
Describing the macroscopic behavior of
surfaces based on atomistic models

von der Fakultät Maschinenbau

der Technischen Universität Dortmund
zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

genehmigte Dissertation

von

Christian Sievers

aus Bochum

Referent: Prof. Dr.-Ing. J. Mosler

Korreferenten: Prof. Dr. A. Hartmaier

Prof. Dr.-Ing. W. Tillmann

Tag der Einreichung: 30.06.2020

Tag der mündlichen Prüfung: 07.10.2020
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Zusammenfassung

Diese Arbeit beschreibt die Modellierung von Grenz- und Oberflächen. Ein neuartiger
Multiskalen-Modellierungsrahmen, basierend auf molekulardynamischen Simulationen,
dient zur Bestimmung von Materialeigenschaften freier Oberflächen auf der Makroskala.
Ein wesentlicher Aspekt dafür ist die Entwicklung eines thermodynamisch konsisten-
ten Homogenisierungsansatzes auf Basis des Prinzips der Energieminimierung. Dabei
werden die Parameter, welche die Energie auf der Makroskala beschreiben, aus dem
Vergleich mit der Energie auf der atomistischen Skala ermittelt. Dieser Homogenisie-
rungsansatz wird zudem auch auf thermoelastische Materialien erweitert. Danach liegt
der Fokus auf einer kontinuumsmechanischen Modellierung von Oberflächen und einer
starken Kopplung zwischen der Physik des Bulk- und Oberflächenmaterials. Dazu wird
die Oberflächenverzerrung direkt aus der grundlegenden, dreidimensionalen Verzerrung
des Bulkmaterials bestimmt. Dieses Vorgehen wird anhand zweier Ansätze implemen-
tiert. Schließlich wird für beide Ansätze eine numerische Implementierung in die Finite-
Elemente Methode hergeleitet.

Abstract

This work describes the modeling of interface and surface materials. A novel multiscale
framework determines continuum material properties of free surfaces on the macroscale
based on molecular dynamics simulations. A key aspect is the derivation of a thermo-
dynamically consistent homogenization approach by the principle of energy minimiza-
tion. The parameters describing the energy on the macroscale are determined from
the comparison with the corresponding energy on the atomistic scale. In addition, this
Ritz-homogenization approach is enlarged to thermoelastic materials. Afterwards, the
work focuses on the continuum mechanically surface modeling and a strong coupling
between bulk and surface physics. To be more precise, the surface deformation is di-
rectly determined from the underlying three-dimensional bulk deformation. Therefore,
two approaches of the surface deformation are implemented. Finally, a numerical imple-
mentation of both approaches in a finite-element framework is derived.
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1 Motivation and state of the art

This thesis focuses on material surfaces. On the one hand, the material properties of the
surface are determined from molecular dynamic simulations by a novel homogenization
approach and, on the other hand, different approaches for the modeling of mechanical
surfaces are deduced and compared.

1.1 Computational homogenization review for a

atomistic-to-continuum transition of material

properties

The effective macroscopic properties of a broad variety of materials are defined by their
material surfaces. The surface behavior ranges from elasticity [15, 26, 53] to cohesive
zones [19, 42] and typically adds a new length scale to the classic bulk behavior. Surfaces
also drive contact crystallization and thus the elasticity of cohesive powders under cyclic
loading [68]. Remarkable surface phenomena have been particularly observed on small
length scales, for instance, in nano-wires [33] and nano-tubes [15].

Only a few numerical techniques have been developed in recent works to identify
mechanical surface parameters directly from the atomistic scale. The universal binding
energy relation model (UBER) developed by Rose et al. [53] studies the perturbation of
a relaxed bulk material by a vacuum gap. Shenoy [56] developed analytical expressions
for the surface parameters based on the interatomic potential and points out the rele-
vance of a post-relaxation after applying strain. Existing research shows a rich spectrum
of materials in the form of atomistic potentials. However, little attention has been paid
to the continuum model. Surface elastic parameters are often found in the pure form of
surface energy and its strain derivative. Second-order derivatives, i.e. stiffness contribu-
tions, are more seldom, see the works of Shenoy [56] and Dingreville & Qu [13]. Existing
data thus allows for a simple Hooke-type description (linearized elasticity theory), but
neglects the broad spectrum of continuum models such as (finite strain) hyperelastic ma-
terials, let alone plasticity or damage. The latter require a framework that guarantees
thermodynamic consistency and compatibility with modern material descriptions, e.g.,
energy potentials formulated in invariants. It is aimed at contributing to the implemen-
tation of more general continuum surface models by providing a framework that links
the atomistic observations to a thermodynamically consistent continuum description.
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1 Motivation and state of the art

The first objective of this work is the derivation of a novel homogenization frame-
work informed by molecular dynamics simulations. For that purpose, the principle of
energy equivalence between the atomistic and continuum model is applied. With this
novel framework at hand, the free surface elastic parameters will be determined. More-
over, the suitability of the homogenization approach to thermoelastic materials will be
investigated. These issues are treated in Ch. 3 and 4.

1.2 Continuum surface modeling

Mechanical modeling of surfaces adds to the complexity of bulk modeling in various ge-
ometrical, physical and computational aspects. Geometrically, even a constant surface
energy can alter the curvature as it is well known from capillary effects [16, 30, 31].
Physically, surfaces can induce special phenomena such as scale effects [25] or provide
additional information on capillary hysteresis [28, 29]. Computationally, a broad spec-
trum of approaches has been proposed for the variety of surface and interface mechanics,
e.g., the implementation of rank-one relaxation for membrane stresses, fiber-like unload-
ing of cohesive zones or homogenization of diffuse interfaces by means of phase field
descriptions [2, 3, 6, 18, 48–50].

Little attention has been explicitly paid to the near-surface coupling of bulk and
surface mechanics, although this coupling influences all aforementioned aspects. For
instance, bulk and surface elasticity in pure metals do not only derive from the same
molecular potential. As one additional result, interatomic relaxation near the surface
couples surface and bulk deformation within a finite range, see [56] and [13]. Also oxy-
gen incorporation [1] and anchoring [27] yield reconstruction and relaxation within a
finite boundary of the bulk. Such detailed look on phase boundaries generally poses
the question whether the assumption of a sharp surface or interface is a reliable ap-
proximation or whether the surface deformation has to be treated as part of the bulk
deformation. It is well known that sharp interface limits must be treated with special
care, e.g., considering kinematic compatibility or objectivity principles [18]. The same
applies to the computational implementation of surfaces, which can be costly and add
yet another motivation to harness a coupling with the bulk mechanics.

The second objective of this issue is the derivation of a surface model based on the
bulk material models. For that purpose, two approaches – one based on a relaxation
technique and another one based on projection ansatz – are discussed in Ch. 5.

2



2 Introduction to continuum
mechanics

This chapter comprises an introduction to continuum mechanics as well as one into the
finite element framework. It starts with a brief introduction to the underlying tensor
operations in Sec. 2.1. Subsequently, the kinematics of the geometrically non-linear the-
ory at finite strains is given in Sec. 2.2. Sec. 2.3 summarizes the basic balance equations.
Hyperelastic and thermoelastic materials with its underlying constitutive equations are
derived in Sec. 2.3. Finally, the implementation of the constitutive equations is shown
in a nutshell in Sec. 2.5.

Certainly, the presented equations and relations in this section are well-known and
they are not new. Detailed information on the presented equations and relations can be
found for example in [21, 23, 54, 69].

2.1 Notation

The following notation has been used throughout the entire thesis. The Euclidean space
R3 is spanned by the Cartesian vectors ei for i = {1, 2, 3} with its center O. Scalar
variables are denoted by italic letters, e.g., a, b. First order tensors, i.e. vectors, are
represented by boldfaced lowercase letters, e.g., a,b, second order tensor are denoted
by boldfaced uppercase letters, e.g., A,B and fourth order tensors are symbolized by
blackboard letters, e.g., A,B. Where necessary, tensors are denoted by index notation
and Einstein summation rule is used. All vectors and higher order tensors are spanned
by Cartesian basis vectors and, accordingly, whenever possible the basis vectors are
omitted.

a = {a}i ei = ai ei (2.1)

A = {A}ij ei ⊗ ej = Aij ei ⊗ ej (2.2)

A = {A}ijkl ei ⊗ ej ⊗ ek ⊗ el = Aijkl ei ⊗ ej ⊗ ek ⊗ el (2.3)

In the following, basic algebraic operations between tensors are presented.

3



2 Introduction to continuum mechanics

• Scalar products

a · b = ai bi (2.4)

A : B = Aij Bij (2.5)

• Inner tensor products

{a (2)· B}ijk = al Biljk (2.6)

{A · b}i = Aij bj (2.7)

{A ·B}ij = Aik Bkj (2.8)

{A · b}ijk = Aijkl bl (2.9)

{A : B}ij = Aijkl Bkl (2.10)

{A : B}ijkl = Aijmn Bmnkl (2.11)

• Outer tensor products

{a⊗ b}ij = ai bj (2.12)

{a⊗B}ijk = aj Bik (2.13)

{A⊗B}ijkl = Aij Bkl (2.14)

{A⊗B}ijkl = Ail Bjk (2.15)

{A⊗B}ijkl = Aik Bjl (2.16)

The definitions of the operators (⊗ ) and (⊗ ) are not standard in continuum
mechanics.

• Identity tensors

{I}ij = δij (2.17)

{I}ijkl = {I⊗ I}ijkl = δik δjl (2.18)

δij denotes the Kronecker Delta and has the following identity properties:

δij =

{
0 if i 6= j

1 if i = j
(2.19)

4



2.2 Kinematics

• Trace operations

trA = A : I (2.20)

I : A = A (2.21)

Therein, trA denotes the trace of the second order tensor A.

2.2 Kinematics

This section briefly summarizes the motion of continuous body B (Boltzmann contin-
uum) in the Euclidean space R3. At time t0 the undeformed body is defined by a set of
material points belonging to the reference or undeformed configuration B0. Quantities
with a subscript 0 belong to the reference configuration, and a subscript t indicates
quantities being a part of the current configuration. The position of a material point
P within the body B0 is described by position vector X in material coordinates. After
deformation due to, e.g., body forces, tractions or prescribed displacements, each mate-
rial point undergoes a displacement u = u(t). The moved material point P is identified
by position vector x(X, t) in spatial coordinates. The deformed body belongs to the
current or deformed configuration and is denoted by Bt at the time t > t0 with t ∈ R+.
The motion of material points is characterized by the deformation mapping

ϕ : B0 × R
+ → Bt and (2.22)

(X, t) → x = ϕ(X, t) . (2.23)

Thus, each material point P with coordinates X within the reference configuration
is mapped to the current configuration by x = ϕ(X, t) (cf. [8]). Fig. 2.1 shows the
deformation mapping between the reference and current configuration. The displacement
vector denotes the difference between the reference and current configuration and reads

u = u(t) = x−X. (2.24)

The deformation between both configurations is aproximated (first-order) by deforma-
tion gradient F as

F =
∂x

∂X
=

∂ϕ(X, t)

∂X
= Gradϕ(X, t) with Grad(•) = ∂(•)

∂X
. (2.25)

It maps vectors from the reference configuration onto vectors in the current configuration.
It bears emphasis that the first index of the deformation gradient belongs to the current
configuration and the second index to the reference configuration.

The definition of the deformation gradient allows mapping of line, surface and volume
elements (see Fig. 2.1) from the reference to the current configuration and vice versa.

5



2 Introduction to continuum mechanics

e1 e2

e3

O

F

ϕ

X x

B0

∂B0

Bt

∂Bt

dxdX

da
dA

dv
dV

n
N

u

t0 t > t0

Figure 2.1: Kinematics of continuous body B. Reference (time t0) and current configuration (time
t > t0).

Supposing dX is a material line element in the reference configuration, it is mapped to
the current configuration by the relation

dx = F · dX (2.26)

and its inverse formulation reads

dX = F−1 · dx. (2.27)

Due to this invertibility, F has to be a non-singular tensor. Thus, the determinate of the
deformation gradient, also known as the Jacobian of F, combining with initial conditions
is restricted to

J = detF > 0. (2.28)

This relation is also known as local invertibility condition. By the use of Eq. (2.26), an
orientated surface element within the reference configuration dA = dX1×dX2 is mapped
to an orientated surface element within the current configuration da = dx1 × dx2 (dX1

and dX2 denote line elements in the reference configuration and dx1 and dx2 are line
elements in the current configuration) by the relation

da = J F−T · dA. (2.29)

The orientated surface elements are defined by their normal vectors in the reference and
current configuration, N and n, as: dA = N dA and da = n da, where dA and da
constitute the area of the surface elements in the reference and current configuration.

6



2.2 Kinematics

Using the scalar triple product and Eq. (2.26), volume elements in the reference and
current configuration dV and dV are connected by

dv = J dV. (2.30)

The lengths of line elements dL in the reference configuration and dl in the current
configuration are defined as

dL2 = ||dX||2 = dX · dX and dl2 = ||dx||2 = dx · dx. (2.31)

Using the push forward for line elements, the right Cauchy-Green strain tensor C is
introduced as

dl2 = dX ·
(
FT · F

)
· dX (2.32)

dl2 = dX ·C · dX (2.33)

The right Cauchy-Green strain tensor thus reads

C = FT · F. (2.34)

In order to follow the standard continuum mechanics notation, quantities belonging to
the reference configuration are denoted with uppercase letters, and quantities belonging
to the current configuration are denoted by lowercase letters (cf. [21, 23] and others).

Considering curvilinear coordinates θi for i ∈{1, 2, 3}, a material point with respect
to the reference configuration is denoted as

X = X
(
θi
)

(2.35)

and a material point with respect to the current configuration reads

x = x
(
θi
)
. (2.36)

Due to the connection of both points, the deformation mapping is achieved as

x = ϕ
(
θi
)
. (2.37)

By defining a canonical (local) coordinate system, the covariant basis vectors, also known
as tangent vectors, are introduced as

gi =
∂x

∂θi
and Gi =

∂X

∂θi
(2.38)

and the contravariant basis vectors read

gi =
∂θi

∂x
and Gi =

∂θi

∂X
. (2.39)

7



2 Introduction to continuum mechanics

Therein, Gi and Gi denote basis vectors with respect to the reference configuration and
gi and gi are basis vectors with respect to the current configuration. Unlike Cartesian
coordinates, the covariant basis vectors have the following properties: ||gi|| 6= 1 and
gi · gj 6= 0. Orthogonality is given by their dual basis. To be more precise

gi · gj = δij (2.40)

Gi ·Gj = δij (2.41)

The co- and contravariant bases are coupled by the metrics. The covariant metrics of
the reference and current configuration read

Gij = Gi ·Gj , [Gij] =



G11 G12 G13

G21 G22 G23

G31 G32 G33


 (2.42)

and

gij = gi · gj , [gij ] =



g11 g12 g13
g21 g22 g23
g31 g32 g33


 . (2.43)

Computing the inverse, the contravariant metrics of the reference and current configu-
ration are obtained as

[
Gij

]
=[Gij ]

−1 and
[
gij

]
=[gij ]

−1 . (2.44)

Finally, the contravariant bases of the reference and current configuration can also be
defined as

Gi = Gij Gj and gi = gij gj. (2.45)

With the curvilinear basis vectors at hand, the deformation gradient can be rewritten
as

F =
∂x

∂X
=

∂x

∂θi
⊗ ∂θi

∂X
= gi ⊗Gi. (2.46)

As can be seen, the bases of deformation gradient are associated with the deformed and
undeformed configuration. It is thus a so-called two-point tensor. The mapping of line
elements dX and dx is reformulated as

dX =
∂X

∂θi
dθi = Gi dθ

i and dx =
∂x

∂θi
dθi = gi dθ

i. (2.47)

The tangent vectors can also be used to rewrite the identity mapping in the undeformed
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2.3 Balance equations

and deformed configuration as

I = Gi ⊗Gi and i = gi ⊗ gi. (2.48)

From Eqs. (2.46) and (2.47) it can be seen that deformation gradient F maps the co-
variant basis vector in the reference configuration Gi to the covariant basis vector in the
current configuration gi, such as

gi = F ·Gi. (2.49)

2.3 Balance equations

This section summarizes the balance equations of continuum mechanics. Based on the
integral formulation, the local balance equations of linear momentum and energy are
derived. The integral formulation contains a control volume and control surface of the
reference body Ω0 ⊂ B0 and ∂Ω0 ⊂ ∂B0 (within a Boltzmann continuum).

This work only gives a short overview of the balance equations. For detailed infor-
mation, the interested reader is referred to [9, 10, 22, 44, 66].

2.3.1 Conservation of linear momentum

The balance law of linear momentum predicts that the sum of external forces K acting
on body B0 equals the time rate of linear momentum L̇. The external forces read

K =

∫

Ω0

ρ0B dV +

∫

∂Ω0

T0 dA, (2.50)

where ρ0 denotes the mass density per unit volume, B the body force per unit mass and
T0 the prescribed tractions on the boundary per unit area. The linear momentum reads

L =
d

dt

∫

Ω0

ρ0ϕ dV =

∫

Ω0

ρ0 ϕ̇ dV, (2.51)

where the superposed dot presents the material time derivative d(•) /dt = •̇. By appli-
cation of mass closed systems, i.e. ρ̇0 = 0, the equality K = L̇ leads to

∫

Ω0

ρ0 ϕ̈ dV =

∫

Ω0

ρ0B dV +

∫

∂Ω0

T0 dA. (2.52)

In order to apply the integral law of balance of linear momentum on material points,
it is converted into a local form by using the Cauchy theorem and the Gauß theorem1.

1The divergence theorem (cf. Eq. (1.294) in [21]), also known as Gauß’s divergence theorem, relates
an outward flux of a vector field a or a second order tensor field B through the closed surface ∂Ω

9



2 Introduction to continuum mechanics

The Cauchy theorem states that the traction T depends only on the normal vector N.
It can be shown that this implies a linear dependency which, in turn, allows to define
the first Piola-Kirchhoff stress tensor P by T = P ·N. By localization, this leads to the
local form of the balance of linear momentum

DivP+ ρ0 B = ρ0 ϕ̈ ∀X ∈ B0 with Div(•) = Grad(•) : I. (2.53)

Since this thesis deals with static problems only, dynamic effects can be neglected and
thus, the inertia term vanishes:

DivP+ ρ0 B = 0 ∀X ∈ B0. (2.54)

Remark 1 The conservation of angular momentum is not considered in this section. It
is equivalent to the condition that the Cauchy stress tensor σ = J−1P · FT as well as
the second Piola-Kirchhoff stress tensor S = F−1 · P are symmetric. Due to σ = σT,
P · FT = F ·PT has to hold.

The solution of thermomechanically coupled initial boundary value problems requires
suitable boundary conditions and initial conditions. For that purpose, the boundary ∂B0

of the body B0 is decomposed into Dirichlet boundary ∂B0,ϕ and Neumann boundary
∂B0,T

∂B0 = ∂B0,ϕ ∪ ∂B0,T and ∂B0,ϕ ∩ ∂B0,T = ∅. (2.55)

The boundary conditions are defined as

ϕ = ϕ̄ ∀X ∈ ∂B0,ϕ and P ·N = T ∀X ∈ ∂B0,T, (2.56)

where ϕ̄ denotes the prescribed deformation field on the Dirichlet boundary and where
T denotes the prescribed tractions on the Neumann boundary. The initial deformation
field is prescribed by ϕ(X, t0) = ϕ0(X) at time t0.

2.3.2 Conservation of energy

The balance law of energy is also known as the first law of thermodynamics. It balances
the mechanical and thermodynamic energies inside and from outside of a body. The

to the volume integral of the divergence of the tensor field inside the surface region

∫

∂Ω

a ·N dA =

∫

Ω

Div adV and

∫

∂Ω

B ·N dA =

∫

Ω

DivBdV,

where N denotes the outward surface vector and Ω the body enclosed by the surface region ∂Ω.
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total energy of the body can be split into four different contributions: power due to
externally applied forces Pext, heat power PΘ, kinetic energy K and internal energy E.

K̇ + Ė = Pext + PΘ (2.57)

The external power consists of the body forces ρ0B and tractions acting on the surface
T. It is defined as

Pext =

∫

Ω0

ρ0B · ϕ̇ dV +

∫

∂Ω0

ϕ̇ ·TdA. (2.58)

The heat power reads

PΘ =

∫

Ω0

ρ0R dV −
∫

∂Ω0

H ·N dA, (2.59)

in which R denotes the heat source density and H is the outward heat material flux
vector depending linearly on the normal vector N. Considering dynamic systems, the
kinetic energy has the form

K =

∫

Ω0

1

2
ρ0 ||ϕ̇||2 dV, (2.60)

where ||•|| =
√
{•}i {•}i denotes the Euclidean norm. By means of an internal energy

density U per unit mass, the internal energy E is expressed as

E =

∫

Ω0

ρ0 U dV. (2.61)

Finally, after applying the Gauß divergence theorem and, inserting the balance law of
linear momentum (Eq. (2.53)) into the integral form Eq. (2.57), the local form of the
balance law of energy reads

ρ0 U̇ = P : Ḟ− DivH+ ρ0R ∀X ∈ B0, (2.62)

where P = P : Ḟ is the stress power.

Similarly to the mechanical boundary value problem, the thermal boundary is split
into

∂B0 = ∂B0,Θ ∪ ∂B0,H and ∂B0,Θ ∩ ∂B0,H = ∅. (2.63)

The Dirichlet boundary B0,Θ defines the prescribed temperature θ and the Neumann
boundary B0,H enforces the prescribed heat flux H in the form

Θ = θ ∀X ∈ ∂B0,Θ and H ·N = H ∀X ∈ ∂B0,H. (2.64)
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2 Introduction to continuum mechanics

The initial condition for the temperature field at time t0 is denoted as Θ(X, t0) = Θ0(X).

2.3.3 Second law of thermodynamics

The second law of thermodynamics, also known as the entropy inequality, gives the
direction of a thermodynamical process. In comparison to the described conservations
laws, the balance law of entropy presents only a conservation law for reversible processes.
The entropy S of the control volume Ω0 ∈ B0 is defined as

S =

∫

Ω0

ρ0N dV, (2.65)

where N denotes the entropy density per unit mass. The entropy inequality of a control
volume Ω ∈ B0 has the form

d

dt

∫

Ω0

ρ0N dV ≥
∫

Ω0

ρ0R

Θ
dV −

∫

∂Ω0

H ·N
Θ

dA, (2.66)

in which Θ denotes the absolute temperature in Kelvin with Θ > 0K. The rate of entropy
measures the energy transformed due to irreversible processes. The entropy inequality
states that the rate of entropy is never smaller than the one associated with the external
entropy supply resulting from heat sources and fluxes. Applying the Gauß theorem,
the local form of the entropy inequality, also known as Clausius-Duhem inequality, is
obtained as

ρ0 Ṅ − ρ0R

Θ
+Div

H

Θ
≥ 0. (2.67)

Using the product rule of the divergence and gradient2 and multiplying Ineq. (2.67) by
Θ, the so-called dissipation inequality (dissipation D) is achieved

D = DivH+ ρ0

[
Θ Ṅ −R

]
+H ·G ≥ 0 ∀X ∈ B0. (2.68)

where G = −1/ΘGradΘ denotes the generalized temperature gradient. The term
DivH − ρ0 R is replaced by the first law of thermodynamics (cf. Eq. (2.62)) and the

2Being A a second-order tensor field, b a vector field and c a scalar field, the following identities
(cf. [21]) hold

Div(cb) = b ·Grad c+ cDivb,

Div(cA) = A ·Grad c+ cDivA and

Grad cn = n cn−1Grad c.

12
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dissipation inequality reads

D = P : Ḟ+ ρ0

[
Θ Ṅ − U̇

]
+H ·G ≥ 0 ∀X ∈ B0. (2.69)

An alternative form depending on the Helmholtz free energy ψ0 can be formulated by
introducing the Legendre transformation

U(N, •) = ψ0(Θ, •) + ΘN. (2.70)

Finally, by applying the time derivative of the Legendre transformation U̇ − Θ Ṅ =
ψ̇0 + Θ̇N , an alternative form of the dissipation inequality is obtained:

D = P : Ḟ− ρ0

[
Θ̇N + ψ̇0

]
+H ·G ≥ 0 ∀X ∈ B0. (2.71)

Following Clausius-Planck, the dissipation inequality (2.71) can be formulated in a
stronger form. To be more precise, with the internal dissipation Dint and dissipation
caused by heat conduction Dcon one postulates

Dint = P : Ḟ− ρ0

[
Θ̇N + ψ̇0

]
≥ 0 and Dcon = H ·G ≥ 0. (2.72)

2.4 Constitutive modeling

The material response of a body is described by constitutive relations. In the following,
the constitutive model of an isothermal and a thermoelastic material at finite strains
will be presented. Each model will be characterized by a Helmholtz free energy density
ψ0.

