆0x̃t,1∆0x̃
∗
t,2‖

≤ max
0≤t≤T

|Et|
1

T 2

T∑
t=1

(
E‖∆0x̃t,1‖2

)1/2 (E‖∆0x̃t,2‖2
)1/2

. (38)
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From Proposition 1 we deduce that

x̃t,1 = Ψ(eiω1)
t∑

j=1

eiω1jεj − eiω1tη̃t + y0 + η̃0,

and, hence,
∆0x̃t,1 = Ψ(eiω1)eiω1tεt −

(
eiω1tη̃t

)
− eiω1(t−1)η̃t−1,

which immediately implies that E‖∆0x̃t,1‖ is bounded. By the same arguments it follows that
E‖∆0x̃t,2‖ is bounded and, since |Et| is uniformly bounded, we deduce that the right hand side
of (38) vanishes asymptotically.

For the fourth term in (37) we obtain, using similar arguments as above, that

E

∥∥∥∥∥ 1

T 2

T∑
t=1

x̃t−1,1∆0x̃
∗
t,2Et−1

∥∥∥∥∥ ≤ max
0≤t≤T

|Et|
1

T 2

T∑
t=1

(
E‖x̃t−1,1‖2

)1/2 (E‖√T∆0x̃t,2‖2
)1/2

. (39)

Since E‖x̃t,1‖2 = O(t) it follows that the right hand side of (39) is O(T−1/2). Using exactly
the same arguments it can be shown that the same asymptotic bound holds for the last term
in (37). This concludes the proof.

Proof of Theorem 2. Using the the Beveridge-Nelson decomposition in Lemma A.3 we rewrite
the process {ηt}t∈Z as

ηt = Ψ(eiω)εt −∆ωη̃t.

Assumption (4) guarantees that the coefficient matrices ψ̃j are absolutely sumable und that
{η̃t}t∈Z is stationary and ergodic. With this decomposition and Proposition 1 in place, we
immediately obtain

1

T

T∑
t=1

xt−1η
∗
t = Ψ(eiω)

1

T

T∑
t=1

e−iω(t−1)
t−1∑
j=1

eiωjεjε
′
tΨ(eiω)∗ − 1

T

T∑
t=1

η̃t−1ε
′
tΨ(eiω)∗

−Ψ(eiω)
1

T

T∑
t=1

e−iω(t−1)
t−1∑
j=1

eiωjεj(∆ωη̃t)
∗ +

1

T

T∑
t=1

η̃t−1(∆ωη̃t)
∗

+ (x0 + η̃0)
1

T

T∑
t=1

e−iω(t−1)η∗t .

(40)

It can easily be verified that the last term is oP(1).
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By Lemma 1 we obtain

1

T

T∑
t=1

e−iω(t−1)
t−1∑
j=1

eiωjεjε
′
t = eiω

T∑
t=1

 1√
T

t−1∑
j=1

eiωjεj

(eiωt√
T
et

)∗

⇒ eiωτ2ω

∫ 1

0
W (r) dW (r)∗.

Since Ω
1/2
ω = Ψ(eiω) it follows for the first term in (40) that

Ψ(eiω)
1

T

T∑
t=1

e−iω(t−1)
t−1∑
j=1

eiωjεjε
′
tΨ(eiω)∗ ⇒ eiωτ2ω

∫ 1

0
B(r) dB(r)∗.

Since {η̃t}t∈Z is stationary and ergodic and the output of a linear filter, we have that {(η̃t, εt)}t∈Z
is also stationary and ergodic and, consequently,

1

T

T∑
t=1

η̃t−1ε
′
t ⇒ E(η̃t−1ε

′
t) = E

 ∞∑
j=0

ψ̃jεt−1−jε
′
t

 = 0.

Thus, it remains to show that the two remaining terms in (40) converge to eiωΛω.

It follows immediately from Lemma A.2 that

1

T

T∑
t=1

e−iω(t−1)
t−1∑
j=1

eiωjεj(∆ωη̃t)
∗ =

eiω

T
e−iωT

T∑
j=1

eiωjεj η̃
∗
T −

eiω

T

T∑
t=1

εtη̃
∗
t .

