
Final Report

PlaDs - Platzeffiziente Datenstrukturen
(Succinct Data Structures)

Project group 628
October 25, 2020

Supervision:

Prof. Dr. Johannes Fischer

M. Sc. Patrick Dinklage

M. Sc. Jonas Ellert

TU Dortmund University

Department of Computer Science

Algorithm Engineering (11)

http://ls11-www.cs.tu-dortmund.de

http://ls11-www.cs.tu-dortmund.de


Contents

1 Introduction 1
1.1 Project Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Preliminaries 4
2.1 Computational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 Breadth-First Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.2 Depth-First Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Hash Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4.1 Direct-address Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.2 Hash Functions and Hash Tables . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.3 Perfect Hash Functions and Minimal Perfect Hash Functions . . . . . . . . . . . 8

2.5 Bit Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.1 Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.2 Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.3 Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Trit Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 AVL Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7.1 Balance Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7.2 Rotations in AVL Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.8 Wavelet Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.9 Entropy Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.9.1 Binary Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.10 Huffman Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.11 Gap Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Project PlaDs 19
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Overview of the Project’s Structure . . . . . . . . . . . . . . . . . . . . . . . . 20

i



3.1.2 Instruction for Using the Library . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Environment of the Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.2 Description of the Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.3 Execution of the Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Basic Data Structures 24
4.1 Static Integer Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Static Bit Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Set and Get . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.2 Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.3 Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Static Trit Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Permutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Dynamic Bit Vector 34
5.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Update Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.1 Inserting a Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3.2 Deleting a Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.3 Flipping a Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Compressed Dynamic Bit Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4.1 Bit Vectors and Zero-Order Compression . . . . . . . . . . . . . . . . . . . . . 42

5.4.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5.2 Uncompressed Leaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5.3 Compressed Leaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.5.4 Further Remarks on Space Usage . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.6 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.6.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.6.2 Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.6.3 Modify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.6.4 Performance of Compressed Bit Vectors and Gap Bit Vectors . . . . . . . . . . . 57

5.6.5 Space Usage of Compressed Dynamic Bit Vectors . . . . . . . . . . . . . . . . 58

5.7 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Grammar-Compressed Strings 66
6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

ii



6.2.1 Constructing the SLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2.2 Succinct Representation of the SLP . . . . . . . . . . . . . . . . . . . . . . . . 69

6.3 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3.1 Accessing Rules of the SLP from the Succinct Storage . . . . . . . . . . . . . . 72

6.3.2 The Access Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3.3 The Other Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4.1 Building the SLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4.2 Finding Monotone Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4.3 Renaming the Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.4.4 Creating Dπ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.4.5 Wavelet Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.4.6 Calculating Rule Lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.4.7 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.5 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.5.1 Calculating Monotone Sequences . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.5.2 Succinct Storing of SLPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.5.3 Grammar Compressed Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.6 Summary and Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7 Succinct Representations for Graphs 95
7.1 Representing Tree-Like Graphs with GLOUDS . . . . . . . . . . . . . . . . . . . . . . 95

7.1.1 LOUDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.1.2 GLOUDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.1.3 Example Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.1.4 Space Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2.1 GLOUDS Implementation with Non-Optimal BFS Start Points . . . . . . . . . . 100

7.2.2 GLOUDS Implementation with Pre-Calculating BFS Start Points . . . . . . . . 102

7.2.3 Isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.3 Other Representations for Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.3.1 Adjacency List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.3.2 Adjacency Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.4 Results and Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.4.1 Benchmark Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.4.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8 Retrieval and Perfect Hashing 118
8.1 Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

iii



8.2.1 Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.2.2 CHD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.2.3 BooMPHF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.2.4 RecSplit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.3 Fingerprint Retrieval (FiRe) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.3.1 Structure of FiRe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.3.2 Hash Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.4 Fingerprint Based Perfect Hashing (FiPHa) . . . . . . . . . . . . . . . . . . . . . . . . 124

8.4.1 Structure of FiPHa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.5 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.5.1 Construction Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.5.2 Space Overhead by Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.5.3 Hash Query Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.5.4 Ratio between Construction Time and Construction Space Overhead . . . . . . . 129

8.6 Results and Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9 Summary and Further Work 131

Bibliography 136

iv



Chapter 1

Introduction

The optimisation of data structures and algorithms regarding their time and space requirements has

always been a crucial part in the work of a computer scientist. In 1974, Donald Knuth stated in [Knu74]:

“In established engineering disciplines a 12 % improvement, easily obtained, is never con-

sidered marginal; and I believe the same viewpoint should prevail in software engineering.

Of course I wouldn’t bother making such optimizations on a one-shot job, but when it’s a

question of preparing quality programs, I don’t want to restrict myself to tools that deny me

such efficiencies.”

Early computers showed huge limitations in speed of operations and available memory. Therefore, it was

necessary to work with as little space as possible to realize any computation. Modern computers work

much faster and can use much more space for computation, but optimising running time and memory

usage is still important. Nowadays, computers often have to process huge amounts of data. For example,

the processing of DNA produces sequences of characters requiring numerous gigabytes of space, but it

should still be possible to analyse the genomes in reasonable time without needing significantly more

additional space. Other huge data sets arise, for example, when analysing network activities.

Succinct data structures aim at storing such data sets in space near the information-theoretic lower bound

and still allow time efficient operations. A simple example is the counting of set bits in a bit string up to

a given position. When merely storing the bit string, this is possible in linear time. But we can find a way

to answer this query in constant time with only requiring sublinear additional space (see Chapter 4). This

basic data structure can then be used for further development of succinct data structures, for example

representing a binary tree with n nodes requiring only 2n+o(n) bits of space.

One basic concept in programming is to re-use already implemented data structures and algorithms that

have proven useful before. Especially during the implementation of space efficient data structures, it is

necessary to use well implemented basic structures with low memory usage. Therefore, programmers

often make use of libraries that contain efficient basic data structures and algorithms, and thus build a

good foundation for further development. In this report, we describe our library in C++ for succinct data

structures, including static and dynamic bit vectors, graphs, compressed strings and hash functions.
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1.1 Project Goals

The project group is a mandatory module of the master program in computer science at TU Dortmund

University. Our goal is to develop and implement a highly performant, extendable library of succinct

data structures in C++. In detail, the library should

• contain data structures of different areas, including: bit vectors, graphs, strings, hash functions,

• contain data structures with space requirement near the theoretic lower bound that allow efficient

operations,

• be easy to expand, such that additional data structures can be added in the future, and

• be benchmarked and evaluated thoroughly.

These goals should be achieved in two semesters. This report gives an overview of our results.

1.2 Overview

In Chapter 2, we introduce some definitions and notations that we use throughout the report. First, we

explain basics about the computational model, strings, graphs and hash functions. Then, we describe

some basic succinct data structures that we use repeatedly in our implementations, which are static bit

vectors, AVL trees, wavelet trees, Huffman trees and gap encodings.

In Chapter 3, we introduce our library. We specify its content and structure, explain how to use it and

describe the setting in which we execute our benchmarks.

In Chapters 4 to 8, we describe the data structures our library contains. For each chapter, we first de-

scribe the theoretical background of the implementations, specify the operations we support and analyse

time and space requirements. Then, we describe our implementation and how it differs from the the-

oretical descriptions. At last, we evaluate our work by analysing our benchmarks, compare our data

structures to other data structures that perform the same work and discuss opportunities to improve our

implementations in the future.

In Chapter 4, we describe our implementation of static bit and integer vectors and some other structures

that are basic components of our succinct data structures. Therefore, their practical time and space re-

quirements are of utmost importance to the performance of our library.

A dynamic version of the bit vector is described in Chapter 5. Here, the content of the bit vector can

change at any time so that a static support structure would need to be reconstructed regularly. Instead,

we establish a tree structure that allows fast queries and fast updates.

In Chapter 6, we introduce a succinct way to store and answer some basic queries on strings. The idea

is to find a grammar with special properties, a so-called straight line program, deriving only the given

string. Such a grammar can then be stored space efficiently.

In Chapter 7, we describe representations for directed, unweighted graphs that support basic operations

like neighbourhood queries. We analyse the GLOUDS representation which is optimised for tree-like

2



graphs.

The last data structure is a minimal perfect hash function, which we describe in Chapter 8. It allows fast

document retrieval by utilizing fingerprints.