2.4.1 Hyperelasticity

This section focuses on isothermal processes. In the sense of Cauchy materials, the stress
tensor depends only on the deformation gradient P = P(F). Focussing on hyperelastic
materials, the integral of stress power P = P : Ḟ is path-independent. Hence, a potential
depending on the deformation gradient Ψ = Ψ(F), such as

P =
∂Ψ(F)

∂F
and Ψ̇(F) = P : Ḟ = P (2.73)

exists. In this case, the time derivative of the potential Ψ̇ is equal to the stress power P.
Inserting the definition of P into the internal dissipation in Ineq. (2.72), the potential
reads

Ψ(F) = ρ0 ψ0(F) . (2.74)
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2 Introduction to continuum mechanics

Therein, ψ0(F) denotes the Helmholtz free energy density. The hyperelastic material
fulfills a priori the second law of thermodynamics represented in Ineq. (2.71) and it
reads

P : Ḟ− ρ0 Ψ̇(F) = 0 ⇒ Ṅ = 0. (2.75)

Postulating that the material fulfills objectivity,

Ψ(F) = Ψ(Q · F) (2.76)

has to hold, where the material is independent of any rigid body rotationQ ∈ S ⊂ SO(3)
applied to the deformed configuration (cf. [34]). Thus, the stored energy can be expressed
as a function of the symmetric right Cauchy-Green tensor

C = FT · F with C = CT (2.77)

as Ψ(F) = Ψ(C). In this case, the first Piola Kirchoff stress tensor reads

P =
∂Ψ(C)

∂C
:
∂C

∂F
= 2F · ∂Ψ(C)

∂C
= 2 ρ0F · ∂ψ0(C)

∂C
. (2.78)

Without loss of generality, the derivative ∂ψ0(C) /∂C is represented by a symmetric
tensor. It is referred to as the second Piola-Kirchhoff stress tensor

S = 2
∂ψ0(C)

∂C
with S = ST. (2.79)

In this case balance of angular momentum is a priori fulfilled. To be more precise,

P · FT = 2F · ∂Ψ(C)

∂C
· FT = F ·PT. (2.80)

Remark 2 In general, objectivity means that the constitutive equations are indepen-
dent of the motion of an observer. Under an observer transformation, the deformation
gradient reads F∗ = Q · F. Q ∈ S ⊂ SO(3) is the rotation tensor with QT = Q−1.
Accordingly, the right Cauchy-Green tensor transforms as C∗ = FT ·QT ·Q · F = C.

Remark 3 The principle of material symmetry requires a transformation in the form
of X̃ = Q ·X ∀Q ∈ S ⊂ SO(3). Thus, the transformation of the deformation gradient
reads F̃ = F · QT. Assuming an energy potential as a function of the right Cauchy-
Green tensor Ψ = Ψ(C), it is called isotropic, if Ψ(C) = Ψ(C̃) and C̃ = Q · C · QT

∀Q ∈ SO(3) is fulfilled.
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2.4 Constitutive modeling

2.4.2 Thermoelasticity

Potential Ψ of the thermoelastic material depends on the deformation gradient F and
the temperature Θ, such as

Ψ = Ψ(F,Θ) with Ψ(F,Θ) = ρ0 ψ0(F,Θ) , (2.81)

where ψ0(F,Θ) denotes the Helmholtz free energy density. The second law of ther-
modynamics provides the basis (cf. Ineq. (2.72)) for the constitutive relations of the
thermoelastic material. For thermoelastic materials Dint = 0 holds true. In order to
obtain the constitutive relations, Ineq. (2.72) is rewritten as

Dint =

[
P− ∂Ψ(F,Θ)

∂F

]
: Ḟ−

[
ρ0N +

∂Ψ(F,Θ)

∂Θ

]
Θ̇ = 0, (2.82)

where the time derivative of the Helmholtz free energy reads

Ψ̇(F,Θ) =
∂Ψ(F,Θ)

∂F
: Ḟ+

∂Ψ(F,Θ)

∂Θ
Θ̇. (2.83)

Application of the Coleman and Noll procedure yields

P =
∂Ψ(F,Θ)

∂F
= ρ0

∂ψ0(F,Θ)

∂F
(2.84)

and

N = − 1

ρ0

∂Ψ(F,Θ)

∂Θ
= −∂ψ0(F,Θ)

∂Θ
, (2.85)

where the entropy N is thermodynamically conjugated to the temperature Θ and vice
versa.

Since the first law of thermodynamics does not define the process direction of the
temperature, the temperature equation is derived from the Clausius-Duhem inequality.
For that purpose, the rate of the entropy Ṅ is inserted into Ineq. (2.67). It can be
written as

Ṅ = −∂ψ̇0(F,Θ)

∂Θ
= −

[
∂2ψ0(F,Θ)

∂Θ2
Θ̇ +

∂2ψ0(F,Θ)

∂Θ ∂F
: Ḟ

]
. (2.86)

By doing so, the temperature equation has the form

DivH− ρ0R + c Θ̇ +H = 0, (2.87)

where c denotes the heat capacity and is restricted to the constraint c > 0. H is the
structural heating and describes the thermoelastic response of the material. It is also
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known as Gough-Joule effect. c and H are defined as

c = −ρ0Θ
∂2ψ0(F,Θ)

∂Θ2
and H = −ρ0Θ

∂2ψ0(F,Θ)

∂Θ ∂F
: Ḟ. (2.88)

Considering the special case of an adiabatic system without internal heat sources (H = 0
and R = 0), the temperature equation reduces to

c Θ̇ +H = 0. (2.89)

In general, the anisotropic heat flux vector is defined by the use of the thermal con-
ductivity tensor H in the reference configuration as

H = −H ·GradΘ. (2.90)

In order to fulfill the dissipation inequality or, to be more precise, the dissipation caused
by conductivity Dcon ≥ 0 (Ineq. (2.72)), the thermal conductivity tensor has to be
positive semi-definite. In the special case of an isotropic conductivity H = λ I, the heat
flux vector is expressed as

H = −λ GradΘ. (2.91)

Thus, the dissipation caused by heat conduction is automatically satisfied

Dcon =
λ

Θ
GradΘ ·GradΘ. (2.92)

2.5 Numerical implementation

This section describes the numerical implementation of the balance equations into the
finite element framework. For that purpose, balance of linear momentum and balance of
energy are first rewritten into their weak forms, and test functions δϕ (virtual velocity
field) and δΘ (virtual temperature field) are introduced. By doing so one obtains (see
Eq. (2.54))

δWϕ =

∫

B0

δϕ · DivP dV +

∫

B0

δϕ · ρ0B dV = 0 (2.93)

and (see Eq. (2.87))

δWΘ =

∫

B0

[
DivH− ρ0 R + c Θ̇ +H

]
δΘdV = 0. (2.94)
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By using the product rule3 and the Gauß theorem,

∫

B0

δϕ · DivP dV =

∫

∂B0,T

PT · δϕ ·N dA−
∫

B0

P : Grad δϕ dV, (2.95)

together with the Cauchy theoremP·N = T, and kinematic admissibility of test function
δϕ, Eq. (2.93) is rewritten as

δWϕ =

∫

B0

[P : Grad δϕ− ρ0B] dV −
∫

∂B0,T

T · δϕ dA = 0. (2.96)

Similarly, using the product rule and the divergence theorem, one obtains

∫

B0

DivH δΘdV =

∫

∂B0

H δΘdA−
∫

B0,T

H ·Grad δΘdV (2.97)

with the heat flux H = H ·N. The integral form of the temperature equation Eq. (2.94)
reads

δWΘ =

∫

B0

[
−H ·Grad δΘ−

[
ρ0 R− c Θ̇ + Θ

∂P

∂Θ
: Ḟ

]
δΘ

]
dV

+

∫

∂B0,T

H δΘdA = 0. (2.98)

In order to apply the finite element discretization, the referential body B0 is approx-
imated by

B0 ≈ Bh
0 =

nel⋃

e=1

Be
0, (2.99)

where Bh
0 denotes the set of all elements, nel is the number of elements belonging to

the set Bh
0 and Be

0 is the element e within the set Bh
0 . Within the framework of the

isoparametric concept, position vector X and primary field variables ϕ and Θ (certainly,
the isoparametric concept does not apply to Θ) are approximated within one element e

3Being A a second-order tensor field and b a vector field, the following identity (cf. [21]) holds

Div
(
A

T · b
)
= Div(A) · b+A : Gradb.
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by

X|Be
0

≈ Xh =

nen∑

a=1

Na(ξ) Xa, (2.100)

ϕ|Be
0

≈ ϕh =
nen∑

a=1

Na(ξ) ϕa and (2.101)

Θ|Be
0

≈ Θh =
nen∑

a=1

Na(ξ) Θa. (2.102)

Therein, Xa denotes the position vectors with respect to the reference configuration at
local node a. ϕa and Θa are the field variables at the local node a. nen is the total number
of the local nodes belonging to the element e. Na(ξ) describes the shape function of
the local node a with respect to the natural coordinates ξ within the reference element.
The approximations of the virtual quantities are chosen in line with Bubnov-Galerkin
method, i.e.,

δϕ|Be
0

≈ δϕh =
nen∑

a=1

Na(ξ) δϕa and (2.103)

δΘ|Be
0

≈ δΘh =
nen∑

a=1

Na(ξ) δΘa. (2.104)

According to these approximations, the gradients of the deformation field and of the
temperature field are expressed as

Gradϕh =
nen∑

a=1

ϕa ⊗GradNa and GradΘh =
nen∑

a=1

Θa GradNa. (2.105)

Similarly, the gradients of the virtual fields have the form

Grad δϕh =
nen∑

a=1

δϕa ⊗GradNa and Grad δΘh =
nen∑

a=1

δΘa GradNa. (2.106)

Hence, the deformation gradient and the virtual deformation gradient read Fh = Gradϕh

and δFh = Grad δϕh, respectively. Introducing the Jacobian matrix

J =
∂X

∂ξ
=

nen∑

a=1

Xa ⊗ ∂Na(ξ)

∂ξ
, (2.107)
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the gradient of the shape function yields

GradNa =
∂Na(ξ)

∂X
=

∂Na(ξ)

∂ξ
· ∂ξ

∂X
=

∂Na(ξ)

∂ξ
· J−1. (2.108)

With the previous equations (2.99) – (2.108) at hand, the contribution of element e to
the balance laws are expressed in the discretized form as

δWϕ|Be
0

=

nen∑

a=1

δϕa
[
fa
ϕ,int + fa

ϕ,sur + fa
ϕ,vol

]
and (2.109)

δWΘ|Be
0

=

nen∑

a=1

δΘa
[
fa
Θ,int + fa

Θ,sur + fa
Θ,vol

]
, (2.110)

where fa
ϕ,• and fa

Θ,• denote (generalized) nodal forces. The forces are decomposed into
internal (int), surface (sur) and body (vol) parts. In detail they read

fa
ϕ,int =

∫

B0

P ·GradNa dV, (2.111)

fa
ϕ,sur = −

∫

∂B0

NaT dA, (2.112)

fa
ϕ,vol = −

∫

B0

Na ρ0 B dV, (2.113)

fa
Θ,int =

∫

B0

[
−H ·GradNa + c Θ̇−Θ

∂P

∂Θ
: Ḟ

]
dV, (2.114)

fa
Θ,sur =

∫

∂B0

NaH dA and (2.115)

fa
Θ,vol = −

∫

B0

Na ρ0 R dV. (2.116)

Time derivatives ˙(•) are approximated by the Backward Euler rule

˙(•) = d(•)
dt

≈ 1

∆t

[
(•)n+1 −(•)n

]
, (2.117)

where n denotes the previous time step and n + 1 indicates the current time step.
∆t = tn+1 − tn describes the time increment between two time steps. Consequently, the
rate of the temperature and deformation gradient are expressed as

Θ̇ =
dΘ

dt
≈ Θn+1 −Θn

∆t
and Ḟ =

dF

dt
≈ Fn+1 − Fn

∆t
. (2.118)

In order to shorten the equations, in the following the ˙(•)-notation is used.
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The residual vector Ra
e of a local node a at element e is defined as

Ra
e =

[
Ra

e,ϕ

Ra
e,Θ

]
=

[
fa
ϕ,int + fa

ϕ,sur + fa
ϕ,vol

fa
Θ,int + fa

Θ,sur + fa
Θ,vol

]
. (2.119)

The global residuum is constituted by the use of global assembly operator A
nel
e=1

RA =

nel

A
e=1

Ra
e . (2.120)

The assembly operator maps the local node a of the element e to the global node A.
RA denotes the global residuum with respect to the global node A. The total number
of global nodes is nnp. The consistent linearization of the resulting system of equations
is

R+
∂R

∂η

∣∣∣∣
n

·∆η = 0 with ηn+1 = ηn +∆η, (2.121)

where n denotes the iteration step. The degrees of freedom (deformation and tempera-
ture field) are summarized in

η =

[
ϕ

Θ

]
. (2.122)

R and η are the global vectors of residual and degrees of freedom. They are defined as

R =




R1

...
RA

...
Rnnp




and η =




η1

...
ηA

...
ηnnp



. (2.123)

Subsequently, the local algorithmic tangent modulus matrix Kab
e of the element e being

identical to the derivative of the local residual Ra
e with respect to the degrees of freedom

δηb is constituted as

Kab
e =

dRa
e

dηb
=




dRa
e,ϕ

dϕb

dRa
e,ϕ

dΘb

dRa
e,Θ

dϕb

dRa
e,Θ

dΘb


 =

[
Kab

ϕϕ
Kab

ϕΘ

Kab
Θϕ

Kab
ΘΘ

]
(2.124)
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with its sub-matrices

Kab
ϕϕ

=

∫

B0

GradNa (2)· dP

dF
·GradN b dV, (2.125)

Kab
ϕΘ =

∫

B0

N b dP

dΘ
·GradNa dV, (2.126)

Kab
Θϕ

= −
∫

B0

NaΘ
d

dF

(
∂P

∂Θ
: Ḟ

)
·GradN b dV and (2.127)

Kab
ΘΘ =

∫

B0

[
λ GradNa ·GradN b

+Na d

dΘ

(
c Θ̇−Θ

[
∂P

∂Θ
: Ḟ

]
+H

)
N b

]
dV. (2.128)

dP/dF is the so-called tangent and in the following it is denoted as A. At the end, the
global tangent matrix KAB is assembled analogously to the global residual vector (see
Eq. (2.119))

KAB =

nel

A
e=1

Kab
e . (2.129)

Further details on the derivation and numerical implementation of the finite element
framework can be founded in [54] and [69].

In order to execute finite element simulations, the finite element code FEAP (cf. [65])
is used. It permits the implementation of an arbitrary material model. Conceptually,
an interface passes the elemental residual vector Re and the elemental tangent matrix
Ke.
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3 Computational homogenization of
material surfaces: from atomistic
simulations to continuum models

The objective of this chapter is a numerical multiscale framework that determines me-
chanical continuum properties of material surfaces based on molecular statics. The key
idea is the coupling of representative volume elements in the atomistic and in the con-
tinuum model by the principle of energy equivalence. This allows a thermodynamically
consistent implementation of various material models and boundary conditions, e.g., to
capture size effects in nano scale materials. For the present example of copper, a very
good match with literature data is observed. Only the results for the surface stiffness
still deviate in the same range as existing data sources do. The presented results con-
currently indicate a drastic strain sensitivity. Further, a methodological bulk to surface
error propagation by an appropriate strain limit and thickness extrapolation is elimi-
nated. The latter is calculated by always allowing for fully developed surface regions.
Additionally, this method reveals a strain dependence of higher order that is caused by
the anharmonic potential and not captured by standard bulk models. The presented
multiscale framework finally serves two purposes: validating the reasonableness of a
material surface model and determining its parameters.

In this work, the material parameters will be determined by a novel homogenization
method, i.e., the principle of energy equivalence between the atomistic and the contin-
uum model. Within the proposed framework of energy equivalence, the energy obtained
from atomistic simulations is compared to the energy obtained from continuum simula-
tions. The (change in) total energy is employed because this observability is well defined
in both models and its value must be model independent, making the difference between
both a suitable measure to be minimized. This coupling between the models is straight-
forward in the present case of elasticity, but will require more attention if other energy
contributions are present, e.g., thermoelasticity, plasticity and damage modeling. With
the total energies at hand, an optimal set of surface material parameters is determined
from Ritz-type minimization of the energy difference between the models. The material
parameters to be determined are defined by an underlying prototype constitutive contin-
uum material model which defines the space of approximations in the sense of the Ritz
method. Given the reported unconventional behavior of material surfaces [13, 53, 56]
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atomistic
model

continuum
model

atomistic
energy
Ψa

continuum
energy
Ψc

vary material parameters until
energy difference is minimized

for all load cases
[Ψa −Ψc]2 → 0

material parameters of
bulk and surface
X

B and X
S

Figure 3.1: Sketch of the representative atomistic volume element Ωa (left) and the continuum repre-
sentative volume element Ωc (right) as used to obtain the material surface parameters X

S using the
Ritz method, i.e., minimizing the difference between the atomistic energy Ψa and the continuum energy
Ψc. The gray area illustrates the 2d-surface material in the continuum model.

special emphasis is put on two influences on the material parameters, namely, strain
amplitude and bulk thickness. Compared to the boundary conditions in other litera-
ture, this work focuses on the most fundamental situation of free surfaces, where atoms
at and near the surface are allowed to relax in all spatial directions, see Fig. 3.1 for an
illustration.

The present chapter is structured into four sections. The determination of atomistic
and continuum energies are presented in Sec. 3.1 together with a prototype continuum
material model. Subsequently, Sec. 3.2 introduces the key idea of the novel Ritz-type
homogenization approach for surfaces using energy equivalence. The numerical example
for copper in Sec. 3.3 then illustrates the application and interpretation of the new frame-
work, discussing the validity and peculiarities of the prototype material model. Sec. 3.4
concludes this work with a summary of the key features of the modeling framework.

24



3.1 Constitutive frameworks

3.1 Constitutive frameworks

The presented homogenization approach involves two views: an atomistic model and a
continuum model. The energy modeling is introduced for both in the following, with
quantities of the atomistic and the continuum model being marked with a and c, respec-
tively.

3.1.1 Atomistic scale

The atomistic body of interest Ωa is chosen to be a representative volume element (RVE)
with periodic boundary conditions, containing natoms atoms at positions x1, . . . ,xnatoms

(cf. Fig. 3.1 and the fcc structure of copper in Fig. 3.2a). The volume is deformed into
a parallelepiped, specified by the homogeneous deformation gradient F̄, which will be
laid out in more detail in Sec. 3.2. The atoms’ positions change upon this deformation,
which are restricted to be elastic, i.e. small enough as to avoid “drastic” displacements
like slip planes. The energy of a single atom α inside the body under deformation is
modeled by an ansatz of the embedded-atom method (EAM) developed by Daw and
Baskes [12] as

Ψa
α(x1, . . . ,xnatoms) = G(ρα) +

1

2

∑

β 6=α

φαβ (xαβ) . (3.1)

Therein, G(ρα) is the energy to embed atom α into the electron density

ρα =
∑

β 6=α

fe exp(−δ (xαβ/xeq − 1)) , (3.2)

while

φαβ (xαβ) = φe exp(−γ (xαβ/xeq − 1)) (3.3)

is a two-body potential (see Oh-Johnson potential [45]) between the atoms α and β
separated by the distance xαβ = |xαβ| with xαβ = xα−xβ. The equilibrium interatomic
separation distance xeq is a model parameter just as fe, δ, φe, and γ.

Since some of the neighbor atoms β in Eq. (3.1) will be periodic images, the positions
of which are affected by F̄, the energy Ψa

α depends on F̄, as well. The total equilibrium
energy Ψa

eq of the entire atomistic body Ωa is then defined as the minimum energy over
variations of the atoms’ positions within the deformed periodic cell as

Ψa
eq

(
F̄
)
= min

x1,...,xnatoms

natoms∑

α=1

Ψa
α

(
x1, . . . ,xnatoms , F̄

)
. (3.4)

This work uses different lengths in order to describe the dimensions of the RVE. The
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3 Computational homogenization of material surfaces

dCu
eq

dCu
eq

dCu
eq

(a) Fcc unit cell of copper and its lattice con-
stant dCu

eq .

3 dCu
eq

3 dCu
eq

dCu
eq

dCu
eq

seq

seq

(b) Two-dimensional cross section (edge length
3nuc = 3 dCu

eq ) of RVE with three periodic im-
ages of fcc unit cell in each spatial direction. A
single fcc unit cell is highlighted by the dashed
square.

Figure 3.2: Fcc unit cell and two-dimensional cross section of periodic arrangement of fcc unit cells
defining the lattice constant dCu

eq and the lattice spacing seq = 0.5 dCu
eq .

edge length of the fcc unit cell in the equilibrium configuration (undeformed configura-
tion) is defined by the lattice constant dCu

eq (cf. Fig. 3.2a). Due to periodic arrangement
of the fcc unit cell, different layers arise. Fig. 3.2b shows the two-dimensional cross sec-
tion being the periodic arrangement of fcc unit cells. The distance between two layers in
the undeformed configuration is defined as the layer spacing seq and is half of the lattice
constant in the equilibrium configuration: seq = 0.5 dCu

eq . In the deformed configuration
it is denoted as s. In order to describe the length independently of its configuration, the
dimensionless quantity number of unit cells nuc is introduced. It describes the length
dependently on the number of periodic arrangements of the unit cell. Thus, its current
length varies conditionally upon the deformation.

3.1.2 Continuum scale

3.1.2.1 Fundamentals

The energy density of a material point in the continuum description is given as

ψc(F) , (3.5)

where the dependence on the local deformation gradient F is explicitly stated. The latter
depends on the deformation field of the undeformed domain x(X) as F = ∂x(X)/∂X.
The specific choice of this function determines the physical behavior that can be captured
and thus depends on the material of interest. A prototype model is described in the
following Sec. 3.1.2.2.

The total equilibrium energy Ψc
eq is determined from integrating the energy density ψc
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3.1 Constitutive frameworks

over the undeformed bulk and surface domains, ΩB and ΩS , respectively. It is eventually
also formulated as a minimum energy among all deformation fields x − X which are
continuously differentiable (also across the periodic boundaries) and compatible with
the prescribed deformation of the periodic cell F̄:

Ψc
(
F̄
)
= min

cont. diff. x

compatible with F̄

{∫

ΩB

ψc
B(F(X)) dV +

∫

ΩS

ψc
S(F(X)) dA

}
. (3.6)

Remark 4 Another equilibrium condition that is typically found in the context of con-
tinuum mechanics is the local stress equilibrium, being equivalent to the vanishing energy
variation. In the continuum model, it means a divergence free stress tensor, provided
external forces are not present. Its atomistic counterpart is the vanishing of all net forces
(see [63]). In this work energy formulations are preferred, because of their scale-inde-
pendent meaning, the possibility of a thermodynamic interpretation and their tradition
in the modeling of solids, e.g., metals and polymers.

3.1.2.2 Prototype constitutive continuum material model

For comparison with available literature data [13, 56] and to focus on the key aspects
of the framework, the example of a standard Hooke-type material model is investigated.
The energy of this model depends on the linearized strain tensor field ε = (FT+F)/2−I
and reads for the continuum bulk B and a plane-stress surface S, respectively,

ψc
B
(
ψB
0 ,σ

B
0 ,C

B, ε
)
= ψB

0 + σB
0 : ε+

1

2
ε : CB : ε and (3.7a)

ψc
S
(
ψS
0 ,σ

S
0 ,C

S , ε
)
= ψS

0 + σS
0 : ε+

1

2
ε : CS : ε. (3.7b)

Thus, the model contains constant, linear and quadratic contributions in terms of the
linearized strain tensor field ε. They are defined as:

ψc,S
const = ψS

0 , (3.8)

ψc,S
lin = σS

0 : ε, (3.9)

ψc,S
quad =

1

2
ε : CS : ε. (3.10)

Therein, the initial energy densities ψ0, the initial stress tensors σ0 and the material
stiffness tensors C define the general set of model parameters to be determined for the
bulk and surface material of interest

X
B =

{
ψB
0 ,σ

B
0 ,C

B} and X
S =

{
ψS
0 ,σ

S
0 ,C

S} . (3.11)

Due to major and minor symmetries of the material stiffness tensors (Cijkl = Cjikl,
Cijkl = Cijlk and Cijkl = Cklij as valid for a potential depending on symmetric strain
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3 Computational homogenization of material surfaces

tensors), the number of independent components reduces from 81 to 21. Moreover it is
assumed that a relaxed bulk configuration starts with no initial bulk stress, σB

0 = 0.
Thus, the set of bulk material parameters

X
B =

{
ψB
0 ,C

B} =
{
X B

1 , . . . ,X B
22

}
(3.12)

encompasses 22 unknowns (1 for the energy constant and 21 for the stiffness tensor).
The set of material surface parameters

X
S =

{
ψS
0 ,σ

S
0 ,C

S} =
{
X S

1 , . . . ,X S
10

}
(3.13)

reduces to 10 unknowns when assuming plane stress (1 for the initial energy density, 3
for the initial stress tensor and 6 for the stiffness tensor).

For the sake of readability and clarity, it seems to be useful to denote the material
parameters by the Voigt-notation [38]. Numbers above tensors denote their order if they

deviate from their standard format (e.g. C =
4
C, σ =

2
σ). Although this part is only

important for the surface material, the surface index S will be omitted for simplification.

