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Abstract

We consider the problem of designing experiments for the comparison of two regres-

sion curves describing the relation between a predictor and a response in two groups,

where the data between and within the group may be dependent. In order to derive effi-

cient designs we use results from stochastic analysis to identify the best linear unbiased

estimator (BLUE) in a corresponding continuous time model. It is demonstrated that

in general simultaneous estimation using the data from both groups yields more precise

results than estimation of the parameters separately in the two groups. Using the BLUE

from simultaneous estimation, we then construct an efficient linear estimator for finite

sample size by minimizing the mean squared error between the optimal solution in the

continuous time model and its discrete approximation with respect to the weights (of the

linear estimator). Finally, the optimal design points are determined by minimizing the

maximal width of a simultaneous confidence band for the difference of the two regression

functions. The advantages of the new approach are illustrated by means of a simulation

study, where it is shown that the use of the optimal designs yields substantially narrower

confidence bands than the application of uniform designs.

Keywords and Phrases: optimal design, correlated observations, Gaussian white noise model,

comparison of curves
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1 Introduction

The application of optimal or efficient designs can improve the accuracy of statistical analysis

substantially and meanwhile there exists a well established and powerful theory for the con-

struction of (approximate) optimal designs for independent observations, see for example the

monographs of Pukelsheim (2006) or Fedorov and Leonov (2013). In contrast, the determina-

tion of optimal designs for efficient statistical analysis from dependent data is more challenging

because the corresponding optimization problems are in general not convex and therefore the

powerful tools of convex analysis are not applicable. Although design problems for correlated

data have been discussed for a long time (see, for example Sacks and Ylvisaker, 1966, 1968;

Bickel and Herzberg, 1979; Näther, 1985, who use asymptotic arguments to develop continuous

but in general non-convex optimzation problems in this context) a large part of the discussion

is restricted to models with a small number of parameters and we refer Pázman and Müller

(2001), Müller and Pázman (2003), Dette et al. (2008), Kiselak and Stehĺık (2008), Harman

and Štulajter (2010), Rodriguez-Diaz (2017), Campos-Barreiro and López-Fidalgo (2015) and

Attia and Constantinescu (2020) among others.

Recently, Dette et al. (2013) suggest a more systematic approach to the problem and determine

(asymptotic) optimal designs for least squares estimation, under the additional assumption

that the regression functions are eigenfunctions of an integral operator associated with the

covariance kernel of the error process. This approach refers to models, where the regression

functions are eigenfunctions of the integral operator corresponding to the covariance kernel,

which is used to describe the dependencies. For more general models Dette et al. (2016)

propose to construct the optimal design and estimator simultaneously. More precisely, they

construct a class of estimators and corresponding optimal designs with a variance converging

(as the sample size increases) to the optimal variance in the continuous time model. Dette et al.

(2017a) propose an alternative strategy for this purpose. They start with the construction of the

best linear unbiased estimator (BLUE) in the continuous time model using stochastic calculus

and determine in a second step an implementable design, which is “close” to the solution

in the continuous time model. By this approach these authors are able to provide an easily

implementable estimator with a corresponding design which is practically non distinguishable

from the weighted least squares estimate (WLSE) with corresponding optimal design. Their

results are applicable for a broad class of linear regression models with various covariance kernels

and have recently been extended to the situation, where also derivatives of the process can be

observed (see Dette et al., 2019).

Dette and Schorning (2016) and Dette et al. (2017b) propose designs for the comparison of

regression curves from two independent samples, where the latter reference also allows for

dependencies within the samples. Their work is motivated by applications in drug development,
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where a comparison between two regression models that describe the relation between a common

response and the same covariates for two groups is used to establish the non-superiority of one

model to the other or to check whether the difference between two regression models can be

neglected. For example, if the similarity between two regression functions describing the dose

response relationships in the groups individually has been established subsequent inference in

drug development could be based on the combined samples such that a more efficient statistical

analysis is possible on the basis of the larger population. Because of its importance several

procedures for the comparison of curves have been investigated in linear and nonlinear models

(see Liu et al., 2009; Gsteiger et al., 2011; Liu et al., 2011; Dette et al., 2018; Bretz et al.,

2018; Möllenhoff et al., 2018, 2020, among others). Designs minimizing the maximal width of

a (simultaneous) confidence band for the difference between the regression curves calculated

from two independent groups are determined by Dette and Schorning (2016) and Dette et al.

(2017b), who also demonstrate that the use of these designs yields to substantially narrower

confidence bands.

While these results refer to independent groups it is the purpose of the present paper to inves-

tigate designs for the comparison of regression curves corresponding to two groups, where the

data within the groups and between the groups may be dependent. It will be demonstrated

that in most cases simultaneous estimation of the parameters in the regression models using

the data from both groups yields to more efficient inference than estimating the parameters in

the models corresponding to the different groups separately. Moreover, the simultaneous esti-

mation procedure can never be worse. While this property holds independently of the design

under consideration, we subsequently construct efficient designs for the comparison of curves

corresponding to not necessarily independent groups and demonstrate its superiority by means

of a simulation study.

The remaining part of this paper is organized as follows. In Section 2 we introduce the basics

and the design problem. Section 3 is devoted to a continuous time model, which could be

interpreted as a limiting experiment of the discrete model if the sample size converges to infin-

ity. In this model we derive an explicit representation of the BLUE if estimation is performed

simultaneously is both groups. In Section 4 we develop a discrete approximation of the contin-

uous BLUE by determining the optimal weights for the linear estimator. Finally, the optimal

design points are determined such that the maximum width of the confidence band for the

difference of the two regression functions is minimal. Section 5 is devoted to a small numerical

comparison of the performance of the optimal designs with uniform designs. In particular, it

is demonstrated that optimal designs yield substantially narrower confidence bands. In many

cases the maximal width of a confidence band from the uniform design is by a factor between

2 and 10 larger than the width of a confidence band from the optimal design.
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2 Simultaneous estimation of two regression models

Throughout this paper we consider the situation of two groups of observations Y1,1, . . . , Y1,n

and Y2,1, . . . , Y2,n at time points t1, . . . , tn (i = 1, 2) where there may exist dependencies within

and between the groups. We assume the relation between the response and the covariate t in

each group is described by a linear regression models given by

Yij = Yi(tj) = f>i (tj)θ
(i) + ηi(tj) , j = 1, . . . , n , i = 1, 2 . (2.1)

Thus in each group n observations are taken at the same time points t1, . . . , tn which can be

chosen in a compact interval, say [a, b], and observations at different time points and in different

groups might be dependent. The vectors of the unknown parameters θ(1) and θ(2) are assumed to

be p1- and p2-dimensional, respectively, and the corresponding vectors of regression functions

fi(t) = (fi,1(t), . . . , fi,pi(t))
>, i = 1, 2, have continuously differentiable linearly independent

components.

