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Abstract

Tuning parameter choices complicate statistical inference in cointegrating
regressions and affect finite sample distributions of test statistics. As com-
monly used asymptotic theory fails to capture these effects, tests often suffer
from severe size distortions. We propose a novel self-normalized test statistic
for general linear hypotheses, which avoids the choice of tuning parameters.
Its limiting null distributions is nonstandard, but simulating asymptotically
valid critical values is straightforward. To further improve the performance
of the test in small to medium samples, we employ the vector autoregres-
sive sieve bootstrap to construct critical values. To show its consistency, we
establish a bootstrap invariance principle result under conditions that go
beyond the assumptions commonly imposed in the literature. Simulation
results demonstrate that our new test outperforms competing approaches,
as it has good power properties and is considerably less prone to size dis-
tortions.
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1 Introduction

Conducting inference in cointegrating regressions is cumbersome as it usually re-
quires tuning parameter choices. Even in case these choices are “optimal”, com-
monly used asymptotic theory usually fails to capture their effects on finite sample
distributions of test statistics, often resulting in severe size distortions. In this pa-
per we address these issues by proposing a novel test statistic for general linear
hypotheses that itself is completely tuning parameter free. Test decisions can be
based on either asymptotically valid critical values or bootstrap critical values,
which might be preferred in small to medium samples.

Cointegration methods have been and are widely used to analyze long-run rela-
tionships between stochastically trending variables in many areas such as macroe-
conomics, environmental economics and finance, see, e. g., Benati et al. (2020),
Wagner (2015) and Rad et al. (2016) for recent examples. In addition to these
classical fields of application, cointegration methods have recently proven to be
useful to describe phenomena also in other contexts. For instance, Dahlhaus et
al. (2018) describe the close connection between cointegration and the theory of
phase synchronization in physics and Phillips et al. (2020) apply cointegration-
based methods to estimate Earth’s climate sensitivity.

Although the OLS estimator is consistent in cointegrating regressions, its lim-
iting distribution is usually contaminated by second order bias terms, reflecting
the correlation structure between regressors and errors. This makes the OLS es-
timator infeasible for conducting inference based on (simulated) quantile tables
of (non)standard distributions. The literature provides several estimators which
overcome this difficulty at the cost of tuning parameter choices: the number of
leads and lags for the dynamic OLS (D-OLS) estimator of Phillips and Loretan
(1991), Saikkonen (1991) and Stock and Watson (1993), kernel and bandwidth
choices for the fully modified OLS (FM-OLS) estimator of Phillips and Hansen
(1990) and the canonical cointegrating regression (CCR) estimator of Park (1992),
or type and number of basis functions for the trend instrument variable (TIV) es-
timator of Phillips (2014). Such tuning parameters are often difficult to choose in
practice and the finite sample performance of the estimators and tests based upon
them often reacts sensitively to their choices. In particular, corresponding tests
often suffer from severe size distortions, see, e. g., Vogelsang and Wagner (2014,
Tables 2–3) for a detailed overview.
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In contrast to the aforementioned approaches, the integrated modified OLS
(IM-OLS) estimator of Vogelsang and Wagner (2014) avoids the choice of tun-
ing parameters. However, standard asymptotic inference based on the IM-OLS
estimator does require the estimation of a long-run variance parameter. This is
typically achieved by non-parametric kernel estimators, which necessitate kernel
and bandwidth choices. To capture their effects in finite samples, Vogelsang and
Wagner (2014) propose fixed-b theory for obtaining critical values. However, their
simulation results reveal that when endogeneity and/or error serial correlation is
strong, a large sample size is needed for the procedure to yield reasonable sizes.
Moreover, for small to medium samples, test performance still seems to be sensi-
tive to the choice of b. Similarly, Hwang and Sun (2018) develop “partial” fixed-K
theory for the TIV estimator, which captures the choice of the number of basis
functions but ignores the impact of the basis functions itself.

Instead of trying to capture finite sample effects of tuning parameter choices,
we propose a novel IM-OLS based test statistic for general linear hypotheses,
which is completely tuning parameter free. The test statistic is based on a self-
normalization approach that is similar in spirit to but different from the approach
of Kiefer et al. (2000) for stationary data.1 The limiting null distribution of the
self-normalized test statistic is nonstandard but simulating asymptotically valid
critical values is straightforward.

As asymptotically valid critical values might not be appropriate in small to
medium samples, we use the bootstrap to construct critical values that might
be more accurate in this case. In particular, we propose a residual-based vec-
tor autoregressive (VAR) sieve resampling procedure. In comparison to other
resampling approaches broadly applicable to stationary processes – such as the
residual-based block bootstrap proposed in Paparoditis and Politis (2003) for unit-
root testing, or in Brüggemann et al. (2016) and Jentsch and Lunsford (2019) for
heteroscedasticity-robust inference in (proxy) structural VARs – the VAR sieve
bootstrap captures the second-order dependence structure of the original process,
which is in our context both necessary and sufficient for the bootstrap to be con-
sistent, in a simple manner. In particular, it only requires the determination of
the order of the VAR, which is a relatively straightforward and well understood

1For a detailed review of recent developments on inference based on self-normalization in the
stationary time series context, we refer to Shao (2015). For an application of self-normalization
to high-dimensional stationary time series and monitoring cointegrating relationships, see Wang
and Shao (2020) and Knorre et al. (2020), respectively.
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task in practice.2 The VAR sieve bootstrap is thus frequently used in related liter-
ature: Psaradakis (2001), inspired by the seminal work of Li and Maddala (1997),
shows the usefulness of the sieve bootstrap in cointegrating regressions and Park
(2002) provides its asymptotic justification by proving an underlying invariance
principle result. Subsequently, Chang and Park (2003) and Chang et al. (2006)
apply the sieve bootstrap to unit root testing and to conduct D-OLS based in-
ference in cointegrating regressions, respectively, and Palm et al. (2010) use the
sieve bootstrap in the context of testing for cointegration in conditional error cor-
rection models.3 Moreover, residual-based bootstrap resampling in cointegrating
VAR models of fixed order has been used in, e. g., Cavaliere et al. (2012) and
Cavaliere et al. (2015) to determine the cointegration rank and to test hypotheses
on the cointegrating vector, respectively.

To show consistency of the VAR sieve bootstrap in our context, we establish
a bootstrap invariance principle result under relatively general conditions that
go beyond the assumptions commonly imposed in the literature. Our framework
allows for so-called weak white noises that are uncorrelated, but not necessarily
independent and also for various concepts to quantify such weak forms of depen-
dence of the innovation process. In particular, we do not impose the assumption
of a causal linear process with i.i.d. innovations as in Park (2002). Given its wide
applicability the bootstrap invariance principle result might be of interest in its
own right.

The theoretical analysis is complemented by a simulation study to assess
the performance of the proposed methods, benchmarked against competing ap-
proaches, including the commonly employed D-OLS and FM-OLS based tests. In
contrast to the commonly applied tests, which show severe size distortions, our
novel approach proves to hold the prescribed level approximately at the expense
of only minor power losses. This might be seen as a huge advantage given that
large size distortions under the null hypothesis are very common in the unit root
and cointegrating literature.

The rest of the paper is organized as follows: Section 2 introduces the model
and its underlying assumptions. Section 3 constructs the self-normalized test

2Choosing the block size in practice seems to be difficult. Although Politis and White (2004)
and Patton et al. (2009) propose estimators of the optimal block size, these are tailor-made for
the sample mean for univariate time series data.

3The approach of Chang et al. (2006) still requires the choice of leads and lags for estimation
and additional kernel and bandwidth choices for inference.
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statistic and derives its limiting null distribution. Section 4 presents the bootstrap
procedure and derives its asymptotic validity. Section 5 presents finite sample
results and Section 6 concludes. The proofs of the main results are provided
in Appendix B, whereas those of auxiliary results are relegated to the Online
Appendix.

We use the following notation. The integer part of a real number x is denoted
by bxc. For a real matrix A we denote its transpose by A′ and its Frobenius
norm by |A|F = (tr(A′A))1/2, where tr(·) denotes the trace and for a vector the
Frobenius norm becomes the Euclidean norm. The k-dimensional identity matrix
is denoted by Ik and 0j×k (or simply 0) denotes a (j × k)-dimensional matrix
of zeros. With diag(·) we denote a (block) diagonal matrix with diagonal el-
ements specified throughout. Equality in distribution is signified by d=. With
w−→ and p−→ we denote weak convergence and convergence in probability, respec-

tively. Adding the superscript “∗” signifies convergence in the bootstrap proba-
bility space. The corresponding probability measure is denoted by P∗ and E∗(·)
denotes the expectation with respect to P∗. For notational simplicity, a Brownian
motion {M(r), 0 ≤ r ≤ 1} is denoted by M(r).