The stress calculation is transformed from σ = C : ε to
1
σ =

2
C · 1

ε. Taking into account
the minor and major symmetries of C,




σ11

σ22

σ33

σ23

σ13

σ12




︸ ︷︷ ︸
1
σ

=




C1111 C1122 C1133 C1123 C1113 C1112

C1122 C2222 C2233 C2223 C2213 C2212

C1133 C2233 C3333 C3323 C3313 C3312

C1123 C2223 C3323 C2323 C2313 C2312

C1113 C2213 C3313 C2313 C1313 C1312

C1112 C2212 C3312 C2312 C1312 C1212




︸ ︷︷ ︸
2
C

·




ε11
ε22
ε33
2 ε23
2 ε13
2 ε12




︸ ︷︷ ︸
1
ε

(3.14)

holds in the new notation. Due to the assumption of plane stress, stresses perpendicular
to the surface, i.e. in e3-direction, vanish:

σ =



σ11 σ12 0
σ12 σ22 0
0 0 0


 and ε =



ε11 ε12 0
ε12 ε22 0
0 0 ε33


 . (3.15)

Changing the gap size (excluding surface-surface contact) does not contribute to the
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3.1 Constitutive frameworks

energy. Accordingly to Eq. (3.14), the fully occupied surface stiffness tensor reads

2
C =




C̃1111 C̃1122 C̃1133 C̃1123 C̃1113 C̃1112

C̃1122 C̃2222 C̃2233 C̃2223 C̃2213 C̃2212

C̃1133 C̃2233 C̃3333 C̃3323 C̃3313 C̃3312

C̃1123 C̃2223 C̃3323 C̃2323 C̃2313 C̃2312

C̃1113 C̃2213 C̃3313 C̃2313 C̃1313 C̃1312

C̃1112 C̃2212 C̃3312 C̃2312 C̃1312 C̃1212




. (3.16)

The simplification of
2
C under the assumption of plane stress perpendicular to the e3-

direction has the form (Eq. (3.15)):

2
C =




C̃1111 −

[
C̃1133

]2

C̃3333

C̃1122 −
C̃1133 C̃2233

C̃3333

0 0 0 C̃1112 −
C̃1133 C̃3312

C̃3333

C̃1122 −
C̃1133 C̃2233

C̃3333

C̃2222 −

[
C̃2233

]2

C̃3333

0 0 0 C̃2212 −
C̃2233 C̃3312

C̃3333

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

C̃1112 −
C̃1133 C̃3312

C̃3333

C̃2212 −
C̃2233 C̃3312

C̃3333

0 0 0 C̃1212 −

[
C̃3312

]2

C̃3333




. (3.17)

With these conditions for plane stress at hand and eliminating the C3333-component,
2
CS

of the surface material simplifies to a tensor with six independent components in the
form

2
C

S =




CS
1111 CS

1122 0 0 0 CS
1112

CS
1122 CS

2222 0 0 0 CS
2212

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

CS
1112 CS

2212 0 0 0 CS
1212



. (3.18)

In accordance with Eq. (3.15), σS
0 has 3 independent components:

σS
0 =



σS
0,11 σS

0,12 0
σS
0,12 σS

0,22 0
0 0 0


 . (3.19)

Before proceeding with the key homogenization scheme, it has to be emphasized

29



3 Computational homogenization of material surfaces

that the proposed model serves as a prototype model for the sake of illustration and
comparison with literature. It can be replaced by more comprehensive models depending
on the application of interest. Following [26], for instance, the asymmetric, linearized
surface Piola-Kirchhoff stress tensor of an arbitrary objective Helmholtz free energy
density ψ(C) as a function of the right Cauchy-Green strain tensor C reads

ΠS = ΠS
0 + C

S : εS +GraduS ·ΠS
0 , (3.20)

whereΠS
0 denotes the initial energy density, CS the material stiffness tensor and GraduS ·

ΠS
0 is the product of the surface deformation gradient and the initial, linearized surface

stress. The initial stresses and the material stiffness tensor are defined as

ΠS
0 := SS∣∣

F=I
= 2

∂ψS

∂CS

∣∣∣∣
F=I

and (3.21)

C
S := 2

∂SS

∂CS

∣∣∣∣
F=I

= 4
∂2ψS

∂CS ∂CS

∣∣∣∣
F=I

. (3.22)

Therein, SS denotes the second Piola-Kirchhoff stress tensor of the surface. More gener-
ally, the presented framework is also compatible with – but not limited to – temperature
effects, dissipation, finite strain plasticity as well as internal variables and incremen-
tally defined potentials [7, 70] for both the bulk and the surface. This compatibility is
achieved by the following Ritz-type energy approach that imposes no constraints on the
formerly listed physical phenomena.

3.1.2.3 Implementation in finite element framework

The implementation of prototype material models into the finite element framework
(see Sec. 2.5) requires the global residual vector R and the global tangent matrix K.
Considering Sec. 2.5, for a purely mechanical problem the local residual vector reduces
to Ra

e = Ra
e,ϕ = fa

ϕ,int and the local tangent matrix reduces to Kab
e = Kab

ϕϕ
= dfa

ϕ,int/dϕ
b.

According to Eqs. (2.111) and (2.125) only the stress tensor P and its derivative dP/dF
have to be computed. However, due to focusing on small strains within the prototype
material models, P and F are replaced by σ and ε with ε =

[
F+ FT

]
/2 − I. With

Eqs. (3.7a) and (3.7b) in mind, σ = dψ/dε and dσ/dε read

dψ•

dε
= σ•

0 + C
• : ε and (3.23)

dσ•

dε
= C

•, (3.24)

where • has to be replaced either by B or S.
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3.2 A novel Ritz-type homogenization approach

3.2 A novel Ritz-type homogenization approach:

material parameter transition from the atomistic

model to the continuum model

3.2.1 Ritz’s method applied to materials with surfaces

The Ritz method (cf. [5]) is adopted to identify the set of material parameters of the
bulk and the surface, X B and X

S . In general, the Ritz method minimizes an energy
residuum R of a boundary value problem. Here, the energy residuum to be minimized
is the difference between the energy of the atomistic model Ψa and the energy of the
continuum model Ψc that should ideally vanish as Ψc −Ψa = 0.

To identify a set of unknown material parameters, various load cases are applied and
the related atomistic and continuum energies are compared. Each load case 1 ≤ i ≤ nlc

is prescribed by the corresponding macroscopic deformation gradient F̄(i) of a periodic
RVE in the form

F̄(i)(ǫ) = I+ ǫ∆F̄(i), (3.25)

where ∆F̄(i) are representative mixtures of axial and shear deformations which are then
scaled by ǫ. nlc denotes the total number of load cases. The difference between the
energies on the continuum and the atomistic model must become minimal for each
individual load case

[Ψc −Ψa]2
∣∣
F̄

(i) → min for 1 ≤ i ≤ nlc, (3.26)

⇔ R :=

nlc∑

i=1

[Ψc −Ψa]2
∣∣
F̄

(i) → min . (3.27)

The adapted Ritz method hence aims at the minimization of the residuum R by
variations of the material parameters. The central relationship for determination of the
material parameters can be eventually formulated by

X
B = arg min

X
B

R(X B) followed by X
S = arg min

X
S

R(X S ,X B). (3.28)

That means, the application of the Ritz method is now split and described in two steps:

1. Determination of the bulk material parameters X B by application of Ritz’s method
to the pure bulk.

2. Determination of the surface material parameters X
S by application of Ritz’s

method to the bulk with a free surface, incorporating the results from step one.

If the continuum model was chosen comprehensively enough to allow full energetic equiv-
alence, the minimum reached would be R = 0. A compromise between accuracy and
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3 Computational homogenization of material surfaces

applicability for complex materials can prevent this ideal case, though. As a conse-
quence, the solution of the material parameters by the adapted Ritz method can depend
on the strain amplitude ǫ, and on the bulk thickness aB measured by the dimensionless
quantity nuc (number of unit cells, see Secs. 3.1.1 and 3.2.3) if surfaces are present. This

dependency is denoted by the symbols X̂
B
(ǫ) and X̂

S
(ǫ, aB). With actually constant

material parameters X B andX
S in mind, four, partially conflicting, constraints are iden-

tified: (i) approximation of the linear-elastic limit, ǫ → 0; (ii) numerical resolvability of
the energy variations with ǫ, requiring sufficient strain increments; (iii) a fully developed
surface boundary region, requiring enough atom layers, aB ≫ 1nuc; (iv) avoidance of
numerical cancellation errors due to too large total energies of too much bulk.

Eventually, a bulk size of aB = 20nuc unit cell layers is chosen to guarantee a fully
developed surface boundary region and determine the zero-strain limit from a third-
order interpolation, see Sec. 3.3.2 for a quantitative validation of these assumptions. In
contrast to this physically motivated limit, a second, more mathematical motivated limit
for a zero thickness surface with aB → 0 is chosen:

X
S
aB=20nuc

= lim
ǫ→0

X̂
S
(ǫ, aB = 20nuc) and (3.29a)

X
S
aB→0 = lim

aB→0
ǫ→0

X̂
S
(ǫ, aB) (3.29b)

However, this work will focus on the physically motivated limit aB = 20nuc, because it is
the more reasonable limit and due to the restriction to one bulk thickness, the numerical
cost is lower. The mathematically motivated limit seems to be more meaningful in
terms of the mathematical understanding of limits in general and serves as an additional
comparison only.

All atomistic systems are simulated with the molecular dynamics code LAMMPS
and the continuum systems are simulated using the finite element software FEAP, see
Sec. A.1 for more details on the numerical settings.

3.2.2 Bulk parameters

A cubic homogeneous RVE Ωa
B with periodic boundaries is studied to determine the bulk

material parameters. It covers 20 unit cells in each spatial direction and consists of a
single domain with 32.000 atoms, see Fig. 3.3. Relaxation of the bulk atoms is performed
by energy minimization under zero-load. The relaxed RVE Ωa

B with edge lengths bi then
constitutes the initial configuration for all following load cases in the atomistic and the
continuum model.

22 load cases F̄(i)(ǫ) are required and used to identify the set of material parameters
X

B of the bulk material. They are characterized by axial loading and shear of the peri-
odic RVE as well as combinations of them. A detailed overview can be found in Tab. 3.1.
20 different strain amplitudes between −0.001 and 0.001 are studied, not taking into ac-

32



3.2 A novel Ritz-type homogenization approach

e1

e2
e3

b1

b2

b3

(a) Illustration of the relaxed initial RVE
Ωa

B
of the atomistic model.

e1

e2
e3

b1

b2

b3

(b) Illustration of the relaxed initial RVE
Ωc

B
of the continuum model.

Figure 3.3: Periodic cells of the atomistic (a) and continuum model (b) including a single bulk domain.
Deviating from the simulations the figure shows a bulk RVE with b1 = b2 = b3 = 3nuc.

count the initial relaxed state, i.e., ǫ ∈ ǫ with ǫ = {−0.001,−0.0009, . . . , 0.001} \{0}.
The zero-strain limit is obtained from a linear regression in the form

X̂ B
i (ǫ) = mB

i ǫ+ X B
i . (3.30)

Remark 5 The choice of load cases can have an influence on the resulting material
parameters like in other order reduction schemes [40]. This effect is tried to be minimized
by a symmetric choice and weighting of the load types and a consistency check with
literature, isolated simple tension and material symmetry.

3.2.3 Surface parameters

A bulk domain and a vacuum gap, providing two surfaces, form the periodic RVE that is
used to determine the surface parameters. Correspondingly, a two-dimensional material
surface is added to the continuum model between the vacuum gap and the bulk (gray
areas in Fig. 3.5). Hence, this system involves three types of domains: bulk Ba/c, a
vacuum gap Va/c and two material surfaces Sc

d/u which are exclusively added to the
continuum model. The size of the vacuum gap in e3-direction is approximately twenty
times the lattice constant (≈ 20 dCu

eq ). The lattice constant dCu
eq is determined from the

relaxation simulation of the bulk material (see Sec. 3.3.1). Width and depth of the
surface RVE span five lattice constants (a1 = a2 = 5 dCu

eq ). The boundary atoms at
the surface between the vacuum gap and the bulk material are unconstrained and thus
free of normal stress in e3-direction, which is the (001) crystal face in crystallographic
notation.

In order to represent surface materials belonging to relaxed bulk materials, the spacing
between atoms within the surface layer (rectangular to the surface normal) has to equal
the spacing between atoms in the equilibrium configuration, seq = 0.5 dCu

eq . For this
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type i ∆F̄(i)

relaxation 1 0

axial
2 e1 ⊗ e1
3 e2 ⊗ e2
4 e3 ⊗ e3

shear
5 e1 ⊗ e2
6 e1 ⊗ e3
7 e2 ⊗ e3

biaxial
8 e1 ⊗ e1 + e2 ⊗ e2
9 e1 ⊗ e1 + e3 ⊗ e3
10 e2 ⊗ e2 + e3 ⊗ e3

axial & shear

11 e1 ⊗ e1 + e1 ⊗ e2
12 e1 ⊗ e1 + e1 ⊗ e3
13 e1 ⊗ e1 + e2 ⊗ e3
14 e2 ⊗ e2 + e1 ⊗ e2
15 e2 ⊗ e2 + e1 ⊗ e3
16 e2 ⊗ e2 + e2 ⊗ e3
17 e3 ⊗ e3 + e1 ⊗ e2
18 e3 ⊗ e3 + e1 ⊗ e3
19 e3 ⊗ e3 + e2 ⊗ e3

shear combinations
20 e1 ⊗ e2 + e1 ⊗ e3
21 e1 ⊗ e2 + e2 ⊗ e3
22 e1 ⊗ e3 + e2 ⊗ e3

Table 3.1: Types of deformation ∆F̄
(i) belonging to the macroscopic deformation gradient F̄

(i)(ǫ) =

I+ ǫ∆F̄
(i) (cf. Eq. (3.25)) to determine the bulk parameters.
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Figure 3.4: Layer spacing s of the fully relaxed surface RVE (under zero-load) in e1- and e2-direction
over the bulk thickness aB in e3-direction measured by the number of unit cells nuc (square symbols)
and the half of the lattice constant seq = 0.5 dCu

eq (dashed line).
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3.2 A novel Ritz-type homogenization approach

purpose, two boundary conditions of surface RVEs will be discussed in the following: (i)
relaxation with zero-load and (ii) prescribed width and depth (a1 and a2 according to
Fig. 3.5). Due to the gap, the height a3 has to be prescribed in both cases. Regardless
of whether the width and depth are fixed or not, the atoms are still allowed to relax in
direction of the surface normal.

As shown in Fig. 3.4, zero-load boundary conditions lead to a relaxation of the atom
layer spacing in e1- and e2-direction of the surface RVE. Only for thicker bulk materials
a convergence of the layer spacing in e1- and e2-direction, s, with half of the lattice
constant, 0.5 dCu

eq = seq, can be observed. Thus, surface RVEs with zero-load boundary
conditions do not represent surfaces of relaxed bulk materials and finally, the width and
depth of surface RVEs will be prescribed (a1 = a2 = 5 dCu

eq ).

To determine the surface material parameters X
S , again various load cases F̄(i)(ǫ)

are applied. A detailed overview can be found in Tab. 3.2. Changing the gap size
without surface-surface contact are zero-energy modes and thus neglected for parameter
identification. Although at least ten load cases are necessary, twelve combinations of
axial and shear deformations are used to achieve a symmetric weighting of the defor-
mation modes. Like for the bulk parameters, 20 different strain amplitudes between
−0.001 and 0.001 are studied, not taking into account the initial relaxed state, i.e., ǫ ∈ ǫ

with ǫ = {−0.001,−0.0009, . . . , 0.001} \{0}. In order to weight the e1- and e2-direc-
tion equally for a given strain amplitude, some load cases have to be distinguished with
respect to the positive and the negative strain amplitude.

type i ∆F̄(i)

relaxation 1 0

axial
2 e1 ⊗ e1
3 e2 ⊗ e2

shear 4 e1 ⊗ e2

biaxial

5 e1 ⊗ e1 + e2 ⊗ e2
6 e1 ⊗ e1 − e2 ⊗ e2
7 −e1 ⊗ e1 + e2 ⊗ e2
8 −e1 ⊗ e1 − e2 ⊗ e2

axial & shear

9 e1 ⊗ e1 + e1 ⊗ e2
10 e1 ⊗ e1 − e1 ⊗ e2
11 e2 ⊗ e2 + e1 ⊗ e2
12 e2 ⊗ e2 − e1 ⊗ e2

Table 3.2: Types of deformation ∆F̄
(i) belonging to the macroscopic deformation gradient F̄

(i)(ǫ) =

I+ ǫ∆F̄
(i) (cf. Eq. (3.25)) to determine the surface parameters.

In addition to the pure bulk setting, the influence of the bulk domain thickness is
further examined. The bulk domain thickness is a function of the number of unit cells
in e3-direction: aB = aB(nuc). Since the molecular dynamics code provides only the
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Figure 3.5: Periodic cells of the atomistic (a) and continuum model (b) including subdomains. Deviating
from the simulations the figure shows a surface RVE with a1 = a2 = 3nuc and aB = 6nuc.

atoms’ positions and no thicknesses (apart from the RVE itself) as required for the
continuum computations, the bulk material thickness aB has to be determined under
some assumptions for the first and last atom layers as explained in what follows. The
bulk thickness is computed by summing up the atom layer thicknesses sj being identical
with the layer spacing (see Fig. 3.6):

aB = 2

[
s1 +

nj∑

j=1

sj + snj

]
with

nj∑

j=1

sj = znj−1 − z1 (3.31)

sj =





z2 − z1, j = 1,

znj
− znj−1, j = nj ,

1

2
[zj+1 − zj−1] , else.

(3.32)

Therein, j denotes the numbering of the atom layers and nj is the total number of
atom layers within the upper and lower part of the bulk domain Ba. One unit cell
layer corresponds to two atom layers in each spatial direction for an fcc material such
as copper (cf. Fig. 3.2a). To be more precise, the total number of unit cell layers in e3-
direction is twice the number of atom layers: nuc = 2nj. In Fig. 3.5a the bulk domain
seems to be decomposed into two parts: an upper and a lower part. The apparent
decomposition is based only on the choice of the RVE with an internal vacuum gap.
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Figure 3.6: Two-dimensional cross section area in the global e1-e3-plane (cf. Fig. 3.5) of the atomistic
RVE Ωa

B+S
with parameters used for calculation of the layer thickness or layer spacing sj, respectively.

Coordinate ez has its origin at the symmetry plane. Deviating from the simulations this figure shows
a surface RVE with a1 = 3 dCu

eq and aB = 6nuc.

However, due to the periodic boundary conditions and the arrangement of the atoms
inside the RVE, only one domain with the length aB exists. Other arrangements of
the atoms within the RVE, e.g., a plate with a sandwich-like configuration locating
the bulk in the middle and a vacuum outside can also be chosen. During the energy
minimization with LAMMPS some atoms can penetrate the walls of the RVE and appear
on its opposite wall. Thereby, the number of atom layers in the upper and lower part of
the bulk can differ in e3-direction. However, in this work it is assumed that the number
of atom layers is identical in both parts. Thus, both bulk parts are mirror-symmetrical
at the middle of the vacuum gap and their thickness is aB/2. The numbering of the
atom layers is carried out for each bulk part separately and starts with j = 1 at the
vacuum gap. The thickness sj of the atom layer j depends on the positions zj−1 and
zj+1 of the atom layers j − 1 and j + 1. Only for the first (j = 1) and last atom layers
(j = nj) special cases have to be considered in Eq. (3.32). The atom layers’ positions
are defined in Fig. 3.6 by the coordinate ez in the middle of the vacuum gap between
both surfaces, where the distance c is defined as

c =
1

2
[a3 − 2 aB] . (3.33)
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3 Computational homogenization of material surfaces

The number of unit cells nuc is preferred to use as a measure of the bulk thickness
in e3-direction, because the length aB differs between the states of a pure bulk and a
relaxed surface and thus does not provide an appropriate reference length. This study
covers thicknesses of nuc ={2, 3, . . . , 10, 20, . . . , 50} unit cells. The zero-strain limit of
the surface parameters X S

i is finally obtained for a fully developed surface boundary
from the interpolation function

X̂ S
i (ǫ, aB = 20nuc) = X S

aB=20nuc,i + cS1,i ǫ+ cS2,i ǫ
2 + cS3,i ǫ

3. (3.34)

The polynomial degrees of the interpolation function have been chosen based on the
results found in literature and the present work [13, 53, 56]. In comparison to the
physically motivated limit at aB = 20nuc, the mathematically motivated limit at aB → 0
reads

X̂ S
i (ǫ, aB → 0) = X S

aB→0,i + cS1,i ǫ+ cS2,i ǫ
2 + cS3,i ǫ

3 with (3.35)

X̂ S
i (ǫ, aB) = X̂ S

i (ǫ, aB → 0) +mS
i aB. (3.36)

Therein, first a linear regression over the bulk thickness aB is performed in Eq. (3.36),
in which X̂ S

i (ǫ, aB → 0) provides the material parameters for each strain amplitude ǫ
at aB → 0. Eventually, the polynomial fit over the strain amplitude ǫ analogous to
Eq. (3.34) is executed in Eq. (3.35).

3.3 Results and Discussion

The example of copper is now investigated using the presented novel Ritz-type approach
(Sec. 3.2.1) in combination with a Hooke-type prototype material model (Sec. 3.1.2.2).
Sec. 3.3.1 focuses on the bulk material and Sec. 3.3.2 on the surface material.

3.3.1 Bulk material

All bulk parameters, the equilibrium energy density and the stiffness tensor, show an
excellent match with less than 0.5% difference compared to [32], see Tab. 3.3 for detailed
numbers. Moreover, accordance with an orthotropic material is observed, as expected
for the copper crystal. The difference between stiffness components due to further an-
isotropy is less than 1GPa or ≤ 0.27% of the largest stiffness component CB

1111. Also
the underlying atomistic simulations closely match the literature data, e.g., a lattice
constant for relaxed bulk copper of dCu

eq = bi/nuc = 361.49 pm is observed compared to
361.47 pm at 293K [59] and 360.25 pm for a low-temperature approximation [55]. With
respect to the numerical evaluation procedure, extremely small strains |ǫ| ≤ 0.0002 re-
sulted in small fluctuations, which are due to round-off errors and thus to be interpreted
as numerically unreliable. Hence, the corresponding data points from the evaluation
procedure are excluded but they are plotted for full illustration in Fig. 3.7.
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A pronounced linearity in strain for the majority of the elastic bulk parameters is
observed, see the middle graph in Fig. 3.7. The absolute correlation factor underlines
this very good fit of the linear regression being > 0.99 throughout all parameters (ex-
cept CB

1212, C
B
1313, C

B
2323, C

B
1213, C

B
1223 and CB

1323, which are already strain-independent
with a standard deviation smaller than 0.34% of CB

1111). This is due to an anharmonic
atomistic potential for copper [20] and the absence of a third-order strain component in
the continuum prototype model Eq. (3.7a). Being usually neglected in standard bulk
continuum models, this error has a significant impact on the surface parameters that
are sensitive to small changes in the overall energy as will be seen in the following.

Variable ψB
0 CB

1111 CB
2222 CB

3333 CB
1122 CB

1133 CB
2233 CB

1212 CB
1313 CB

2323
Ledbetter & Naimon [32] 169.1 122.2 75.42
present framework -48.0 169.6 169.6 169.6 122.3 122.3 122.3 75.9 75.9 75.9
slope of interpolation in ǫ 0.0 -340.5 -340.5 -340.5 -808.5 -808.5 -808.5 0.0 0.0 0.0

Table 3.3: Selected results of the bulk material parameters as determined by the proposed Ritz-type
homogenization approach and in comparison to literature data [32]. ψB

0 and CB

ijkl in [109 J/m3] =
[1GPa].
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Figure 3.7: Results of selected bulk material parameters (square symbols) and their linear fits (lines)

as a function of the strain amplitude ǫ: the initial energy density ψ̂B
0 as well as the material stiffness

tensor components ĈB
1111 and ĈB

1212. Deviations at extremely small strains, |ǫ| ≤ 0.0002, are considered
numerically unreliable and excluded from evaluation.
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eq = 180.743 pm, top) and the equilibrium energy per atom
(Ψa

α,eq = −3.540201 eV, bottom). Each square symbol represents an average over the respective atom-
istic planes (for aB = 20nuc).

3.3.2 Surface material

This section is structured as: (i) unless otherwise stated, the validation with liter-

ature data is performed by the physically motivated limit limǫ→0 X̂
S
(ǫ, aB = 20nuc)

and (ii), subsequently, this limit is compared to the mathematically motivated limit

limaB→0,ǫ→0 X̂
S
(ǫ, aB).

As already explained in Sec. 3.2.3, the initial system for the determination of surface
parameters consists of a bulk part with the previously determined bulk parameters X B

and a vacuum gap, connected via periodic boundary conditions, cf. Fig. 3.5. The creation
of a new surface induces further relaxation of the near surface atoms. This relaxation
reaches a depth of six atom layers, where layer spacing and atomistic energy Ψa

α deviate
between 0.01% and 14% from the inner bulk situation (cf. Fig. 3.8 for visualization and
Tab. 3.4).