Finally, in Chapter 9, we summarise our results and discuss possible improvements of our library.
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Chapter 2

Preliminaries

In this chapter, we introduce the basic definitions and notation that we use for descriptions of our succinct

data structures. First, we cover the computational model, strings, graphs and hash functions. Afterwards,

we describe bit vectors, entropy, AVL trees, wavelet trees, Huffman trees and gap encoding.

2.1 Computational Model

When discussing the space and time boundaries of data structures, we use the word RAM model as the

basis of our results. In this model, calculations are carried out on computer words of w bits. Arithmetic

instructions, such as additions, subtractions, divisions and multiplications may be performed on a word

in constant time. Modulo operations (mod), as well as the floor and ceiling functions, may also be

performed in constant time. The same also applies to the bitwise operations: the bitwise operations

AND (∧), OR (∨), XOR (⊕) and the bitwise negation (b) may all be performed in constant time [Nav16,

p. 9]. Words are stored in a computer’s random access memory. We can address any word in memory at

any time and perform reading and writing in constant time. We assume that data structures are stored in

RAM and are therefore accessible in their entirety. Given an arbitrary data structure of n elements, we

assume w=Θ(logn) [Nav16, p. 9]. In practice, w equals 64 bits on most modern computer architectures.

Further details on the word RAM model can also be found in [CLRS09a, Sec. 2.2].

2.2 Strings

Let Σ be a finite set of characters, called alphabet. A text or string S of length |S| = n is defined as

S = σ1 . . .σn with σi ∈ Σ. If S can be represented as S = usw with u,s,w ∈ Σ∗, the strings u, s and w are

called prefix, infix (or substring) and suffix of S, respectively. For any indices i and j with 1≤ i≤ j ≤ n,

we define S[i . . . j] = σi . . .σ j. The term S[i] = σi denotes the i-th symbol in S. The frequency of a

substring s in a string is written as #occ(s). A text S over Σ and a text T over Σ̂ are considered isomorphic

if an isomorphism ϕ : Σ→ Σ̂ with ϕ(S) = T exists.
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2.3 Graphs

In this section, we give an introduction to graphs according to [Die06, CLRS09a, Ste07, Wil98].

A graph G is a tuple G = (V,E) of two disjunctive sets V and E. The elements of V are called vertices.

The elements of E ⊆V ×V are edges, which connect two vertices. Graphs represent binary relations in

a clear way, take a social network as an example: we can save all friendships in the network in a table

and search information about the relations between the members by sorting the table entries by names.

As a graph, each member is represented by one vertex and a friendship relation is represented by an edge

between the corresponding vertices. Now, we just need to go through all outgoing edges of a vertex to

find the friends of a particular person.

We write an edge as a tuple (u,v) ∈ E with u,v ∈V . An edge e and a vertex v are incident, if v is one of

the vertices of e, i.e. e = (u,v) or (v,u). A loop is an edge that has only one incident vertex, i.e. (v,v).

A graph G′ = (V ′,E ′) is called a subgraph of G = (V,E) iff V ′ ⊆V and E ′ ⊆ E.

A graph is called undirected if (u,v) ∈ E ⇐⇒ (v,u) ∈ E for every u,v ∈V , and directed otherwise. For

directed graphs, we distinguish between incoming (u,v) and outgoing (v,u) edges of a vertex v.

A graph G = (V,E) is called weighted if there is a function w : E → Z, that assigns a number to every

edge e, called the weight of e.

Neighbour: In undirected graphs, a vertex u is called a neighbour of v if they are connected by an

edge. For directed graphs, we just consider the „outgoing neighbours“. This means u is neighbour of v

if there is an edge from v to u, i.e. u neighbour of v ⇐⇒ (v,u) ∈ E. The degree deg(v) of a vertex v

is the number of its neighbours. An isolated vertex has no neighbours, i.e. deg(v) = 0. In this project,

deg(v) denotes the out-degree of vertex v ∈V , i.e. the number of outgoing edges.

Walk: A walk W = (v0,v1),(v1,v2), . . . ,(vk−1,vk) ⊆ E in a graph G = (V,E) is a sequence of edges

where each edge starts at the end point of its predecessor. Its length is |W |= k, i.e. the number of edges.

A path P is a walk in G, so that the visited vertices in P are pairwise distinct. The vertex v0 is called the

start point and vk the end point of the path. We say that the path goes from v0 to vk. A circle is a walk

C = P∪{(vk,v0)} of a path P = (v0,v1), . . . ,(vk−1,vk) and the edge (vk,v0) ∈ E. A circle is therefore

a cyclic edge sequence in G. A loop is considered as a circle of length 1. A vertex u is reachable by

another vertex v if there exists a path with v as start point and u as end point.

Connectedness: A graph G = (V,E) is connected if there is one vertex from which all others can

be reached. We call this vertex root. The subgraph C = (VC,EC) of a graph G = (V,E) is called a

connected component of G if it is connected and maximal. This means that each graph Ḡ = (V̄ , Ē) with

V̄ =VC∪{v} and Ē = EC∪{(v,v′)} for every v,v′ ∈V , v /∈C, v′ ∈C and (v,v′) ∈ E is not connected. A

directed graph G is called strongly connected if for every pair u,v of vertices, there exists a path from u

to v and from v to u.
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Tree: An acyclic connected directed graph is called a tree. We call a connected directed graph a tree if

the underlying undirected graph is acyclic. The vertices of trees are called nodes. The neighbours of the

root are root nodes for subgraphs which are trees, too. In a tree T = (V,E) we call u a child of v and v

the parent of u, if u is reachable from the root by a path that contains the edge (v,u) ∈ E. The height of

a tree is the number of edges in the longest path starting at the root. The depth of a node is its distance

from the root, i.e. the number of nodes on the path from the root to the node.

A graph whose connected components are trees is called a forest. A tree that connects all vertices of a

graph G is called a spanning tree of G.

2.3.1 Definition (k-tree-like graph). A k-tree-like graph is a spanning tree with a sparse number of

k ∈ N additional (non-tree) edges. The value k is a yardstick of the tree-likeness of the graph [FP16].

2.3.1 Breadth-First Search

The breadth-first search (BFS) is an algorithm to traverse a graph. A graph traversal is a algorithmic

way to consider every vertex and edge of a given graph one time. While the BFS is processing, we can

scan some graph properties. For example in our project,a special graph representation is constructed

while running the BFS. In the BFS, all neighbours of the current vertex are considered first and then,

in turn, these neighbours are the current vertices whose neighbours are also considered. We distinguish

between undiscovered, discovered and finished vertices. A vertex is discovered from the moment we

visit it for the first time. The BFS terminates when all vertices are finished, which means that all their

neighbours are discovered. We maintain a queue to save the discovered, but not yet finished vertices in

the order they were discovered.

A BFS over the graph G = (V,E) has a runtime of O(|V |+ |E|). It needs O(V ) space for the list of

discovered vertices, the list of finished vertices and the queue.

2.3.2 Depth-First Search

The depth-first search (DFS) is another graph traversal (compare to Section 2.3.1). The algorithm recur-

sively follows a path until a vertex is reached which either has no neighbours or whose neighbours have

all already been discovered. Then, the next path is searched recursively starting from the previous-last

path vertex. Just like the BFS, the DFS terminates when all vertices are finished, which means that all

their neighbours are discovered.

A DFS over the graph G = (V,E) has a runtime of O(|V |+ |E|). It needs O(|V |) space for the lists of

discovered and finished vertices.

2.4 Hash Functions

Hash functions are useful whenever we want to store data which belongs to irregularly shaped keys like

URLs, user names or other strings. Basically, a hash function maps data of arbitrary size called keys to

data of fixed size. To highlight the advantage of hash functions and hash tables, we first give an overview
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about direct-address tables [CLRS09b, Chapter 11]. After that, we define hash functions and hash tables

formally and explain why they are useful.

2.4.1 Direct-address Tables

When the universe U = {0,1, . . . ,c− 1} of keys is small, direct addressing is useful. The keys in the

universe U are stored in an array T [0,1, . . . ,c− 1] called direct-address table, in which each position

corresponds to a key in the universe U . The set of keys that are addressed to T is called K. If K contains

no element with key k ∈U , then the corresponding position to this key in T is empty, i.e. T [k] = nil.

Figure 2.1 illustrates this basic idea.