2 The Model and Assumptions

We consider the cointegrating regression model

yt = x′tβ + ut, (2.1)

xt = xt−1 + vt, (2.2)

t = 1, . . . , T , where (yt)t=1,...,T is a scalar time series and (xt)t=1,...,T is an m × 1
vector of time series. For brevity we set x0 = 0.4 For {wt}t∈Z := {[ut, v′t]′}t∈Z we
assume the following:

Assumption 1. Let {wt}t∈Z be an R1+m-valued, strictly stationary and purely
nondeterministic stochastic process of full rank5 with E(wt) = 0 and

4Deterministic regressors are excluded from (2.1) to ease exposition of the main arguments.
However, it is straightforward to incorporate, e. g., the leading case of an intercept and poly-
nomial time trends, dt = [1, t, . . . , tp]′, p ≥ 1. Please note that the accompanying MATLAB code
allows to handle this more general case.

5The process {wt}t∈Z is of full rank, if the components of its innovation process are linearly
independent. For more details we refer to Meyer and Kreiss (2015, p. 379).
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supt∈Z E(|wt|aF ) < ∞, for some a > 2. The autocovariance matrix function Γ(·)
of {wt}t∈Z fulfills ∑∞h=−∞(1 + |h|)k|Γ(h)|F < ∞ for some k ≥ 3/2. For the spec-
tral density matrix f(·) of {wt}t∈Z we assume that there exists a constant c > 0
such that min σ(f(λ)) ≥ c for all frequencies λ ∈ (−π, π], where σ(f(λ)) denotes
the spectrum of f(·) at frequency λ, i. e., the set of the eigenvalues of f(·) at
frequency λ.

The short memory condition ∑∞h=−∞(1 + |h|)k|Γ(h)|F < ∞ for some k ≥ 3/2
in Assumption 1 implies a continuously differentiable spectral density f , which is
particularly bounded from below and from above, uniformly for all frequencies λ ∈
(−π, π]. As shown in Meyer and Kreiss (2015), a process fulfilling Assumption 1
possesses the one-sided representations

Φ(L)wt = εt, (2.3)

wt = Ψ(L)εt, (2.4)

where {εt}t∈Z is a strictly stationary uncorrelated – but not necessarily indepen-
dent – white noise process with positive definite covariance matrix Σ, Φ(z) :=
Im+1−

∑∞
j=1 Φjz

j and Ψ(z) := Im+1 +∑∞j=1 Ψjz
j, with ∑∞j=1(1+ j)k|Φj|F <∞ and∑∞

j=1(1 + j)k|Ψj|F < ∞ for the k ≥ 3/2 from Assumption 1. Moreover, it holds
that det(Φ(z)) 6= 0 and det(Ψ(z)) 6= 0 for all |z| ≤ 1.

Assumption 2. The process {wt}t∈Z has absolutely summable cumulants up to
order four. More precisely, we have for all j = 2, . . . , 4 and a = [a1, . . . , aj]′, with
a1, . . . , aj ∈ {1, . . . ,m+ 1}, that

∞∑
h2,...,hj=−∞

|cuma(0, h2, . . . , hj)| <∞

where cuma(0, h2, . . . , hj) denotes the j-th joint cumulant of w0,a1 , wh2,a2 , . . . , whj ,aj

and wt,i denotes the i-th element of wt (see, e. g., Brillinger 1981).

Let Ω denote the long-run covariance matrix of {wt}t∈Z, i. e.,

Ω =
Ωuu Ωuv

Ωvu Ωvv

 = 2πf(0) =
∞∑

h=−∞
Γ(h) = Ψ(1)ΣΨ(1)′.

From Σ > 0 and det(Ψ(1)) 6= 0 it follows that Ω > 0. In particular, positive
definiteness of Ωvv rules out cointegration among the elements of {xt}t∈Z. As

6



typical in the cointegration literature, we assume that {wt}t∈Z fulfills an invariance
principle.

Assumption 3. Let {wt}t∈Z fulfill

BT (r) := T−1/2
brT c∑
t=1

wt
w−→ B(r) = Ω1/2W (r), 0 ≤ r ≤ 1, (2.5)

as T → ∞, where W (r) = [Wu·v(r),Wv(r)′]′ is an (1 + m)-dimensional vector of
independent standard Brownian motions and

Ω1/2 =
Ω1/2

u·v Ωuv(Ω−1/2
vv )′

0 Ω1/2
vv

 ,
where Ωu·v := Ωuu − ΩuvΩ−1

vv Ωvu, such that Ω1/2(Ω1/2)′ = Ω. For later usage we
partition B(r) = [Bu(r), Bv(r)′]′.

We emphasize that Assumption 1 does explicitly not ask for invertibility or
causality of the process {wt}t∈Z with respect to an i.i.d. white noise process,
in contrast to the assumptions in related literature, compare, e. g., Park (2002),
Chang et al. (2006) and Palm et al. (2010). In particular, in this paper, the
innovation process {εt}t∈Z resulting from the representations in (2.3) and (2.4)
will generally be uncorrelated, but not necessarily independent. Assumption 2 is
of technical nature and satisfied if, e. g., {wt}t∈Z is α-mixing with strong-mixing
coefficients α(j) such that supt∈ZE(|wt|4+δ

F ) <∞ and ∑∞j=1 j
2α(j)δ/(4+δ) <∞ for

some δ > 0, see, e. g., Shao (2010, p. 221). In particular, Assumption 2 requires
the existence of fourth moments of {wt}t∈Z. To establish meaningful asymptotic
theory, Assumptions 1 and 2 have to be complemented by an invariance principle
in Assumption 3. This general formulation of an invariance principle allows for
various concepts of choice to quantify weak forms of dependence of the innovation
process {wt}t∈Z. These include classical approaches that are sufficient to prove
invariance principles – such as several variants of mixing properties, mixingale-
type sequences, linear processes6, or (Bernoulli) shift processes; see Merlevède et
al. (2006) for an overview – but also other modern approaches that cover the

6Including all-pass filters, discussed for univariate times series in, e. g., Andrews et al. (2007),
that lead to uncorrelated, but dependent white noise processes as well as their multivariate
extensions based on non-causal and non-invertible vector-valued time series models as proposed
by Lanne and Saikkonen (2013).
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general notion of weakly dependent stationary time series discussed in Doukhan
and Wintenberger (2007) or physical dependence proposed by Wu (2005) and
employed in Wu (2007).

3 Testing General Linear Hypotheses

It is well known that in cointegrating regressions the OLS estimator is consistent
despite the fact that the regressors are allowed to be endogenous and the errors
are allowed to be serially correlated. However, its limiting distribution is con-
taminated by second order bias terms, reflecting the correlation structure between
the regressors and the errors. This makes the OLS estimator unsuitable for con-
ducting asymptotic inference using (simulated) quantile tables of (non)standard
distributions. The literature provides several estimators that allow for such stan-
dard asymptotic inference. For our purposes, we choose the IM-OLS approach of
Vogelsang and Wagner (2014) as the IM-OLS estimator avoids any tuning param-
eter choices. They propose to compute first the partial sum of both sides of (2.1),
then to add xt as a regressor to the partial sum regression and finally to estimate
the regression coefficients by OLS.7 That is, by computing the OLS estimator in
the augmented partial sum regression

Syt = Sx′t β + x′tγ + Sut = Z ′tθ + Sut , (3.1)

with Syt := ∑t
s=1 ys, Sxt := ∑t

s=1 xs, Sut := ∑t
s=1 us and the 2m-dimensional vector

Zt := [Sx′t , x′t]′, the IM-OLS estimator θ̂IM := [β̂′IM, γ̂′IM]′ for θ := [β′, γ′]′ in (3.1) is
obtained. As shown in Vogelsang and Wagner (2014, Theorem 2) it holds under
Assumption 3 that the limiting distribution of θ̂IM is given by

 T (β̂IM − β
)

γ̂IM − Ω−1
vv Ωvu

 w−→ Ω1/2
u·v (Π′)−1Z, (3.2)

7Adding xt to the partial sum regression serves as an endogeneity correction, which is similar
to the leads and lags augmentation in D-OLS estimation. Although similar in spirit, it is
considerably simpler as it avoids choosing the numbers of leads and lags.
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as T →∞, where Π := diag
(
Ω1/2
vv ,Ω1/2

vv

)
and

Z :=
(∫ 1

0
g(r)g(r)′dr

)−1 ∫ 1

0
[G(1)−G(r)] dWu·v(r), (3.3)

with g(r) := [
∫ r

0 Wv(s)′ds,Wv(r)′]′ and G(r) :=
∫ r

0 g(s)ds.8

Conditional upon Wv(r), the asymptotic distribution in (3.2) is normal with
zero-mean and covariance matrix Ωu·vV , where

V := (Π′)−1
(∫ 1

0
g(r)g(r)′dr

)−1 (∫ 1

0
[G(1)−G(r)] [G(1)−G(r)]′ dr

)
×
(∫ 1

0
g(r)g(r)′dr

)−1
Π−1.