This validates the choice of 20 unit cell layers being sufficient for fully developed

boundary regions as used in the limit limǫ→0 X̂
S
(ǫ, aB = 20nuc) in Eq. (3.29a). This limit
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3 Computational homogenization of material surfaces

aB = 20nuc aB = 1000nuc

layer number j zj [nm] Ψa
α,j [eV] sj [pm] zj [nm] Ψa

α,j [eV] sj [pm]

1 3.70612 -3.048932 180.390 3.70609 -3.048932 180.390
2 3.88651 -3.490214 180.209 3.88648 -3.490214 180.209
3 4.06672 -3.540018 180.733 4.06669 -3.540018 180.733
4 4.24746 -3.540630 180.748 4.24742 -3.540630 180.748
5 4.42820 -3.540213 180.743 4.42817 -3.540213 180.743
6 4.60895 -3.540198 180.743 4.60891 -3.540198 180.743
7 4.78969 -3.540201 180.743 4.78966 -3.540201 180.743
8 4.97043 -3.540201 180.743 4.97040 -3.540201 180.743
9 5.15118 -3.540201 180.743 5.15114 -3.540201 180.743
10 5.33192 -3.540201 180.743 5.33189 -3.540201 180.743
...
nj − 1 6.77786 -3.540201 180.743 184.08675 -3.540201 180.743
nj 6.95861 -3.540201 184.26749 -3.540201

Table 3.4: Position zj (distance from symmetry plane in vacuum gap), total energy per atom Ψa
α,j and

layer spacing sj for selected atom layers j of one bulk domain Ba containing 20 and 1000 unit cell layers
in e3-direction (aB = 20nuc and aB = 1000nuc).

definition for surface parameters proves to be well defined and is furthermore checked
for consistency by comparison with a zero-thickness extrapolation see Fig. 3.9 for a
quantitative comparison. It is observed that such a zero-thickness limit provides similar
results, but of course only if extrapolated from states with fully developed boundary
regions.

The equilibrium surface energy and the initial surface stresses eventually match the
literature data [13, 56] very well, where available (see Tab. 3.5). Analogous to the bulk
material, the material surface shows a two-dimensional orthotropic behavior as expected
from its regular lattice structure. Components on the principal diagonal of CS and σS

0

are very close to each other. They deviate only by 0.015% between CS
1111 and CS

2222 or
are identical with σS

0,11 = σS
0,22 within the range of numerical precision.

Some components of the stiffness tensor capture the same order of magnitude but
vary in a greater range, though. This discrepancy between the presented example and
[56] as well as [13] stays in contrast to the previous matching and in contrast to the
supposed similar conditions, i.e., the similar atomistic potential, boundary conditions
and relaxation conditions. To minimize methodological differences, the limit definition
with a zero-thickness extrapolation is checked successfully, see Fig. 3.9 and cf. [56]. The
influence of possible typos in [56] (missing minus in his Eq. (9) and a symmetric version
of the second term on the right hand side in his Eq. (17)) is also tested. In order to
obtain symmetrical stiffness parameters, the following quadratic energy, motivated by
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the quadratic approximation of det F̄ and γ, is used:

ψquad = γ +
∂γ

∂εij
εij +

1

2
εij

∂2γ

∂εij ∂εkl
εkl + γ δij εij +

∂γ

∂εij
εij δkl εkl

+
1

2
γ [δij δkl − 2 δik δjl] εij εkl, (3.37)

where γ is Shenoy’s notation of ψS
0 and both notations are identical. The derivatives

with respect to the strain are determined from Eqs. (13) and (17) in [56]. The sec-
ond derivative of ψquad with respect to ε corresponds to the surface stiffness material
parameters:

∂2ψquad

∂ε2
= C

S . (3.38)

Furthermore, a minus seems to be missing in Eq. (9) in [56]. However, this is not
considered.

Nevertheless, neither check could explain the discrepancies of the surface stiffness
values. It is also important to note that these discrepancies already exist between the two
data bases found in literature [56] and [13]. Unfortunately, [13] did not discuss the results
from [56]. A few potential methodological differences remain that cannot be assessed
quantitatively, except checking the obtained results for convergence and sensitivity. This
includes, for example, the termination conditions of the atomistic simulations (note
the sensitivity with respect to the choice of the atomistic model as shown in [51]) or
the strain discretization on the continuum scale (the calculation of energy derivatives
cannot be compared one-to-one to the present numerical minimization scheme containing
multiple load types at once). It can be stated from this study, though, that the largest
differences appear for surface stiffness parameters that are very sensitive to strain. This
is summarized in Tabs. 3.5 and 3.6 and discussed in the following with emphasis on
propagating bulk errors.

Noting the strain-dependence observed for the continuum bulk, the strain-dependence
of the continuum surface is also explicitly examined. Interpolation functions of third
order in strain, reading X̂ S

i (ǫ, aB = 20nuc) = X S
i + cS1,i ǫ+ cS2,i ǫ

2+ cS3,i ǫ
3 are used. Again,

the strain values have been chosen as a compromise between the linear-elastic limit
and a strain energy that is large enough to exceed the limit of numerical inaccuracy.
This is particularly important for the surface stiffness tensor, because the quadratic
energy contribution is relatively small in the present example of copper. For strains up
to ǫ ≤ 0.01, linear and quadratic surface strains result in 0.808% and 0.008% energy
contribution, respectively, see the comparisons in Tab. 3.7 and Fig. 3.10 for simple
tension. It has to be emphasized that the present framework considers only strain
amplitudes ǫ within the dimension of 0.0001 and 0.001. The contribution of the quadratic
term – containing the stiffness components – with 0.000003% to the total energy density
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3 Computational homogenization of material surfaces

present framework
Variable Shenoy [56] Dingreville & Qu [13] X

S
aB=20nuc

X
S
aB→0

ψS
0 1326.6 1288 1275.31 1275.31

σS
0,11 1039.8 1396 1039.26 1039.26

σS
0,22 1039.8 1039.26 1039.26

σS
0,12 0.0 0.00 0.00

CS
1111 -8432.3 -712 -2006.31 -2004.38

CS
2222 -8432.3 -2006.00 -2005.29

CS
1212 -6315.8 -992 104.45 107.24

CS
1122 5349.7 5914 5380.95 5381.56

CS
1112 2.84 0.03

CS
2212 0.77 0.04

Table 3.5: Initial surface energy ψS
0 , initial surface stress σS

0,ij and surface stiffness CS

ijkl as deter-
mined by the present framework in comparison with literature. The present framework represents

the results from the physically and mathematically motivated limits (limǫ→0 X̂
S

(ǫ, aB = 20nuc) and

limaB→0,ǫ→0 X̂
S

(ǫ, aB)). All values are given in [10−3 J/m2]. Notes on data transformation from [56]:
Shenoy used another stress definition with respect to the deformed configuration that was calculated
back to the present form. The present stiffness is the second strain derivative of γ dA/dA0 as used in
Shenoy’s notation. Among Shenoy’s two methods, the so-called relaxed values as they correspond to
the presented boundary conditions are compared.

ψc
S is nearly negligibly small (cf. Tab. 3.7). Even though the influence of the quadratic

term rises at a strain amplitude beyond 0.01, the elastic region will be left and, due to
plasticity, non-linear effects in the bulk and surface material will occur.

Like for the bulk material (cf. Fig. 3.7), higher order effects in the form of a linear
strain dependency of the surface stiffness tensor and, in accordance with the energy
formulation, a quadratic dependence of the initial stresses as well as a cubic dependence
of the equilibrium energy density, Fig. 3.11 (influence of the constants is given in Tab. 3.6)
are observed.
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lim
ǫ→0

X̂
S
(ǫ, aB = 20nuc) lim

aB→0
ǫ→0

X̂
S
(ǫ, aB)

Variable cS1,i cS2,i cS3,i cS1,i cS2,i cS3,i
ψS
0 −9.23E−6 −4.49E−1 8.11E+5 −7.38E−5 −1.32E−1 −7.38E+3

σS
0,11 −9.12E−3 −1.41E+6 −3.29E+4 −7.19E−2 8.52E+3 1.22E+5

σS
0,22 −2.28E−2 −1.41E+6 −1.00E+5 −3.96E−2 8.52E+3 1.05E+4

σS
0,12 −2.04E−2 −6.54E+5 −1.34E+6 −1.57E−1 1.29E+4 2.72E+5

CS
1111 −4.80E+5 5.31E+5 3.04E+8 7.88E+3 −1.56E+5 −2.62E+7

CS
2222 −7.37E+5 4.00E+6 6.95E+8 3.74E+3 1.07E+6 −4.52E+8

CS
1212 −3.12E+5 2.19E+6 −1.23E+9 −1.04E+4 −7.81E+4 −6.79E+8

CS
1122 −1.48E+2 5.52E+6 1.86E+8 −9.89E+1 8.96E+4 1.60E+8

CS
1112 6.55E+5 −6.31E+5 −1.46E+9 −1.30E+4 −1.21E+5 7.90E+7

CS
2212 6.55E+5 −4.93E+5 −1.61E+9 −1.30E+4 −7.67E+4 7.56E+7

Table 3.6: Constants of the polynomial fit belonging to the physically and mathematically motivated

zero-strain limits (limǫ→0 X̂
S

(ǫ, aB = 20nuc) and limaB→0,ǫ→0 X̂
S

(ǫ, aB), cf. Eqs. (3.34) and (3.35)).

ε11

∣∣∣ψc,S
const/ψ

c
S

∣∣∣
∣∣∣ψc,S

lin /ψ
c
S

∣∣∣
∣∣∣ψc,S

quad/ψ
c
S

∣∣∣
0.0001 0.99992 0.00008 3E−8
0.001 0.99919 0.00081 3E−6
0.01 0.99199 0.00808 0.00008
0.1 0.93142 0.07590 0.00733

Table 3.7: Ratio of the constant, linear and quadratic contributions ψc,S
const, ψ

c,S
lin and ψc,S

quad of the surface
Helmholtz free energy density of the prototype constitutive material model computed with parameters
of the novel Ritz-type homogenization approach (X S

aB=20nuc

) under simple tension ε = ε11 e1 ⊗ e1 for
ε11 ∈{0.0001, 0.001, 0.01, 0.1}.
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0 , initial surface stress σS
0,11 and surface stiffness

CS
1111: a third-order zero-strain interpolation (left) and a linear zero-thickness extrapolation (right,

extrapolated from states with fully developed surface regions for comparison). The right diagrams are
cut at aB = 20nuc in order to focus on the surface effects. The curves are strongly linear between
aB = 10nuc and aB = 50nuc (cf. Fig. 3.12). Dashed lines denote either a polynomial fit (left) or linear
interpolation (right) and continuous lines connect results belonging to the same strain amplitude. In
the left diagrams bulk thicknesses for aB ≥ 5nuc overlap (top) or the thickness rises between aB = 3nuc

and aB = 50nuc (middle and bottom). In the right diagrams all strain amplitudes overlap (top) or
increase (middle and bottom). Positive and negative strains overlap in the right middle.
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A very important factor for the surface model is the error of the bulk approximation
that propagates to the surface approximation, ψc

S = ψc − ψc
B + bulk error. Indeed it

is obvious that the strain dependence of the surface parameters decreases significantly
if the amount of the bulk is reduced. This dependence of the surface material pa-
rameters on the bulk thickness is strongly linear (absolute correlation factors ≥ 0.999
except for ĈS

1122(aB) that can be approximated remarkably well by a constant value of
5381.6 10−3 J/m2 ± 0.0026% standard deviation), see Fig. 3.12. The bulk model thus
strongly dictates the data quality used for the surface model in the present example.
This propagating error deserves special emphasis in the context of continuum modeling.
A fundamental goal is the continuum description of the entire system, including bulk
phases as well as their interfaces, surfaces, contact lines etc. The pioneering reference
literature [13, 56] provided pure surface parameters, ideally eliminating the bulk contri-
bution already on the molecular scale. As a next step towards continuum applications
and because a surface does not exist without a bulk, an approximating bulk model
together with the surface model is intentionally incorporated and handled. One applica-
tion, for instance, is later verification with experiments. However, only few experiments
will allow to reproduce the pure bulk deformation state independently and thus elim-
inate its contribution from the overall energy, e.g., simple uniaxial strain compared to
shear of notched plates. Also, the exploration of new materials depends on the variation
of both bulk and surface models.

The propagating bulk error can be reduced by three options: a reduced thickness,
an improved bulk model or a reduced strain amplitude. Based on the observations, the
suitability of the bulk model is recommended to check and to evaluate the propagating
error by correlating the strain-dependent deviation with the thickness of the bulk phase.
Both tasks can be achieved by the presented framework that allows to implement more
general bulk and surface models.

In addition to the validation of the present framework with literature data restricted
to results achieved from the physically motivated limit, the applications of the physically

and mathematically motivated limits, limǫ→0 X̂
S
(ǫ, nuc = 20) and limnuc→0,ǫ→0 X̂

S
(ǫ, nuc),

are compared. The mathematically motivated limit is first performed by a linear regres-
sion over the bulk thickness aB, and afterwards, a polynomial fit over the strain amplitude
ǫ is executed. Finally, material parameters and constants of the polynomial fits achieved
by the application of both limits are shown in Tabs. 3.5 and 3.6. It becomes obvious
that both limits lead to identical initial energy densities ψS

0 and to initial stress tensor
components of σS

0 . Only the stiffness components differ in a barely considerable range.
The visualization of the polynomial fits is illustrated in Fig. 3.11. Although the curves

of the mathematically motivated limit (X̂
S
(ǫ, nuc → 0)) seem to be constant, they are

still polynomials of third order. It has to be emphasized that these curves correspond
to intersections in Figs. 3.9 (right diagrams) and 3.12 with strain amplitudes at aB → 0
and aB = 20nuc.
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1111(ǫ).

49



3 Computational homogenization of material surfaces

1275.306

1275.308

1275.310

1275.312

1275.314

ψ̂
S 0
(ǫ
,a

B
)[ 1

0
−
3
J
/
m

2
]

1035

1036

1037

1038

1039

1040

σ̂
S 0
,1
1
(ǫ
,a

B
)
[1
0
−
3
J
/
m

2
]

-4000

-3000

-2000

-1000

0

0 10 20 30 40 50

Ĉ
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3.4 Conclusion

A novel Ritz-type homogenization model has been presented that determines mechan-
ical bulk and surface material parameters from molecular simulations. The material
parameters are determined by an energetically consistent comparison of microscopic
and macroscopic energies. Existing literature provides surface parameters in the form
of energy values and strain derivatives up to second order, allowing to compare the
presented framework for a Hooke-like energy approach. The example of copper shows
an excellent match with literature data for both bulk and surface properties. Devia-
tions only appear for the surface stiffness parameters, as they already do among existing
literature [13, 56]. The presented framework aims at supporting future unification by al-
lowing a broader class of material models that exceed the pure energy derivatives around
the relaxed state. This is particularly important for the minimization of a bulk error
that affects the data quality used for subsequent surface modeling. For instance, the
anharmonic potential inevitably causes a higher-order strain influence that cannot be
captured by standard bulk models. The detailed energetic consideration was thus used
to evaluate the propagating bulk error in the form of strain dependence compared to a
zero-thickness extrapolation under consideration of fully developed surface boundaries.

Future investigations will focus on the application of the presented framework to
other material classes, e.g., non-linear, dissipative or plastic surfaces. The Ritz-type
homogenization approach guarantees a thermodynamically consistent implementation
of modern material formulations, e.g., in the form of invariant-based potentials. This
extension shall enrich continuum surface modeling the same way atomistic potentials
already provide for molecular descriptions.
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4 Atomistic-to-continuum
homogenization approach suitable
for thermoelastic material

The thermoelastic properties of continua are defined by their underlying atomistic struc-
ture. A general homogenization framework for the determination of such properties
based on molecular dynamics is presented. The method is variationally consistent and
is based on the principle of energy equivalence. More explicitly speaking, the Ritz-type
homogenization approach introduced in Ch. 3 is extended to thermomechanics. The
atomistic and continuum models consist of periodic RVEs as illustrated in Fig. 4.1. The
system is assumed to be adiabatic and has no internal heat source.

This chapter is structured as follows. Sec. 4.1 represents the determination of the
atomistic and continuum energies in connection with the underlying constitutive proto-
type material model. Subsequently, the extended Ritz-type homogenization approach
for thermoelastic materials is introduced in Sec. 4.2. Afterwards, a numerical example
using copper as material is shown in Sec. 4.3. Sec. 4.4 closes the chapter with a short
conclusion.

4.1 Constitutive frameworks

4.1.1 Atomistic scale

The atomistic body Ωa of interest is chosen to be an RVE with periodic boundary
conditions, containing natoms atoms at positions x1, . . . ,xnatoms (cf. Fig. 4.1). The total
atomistic energy within this RVE Ωa is determined by the use of Nosé-Hoover-style
time integration of non-Hamiltonian equations of motion. They are designed in order
to describe positions and velocities of particles within a closed system. Thermostatting
and barostatting allow a temperature and pressure regulation of the system. In this
work, the equations of motion introduced by Shinoda et al. [57] in combination with the
hydrostatic equations of Martyna et al. [36] and the strain energy derived by Parrinello
and Rahman [46] are applied by the use of the molecular dynamics code LAMMPS
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atomistic
model

continuum
model

atomistic
energy
Ψa

continuum
energy
Ψc

vary material parameters until
energy difference is minimized

for all load cases
[Ψa −Ψc]2 → 0

material parameters
X

Figure 4.1: Sketch of the representative atomistic volume element Ωa (left) and the continuum repre-
sentative volume element Ωc (right) as used to obtain the material parameters X by the Ritz method,
i.e., minimizing the difference between the atomistic energy Ψa and the continuum energy Ψc.

(cf. [11]). According to [57], these equations have the form:

ẋα =
pα

mα
+

pg · xα

Wg
, (4.1)

ṗα = fα − pg · pα

Wg

− 1

Nf

tr
(
pg

)

Wg

pα − pξ
Q

pα, (4.2)

ḣ =
pg · h
Wg

, (4.3)

ṗg = V [Pint − Pext I]− h ·Σ · hT +

[
1

Nf

natoms∑

α=1

p2
1

mα

]
I− pξ1

Q1
pg, (4.4)

ξ̇k =
pξk
Qk

for k = 1, . . . ,M, (4.5)

ṗξ1 =
natoms∑

α=1

p2
α

mα

+
1

Wg

tr
(
pT
g · pg

)
−
[
Nf + d2

]
kBΘ− pξ1

pξ2
Q2

, (4.6)

ṗξk =

[
p2ξk−1

Qk−1
− kB Θ

]
− pξk

pξk+1

Qk+1
for k = 2, . . . ,M − 1 and (4.7)

ṗξM =
pξM−1

QM−1
− kBΘ, (4.8)
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with

Σ = h−1
0 ·[t− Pext I] · h−T

0 , (4.9)

where xα denotes the position, pα is the momentum and mα is the mass of particle α.
pg is the modularly invariant form of the cell momenta of the barostat (cf. [39]). It is
a second order tensor that modulates the particle velocities to adapt to the prescribed
pressure boundary condition. Wg is an associated material parameter. The cell mo-
menta pg can be understood as a scaling matrix in order to the represent pressure and
Wg as its correction value. ξk describes the thermostat variable, pξk is the conjugated
momentum and Qk is the material parameter of the kth thermostat of the Nosé-Hoover
chain (cf. [35]). Similar to the barostat, the conjugated momentum pξk acts as the tem-
perature controlling of the cell and Qk is the correction value. In general, the correction
values, Wg and Qk, serve to fulfill the balance laws after their violation due to pressure or
temperature controlling and they are used to tune the frequency at which these variables
fluctuate (cf. [37]). The constant Nf(= 3natoms) denotes the number of system degrees
of freedom, d is the dimension of the system and kB is the Boltzmann constant. Volume
V is defined by the determinate of the cell matrix’s edge vectors a1, a2, a3: V = deth,
while h =(a1, a2, a3) can be expressed as a column matrix and resembles the deforma-
tion gradient F. Variable Θ is the external temperature, t denotes the stress applied
to the system, Pext is the external hydrostatic pressure and Pint is the internal pressure
defined as

Pint =
1

V

[
natoms∑

α=1

pα ⊗ pα

mα
+

natoms∑

α=1

fα ⊗ xα − ∂φ(x,h)

∂h
· hT

]
, (4.10)

where φ denotes the applied potential. For that purpose, the Mishin potential [41] for
copper is applied. fα denotes the force of particle α and is defined as fα = ∂φ(x, V ) /∂xα

(cf. [36]). Finally, the above equations of motion, Eqs. (4.1) – (4.8), lead to the conserved
quantity (a Hamiltonian that is extended by the numerical implementations of prescribed
pressure and temperature)

H =
natoms∑

α=1

p2
α

2mα
︸ ︷︷ ︸

I

+φ(x,h)︸ ︷︷ ︸
II

+Pext deth︸ ︷︷ ︸
III

+
1

2
tr(Σ ·G)

︸ ︷︷ ︸
IV

+
1

2Wg
tr
(
pT
g · pg

)

︸ ︷︷ ︸
V

+
[
Nf + d2

]
kB Θ ξ1︸ ︷︷ ︸

VI

+
M∑

k=2

kBΘ ξk

︸ ︷︷ ︸
VII

+
M∑

k=1

p2ξk
2Qk

︸ ︷︷ ︸
VIII

, (4.11)

where G = hT · h denotes the metric tensor. The conserved quantity is split into eight
terms marked by Roman numerals. Term I describes the kinetic energy of all particles.
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4 Atomistic-to-continuum homogenization approach suitable for thermoelastic material

Term II employs only the atomic potential. Subsequently, term III contains the external
pressure. After that, term IV describes the stress work. Term V is the contribution from
the pressure boundary conditions to deform the cell uniformly. Terms VI, VII and VIII
denote the temperature influence from the Nosé-Hoover chain and its correction value.

The time integration schemes closely follow the time-reversible measure-preserving
Verlet and rRESPA integrators derived by Tuckerman et al. [67]. Therein, the constraints
of the time integration scheme are given. They are divided into different ensembles: the
canonical (NV T ), isothermal-isobaric (NtT ) and isenthalpic (Nth) ensembles. The
abbreviation of each ensemble (NV T , NtT and Nth) describes the fixed quantities (N ,
V , T , t, or h). N (= natoms) denotes the number of atoms, V is the volume, T is the
temperature Θ, t is the stress tensor applied to the system and h stands for the enthalpy.
For instance, the canonical ensemble fixes the number of atoms N , the volume V and the
temperature Θ in the control volume defined by the RVE Ωa. Controlling the volume
is synonymous with the macroscopic deformation of the RVE. Other quantities, e.g.,
the stress tensor t, are free and will be determined at each time step. The NV T and
NtT ensembles allow a temperature regulation, the NtT and Nth ensembles allow a
regulation of the stress tensor being synonymous with the continuum mechanics first
Piola-Kirchhoff stress tensor P.

Analogous to Sec. 3.1.1, the total potential equilibrium energy depending on the
deformation F̄ and the temperature Θ of the atomistic body Ωa is obtained as

Ψa
eq

(
F̄,Θ

)
= H

(
x1, . . . ,xnatoms , F̄,Θ

)
. (4.12)

For a detailed study, the interested reader is referred to Tadmor & Miller [64].

4.1.2 Continuum scale

4.1.2.1 Fundamentals

The internal energy density of a material point in the continuum description is denoted
as U c(F,Θ). It depends on the deformation gradient F and the temperature field Θ.
According to Sec. 2.3.3, the internal energy is defined by the Legendre transformation
as a function of the Helmholtz free energy density ψc and the dual variables Θ and N
as

U c(F, N(Θ)) = ψc(F,Θ) + ΘN. (4.13)

Using its derivative with respect to the temperature

∂U c

∂Θ
=

∂ψc

∂Θ
+N = 0 ⇔ N(Θ) = −∂ψc

∂Θ
, (4.14)
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one obtains

U c(F,Θ) = ψc(F,Θ)−Θ
∂ψc

∂Θ
. (4.15)

A prototype constitutive material model for ψc is described in the following section.