To address the situation of correlation between the groups, we start with a very simple covari-

ance structure for each group, but we emphasize that all results presented in this paper are

correct for more general covariance structures corresponding to Markov processes, see Remark

3.3 for more details. To be precise, let {ε1(t)| t ∈ [a, b]} and {ε2(t)| t ∈ [a, b]} denote two

independent Brownian motions, such that

E[εi(tj)] = 0, Ki(tj, tk) = E[εi(tj)εi(tk)] = min(tj, tk) (2.2)

denotes the mean value and the covariance of the individual process εi at the points tj and

tk, respectively. Let σ1, σ2 > 0, % ∈ (−1, 1), denote by Σ1/2 the square root of the covariance

matrix

Σ =

 σ2
1 σ1σ2%

σ1σ2% σ2
2

 , (2.3)

and define for t ∈ [a, b] the two-dimensional process {η(t)| t ∈ [a, b]} by

η(t) =

η1(t)
η2(t)

 = Σ1/2ε(t), (2.4)

where ε(t) = (ε1(t), ε2(t))
>. Note that % ∈ (−1, 1) denotes the correlation between the obser-

vations Y1(tj) and Y2(tj) (j = 1, . . . , n), and that in general the correlation between Y1(tj) and

Y2(tk) is given by

Corr(Y1(tj), Y2(tk)) = %

{√
tj
tk
∧

√
tk
tj

}
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if tj, tk ∈ (0, 1).

Considering the two groups individually results in proper (for example weighted least squares)

estimators of the parameters θ(1) and θ(2). However, this procedure ignores the correlation

between the two groups and estimating the parameters θ(1) and θ(2) simultaneously from the

data of both groups might result in more precise estimates. In order to define estimators for the

parameters θ(1) and θ(2) using the information from both groups we now consider a more general

two-dimensional regression model, which on the one hand contains the situation described in

the previous paragraph as special case, but on the other hand also allows us to consider the

case, where some of the components in θ1 and θ2 coincide, see Example 2.2 and Section 3.3 for

details. To be precise we define the regression model

Y(tj) =

Y1(tj)
Y2(tj)

 = F>(tj)θ + η(tj) = F>(tj)θ + Σ1/2ε(tj), j = 1, . . . , n, (2.5)

where two-dimensional observations

Y(t1) = (Y1(t1), Y2(t1))
>, . . . ,Y(tn) = (Y1(tn), Y2(tn))>

are available at time points t1, . . . , tn ∈ [a, b]. In model (2.5) the vector θ = (ϑ1, . . . , ϑp)
> is a

p-dimensional parameter and

F>(t) =

F>1 (t)

F>2 (t)

 =

F1,1(t) . . . F1,p(t)

F2,1(t) . . . F2,p(t)

 (2.6)

denotes a (p× 2) matrix containing continuously differentiable regression functions, where the

two-dimensional functions (F1,1(t), F2,1(t))
>, . . . , (F1,p(t), F2,p(t))

> are assumed to be linearly

independent.

Example 2.1 The individual models defined in (2.1) are contained in this two-dimensional

model. More precisely, defining the p = (p1 + p2)-dimensional vector of parameters θ by

θ = ((θ(1))>, (θ(2))>)> and the regression function F>(t) in (2.6) by the rows

F>1 (t) = (f>1 (t), 0>p2), F>2 (t) = (0>p1 , f
>
2 (t)),

it follows that model (2.5) coincides with model (2.1). Moreover, this composite model takes

the correlation between the groups into account. In this case the models describing the relation

between the variable t and the responses Y1(t) and Y2(t) do not share any parameters.
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Example 2.2 In this example we consider the situation where some of the parameters of the

individual models in (2.1) coincide. This situation occurs, for example, if Y1(t) and Y2(t)

represent clinical parameters (depending on time) before and after treatment, where it can

be assumed that the effect at time a coincides before and after the treatment. In this case a

reasonable model for average effect in the two groups is given by

E[Y`(t)] = θ(0) + (θ̃(`))>f̃`(t) , ` = 1, 2 .

More generally, we consider the situation where the vectors of the parameters are given by

θ(1) = (θ(0)
>
, θ̃(1)

>
)> , θ(2) = (θ(0)

>
, θ̃(2)

>
)> ,

where θ(0) ∈ Rp0 denotes the vector of common parameters in both models and vectors θ̃(1) ∈
Rp1−p0 and θ̃(2) ∈ Rp2−p0 contain the different parameters in the two individual models. The

corresponding regression functions are given by

f>1 (t) = (f>0 (t), f̃>1 (t)) , f>2 (t) = (f>0 (t), f̃>2 (t)) , (2.7)

where the vector f>0 (t) contains the regression functions corresponding to the common pa-

rameters in the two models, and f̃>1 (t) and f̃>2 (t) denote the vectors of regression functions

corresponding to the different parameters θ̃(1) and θ̃(2), respectively.

Defining the p = (p1 + p2 − p0)-dimensional vector of parameters θ by θ = (θ(0), θ̃(1), θ̃(2)) and

the regression function F>(t) in (2.6) by the rows

F>1 (t) = (f>0 (t), f̃>1 (t), 0>p2−p0), F>2 (t) = (f>0 (t), 0>p1−p0 , f̃
>
2 (t)),

it follows that the model (2.5) contains the individual models in (2.1), where the regression

functions are given by (2.7) and the parameters θ(1) and θ(2) share the parameter θ(0). Moreover,

this composite model takes the potential correlation between the groups into account.

3 Continuous time models

It was demonstrated by Dette et al. (2017a) that efficient designs for dependent data in regres-

sion problems can be derived by first considering the estimation problem in a continuous time

model. In this model there is no optimal design problem as the data can be observed over the

full interval [a, b]. However, efficient designs can be determined in two steps. First, one derives

the best linear unbiased estimator (BLUE) in the continuous time model and, secondly, one

determines design points (and an estimator) such that the resulting estimator from the discrete

data provides a good approximation of the optimal solution in the continuous time model. In

this paper we will use this strategy to develop optimal designs for the comparison of regression
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curves from two (possible) dependent groups. In the present section we discuss a continuous

time model corresponding to the discrete model (2.5), while the second step, the determination

of an “optimal” approximation will be postponed to the following Section 4 .

3.1 Best linear unbiased estimation

To be precise, we consider the continuous time version of the linear regression model in (2.5),

that is,

Y(t) =

Y1(t)
Y2(t)

 = F>(t)θ + Σ1/2ε(t) , t ∈ [a, b] , (3.1)

where we assume 0 < a < b and the full trajectory of the process {Y (t) | t ∈ [a, b]} is observed,

{ε(t) = (ε1(t), ε2(t))
> | t ∈ [a, b]} is a vector of independent Brownian motions as defined in

(2.2) and the matrix Σ1/2 is the square root of the covariance matrix Σ defined in (2.3). Note

that we restrict ourselves to an interval on the positive line, because in this case the notation

is slightly simpler. But we emphasize that the theory developed in this section can also be

applied for a = 0, see Remark 3.1 for more details. We further assume that the (p× p)-matrix

M =

∫ b

a

Ḟ(t)Σ−1Ḟ>(t) dt+
1

a
F(a)Σ−1F>(a) (3.2)

is non-singular.