Figure 2.1: Illustration of direct addressing with universe U = {0,1, . . . ,9}. The set K = {4,7,8,9} ⊂U of keys
is addressed in the direct-address table T with 10 slots.

The direct-address table is easily constructed, since each key k ∈ K must only be inserted into the array

T at the index k, which is performed in O(1). It also supports search and delete operations in constant

time. Nevertheless, when the universe U is large, direct-address table requires more space to be stored

in the memory, since |T |= |U |. Moreover, when the set K of actual keys is much smaller in comparison

to the universe U , the allocated space for T is wasted. In this case, hash functions and hash tables are

more useful due to a O(K) space requirement.

2.4.2 Hash Functions and Hash Tables

A hash function is defined formally as a function h : U 7→ V , which maps a universe of keys U to a set

of values V = {0,1,2, . . . ,c−1} for some integer c which is much less than |U |. The returned values of

hash function are called hash values [MWHC96]. The hash table T [0,1, . . . ,c−1] represents the set V

of values. Each position in T is called a slot and can store a key in the universe U . The hash function h

is used to compute the slot h(k) for the key k ∈U . This action is called hashing. Figure 2.2 illustrates

basically how hash function works. With hash functions, the arrays used for hash tables have small
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Figure 2.2: The hash function h maps the keys in K to slots of hash table T with c slots

size relative to |U | and therefore the space requirement for hash tables is smaller than the direct-address

tables.

Since the size of the universe U is usually larger than the size c of the hash table T , two keys in U may be

mapped to the same slot in T . In Figure 2.2, two keys k1 and k2 have the same hash value and therefore

are mapped to the same slot. This situation is called a collision. We take a look again at Figure 2.2.

Assume that the slot h(k1) stores the key k1, the key k2 cannot be stored in the hash table T anymore,

although there is much space left. When many collisions happen and are not resolved, many hash

values cannot be stored in the hash table and many slots in the hash table will be left empty. Moreover,

in applications in computer security, hash collisions can cause a preimage attack [RS04] or collision

attack [RS04]. Hence, collisions should be avoided altogether, which is impossible, since |U | > c. To

achieve a low number of collisions, we might choose a suitable hash function h which minimizes the

number of same hash values for different keys. The collisions that occur still needed to be resolved.

Two of many methods for resolving collisions are chaining (open hashing) and open addressing (closed

hashing) which can be found in [CLRS09b, Sec. 11.2, 11.4]. By chaining method, the hash table is an

array of linked lists, i.e. each slot has its own linked list. All keys with the same hash value will be

stored in this linked list. In open addressing, all the keys are stored in the hash table. When some key

is inserted into the hash table and the slot for its hash value is not empty, probing is performed until an

empty slot is found. Resolving collisions often results in increasing search time in the hash table. For

example, when the collisions are resolved with chaining, an unsuccessful search takes average-case time

Θ(1+α) [CLRS09b, Theorem 11.1].

2.4.3 Perfect Hash Functions and Minimal Perfect Hash Functions

Suppose the set K of actual keys is static, which means that we know this set from the beginning and

it cannot be changed once the keys are stored in the hash table, we can choose a hash function h which

is injective (i.e. |K| < |V |). In this case, no collision occurs, since distinct keys in K cannot have a
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Figure 2.3: Sketch for PHF and MPHF [BKZ20]
a) perfect hash function: different keys are mapped to different values. There are values in the hash table that do
not have corresponding keys, |K|< |V |
b) minimal perfect hash function: each key is mapped to a unique value and vice versa, |K|= |V |

same hash value. Therefore, collision resolving is not needed, which results in O(1)-memory access

searching. Here, h is a perfect hash function (PHF) [LRCP17]. A perfect hash function h is minimal

(MPHF) if it additionally is surjective. That means h is bijective and |K|= |V |. Each key in K is mapped

to a unique value in the value set V and vice versa. Figure 2.3 shows a simple explanation for perfect

and minimal perfect hash functions.

The lower space bound for MPHFs is proven to be 1.44 bits per key [FKS82]. In theory, some algo-

rithms can be parametrized such that the space bound is met, but in practice this is not feasible, because

construction times get too long [BBD09]. Since MPHFs are typically used for massive data sets like in

bioinformatics [CSM13, CLM16] or in databases [CL05], lowering the requiring space is of interest.

2.5 Bit Vector

A bit vector allows storing and retrieving individual bits arranged in a sequence. In addition to their ap-

plication of managing a finite sequence of truth values, they find use as numerous support data structures

throughout the PlaDs library. For a given bit vector B ∈ {0,1}n, n is its number of stored bits.

We define access(B, i) as the operation that reads a bit at index i, and set(B, i,b) as the operation that

sets the bit at index i to b. We also use the notation B[i] as shorthand to mean access(B, i). In addition

to setting and retrieving bits, we often require two additional operations from a bit vector: rankb and

selectb. For any bit vector B, rankb(B, i) returns the number of set (b = 1) or clear bits (b = 0) in B

up to and including index i in the bit vector. The operation select1(B, j) returns the position of the j-

th set bit in the bit vector. If there are fewer than j total bits set in the vector, select1(B, j) returns n.
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The operation select0 behaves analogously for clear bits. If we omit b from a rank or select term, b is

implicitly assumed to be 1.

These operations may easily be implemented by linearly scanning through the bit vector and counting

the number of bits in O(n) time until the desired result is found. However, it is often worth using

additional support data structures to significantly speed up the process of calculating the result. With

these support data structures, it is possible to solve rank and select in O(1) time, with only o(n) bits of

extra space required [Nav16, Sec. 4.2][Gol07]. These data structures will be explored in further detail

in Sections 2.5.2 and 2.5.3.

2.5.1 Access

The functionality of a bit vector may trivially be implemented by creating an array of boolean values,

in which every cell of the array represents one bit. However, most programming languages allocate at

least one byte (8 bits) for every cell, as this is the smallest unit of data that is easily addressable by

modern processors. This is a highly inefficient use of space, which we avoid by storing a boolean value

within every single bit of a word. We distribute the n bits of the bit vector among dn/we integers. Most

modern processors have a word size of w = 64 bits, making it a convenient value to use in practice (see

Section 2.1).

In order to retrieve the value of a bit at position i, we first determine the word it is located in by calculating

i′ = di/we. Within the corresponding word W , we find the corresponding bit at the index i∗ = i mod w.

This can be done using the bitwise AND (∧). In binary notation, 2q always has only one bit set for any

q ∈ N. Therefore, by calculating W ∧2(i mod w), all bits except for the desired bit are cleared. The result

is 0, if the desired bit is clear, and 1, if it is set. The word size w must be a power of two, which holds

for 64.

In order to set a bit to a new value b′, we determine its position in B analogously. If b′ = 0, we clear the

bit in W by setting W to W ∧ 2(i mod w). If b′ = 1, we instead use the bitwise OR (∨) to set the bit by

setting W to W ∨2i mod w.

Both operations, get and set, take constant time. The resulting bit vector uses at most w−1 extra bits of

space compared to the n bits stored. The indexing scheme causes bits to be stored within a word least-

significant-bit first. If a most-significant-bit first scheme is desired instead, one can use 2w−(i mod w)

instead of 2i mod w to determine the position of a bit within a word.

2.5.2 Rank

In order to allow solving rank queries quickly, some support data structures need to be constructed

alongside the bit vector. As rank0(B, i) can trivially be computed by calculating (i+ 1)− rank1(B, i),

only rank1 needs to be considered.

In order to speed up rank queries, we sample a set of results from B and store them for later retrieval.

By using a two layer scheme, rank queries may be solved in constant time [Nav16, Sec. 4.2.2].

First, B is divided into superblocks, which span kw bits, for a given parameter k ∈ N+. For each su-

perblock, we count the number of ones. The result of rank1 at the beginning of each superblock is then
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B 1 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1

R 1 4 8 9

R’ 1 2 4 0 0 2 1 1 1 1

Figure 2.4: An example sampling scheme for rank1, with a word width w = 2 and k = 3 words in a superblock.
The entries in R show how many total bits are set at the start of the superblock. The entries in R′ show how many
bits are set in the current block relative to the start of the superblock.

stored in an array R. We further divide every superblock into blocks that are w bits wide, in which we

count the number of bits set relative to the start of its corresponding superblock. All blocks are further

stored in another array R′. Figure 2.4 illustrates this sampling scheme.