Let AT := diag (T−1Im, Im) and define

V̂T :=
(

T∑
t=1

ZtZ
′
t

)−1 ( T∑
t=1

ctc
′
t

)(
T∑
t=1

ZtZ
′
t

)−1

,

where c1 := SZT and ct := SZT − SZt−1, with SZt := ∑t
j=1 Zj, for t = 2, . . . , T . Then,

A−1
T V̂TA

−1
T

w−→ V, (3.4)

as T →∞, compare Vogelsang and Wagner (2014, Proof of Theorem 3).
The zero mean Gaussian mixture limiting distribution of the IM-OLS estimator

in conjunction with (3.4) forms the basis for standard asymptotic inference for the
commonly considered Wald-type hypothesis test. To be more precise, for testing
s ≤ m linearly independent restrictions on β ∈ Rm in (2.1), we consider the
hypotheses

H0 : R1β = r0 versus H1 : R1β 6= r0, (3.5)

where R1 ∈ Rs×m has full row rank s and r0 ∈ Rs. For deriving the limiting null
distribution of the corresponding Wald-type test statistic, it is more convenient
to rewrite the null hypothesis in terms of the correct centering parameter for θ̂IM,

8Since both xt and Su
t are I(1) processes, all correlation – between Bv(r) and Bu(r) – is

soaked up in the long-run population regression vector Ω−1
vv Ωvu. Therefore, the correct centering

parameter for γ̂IM in case of endogeneity is Ω−1
vv Ωvu rather than the population value γ = 0. For

more details see Vogelsang and Wagner (2014, p. 746).
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given by [β′, (Ω−1
vv Ωvu)′]′. To this end, we define R2 := [R1, 0s×m] ∈ Rs×2m such

that the null hypothesis in (3.5) reads as R1β = R2[β′, (Ω−1
vv Ωvu)′]′.9

Under Assumption 3 it follows from Vogelsang and Wagner (2014, Theorem 3)
that the limiting distribution of the Wald-type test statistic

τIM :=
(
R2θ̂IM − r0

)′ [
R2V̂TR

′
2

]−1 (
R2θ̂IM − r0

)
converges under the null hypothesis in distribution to

GΩ :=
(
R2Ω1/2

u·v (Π′)−1Z
)′

(R2V R
′
2)−1 (

R2Ω1/2
u·v (Π′)−1Z

)
d= Ωu·vχ

2
s, (3.6)

as T → ∞, where Z is defined in (3.3) and χ2
s denotes a chi-square distribution

with s degrees of freedom.10

The limiting null distribution of τIM is contaminated by a nuisance parameter,
Ωu·v. The presence of the long-run variance parameter makes the limiting distri-
bution highly case dependent and thus infeasible for inference based on tabulated
critical values.11 To remedy this problem, the literature suggests to plug-in a con-
sistent estimator of Ωu·v, Ω̂u·v say, such that the nuisance parameter is scaled out
in the limit. For this purpose, we denote

τIM(κ) :=
(
R2θ̂IM − r0

)′ [
R2κV̂TR

′
2

]−1 (
R2θ̂IM − r0

)
(3.7)

such that τIM(1) = τIM. Hence, the literature typically considers Wald-type test
statistics of the form

τIM(Ω̂u·v) =
(
R2θ̂IM − r0

)′ [
R2Ω̂u·vV̂TR

′
2

]−1 (
R2θ̂IM − r0

)
, (3.8)

which converge under the null hypothesis in distribution to

G :=
(
R2 (Π′)−1Z

)′
(R2V R

′
2)−1 (

R2 (Π′)−1Z
)

d= χ2
s,

9Note that the auxiliary coefficient vector γ is not restricted under the null hypothesis and,
in particular, Ω−1

vv Ωvu does not have to be estimated.
10In practical applications it might be more convenient to express this – and the following – test

statistic(s) in terms of β̂IM and R1, only. This can be achieved by noting that R2θ̂IM = R1β̂IM

and R2V̂TR
′
2 = R1V̂

(1,1)
T R′1, where V̂

(1,1)
T denotes the upper left (m ×m)-dimensional block of

the (2m× 2m)-dimensional matrix V̂T .
11Analogous results also hold for the Wald-type tests based on the D-OLS, FM-OLS and CCR

estimators.
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as T → ∞. As G is nuisance parameter free, it allows for standard asymptotic
inference based on tabulated critical values. However, estimation of Ωu·v is cum-
bersome and typically based on non-parametric kernel estimators that depend on
kernel and bandwidth choices, see, e. g., Andrews (1991), Newey and West (1994)
and Jansson (2002) for details. As these tuning parameter choices affect the finite
sample distribution of τIM(Ω̂u·v) but are completely ignored in the conventional
asymptotic framework, corresponding tests usually have large size distortions, es-
pecially when the level of endogeneity and/or error serial correlation is strong or
sample size is small. Vogelsang and Wagner (2014) suggest to use fixed-b critical
values to capture the effects of tuning parameter choices, but their simulation re-
sults reveal that in small to medium samples test performance, which still seems
to be sensitive to the choice of b, worsens as endogeneity and/or error serial cor-
relation increases.

To avoid any tuning parameter choices, we propose a novel test statistic based
on a self-normalization approach. Instead of plugging-in a consistent estimator
Ω̂u·v of Ωu·v in (3.7) to get (3.8), we insert a quantity that is directly constructed
from the data and asymptotically proportional to Ωu·v. To this end, we define
the OLS residuals in the augmented partial sum regression given in (3.1) as Ŝut :=
Syt − Z ′tθ̂IM, t = 1, . . . , T . For t = 2, . . . , T let ∆Ŝut := Ŝut − Ŝut−1 denote the first
difference of the residuals and define the self-normalizer as

η̂T := T−2
T∑
t=2

(
t∑

s=2
∆Ŝus

)2

.

The self-normalizer is similar to the test statistic of Shin (1994) to test the null
hypothesis of cointegration in (2.1). In contrast to his test statistic, however, η̂T
is a) not divided by an estimator of the long-run variance Ωu·v and b) based on
the first differences of the IM-OLS residuals rather than the IM-OLS residuals
itself, which accounts for taking partial sums prior to estimation. We introduce
our self-normalized test statistic as

τIM(η̂T ) =
(
R2θ̂IM − r0

)′ [
R2η̂T V̂TR

′
2

]−1 (
R2θ̂IM − r0

)
.

Its limiting null distribution is given in the following proposition.

Proposition 1. Let (yt)Tt=1 and (xt)Tt=1 be generated by (2.1) and (2.2), respec-
tively and let {wt}t∈Z satisfy Assumption 3. Then it holds under the null hypothesis

11



given in (3.5) that

τIM(η̂T ) w−→ GSN :=

(
R2 (Π′)−1Z

)′
(R2V R

′
2)−1

(
R2 (Π′)−1Z

)
∫ 1

0 (Wu·v(r)− g(r)′Z)2 dr

= χ2
s∫ 1

0 (Wu·v(r)− g(r)′Z)2 dr
, (3.9)

as T →∞, where the χ2
s distributed random variable in the numerator is correlated

with the denominator
∫ 1

0 (Wu·v(r)− g(r)′Z)2 dr as both are driven by Wu·v and
Wv(r).