Theorem 3.1 Consider the continuous time linear regression model (3.1) on the interval [a, b],

a > 0, with a continuously differentiable matrix of regression functions F, a vector {ε(t) =

(ε1(t), ε2(t))
> | t ∈ [a, b]} of independent Brownian motions and a covariance matrix Σ defined

by (2.3). The best linear unbiased estimator of the parameter θ is given by

θ̂BLUE = M−1
(∫ b

a

Ḟ(t)Σ−1 dY(t) +
1

a
F(a)Σ−1Y(a)

)
. (3.3)

Moreover, the minimum variance is given by

Cov(θ̂BLUE) = M−1 =

(∫ b

a

Ḟ(t)Σ−1Ḟ>(t) dt+
1

a
F(a)Σ−1F>(a)

)−1
. (3.4)

Proof. Multiplying Y by the matrix Σ−1/2 yields a transformed regression model

Ỹ (t) =

Ỹ1(t)
Ỹ2(t)

 = Σ−1/2

Y1(t)
Y2(t)

 = Σ−1/2F>(t)θ + ε(t) , (3.5)
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where Σ−1/2 is the inverse of Σ1/2, the square root of the covariance matrix Σ defined in

(2.3). Note that the components of the vector Ỹ are independent, and consequently, the

joint likelihood function can be obtained as the product of the individual components. Next we

rewrite the components of the continuous time model (3.5) in terms of two stochastic differential

equations, that is

dỸi(t) = 1[a,b](t)Σ
−1/2
i Ḟ>(t)θdt+ dεi(t) , t ∈ [0, b] , (3.6)

Ỹi(a) = Σ
−1/2
i F>(a)θ + εi(a) , (3.7)

where 1A is the indicator function of the set A and Σ
−1/2
i denotes the i-th row of the matrix

Σ−1/2 (i = 1, 2). Since {εi(t)| t ∈ [a, b]} is a Brownian motion its increments are independent.

Consequently, the processes {Ỹi(t)| t ∈ [0, b]} and the random variable Ỹi(a) are independent.

To obtain the joint density of the processes defined by (3.6) and (3.7) it is therefore sufficient

to derive the individual densities.

Let P(i)
θ and P(i)

0 denote the measures on C([0, b]) associated with the process Ỹi = {Yi(t)| t ∈
[0, b]} and {εi(t)| t ∈ [0, b]}, respectively. It follows from Theorem 1 in Appendix II of Ibragi-

mov and Has’minskii (1981) that P(i)
θ is absolute continuous with respect to P(i)

0 with Radon-

Nikodym-density

dP(i)
θ

dP(i)
0

(Ỹi) = exp

{∫ b

a

Σ
−1/2
i Ḟ>(t)θdỸi(t)−

1

2

∫ b

a

(Σ
−1/2
i Ḟ>(t)θ)2dt

}
.

Similarly, if Qθ denotes the distribution of the random variable Ỹi(a) ∼ N (Σ
−1/2
i F>(a)θ, a) in

(3.7), then the Radon-Nikodym-density of Q(i)
θ with respct to Q(i)

0 is given by

dQ(i)
θ

dQ(i)
0

(Ỹi(a)) = exp

{
Ỹi(a)Σ

−1/2
i F>(a)θ

a
− 1

2

(Σ
−1/2
i F>(a)θ)2

a

}
.

Consequently, because of independence, the joint density of (P(i)
θ ,Q

(i)
θ ) with respect to (P(i)

0 ,Q
(i)
0 )

is obtained as

dP(i)
θ

dP(i)
0

(Ỹi)×
dQ(i)

θ

dQ(i)
0

(Ỹi(a)) = exp

{(∫ b

a

Σ
−1/2
i Ḟ>(t)θdỸi(t) +

Ỹi(a)Σ
−1/2
i F>(a)θ

a

)

−1

2

(∫ b

a

(Σ
−1/2
i Ḟ>(t)θ)2dt +

(Σ
−1/2
i F(a)θ)2

a

)}
.

As the processes Ỹ1 and Ỹ2 are independent by construction the maximum likelihood estimator

in the model (3.1) can be determined by solving the equation

∂

∂θ
log
{ 2∏
i=1

dP(i)
θ

dP(i)
0

(Ỹi)×
dQ(i)

θ

dQ(i)
0

(Ỹi(a))
}

=
2∑
i=1

{∫ b

a

Ḟ(t)Σ
−1/2
i dỸi(t) +

F(a)Σ
−1/2
i Ỹi(a)

a

−
(∫ b

a

Ḟ(t)Σ
−1/2
i Σ

−1/2
i Ḟ>(t) dt+ Ḟ(a)Σ

−1/2
i Σ

−1/2
i Ḟ>(a)

)
θ
}

= 0
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with respect to θ. The solution coincides with the linear estimate defined in (3.3), and a straight-

forward calculation, using Ito’s formula and the fact that the random variables
∫ b
a
Ḟ (t)dεt and

εa are independent, gives

Cov(θ̂BLUE) = M−1Eθ
[( ∫ b

a

Ḟ(t)Σ−1 dY(t) +
1

a
F(a)Σ−1Y(a)

)
×
(∫ b

a

Ḟ(t)Σ−1 Y(t) +
1

a
F(a)Σ−1Y(a)

)>]
M−1

= M−1
(∫ b

a

Ḟ(t)Σ−1Ḟ>(t) dt+
1

a
F(a)Σ−1F>(a)

)
M−1 = M−1,

where the matrix M is defined in (3.2). Since the covariance matrix M−1 is the inverse of

the information matrix in the continuous time regression model in (3.1) (see Ibragimov and

Has’minskii, 1981, p. 81), the linear estimator (3.3) is the BLUE, which completes the proof

of Theorem 3.1. �

Remark 3.1 The proof of Theorem 3.1 can easily be modified to obtain the BLUE for the

continuous time model on the interval a = [0, b]. More precisely, for a = 0 equation (3.7)

becomes a deterministic equation equivalent to

Y(0) = F>(0)θ , (3.8)

and we have to distinguish three cases.

(1) If the regression function F satisfies F(0) = 0p×2 (that is rank(F(0) = 0)), the determin-

istic equation (3.8) does not contain any further information about the parameter θ and

the maximum likelihood estimator in model (3.1) is given by

θ̂BLUE = M−1
0

(∫ b

0

Ḟ(t)Σ−1 dY(t)
)
,

where the minimum variance is given by

Cov(θ̂BLUE) = M−1
0 =

(∫ b

0

Ḟ(t)Σ−1Ḟ>(t) dt

)−1
.

(2) If the rank of the matrix F(0) satisfies rank(F(0)) = 1, the deterministic equation (3.8)

contains one informative equation about θ. In that case, we assume without loss of

generality that F1,1(0) 6= 0 and it follows by (3.8) that θ1 can be reformulated by θ2, . . . , θp

through

θ1 =
Y1(0)−

∑p
i=j θjF1,j(0)

F1,1(0)
. (3.9)

9



Using (3.9) in combination with model (3.1), we obtain a reduced model by

Z(t) = Y(t)− Y1(0)

F1,1(0)

F1,1(0)

F2,1(0)

 = F̃(t)θ̃ + Σ1/2ε(t) , (3.10)

where the matrix valued function F̃(t) is defined by

F̃T (t) =
(
Fi,j(t)−

Fi,1(0)

F1,1(0)
F1,j(0)

)
i=1,2,j=2,...p

(3.11)

and the reduced (p−1)-dimensional parameter θ̃ is given by θ̃ = (θ2, . . . , θp) . It follows by

rank(F(0)) = 1, that the matrix valued function F̃(t) defined in (3.11) satisfies F̃T(0) =

02×p. Consequently, the modified model given by (3.10) satisfies the condition of the

case given in (1) and the best linear unbiased estimator for the reduced parameter θ̃ is

obtained by

ˆ̃θBLUE = M−1
0

(∫ b

0

˙̃F(t)Σ−1 dZ(t)
)
, (3.12)

where the process {Z(t); t ∈ [0, b]} is defined by (3.10), the matrix F̃(t) is given by (3.11)

and the minimum variance is given by

Cov(ˆ̃θBLUE) = M−1
0 =

(∫ b

0

˙̃F(t)Σ−1 ˙̃F>(t) dt

)−1
.