In order to solve rank1(B, i), we first find the corresponding superblock r = R[bi/kwc]. We then find

the corresponding block r′ = R′[bi/wc] and remember its value. Finally, we must determine the number

of bits set from the start of the block up to i. For this, we can use the popcount instruction, which is

supported natively in hardware by most modern processors. It quickly calculates the total amount of

set bits in a word. Further details on popcount instructions, as well as software implementations of

popcount, can be found in [Nav16, Section 4.2.1]. As we only need to scan the first (i mod w) bits of the

word, we first need to mask out the other w− (i mod w) bits using a bitwise AND. We can then return

the result of the operation by returning r+ r′+ popcount(W ∧ (i mod w)). Note that once again w must

be a power of two.

Rank can be performed in constant time if popcount can be performed in constant time. If there is no

constant time hardware instruction for popcount, one can pre-calculate all 2w−1 results for popcount and

store them in a look-up table to achieve a constant time popcount [Nav16, p. 76]. The arrays R and

R′ introduce some space overhead. However, every cell of R and R′ can be stored within dlogne, and

dlogkwe bits respectively. Details on processing arrays with element widths not supported by hardware

can be found in [Nav16, Sec. 3.1]. The space thus required for R becomes dn/kwew bits. R′ requires

dn/wedlogkwe bits. By choosing k = w, this space requirement becomes o(n) [Nav16, p. 76].

2.5.3 Select

Whereas rank0 could trivially be computed from rank1, the same is not true for select. All data structures

used for select1 must be engineered, constructed and stored separately for select0 [Nav16, p. 78]. The

core idea remains: by sampling and pre-calculating solutions for selectb, one can quickly narrow the

search space to a small range of bits. Let m be the total number of set bits in B. The following data

structures can be defined analogously for select0. As with rank, we use a two-stage sampling scheme

for assisting with selectb, only this time we sample from the m positions of each set bit in the vector.

Every superblock contains the position of every kw-th set bit in B. We again chose k = w, making every

superblock span w2 set bits. We then divide every superblock into blocks, each holding the position

at every w-th set bit, relative to the start of the superblock. We call the arrays for the superblocks and

blocks S and S′ for select, respectively. A simple illustration for the sampling scheme for select is shown

in Figure 2.5.
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B 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0

S 0 10 21

S’ 0 3 6 0 2 9 0

Figure 2.5: An example sampling scheme for select1. We sample w = 2 ones per block, and, and combine k = 3
blocks into one superblock. S contains the position of every kw-th set bit in B. For every superblock, S′ contains
the position of every w-th set bit relative to the start of the current superblock.

When answering a query selectb(B, j), we first find S[b j/kwc] to obtain the position of the corresponding

superblock. To this, we add the value we find in S′[b j/wc]. From there, we scan linearly through the

array, searching subsequently for set bits until we find the desired bit, returning its index. There will be

at most w−1 set bits scanned in the linear search.

Rather than scanning through the words of the array bitwise, it is possible to speed up the implemen-

tation by using a count leading zeroes (CLZ) instruction. Similar to popcount, this type of instruction

has hardware support or otherwise efficient implementations in many modern architectures. With this

instruction, it is possible to find the first set bit in a word, then shift the bits right by the amount of bits

returned to make the next set bit the first bit set in the word, and then repeat the process for every bit left.

Using a constant count leading zeroes instruction, the time of the operation can be reduced to constant

time for the array accesses plus O(w) time for scanning through at most w remaining set bits.

The space required for the support arrays is dm/kwew for S, and dm/wew for S′.

2.6 Trit Vector

A trit vector is similar to a bit vector, but each element is a trit, not a bit. A trit is a number of the set

{0,1,2}. With trits, we can save numbers of the ternary system (base three). There are various methods

for representing a trit vector and to support the operations access, rank and select in constant time.

Fischer and Peters [FP16] group five trits into one tryte. This tryte is stored in one byte. This solution

needs d(n+ t)/5e ·8 bits to store a trit vector with n entries and t ≤ n values out of {1,2}. This almost

reaches the optimal space of d(n+ t) log(3)e bits (Integer vector with size n+ t and width 3). Access to

each trit is supported in constant time by Horner’s method. Rank queries are solved by a look-up table

[FP16, Mun96]. For select Fischer and Peters run binary searches on rank samples [FP16, GGMN05].

For rank and select additional o(n+ t) space is needed.

Our own trit vector solution is an adaption of a wavelet tree (compare to Section 2.8). Due to the fact

that the alphabet of the trit vector is always {0,1,2} we are able to store the trit vector in only two bit

vectors. The first bit vector, called level 0, indicates if the trit at index i is value 0 (level0[i] = 0) or

if we need to look at level 1. This other bit vector indicates if the trit is value 1 or 2. For details see

Section 4.3. Level 0 has n entries and level 1 t entries. To support access, rank and select in constant

time both bit vectors must offer rank and select queries (see Sections 2.5.2 and 2.5.3). In summary, our

trit vector implementation needs n+ t +o(n+ t) bits.
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2.7 AVL Tree

AVL trees [Pun08, Jos10, CLRS09a] are binary search trees that are height-balanced. If n is the number

of nodes, then the worst case depth of an AVL tree is O(logn). This property is maintained by ensuring

that for each node v in a binary tree T , the height of the left and the right subtree, hl and hr, differ by at

most 1: |hl−hr| ≤ 1.

2.7.1 Balance Factor

For each node of an AVL tree, the balance factor is defined as follows:

2.7.1 Definition (Balance Factor [Pun08, Jos10]). Let T be a tree and hl and hr the height of left and

right subtrees respectively. Then the balance factor BF of every node in T is obtained as follows: BF =

hl – hr.

This leads us to the following definition:

2.7.2 Definition (Balancing Rule [Pun08, Jos10]). A tree T is balanced and therefore an AVL tree, if

and only if the balance factor of every node in T is in {0,1,−1}.

With this rule, it is easy to see if a tree is no longer balanced, which happens exactly when there is a

balance factor that is greater than 1 or less than -1. Each insertion or removal of a node may change the

balance factor. Once the tree is unbalanced, there exist certain ways to rebalance it, which are explained

next.

2.7.2 Rotations in AVL Trees

In order to restore balance in a tree, it has to be rotated. The four possible rotation techniques for an

AVL tree are as follows:

• Right Rotation: A right rotation has to be performed on a node v if the height of the right subtree

of v is less than the height of the left subtree of v. Additionally, the height of the left subtree of

the left child vl of v must be greater than the height of the right subtree of vl . The left child vl is

moved into the place of v, while v becomes the right child of vl . The node v inherits the right child

of vl as its left subtree, keeping its right subtree. The node vl keeps its left subtree.

• Left Rotation: A left rotation in a node v is similar to a right rotation. In this case, the height of

the left subtree of v is less than the height of its right subtree. Furthermore, the right child vr of v

has a right subtree with a height greater than the height of its left subtree. Correspondingly, vr is

moved into the place of v, while v becomes the left child of vr. The left subtree of vr becomes the

right subtree of v, as v and vr maintain their respective left and right subtrees.

• Right-Left Rotation: The right-left rotation is a combination of the two previously mentioned

rotations: A right rotation of the right subtree vr of v is applied, followed by a left rotation in v.

This occurs if the height of the left child of vr is greater than the height of its right child.
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• Left-Right Rotation: The left-right rotation is similar to the right-left rotation. Here, the height

of the right child of the left subtree vl of v is greater than the height of its left child. In this case, a

left rotation of vl is performed, followed by a right rotation in v.

All individual rotations may be performed in O(1) time. Any insertion or deletion of a node may change

the balance factor of the tree, possibly requiring rebalancing. Therefore, after an insertion or deletion the

path from the affected node is traced back to the root and the balance factor of each node is examined.

If the node is unbalanced, one of the four above mentioned rotations is performed. As the tree is always

presumed balanced, up to O(logn) rotations may need to be performed, resulting into a total required

time of O(logn) for insertions and deletions [Bra08, Section 3.1].