The total equilibrium energy is achieved by integrating the internal energy density U c

over the undeformed body Ωc for a relaxed state (equilibrium). Finally, it is formulated
as a minimum energy considering the deformation fields x −X being continuously dif-
ferentiable for the prescribed deformation field F̄ and the prescribed temperature field
Θ̄ of the periodic cell:

Ψc
(
F̄, Θ̄

)
= min

cont. diff. x

compatible with F̄,Θ̄

{∫

Ω

U c(F(X) ,Θ(X)) dV

}
. (4.16)

4.1.2.2 Prototype material model

In what follows, a thermoelastic Helmholtz free energy ψ(F,Θ) depending on the defor-
mation gradient F and the temperature Θ is chosen, such as

ψ(F,Θ) = W
(
C̄
)
+ U(J) +M(J,Θ) + T (Θ) + ψ0 (4.17)

with

C̄ = J−2/3FT · F, (4.18)

where W
(
C̄
)
denotes the purely mechanical deviatoric material response, U(J) the

purely mechanical volumetric material response, M(J,Θ) the thermomechanically cou-
pled potential, T (Θ) the purely thermal potential and ψ0 the ground state energy density
at 0K. The different energy contributions read

W
(
C̄
)

=
1

2
µ
[
tr C̄− 3

]
, (4.19)

U(J) =
1

2
κ

[
1

2

[
J2 − 1

]
− log J

]
, (4.20)

M(J,Θ) = [Θ−Θ0]

[
−3α0

∂U

∂J

]
and (4.21)

T (Θ) = c0

[
[Θ−Θ0]−Θ log

Θ

Θ0

]
. (4.22)

Therein, κ and µ represent the bulk and shear modulus, α0 the thermal expansion coeffi-
cient, c0 the thermal heat capacity and Θ0 the reference temperature. These parameters
are also the material parameters to be optimized by the Ritz-type homogenization ap-
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proach and they are summarized in the set of material parameters X :

X ={ψ0, κ, µ, α0, c0} ={X1, . . . ,X5} . (4.23)

In order to obtain the internal energy density U c, the derivative of the Helmholtz free
energy with respect to the temperature is required:

∂ψc

∂Θ
= −3

2
α0 κ

[
J − 1

J

]
− c0 ln

(
Θ

Θ0

)
. (4.24)

Finally, the internal energy density has the form

U c(F,Θ) =
µ

2

[[
J−2/3 FT · F

]
: I− 3

]
+

κ

2

[
1

2

[
J2 − 1

J

]
− ln J

]

+
3

2
Θ0 α0 κ

[
J − 1

J

]
+ c0 [Θ−Θ0] + ψ0. (4.25)

4.1.2.3 Numerical implementation

According to Sec. 2.5, the implementation of the constitutive prototype material model
into the finite element framework requires the global residual vector R and the global
tangent matrix K. Due to the assumption of an adiabatic system and the absence
of heat sources, i.e., H = 0 and R = 0, the local residual vector reduces to Ra

e =
[fϕ,int fΘ,int]

T. Thus, the implementation is based on Eqs. (2.111), (2.114), (2.125) –
(2.128) only. Therefore, the first Piola-Kirchhoff stress tensor P = ∂ψc/∂F as well as its
derivatives with respect to the deformation gradient and the temperature, i.e. dP/dF
and dP/dΘ = ∂P/∂Θ, are required.

The first derivative of the Helmholtz free energy with respect to the deformation
P = ∂ψc/∂F reads

P =

[
−1

3
µ J− 2

3 [F : F] +
1

2
κ
[
J2 − 1

]
+[Θ−Θ0]

[
−3

2
α0 κ

[
J +

1

J

]]]
F−T

+ µ J− 2
3 F. (4.26)

Finally, the derivatives of P with respect to the deformation gradient and the tempera-
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ture are expressed as

∂P

∂F
= −2

3
µ J−2/3F−T ⊗ F+ µ J−2/3 I⊗ I− 2

3
µ J−2/3F⊗ F−1

−
[
−1

3
µ J−2/3F : F+

1

2
κ
[
J2 − 1

]
+[Θ−Θ0]

[
−3

2
α0 κ

[
J +

1

J

]]]
F−T⊗F−1

+

[
2

9
µ J1/3F : F+ κ J2 +[Θ−Θ0]

[
−3

2
α0 κ

[
J − 1

J

]]]
F−T ⊗ F−1, (4.27)

∂P

∂Θ
= −3

2
α0 κ

[
J +

1

J

]
F−T. (4.28)

4.2 A Ritz-type homogenization approach: material

parameter transition from the atomistic model to

the continuum model

4.2.1 Ritz’s method applied to thermoelastic materials

The novel Ritz-type approach introduced in Sec. 3.2 is applied to a thermoelastic material
in order to identify the set of material parameters X of the constitutive prototype
material model. Again, the Ritz-type homogenization approach minimizes the energy
residuum under a certain set of load cases applied to the periodic RVE. Each load case
(i) is described by means of a macroscopic deformation gradient F̄(i) and a temperature
field Θ̄(i) for 1 ≤ i ≤ nlc, where nlc is the total number of applied load cases. The energy
residuum R is the sum of the energy difference between the atomistic and continuum
model over all load cases and is defined as

R :=

nlc∑

i=1

[Ψc −Ψa]2
∣∣
F̄

(i),Θ̄(i) → min . (4.29)

Therein, the energy of the continuum model depends on the set of material parameters
summarized in X (see Eq. (4.23)), i.e. Ψc = Ψc(X ). Thus, the optimization problem
considered for the determination of material parameters reads

X = argmin
X

R(X ) . (4.30)

4.2.2 Simulation details

A cubic homogeneous RVE Ωa with periodic boundaries is studied to determine the
material parameters. It covers 10nuc (unit cells, see Sec. 3.1.1) in each spatial direction
and consists of a single domain with 4.000 atoms, see Fig. 4.2. Relaxation at the desired
temperature Θ0 is implemented by the use of the isothermal-isobaric (NtT ) ensemble
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(a) Illustration of the relaxed initial RVE
Ωa of the atomistic model.
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(b) Illustration of the relaxed initial RVE
Ωc of the continuum model.

Figure 4.2: Periodic cells of the atomistic (a) and continuum model (b) including a single bulk domain.
Deviating from the simulations the figure shows an RVE with a1 = a2 = a3 = 3nuc.

under zero-load. Subsequently, the relaxed RVE Ωa with edge lengths ai constitutes
the initial configuration for the following load cases of the atomistic and the continuum
model. Concerning the molecular dynamics model, load cases based on relaxation are
performed by the canonical (NV T ) ensemble.

Although at least five load cases are required to determine the set of five material
parameters X, six load cases are used. The macroscopic deformation gradient F̄(i) is
expressed as

F̄(i) = I+ ǫ∆F̄(i), (4.31)

where ǫ denotes the strain amplitude and ∆F̄(i) is the deformation type characterized
by simple volumetric expansion or shear. The macroscopic temperature field Θ̄(i) has
the form

Θ̄(i) = Θ0 +∆Θ̄(i). (4.32)

Therein, Θ0 denotes the reference temperature (see Sec. 4.1.2.2) and ∆Θ̄(i) is the thermal
heating of the load case (i). A detailed overview over the types of load cases can be
found in Tab. 4.1. For this study, two strain amplitudes and three initial temperatures
are investigated: ǫ ={0.002, 0.01} and Θ0 ={1, 273, 293} (in K) with a thermal heating
∆Θ̄(i) of 10K.

4.3 Results and Discussion

Tab. 4.2 shows the thermoelastic material parameters determined by the Ritz-type ho-
mogenization approach in comparison to literature data for copper. Comparative values
for the initial energy density have not been found and are thus only compared to the
results presented in Sec. 3.3.2 for atomistic simulations based on molecular statics and
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4.4 Conclusion

i ∆F̄(i) ∆Θ̄(i) ensemble
1 0 0 NtT
2 e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 0 NV T
3 2 [e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3] 0 NV T
4 e1 ⊗ e2 + e1 ⊗ e3 + e2 ⊗ e3 0 NV T
5 0 10 NV T
6 e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 10 NV T

Table 4.1: Types of deformation ∆F̄
(i), thermal heating ∆Θ̄(i) (in [K]) and the chosen ensemble belong-

ing to the macroscopic deformation gradient F̄(i)(ǫ) = I+ ǫ∆F̄
(i) (cf. Eq. (4.31)) and the macroscopic

temperature field Θ̄(i) = Θ0 + ∆Θ̄(i) (cf. Eq. (4.32)) to determine the parameters of the continuum
model at the macroscopic scale.

a different pair-to-pair potential. However, the deviation is very small (2.1%) for a ref-
erence temperature of Θ0 = 1K. Bulk and shear modulus deviate to a larger extent
from the literature data, i.e., between 0.8% and 12.4% for the bulk modulus and 8.5%
to 94.0% for the shear modulus. Without considering the temperature at Θ0 = 1K, the
thermal heat expansion coefficient deviates up to 12.9%. Eventually, the thermal heat
capacity matches the literature data very closely with a maximum deviation of 2.0%.

ǫ Θ0 κ µ α0 c0 ψ0

Ref. [47] 140 48 16.5 3.44
Ref. [17] 137.8 17.0 3.45

0.002 1 136.7 76.4 0.1 3.51 -47.0
0.002 273 136.7 93.1 14.8 3.45 -46.4
0.002 293 122.6 52.1 18.6 3.44 -46.4
0.01 1 129.7 76.8 0.9 3.51 -47.0
0.01 273 126.6 74.9 17.0 3.46 -46.4
0.01 293 125.7 73.9 18.6 3.44 -46.4

Table 4.2: Results of the material parameters determined by the Ritz-type homogenization approach for
different strain amplitudes ǫ and temperatures Θ0 in comparison to literature data for copper. In [47]
and [17] only the specific thermal heat capacity c̄ = 384.4J/(Kkg) or c̄ = 385 J/(Kkg) and the density
ρ = 8.96kg/m3 are given. Thus, the thermal heat capacity is calculated as c0 = c̄ ρ = 3.4442MPa/K
or c0 = c̄ ρ = 3.4496MPa/K, respectively. Θ0 in [K], κ and µ in [GPa], α0 in [10−6K], c0 in [MPa/K]
and ψ0 in [109 J/m3] = [1GPa].

4.4 Conclusion

An extended Ritz-type homogenization approach for thermoelastic applications has been
presented. For that purpose, the atomistic simulations are extended by using the canon-
ical and the isothermal-isobaric ensemble. Within the continuum model, the standard
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4 Atomistic-to-continuum homogenization approach suitable for thermoelastic material

Hooke-type material model has been replaced by a thermoelastic prototype constitutive
material model. Some of the identified thermoelastic material parameters are very close
to the literature data, other parameters deviated in a large scale and they seem to be
inconsistently.

62



5 Designing material models for
surfaces based on bulk constitutive
models

Motivated by a strong coupling between bulk and surface physics, two approaches to
derive surface models from a three-dimensional deformation state are presented: pro-
jection and relaxation. In contrast to conventional ad-hoc models, properties like the
surface stress are consistently derived from a thermodynamic potential. While the pro-
jection approach captures classic in-plane stresses, the relaxation approach can further
relax normal-normal and normal-shear coupling. A projection onto the surface is in-
deed always a relaxation if anisotropy is superficial, but not vice versa. The distinct
behavior of projection and relaxation is theoretically discussed and highlighted by spe-
cific examples. Numerical implementation in a finite-element framework is subsequently
elaborated. Its performance is illustrated by isotropic and anisotropic surface energies of
a free cube and a beam under tension. Finally, both projection and relaxation constitute
valuable alternatives to conventional surface models in terms of physics, geometry and
computation.

In view of the strong interaction between bulk and surface, particularly in the near-
surface regions, the aim of this work is to derive a surface model that utilizes the under-
lying bulk deformation state. First, the basic kinematics, balance laws and the conven-
tional modeling approach with invariants will be introduced within Sec. 5.1. Afterwards,
two approaches to derive a thermodynamically consistent model from the bulk defor-
mation state will be presented in Sec. 5.2: projection and relaxation. The numerical
implementation is presented in Sec. 5.3. The key discussion in Sec. 5.4 compares projec-
tion and relaxation. It considers the theoretical aspects as well as numerical examples
before concluding and giving an outlook in Sec. 5.5.

5.1 Introduction

5.1.1 Kinematics of material surfaces

Denoting curvilinear coordinates as Θi with i ∈ {1, 2, 3}, a material point of a bulk
body is denoted as X = X(Θi) with respect to the undeformed configuration and as
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5 Designing material models for surfaces based on bulk constitutive models

x = x(Θi) with respect to the deformed configuration. Both points are connected by
the deformation mapping x = ϕ(X). The deformation gradient F maps line elements as

dx = F · dX. (5.1)

By introducing tangent vectors gi := ∂x/∂Θi and Gi := ∂X/∂Θi, the deformation
gradient can be written as

F = gi ⊗Gi, i ∈ {1, 2, 3}. (5.2)

Similarly, the deformation mapping ϕ of material points belonging to a surface can
be introduced. Denoting the position of the point with respect to the undeformed
and deformed configuration as X and x, respectively, tangent vectors in the surface
parametrization read gα = ∂x/∂Θα and Gα = ∂X/∂Θα and require only two coordi-
nates Θα, thus α ∈ {1, 2}. In the following, only material surfaces are considered, i.e.,
surfaces which follow the motion of the neighboring bulk. In this case, it is convenient
to use the same coordinates for the bulk and the surface description. Accordingly, a
parametrization such that gα = gα and Gα = Gα can be chosen. Analogous to the
standard identity mapping I = Gi ⊗ Gi for the bulk with respect to the undeformed
configuration, the standard identity mapping I for the surface with respect to the unde-
formed configuration has the form

I = Gα ⊗Gα = I−N⊗N with N =
G1 ×G2

||G1 ×G2||
. (5.3)

A push-forward of I yields the surface identity with respect to the deformed configuration
i = gi ⊗ gi. The same holds for the spatial projection operator of the surface

i = gα ⊗ gα = i− n⊗ n with n =
g1 × g2

||g1 × g2||
=

F−T ·N∣∣∣∣F−T ·N
∣∣∣∣ . (5.4)

Analogous to the bulk material, the surface deformation gradient maps line elements
belonging to the tangent space spanned by the surface as

dx = F · dX. (5.5)

The surface deformation gradient reads in curvilinear coordinates

F = gα ⊗Gα, α ∈{1, 2} (5.6)

and can be understood as a projection of the bulk deformation gradient onto the surface
in the sense [25]

F = F · I. (5.7)
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5.1 Introduction

In line with the bulk material, suitable strain measures can be defined by means of
the deformation gradient F. The right Cauchy-Green tensor C will be used for the bulk
and C for the surface, reading

C = FT · F = gij G
i ⊗Gj and C = F

T · F = I ·C · I = gαβ G
α ⊗Gβ. (5.8)

The coordinates of the metric tensor are defined as gαβ = gα · gβ .
Before proceeding, three special notations will be emphasized. First, the same en-

ergy ψ may operate on a bulk deformation, on a projected surface deformation or on
a relaxed surface deformation, C, C or C̃. Second, energies depending on the right
Cauchy-Green tensors or on the deformation gradients, C or F, will be employed as
they are useful for illustrating examples or general proofs, respectively. Third, different
conjugate pairs of stresses and strains will be discussed accordingly. The physical inter-
pretation of individual relationships strongly benefits from these various formulations.
The mathematical formulation that seems most beneficial for the example, the proof or
the literature reference at hand will be chosen. For the sake of comprehensibility, the
variants are introduced in detail in the theory section 5.2. Subsequently, for brevity and
clarity the arguments of functions in definite and obvious cases will be omitted and they
will be explicitly stated otherwise.

5.1.2 Balance laws

The following derivatives closely follow the well-known concepts in rational continuum
mechanics of bulk phases with boundary surfaces, lines and points, e.g., see [25, 62]. B0

denotes the body, S0 = ∂B0 denotes the surface and ∂S0 is the surface boundary in the
reference configuration. The elastic energy of the system (Ψtot) splits into the integral of
the bulk energy density (ψ) and the surface energy density (ψS), both initially depending
on the bulk deformation gradient F

Ψtot =

∫

B0

ψ(F) dV +

∫

S0

ψS(F) dA. (5.9)

Accordingly, hyperelasticity is considered, although one could also work with reduced
potentials allowing to incorporate dissipative mechanisms.

The key aspect of this investigation is to explore different realizations of the surface
energy ψS . Many common approaches directly restrict the energy to in-plane contri-
butions in the familiar form of ψS(FS) [25]. The present work, in contrast, approaches
the surface model based on the idea that it actually approximates a three-dimensional
boundary region. Therefore, the possibilities of deriving a surface deformation FS from
a fully three-dimensional deformation state, F 7→ FS , will be discussed later. Accord-
ingly, also the energy shall derive from a three-dimensional origin. For comparison, it
will be further distinguished between energy formulations that inherently contain the
transformation to a two-dimensional state, F 7→ ψS , from energy formulations that act
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5 Designing material models for surfaces based on bulk constitutive models

on already transformed deformation states, (F 7→ FS) 7→ ψS , and interpret the respec-
tive stress measures. For now, however, surface properties will be generally indicated by
index S and possible specifications will be introduced at a later stage.

The balance equations can be derived from minimization of a functional I, see [25, 62].
The rate of the time-continuous potential contains the elastic bulk and surface energy
and a power term PF(ϕ̇) resulting from external forces, reading

İ = Ψ̇tot −PF(ϕ̇) =

∫

B0

ψ̇(F) dV +

∫

S0

ψ̇S(F) dA− PF(ϕ̇) (5.10)

with

PF(ϕ̇) =

∫

B0

ϕ̇ ·B0 dV +

∫

S0

ϕ̇ ·T0 dA+

∫

S0

ϕ̇ ·BS,0 dA+

∫

∂S0

ϕ̇ ·TS,0 dL, (5.11)

where B0 denotes the body force density per unit reference volume of the bulk and BS,0
the body force density per unit reference area of the surface in the reference configuration.
Similarly, T0 denotes the traction density per unit reference area of the bulk and TS,0 the
traction density per unit reference length of the surface in the reference configuration.

The dissipation inequality for such an elastic system of bulk and surface yields the
dissipation inequality as shown in [25, 62]

D =

[
P− ∂ψ(F)

∂F

]
: Ḟ ≥ 0 on B0 and (5.12)

DS =

[
PS − ∂ψS(F)

∂F

]
: Ḟ ≥ 0 on S0, (5.13)

where P and PS denote the first Piola-Kirchhoff stress tensors of the bulk and surface
material. Satisfying the dissipation inequality for arbitrary deformation gradients by
application of the classic Coleman & Noll procedure yields constitutive relations

P =
∂ψ(F)

∂F
and PS =

∂ψS(F)

∂F
. (5.14)

In order to achieve material symmetry, the response of the constitutive material has
to be independent of rotations belonging to the symmetry group S ⊂ SO(3). This is
fulfilled if the material response is formulated as a function of the right Cauchy-Green
tensor ψ = ψ(C). Accordingly, the first and the second Piola-Kirchhoff stress tensors
for bulk and surface can be derived as

P = 2F · ∂ψ(C)

∂C
, S = 2

∂ψ(C)

∂C
(5.15)

66



5.1 Introduction

and

PS = 2F · ∂ψS(C)

∂C
, SS = 2

∂ψS(C)

∂C
. (5.16)

By application of the time integration on Eq. (5.10) and using the constitutive rela-
tions from Eq. (5.14), the respective stationarity conditions are achieved as

δI =

∫

B0

P : δF− δϕ ·B0 dV −
∫

S0

δϕ ·T0 dA

+

∫

S0

PS : δF− δϕ ·BS,0 dA−
∫

∂S0

δϕ ·TS,0 dL (5.17)

= −
∫

B0

[DivP+B0] · δϕ dV +

∫

S0

[P ·N−T0] · δϕ dA

−
∫

S0

[DivS PS +BS,0] · δϕ dA+

∫

∂S0

[
PS · N̂−TS,0

]
· δϕ dL (5.18)

with the virtual deformations δF = Grad δϕ. Reformulation using divergence theorems
for bulk and surface (cf. [62]), the individual variations yield the local balances of linear
momentum

DivP+B0 = 0 on B0 and (5.19)

DivS PS +BS,0 = 0 on S0 (5.20)

and the Neumann boundary conditions

T0 = P ·N on S0 and (5.21)

TS,0 = PS · N̂ on ∂S0, (5.22)

where N is the outward unit normal vector of the boundary S0 of the bulk and N̂ the
outward unit normal vector of the surface ∂S0 being tangential in the surface ∂S0 in the
reference configuration.

The local balances of angular momentum are achieved from Eq. (5.11). Finally, this
implies symmetry of the stress tensor in the sense

ǫ :
[
F ·PT

]
= 0 ⇔ P · FT = F ·PT and (5.23)

ǫ :
[
F ·PT

S
]
= 0 ⇔ PS · FT = F ·PT

S , (5.24)

where ǫ denotes the Levi-Civita symbol. More details about the derivation of the angular
momentum are given in [25].
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5 Designing material models for surfaces based on bulk constitutive models

5.1.3 Conventional surface elasticity using surface invariants

A common modern approach to material modeling is the formulation of energies in terms
of invariants. This formulation is briefly recapitulated for later examples and evaluation
of the projection and the relaxation approaches. Without loss of generality, the focus is
on the Helmholtz free energy per area of the undeformed configuration, ψ. Balance of
linear momentum is enforced by minimizing the total energy of the considered body as
a function of the deformation gradient ψ(F). In order to fulfill the principle of material
frame indifference, ψ depends on the right Cauchy-Green tensor C (also guaranteeing
balance of angular momentum). For an isotropic bulk, this dependence reduces to the
invariants of C. We can identify three principal invariants

IC = trC, IIC =
1

2

[
I2
C
− tr

(
C2

)]
, IIIC = detC (5.25)

as well as three basis invariants

J
(1)
C

= trC, J
(2)
C

= tr
(
C2

)
, J

(3)
C

= tr
(
C3

)
. (5.26)

Turning the view towards surfaces, the surface deformation gradient is rank-deficient and
its three-dimensional determinate is zero. Consequently, the two remaining principal
invariants characterizing an isotropic surface energy are

I
C
= trC = C : I, II

C
=

1

2

[
I2
C
− tr

(
C

2
)]

(5.27)

and the two basis invariants for isotropic surfaces read

J
(1)

C
= trC, J

(2)

C
= tr

(
C

2
)
. (5.28)

The material behavior of an isotropic surface can thus be formulated in the two invariants
{I

C
, II

C
} or {J(1)

C
, J

(2)

C
}, which is a common approach neglecting special extensions such

as curvature effects or out-of-plane stresses [16, 25, 61, 71]. II
C
plays a prominent role

for surfaces as it is the squared ratio of deformed to undeformed surface area. In line
with the determinant for the bulk, it is also equal to the two-dimensional determinant
of C, which is proven in Sec. C.1.

Anisotropic materials can be accounted for by using so-called pseudo invariants, if
the symmetry group of the considered material is known (cf. [60]). For the sake of
illustration, an orthotropic material is considered here. Its material axes are denoted
as (i)d0 yielding the structural tensors (i)M = (i)d0 ⊗ (i)d0. The zero subscript indicates
that both belong to the undeformed configuration. According to [60], every orthotropic
Helmholtz free energy can be written in terms of the principle or basis invariants as well
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5.2 Deriving surface elasticity models from a three-dimensional deformation

as in terms of the pseudo invariants

J
(4)
C

= C : (1)M, J
(5)
C

= C2 : (1)M, J
(6)
C

= C : (2)M, J
(7)
C

= C2 : (2)M. (5.29)

In the special case of (1)d0 and
(2)d0 belonging to the tangent space and (3)d0 correspond-

ing to the normal direction, two dependencies can be formulated between the invariants

J
(4)

C
+ J

(6)

C
= C :

[
(1)M+ (2)M

]
= C : I = tr(C) = J

(1)

C
, (5.30)

J
(5)

C
+ J

(7)

C
= C

2
:
[
(1)M+ (2)M

]
= C

2
: I = tr(C

2
) = J

(2)

C
. (5.31)

In this case, only four (pseudo-)invariants of the surface are independent and the surface
Helmholtz free energy takes the form

ψ = ψ
(
J
(1)

C
, J

(2)

C
, J

(4)

C
, J

(5)

C

)
. (5.32)

The work continues with surface models that are not derived from pure surface invari-
ants. Instead the underlying three-dimensional deformation state will be harnessed. As
mentioned in the introduction, this approach is motivated by several physical observa-
tions such as finite-thickness phase boundaries, near surface relaxation, anchoring effects
as well as computational and mathematical approaches such as rank-one relaxation in
membrane models. Thus, the question can be formulated as to how a suitable surface en-
ergy and thermodynamically suitable surface stress response can be derived, see Fig. 5.1
for illustration. Namely, projection and relaxation will be employed.

5.2 Deriving surface elasticity models from a three-

dimensional deformation

5.2.1 Surface energies by projection

The probably most straightforward transformation of a three-dimensional bulk model
to a two-dimensional surface model is a projection onto the surface tangent space. The
projection is not uniquely defined, though. The projection I is applied at the initial
stage of the modeling framework, i.e. F → F · I = F and C → I · C · I = C, allowing
only surface deformations to contribute to the surface Helmholtz free energy

ψp(C) := ψ
(
C
)
= ψ

(
I ·C · I

)
. (5.33)
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B
F̃ = F− a⊗N

F = F · I

N

N
a

a = arg inf
a
ψ(F̃)

projection method

relaxation method

Figure 5.1: Comparison between projection and relaxation method: surface deformation is either deter-
mined by a surface projection of the deformation gradient F = F · I or by relaxation of the deformation
gradient F̃ = F− a⊗N that minimizes the energy as inf

a

ψ(F̃).