The best linear unbiased estimator for the remaining parameter θ1 is then obtained by

θ̂1 =
Y1(0)−

∑p
i=j

ˆ̃θBLUE,jF1,j(0)

F1,1(0)
.

(3) If the rank of the matrix F(0) satisfies rank(F(0)) = 2, equation (3.8) contains two

informative equations about θ.

Let

A(t) =

F1,1(t) F1,2(t)

F2,1(t) F2,2(t)

 (3.13)

be the submatrix of F which contains the first two columns of FT (t). Without loss of

generality, we assume that A(0) is non-singular (as rank(F(0) = 2).

Then it follows by (3.8) thatθ1
θ2

 = A−1(0)
(
Y(0)−

( p∑
j=3

Fi,j(0)θj
)
i=1,2

)
. (3.14)
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Using (3.14) in combination with (3.1) we obtain a reduced model given by

Z(t) = Y(t)−A(t)A−1(0)Y(0) = F̃(t)θ̃ + Σ1/2ε(t) (3.15)

where the matrix valued function A(t) is given by (3.13), the matrix valued function

F̃T (t) is of the form

F̃T (t) = A(t)A−1(0)
(
Fi,j(0)

)
i=1,2;j=3,...p

+
(
Fi,j(t)

)
i=1,2;j=3,...p

(3.16)

and the reduced (p− 2)-dimensional parameter θ̃ is given by θ̃ = (θ3, . . . , θp) .

The matrix valued function F̃(t) defined in (3.16) satisfies F̃T(0) = 02×p. Consequently,

the modified model given by (3.15) satisfies the condition of the case given in (1) and the

best linear unbiased estimator ˆ̃θBLUE for the reduced (p− 2)-dimensional parameter θ̃ is

obtained by (3.12) using the process {Z(t); t ∈ [0, b]} defined by (3.15) and the matrix

valued function F̃(t) given by (3.16). The best linear unbiased estimator for the remaining

parameter (θ1, θ2)
T is then obtained byθ̂1

θ̂2

 = A−1(0)
(
Y(0)−

( p∑
j=3

Fi,j(0)ˆ̃θBLUE,j

)
i=1,2

)
.

3.2 Model with no common parameters

Recall the definition of model (2.1) in Section 1. It was demonstrated in Example 2.1 that this

case is a special case of model (2.5), where the matrix F> is given by

F>(t) =

f>1 (t) 0>p2

0>p1 f>2 (t)

 (3.17)

and θ = (θ(1)
>
, θ(2)

>
)>. Considering both components in the vector Y separately, we obtain

continuous versions of the two models introduced in (2.1),that is,

Yi(t) = f>i (t)θ(i) + ηi(t), i = 1, 2 , (3.18)

where the error processes {η(t) | t ∈ [a, b]} is defined by (2.4). An application of Theorem 3.1

yields the following BLUE.

Corollary 3.1 Consider the continuous time linear regression model (2.5) on the interval [a, b],

with continuously differentiable matrix (3.17), a vector {ε(t) = (ε1(t), ε2(t))
> | t ∈ [a, b]} of
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independent Brownian motions and a matrix Σ defined by (2.3). The best linear unbiased

estimator for the parameter θ is given by

θ̂BLUE =

θ̂
(1)
BLUE

θ̂
(2)
BLUE

 =
1

σ2
1σ

2
2(1− %2)

M−1


∫ b

a

 σ2
2 ḟ1(t) −σ1σ2%ḟ1(t)

−σ1σ2%ḟ2(t) σ2
1 ḟ2(t)

 d

Y1(t)
Y2(t)



+
1

a

 σ2
2f1(a) −σ1σ2%f1(a)

−σ1σ2%f2(a) σ2
1f2(a)


Y1(a)

Y2(a)


 .

(3.19)

The minimum variance is given by M−1, where

M =
1

σ2
1σ

2
2(1− %2)

 σ2
2M11 −σ1σ2%M12

−σ1σ2%M21 σ2
1M22


and

Mij =

∫ b

a

ḟi(t)ḟ
>
j (t)dt +

1

a
fi(a)fTj (a) i, j = 1, 2. (3.20)

It is of interest to compare the estimator (3.19) with the estimator θ̂mar = ((θ̂
(1)
mar)>, (θ̂

(2)
mar)>)>,

which is obtained by estimating the parameter in both models (3.18) separately. It follows from

Theorem 2.1 in Dette et al. (2017a) that the best linear unbiased estimators in these models

are given by

θ̂(`)mar = M−1
``

(∫ b

a

ḟ`(t)dY`(t) +
1

a
f`(a)Y`(a)

)
, ` = 1, 2, (3.21)

where the matrices are defined by

M`` =

∫ b

a

ḟ`(t)ḟ
>
` (t)dt+

1

a
f`(a)f>` (a), ` = 1, 2.

Moreover, the covariance matrices of the estimators θ̂
(1)
mar and θ̂

(2)
mar are the inverses of the Fisher

information matrices in the individual models, that is

Cov(θ̂(`)mar) = σ2
`M

−1
`` ` = 1, 2. (3.22)

The following result compares the variance of the two estimators (3.19) and (3.21).

Theorem 3.2 If the assumptions of Corollary 3.1 are satisfied, we have (with respect to the

Loewner ordering)

Cov(θ̂
(`)
BLUE) ≤ Cov(θ̂(`)mar) , ` = 1, 2 ,

12



for all % ∈ (−1, 1), where the θ̂
(`)
BLUE and θ̂

(`)
mar are the best linear unbiased estimators of the

parameter θ(`) obtained by simultaneous estimation (see (3.19)) and separate estimation in the

two groups (see (3.21)) , respectively.

Proof. Without loss of generality we consider the case ` = 1, the proof for the index ` = 2 is

obtained by the same arguments. Let K1
> = (Ip1 ,0p1×p2) be a p1 × (p1 + p2)- matrix, where

Ip1 and 0p1×p2 denote the p1-identity matrix and a (p1 × p2)-matrix filled with zeros. Then,

Cov(θ̂
(`)
BLUE) = (CK1(M))−1,

where

CK1(M) = (K>1 M−1K1)
−1 =

1

σ2
1(1− %2)

(
M11 − %2M12M

−1
22 M>

12

)
(3.23)

is the Schur complement of the block M22 of the information matrix M (see p. 74 in Pukelsheim,

2006). Observing (3.22) we now compare CK1(M) and 1
σ2 M11 and obtain

CK1(M)− 1

σ2
1

M11 =
1

σ2
1(1− %2)

(
M11 − %2M12M

−1
22 M>

12

)
− 1

σ2
1

M11

=
%2

σ2
1(1− %2)

(
M11 −M12M

−1
22 M>

12

)
:=

%2

σ2
1(1− %2)

CK1(M̃) ,

(3.24)

where CK1(M̃) is the Schur complement of the block M22 of the matrix

M̃ =

M11 M12

M21 M22

 .