The limiting null distribution of τIM(η̂T ) is nonstandard but free of nuisance
parameters and only depends on the number of restrictions under the null hypoth-
esis and the number of integrated regressors. Although the χ2

s distributed random
variable in the numerator is correlated with the denominator, simulating critical
values is straightforward. To this end, we approximate standard Brownian mo-
tions by normalized sums of 10,000 i.i.d. standard normal random variables and
approximate the corresponding integrals accordingly. The fact that the numerator
is invariant to Π and only depends on the number of linearly independent restric-
tions under the null hypothesis, justifies to set Π = I2m and R2 = [Is, 0s×(2m−s)].12

We tabulate critical values based on 10,000 replications for various values of m
and s in Table 1.13 As the test statistic τIM(η̂T ) does not depend on any tuning

Table 1: Asymptotic critical values for τIM(η̂T )

m = 1 m = 2 m = 3 m = 4
% s = 1 s = 1 s = 2 s = 1 s = 2 s = 3 s = 1 s = 2 s = 3 s = 4
90.0 36.63 66.33 122.32 94.04 172.00 240.58 131.68 232.77 318.25 402.61
95.0 56.58 96.51 167.23 140.69 231.79 313.46 189.15 309.06 407.17 510.60
97.5 79.24 131.79 216.99 191.68 290.47 390.38 256.38 390.07 504.08 630.19
99.0 120.10 189.69 286.97 266.16 375.30 494.00 355.25 505.21 645.89 767.61

Notes: m is the number of integrated regressors and s ≤ m is the number of linearly indepen-
dent restrictions under the null hypothesis.

parameter choices, inference based on simulated critical values is completely tun-
12We emphasize that the dependence between numerator and denominator in (3.9) implies

that simply drawing from a chi-square distribution for the numerator is invalid.
13The presence of deterministic regressors in (2.1) affects the limiting null distribution of

τIM(η̂T ). Asymptotic critical values in the presence of an intercept and polynomial time trends
are tabulated in Table 4 in the Online Appendix.
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ing parameter free. However, the asymptotically valid critical values might not
serve as good approximations of the quantiles of the test statistic’s finite sample
distribution. Therefore, in the next section, we propose a VAR sieve based re-
sampling procedure to obtain critical values that might be more accurate in finite
samples.

4 Bootstrap Inference

4.1 Bootstrap Method

For asymptotic considerations, the representation given in (2.3) suggests to ap-
proximate {wt}t∈Z = {[ut, v′t]′}t∈Z by a sequence of VAR processes with increas-
ing order q = qT → ∞ as T → ∞. These VAR approximations can be boot-
strapped using the autoregressive sieve bootstrap method, first investigated by
Kreiss (1988), Kreiss (1992) and Bühlmann (1997) for univariate time series and
extended to the multivariate case by Paparoditis (1996). More recently, by ex-
tending the results of Kreiss et al. (2011) to the multivariate case, Meyer and
Kreiss (2015) study the range of validity of the VAR sieve bootstrap in situations
that go beyond the typically assumed setup of causal linear processes.

Applying the VAR sieve bootstrap in our context requires to fit a finite or-
der VAR to wt = [ut, v′t]′, t = 1, . . . , T . However, while vt = xt − xt−1 is simply
given by the first difference of xt, the regression error in (2.1), ut, is unknown.
We therefore fit a finite order VAR to ŵt := [ût, v′t]′, t = 1, . . . , T , instead, where
ût := yt − x′tβ̂IM denotes the IM-OLS residual in (2.1). In the following, let
Φ̂1(q), . . . , Φ̂q(q) denote the solution of the sample Yule-Walker equations in the
regression of ŵt on ŵt−1, . . . , ŵt−q, t = q+ 1, . . . , T , and denote the corresponding
residuals by ε̂t(q) := ŵt −

∑q
j=1 Φ̂j(q)ŵt−j, t = q + 1, . . . , T .14

Bootstrap Scheme:

Step 1) Obtain the bootstrap sample (ε∗t )
T
t=1 by randomly drawing T times

with replacement from the centered residuals
(
ε̂t(q)− ¯̂εT (q)

)T
t=q+1

, where ¯̂εT (q) :=

14It is well known that any finite order VAR estimated by the Yule-Walker estimator is causal
and invertible in finite samples.
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(T − q)−1∑T
t=q+1 ε̂t(q), and construct (w∗t )

T
t=1 recursively as

w∗t = Φ̂1(q)w∗t−1 + . . .+ Φ̂q(q)w∗t−q + ε∗t ,

given initial values w∗1−q, . . . , w∗0.15 Partition w∗t = [u∗t , v∗′t ]′ analogously to wt and
define x∗t := ∑t

s=1 v
∗
s .

Step 2) To generate data under the null hypothesis given in (3.5), define

y∗t := x∗′t β̂
r
IM + u∗t ,

with β̂rIM such that R1β̂
r
IM = r0. That is, β̂rIM is defined as the vector of the first

m elements of

θ̂IM −
(

T∑
t=1

ZtZ
′
t

)−1

R′2

R2

(
T∑
t=1

ZtZ
′
t

)−1

R′2

−1 (
R2θ̂IM − r0

)
,

which in turn is the restricted OLS estimator of θ in (3.1) under the restriction
R1β = R2[β′, (Ω−1

vv Ωvu)′]′ = r0.

Step 3) Compute the OLS estimator in the bootstrap augmented partial sum
regression

Sy
∗

t = Sx
∗′
t β + x∗′t γ + Su

∗

t = Z∗′t θ + Su
∗

t , (4.1)

where Sy
∗

t := ∑t
s=1 y

∗
s , Sx

∗
t := ∑t

s=1 x
∗
s, Su

∗
t := ∑t

s=1 u
∗
s and Z∗t := [Sx∗′

t , x∗′t ]′, to
obtain the bootstrap IM-OLS estimator θ̂∗IM := [β̂∗′IM, γ̂∗′IM]′ of θ in (4.1). Define
the corresponding residuals as Ŝu∗

t := Sy
∗

t − Z∗′t θ̂∗IM, t = 1, . . . , T and let ∆Ŝu∗
t :=

Ŝu
∗

t − Ŝu
∗

t−1, t = 2, . . . , T , denote their first differences. Define

V̂ ∗T :=
(

T∑
t=1

Z∗t Z
∗′
t

)−1 ( T∑
t=1

c∗t c
∗′
t

)(
T∑
t=1

Z∗t Z
∗′
t

)−1

,

where c∗1 := SZ
∗

T and c∗t := SZ
∗

T − SZ
∗

t−1, with SZ
∗

t := ∑t
j=1 Z

∗
j , for t = 2, . . . , T .

15Though irrelevant for developing asymptotic theory, it is advantageous in practical applica-
tions to eliminate the dependencies of the results on the initial values of w∗s , 1 − q ≤ s ≤ 0, to
obtain a stationary sample. To this end, we suggest to generate a sufficiently large number of
w∗t ’s and keep the last T + q of them, only.
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Step 4) Define the bootstrap version of the test statistic τIM(η̂T ) as

τ ∗IM(η̂∗T ) :=
(
R2θ̂

∗
IM − r0

)′ [
R2η̂

∗
T V̂
∗
TR
′
2

]−1 (
R2θ̂

∗
IM − r0

)
,

where

η̂∗T := T−2
T∑
t=2

(
t∑

s=2
∆Ŝu∗

s

)2

.

Step 5) Let α denote the desired nominal size of the test. Repeat Steps 1) to 4)
B times, where B is large and (B+1)(1−α) is an integer, to obtain B realizations
of the bootstrap test statistic, τ ∗IM(η̂∗T ). Reject the null hypothesis given in (3.5),
if the test statistic based on the original observations, τIM(η̂T ), is greater than the
(B + 1)(1− α)-th largest realization of the bootstrap test statistic.

Note that we impose the null hypothesis when generating the bootstrap sam-
ple (y∗t )Tt=1 by using the restricted IM-OLS estimator, β̂rIM, instead of the un-
restricted IM-OLS estimator, β̂IM. However, we use the unrestricted residuals,
ût = yt − x′tβ̂IM, instead of the restricted residuals, yt − x′tβ̂rIM, in the definition of
ŵt. It is advantageous to use the restricted residuals in the definition of ŵt when
the null hypothesis is true. However, the empirical distribution function of the
restricted residuals will generally fail to mimic the population distribution under
the alternative, which leads to a loss of power of the test compared to the case
where ŵt is based on the unrestricted residuals, compare, e. g., van Giersbergen
and Kiviet (2002) and Paparoditis and Politis (2005) for a detailed discussion.

4.2 Bootstrap Consistency

In this subsection we show the asymptotic validity of the testing approach pro-
posed in the previous subsection. To this end, we first prove an invariance principle
result to hold for the bootstrap innovations {ε∗t}t∈Z, which then enables us to show
that an invariance principle result also holds for {w∗t }t∈Z. For the sieve bootstrap
based on (ŵt)Tt=1 to work properly, it is necessary and sufficient that it mimics the
second-order dependence structure of {wt}t∈Z. This stems from the fact that the
dependence structure in the limiting null distribution of τIM(η̂T ) depends only on
the second moments of {wt}t∈Z and, with respect to second moments, indepen-
dence and uncorrelatedness are indistinguishable. Hence, we approximate (ŵt)Tt=1

15



by a sequence of VAR processes with increasing order qT → ∞ as T → ∞. We
impose the following condition on the rate at which qT goes to infinity.