2.8 Wavelet Tree

The wavelet tree is a data structure that allows efficient rank and select operations in O(log |Σ|) time

on a string over an arbitrary alphabet Σ. The wavelet tree needs O(n log(|Σ|)) bits of space for a string

of length n, which is o(n) more space than the ndlog(|Σ|)e bits needed to store the string explicitly, but

meets the same asymptotic bound.

The wavelet tree was first designed by Grossi, Gupta and Vitta in 2003 [GGV03] and has since then been

used in a number of different applications. A good overview of the data structure and its applications is

given in [Nav12].

Hereafter, we only consider strings over the alphabet {1, . . . ,σ}, but our description can be easily trans-

ferred to arbitrary alphabets through specifying an order on the symbols.

The main idea of the wavelet tree is to construct a binary tree and to store a bit vector in every node that

indicates whether the characters belong to the first or the second half of its associated alphabet.

The bit vector in the root has the same length as the original string and indicates for every position

whether the symbol in the string has a value between 1 and dσ/2e or between dσ/2e+ 1 and σ . Its

children follow the same idea for the substrings restricted to the first and second half of the alphabet

respectively.

Figure 2.6 shows an example wavelet tree for the string “342112243” over the alphabet {1,2,3,4}. The

S-strings do not need to be stored in the wavelet tree but merely illustrate the idea. Only the three bit

vectors need to be stored.

The tree has height dlogσe and needs O(n logσ) bits of space to store the bit vectors.

To retrieve a symbol of the original string, one can use constant-time rank operations on the bit vectors

to get the corresponding position in the respective substring. For example, to retrieve Sroot[7] we know

that Broot[7] = 1 and rank1(Broot,7) = 3. Therefore position 7 of the original string corresponds to the

third position of Sright(root). Since Bright(root)[2] = 1, we know Sright(root)[2] = Sroot[7] = 4.

This shows that we can reconstruct the original string from our wavelet tree. The construction of the tree

can be implemented efficiently in a bottom-up-manner described in [FK17] using O(n logσ) time and

2σdlogne additional bits of space for a string of length n.

Access, rank and select operations on a string over an arbitrary alphabet are defined analogously to the
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Figure 2.6: Wavelet tree for the string “342112243" [TTS13]

operations on a bit vector. For a string S, the operation access(S, i) returns S[i], rankτ(S, i) returns how

often the symbol τ occurs in S up to the i-th position and selectτ(S, j) gives the position of the j-th

occurrence of τ in S.

For the implementation of those operations we can make use of the efficient access, rank and select

queries on bit vectors described in Section 2.5. This requires o(n logσ) additional space. The algo-

rithms for the three operations are described in detail in [CNP15] and take O(logσ) time.

Altogether, we can ensure efficient rank and select operations on a string over an arbitrary alphabet us-

ing O(n logσ) bits for storing and 2σ logn additional bits during the construction. However, the second

space bound is not practical for large alphabets. For this case the so-called wavelet matrix has been de-

veloped in [CNP15] that only needs logσ logn additional bits during construction and otherwise meets

the time and space requirement of the wavelet tree.

2.9 Entropy Coding

A frequently used method for reducing the number of bits required to store data structures is to compress

them. Broadly speaking, if instances of data structures are considered to be elements of a set, or represent

collections of elements from a set, we wish to use fewer bits to represent more frequently occurring

elements, while allocating more bits to represent less frequent elements. Let us call this set U . To

uniquely identify an element of U , we assign a binary code to it. To identify any element of U , we

then need dlog |U |e bits. However, in many problem domains, symbols tend to be unevenly distributed,

which we may exploit to find shorter representations for data structures.

We are only interested in coding schemes which can be reversed to unambiguously reconstruct the

original data, i.e. lossless compression. This puts a lower space bound on any coding scheme, which

we seek to approximate as close as possible. If the likelihood of an element occurring is given by a
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Figure 2.7: The binary entropy H (p) [Nav16]

probability distribution P : U 7→ [0,1], the minimum possible average length for every code is the

Shannon entropy [Nav16, Sec. 2.2]:

H (P) = ∑
u∈U

P(u) · log
1

P(u)
(2.1)

An optimal code for u should therefore be log 1
P(u) bits long.

2.9.1 Binary Entropy

If our goal is to compress bit vectors, U becomes {0,1} and |U |= 2. Now, 1 occurs with the probability

p = m/n, where m is the number of ones in the bit vector and n its length. Correspondingly, 0 occurs with

probability 1− p. We can define the binary entropy function H (p) as follows [Nav16, Sec. 2.3]:

H (p) = p log
(

1
p

)
+(1− p) log

(
1

1− p

)
. (2.2)

A graph for H (p) is shown in Figure 2.7. We see that if p is near 0.5, the bits in the bit vector are very

evenly distributed, and compression is not possible. If the bits are very unevenly distributed, however,

H (p) drops, and we can achieve substantial space reduction.

Note that we assume that one bit in the sequence does not influence any bits around it. The occurrence

of each bit is solely governed by its probability p. We call this the zero-order entropy, and define the

zero-order empirical entropy of a bit vector B as [Nav16, Sec. 2.3.1]:

H0(B) = H
(m

n

)
=

m
n

log
( n

m

)
+

n−m
n

log
(

n
n−m

)
. (2.3)

The lowest possible bound for compressing B is therefore nH0(B) bits. We will apply this principle to

dynamic bit vectors in Section 5.4. There we will see a scheme that compresses bits using a H0 entropy

based compression scheme, and describe methods to encode and decode bits. Since we assume bits to

be independent of each other, we are not able to compress arbitrary data structures this way by applying
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a b c

3 1 1
(a) Symbols (upper row) and their frequencies (lower

row), input of the Huffman construction.

b,1 c,1 a,3

(b) Initialisation of the Huffman construction: the symbols

saved as leaf nodes and sorted by frequencies.

2

b,1 c,1

a,3

(c) First iteration of the Huffman construction: nodes

(b,1) and (c,1) are merged and sorted in again.

2

b,1 c,1

a,3

5

(d) Last iteration of the Huffman construction: nodes 2

and (a,3) are merged, node 5 is the result of the algorithm.

Figure 2.8: Example of the Huffman tree construction Algorithm 2.1

such a compression scheme to their bit vector representations, as the bits are typically closely related to

each other. We are still able to compress bits treated as raw data, however.

2.10 Huffman Coding

The goal of Huffman codes [Huf52] is to minimize the average code length. To do this, the data set is

split into separate, perhaps repetitive, symbols, e.g. characters in a text. These symbols are represented

in binary. The set of all symbols is called alphabet Σ. The more frequent a symbol appears in the

data set, the fewer bits are used to encode the symbol. This means Huffman codes are variable-length

codes. We represent these codes as a binary tree, whose leaves contain the symbols. To decode a single

symbol, we start at the root and go left for every 0 bit and right for 1 until we reach a leaf. This leaf

contains the decoded symbol. If a symbol appears more frequently than others in the data set, the path

from the root to the corresponding leaf is shorter. The runtime of decoding is the length of the encoded

symbol and respectively the depth of the corresponding leaf. The maximum depth of a Huffman tree

with frequencies in [1,n] is O(logn), i.e. decoding needs O(logn) time. A Huffman tree consists of

exactly |Σ| leaves and |Σ|−1 internal nodes [CLRS09a, Nav16].

In Algorithm 2.1, a greedy Huffman tree construction algorithm is given, requiring the symbols and their

frequency. A list initially contains the leaves of the Huffman tree (see Lines 1 to 3). In each iteration,

the algorithm merges the two subtrees of the list with the smallest frequencies into a new subtree. Its

frequency is the sum of the frequencies of the two subtrees (compare to Line 6). The merge result is

sorted in the list by its new frequency (loop from Line 7 to 9 updates the insert position, Line 10 to 12

is the insertion itself). This is repeated until the list contains only a single element, the root node of the

Huffman tree (Line 5). Figure 2.8 gives an example. The algorithm needs O(|Σ| log(|Σ|)) time.
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Input: S [1, |Σ|], with S [i] .s a distinct symbol and S [i] . f its frequency

Output: Huffman tree with internal node fields l (left) and r (right) and leaf field s (symbol)

1: Sort S [1, |Σ|] in ascending order of S [i] . f

2: Create list L linked by field L.next, with its i-th element

3: L.s← S [i] .s, L. f ← S [i] . f , L.l← null, L.r← null

4: I← L (the first list element)

5: while L.next 6= null do
6: Create list element N.l← L,N.r← L.next,N. f ← N.l. f +N.r. f

7: while I.next 6= null and I.next. f ≤ N. f do
8: I← I.next

9: end while
10: N.next← I.next

11: I.next← N

12: L← L.next.next

13: end while
14: return L (is a single element, the root of the tree)

Algorithm 2.1: Construction of a Huffman tree with alphabet Σ = [1, |Σ|] [Nav16, Algorithm 2.2]

2.11 Gap Encoding

In general, we need at least m logn bits to store an array of length m over {1, . . . ,n}. However, if we want

to store an array D that is non-decreasing, meaning D[1] ≤ D[2] ≤ ·· · ≤ D[m], we can use a technique

that requires n+m bits of space. The gap encoding of D is a bit vector of the following form:

BD := 0D[1]10D[2]−D[1]1 . . .0D[m]−D[m−1]1.