Note that the matrix M̃ is nonnegative definite. An application of Lemma 3.12 of Pukelsheim

(2006) shows that the Schur complement CK1(M̃) is also nonnegative definite, that is CK1(M̃) ≥
0 with respect to the Loewner ordering. Observing (3.24) we have(

Cov(θ̂
(1)
BLUE)

)−1
= CK1(M) ≥ 1

σ2
1

M11 =
(
Cov(θ̂(1)mar)

)−1
and the statement of the theorem follows. �

Remark 3.2 If % = 0 we have CK1(M) = M11, and it follows from (3.23) that separate

estimation in the individual groups does not yield less precise estimates, that is Cov(θ̂
(l)
mar) =

Cov(θ̂
(1)
BLUE) (` = 1, 2). However, in general we have Cov(θ̂

(l)
mar) ≥ Cov(θ̂

(1)
BLUE). Moreover, the

13



inequality is strict in most cases, which means that simultaneous estimation of the parameters

θ(1) and θ(2) yields more precise estimators. A necessary condition for strict inequality (i.e the

matrix Cov(θ̂
(l)
mar)−Cov(θ̂

(1)
BLUE) is positive definite) is the condition % 6= 0. The following result

shows that this condition is not sufficient. It considers the important case where the regression

functions f1 and f2 in (3.17) are the same and shows that in this case the two estimators θ̂BLUE

and θ̂mar coincide.

Corollary 3.2 If the assumptions of Corollary 3.1 hold and additionally the regression func-

tions in model (2.5) satisfy f1 = f2, the best linear unbiased estimator for the parameter θ is

given by

θ̂BLUE =

θ̂
(1)
BLUE

θ̂
(2)
BLUE

 =

∫ b

a

(
I2 ⊗M−1

11 ḟ1(t)
)
dY(t) +

1

a

(
I2 ⊗M−1

11 f1(a)
)
Y(a) ,

where I2 denotes the 2× 2-identity matrix and the matrix M11 is defined by (3.27). Moreover,

the minimum variance is given by Cov(θ̂BLUE) = Σ⊗M−1
11 and

Cov(θ̂(l)mar) = Cov(θ̂
(1)
BLUE) (` = 1, 2) .

3.3 Models with common parameters

Recall the definition of model (2.1) in Section 1. It was demonstrated in Example 2.2 that this

case is a special case of model (2.5), where the matrix of regression functions is given by

F>(t) =

f>0 (t), f̃>1 (t), 0>p2−p0

f>0 (t), 0>p1−p0 , f̃
>
2 (t)

 (3.25)

and the vector of parameters is defined by

θ = (θ(0)
>
, θ̃(1)

>
, θ̃(2)

>
)> .

An application of Theorem 3.1 yields the BLUE in model (2.5) with the matrix F> defined by

(3.25).

Corollary 3.3 Consider the continuous time linear regression model (2.5) on the interval [a, b],

where the the matrix of regression functions F> is continuously differentiable. The best linear

unbiased estimator for the parameter θ is given by
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θ̂BLUE =


θ̂
(0)
BLUE

ˆ̃θ
(1)
BLUE

ˆ̃θ
(2)
BLUE

 =
1

σ2
1σ

2
2(1− %2)

M−1


∫ b

a


(σ2

2 − σ1σ2%)ḟ0(t) (σ2
1 − σ1σ2%)ḟ0(t)

σ2
2

˙̃f1(t) −σ1σ2% ˙̃f1(t)

−σ1σ2% ˙̃f2(t) σ2
1

˙̃f2(t)

 d

Y1(t)
Y2(t)



+
1

a


(σ2

2 − σ1σ2%)f0(a) (σ2
1 − σ1σ2%)f0(a)

σ2
2 f̃1(a) −σ1σ2%f̃1(a)

−σ1σ2%f̃2(a) σ2
1 f̃2(a)


Y1(a)

Y2(a)



.

(3.26)

The minimum variance is

Cov(θ̂BLUE) = M−1 ,

where

M =
1

σ2
1σ

2
2(1− %2)


(σ2

1 + σ2
2 − σ1σ2%)M00 (σ2

2 − σ1σ2%)M01 (σ2
1 − σ1σ2%)M02

(σ2
2 − σ1σ2%)M10 σ2

2M11 −σ1σ2%M12

(σ2
1 − σ1σ2%)M20 −σ1σ2%M21 σ2

1M22


and individual blocks in this matrix are given by

Mij =

∫ b

a

ġi(t)ġ
>
j (t)dt+

1

a
gi(a)g>j (a) , (3.27)

for i, j = 0, 1, 2, where g0(t) = f0(t) and gi(t) = f̃i(t) for i = 1, 2 .

It is again of interest to compare the estimate (3.26) with the estimate θ̂mar = ((θ̂
(1)
mar)>, (θ̂

(2)
mar)>)>,

which is obtained by estimating the parameter θ(1) = ((θ(0))>, (θ̃(1))>)> in both models (3.18)

separately by using (3.21). The corresponding covariances of the estimators θ̂
(1)
mar and θ̂

(2)
mar are

given by (3.22). The following result compares the variance of the two estimators (3.26) and

(3.21). Its proof is similar to the proof of Theorem 3.2 and therefore omitted.

Theorem 3.3 If the assumptions of Corollary 3.3 are satisfied, we have (with respect to the

Loewner ordering)

Cov(θ̂
(`)
BLUE) ≤ Cov(θ̂(`)mar) , ` = 1, 2 ,

for all % ∈ (−1, 1), where the θ̂
(`)
BLUE and θ̂

(`)
mar are the best linear unbiased estimators of the

parameter θ(`) obtained by simultaneous and separate estimation, respectively.
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Remark 3.3 The results presented so far have been derived for the case where the error

process {ε(t) = (ε1(t), ε2(t))
>| t ∈ [a, b]} in (2.5) consist of two independent Brownian motions.

This assumption has been made to simplify the notation. Similar results can be obtained for

Markov processes and in this remark we indicate the essential arguments.

To be precise, assume that the error processes {ε(t) = (ε1(t), ε2(t))
>| t ∈ [a, b]} in model (2.5)

consist of two independent centered Gaussian processes with continuous covariance kernel given

by

K(s, t) = E[εi(s)εi(t)] = u(s)v(t) min{q(s), q(t)} s, t ∈ [a, b] , (3.28)

where u(·) and v(·) are functions defined on the interval [a, b] such that the function q(·) =

u(·)/v(·) is positive and strictly increasing. Kernels of the form (3.28) are called triangular

kernels and a famous result in Doob (1949) essentially shows that a Gaussian process is a

Markov process if and only if its covariance kernel is triangular (see also Mehr and McFadden,

1965). In this case model (2.5) can be transformed into a model with an error process consisting

of two independent Brownian motions using the arguments given in Appendix B of Dette et al.