Clearly, the first term is oP(1). For the second term, using the same arguments as above, we
obtain

eiω

T

T∑
t=1

εtη̃
∗
t ⇒ eiωE(εtη̃

∗
t ) = eiω

∞∑
j=0

E(εtε
′
t−j)ψ̃

∗
j = eiωψ̃∗0 = eiω

∞∑
k=1

e−iωkψ∗k.

Consequently,

Ψ(eiω)
1

T

T∑
t=1

e−iω(t−1)
t−1∑
k=1

eiωkεj(∆ωη̃t)
∗ ⇒ Ψ(eiω)eiω

∞∑
k=1

e−iωkψ∗j = eiω
∞∑
j=0

∞∑
k=1

eiωjψjψ
∗
ke
−iωk

(41)
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At last, it holds that

1

T

T∑
t=1

η̃t−1(∆ωη̃t)
∗ =

1

T

T∑
t=1

η̃t−1η̃
∗
t − eiω

1

T

T∑
t=1

η̃t−1η̃
∗
t−1

⇒ E(η̃t−1η̃
∗
t )− eiωE(η̃tη̃

∗
t )

=

∞∑
j=0

∞∑
k=0

ψ̃jE(εt−1−jε
′
t−k)ψ̃

∗
k − eiω

∞∑
j=0

∞∑
k=0

ψ̃jE(εt−jε
′
t−k)ψ̃

∗
k

=

∞∑
j=0

ψ̃jψ̃
∗
j+1 − eiω

∞∑
j=0

ψ̃jψ̃
∗
j

=
∞∑
j=0

ψ̃j

(
ψ̃j+1 − e−iωψ̃j

)∗
.

From the definition of ψ̃j we obtain the following expression for the terms in parentheses.

ψ̃j+1 − e−iωψ̃j = e−iω(j+1)
∞∑

k=j+2

eiωkψk − e−iωe−iωj
∞∑

k=j+1

eiωkψk = −ψj+1.

Hence,

∞∑
j=0

ψ̃j

(
ψ̃j+1 − e−iωψ̃j

)∗
= −

∞∑
j=0

e−iωj
∞∑

k=j+1

ψke
iωkψ∗j+1

= −
∞∑
j=1

e−iω(j−1)
∞∑
k=j

ψke
iωkψ∗j

= −eiω
∞∑
j=1

∞∑
k=j

e−iωjψkψ
∗
j e
iωk

= −eiω
∞∑
k=1

k∑
j=1

e−iωjψkψ
∗
j e
iωk. (42)

Combining (41) and (42) yields

eiω
∞∑
j=0

∞∑
k=1

eiωjψjψ
∗
ke
−iωk − eiω

∞∑
j=1

j∑
k=1

eiωjψjψ
∗
ke
−iωk = eiω

∞∑
j=0

∞∑
k=j+1

eiωjψjψ
∗
ke
−iωk

= eiω
∞∑
j=0

e−iω(k−j)
∞∑

k=j+1

ψjψ
∗
k

= eiω
∞∑
l=1

e−iωl
∞∑
j=0

ψjψ
∗
j+l,
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which is equal to eiωΛω. Putting everything together, we deduce that

1

T

T∑
t=1

xt−1η
∗
t ⇒ eiω

(
τ2ω

∫ 1

0
B(r) dB(r)∗ + Λω

)
,

as claimed.

Proof of Theorem 3. The limiting distribution of the OLS estimator follows from Proposition 2
and Theorem 2 since both sums converge jointly. To be more precise, it holds that

1

T

T∑
t=1

ηtx
∗
t−1 = eiω

1

T

T∑
t=1

Ψ(eiω)eiωtεte
−iω(t−1)

t−1∑
j=1

e−iωjε′jΨ(eiω)∗ + oP(1) (43)

and

1

T 2

T∑
t=1

xt−1x
∗
t−1 =

1

T 2

T∑
t=1

Ψ(eiω)eiω(t−1)
t−1∑
j=1

eiωjεje
−iω(t−1)

t−1∑
k=1

e−iωkε′kΨ(eiω)∗ + oP(1), (44)

and both (43) and (44) converge jointly according to Lemma 1. The claim follows now imme-
diately from the continuous mapping theorem.