For example, the gap encoding of {1,2,4,4,6} is 01010011001. The set bits are separating the indices

and the value D[i] can be retrieved by counting the clear bits up to the (i− 1)th one, meaning D[i] =

rank0(BD,select1(BD, i− 1)). In Section 2.5 we have seen that we can answer those rank and select

queries in constant time with o(n+m) and O((n+m) log log(n+m)/ log(n+m)) bits of additional

space, respectively. Therefore, gap encoding improves the space requirement for a non-decreasing array

while still ensuring constant access time.
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Chapter 3

Project PlaDs

3.1 Overview

In this chapter we elaborate on our library PlaDs. We give an overview of its content and structure. We

also explain how to use it and describe the environment in which we execute our benchmarks to evaluate

our implementations.

The aim of our project PlaDs is to build a library of data structures that need only a small amount

of space while supporting fast operations. These data structures are (dynamic) bit vectors, graphs,

grammar-compressed strings and hash functions. More specifically, we construct the following data

structures:

• Dynamic bit vectors (DBV): After being constructed, the size of conventional static bit vectors

cannot be changed any more. Moreover, the operations rank and select require not only the origi-

nal bit vector, but also other support structures. Once the contents of the original bit vector change,

these structures must be reconstructed, which affects the performance of the operations. To solve

this problem, we provide dynamic bit vectors. This data structure offers both fast updates and fast

queries.

We implemented the dynamic bit vector introduced in [Nav16]. Apart from a bit vector, this data

structure consists of an AVL tree, enabling fast query as well as fast update operations. These

operations include rank, select, get, insert, delete and set. In order to achieve not only time

efficiency, but also space efficiency, we implemented another variant of the data structure: the

compressed dynamic bit vector is based on the H0 entropy and allows space reduction for both

very sparse and very dense bit vectors.

• Grammar-compressed strings (GCS): Strings are one of the most important data types in many

applications. Because strings are often too long to be stored explicitly in the memory, we need a

way to compress them without losing information while allowing fast operations. In our library

we provide special grammars for this purpose.

We implemented a grammar compression for strings, that enables us to access individual parts of

the original text without decompressing it. Our compression is based on straight line programs
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Dynamic bit vectors • include/plads/bit_vector_dynamic/bit_vector_dynamic.hpp

Grammar-

compressed strings

• include/plads/gcs/grammar_compressed_string.hpp

• include/plads/gcs/util/succinct_slp.hpp

for succinct storing of SLPs
Graphs • include/plads/glouds/glouds.hpp

for GLOUDS without pre-calculation of the optimal start points of con-

nected components

• include/plads/graph/glouds_startpoint.hpp

for GLOUDS with optimal start points
Minimal perfect

hash functions

• include/plads/mphf/mphf_fire.hpp for FiRe

• include/plads/mphf/mphf_fipha.hpp for FiPHa

Table 3.1: Overview of the main implementation classes of PlaDs

(SLPs). We use the RePair algorithm implemented by Navarro 1 to construct a SLP from the

original text. This SLP is then stored succinctly with the SLP compression described in [TTS13].

Our implementation supports efficient access, size and lce operations on the original text.

• Graphs: Graphs are very useful for computer science because they model binary relations. We

implement different methods to encode graphs. Operations like neighbour queries with the help

of the space efficient encoding should be in constant time.

We implement two versions of GLOUDS [FP16]. This solution is optimised for tree-like graphs.

One version is faster, the other one needs less space.

• Minimal perfect hash functions (MPHF): Minimal perfect hash functions are the most desirable

hash functions, as described in Chapter 2. In this project we attempt to build data structures from

which files can be retrieved with the help of minimal perfect hash functions.

We implemented at first the FiRe data structure [MSSZ14] which produces a method for file

retrieving. The second implemented data structure FiPHa [MSSZ14] is a optimised version of

FiRe regarding the construction time and space. FiPHa is also a minimal perfect hash function.

3.1.1 Overview of the Project’s Structure

The data structures are implemented header-only. All implementation files of the mentioned data struc-

tures are located in the folder include/plads. There is a folder for each implemented data structure.

For example, the implementation for FiRe is the file mphf_fire.hpp in the folder include/plads/

mphf. The main implementation class for each data structure is listed in Table 3.1.

All the test files are located in the folder test under the main folder of the PlaDs library. The tested

data structure is indicated in the name of the test file.
1See https://users.dcc.uchile.cl/~gnavarro/software/repair.tgz
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Namespaces

All data structures of the project have the root namespace plads. Each field has its own namespace that

is included in the namespace plads. This structure results in nested namespaces for the data structures.

For example, the implementations for graphs can be accessed under the namespace plads::graph.

External Libraries

The used submodules and external libraries can be found in the folder deps under the main folder. Here

we have data structures that are included in our benchmarks. We also use the submodule malloc_count2

to measure the space requirement of the data structures’ constructions and the implemented operators for

the benchmark. The submodule is already integrated in the file CMakeLists in the main folder. Whenever

we need a hash map, we use tsl::robin_map3 instead of std::unordered_map. It answers queries a

lot faster and needs similar amount of space as std::unordered_map. We also used the implementation

of RePair for SLPs (see Section 6.2).

3.1.2 Instruction for Using the Library

System Requirement

Our project is written in C++17. The library will only work for CMake version 3.4.1 or later. For

compiling, gcc is needed with a version later than 8.3.

Linking the Library

Our library is under the GNU General Public License and therefore can be linked in other projects.

There are two different ways to link our library to other project.

1. Clone or download the git-Repository: One developer can create a directory lib in the source

folder of his project. After that, the library plads can be cloned or downloaded into this lib folder.

In particular, the following commands would be called respectively under the source folder of the

project: mkdir lib

git clone http://flint-v3.cs.tu-dortmund.de/plads/plads.git plads (for cloning

only)

2. Using git submodules and CMake: The folder lib should be created beforehand. Then, the

submodule can be added inside lib directory with git submodule add http://flint-v3.

cs.tu-dortmund.de/plads/plads.git lib/plads. The library plads will be cloned and

put into lib/plads.

We also need to configure the CMakeLists.txt file, so that the project can recognize the sub-

module later. We can define a variable EXTERNAL_LIB_HEADERS for the external library plads

2https://github.com/bingmann/malloc_count/
3https://github.com/Tessil/robin-map
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by adding set(EXTERNAL_LIB_HEADERS lib/plads) into the CMakeLists.txt file. Then,

EXTERNAL_LIB_HEADERS will be added to the list of directories where C++ compiler should be

looking for header files.

target_include_directories(

executable_name PRIVATE

${EXTERNAL_LIB_HEADERS}

)

The advantage of git submodules is that the changes of the submodules will be tracked and cloned

automatically when cmake .. is called.

Using the Implemented Data Structures

Since all implementation files of the data structures are located in the folder include/plads, the nec-

essary data structure can be easily included in other classes with the keyword include. For example,

assume that the library plads is stored in lib directory and lib is already defined as a include-path

in CMakeFile of the project, the following command must be inserted to use FiRe data structure:

#include <plads/include/mphf/mphf_fire.hpp>

Compile

A folder build under the source folder should be created before the compilation. In the created folder,

the following commands would be called to compile the library:

1. cmake ..

2. make

The test files for the data structures can be found under the path build/tests after the compilation of

the whole library. The test for any data structure will be executed when the corresponding output file is

called.