(2016). More precisely, define

q(t) =
u(t)

v(t)

and consider the stochastic process

ε(t) = v(t)ε̃(q(t)),

where {ε̃(t̃) = (ε̃1(t̃)
>, ε̃2(t̃))| t̃ ∈ [ã, b̃]} consists of two independent Brownian motions on

the interval [ã, b̃] = [q(a), q(b)]. It now follows from Doob (1949) that the process {ε(t) =

(ε1(t), ε2(t))
>| t ∈ [a, b]} consists of two independent centered Gaussian process on the interval

[a, b] with covariance kernel (3.28). Consequently, if we consider the model

Ỹ (t̃) =

Ỹ1(t̃)
Ỹ2(t̃)

 = F̃>(t̃)θ + Σ1/2ε̃(t̃) , t̃ ∈ [q(a), q(b)], (3.29)

and

F̃(t̃) =
F(q−1(t̃))

v(q−1(t̃))
, ε̃(t̃) =

ε(q−1(t̃))

v(q−1(t̃))
, Ỹ (t̃) =

Y (q−1(t̃))

v(q−1(t̃))
,

the results obtained so far are applicable. Thus, a ”good” estimator obtained for the parameter

θ in model (3.29) is also a ”good estimator” for the parameter θ in model (3.1) with error

process consisting of two Gaussian processes with covariance kernel (3.28). Consequently, we

can derive the optimal estimator for the parameter θ in the continuous time model (3.1) with

covariance kernel (3.28) from the best linear unbiased estimator in the model given in (3.29)
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with Brownian motions by an application of Theorem 3.1. The resulting best linear unbiased

estimator for θ in model (3.1) with triangular kernel (3.28) is of the form

θ̂BLUE = M−1
{∫ b

a

Ḟ(t)v(t)− F(t)v(t)

u̇(t)v(t)− u(t)v̇(t)
Σ−1 d

(
Y(t)

v(t)

)
+

F(a)Σ−1Y(a)

u(a)v(a)

}
,

where the minimum variance is given by

M−1 =

∫ b

a

(
Ḟ(t)v(t)− F(t)v̇(t)

)
Σ−1

(
Ḟ(t)v(t)− F(t)v̇(t)

)>
v2(t)[u̇(t)v(t)− u(t)v̇(t)]

dt+
F(a)Σ−1F>(a)

u(a)v(a)


−1

.

4 Optimal designs for comparing curves

In this section we will derive optimal designs for comparing curves. The first part is devoted

to a discretization of the BLUE in the continuous time model. In the second part we develop

an optimality criterion to obtain efficient designs for the comparison of curves based on the

discretized estimators.

4.1 From the continuous to the discrete model

To obtain a discrete design for n observations at the points a = t1, . . . , tn from the continuous

design derived in Section 3, we use a similar approach as in Dette et al. (2017a) and construct

a discrete approximation of the stochastic integral in (3.3). For this purpose we consider the

linear estimator

θ̂n = M−1
{ n∑

i=2

ΩiḞ(ti−1)Σ
−1(Y (ti)− Y (ti−1)) +

F(a)

a
Σ−1Ya

}
(4.1)

= M−1
{ n∑

i=2

ΦiΣ
−1(Y (ti)− Y (ti−1)) +

F(a)

a
Σ−1Ya

}
,

were a = t1 < t2 < . . . < tn−1 < tn = b, Ω2, . . . ,Ωn are p × p weight matrices and Φ2 =

Ω2Ḟ(t1), . . . ,Φn = ΩnḞ(tn−1) are p× 2 matrices, which have to be chosen in a reasonable way.

The matrix M−1 is given in (3.4). To determine these weights in an “optimal” way we first

derive a representation of the mean squared error between the best linear estimate (3.3) in the

continuous time model and its discrete approximation (4.1). The following result is a direct

consequence of Ito’s formula.
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Lemma 4.1 Consider the continuous time model (3.1). If the assumptions of Theorem 3.1 are

satisfied, we have

Eθ[(θ̂BLUE − θ̂n)(θ̂BLUE − θ̂n)>] = M−1
{ n∑

i=2

∫ ti

ti−1

[
Ḟ(s)−Φi

]
Σ−1

[
Ḟ(s)−Φi

]>
ds

+
n∑

i,j=2

∫ ti

ti−1

[
Ḟ(s)−Φi

]
Σ−1Ḟ>(s) ds θ θ>

∫ tj

tj−1

Ḟ(s)Σ−1
[
Ḟ(s)−Φi

]>
ds
}

M−1. (4.2)

In the following we choose optimal p× 2 matrices Φi = ΩiḞ(ti−1) and design points t2, . . . , tn−1

(t1 = a, tn = b), such that the linear estimate (4.1) is unbiased and the mean squared error

matrix in (4.2) “becomes small”. An alternative criterion is to replace the mean squared error

Eθ[(θ̂BLUE − θ̂n)(θ̂BLUE − θ̂n)>] by the mean squared error

Eθ[(θ̂n − θ)(θ̂n − θ)>]

between the estimate θ̂n defined in (4.1) and the “true” vector of parameters. The following

result shows that in the class of unbiased estimators both optimization problems yield the same

solution. The proof is similar to the proof of Theorem 3.1 in Dette et al. (2017a).

Theorem 4.1 The estimator θ̂n defined in (4.1) is unbiased if and only if the identity

M0 =

∫ b

a

Ḟ(s)Σ−1Ḟ>(s) ds =
n∑
i=2

ΦiΣ
−1
∫ ti

ti−1

Ḟ>(s) ds =
n∑
i=2

ΦiΣ
−1(F(ti)− F(ti−1))

>, (4.3)

is satisfied. Moreover, for any linear unbiased estimator of the form θ̃n =
∫ b
a

G(s)dYs we have

Eθ[(θ̃n − θ)(θ̃n − θ)>] = Eθ[(θ̃n − θ̂BLUE)(θ̃n − θ̂BLUE)>] + M−1.

In order to describe a solution in terms of optimal “weights” Φ∗i and design points t∗i we recall

that the condition of unbiasedness of the estimate θ̂n in (4.1) is given by (4.3) and introduce

the notation

Bi = [F(ti)− F(ti−1)]Σ
−1/2/

√
ti − ti−1, (4.4)

Ai = ΦiΣ
−1/2√ti − ti−1.

It follows from Lemma 4.1 and Theorem 4.1 that for an unbiased estimator θ̂n of the form (4.1)

the mean squared error has the representation

Eθ
[
(θ̂BLUE − θ̂n)>(θ̂BLUE − θ̂n)

]
= −M−1M0M

−1 +
n∑
i=2

M−1AiAi
>M−1, (4.5)
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which has to be “minimized” subject to the constraint

M0 =

∫ b

a

Ḟ(s)Σ−1Ḟ>(s)ds =
n∑
i=2

AiB
>
i . (4.6)

The following result shows that a minimization with respect to the weights Φi (or equivalently

Ai) can actually be carried out with respect to the Loewner ordering.

Theorem 4.2 Assume that the assumptions of Theorem 3.1 are satisfied and that the matrix

B =
n∑
i=2

BiB
>
i =

n∑
i=2

[F(ti)− F(ti−1)]Σ
−1[F(ti)− F(ti−1)]

>

ti − ti−1
, (4.7)

is non-singular. Let Φ∗2, . . . ,Φ
∗
n denote (p× 2)-matrices satisfying the equations

Φ∗i = M0B
−1F(ti)− F(ti−1)

ti − ti−1
i = 2, . . . , n, (4.8)

then Φ∗2, . . . ,Φ
∗
n are optimal weight matrices minimizing Eθ[(θ̂BLUE − θ̂n)(θ̂BLUE − θ̂n)>] with

respect to the Loewner ordering among all unbiased estimators of the form (4.1). Moreover, the

variance of the resulting estimator θ̂∗n is given by

Cov(θ̂∗n) = M−1
{

M0B
−1M0 +

1

a
F(a)Σ−1F>(a)

}
M−1

Proof. Let v denote a p-dimensional vector and consider the problem of minimizing the

criterion

v>Eθ[(θ̂BLUE − θ̂n)(θ̂BLUE − θ̂n)>]v (4.9)

subject to the constraint (4.6). Observing (4.5) this yields the Lagrange function

Gv(A1 . . . ,An) = −v>M−1M0M
−1v +

n∑
i=2

(v>M−1AiA
>
i M−1v)− tr

{
Λ(M0 −

n∑
i=2

AiB
>
i )
}
,

(4.10)

where A2, . . . ,An are (p × 2)-matrices and Λ = (λk,`)
p
k,`=1 is a (p × p)-matrix of Lagrange

multipliers. The function Gv is convex with respect to A2, . . . ,An. Therefore, taking derivatives

with respect to Aj yields as necessary and sufficient for the extremum (here we use matrix

differential calculus)

2(M−1v)>Ai ⊗ (M−1v)> + vec {ΛBi} = 0>2p, i = 2, . . . , n .