Based on this frame-indifferent energy, the first and the second Piola-Kirchoff stress
tensors are obtained as

Pp =
∂ψp(F)

∂F
=

∂ψ
(
F
)

∂F
=

∂ψ
(
F
)

∂F
:
∂F

∂F
=

∂ψ
(
F
)

∂F
:
[
i⊗ I

]
=

∂ψ
(
F
)

∂F
· I, (5.34)

Sp = 2
∂ψp(C)

∂C
= 2

∂ψ
(
C
)

∂C
:
∂C

∂C
= 2

∂ψ
(
C
)

∂C
:
[
I⊗ I

]
= 2 I · ∂ψ

(
C
)

∂C
· I, (5.35)

Pp = 2F · ∂ψ
(
C
)

∂C
· I = F · Sp. (5.36)

The present stress tensors are initially defined to be conjugate to bulk deformation, F
and C, respectively, within a thermodynamically consistent framework. A characteristic
property that derives from this approach is a pure in-plane stress-tensor in the sense
that

Sp = S
(
C
)
:
[
I⊗ I

]
= S

(
I ·C · I

)
:
[
I⊗ I

]
= I · S

(
I ·C · I

)
· I. (5.37)

The present formulation of the projection approach implicitly contains the projection
of the deformation state as part of the energy formulation. An alternative is given by
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5.2 Deriving surface elasticity models from a three-dimensional deformation

the split into the mere projection operator and an energy that acts on already projected
deformation states, writing

ψ
(
C
)
:= ψ

(
C
)

(5.38)

with

ψp(C) = ψ ◦ projection︸ ︷︷ ︸
ψp

(C) = ψ ◦ projection(C)︸ ︷︷ ︸
C

= ψ
(
C
)
= ψ

(
C
)

(5.39)

or ψ
(
F
)
:= ψ

(
F
)
, respectively. Despite the seemingly small difference in notation, the

different formulations of the dual stress tensors should be pointed, because this split into
projection and energy can be found frequently in literature, for instance in [25]. The
respective first and second Piola-Kirchhoff stress tensors can be expressed as

P =
∂ψ

(
F
)

∂F
=

∂ψ
(
F
)

∂F
and S = 2

∂ψ
(
C
)

∂C
= 2

∂ψ
(
C
)

∂C
with P = F · S. (5.40)

and relate to the above variants as

Pp = P :
[
i⊗ I

]
= P · I and Sp = S :

[
I⊗ I

]
= I · S · I. (5.41)

Both formulations, Pp and P, are equivalent if the projected stress tensor P is invariant
under contraction with I. This is the case for surface Helmholtz free energies depending
on the four invariants as introduced in this treatise, ψ = ψ(I

F
, II

F
, J

(4)

F
, J

(5)

F
), because

the derivatives of these invariants with respect to F are invariant under contraction with
I themselves:

Pp = P · I (5.42)

=

[
∂ψ

∂I
F

∂I
F

∂F
+

∂ψ

∂II
F

∂II
F

∂F
+

∂ψ

∂J
(4)

F

∂J
(4)

F

∂F
+

∂ψ

∂J
(5)

F

∂J
(5)

F

∂F

]
· I (5.43)

= P. (5.44)

The same analogy is applied to the tangent being the second derivative of an arbitrary
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projected surface energy ψ
(
F
)
with respect to the deformation gradient F and yields

dPp =
∂

∂F

(
∂ψ

(
F
)

∂F

)
: dF (5.45)

=
∂

∂F

(
∂ψ

(
F
)

∂F
:
∂F

∂F

)
: dF (5.46)

=

[
∂

∂F

(
∂ψ

(
F
)

∂F

)
:
∂F

∂F
+

∂ψ
(
F
)

∂F
:

∂

∂F

(
∂F

∂F

)]
: dF (5.47)

=



∂F

∂F
:
∂2ψ

(
F
)

∂F
2 :

∂F

∂F
+

∂ψ
(
F
)

∂F
:
∂2F

∂F2
︸︷︷︸
=0


 : dF (5.48)

=
∂F

∂F
:
∂2ψ

(
F
)

∂F
2 :

∂F

∂F
: dF (5.49)

⇒ Ap =
dPp

dF
=

∂2ψ
(
F
)

∂F2 =
∂F

∂F
:
∂2ψ

(
F
)

∂F
2 :

∂F

∂F
(5.50)

=
[
i⊗ I

]
:
∂2ψ

(
F
)

∂F
2 :

[
i⊗ I

]
(5.51)

⇔ Ap =
[
i⊗ I

]
: A :

[
i⊗ I

]
= I

(2)· A · I (5.52)

Again, for a special surface Helmholtz free energy depending on the four invariants as
mentioned above, such as ψ = ψ(I

F
, II

F
, J

(4)

F
, J

(5)

F
), the derivative of the invariants with

respect to F are invariant under the contraction with I:

Ap = I
(2)· A · I = A. (5.53)

Further note, however, that many alternative and non-equivalent ad-hoc projections
exist that may even lead to physically incompatible results. Thus, it is enlightening
to illustrate the challenges of other projections at this point. Alternative and obvious
tempting ad-hoc choices are: P = P · I, P = i ·P · I and P = F · I ·S · I, being equivalent
to S = I · S · I and P = F · S. However, all such choices are physically not sound, to be
more precise:

• P = P · I does not fulfill angular momentum, since P · FT = P · FT 6= F · PT =

[P · FT]T. Similarly, P · FT
= P · FT 6= F · PT = [P · FT

]T. A counterexample
showing this explicitly is the transversally isotropic Helmholtz free energy ψ =
1/2C : [d0 ⊗ d0], where the vector d0 is neither orthogonal nor belonging to the
tangent space of the surface, i.e., d0 ·N 6= 0 and d0 ·Gα 6= 0.
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5.2 Deriving surface elasticity models from a three-dimensional deformation

• P = i · P · I cannot be derived from a potential, since the derivative of P with
respect to F does not show major symmetry. Accordingly, this is a Cauchy-elastic
material showing non-vanishing dissipation in general. The proof of non-existing
symmetry reads: ∂P/∂F : dF = [i⊗ I] : ∂P/∂F : dF 6= [∂P/∂F]T : dF = dF :
[i⊗ I] : ∂P/∂F.

• P = F · I ·S · I = F ·S cannot be derived from a potential, since the derivative of P
with respect to F does not show major symmetry, again, yielding is a dissipative
Cauchy-elastic material. For the proof of non-existing symmetry, it is sufficient to
show that ∂S/∂C is non-symmetric. That can be shown in a straightforward man-
ner: ∂S/∂C : dC = [I⊗ I] : ∂S/∂C : dC 6= dC : [I⊗ I] : ∂S/∂C = [∂S/∂C]T :
dC.

The results are not surprising, since postulating a stress response is equivalent to
introducing a Cauchy-elastic material model. Such models are known to be inconsistent
with the second law of thermodynamics in general. For this reason, the presented pro-
jection applies to the original deformation state and further properties are derived from
a thermodynamic potential.

5.2.2 Surface energies by relaxation

Relaxation of a fully three-dimensional bulk model is another possibility to obtain a two-
dimensional surface model. Motivations for energetic relaxation are rank-one relaxation
in membrane models, surface reconstruction and anchoring effects [1, 27, 48], which
exceed a simple projection onto tangential deformation components. Again, starting at
the initial stage of the energy formulation that now depends on the relaxed deformation
gradient F̃ or strain tensor C̃, respectively, it reads

ψr(C) = inf
a

ψ
(
C̃(C,F, a)

)
, (5.54)

F̃ = F− a⊗N, (5.55)

C̃ = F̃
T · F̃ = C−N⊗ a · F− a · F⊗N+[a · a] N⊗N. (5.56)

The surface energy is derived by variationally fulfilling the Cauchy-Hadamard compat-
ibility condition between the bulk deformation gradient F and the relaxed deformation
gradient F̃. Vector a defines the jump of the deformation gradient and follows from the
relaxation of the bulk energy. It is determined, though not necessarily uniquely, for the
respective deformation by

ainf(C) = arg inf
a
ψ
(
C̃(C,F, a)

)
. (5.57)

In line with the projection approach, the relaxed surface stresses and the bulk de-
formation are conjugate within the relaxed energy. The relaxed first and second Piola-
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Kirchhoff stress tensors read

Pr =
∂ψr

∂F
=

∂ inf
a

ψ
(
C̃(C,F, a)

)

∂F
(5.58)

Sr = 2
∂ψr

∂C
= 2

∂ inf
a

ψ
(
C̃(C,F, a)

)

∂C
, (5.59)

Pr = F · Sr. (5.60)

An alternative conjugate pair that provides a more convenient mathematical structure
of the stress tensors for analytical studies can yet be derived. For that reason, the already
relaxed deformation as an argument to the surface energy ψ̃ is passed as

ψ̃(C̃) := ψ(C̃) (5.61)

with

ψr(C̃) = ψ ◦ relaxation︸ ︷︷ ︸
ψr

(C) = ψ ◦ relaxation(C)︸ ︷︷ ︸
C̃

= ψ(C̃) = ψ̃(C̃) (5.62)

and ψ̃(F̃) := ψ(F̃), respectively. This formulation yields the stresses

P̃ =
∂ψ̃(F̃)

∂F̃
=

∂ψ(F̃)

∂F̃
and

S̃ = 2
∂ψ̃(C̃)

∂C̃
= 2

∂ψ(C̃)

∂C̃
with P̃ = F̃ · S̃

(5.63)

and obeys to the stationarity of the relaxation in the particular form

0 =
∂ψ(F̃(F, a))

∂a
=

∂ψ(F̃)

∂F̃
:
∂F̃(F, a)

∂a
= P̃ : [N⊗ I] = P̃ ·N. (5.64)

The surface stress formulation P̃ thus vanishes in normal direction, P̃ ·N = 0, due to
the very definition of the relaxation condition. However, note that P̃ ·N = 0 does not
necessarily imply S̃ ·N = 0, as the transformation F̃ can be rank deficient. The general
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stationarity condition for S̃ instead reads

0 =
∂ψ

∂a
=

∂ψ

∂C̃
:
∂C̃

∂F̃
:
∂F̃

∂a
=

[
1

2
S̃

]
:
[
I⊗ F̃+ F̃

T ⊗ I
]
: [N⊗ I]

=
1

2

[
F̃ · S̃T ·N+ F̃ · S̃ ·N

]
= F̃ · S̃ ·N =[F− a⊗N] · S̃ ·N

⇔ F · S̃ ·N =
[
N · S̃ ·N

]
a. (5.65)

Consistency of the above stress formulations is moreover given in the following sense
(see Sec. C.2 for details): (i) symmetry of S̃, (ii) balance of angular momentum, (iii)
stress power originates purely from the surface deformation rate.

5.3 Numerical implementation

Following [24, 62], the energy functional introduced in Eq. (5.17) is discretized into a
set of bulk elements Bh

0 and surface elements Sh
0

B0 ≈ Bh
0 =

nbe⋃

eb=1

Beb
0 and S0 ≈ Sh

0 =

nse⋃

es=1

Ses
0 , (5.66)

where nbe denotes the number of bulk elements and nse the number of surface elements.
The geometry for each bulk element is written as a function of natural coordinates
ξ =(ξ1, ξ2, ξ3) by using interpolation functions N as

X(ξ) ≈ Xh =

nbe∑

eb=1

N eb(ξ)Xeb and ϕ(ξ) ≈ ϕh =

nbe∑

eb=1

N eb(ξ)ϕeb . (5.67)

The geometry of the surface elements are expressed as a function of natural surface
coordinates ξ =

(
ξ1, ξ2

)
by using standard two-dimensional interpolation functions N :

X
(
ξ
)
≈ X

h
=

nse∑

es=1

N
es(

ξ
)
Xes and ϕ

(
ξ
)
≈ ϕh =

nse∑

es=1

N
es(

ξ
)
ϕes. (5.68)

Due to minimization of the energy functional δI = 0 in Eq. (5.17) and neglecting
body forces, the virtual work reads

∫

B0

P : Grad δϕ dV +

∫

S0

PS : Grad δϕ dA = 0. (5.69)

Based on this general weak form, the numerical implementation of the projection and
the relaxation approach is carried out in the following.
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5 Designing material models for surfaces based on bulk constitutive models

5.3.1 Surface energies by projection

The numerical implementation of the projection approach employs two-dimensional sur-
face elements located on the surface S0 of the bulk B0. When introducing the projection
approach in Sec. 5.2, two possible formulations and stress-strain pairs were discussed:
Pp ↔ F and P ↔ F. The latter is chosen for the numerical implementation, because
the simplifying projection can be applied before further calculations are performed and
the implementation can be compared to existing frameworks such as [25]. Stress and
deformation terms of the general weak form in Eq. (5.69) are thus replaced by

PS → P and Grad δϕ → Grad δϕ =
∂δϕ

∂Θα
⊗Gα. (5.70)

The residual vector for a local node i of the element e reads

Ri
e =

∫

Be
0

P ·GradN i dV +

∫

Se
0

P ·GradN
i
dA (5.71)

and the global residual at the global node I has the form

RI =

nel

A
e=1

Ri
e. (5.72)

A
nel
e=1 denotes the assembly of all bulk and surface element contributions at the global

node I = 1, . . . , nnp, where nnp denotes the total number of nodes and nel denotes the
total number of elements. For the projection method the total number of elements nel

is defined by the sum over the bulk and surface elements: nel = nbe + nse. The local
tangent stiffness Kij

e of element e at the local nodes i and j reads

{
Kij

e

}
ac

=

∫

Be
0

{
GradN i

}
b

{
∂P

∂F

}

abcd

{
GradN i

}
d
dV

+

∫

Se
0

{
GradN

i
}

b

{
∂P

∂F

}

abcd

{
GradN

i
}
d
dA, (5.73)

where ∂P/∂F is identical to the bulk tangent A and ∂Pp/∂F is identical with the tangent
Ap of the projected surface energy. Finally, the global tangent stiffness is assembled to
the global node numbers I and J by

KIJ =

nel

A
e=1

Kij
e . (5.74)

An arbitrary element e consists either of a bulk domain B0 or a surface domain S0, but
never of both. Further information about the surface elements and the determination of
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the deformation gradient can be found in [24, 25].

5.3.2 Surface energies by relaxation

The numerical implementation of the relaxed deformation gradient does not require
surface elements. The key aspect is using a new set of quadrature points within the
surface domain. To be more precise, the new set of quadrature points is only activated
on the surface of bulk elements belonging to the surface S0. Sec. 5.3.2.1 describes the
novel tetrahedral and hexahedral bulk elements in order to compute the deformation
gradient on its surface. Finally, Sec. 5.3.2.2 presents the implementation of the relaxed
surface deformation gradient into the finite element framework.

5.3.2.1 Bulk elements for surface deformation

This section describes the computation of the deformation gradient on the surface of
three-dimensional elements. For that purpose, quadrature points of a two-dimensional
element are transformed on the surface of a three-dimensional element. This procedure is
presented for tetrahedral and hexahedral elements. Due to neighboring bulk elements,
the standard three-dimensional interpolation functions are still employed and can be
found in [4, 69]. After the determination of the bulk deformation gradient at the surface,

F, a Newton scheme solves the minimization infa ψ(F̃(F, a)) and finally, the relaxed

deformation gradient, F̃, is obtained.
The transformation of triangular quadrature points (number of quadrature points

nqp = 6) onto the surface of tetrahedral elements is illustrated in the following. For this
purpose, the quadrature points and their positions within a triangular element are shown
in Fig. 5.2a. Their positions ξq

qp,tri are determined by the use of barycentric coordinates
vq =[vq1, v

q
2, v

q
3] with q = 1, . . . , nqp (cf. [14]):

ξ
q
qp,tri(vq) =

1

vq1 + vq2 + vq3

[
vq1 ξ

1
tri + vq2 ξ

2
tri + vq3 ξ

3
tri

]
, (5.75)

where the three vertex nodes are

ξ1
tri =

[
0
0

]
, ξ2tri =

[
1
0

]
and ξ3

tri =

[
0
1

]
. (5.76)

The barycentric coordinates and their weights are summarized in Tab. 5.1.
Similarly, the quadrature points’ positions on a surface of the tetrahedral element are

computed (see Fig. 5.2b). Therefore, Eq. (5.75) is rewritten as

ξ
q
qp,tet

(
ξA
tet, ξ

B
tet, ξ

C
tet,vq

)
=

1

vq1 + vq2 + vq3

[
vq1 ξ

A
tet + vq2 ξ

B
tet + vq3 ξ

C
tet

]
, (5.77)

where ξA
tet, ξ

B
tet and ξC

tet denote the vertex nodes of the surface triangular ABC. Accord-
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Ωtri
�

ξ1

ξ2

1 2

3

4

56

(a) Two-dimensional 6-node triangular ele-
ment Ωtri

�
with its natural coordinates ξ =

[ξ1, ξ2] and the surface area Atri
�

= 0.5.

Ωtet
�

ξ1

ξ2

ξ3

1 2

3

4

5

67

8

9

10

(b) Three-dimensional isoparametric 10-node
tetrahedral element Ωtet

�
with its natural coor-

dinates ξ = [ξ1, ξ2, ξ3] and the volume V tet
�

=
1/6. Surface quadrature points are exemplar-
ily depicted on the surface with their normal
in [1, 1, 1]-direction.

Figure 5.2: Triangular and tetrahedral master elements with nodes (white circles), nodes numbers and
nqp = 6 quadrature points (black circles). The edge length is 1.

ing to Fig. 5.2b, the vertex nodes are defined as:

ξ1
tet =



0
0
0


 , ξ2

tet =



1
0
0


 , ξ3

tet =



0
1
0


 and ξ4tet =



0
0
1


 . (5.78)

In order to reproduce the volume of the master tetrahedral element, V tet
�

= 1/6, the
weights have to be adapted by

wtet
q =

1

3
wtri

q q = 1, . . . , nqp, (5.79)

so that the sum of the weights corresponds to the volume of the tetrahedral master
element:

∑nqp

q=1w
tet
q = V tet

�
.

Next, the transformation of quadrature points from a quadrilateral element to the
surface of a hexahedral element is shown. Fig. 5.3a illustrates the quadrature points’
positions within a quadrilateral element (nqp = 9) and Tab. 5.2 summarizes their posi-
tions and weights. Their projection onto the surface of a hexahedral element is shown
in Fig. 5.3b. Depending on the surface normal N, the transformation of the quadrature
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q vq1 vq2 vq3 wtri
q

1 a1 a1 1− 2 a1 0.5 b1
2 a1 1− 2 a1 a1 0.5 b1
3 1− 2 a1 a1 a1 0.5 b1
4 a2 a2 1− 2 a2 0.5 b2
5 a2 1− 2 a2 a2 0.5 b2
6 1− 2 a2 a2 a2 0.5 b2

Table 5.1: Quadrature points’ positions and weights, vq = [vq1 , v
q
2, v

q
3 ] in barycentric coordinates and

wtri
q , of the two-dimensional triangular element (nqp = 6, cf. [14]). With a1 = 0.445948490915965,

a2 = 0.091576213509771, b1 = 0.223381589678010 and b2 = 0.091576213509771.

q ξquad1 ξquad2 wquad
q

1 −
√

3/5 −
√

3/5 25/81

2 0 −
√

3/5 40/81

3
√

3/5c −
√

3/5 25/81

4 −
√

3/5 0 40/81
5 0 0 64/81

6
√

3/5 0 40/81

7 −
√

3/5
√
3/5 25/81

8 0
√
3/5 40/81

9
√

3/5
√
3/5 25/81

Table 5.2: Positions and weights of the quadrature points, ξquad =
[
ξquad1 , ξquad2

]
and wquad

q , of the two-

dimensional quadrilateral element (cf. [69]).

points is conducted by the following cases:

N =



1
0
0


 : ξhex =




1

ξquad1

ξquad2


 , N =



−1
0
0


 : ξhex =




−1

ξquad1

ξquad2


 ,

N =



0
1
0


 : ξhex =



ξquad1

1

ξquad2


 , N =




0
−1
0


 : ξhex =



ξquad1

−1

ξquad2


 ,

N =



0
0
1


 : ξhex =



ξquad1

ξquad2

1


 , N =




0
0
−1


 : ξhex =



ξquad1

ξquad2

−1


 .

(5.80)

In order to reproduce the volume of the hexahedral element,
∑nqp

q=1w
hex
q = V hex

�
has to
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Ωquad
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(a) Two-dimensional serendipity 8-node

quadrilateral element Ωquad
�

with its natural
coordinates ξ = [ξ1, ξ2] and the surface area

Aquad
�

= 4.

Ωhex
�
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ξ3

1
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(b) Three-dimensional serendipity 20-node
hexahedral element Ωhex

�
with its natural coor-

dinates ξ = [ξ1, ξ2, ξ3] and the volume V hex
�

=
8. Surface quadrature points are exemplarily
depicted on the surface with their normal in
[1, 0, 0]-direction.

Figure 5.3: Triangular and tetrahedral master elements with nodes (white circles), nodes numbers and
nqp = 9 quadrature points (black circles). The edge length is 2.

hold. Thus, the weights are converted by

whex
q = 2wquad

q q = 1, . . . , nqp. (5.81)

During the numerical implementation, the associated area dAq for each quadrature
point q on the surface has to be multiplied by the ratio between the side face area of the
element including the surface quadrature points, Asurf , and the volume of bulk element,
V . To be more precise, the associated area daq of a surface quadrature point q reads

dAq = det(J) wS
q

Asurf

V
. (5.82)

Therein, J denotes the Jacobian matrix. wS
q is the weight of the surface quadrature

point q and is replaced either by wtet
q or whex

q .

5.3.2.2 Implementation into the finite element framework

This implementation corresponds to an energetic formulation that inherently contains
the relaxation process, i.e., it corresponds to the formulation in Eq. (5.54) with dual
conjugates Pr ↔ F. Also note that relaxation is independent of prior projection,
ψr(C) = ψr

(
C
)
, as will be proven later during the theoretical comparison in Eq. (5.93).

The weak form Eq. (5.69) is transformed into the residual vector at the local node i of
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an element e as

Ri
e =

∫

Be
0

P ·GradN i dV +

∫

Se
0

Pr ·GradN i dA, (5.83)

where the relaxed surface approach Pr has been employed for the surface stress PS . The
local tangent stiffness reads

{
Kij

e

}
ac

=

∫

Be
0

{
GradN i

}
b

{
∂P

∂F

}

abcd

{
GradN i

}
d
dV

+

∫

Se
0

{
GradN i

}
b

{
dPr

dF

}

abcd

{
GradN i

}
d
dA. (5.84)

The global residual vector and global tangent stiffness are equal to Eqs. (5.72) and (5.74).
∂P/∂F is identical to bulk tangent A. The tangent matrix of the relaxed surface energy
dPr/dF = Ar is derived in the following.

As a consequence, the linearization of the relaxed stresses can be written as

dPr =
∂2ψ(F̃(F, a))

∂F2 : dF+
∂2ψ(F̃(F, a))

∂F ∂a
· da. (5.85)

Along relaxed states, the relaxed energy is always stationarity with respect to the jump
vector (see Eq. (5.64)) such that the differential of ∂ψ/∂a vanishes as well. Linearization
of this differential with respect to a and F then allows a reformulation of da as

d

[
∂ψ(F̃(F, a))

∂a

]
= 0 ⇒ da = −

[
∂2ψ(F̃(F, a))

∂a2

]−1

· ∂
2ψ(F̃(F, a))

∂a ∂F
: dF. (5.86)

By inserting Eq. (5.86) into Eq. (5.85) one finally obtains

dPr =


∂2ψ(F̃(F, a))

∂F2 − ∂2ψ(F̃(F, a))

∂F ∂a
·
[
∂2ψ(F̃(F, a))

∂a2

]−1

· ∂
2ψ(F̃(F, a))

∂a ∂F


 : dF

(5.87)

=: Ar : dF. (5.88)

According to Eq. (5.88) and as a result of the underlying variational minimization prin-
ciple, tangent Ar shows major symmetry. Equivalently by replacing the deformation
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gradient by the relaxed counterpart, the tangent Ar can be rewritten as

Ar =
dPr

dF
(5.89)

=
∂2ψ(F̃)

∂F2 −
[
∂2ψ(F̃)

∂F2 ·N
]
·
[
N

(2)· ∂2ψ(F̃)

∂F2 ·N
]−1

·
[
N

(2)· ∂2ψ(F̃)

∂F2

]
. (5.90)

The relaxed deformation gradient is numerically determined from the bulk deforma-
tion gradient F of the new set of quadrature points located at the surface domain S0

(see Sec. 5.3.2.1). A Newton scheme solves the minimization infa ψ(F̃(F, a)) and the
relaxed deformation gradient is applied to the surface free energy density ψr(F).

5.4 Comparison of projection and relaxation concept

5.4.1 Analytical results

5.4.1.1 Equivalence cases for isotropy and for anisotropy in surface tangent space

The projection and relaxation approach are only equivalent under specific conditions,
which mainly requires uniqueness of relaxation and no anisotropy normal to the sur-
face. These conditions can be identified by using principal invariants (I

C̃
, II

C̃
) affect-

ing the isotropic material response and pseudo invariants (J
(4)

C̃
, J

(5)

C̃
) manipulating the

anisotropic material behavior. Therefore, a surface Helmholtz free energy density such

as ψr

(
I
C̃
, II

C̃
, J

(4)

C̃
, J

(5)

C̃

)
is assumed. In order to restrict the anisotropy to the tangent

space, d0 ·N = 0 has to hold, where d0 defines the direction of the material anisotropy
with respect to the undeformed configuration.