Proof of Proposition 3. Under the null hypothesis it holds that ∆ωxt = ηt. Hence,

T γ̂+ =
1
T

∑T
t=1 xt−1ηt

1
T 2

∑T
t=1 |xt−1|2

− e−iωΛ̂−ω
1
T 2

∑T
t=1 |xt−1|2

.

It follows from Theorem 3 that

1
T

∑T
t=1 xt−1ηt

1
T 2

∑T
t=1 |xt−1|2

⇒
e−iω

∫ 1
0 B(r) dB(r)∫ 1

0 |B(r)|2 dr
+

e−iωΛ−ω

τ2ω
∫ 1
0 |B(r)|2 dr

and from Proposition 2 and (24) that

e−iωΛ̂−ω
1
T 2

∑T
t=1 |xt−1|2

⇒ e−iωΛ−ω

τ2ω
∫ 1
0 |B(r)|2 dr

.

Combining both limiting expressions completes the proof.

Proof of Theorem 4. Since {ηt}t∈Z is stationary it holds that Γ̂0 converges to E(ηtη
∗
t ) and from

(24) we deduce that Λ̂ω+Λ̂−ω goes to Λω+Λ−ω. Consequently, Ω̂ converges to E(ηtη
∗
t )+Λω+Λ∗ω
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which is equal to Ωω. The claim now follows immediately from Proposition 2, Proposition 3
and the continuous mapping theorem.

Proof of Proposition 4. First, we derive the limiting distribution of the OLS estimator

Γ̂ = (X∗X)−1X∗y.

It holds that

X∗X =


∑T

t=1 |xt−1,1|2
∑T

t=1 xt−1,1xt−1,2
∑T

t=1 xt−1,1xt−1,3
∑T

t=1 xt−1,1xt−1,4∑T
t=1 xt−1,2xt−1,1

∑T
t=1 |xt−1,2|2

∑T
t=1 xt−1,2xt−1,3

∑T
t=1 xt−1,2xt−1,4∑T

t=1 xt−1,3xt−1,1
∑T

t=1 xt−1,3xt−1,2
∑T

t=1 |xt−1,3|2
∑T

t=1 xt−1,3xt−1,4∑T
t=1 xt−1,4xt−1,1

∑T
t=1 xt−1,4xt−1,2

∑T
t=1 xt−1,4xt−1,3

∑T
t=1 |xt−1,4|2


and from the asymptotic orthogonality in Proposition 2 and Remark 4 we deduce that

1

T 2
X∗X ⇒


∫ 1
0 B

2
0(r) dr 0 0 0

0
∫ 1
0 B

2
π(r) dr 0 0

0 0 1
2

∫ 1
0 |Bπ/2(r)|

2 dr 0

0 0 0 1
2

∫ 1
0 |Bπ/2(r)|

2 dr

 .

Similarly, using Theorem 2 we obtain

1

T
X∗y =


1
T

∑T
t=1 xt−1,1yt

1
T

∑T
t=1 xt−1,2yt

1
T

∑T
t=1 xt−1,3yt

1
T

∑T
t=1 xt−1,3yt

⇒


∫ 1
0 B0(r) dB0(r) + Λ0

−
∫ 1
0 Bπ(r) dBπ(r)− Λπ

− i
2

∫ 1
0 Bπ/2(r) dBπ/2(r)− Λ−π/2

i
2

∫ 1
0 Bπ/2(r) dBπ/2(r) + Λπ/2

 . (45)

The modified OLS estimator is given by Γ̂+ = (X∗X)−1(X∗y − T Θ̂) where the the bias cor-
rection term Θ̂ = [Λ̂0,−Λ̂π,−iΛ̂−π/2, iΛ̂π/2]′ removes the additive components that appear in
the limiting expression (45) in exactly the same way as discussed in the proof of Proposition 3.
Combining these results yields the limiting distribution of Γ̂+.

Proof of Theorem 5. Follows directly from Proposition 4 in conjunction with the asymptotic
orthogonality stated in Remark 4 and the continuous mapping theorem.
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