Assumption 4. Let qT →∞ and qT = O((T/ ln(T ))1/3) as T →∞.

For notational brevity, we suppress the dependence of qT on T in the following,
i. e., we simply write q instead of qT . We are now in the position to prove the
following invariance principle for the bootstrap innovations.

Proposition 2. It holds under Assumptions 1, 2 and 4 that

W ∗
T (r) := T−1/2

brT c∑
t=1

ε∗t
w∗
−→ Σ1/2W (r), 0 ≤ r ≤ 1, in P,

as T →∞, with Σ1/2(Σ1/2)′ = Σ.

The preceding result together with the Beveridge-Nelson decomposition (cf.
Phillips and Solo 1992) allows us to prove an invariance principle for {w∗t }t∈Z.

Theorem 1. It holds under Assumptions 1, 2 and 4 that

B∗T (r) := T−1/2
brT c∑
t=1

w∗t
w∗
−→ Ψ(1)Σ1/2W (r), 0 ≤ r ≤ 1, in P,

as T →∞. If, in addition, Assumption 3 is fulfilled, it holds that Ψ(1)Σ1/2W (r) d=
B(r), with B(r) introduced in (2.5). In particular, Ψ(1)Σ1/2W (r) has covariance
matrix Ω.

The invariance principle for {w∗t }t∈Z is the key ingredient in showing that the
bootstrap IM-OLS estimator θ̂∗IM in (4.1) has, conditional on the original sample,
the same limiting distribution as the IM-OLS estimator θ̂IM in (3.1).

Theorem 2. Let the bootstrap quantities be generated as described in Section 4.1.
Then it holds under Assumptions 1, 2, 3 and 4 that

T (β̂∗IM − β̂rIM)
γ̂∗IM − Ω−1

vv Ωvu

 w∗
−→ Ω1/2

u·v (Π′)−1Z in P, (4.2)

with Z defined in (3.3). Moreover, it holds under the null hypothesis given in (3.5)
that

τ ∗IM(η̂∗T ) w∗
−→ GSN in P,
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with GSN defined in (3.9).

Theorem 2 shows that the VAR sieve bootstrap, described in Section 4.1, is
consistently estimating the limiting distributions of the IM-OLS estimator and the
self-normalized test statistic based upon it.16

5 Finite Sample Performance

We generate data according to (2.1) and (2.2) with m = 2 regressors, i. e.,

yt = x1tβ1 + x2tβ2 + ut,

xit = xi,t−1 + vit, xi0 = 0, i = 1, 2,

for t = 1, . . . , T . The regression errors and the innovations for the stochastic
regressors are generated similarly as in Vogelsang and Wagner (2014), i. e.,

ut = ρ1ut−1 + εt + ρ2(ν1t + ν2t), u−100 = 0,

vit = νit + 0.5νi,t−1, νi,−100 = 0, i = 1, 2,

for t = −99, . . . , 0, 1, . . . , T , where εt, ν1t and ν2t are i.i.d. standard normal ran-
dom variables. The period t = −99, . . . , 0 serves as a burn-in period to ensure
stationarity. The parameters ρ1 and ρ2 control the level of serial correlation in
the regression errors and the extent of endogeneity, respectively. The regression
parameters are chosen as β1 = β2 = 1 and the order 1 ≤ q ≤ bT 1/3c =: qmax of the
VAR sieve is chosen as the one that minimizes the Akaike information criterion
(AIC) computed on the evaluation period t = qmax + 1, . . . , T , as suggested by
Kilian and Lütkepohl (2017, p. 56).17 We consider results for T ∈ {50, 100, 200}
and ρ1 = ρ2 ∈ {0, 0.3, 0.6, 0.9}. In all cases, the number of Monte Carlo and
bootstrap replications is 5,000 and 1,999, respectively.

We first briefly compare the IM-OLS estimator with the D-OLS and FM-OLS
estimators in terms of bias and root mean squared error (RMSE). Implementing

16Following the bootstrap literature, it would be more common to use Ω̂−1
vv Ω̂vu rather than

Ω−1
vv Ωvu as the centering coefficient vector in (4.2). However, both versions lead to the same

limiting distribution. As (an estimate of) Ω−1
vv Ωvu is not needed to construct the bootstrap

samples, we use Ω−1
vv Ωvu as the centering coefficient vector in (4.2) to stress that estimating Ω

is not necessary for our procedure.
17Results based on the Bayesian information criterion (BIC) are similar and therefore not

reported.
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the D-OLS estimator requires choosing the numbers of leads and lags of the first
differences of the integrated regressors. To this end, we use the Bayesian infor-
mation criterion (BIC) analyzed in Choi and Kurozumi (2012) as it appears to
be the most successful criterion – among those considered by the authors – in
reducing the mean squared error of the D-OLS estimator. The FM-OLS estimator
is based on an estimate of the long-run covariance matrix of {[ut, v′t]′}t∈Z, which
is typically obtained by kernel estimators, which require kernel and bandwidth
choices. We analyze the results for the Bartlett and the Quadratic Spectral (QS)
kernel together with the corresponding data-dependent bandwidth selection rules
of Andrews (1991). The results are displayed in Table 3 in Appendix A. The
table shows that, although asymptotically unbiased, the D-, FM- and IM-OLS
estimators are biased in finite samples. Bias and RMSE increase in ρ1 = ρ2 and
decrease in T . Often, the IM-OLS estimator has the smallest bias, followed by
the D-OLS estimator, but the IM-OLS estimator has in genral a slightly larger
RMSE than the FM- and D-OLS estimators, which coincides with the findings
in Vogelsang and Wagner (2014). For T = 50, however, the D-OLS estimator
performs poorly, which is mainly attributed to the tendency of the BIC (and the
AIC) to suggest a relatively large number of leads and lags in this case. In total,
the IM-OLS estimator seems to be an appropriate initial estimator for the VAR
sieve procedure.

We now turn to the performance of the self-normalized (bootstrap) test under
the null hypothesis H0 : β1 = 1, β2 = 1. The results are benchmarked against
the commonly used Wald-type tests based on the D-, FM- and IM-OLS estima-
tors, in the following denoted by τD(Ω̂u·v), τFM(Ω̂u·v) and τIM(Ω̂u·v), respectively,
which rely on a kernel estimator of a long-run variance parameter, Ωu·v. We again
analyze results for the Bartlett and the QS kernel together with the correspond-
ing data-dependent bandwidth selection rules of Andrews (1991). In addition, we
compare the self-normalized test, τIM(η̂T ), and the self-normalized bootstrap test,
τ ∗IM(η̂T ), with the IM-OLS based Wald-type test that relies on bootstrap rather
than chi-square critical values, τ ∗IM(Ω̂u·v), in the following referred to as the IM-
OLS based Wald-type bootstrap test. We also analyze the results of the IM-OLS
based test statistic that is neither divided by Ω̂u·v nor by η̂T , in conjunction with
corresponding bootstrap critical values, τ ∗IM(1).18

18Bootstrap critical values for the IM-OLS based Wald-type statistic are obtained using the
scheme described in Section 4.1, with obvious modifications. In particular, note that in each
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Figure 1 displays the empirical null rejection probabilities – in the following
referred to as (empirical) sizes – of the tests for T = 100, ρ1 = ρ2 ∈ {0.6, 0.9}
and nominal sizes α in the range [0.01, 0.20], using 20 values on a grid with mesh
size 0.01. Whenever necessary, long-run covariance matrix estimation is based
on the Bartlett kernel. The following four key observations emerge: First, the
Wald-type test based on the IM-OLS estimator clearly outperforms the Wald-type
tests based on the D- and FM-OLS estimators, but is still severely size distorted.
Second, empirical sizes of the commonly employed tests are generally much larger
than those of the tests based on the self-normalized test statistic. Third, using
bootstrap critical values instead of asymptotically valid critical values reduces
size distortions of the self-normalized test and the IM-OLS based Wald-type test
considerably when the level of error serial correlation and/or endogeneity is large.19

Finally, the self-normalized bootstrap test outperforms the IM-OLS based Wald-
type bootstrap test, with the performance advantages being more pronounced the
larger the level of error serial correlation and/or endogeneity. The results are
similar for the QS kernel and the other choices of T and ρ1 = ρ2.