Rewriting this system of linear equations in a (p× 2)-matrix form gives

2M−1vv>M−1Ai = −ΛBi i = 2, . . . , n .
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Substituting the expression in (4.6) and using the non-singularity of the matrices M and B

yields for the matrix of Lagrangian multipliers

Λ = −2M−1vv>M−1M0B
−1 ,

which gives

2M−1vv>M−1Ai = 2M−1vv>M−1M0B
−1Bi i = 2, . . . , n . (4.11)

Note that one solution of (4.11) is given by

A∗i = M0B
−1Bi, i = 2, . . . , n

which does not depend on the vectors v. Therefore, the tuple of matrices (A∗2, . . . ,A
∗
n) mini-

mizes the convex function Gv in (4.10) for all v ∈ Rp.

Observing the notations in (4.4) shows that the optimal matrix weights are given by (4.8).

Moreover, these weights in (4.8) do not depend on the vector v either and provide a simultane-

ous minimizer of the criterion defined in (4.9) for all v ∈ Rp. Consequently, the weights defined

in (4.8) minimize Eθ[(θ̂BLUE − θ̂n)(θ̂BLUE − θ̂n)>] under the unbiasedness constraint (4.6) with

respect to the Loewner ordering. �

Remark 4.1 If the matrix B in Theorem 4.2 is singular, the optimal weights are not uniquely

determined and we propose to replace the inverse B by its Moore-Penrose inverse.

Note that for fixed design points t1, . . . , tn Theorem 4.2 yields universally optimal weights

Φ∗2, . . . ,Φ
∗
n (with respect to the Loewner ordering) for estimators of the form (4.1) satisfying

(4.3). On the other hand, a further optimization with respect to the Loewner ordering with

respect to the choice of the points t2, . . . , tn−1 (t1 = a, tn = b) is not possible, and we have to

apply a real valued optimality criterion for this purpose. In the following section, we will derive

such a criterion which explicitly addresses the comparison of the regression curves from the two

groups introduced in Section 2.

4.2 Confidence bands

We return to the practical scenario of the two groups introduced in (2.1), where we now focus

on the comparison of these groups on the interval [a, b].

More precisely, consider the model introduced in (2.5) and let θ̂∗n be the estimator (4.1) with

optimal weights defined by (4.8) from n observations taken at the time points a = t1 < t2 <

. . . < tn−1 < tn = b. Then this estimator is normally distributed with mean E[θ̂∗n] = θ and

covariance matrix

Cov(θ̂∗n) = M−1
{

M0B
−1M0 +

1

a
F(a)Σ−1F>(a)

}
M−1
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where the matrices M,M0 and B are given by (3.2), (4.6) and (4.7), respectively. Note that

the covariance matrix depends on the time points t1, . . . , tn through the matrix B−1. Moreover,

using the estimator θ̂∗n the prediction of the difference of a fixed time point t ∈ [a, b] satisfies

(1,−1)F>(t)θ̂∗n − (1,−1)F>(t)θ ∼ Np(0, h(t; t1, . . . , tn)) ,

where

h(t; t1, . . . , tn) = (1,−1)F>M−1
{

M0B
−1M0 +

1

a
F(a)Σ−1F>(a)

}
M−1F(t)(1,−1)T .

We now use this result and the results of Gsteiger et al. (2011) to obtain a simultaneous

confidence band for the difference of the two curves. More precisely, if the interval [a, b] is the

range where the two curves should be compared, the simultaneous confidence band is defined

as follows. Consider the statistic

T̂ = sup
t∈[a,b]

|(1,−1)F>(t)θ̂∗n − (1,−1)F>(t)θ|
{h(t; t1, . . . , tn)}1/2

,

and define D as the (1− α)-quantile of the corresponding distribution, that is

P(T̂ ≤ D) = 1− α.

Note that Gsteiger et al. (2011) propose the parametric bootstrap for choosing the critical value

D. Define

u(t; t1, . . . , tn) = (1,−1)F>(t)θ̂∗n +D · {h(t; t1, . . . , tn)}1/2,
l(t; t1, . . . , tn) = (1,−1)F>(t)θ̂∗n −D · {h(t; t1, . . . , tn)}1/2,

then the confidence band for the difference of the two regression functions is defined by

C1−α =
{
g : [a, b]→ R | l(t; t1, . . . , tn) ≤ g(t) ≤ u(t; t1, . . . , tn) for all t ∈ [a, b]

}
. (4.12)

Consequently, good time points t1 = a < t2 < . . . < tn−1, tn = b should minimize the width

u(t; t1, . . . , tn)− l(t; t1, . . . , tn) = 2 ·D · {h(t; t1, . . . , tn)}1/2

of this band at each t ∈ [a, b]. As this is only possible in rare circumstances, we propose to

minimize an Lp-norm of the function h(·; t1 . . . , tn) as a design criterion, that is

Φp(t1, . . . , tn) = ‖h(·; t1 . . . , tn)‖p :=
(∫ b

a

[h(t; t1 . . . , tn)]p
)1/p

dt, 1 ≤ p ≤ ∞, (4.13)

where the case p =∞ corresponds to the maximal deviation

‖h(·; t1 . . . , tn)‖∞ = sup
t∈[a,b]

|h(t; t1 . . . , tn)|.
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Finally, the optimal points a = t∗1 < t∗2 < . . . < t∗n = b (minimizing (4.13)) and the correspond-

ing weights derived in Theorem 4.2 provide the optimal linear unbiased estimator of the form

(4.1) (with the corresponding optimal design).

Example 4.1 We now conclude this section by considering the cases of no common and com-

mon parameters, respectively.

(a) If we are in the situation of Example 2.1 (no common parameters), the regression function

F>(t) is of the form in (3.17) and the variance of the prediction of the difference at a fixed

point t ∈ [a, b] reduces to

h(t; t1, . . . , tn) = (f>1 (t),−f>2 (t))M−1
{

M0B
−1M0 +

1

a
F(a)Σ−1F>(a)

}
M−1(f>1 (t),−f>2 (t))>.

The corresponding design criterion is given by

Φp

(
t1, . . . , tn

)
= ‖(f>1 ,−f>2 )M−1

{
M0B

−1M0 +
1

a
F(a)Σ−1F>(a)

}
M−1(f>1 ,−f>2 )>‖p .

(4.14)

(b) If we are in the situation of Example 2.2 (common parameters), the regression function

F>(t) is given by (3.25) and the variance of the prediction of the difference at a fixed point

t ∈ [a, b] reduces to

h(t; t1, . . . , tn) = (0, f̃>1 (t),−f̃>2 (t))M−1
{

M0B
−1M0 +

1

a
F(a)Σ−1F>(a)

}
M−1(0, f̃>1 (t),−f̃>2 (t))> .