Projected and relaxed state coincide if the projection deformation gradient equals the
relaxed deformation gradient, reading

F̃ = F ⇔ F− a⊗N = F · I = F ·[I−N⊗N] ⇔ a = F ·N. (5.91)

Relaxed energy states can be further identified by the necessary stationarity condition

∂ψ(F̃(F, a))

∂a
=

∂ψ

∂I
C̃

:
∂I

C̃
(F̃(F, a))

∂a
+

∂ψ

∂II
C̃

:
∂II

C̃
(F̃(F, a))

∂a

+
∂ψ

∂J
(4)

C̃

:
∂J

(4)

C̃
(F̃(F, a))

∂a
+

∂ψ

∂J
(5)

C̃

:
∂J

(5)

C̃
(F̃(F, a))

∂a
= 0. (5.92)

A projected surface deformation is always a compatible relaxed deformation if an-
isotropy lies in the surface tangent space, because all four derivatives of the invariants
indeed vanish if a = F · N, see Sec. C.3.1. The reversed implication is not necessarily
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true, though. For instance, ∂J
(5)

C̃
/∂a = 0 leads to a linear set of equations with infinitely

many solutions. A projected deformation is just one of them. More generally, one may
also construct cases, in which stationarity for relaxation is achieved by non-zero contri-
butions that cancel each other or by trivial energies not depending on any invariant, for
which projection is not fulfilled (a 6= F ·N). Nonetheless it can be stated that projec-
tion and relaxation coincide for convex Helmholtz free energy densities (for isotropy and
superficial anisotropy), as the only relaxed state must be obtained by projection.

5.4.1.2 Relaxation independent of prior projection

Because the infimum is independent of a shift in the argument, relaxation yields the
same solution for the three-dimensional deformation state and for the projection of it

ψr(C) = inf
a

ψ
(
[F− a⊗N]T ·[F− a⊗N]

)

= inf
a

ψ
(
[F−[a+ F ·N]⊗N]T ·[F−[a+ F ·N]⊗N]

)

= inf
a

ψ
([
F− a⊗N

]T ·
[
F− a⊗N

])

= ψr

(
C
)

(5.93)

and the relaxed energy is always equal to or less than the projected energy

ψr(C) = ψr

(
C
)
≤ ψ

(
C
)
= ψp(C) .

The following proof of non-equivalence provides a specific example for a true inequality
in the above equation.

5.4.1.3 Nonequivalence between projection and relaxation

Two exemplarily cases will serve as counter examples that prove the nonequivalence be-
tween projection and relaxation. The first counter example is motivated by the deforma-
tion state. Combining the requirement for being a projection (a = F ·N in Eq. (5.91))
with invertible deformations (det(F) 6= 0 for physically admissible deformations) and
with finite-length normal vectors (N 6= 0), it can be deduced that a must not vanish
for projections, reading: a = F · N ∧ det(F) 6= 0 ∧ N 6= 0 ⇒ a 6= 0 for projections.
Consequently, the relaxation state cannot be a projection if the opposite holds:

inequivalence condition 1: a = 0. (5.94)

Inactive relaxation is thus a sufficient condition for non-equivalence. It coincides with no
change in deformation, i.e. Fr = F and Cr = C. This condition can be trivially fulfilled
by very simple but physically often unsuitable formulations. Before a specific example
is provided, hence another inequality condition that is closer to physical restrictions is
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5 Designing material models for surfaces based on bulk constitutive models

motivated. It is based on the structure of the stress tensor S̃.
By definition, the relaxed state requires stationarity with respect to a as stated in

Eq. (5.65). This key condition splits into the following cases that are tested for the
projection condition (a = F ·N in Eq. (5.91)).

• Case A: F · S̃ ·N = 0.
Considering only physical states with detF 6= 0, S̃ ·N = 0 as well as S̃ = Sαβ Gα⊗
Gβ (in-plane stresses) can be inferred because of symmetry. Consequently, the
right Cauchy-Green tensor possesses only an in-plane deformation in the form
C̃ = Cαβ G

α⊗Gβ and hence C̃ : [N⊗N] = 0 has to hold. According to Eq. (5.56),
this is fulfilled for a = F · N and thus relaxation coincides with projection for
stresses with F · S̃ ·N = 0.

• Case B: F · S̃ ·N 6= 0.
This case implies a non-vanishing out of-plane normal stress, S̃NN := N · S̃ ·N 6= 0,
and is further subdivided as follows:

• Case B1: F · S̃ ·N 6= 0 and S̃ = S+ S̃NNN⊗N.

F ·
[
S+ S̃NNN⊗N

]
·N =

[
N ·

[
S+ S̃NNN⊗N

]
·N

]
a

⇒ S̃NNF ·N = S̃NN a (because S ·N = 0)

⇔ a = F ·N

Hence, relaxation coincides with projection for out-of-plane stresses that are
purely normal to the surface.

• Case B2: F · S̃ ·N 6= 0 and S̃ = S+ S̃NNN⊗N+ S̃1N[G1 ⊗N+N⊗G1].

F ·
[
S+ S̃NNN⊗N+ S̃1N[G1 ⊗N+N⊗G1]

]
·N

=
[
N ·

[
S+ S̃NNN⊗N+ S̃1N ·[G1 ⊗N+N⊗G1]

]
·N

]
a

⇒ S̃NNF ·N+ S̃1NF ·G1 = S̃NN a (because S ·N = 0,G1 ·N = 0)

⇔ a = F ·N+
S̃1N

S̃NN
F ·G1 6= F ·N

Relaxation therefore does not coincide with projection for out-of-plane stresses
that have both normal-normal components and normal-tangential shear com-
ponents, yielding

inequality condition 2: S̃NN 6= 0 and S̃1N 6= 0. (5.95)

The following example indeed proves the nonequivalence between relaxation and pro-
jection combining both inequality conditions (5.94) and (5.95). For the sake of simplicity
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5.4 Comparison of projection and relaxation concept

orthonormal bases G1 = G1 = e1, G
2 = G2 = e2 and G3 = G3 = e3 = N are assumed.

Coefficients of the following example are given with respect to this basis. The example
uses the quadratic energy potential

ψ =
1

2
E : G : E =

1

2
Eij [Gδik δjl]Ekl =

1

2
GE2

ij ≥ 0, (5.96)

where the Green-Lagrangian strain tensor is

E =
1

2
[C− I] =

1

2

[
FT · F− I

]
, (5.97)

and a sheared bulk of the form

F = I+ γG1 ⊗N =



1 0 γ
0 1 0
0 0 1


 ⇒ ψ(F) =

1

8
G
[
γ4 + 2 γ2

]
. (5.98)

The projected surface energy is a constant in this particular example, because the de-
formation gradient in normal direction is canceled:

F = I =



1 0 0
0 1 0
0 0 0


 ⇒ ψp(F) =

1

8
G > 0. (5.99)

The relaxation for this example energy and deformation reads for arbitrary a

F̃ = F− a⊗N =



1 0 γ − a1
0 1 −a2
0 0 1− a3


 (5.100)

⇒ ψr(F) =
1

8

[
2 [γ − a1]

2 + 2 a2
2 +

[
[γ − a1]

2 + a2
2 +[1− a3]

2 − 1
]2]

. (5.101)

Relaxation yields the same result as projection if a = F ·N. Nevertheless, an even lower
energy can be achieved for another value of a. The energy is in fact globally minimized
at

a =



γ
0
0


 ⇒ F̃ = I =



1 0 0
0 1 0
0 0 1


 , ψr = 0. (5.102)

The above counter example thus proves that projection and relaxation are generally
not equivalent as F 6= F̃ and ψp > ψr. It contains the two relevant characteristics
mentioned by the two inequality conditions above. Condition Eq. (5.95) is physically
more important: the out-of-plane shear component of the form α ⊗ N, α ⊥ N, can
be relaxed but is eliminated by projection. This may appear, e.g., by anchoring or
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5 Designing material models for surfaces based on bulk constitutive models

incorporated impurity atoms those do not only modify the tangential reconstruction
but also redistribute the atoms in depth of the boundary [1, 27]. Inequality condition
Eq. (5.95) is trivially fulfilled and more academic: the projection cannot eliminate all
bulk strain measures of Seth-Hill type such as E33 = [C33 − 1]/2. In the limit of the
equilibrium state, γ = 0, even the bulk energy is lower than the projected surface
energy. This occurs trivially by applying bulk operators such as determinants to the
surface deformation without adaption. Such adaption of the initially three-dimensional
bulk energy is advisable for physical interpretation, even if it leads to a constant energy
shift and thus does not affect stress and stiffness values. Numerical examples follow in
the next section, activating the energy contributions by individual invariants.

5.4.2 Numerical analysis

5.4.2.1 Setup

The projection and the relaxation approach are illustrated by two numerical examples,
a cube free of external loads (Fig. 5.4) and a stretched beam (Fig. 5.5). The sys-
tems are discretized by quadratic, serendipity hexahedral bulk elements (nqp = 14) and
quadratic, serendipity quadrilateral surface elements (nqp = 9) (projection approach)
and quadratic, serendipity hexahedral bulk elements (nqp = 14) with 9 additional surface
quadrature points (relaxation approach), respectively. The cube discretization contains
125 uniformly distributed bulk elements and 150 surface elements. The beam discretiza-
tion contains 256 bulk elements and 288 surface elements. Further note that a mesh
bias for quadratic tetrahedral (nqp = 5 for pure bulk elements, nqp = 6 for additional
surfaces) and quadratic triangle elements (nqp = 6) was observed. They induced a de-
formation bias between opposite edges depending on the element orientation and thus
have been omitted. Computations are performed with the finite element code FEAP
(cf. [65]). The derivations of the implemented tangents of the following energies are
shown in Sec. C.3.2.

A compressible hyperelastic neo-Hooke free energy density is chosen for the bulk
material as

ψ(C) =
1

4
λ log(detC)2 +

1

2
µ [trC− 3− log(detC)] (5.103)

=
1

4
λ log(IIIC)

2 +
1

2
µ [IC − 3− log(IIIC)] , (5.104)

where λ = 10N/mm2 and µ = 0.1N/mm2 are the Lamé parameters. The surface mate-
rial response is determined by an objective Mooney-Rivlin free energy density extended
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e1

e2

e3

20mm

20mm

20mm

Figure 5.4: Geometry and boundary conditions of the cube.

e1

e2

e3

80mm

20mm

20mm

u = 1.64mm

Figure 5.5: Geometry and boundary conditions of the beam. Arrows indicate prescribed displacement
of the nodes.

by anisotropic terms. Projection and relaxation differ in terms of their derived notation

ψp

(
C
)
= c1 [IC − 3] + c2 [IIC − 3] + c4 J

(4)

C
+ c5 J

(5)

C
, (5.105)

ψr(C) = inf
a
ψ(C̃) = inf

a

(
c1
[
I
C̃
− 3

]
+ c2

[
II

C̃
− 3

]
+ c4 J

(4)

C̃
+ c5 J

(5)

C̃

)
. (5.106)

The surface material parameters ci are activated by a stepwise increase from 0 to 1
N/mm2, showing a quadratic convergence of the Newton-Raphson scheme. Different
combinations of surface contributions ci are activated to compare the individual influ-
ences, namely each contribution individually (c1, c2, c3 and c4) and c1 in combination
with c2. The special case of similar bulk and surface energy formulations would be
achieved for the incompressible Neo-Hooke limit at c1 = µ/2, but this intermediate set-
ting did not show specific peculiarities among the range of variations. The first and
second term c1 and c2 or the first and second principal invariants I and II, respectively,
represent an isotropic material behavior of the surface. In contrast to this, the material
parameters c4 and c5 generate an anisotropic material response within the surface by ac-
tivating the pseudo invariants J(4) and J(5). Thus, the influence of the different principal
invariants (see Eq. (5.25)) and pseudo invariants (see Eq. (5.29)) can be investigated.
In the following, the direction of the anisotropy is denoted by d0. Thus, the structural
tensor reads (1)M = d0 ⊗ d0. Two anisotropic cases are studied: d0 ·N = 0, such that
d0 is revolving around the e1-direction, and d0 ·N 6= 0 with a constant d0.
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5.4.2.2 Numerical results

The isotropic energy reduces and convexifies the cube surface, while in-plane anisotropy
yields both convex and concave curvatures, Fig. 5.6. Convex surfaces appear where the
anisotropic energy is active in terms of d0. Concave surfaces develop on surfaces that are
oriented with the revolving direction of d0, which is around e1 in the present example
and where anisotropy vector d0 vanishes. Concave surfaces develop also for the stretched
beam, Fig. 5.7, while convex surfaces are prevented by the boundary conditions for the
case d0 = e1 ×N. Changing the revolving direction to d0 = e2 ×N, the long side faces
of the beam perpendicular to e2 will develop a slight curvature.

Simulations of the relaxation approach did not find a unique relaxed energy state
for in-plane anisotropy (N · d0 = 0). This issue has been anticipated in Sec. 5.4.1.1

and it has been shown that C = C̃ holds. To be more precise, the derivatives of the
pseudo invariants J

(4)

C̃
and J

(5)

C̃
are independent of the deformation gradient jump a and

identical with the invariants of the projection approach J
(4)

C
and J

(5)

C
. However, the

projection (a = F ·N) is only one of infinitely many solutions. For the considered case,

N ·d0 = 0, the second derivative of the pseudo invariant J
(4)

C̃
vanishes automatically (see

Eq. (C.28)) and the second derivative of the second pseudo invariant ∂2J
(5)
Cr
/∂a2 = 0 is

rank-deficient (see Eq. (C.29)). This can be illustrated by the example case

d0 =



0
0
1


 , N =



0
1
0


 , F = I and a =



a1
a2
a3


 = F ·N =



0
1
0


 , (5.107)

one obtains for the derivatives (see Eqs. (C.21) and (C.29))

∂J
(5)

C̃

∂a
=




0
0

−a3


 = 0 and

∂2J
(5)

C̃

∂a2
=



0 0 0
0 0 0
0 0 2


 . (5.108)

The second derivatives of the invariants with respect to the jump a are therefore singular

det

(
∂2J

(4)

C̃

∂a2

)
= 0 and det

(
∂2J

(5)

C̃

∂a2

)
= 0. (5.109)

As a result, the numerical problem is ill-posed, more precisely the tangent Ar in Eq. (5.90)
is degenerate as anticipated by the theoretical analysis and by the example. Further mod-
ification of the numerical scheme is necessary to force a unique solution, e.g., numerical
perturbations, inverse reformulation and/or stochastic imperfections, but this exceeds
the scope of the work.

Projection and relaxation approach differ in the case of out-of-plane anisotropy. While
projection onto the surface results in significant distortion, relaxation compensates the
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anisotropy contribution in the cube and the stretched beam examples, Figs. 5.6 and
5.7. Out-of-plane anisotropy thus clearly distinguishes between the physical capabilities
of projection and relaxation. Also in contrast to in-plane anisotropy, the numerical
relaxation examples show convergence towards a unique minimum.

In summary, all numerical results are in exact agreement with the theoretical pre-
dictions: (i) projection and relaxation coincide for isotropy and in-plane anisotropy, (ii)
the equivocality of the relaxed jump poses numerical difficulties for the relaxation simu-
lations of in-plane anisotropy and (iii) out-of-plane anisotropy can be relaxed but yields
distortion when projected.
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Figure 5.6: Deformation of the free cube by the projection approach, F, and the relaxation approach,
F̃. Invariant weighting factors ci are given in [N/mm2]. They are zero when no value is given. The
difference of the displacement between both approaches,

∣∣u
F
− u

F̃

∣∣, is given in [mm]. The anisotropy
vector d0 revolves around e1 in the middle rows four and five. Also note for these cases that no unique
minimum exists for relaxation of the deformation gradient jump a, which is why a transparent plot of
the projected solution is shown, which is one of the infinitely many solutions.
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Figure 5.7: Deformation of the stretched beam by the projection approach, F, and the relaxation
approach, F̃. Invariant weighting factors ci are given in [N/mm2]. They are zero when no value is
given. The difference of the displacement between both approaches,

∣∣u
F
− u

F̃

∣∣, is given in [mm]. The
anisotropy vector d0 revolves around e1 in rows four and five and around e2 in rows six and seven. Also
note for these cases that no unique minimum exists for relaxation of the deformation gradient jump a,
which is why a transparent plot of the projected solution is shown, which is one of the infinitely many
solutions.
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Figure 5.8: Deformation scaled with the factor 5 in the e1-e2-plane of the free cube by the projection
approach, F, and the relaxation approach, F̃, meshed with a tetrahedral/triangular elements in the first
row and hexahedral/quadrilateral elements in the second row. Only the first invariant I is activated by
c1 = 1N/mm2.

As mentioned at the beginning of Sec. 5.4.2.1, a mesh bias is observed. This is shown
for the free cube illustrated in Fig. 5.4 by meshing with tetrahedral and triangular ele-
ments as well as with hexahedral and quadrilateral elements. Fig. 5.8 clearly illustrates
the deformation bias between opposite edges by the use of the tetrahedral and triangular
elements for the projection and relaxed approach in the first row. Nevertheless, both
approaches lead to the same results as can be seen in Fig. 5.9 in the first and second row.
The same figures show that this deformation bias does not arise by using hexahedral
and quadrilateral elements. The difference between the different meshes is pointed out
in the third row in Fig. 5.9.

5.5 Conclusion & Outlook

Motivated by observations of local coupling between bulk and surface deformation, two
methods to model surface elasticity using the underlying bulk deformation state were
derived. Namely, projection and relaxation were introduced. Both approaches modify
the deformation state as an argument of the energy potential and derive the surface
stress as a thermodynamically consistent conjugate. The projection approach captures
classic in-plane stresses. The relaxation approach adds another degree of freedom to
capture reorientation of surface components that is known from liquid nematic crystals
or from incorporation of atoms into the boundary region.

A projected deformation is always a relaxed deformation if anisotropy lies in the sur-
face tangent space. Equivalence is however not guaranteed. On one hand, a unique
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Figure 5.9: Deformation of the free cube by the projection approach, F, and the relaxation approach, F̃,
meshed with a tetrahedral/triangular elements in the first row and hexahedral/quadrilateral elements
in the second row. Only the first invariant I is activated by c1 = 1N/mm2. The differences between
both approaches,

∣∣u
F
− u

F̃

∣∣, and the difference between the meshes, |utet − uhex|, are given in [mm].

solution may also not be available for the relaxation model due to the additional degree
of freedom. On the other hand, relaxation is able to reduce the energy of out-of-plane
shear components, which are ignored by projection. In addition to the theoretical inves-
tigations, the finite-element simulations of a load-free cube show the typical behavior of
surface minimization for an isotropic surface energy. The anisotropic, stretched beam
illustrates how relaxation is able to decrease and even eliminate energy contributions
compared to direct projection.

Finally, both proposed methods constitute a valuable alternative to conventional sur-
face models, providing their individual set of physical and computational capabilities.
Their stress responses are not restricted by ad-hoc assumptions and derive from a bulk-
type potential. This guarantees coupling to the underlying bulk physics and fulfills
the principles of thermodynamically consistent continuum modeling. The examples un-
derline the extra complexity of surface mechanics and the need for a comprehensive
modeling framework. Future work will include application to experimental data of liq-
uid and solid surfaces and more complex geometries. Moreover, inelastic surfaces will be
studied with particular emphasis on the individual behavior of the projection and the
relaxation approach.
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6 Concluding remarks

This work has focused on the modeling of material interfaces and surfaces. Approaches
for the atomistic-to-continuum transition of material parameters and the modeling of
mechanical surfaces have been presented.

In contrast to previous frameworks, the novel Ritz-type homogenization approach de-
scribed in Ch. 3 allows the determination of surface parameters informed by molecular
dynamics simulations in which relaxation is taken into account. To be more precise,
the respective configurations are in equilibrium – unlike, for instance, within the UBER
model. The homogenization approach is based on the principle of energy equivalence.
Using the example of copper, the homogenization approach leads to a very good agree-
ment with literature data for the bulk material and surface material. Only the stiffness
parameters of the surface material deviate. However, it has been shown that the con-
tribution of the stiffness to the total energy is negligibly small in comparison to the
ground state energy. In Ch. 4 the Ritz-type homogenization approach has been applied
to thermoelastic bulk materials.

The modeling of mechanical surfaces presented in Ch. 5 deals with two approaches:
projection and relaxation. In a nutshell, the projection approach considers classic in-
plane stresses and the relaxation approach adds another degree of freedom to capture
reorientation of surface components. Both approaches fulfill all fundamental principles
of material modeling such as the first law of thermodynamics, balance of angular mo-
mentum and the principle of material frame indifference. It has been shown that both
approaches coincide for isotropic and in-plane anisotropic material behavior. Only for
out-of-plane anisotropy the results deviate. Thereby, the projection approach ignores
the out-of-plane shear components which are reduced by the relaxation approach.
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A Ritz-type homogenization approach
for surface material

A.1 Numerics

This section adds technical details on the simulation settings. Atomistic simulations are
carried out by the molecular dynamic code LAMMPS (cf. [52]). The underlying potential
was developed by Oh & Johnson (cf. [45]). The minimization style is set to the Polak-
Ribiere version of the conjugate gradient algorithm (LAMMPS command: min style

cg). The moving of any atom within a single line search is restricted to 1 pm and the
line search algorithm is set to quadratic (min modify dmax 1.0e-2 line quadratic).
The minimize command is run with minimize 1.0e-16 1.0e-10 1e6 1e6. Two com-
plete and executable input scripts for atomistic simulations with LAMMPS are given in
Sec. A.2.

Continuum simulations are performed by the finite element code FEAP developed by
Taylor & Govindjee (cf. [65]). The finite element computations are performed with 10-
node-quadratic-tetrahedron-elements with five quadrature points for the bulk material
and 6-node-quadratic-triangle-elements with six quadrature points for the surface ma-
terial. The distribution of the quadrature points and the shape functions are defined
in [69] and [14]. The order of the Voigt-notation in FEAP differs from [38] as used in
Eq. (3.14), reading for instance σ11, σ22, σ33, σ12, σ23 and σ13.

The numeric minimization of the Ritz method is performed by using the simplex
downhill algorithm developed by Nelder & Mead [43]. The numerical optimization by
means of the Nelder-Mead algorithm is consecutively started several times with results
from its last run until convergence.

A.2 Input scripts for atomistic simulations

This section gives two exemplary, executable input scripts for LAMMPS. Only surface
simulations with a thickness of aB = 20nuc are considered. First, the input script of
the load case i = 1 with F̄(1) = I (“relaxation”, zero-load) is presented. Subsequently,
the input script for the load case i = 10 considering a combination of axial tension and

97



A Ritz-type homogenization approach for surface material

shear is shown. Therein, the strain amplitude is increased stepwise until the maximum
of ǫ = 0.001 is achieved.