To analyze the effects of different tuning parameter choices, the sample size
and the extent of error serial correlation and endogeneity in more detail, we now
focus on the results for α = 0.05. Corresponding results for T ∈ {50, 100, 200}
and ρ1 = ρ2 ∈ {0, 0.3, 0.6, 0.9} are displayed in Table 2. The table shows that
the test based on the self-normalized test statistic that relies on asymptotically
valid critical values clearly outperforms the commonly used tests in terms of size.
In particular, it yields sizes that are close to the nominal level unless ρ1 = ρ2 is
large relative to T . Using bootstrap critical values improves the performance of
the test based on the self-normalized test statistic, especially for large values of
ρ1 = ρ2. The self-normalized bootstrap test also outperforms the IM-OLS based
Wald-type bootstrap test and the bootstrap test based on the test statistic that is
neither divided by Ω̂u·v nor by η̂T , especially when ρ1 = ρ2 is large. Table 2 further
shows that the results are robust to different kernel choices. In addition, Figure 2
displays the effect of different bandwidth choices (1, 2, 4, . . . , T ) on the sizes of the

bootstrap iteration, the estimate of the long-run variance Ωu·v is based on the corresponding
bootstrap sample rather than on the original sample, which has turned out to be beneficial.
Bootstrap critical values for the test statistic τIM(1) are obtained similarly.

19For a given nominal size α, the size distortion of a test is defined as the difference between
its empirical size and α, which corresponds to the vertical distance of the empirical size curve
to the 45-degree reference line in Figure 1.
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Figure 1: Empirical versus nominal size of the tests for H0 : β1 = 1, β2 = 1 for
T = 100. Notes: Superscript “∗” signifies the use of bootstrap critical values. The
asymptotically valid critical values for the test based on the self-normalized test
statistic are simulated as described in Section 3. The dotted green 45-degree line
is the target.

three commonly used Wald-type tests and the IM-OLS based Wald-type bootstrap
test. It shows that the self-normalized tests outperform the three commonly used
tests for all bandwidth choices. Figure 2 further shows that sizes of the IM-OLS
based Wald-type bootstrap test decrease as the bandwidth increases, especially
for the QS kernel. However, as additional simulation results (not reported) reveal,
this is accompanied by huge power losses.20 This indicates that simply replacing
asymptotically valid critical values by bootstrap critical values does not capture
the finite sample effects of kernel and bandwidth choices completely and thus
shows the need for self-normalized test statistics.

Finally, we analyze the properties of the self-normalized (bootstrap) test under
deviations from the null hypothesis. To this end, we generate data for β1 =
β2 ∈ (1, 1.4] using 20 values on a grid with mesh size 0.02. The power of the
self-normalized tests is again benchmarked against the commonly used Wald-type
tests based on the D-, FM- and IM-OLS estimators and against the IM-OLS based
Wald-type bootstrap test. Results are displayed in Figure 3. The large differences
in sizes (i. e., under the null hypothesis), however, make a meaningful comparison

20In this setting, the procedure of Andrews (1991) yields relatively small bandwidths.
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Figure 2: Empirical sizes of the tests for H0 : β1 = 1, β2 = 1 at 5% level for
ρ1, ρ2 = 0.9 and T = 100. Notes: Superscript “∗” signifies the use of bootstrap
critical values. As the self-normalized test statistic does not depend on kernel and
bandwidth choices, the corresponding curves are constant within and equal across
subfigures. The dotted green target line displays the nominal size of the tests.

of the performances under the alternative difficult. To enable a “fair” comparison,
we – similar as, e. g., Cavaliere et al. (2015, p. 826) – first simulate under the null
hypothesis and record for each test the nominal size α̃ that yields an empirical
size equal to the desired α = 0.05. We then use critical values corresponding to α̃
in the simulations under the alternative hypotheses. Therefore, by construction,
all curves in Figure 3 start at α = 0.05 for β1, β2 = 1. The following three main
observations emerge: First, the tests based on the IM-OLS estimator have slightly
smaller power than the tests based on the D- and FM-OLS estimators, which
coincides with the findings in Vogelsang and Wagner (2014). Second, replacing
the long-run variance estimator in the IM-OLS based test statistic with the self-
normalizer decreases the power of the test slightly. Third, the self-normalized test
based on bootstrap critical values has similar but marginally smaller power than
the self-normalized test based on the asymptotically valid critical values but this
difference vanishes as the sample size increases.
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Figure 3: Size-adjusted power of the tests for H0 : β1 = 1, β2 = 1 at 5% level for
ρ1, ρ2 = 0.6 and T = 100. Notes: Superscript “∗” signifies the use of bootstrap
critical values. As the self-normalized test statistic does not depend on kernel
(and bandwidth) choices, the corresponding curves are equal across subfigures.
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6 Conclusion

We propose a novel self-normalized test statistic for general linear restrictions
in cointegrating regressions, which avoids the estimation of nuisance parameters.
In combination with the IM-OLS estimator, the test statistic is completely tun-
ing parameter free. Its limiting null distribution is nonstandard, but we provide
asymptotically valid critical values. To further improve the performance of the
test in small to medium samples, we employ the VAR sieve bootstrap to construct
critical values. To show its consistency, we establish a bootstrap invariance prin-
ciple result under conditions that go beyond the assumptions commonly imposed
in the literature, which might be of interest in its own right. Obtaining bootstrap
critical values requires the choice of a single tuning parameter, the order of a VAR,
which is a relatively straightforward and well understood task in practice.

Simulation results suggest that our new self-normalized bootstrap test works
extremely well in finite samples and outperforms competing approaches, including
the commonly employed Wald-type test, which depends on the choice of several
tuning parameters to estimate a long-run variance parameter. In particular, the
self-normalized bootstrap test has good power properties and is considerably less
prone to size distortions, which are often observed to be tremendous for the com-
monly used approaches, especially when sample size is small or the level of error
serial correlation and/or endogeneity is large. Moreover, the results are robust to
information criteria choices to determine the order of the VAR. In larger samples
the bootstrap critical values can be replaced by asymptotically valid critical values
without major performance losses. Given that the self-normalized bootstrap test
is easy to implement, it should therefore become a serious competitor to commonly
used tests in practice.

Self-normalized bootstrap inference might also be a promising approach to
address the enormous size distortions of hypothesis tests often observed in coin-
tegrated panels. This interesting direction of future research is currently under
investigation by the authors.

24



References

Andrews, D.W.K. (1991). Heteroskedasticity and Autocorrelation Consistent Co-
variance Matrix Estimation. Econometrica 59, 817–858.

Andrews, B., Davis, R.A., Breidt, F.J. (2007). Rank-Based Estimation for All-Pass
Time Series Models. Annals of Statistics 35, 844–869.

Baxter, G. (1962). An Asymptotic Result for the Finite Predictor. Mathematica
Scandinavica 10, 137–144.

Benati, L., Lucas Jr., R.E., Nicolini, J.P., Weber, W. (2020). International Evi-
dence on Long-Run Money Demand. Journal of Monetary Economics. Forth-
coming.

Brillinger, D.R. (1981). Time Series: Data Analysis and Theory. Holden-Day, Inc.,
San Francisco.

Brüggemann, R., Jentsch, C., and Trenkler, C. (2016). Inference in VARs with
Conditional Heteroskedasticity of Unknown Form. Journal of Econometrics
191, 69–85.

Bühlmann, P. (1997). Sieve Bootstrap for Time Series. Bernoulli 3, 123–148.

Cavaliere, G., Nielsen, H.B., Rahbek, A. (2015). Bootstrap Testing of Hypotheses
on Co-Integration Relations in Vector Autoregressive Models. Econometrica
83, 813–831.

Cavaliere, G., Rahbek, A., Taylor, A.M.R. (2012). Bootstrap Determination of
the Co-Integration Rank in Vector Autoregressive Models. Econometrica 80,
1721–1740.

Chang, Y., Park, J.Y. (2003). A Sieve Bootstrap for the Test of a Unit Root.
Journal of Time Series Analysis 24, 379–400.

Chang, Y., Park, J.Y., Song, K. (2006). Bootstrapping Cointegrating Regressions.
Journal of Econometrics 133, 703–739.

Choi, I., Kurozumi, E. (2012). Model Selection Criteria for the Leads-and-Lags
Cointegrating Regression. Journal of Econometrics 169, 224–238.

25



Dahlhaus, R., Kiss, I.Z., Neddermeyer, J.C. (2018). On the Relationship Between
the Theory of Cointegration and the Theory of Phase Synchronization. Sta-
tistical Science 33, 334–357.

Doukhan, P., Wintenberger, O. (2007). An Invariance Principle for Weakly De-
pendent Stationary General Models. Probability and Mathematical Statistics
27, 45–73.