The corresponding design criterion is given by

Φp

(
t1, . . . , tn

)
= ‖(0>p0 , f̃

>
1 ,−f̃>2 )M−1

{
M0B

−1M0 +
1

a
F(a)Σ−1F>(a)

}
M−1(0>p0 , f̃

>
1 ,−f̃>2 )>‖p .

5 Numerical Examples

In this section the methodology is illustrated in examples by means of a simulation study. To

be precise, we consider the regression model (2.5), where the matrix F(t) is given by (3.17)

corresponding to the case that the regression function do not share common parameters, see

Section 3.2 for more details. In this case the corresponding bounds for the confidence band is

given by (4.12), where

u(t; t1, . . . , tn) = (θ̂∗(1)n )>f (1)(t)− (θ̂∗(2)n )>f (2)(t) +D · {h(t; t1, . . . , tn)}1/2,
l(t; t1, . . . , tn) = (θ̂∗(1)n )>f (1)(t)− (θ̂∗(2)n )>f (2)(t)−D · {h(t; t1, . . . , tn)}1/2,
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and θ̂∗n = ((θ̂
∗(1)
n )>, (θ̂

∗(2)
n )>)> is the estimator (4.1) with optimal weights defined in (4.8). The

design space is given by the interval [a, b] = [1, 10], and we consider three choices for the

functions f1 and f2 in the matrix (3.17), that is

fA(t) = (t, sin(t), cos(t))> ,

fB(t) = (t2, cos(t), cos(2t))> , (4.15)

fC(t) =
(
t, log(t),

1

t

)>
.

To model the dependence between the two groups we use the covariance matrix

Σ =

1 %

% 1

 ,

in (2.5), where the correlations are chosen as % = 0.2, 0.5, 0.7. Following the discussion in Section

4.1 we focus on the comparison of the regression curves for the two groups and derive optimal

designs, minimizing the criterion Φ∞ defined in (4.14). As result, we obtain simultaneous

confidence bands with a smaller maximal width for the difference of the curves describing the

relation in the two groups. We can obtain similar results different values p ∈ (0,∞) in (4.14)

but for the sake of brevity we concentrate on the criterion Φ∞ which is probably also the easiest

to interpret for practitioners.

We denote by θ̂∗n the linear unbiased estimator derived in Section 4. For each of the combina-

tions of regression functions containing two different functions defined in (4.15), the optimal

weights have been found by Theorem 4.2 and the optimal design points t∗i are determined min-

imising the criterion Φ∞ defined in (4.14). For the numerical optimisation the Particle Swarm

Optimisation (PSO) algorithm is used (see, for example, Clerc, 2006) assuming a sample size

of four observations in each group, that is, n = 4. Furthermore, the uniform design used in the

following calculations is the design which has four equally spaced design points in the interval

[1, 10]. The Φ∞-optimal design points minimizing the criterion criterion in (4.14) are given in

Table 1 for all combinations of models and correlations under consideration. Note that for each

model the corresponding optimal design points change for different values of correlation %.

In order to investigate the impact of the optimal design on the structure of the confidence bands

we have performed a small simulation study simulating confidence bands for the difference of the

regression functions. The vector of parameter values used for each model is θ = (θ(1)
>
, θ(2)

>
)> =

(1, 1, 1, 1, 1, 1)>. In Figure 1 we display the averages of uniform confidence bands defined in

(4.12) under the uniform and optimal design calculated by 100 simulation runs.

The left, middle and right columns show the results for the correlation % = 0.2, % = 0.5 and

% = 0.7, respectively, while the rows correposnd to different combinations for the functions f1
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Figure 1: Confidence bands for the difference of the regression functions (solid grey line) on the

basis of an optimal (solid lines) and uniform design (dashed lines). Left panel: % = 0.2. Middle

panel: % = 0.5. Right panel: % = 0.7. First row: model with f1 = fA and f2 = fB. Second row:

model with f1 = fA and f2 = fC. Third row: model with f1 = fB and f2 = fC.
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Table 1: Optimal designs points on the interval [1, 10] for the estimator θ̂∗n in (4.1) minimizing

the criterion Φ∞ in (4.14). Different correlations % = 0.2, 0.5, 0.7 and different regression

functions defined in (4.15) are considered.

correlation

models % = 0.20 % = 0.50 % = 0.70

f1 = fA & f2 = fB [1, 1.59, 3.93, 10] [1, 1.62, 3.91, 10] [1, 1.74, 7.99, 10]

f1 = fA & f2 = fC [1, 3.46, 9.60, 10] [1, 2.86, 8.83, 10] [1, 2.61, 3.52, 10]

f1 = fB & f2 = fC [1, 2.20 , 6.25, 10] [1, 1.62, 3.98 , 10] [1, 2.85, 6.29 , 10]

and f2 (first row: f1 = fA, f2 = fB, middle row: f1 = fA, f2 = fC and last row f1 = fB,

f2 = fC). In each graph, the confidence bands from the Φ∞-optimal or the uniform design are

plotted separately using the solid and dashed lines respectively, along with the plot for the true

difference f>1 (t)θ(1) − f>2 (t)θ(2) (solid grey lines).

We observe, that in all cases under considerations the use of Φ∞-optimal designs yields a clearly

visible improvement compared to the uniform design. The maximal width of the confidence

band is reduced substantially. Moreover, the bands from the Φ∞-optimal designs are nearly

uniformly more narrow than the bands based on the uniform design. Even more importantly,

the confidence bands based on the Φ∞-optimal design show a similar structure as the true

differences, while the confidence bands from the uniform design oscillate.

A comparison of the left, middle and right columns in Figure 1 shows that the maximum width

for the confidence bands based on the optimal design decreases with increasing (absolute) cor-

relation %. This effect is not visible for the confidence bands based on the uniform design. For

example, for the middle row of Figure 1, which corresponds to the case f1 = fA and f2 = fC ,

the maximum width of the confidence bands based on the equally spaced design points even

seem to increase.

Table 2 presents the values of the criterion Φ∞ in (4.14) for the different scenarios and confirms

the conclusions drawn from the visual inspection of the confidence bands plots. We observe

that the use of the optimal design points reduces the maximum width of the confidence bands

substantially. Moreover, for the optimal design the maximum width becomes smaller with

increasing (absolute) correlation. On the other hand this monotonicity cannot be observed in

all cases for the uniform designs.
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Summarizing, the use of the proposed Φ∞-optimal design improves statistically inference sub-

stantially reducing the maximum variance of the difference of the two estimated regression

curves. Moreover, simultaneous estimation in combination with a Φ∞-optimal design yields a

further reduction of the maximum width of the confidence bands, thus providing a more precise

inference for the difference of the curves describing the relation between t and the responses in

the two groups.

Table 2: Values of the criterion Φ∞ for the optimal and uniform design with four observations

in each group in the interval [1, 10]. The error process is given by a two independent Brownian

motions with correlation % = 0.2, 0.5, 0.7 between the groups, respectively.

Correlation

Models Design % = 0.2 % = 0.5 % = 0.7

f1 = fA & f2 = fB
optimal 14.79 9.44 6.09

uniform 141.87 142.59 148.74

f1 = fA & f2 = fC
optimal 16.00 10.00 6.60

uniform 33.32 29.10 25.66

f1 = fB & f2 = fC
optimal 14.71 9.53 5.99

uniform 147.27 127.19 115.07
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