1 log relaxation .log

2
3 units metal

4 dimension 3

5 boundary p p p

6 atom_style atomic

7
8 variable latparam equal 3.614859998

9 variable atomsx equal 5

10 variable atomsy equal 5

11 variable atomsz equal 20

12 variable atomsgap equal 20

13 variable atomsb equal 0.5*${atomsz}

14 variable lxx equal ${atomsx }*${latparam }

15 variable lyy equal ${atomsy }*${latparam }

16 variable lzz equal (${atomsz }+${atomsgap })*${latparam }

17 variable lbb equal ${atomsb }*${latparam }

18 variable geomtol equal 1.0e-4

19
20 variable etol equal 1.0e-16

21 variable ftol equal 1.0e-10

22 variable maxiter equal 1000000

23 variable maxeval equal 1000000

24 variable dmax equal 1.0e-2

25
26 region whole prism 0.0 $(v_lxx) 0.0 $(v_lyy) 0.0

→֒ $(v_lzz) 0.0 0.0 0.0 units box

27 create_box 2 whole

28
29 region lower prism 0.0 $(v_lxx) 0.0 $(v_lyy) 0.0

→֒ $(v_lbb -v_geomtol ) 0.0 0.0 0.0 units box

30 lattice fcc $(v_latparam ) orient x 1 0 0 orient y 0 1

→֒ 0 orient z 0 0 1

31 create_atoms 1 region lower

32 group lower region lower

33
34 region upper prism 0.0 $(v_lxx) 0.0 $(v_lyy)

→֒ $(v_lzz -v_lbb -v_geomtol ) $(v_lzz) 0.0 0.0 0.0

→֒ units box
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35 lattice fcc $(v_latparam ) orient x 1 0 0 orient y 0 1

→֒ 0 orient z 0 0 1

36 create_atoms 2 region upper

37 group upper region upper

38
39 # Need to set mass to something , just to satisfy LAMMPS

40 mass * 1.0e-20

41
42 pair_style eam/alloy

43 pair_coeff * * Cu_OhJohnson .eam.alloy Cu Cu

44 neighbor 2.0 bin

45 neigh_modify delay 10 check yes

46
47 min_style cg

48 min_modify dmax ${dmax} line quadratic

49
50 thermo 100

51 thermo_style custom step temp pe lx ly lz xy xz yz vol

→֒ press pxx pyy pzz pxy pyz pxz

52 thermo_modify norm no

53 thermo_modify format float %16.15e

54
55 compute peng all pe/atom

56 compute stre all stress/atom NULL

57
58 dump 1 all custom 1000 dump.relaxation type x y z

→֒ c_peng c_stre [1] c_stre [2] c_stre [3]

59 dump_modify 1 format line "%d %16.15e %16.15e %16.15e

→֒ %16.15e %16.15e %16.15e %16.15e"

60
61 minimize ${etol} ${ftol} ${maxiter} ${maxeval }

62
63 write_restart relaxation .restart

1 log eps11_0 .0_0 .001 _eps12_ -0.0_ -0.001 _step_0 .0001. log

2
3 units metal

4 dimension 3

5 boundary p p p

6 atom_style atomic

7 variable latparam equal 3.61486

8 variable atomsx equal 5
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9 variable atomsy equal 5

10 variable atomsz equal 20

11 variable atomsgap equal 20

12 variable atomsb equal 0.5*${atomsz}

13 variable lxx equal ${atomsx }*${latparam }

14 variable lyy equal ${atomsy }*${latparam }

15 variable lzz equal (${atomsz }+${atomsgap })*${latparam }

16 variable lbb equal ${atomsb }*${latparam }

17 variable geomtol equal 1.0e-4

18
19 variable eps equal 0.0001

20 variable etol equal 1.0e-16

21 variable ftol equal 1.0e-10

22 variable maxiter equal 1000000

23 variable maxeval equal 1000000

24 variable dmax equal 1.0e-2

25
26 read_restart relaxation .restart

27
28 # Need to set mass to something , just to satisfy LAMMPS

29 mass * 1.0e-20

30
31 pair_style eam/alloy

32 pair_coeff * * Cu_OhJohnson .eam.alloy Cu Cu

33 neighbor 2.0 bin

34 neigh_modify delay 10 check yes

35
36 min_style cg

37 min_modify dmax ${dmax} line quadratic

38
39 thermo 100

40 thermo_style custom step temp pe lx ly lz xy xz yz vol

→֒ press pxx pyy pzz pxy pyz pxz

41 thermo_modify norm no

42 thermo_modify format float %16.15e

43
44 change_box all x delta 0 $(v_atomsx *v_latparam *v_eps)

→֒ xy delta $(-v_eps*v_lxx) boundary p p p remap

→֒ units box

45 minimize ${etol} ${ftol} ${maxiter} ${maxeval }

46
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47 change_box all x delta 0 $(v_atomsx *v_latparam *v_eps)

→֒ xy delta $(-v_eps*v_lxx) boundary p p p remap

→֒ units box

48 minimize ${etol} ${ftol} ${maxiter} ${maxeval }

49
50 change_box all x delta 0 $(v_atomsx *v_latparam *v_eps)

→֒ xy delta $(-v_eps*v_lxx) boundary p p p remap

→֒ units box

51 minimize ${etol} ${ftol} ${maxiter} ${maxeval }

52
53 change_box all x delta 0 $(v_atomsx *v_latparam *v_eps)

→֒ xy delta $(-v_eps*v_lxx) boundary p p p remap

→֒ units box

54 minimize ${etol} ${ftol} ${maxiter} ${maxeval }

55
56 change_box all x delta 0 $(v_atomsx *v_latparam *v_eps)

→֒ xy delta $(-v_eps*v_lxx) boundary p p p remap

→֒ units box

57 minimize ${etol} ${ftol} ${maxiter} ${maxeval }

58
59 change_box all x delta 0 $(v_atomsx *v_latparam *v_eps)

→֒ xy delta $(-v_eps*v_lxx) boundary p p p remap

→֒ units box

60 minimize ${etol} ${ftol} ${maxiter} ${maxeval }

61
62 change_box all x delta 0 $(v_atomsx *v_latparam *v_eps)

→֒ xy delta $(-v_eps*v_lxx) boundary p p p remap

→֒ units box

63 minimize ${etol} ${ftol} ${maxiter} ${maxeval }

64
65 change_box all x delta 0 $(v_atomsx *v_latparam *v_eps)

→֒ xy delta $(-v_eps*v_lxx) boundary p p p remap

→֒ units box

66 minimize ${etol} ${ftol} ${maxiter} ${maxeval }

67
68 change_box all x delta 0 $(v_atomsx *v_latparam *v_eps)

→֒ xy delta $(-v_eps*v_lxx) boundary p p p remap

→֒ units box

69 minimize ${etol} ${ftol} ${maxiter} ${maxeval }

70
71 change_box all x delta 0 $(v_atomsx *v_latparam *v_eps)

→֒ xy delta $(-v_eps*v_lxx) boundary p p p remap
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→֒ units box

72 minimize ${etol} ${ftol} ${maxiter} ${maxeval }
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B Ritz-type homogenization approach
for thermoelastic material

B.1 Numerical performance

This section describes the settings of the atomistic simulations required for the extension
of the Ritz-type homogenization approach to a thermoelastic material. The atomistic
simulations are performed with the molecular dynamics code LAMMPS (cf. [11, 52]).
In order to reach a so-called ”initial state” (in Tab. 4.1 defined as load case i = 1) as
a starting point for all following simulations, the RVE is heated to the desired tem-
perature Θ0 by the use of the NtT ensemble. In this ensemble, the pressure and the
temperature of the RVE are specified and stated by the command fix npt. Due to
prescribed deformations and thermal heating, load cases i > 1 (see Tab. 4.1) require
an NV T ensemble. Therefore, the fix npt command is replaced by fix nvt in order
to specify the macroscopic deformation gradient and the temperature. Each simulation
performs 100.000 time steps with a time step of 0.001 ps. Two executable input scripts
are presented in Sec. B.2.

Due to oscillations of some quantities during atomistic simulations (see Figs. B.1 and
B.2), the configuration used as input for the continuum computations is generated by
the moving average. In order to obtain a large range of data for the moving average,
the atomistic system is allowed to “relax” over a large number of time steps. Therefore,
simulations with mechanical loads are split into two steps: (i) within the first 10% of
the time steps, the RVE is deformed stepwise to the deformation F̄(i) and is heated to
the temperature Θ̄(i), (ii) within the last 90% of the time steps, the deformation and
temperature are kept constant in order to obtain a relaxation for the moving average.
Simulations considering only thermal heating and no mechanical deformations, relax due
to the damping factors within the fix nvt or fix npt command after less than 25% of
the time steps. Finally, in order to avoid the influence of the stepwise deformation and
heating, the moving average is generated over 75% of the time steps.
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Figure B.1: Oscillation (thin lines) and moving average (thick lines) for selected quantities of the
atomistic system for the load case i = 1 with Θ0 = 273K (cf. Tab. 4.1): edge length a1, temperature
Θ, pressure p11 in e1-direction and the total energy Ψa over 100.000 time steps. The moving average
overlaps with the oscillation in some charts.
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Figure B.2: Oscillation (thin lines) and moving average (thick lines) for selected quantities of the
atomistic system for the load case i = 6 with ǫ = 0.01, Θ0 = 273K and ∆Θ̄(i) = 10K (cf. Tab. 4.1):
edge length a1, temperature Θ, pressure p11 in e1-direction and the total energy Ψa over 100.000 time
steps. The moving average overlaps with the oscillation in some charts.
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B.2 Input scripts for atomistic simulations

This section shows two executable input scripts for LAMMPS. First, the input script in
order to run the “relaxation” load case i = 1 for heating from 0K to Θ0 = 273K in the
isothermal-isobaric (NtT ) ensemble. Subsequently, the input script for load case i = 6
using the canonical (NV T ) ensemble follows. Therein, the temperature is increased to
283K (∆Θ = 10K) and the strain amplitude is set to ǫ = 0.01. Selected results of both
load cases are already presented in Figs. B.1 and B.2.

1 log Cu_Tstart =0 _Tend =273.log

2
3 units metal

4 dimension 3

5 boundary p p p

6 atom_style atomic

7 variable latparam equal 3.615

8 variable atoms equal 10

9 variable lxx equal ${atoms}*${latparam }

10 variable lyy equal ${atoms}*${latparam }

11 variable lzz equal ${atoms}*${latparam }

12
13 variable dt equal 0.001

14 variable nrun equal 100000

15 variable Tend equal 273

16
17 lattice fcc ${latparam }

18 region whole prism 0 ${lxx} 0 ${lyy} 0 ${lzz} 0 0 0

→֒ units box

19 create_box 1 whole

20 lattice fcc ${latparam } orient x 1 0 0 orient y 0 1 0

→֒ orient z 0 0 1

21 create_atoms 1 region whole

22
23 pair_style eam/alloy

24 pair_coeff * * Cu_mishin1 .eam.alloy Cu

25 neighbor 2.0 bin

26 neigh_modify delay 10 check yes

27
28 compute disp all displace /atom

29 compute peng all pe/atom

30 compute keng all ke/atom
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31 compute stre all stress/atom NULL virial

32 compute flux all heat/flux keng peng stre

33
34 timestep $(v_dt)

35
36 velocity all create $(v_Tend) 12345 mom yes rot no

37 fix 1 all npt temp $(v_Tend) $(v_Tend) 1 x 0 0 1 y 0 0

→֒ 1 z 0 0 1 xy 0 0 1 xz 0 0 1 yz 0 0 1 drag 1

38
39 thermo 1

40 thermo_style custom step lx ly lz xy xz yz temp press

→֒ pxx pyy pzz pxy pxz pyz pe ke etotal enthalpy

41 thermo_modify format float %16.15e

42
43 run $(v_nrun)

44
45 write_restart Cu_Tstart =0 _Tend =273. restart

1 log Cu_Tstart =273 _Tend =283 _eps11=eps22=eps33 =0.01. log

2
3 units metal

4 dimension 3

5 boundary p p p

6 atom_style atomic

7 variable latparam equal 3.165

8 variable atoms equal 10

9 variable lxx equal ${atoms}*${latparam }

10 variable lyy equal ${atoms}*${latparam }

11 variable lzz equal ${atoms}*${latparam }

12
13 variable dt equal 0.001

14 variable nrun equal 100000

15 variable Tend equal 283

16 variable eps equal 0.01

17
18 read_restart Cu_Tstart =0 _Tend =273. restart

19
20 pair_style eam/alloy

21 pair_coeff * * Cu_mishin1 .eam.alloy Cu

22 neighbor 2.0 bin

23 neigh_modify delay 10 check yes

24
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25 compute disp all displace /atom

26 compute peng all pe/atom

27 compute keng all ke/atom

28 compute stre all stress/atom NULL virial

29 compute flux all heat/flux keng peng stre

30
31 timestep $(v_dt)

32
33 fix 1 all deform 1 x scale $(1+ v_eps) y scale

→֒ $(1+ v_eps) z scale $(1+ v_eps) remap v

34 fix 2 all nvt temp $(v_Tend) $(v_Tend) 1 drag 1

35
36 thermo 1

37 thermo_style custom step lx ly lz xy xz yz temp press

→֒ pxx pyy pzz pxy pxz pyz pe ke etotal enthalpy

38 thermo_modify format float %16.15e

39
40 run $(0.1* v_nrun)

41
42 unfix 1

43 unfix 2

44 fix 3 all deform 1 x scale 1.0 y scale 1.0 z scale 1.0

→֒ remap v

45 fix 4 all nvt temp $(v_Tend) $(v_Tend) 1 drag 1

46
47 thermo 1

48 thermo_style custom step lx ly lz xy xz yz temp press

→֒ pxx pyy pzz pxy pxz pyz pe ke etotal enthalpy

49 thermo_modify format float %16.15e

50
51 run $(0.9* v_nrun)

52
53 write_restart Cu_Tstart =273 _Tend =283 _eps11=eps22=eps33

→֒ =0.01. restart
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C Surface elasticity

C.1 Surface determinant

The surface determinant of the surface deformation gradient reads (cf. [25])

detF =

∣∣F ·G1 × F ·G2

∣∣
|G1 ×G2|

. (C.1)

Using the Levi-Civita symbol and the co- and contravariant metrics, one obtains

∣∣F ·G1 × F ·G2

∣∣ =

√
[C : G1 ⊗G1] [C : G2 ⊗G2]−[C : G1 ⊗G2]

2 (C.2)

=
√

g11 g22 − g212, (C.3)

where

C : Gi ⊗Gj = gαβ G
α ⊗Gβ : Gi ⊗Gj = gαβ δαi δβj = gij , (C.4)

and

|G1 ×G2| =

√
[G1 ·G1] [G2 ·G2]−[G2 ·G2]

2 (C.5)

=
√
G11G22 −G2

12. (C.6)

Finally, Eq. (C.1) reads

detF =

√
g11 g22 − g212
G11G22 −G2

12

, (C.7)

being the square root of the determinant of the right Cauchy-Green stress tensor

detC =
[
detF

]2
=

g11 g22 − g212
G11 G22 −G2

12

. (C.8)
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Likewise, with I
C
= trC = gαβ G

αβ and tr
(
C

2
)
= gαβ gγδ G

αγ Gβδ at hand, the second

surface invariant reads

II
C
=

1

2

[[
trC

]2 − tr
(
C

2
)]

=
1

2
gαβ gγδ

[
Gαβ Gγδ −Gαγ Gβδ

]
. (C.9)

Inserting α, β, γ, δ ∈{1, 2} and transferring the contravariant metrics to covariant met-
rics, the identity II

C
= detC is finally achieved.

C.2 Consistency of the relaxed surface model

C.2.1 Symmetry of the relaxed second Piola-Kirchhoff stress tensor

According to the principle of material frame indifference, the bulk’s energy has to fulfill

ψ(Q · F) = ψ(F) ∀Q ∈ SO(3) . (C.10)

Thus, by inserting the relaxed deformation gradient F̃ into Eq. (C.10) and computing

the time derivative for a pure change of observer (i.e.,
˙̃
F = 0, ȧ = 0) one obtains

∂ψ

∂F̃
∗ :

[
Q̇ · F̃

]
= P̃

∗
:
[
Q̇ · F̃

]
= 0, (C.11)

where notation F̃
∗
= Q · F̃ has been used. Since the relaxed first Piola-Kirchhoff stress

tensor P̃
∗
transforms as the deformation gradient, i.e., P̃

∗
= Q · P̃, Eq. (C.11) can be

rewritten as
[
P̃ · F̃T

]
:
[
QT · Q̇

]
= 0. (C.12)

Due to skew-symmetry of QT · Q̇, Eq. (C.12) is equivalent to

[
P̃ · F̃T

]
=
[
P̃ · F̃T

]T
, (C.13)

which has the same form as balance of angular momentum for bulk materials. It bears
emphasis that strictly speaking, Eq. (C.13) is not equivalent to the conventional balance

of angular momentum, which requires F̃ to be replaced by F in Eq. (C.13). Nevertheless,
Eq. (C.13) is equivalent to symmetry of the relaxed second Piola-Kirchhoff stress tensor

S̃ with transformation P̃ = F̃ · S̃.
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C.2.2 Balance of angular momentum

As mentioned before, Eq. (C.13) is not equivalent to balance of angular momentum
which requires

[
P̃ · FT

]
=
[
P̃ · FT

]T
. (C.14)

However, the stationarity condition infers P̃ ·N = 0 for relaxed states (see Eq. (5.64))
and

P̃ · F̃T
= P̃ ·

[
FT −N⊗ a

]
= P̃ · FT. (C.15)

Eq. (C.13) is thus indeed equivalent to balance of angular momentum (C.14) for relaxed
states.

C.2.3 Stress power

In the case of hyperelasticity, the stress power P = ∂ψ/∂F : Ḟ = P : Ḟ is equivalent
to the material time derivative of the Helmholtz free energy. The stress power of the
surface along relaxed states can be written as

P̃ =
∂ψ̃

∂F̃
:
d

dt

[
F̃
]
a=const

= P̃ :
˙̃
F. (C.16)

Because P̃ ·N = 0 holds for relaxed states (see Eq. (5.64)), only in-plane surface con-
tributions of the deformation rate finally enter the stress power, i.e. only the in-plane

projection of the relaxed deformation gradient
¯̃
F,

P̃ = P̃ :
˙̃̄
F. (C.17)

C.3 Derivatives for numerical implementation

C.3.1 Derivatives of invariants

This section shows the derivatives of the invariants with respect to the jump a used in
the stationarity condition of the relaxed energy in Eq. (5.92). Eventually, it is shown
that each derivative vanishes for a = F ·N.
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The derivatives of the invariants with respect to the jump a have the form

∂I
C̃

∂a
= −2 [F ·N− a] , (C.18)

∂II
C̃

∂a
= 2

[
F : [F− a⊗N] [a− F ·N]−[F− a⊗N] · FT ·[a− F ·N]

]
, (C.19)

∂J
(4)

C̃

∂a
= 2 [N · d0] [a⊗N− F] · d0 and (C.20)

∂J
(5)

C̃

∂a
= −2 [N · d0] [F− a⊗N] ·

[
FT −N⊗ a

]
·[F− a⊗N] · d0

−2 [[F− a⊗N] · d0]
[[
FT −N⊗ a

]
·[F− a⊗N] · d0

]
·N. (C.21)

Each derivative of the invariant with respect to the jump a vanishes for a = F ·N:

∂I
C̃

∂a
= 0 if a = F ·N, (C.22)

∂II
C̃

∂a
= 0 if a = F ·N, (C.23)

∂J
(4)

C̃

∂a
= 0 if a = F ·N ∧ N · d0 6= 0 (or if N · d0 = 0) and (C.24)

∂J
(5)

C̃

∂a
= 0 if a = F ·N. (C.25)

For the second derivatives of the invariants with respect to the jump a one obtains

∂2I
C̃

∂a2
= 2 I, (C.26)

∂2II
C̃

∂a2
= 2

[
F ·N⊗ F ·N− F · FT +

[
F : F−N · FT · F ·N

]
I
]
, (C.27)

∂2J
(4)

C̃

∂a2
= 2 [N · d0]

2 I and (C.28)

∂2J
(5)

C̃

∂a2
= −2 [[N · d0] [−F ·N⊗ F · d0 − F · d0 ⊗ F ·N

−2
[
N · FT · F · d0

]
I− 2 [a · F · d0] I+ 2 a⊗ F · d0 + 2F · d0 ⊗ a

+[N · d0]
[
−F · FT + 2F ·N⊗ a+ 2

[
N · FT · a

]
I

+2 a⊗ F ·N− 2 [a · a] I− 4 a⊗ a]]− F · d0 ⊗ F · d0] . (C.29)

C.3.2 Derivatives of energies

This section presents the stress tensors and tangents required for the numerical imple-
mentation of the bulk energy as well as the projected and relaxed surface energies. The
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numerical implementation is derived in Secs. 2.5 and 5.3. The energies are given in
Sec. 5.4.2.1.

C.3.2.1 Bulk material

The bulk Helmholtz free energy in Eq. (5.103) depends on the right Cauchy-Green tensor
C. For the numerical implementation it is rewritten as a function of the bulk deformation
gradient F:

ψ(C) =
1

4
λ log(detC)2 +

1

2
[trC− 3− log(detC)] (C.30)

⇔ ψ(F) =
1

2
λ log(detF)2 +

1

2

[
tr
(
FT · F

)
− 3− 2 log(detF)

]
. (C.31)

From this point the first Piola-Kirchhoff stress P is expressed as

∂ψ(F)

∂F
=[λ log(detF)− µ] F−T + µF (C.32)

and the tangent A reads

∂2ψ(F)

∂F2 = λF−T ⊗ F−T +[µ− λ log(detF)] F−T⊗F−1 + µ [I⊗ I] . (C.33)

C.3.2.2 Surface material – projected deformation gradient

According to Eqs. (5.41) and (5.52), the following identities ∂ψ
(
F
)
/∂F = ∂ψ

(
F
)
/∂F

and ∂2ψ
(
F
)
/∂F2 = ∂2ψ

(
F
)
/∂F

2
hold for a surface Helmholtz free energy depending

on the four invariants: ψ = ψ
(
I
C
, II

C
, J

(4)

C
, J

(5)

C

)
. The energy is given in Eq. (5.105) as

ψp

(
C
)
= ψp

(
C
(
F
))

= c1 [IC − 3] + c2 [IIC − 3] + c4 J
(4)

C
+ c5 J

(5)

C
. (C.34)

Using the chain rule, the first derivative of the surface energy, in the following denoted
only as ψp, with respect to the projected deformation gradient F, being identical with
the projected surface stress Pp, reads

∂ψp

∂F
=

∂ψp

∂I
C

∂I
C

∂F
+

∂ψp

∂II
C

∂II
C

∂F
+

∂ψp

∂J
(4)

C

∂J
(4)

C

∂F
+

∂ψp

∂J
(5)

C

∂J
(5)

C

∂F
. (C.35)
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Therein, the derivatives of each invariant have the form

∂I
C

∂F
= 2F, (C.36)

∂II
C

∂F
= 2

[
I
C
F− F ·C

]
, (C.37)

∂J
(4)

C

∂F
= 2F · d0 ⊗ I · d0 and (C.38)

∂J
(5)

C

∂F
= 2

[
F ·C · d0 ⊗ I · d0 + F · d0 ⊗C · d0

]
. (C.39)

Finally, Eq. (C.35) is expressed as

⇒ ∂ψp

∂F
= c1

∂I
C

∂F
+ c2

∂II
C

∂F
+ c4

∂J
(4)

C

∂F
+ c5

∂J
(5)

C

∂F
. (C.40)

The second derivative of the surface energy with respect to the projected deformation
gradient or the tangent A, respectively, reads

∂2ψp

∂F
2 = c1

∂2I
C

∂F
2 + c2

∂2II
C

∂F
2 + c4

∂2J
(4)

C

∂F
2 + c5

∂2J
(5)

C

∂F
2 (C.41)

with

∂2I
C

∂F
2 = 2 i⊗ I, (C.42)

∂2II
C

∂F
2 = 2

[
2F⊗ F+ I

C
i⊗ I− i⊗C− F⊗F

T −
[
F · FT

]
⊗ I

]
, (C.43)

∂2J
(4)

C

∂F
2 = 2 i⊗

[
I · d0 ⊗ I · d0

]
and (C.44)

∂2J
(5)

C

∂F
2 = 2 i⊗

[
I · d0 ⊗C · d0

]
+ 2F⊗

[
I · d0 ⊗ F · d0

]

+2
[
F · FT

]
⊗
[
I · d0 ⊗ I · d0

]
+ 2 i⊗

[
C · d0 ⊗ I · d0

]

+2
[
F · d0 ⊗ F · d0

]
⊗ I+ 2

[
F · d0 ⊗ I · d0

]
⊗F

T
. (C.45)

C.3.2.3 Surface material – relaxed deformation gradient

Starting from the relaxed Helmholtz free surface energy ψ = ψ(C̃) depending on the
invariants given in Eq. (5.106)

ψ(C̃) = ψ(C̃(F̃)) = c1
[
I
C̃
− 3

]
+ c2

[
II

C̃
− 3

]
+ c4 J

(4)

C̃
+ c5 J

(5)

C̃
(C.46)
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and using the chain rule for the derivative of the relaxed surface energy, in the following
only denoted as ψ, with respect to the relaxed deformation gradient F̃, one obtains the
relaxed surface stress Pr as

∂ψ

∂F
=

∂ψ

∂I
C̃

∂I
C̃

∂F
+

∂ψ

∂II
C̃

∂II
C̃

∂F
+

∂ψ

∂J
(4)

C̃

∂J
(4)

C̃

∂F
+

∂ψ

∂J
(5)

C̃

∂J
(5)

C̃

∂F
. (C.47)

Therein, the derivative of each invariant is computed as

∂I
C̃

∂F
= 2 F̃, (C.48)

∂II
C̃

∂F
= 2

[
I
C̃
F̃− F̃ · C̃

]
, (C.49)

∂J
(4)

C̃

∂F
= 2 F̃ · d0 ⊗ d0 and (C.50)

∂J
(5)

C̃

∂F
= 2

[
F̃ · C̃ · d0 ⊗ d0 + F̃ · d0 ⊗ C̃ · d0

]
. (C.51)

Eventually, Eq. (C.47) reads

⇒ ∂ψ
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= c1
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∂II
C̃

∂F
+ c4

∂J
(4)

C̃
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∂J
(5)
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. (C.52)

The tangent Ar (cf. Eq. (5.90)) requires the second derivative of the relaxed surface
energy with respect to the relaxed deformation gradient

∂2ψ

∂F2 = c1
∂2I

C̃

∂F2 + c2
∂2II

C̃

∂F2 + c4
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(4)

C̃

∂F2 + c5
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(5)

C̃

∂F2 , (C.53)

where

∂2I
C̃

∂F2 = 2 i⊗ I, (C.54)
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[54] J. Schröder. Homogenisierungsmethoden der Kontinuumsmechanik unter Beachtung
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