3.2 Benchmark

In this section, we describe the environment and execution of our benchmarks that we use to evaluate

our implementations.

3.2.1 Environment of the Benchmark

Our benchmark is executed entirely on the Lido3-Cluster4 of the TU Dortmund. There are two types of

nodes for the users: the 2-socket node and the 4-socket node that are listed in Table 3.2.
4https://www.itmc.tu-dortmund.de/cms/de/dienste/hochleistungsrechnen/lido3/index.html
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Nodes CPU Type Max Cores Max RAM/Nodes Remark

cstd01 2x Intel Xeon E5-2640v4 20 64GB

cstd02 or ib_1to1 2x Intel Xeon E5-2640v4 20 64GB non-blocking

cquad01 4x Intel Xeon E5-4640v4 48 256GB

cquad02 4x Intel Xeon E5-4640v4 48 1024GB

Table 3.2: List of nodes which do not have GPU on the Lido3-Cluster

The used computer nodes on the Lido3-Cluster have at least 64GB of RAM and are equipped either

with Intel Xeon E5-2640v4 or Intel Xeon E5-4640v4. Each node contains local storage with at least

2TB. Each 2-socket node has 2.4GHz frequency and 25MB L3 Cache. Each 4-socket node has 2.1GHz

and 30MB L3 Cache. More detailed informations about the cluster can be found on https://www.

lido.tu-dortmund.de/cms/de/LiDO3/lido3kurz.pdf.

We use the node cstd01 for the benchmarks of DBV, GCS and MPHF. The benchmarks for Graph are

executed on node cquad01. Since these data structures have different functions, it is not important that

they are executed on different nodes.

3.2.2 Description of the Experiments

For each of our data structures we measure the required time and space for the construction of the data

structure and for the operations which are implemented. We use the class plads::util:timer for the

measurement of the time requirement with the use of std::chrono in the header. As for the measure-

ment of the required space we have the class plads::util::spacer with the usage of malloc_count

in the header. After the compilation, the output files for the benchmark are in the corresponding path in

the folder build.

For different data structures, we have different benchmarks using particular sets of test data. The full

information about the benchmarks can be found in the chapter of the specific data structure. Moreover,

the result of each benchmark can be found there, too. We use sqlplotools5 to present the results in

diagrams.

3.2.3 Execution of the Benchmark

All the files for the benchmarks can be found in the folder src/. After compilation, the executable

benchmarks are located in the build directory. A new result file is created for each time we run the

benchmark. This result file is the input for sqlplottools.

5https://github.com/bingmann/sqlplot-tools
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Chapter 4

Basic Data Structures

In this chapter, we describe our implementation of the basic data structures static bit vector, static integer

vector, trit vector and permutation. We need those data structures in many cases throughout our library.

Therefore, an efficient implementation is important for us.

4.1 Static Integer Vector

The class int_vector is a space-optimised version of a std::vector<uint64_t>. The vector has the

parameters size n, which is the number of integers in the vector, and width w, the number of bits used

to save these integers. The integers are stored as a bit sequence divided in 64-bit-blocks. Therefore, an

std::vector<uint64_t> is used. An integer vector of length n supports the following operations:

• size(): returns n, the number of integer values in the vector.

• resize(s,w): sets the size of the std::vector<uint64_t> to the needed number of 64-bit-

blocks. For s entries represented with w bits, s ·w bits and thus ds ·w/64e words are needed.

• rebuild(s,w): changes s and w of the integer vector, respectively the underlying std::vector<uint64_t>,

and retains the values already entered. This requires copying all values once.

• set(i,b): sets the value at index i to integer value b ∈ N0 with 0≤ i < n and b≤ 2w−1.

• get(i): returns integer value at index i with 0≤ i < n.

For get and set, we calculate which blocks the bits are located in that encode the integer that was

asked for. The bit sequence that is the binary number of the integer at index i could be at the end of a

64-bit-block, at its beginning, or crossing a block border, i.e. a prefix of the number could be at the end

of a block and the suffix at the beginning of the next block. Bitwise operators are used to realize the

access in constant time. When n is the number of entries and w is the number of bits needed to save the

highest entry, the size of the underlying vector is n ·w bits plus at most 63 additional bits (number of

blocks needs to be rounded up). All functions are executed in constant time.
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operator function example

x & y x and y 0101 & 1001 = 0001

x | y x or y 0101 | 1001 = 1101

∼ x not/ invert x ∼ 1001 = 0110

x « y shift left/ multiply with 2y 1 « 4 = 10000

x » y shift right/ divide integer by 2y 1001 » 1 = 100

x?y:z if condition x is true, evaluate to y else z 0 ? 2 : 1 = 1

Table 4.1: Overview bitwise operators [Gee, cpl]

4.2 Static Bit Vector

Static bit vectors are vectors over the alphabet {0,1} with a fixed, unchangeable length. In preparation

for the project group, we ran a competition for the most efficient implementation of a bit vector. The

target was that the operations set, get, rank and select should be done in a minimum constant time.

The basic ideas for the data structures that realize this are given in Section 2.5. For the library PlaDs,

we choose the fastest implementation in the competition by Patrick Dinklage, one of the supervisors of

the project group. In the following, the implementation and the time and space requirement is analysed

in detail. The basic idea of all functions is to divide the data into 64-bit-blocks in order to optimize the

data for the 64-bit-processor. Furthermore, bitwise operators (see Table 4.1) are used to minimize the

runtime.

4.2.1 Set and Get

The basic bit vector B of length n supports three operations (compare to Section 2.5.1):

• size(): returns n, i.e. the number of bits of B,

• set(B, i,b): sets the bit at index i with 0≤ i < n to the value b ∈ {0,1}, and

• get(B, i): returns the bit at index i with 0≤ i < n.

The implementation uses a std::vector<uint64_t> of length dn/64e. Each entry of the vector stores

64 bits of the bit vector. We call this one 64-bit-block. To enable the access to the bits for reading and

writing, we convert an index in the bit vector to the corresponding block and index in this block. The

function block(i) calculates the index bi/64c= bi/26c= i� 6 of the block that includes the i-th bit in

the bit vector. The function offset calculates the index i%64 of the i-th bit within its 64-block. With

these functions, get(B, i) and set(B, i,b) convert the input index i in the bit vector B into the block in the

std::vector<uint64_t> and the index in this block. We can get the k-th bit of a block with an AND

operation of the block and 2k (binary number where only index k is 1, shift left, see Table 4.1). The result

is 2k if k = 1, otherwise 0. To set the k-th bit in a block to the value b = 1, we use an OR operation for

the block and the bit mask 2k, because after that the k-th bit is 1, no matter what value k had. Setting the

k-th bit in a block on value b = 0 is possible by an AND-Operation with a bit mask, where all bits except
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the k-th are set. The representation of a bit vector of length n as a std::vector<uint64_t> needs

at most 63 additional bits (number of blocks needs to be up rounded), which is negligible in practice.

The constructor needs linear time to copy the values of a given std::vector<bool> into the optimised

block structure. By using bitwise operators, access, reading and writing take no additional space and

can be executed in constant time.

4.2.2 Rank

To count the bit vector entries of a certain value, we create the rank bit vector, which is a data structure

in addition to the basic bit vector. A rank bit vector B of length n supports two operations (compare to

Section 2.5.2):

• rank1(B, i): calculates the number of set bits up to and including index i with 0≤ i < n, and

• rank0(B, i): calculates the number of clear bits up to and including index i with 0≤ i < n.

The implementation uses a pointer on the bit vector, for which rank queries shall be supported. As de-

scribed in Section 2.5.2, we create two data structures to support rank: blocks and superblocks. Both

are saved as an integer vector (see Section 4.1). Each entry in the integer vector of the superblocks

saves the number of ones from index 0 until the next 64 blocks, i.e. 64 · 64 = 4096-bit-blocks of the

bit vector. Each entry in the integer vector of the blocks saves the number of ones from the begin-

ning of the corresponding superblock up to the next 64-bit-block of the bit vector. First, to construct

the blocks and superblocks, the number of needed blocks and superblocks and the maximal possible

value of each block, called the width of an entry, is calculated. Given the number and width of the

entries, an optimised integer vector is built by the function resize(size,width). To fill the support

data structures, we iterate once over the bit vector to count and save the read ones. As explained in

Section 2.5.2, rank1(B, i) is solved by finding the corresponding superblock r = R[bi/4096c], the corre-

sponding block r′ = R′[bi/64c] and calculating the sum r′′of bits set from the start of the block up to i.