Einmahl, U. (1987). A Useful Estimate in the Multidimensional Invariance Prin-
ciple. Probability Theory and Related Fields 76, 81–101.

Hannan, E.J., Deistler, M. (1988). The Statistical Theory of Linear Systems. Wi-
ley, New York.

Hwang, J., Sun, Y. (2018). Simple, Robust, and Accurate F and t Tests in Coin-
tegrated Systems. Econometric Theory 34, 949–984.

Jansson, M. (2002). Consistent Covariance Matrix Estimation for Linear Pro-
cesses. Econometric Theory 18, 1449–1459.

Jentsch, C., Lunsford, K. (2019). The Dynamic Effects of Personal and Corporate
Income Tax Changes in the United States: Comment. American Economic
Review 109, 2655–2678.

Kiefer, N.M., Vogelsang, T.J., Bunzel, H. (2000). Simple Robust Testing of Re-
gression Hypotheses. Econometrica 68, 695–714.

Kilian, L., Lütkepohl, H. (2017). Structural Vector Autoregressive Analysis. Cam-
bridge University Press, Cambridge.

Knorre, F., Wagner, M., Grupe, M. (2020). Monitoring Cointegrating Polynomial
Regressions: Theory and Application to the Environmental Kuznets Curves
for Carbon and Sulfur Dioxide Emissions. Mimeo.

Kreiss, J.-P. (1988). Asymptotical Inference for a Class of Stochastic Processes.
Universität Hamburg: Habilitationsschrift.

Kreiss, J.-P. (1992). Bootstrap Procedures for AR(∞) Processes. In Bootstrap-
ping and Related Techniques, Jöckel, K.H., Rothe, G., Sender, W. (eds.),
Lecture Notes in Economics and Mathematical Systems, vol. 376 Springer:
Heidelberg, 107–113.

26



Kreiss, J.-P., Paparoditis, E., Politis, D.N. (2011). On the Range of Validity of
the Autoregressive Sieve Bootstrap. Annals of Statistics 39, 2103–2130.

Lanne, M., Saikkonen, P. (2013). Noncausal Vector Autoregression. Econometric
Theory 29, 447–481.

Li, H., Maddala, G.S. (1997). Bootstrapping Cointegrating Regressions. Journal
of Econometrics 80, 297–318.

Merlevède, F., Peligrad, M., Utev, S. (2006). Recent Advances in Invariance Prin-
ciples for Stationary Sequences. Probability Surveys 3, 1–36.

Meyer, M., Kreiss, J.-P. (2015). On the Vector Autoregressive Sieve Bootstrap.
Journal of Time Series Analysis 36, 377 – 397.

Newey, W.K., West, K.D. (1994). Automatic Lag Selection in Covariance Matrix
Estimation. Review of Economic Studies 61, 631–653.

Palm, F.C., Smeekes, S., Urbain, J.P. (2010). A Sieve Bootstrap Test for Coin-
tegration in a Conditional Error Correction Model. Econometric Theory 26,
647 – 681.

Paparoditis, E. (1996). Bootstrapping Autoregressive and Moving Average Param-
eter Estimates of Infinite Order Vector Autoregressive Processes. Journal of
Multivariate Analysis 57, 277 – 296.

Paparoditis, E., Politis, D.N. (2003). Residual-Based Block Bootstrap for Unit
Root Testing. Econometrica 71, 813 – 855.

Paparoditis, E., Politis, D.N. (2005). Bootstrap Hypothesis Testing in Regression
Models. Statistics & Probability Letters 74, 356 – 365.

Park, J.Y. (1992). Canonical Cointegrating Regressions. Econometrica 60, 119–
143.

Park, J.Y. (2002). An Invariance Principle for Sieve Bootstrap in Time Series.
Econometric Theory 18, 469–490.

Patton, A., Politis, D.N., White, H. (2009). Correction to “Automatic Block-
Length Selection for the Dependent Bootstrap” by D. Politis and H. White.
Econometric Reviews 28, 372–375.

27



Phillips, P.C.B. (2014). Optimal Estimation of Cointegrated Systems With Irrel-
evant Instruments. Journal of Econometrics 178, 210–224.

Phillips, P.C.B., Hansen, B.E. (1990). Statistical Inference in Instrumental Vari-
ables Regression with I(1) Processes. Review of Economic Studies 57, 99–125.

Phillips, P.C.B., Leirvik, T., Storelvmo, T. (2020). Econometric Estimates of
Earth’s Transient Climate Sensitivity. Journal of Econometrics 214, 6 – 32.

Phillips, P.C.B., Loretan, M. (1991). Estimating Long Run Economic Equilibria.
Review of Economic Studies 58, 407–436.

Phillips, P.C.B., Solo, V. (1992). Asymptotics for Linear Processes. Annals of
Statistics 20, 971–1001.

Politis, D.N., White, H. (2004). Automatic Block-Length Selection for the Depen-
dent Bootstrap. Econometric Reviews 23, 53-70.

Psaradakis, Z. (2001). On Bootstrap Inference in Cointegrating Regressions. Eco-
nomics Letters 72, 1–10.

Rad, H., Low, R.K.Y., Faff, R. (2016). The Profitability of Pairs Trading Strate-
gies: Distance, Cointegration and Copula Methods. Quantitative Finance 16,
1541–1558.

Saikkonen, P. (1991). Asymptotically Efficient Estimation of Cointegrating Re-
gressions. Econometric Theory 7, 1–21.

Shao, X. (2010). The Dependent Wild Bootstrap. Journal of the American Statis-
tical Association 105, 218–235.

Shao, X. (2015). Self-Normalization for Time Series: A Review of Recent Devel-
opments. Journal of the American Statistical Association 110, 1797–1817.

Shin, Y. (1994). A Residual-Based Test of the Null of Cointegration Against the
Alternative of No Cointegration. Econometric Theory 10, 91–115.

Stock, J.H., Watson, M.W. (1993). A Simple Estimator of Cointegrating Vectors
in Higher Order Integrated Systems. Econometrica 61, 783–820.

28



van Giersbergen, N.P.A., Kiviet, J.F. (2002). How to Implement the Bootstrap
in Static or Stable Dynamic Regression Models: Test Statistic Versus Confi-
dence Region Approach. Journal of Econometrics 108, 133–156.

Vogelsang, T.J., Wagner, M. (2014). Integrated Modified OLS Estimation and
Fixed-b Inference for Cointegrating Regressions. Journal of Econometrics
178, 741–760.

Wagner, M. (2015). The Environmental Kuznets Curve, Cointegration and Non-
linearity. Journal of Applied Econometrics 30, 948–967.

Wang, R., Shao, X. (2020). Hypothesis Testing for High-Dimensional Time Series
via Self-Normalization. Annals of Statistics 48, 2728–2758.

Wu, W. (2005). Nonlinear System Theory: Another Look at Dependence. Pro-
ceedings of the National Academy of Sciences of the USA 102, 14150–14154.

Wu, W. (2007). Strong Invariance Principles for Dependent Random Variables.
Annals of Probability 35, 2294–2320.

29



Appendices

A Additional Finite Sample Results

Table 3: Bias and RMSE of the IM-, D- and FM-OLS estimator of β1 and β2,
respectively

Bartlett kernel QS kernel

ρ1, ρ2 β̂IM,1 β̂IM,2 β̂D,1 β̂D,2 β̂FM,1 β̂FM,2 β̂FM,1 β̂FM,2

Bias
T = 50 0 0.00 -0.00 -0.01 0.00 0.00 -0.00 0.00 -0.00

0.3 0.00 -0.00 -0.01 -0.00 0.01 0.01 0.01 0.01
0.6 0.02 0.02 -0.01 -0.00 0.05 0.05 0.05 0.05
0.9 0.24 0.22 0.14 0.13 0.29 0.27 0.30 0.28

T = 100 0 0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00
0.3 0.00 0.00 -0.00 0.00 0.00 0.00 0.00 0.00
0.6 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02
0.9 0.13 0.14 0.11 0.12 0.17 0.18 0.17 0.18

T = 200 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.6 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01
0.9 0.05 0.05 0.06 0.06 0.09 0.09 0.09 0.09

RMSE
T = 50 0 0.07 0.07 0.21 0.21 0.05 0.05 0.05 0.05

0.3 0.10 0.10 0.26 0.26 0.07 0.07 0.07 0.07
0.6 0.18 0.18 0.36 0.36 0.14 0.14 0.15 0.15
0.9 0.70 0.67 0.77 0.76 0.51 0.50 0.59 0.57

T = 100 0 0.04 0.04 0.02 0.02 0.02 0.02 0.02 0.02
0.3 0.05 0.05 0.03 0.03 0.03 0.03 0.03 0.03
0.6 0.09 0.09 0.06 0.06 0.06 0.07 0.07 0.07
0.9 0.38 0.39 0.29 0.31 0.31 0.32 0.34 0.34

T = 200 0 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01
0.3 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02
0.6 0.05 0.05 0.03 0.03 0.03 0.03 0.03 0.03
0.9 0.20 0.20 0.15 0.15 0.18 0.18 0.19 0.19

Notes: β̂IM,i, β̂D,i and β̂FM,i denote the IM-, D- and FM-OLS estimator of βi,
respectively, i = 1, 2.
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B Proofs of the Main Results

Proof of Proposition 1. Vogelsang and Wagner (2014, Lemma 2) show that

T−1/2
brT c∑
t=2

∆Ŝut
w−→ Ω1/2

u·v (Wu·v(r)− g(r)′Z) , 0 ≤ r ≤ 1,

as T →∞. The continuous mapping theorem thus yields

η̂T = T−1
T∑
t=2

(
T−1/2

t∑
s=2

∆Ŝus
)2

w−→ Ωu·v

∫ 1

0
(Wu·v(r)− g(r)′Z)2

dr,

as T →∞. The final result now follows with standard arguments from (3.6). �

The proof of the remaining results relies on the following lemma.

Lemma 1. Under Assumptions 1, 2 and 4, it holds that

max
q+1≤t≤T

|ŵt − wt|F = OP(T−1/2) (B.1)

and

q1/2
q∑
j=1
|Φ̂j(q)− Φ̃j(q)|F = OP(q3/T ) = oP(1), (B.2)

where Φ̃1(q), . . . , Φ̃q(q) denote the solution of the sample Yule-Walker equations in
the regression of wt on wt−1, . . . , wt−q, t = q + 1, . . . , T .

Proof. The proof is given in the Online Appendix.

Two key ingredients in the proof of Lemma 1, which are also useful hereafter, are
the following. First, it holds under Assumptions 1 and 4 that

q3/2 sup
1≤j≤q

|Φ̃j(q)− Φj(q)|F = q3/2OP((ln(T )/T )1/2) = OP(1), (B.3)

compare Meyer and Kreiss (2015, Remark 3.3.), where Φ1(q), . . . ,Φq(q) denote
the finite predictor coefficients, i. e., the solution of the population Yule-Walker
equations based on the true moments. Second, under Assumption 1 with k ≥ 3/2,
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there exist constants q0 ∈ N and c <∞ such that

q∑
j=1

(1 + j)k|Φj(q)− Φj|F ≤ c
∞∑

j=q+1
(1 + j)k|Φj|F , (B.4)

for all q ≥ q0 and the right-hand side converges to zero as q →∞, see Meyer and
Kreiss (2015, Lemma 3.1).21

Lemma 1 is used to prove the following two lemmas, which in turn are used to
prove Proposition 2.

Lemma 2. It holds under Assumptions 1 and 4 that

E∗ (|ε∗t |aF ) = (T − q)−1
T∑

t=q+1
|ε̂t(q)− ¯̂εT (q)|aF = OP(1),

in P, for the a > 2 from Assumption 1.

Proof. The proof is given in the Online Appendix.

Lemma 3. It holds under Assumptions 1, 2 and 4 that

E∗ (ε∗t ε∗′t ) = (T − q)−1
T∑

t=q+1

(
ε̂t(q)− ¯̂εT (q)

) (
ε̂t(q)− ¯̂εT (q)

)′
= Σ + oP(1),

in P.

Proof. The proof is given in the Online Appendix.

Proof of Proposition 2. Given Lemma 2 and Lemma 3, the result follows im-
mediately from Einmahl (1987), as in Chang et al. (2006, p. 714).22 �

Proof of Theorem 1. Using similar arguments as Palm et al. (2010, p. 670), it
follows that

B∗T (r) = T−1/2
brT c∑
t=1

w∗t =
I − q∑

j=1
Φ̂j(q)

−1

W ∗
T (r) + T−1/2(w̄∗0 − w̄∗brT c),

21This result is known as the generalized Baxter’s inequality, see Baxter (1962) and Hannan
and Deistler (1988, p. 269).

22For more details we refer to the pre-print of Palm et al. (2010), which is available on the web-
site http://researchers-sbe.unimaas.nl/stephansmeekes/research/publications/ (Accessed: 2020-
12-17).
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where w̄∗t−1 :=
(
I −∑q

j=1 Φ̂j(q)
)−1∑q

i=1

(∑q
j=i Φ̂j(q)

)
w∗t−i. It thus remains to show

that

I −
q∑
j=1

Φ̂j(q)
p−→ Φ(1) (B.5)

and

P∗
(

max
0≤t≤T

|T−1/2w̄∗t |F > δ
)

= oP(1). (B.6)

We first show (B.5). From Lemma 1, (B.3) and (B.4), we obtain

|I −
q∑
j=1

Φ̂j(q)− Φ(1)|F ≤
q∑
j=1
|Φ̂j(q)− Φ̃j(q)|F +

q∑
j=1
|Φ̃j(q)− Φj(q)|F

+
q∑
j=1
|Φj(q)− Φj|F +

∞∑
j=q+1

|Φj|F

≤
q∑
j=1
|Φ̂j(q)− Φ̃j(q)|F + q sup

1≤j≤q
|Φ̃j(q)− Φj(q)|F

+ c
∞∑

j=q+1
|Φj|F +

∞∑
j=q+1

|Φj|F

= oP(1) + oP(1) + o(1) + o(1) = oP(1).

To prove (B.6), we note that it follows from strict stationarity of {w̄∗t }t∈Z and
Markov’s inequality, that

P∗
(

max
0≤t≤T

|T−1/2w̄∗t |F > δ
)
≤

T∑
t=0

P∗
(
|T−1/2w̄∗t |F > δ

)
≤ (T + 1)P∗

(
|T−1/2w̄∗t |F > δ

)
≤ δ−a(T 1−a/2 + T−a/2)E∗ (|w̄∗t |aF ) ,

with the a > 2 from Assumption 1, compare Park (2002, p. 486). Similarly as in
Palm et al. (2010, p. 671), we obtain

E∗ (|w̄∗t |aF ) ≤ c (m+ 1)a/2−1

 ∞∑
j=0
| ¯̂Ψj(q)|2F

a/2 E∗ (|ε∗t |aF ) ,

for some constant c and ¯̂Ψj(q) := ∑∞
i=j+1 Ψ̂i(q), where the matrices Ψ̂j are deter-
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mined by the power series expansion of the inverse of I −∑q
j=1 Φ̂j(q)zj. As dis-

cussed in Palm et al. (2010, p. 671) it follows that ∑∞j=0 |
¯̂Ψj(q)|2F = OP(1) if we can

show that ∑q
j=1 j

1/2|Ψ̂j(q)|F = OP(1), which in turn holds if ∑q
j=1 j

1/2|Φ̂j(q)|F =
OP(1). Using again Lemma 1, (B.3) and (B.4), we obtain

q∑
j=1

j1/2|Φ̂j(q)|F ≤
q∑
j=1

j1/2|Φ̂j(q)− Φ̃j(q)|F +
q∑
j=1

j1/2|Φ̃j(q)− Φj(q)|F

+
q∑
j=1

j1/2|Φj(q)− Φj|F +
q∑
j=1

j1/2|Φj|F

≤ q1/2
q∑
j=1
|Φ̂j(q)− Φ̃j(q)|F + q1/2

q∑
j=1
|Φ̃j(q)− Φj(q)|F

+
q∑
j=1

(1 + j)|Φj(q)− Φj|F +
q∑
j=1

j1/2|Φj|F

≤ q1/2
q∑
j=1
|Φ̂j(q)− Φ̃j(q)|F + q3/2 sup

1≤j≤q
|Φ̃j(q)− Φj(q)|F

+
q∑
j=1

(1 + j)|Φj(q)− Φj|F +
q∑
j=1

j1/2|Φj|F

= oP(1) +OP(1) + o(1) +O(1) = OP(1).

This completes the proof, since E∗ (|ε∗t |aF ) = OP(1) by Lemma 2 for the a > 2 from
Assumption 1. �

Proof of Theorem 2. The first result in Theorem 2 follows from the bootstrap
invariance principle result in Theorem 1 and similar arguments as used in Vogel-
sang and Wagner (2014, Proof of Theorem 2). The second result then follows from
the bootstrap invariance principle and similar arguments as used in the proof of
Proposition 1. �
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