Then, rank1(B, i) = r+ r′+ r′′. Similar to the access for reading and writing (see Section 4.2.1), we cal-

culate the superblock and previous block by bitwise operators in constant time, if the processor supports

__builtin_popcountll[Fre]. The GCC compiler function counts the ones in a 64-bit-block up to and

including a given index in very small constant time. The function rank0(B, i) is trivially computed by

calculating (i+1)−rank1(B, i). The superblock data structure is an integer vector with size dn/4096e
and width logdn−1e. The block data structure is an integer vector with size dn/64e and width 12 (for

4096 = 212). The construction time is O(n) because of the iteration over the whole bit vector. By using

the support data structures, it is possible to count the number of set or clear bits in O(1) time. If set

operations are executed on the corresponding bit vector, the built rank support data structures are no

longer valid.
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4.2.3 Select

To choose the k-th bit vector entry of a certain value, we implement the select bit vector, a data structure

in addition to the basic and rank bit vector. A select bit vector B supports two operations (compare to

Section 2.5.3):

• select1(B,k): returns the index of the k-ths bit which is set to 1 with 1≤ k ≤ number of set bits

in B, and

• select0(B,k): returns the index of the k-ths bit which is set to 0 with 1 ≤ k ≤ number of clear

bits in B.

The implementation uses a pointer to the bit vector for which select operations shall be supported.

As described in Section 2.5.3, we create two data structures to support select for each possible value

b ∈ {0,1}. This is because, unlike rank, we are not able to reconstruct select0 from select1. The data

structures for 0 and 1 works the same way. Therefore, we have a template class with the value b ∈ {0,1}
for which the structure shall work as template parameter. The select class generates two select objects out

of the template, one for b = 0 and one for b = 1. In the following we explain the structure of the template

class with the parameter b. The select data structure consists of two data structures, the blocks and the

superblocks. Both are saved as an integer vector (see Section 4.1). The i-th superblock encodes the index

where i ·superblock_size bits are set on b with superblock_size= (max{logdn−1e,1})2. The j-

th block encodes the index where j ·block_size bits from the start of the corresponding superblock are

set on b with block_size= max{logdn−1e,1}. One superblock consists of logn blocks. To construct

the support data structure we iterate over all 64-bit-blocks of the bit vector, for which select operations

shall be supported. We use the GCC compiler function __builtin_popcountll [Fre] to count the

ones at the 64-bit-block until including a given index in very small constant time. This allows us to

decide which 64-bit-block contains the index that is stored next in our support data structures. As can be

clearly seen in the example of Figure 2.5, the first block in the new superblock always has the entry 0.

Therefore our implementation omits this entry. To select the k-th index set to b, we search for the right

superblock and block. Therefore, we set two local variables on the highest possible superblock and block

and narrow them down to the right ones linear in step of the (super-)block sizes. This takes O(w) time.

From this point we search forward directly in the bit vector the right index. The gcc compiler function

__builtin_ctzll(v) [Fre] returns the number of trailing zeros in a 64-bit-block v in very small constant

time. Shifting left (see Table 4.1) by the number of zeros achieves that the leftmost bit in the result 64-

bit-number is the first (leftmost) value set to 1 in the original one. Now we call __builtin_ctzll

again to get the second value set to 1 and so on. For b = 0, we invert the 64-bit-block, so the zeros

are ones and vice versa and we do the same procedure. The data structure for superblocks is an integer

vector with size dn/(max{logdn−1e,1})2e and width max{logdn−1e,1}. The block data structure is

an integer vector with size dn/(max{logdn−1e,1})e and width max{logdn− 1e,1}. The construction

time is O(n) because there are two nested loops where the outer one iterates over all 64-bit-blocks of

the bit vector and the inner one iterates over a part (worst case all) of the bits current 64-bit-block. By

using the support data structures, it is possible to select the index where a given number of reached ones
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or zeros in O(logn) time. If set operations are executed on the corresponding bit vector, the built select

support data structures are no longer valid.

4.3 Static Trit Vector

A trit vector is similar to the bit vector but the elements are out of {0,1,2}. The trit vector T supports

two operations (compare to Section 2.6):

• size(): returns the length, i.e. the number of trits of the trit vector,

• access(T, i): return the value at index i with 0≤ i < size(),

• rankb(T, i): calculates the number of occurrences of the value b ∈ {0,1,2} up to and including

index i with 0≤ i < size(), and

• selectb(T, i): calculates index of the i-th occurrence of b ∈ {0,1,2} with 0 ≤ i < size(). If

value b occurs less than i times, size() is returned.

The basic idea for our implementation is a wavelet tree (see Section 2.8). In a trit vector the alphabet

is always {0,1,2}. Due to this fact we are able to optimise the wavelet tree: we only need two levels

of the wavelet tree, with just one bit vector in each level. The first bit vector is called level 0 and has

the length of the trit vector. If level0[i] = 0 for an index i, there is zero at index i of the trit vector. If

level0[i] = 1, there is one or two in the trit vector. To decide if a bit on level 0 encodes one or two,

we use level 1. The length of level 1 corresponds to the number of ones and twos in the trit vector. If

level1[ j] = 0 for an index j, the j-th one in level 0 encodes a trit with value one, otherwise it encodes

two. For example the trit vector T = 1012020 is encoded as level0 = 1011010 and level1 = 0011.

Similar to access, rank and select operations on wavelet trees (compare to Section 2.8), these operations

can be solved in constant time by rank and select queries on the bit vectors. Worst case, there is a rank

or select operation on level 0 that got a call of a rank or select on level 1 as parameter. Our trit vector

implementation needs n bits for level 0 where n is the length of the trit vector and o(n) to support rank

and select queries and t + o(t) bits for level 1 where t ≤ n is the number of ones and twos in the trit

vector. We need at most 2 · 63 additional bits, because the two bit vectors in our implementation use

64-bit blocks.

4.4 Permutation

A permutation of a set M ⊂N0 is an arbitrary fixed arrangement of the elements of M. We want to store

an arbitrary permutation π of the set {0,1, . . . ,n−1} and offer the following operations:

• read(π, i): returns π[i], i.e. the value at index i in π , and

• inverse(π,k): returns π−1[i], i.e. the index i in π with π[i] = k.

Our implementations get the permutation as std::vector<uint64_t> and store it in a naive or succinct

way to support the required operations.
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Naive Representation for Permutations

A permutation can be stored without any support data structures. In this case π[i] is answered by direct

access to the permutation. But for π−1[i] a linear search on the whole permutation is necessary.

To reduce runtime, our naive representation stores the permutation itself and in addition the inverse.

Therefore, two int_vectors are used with s = n and w = logn (compare to Section 4.1) where n

is number of elements in the permutation. The representation needs maximal O(n logn) bits. The

operations read and inverse require O(1) time, because just a single request to the corresponding vector

is necessary.

Succinct Representation for Permutations

If we only need the permutation and its inverse there is a simple data structure [Nav16] to reduce space

compared to the naive approach above. We still have to store the permutation, but we do not need to store

every inverse any more. First observe that to compute inverse(π,k) we can call i0 = k and compute

i1 = π[i0], i2 = π[i1] = π[π[i0]], and so on, until il = π[il−1] = k. The inverse is il−1. In the worst case we

need to check every number and need linear time. If we look at one cycle, we can pre-compute shortcuts

every b elements (see Figure 4.1). If we want to find the inverse we follow the cycle until we can take

a shortcut. Then we look for ib−1 from there. This guarantees, that we only need b steps until we find

the inverse. Navarro suggests to store a bit vector, that stores whether there is a shortcut from a given

number in the permutation. The shortcuts are stored in an array and the correct index in this array can

be computed with a rank query on the bit vector.

This data structure can be constructed by three iterations over the given permutation. One iteration to

copy the input permutation into the first integer vector, the second iteration to calculate the shortcut

positions and set these in the bit vector and in the last iteration we fill the integer vector of the shortcuts.

This takes O(n) time where n is number of elements in the permutation. The read operation is solved

by direct access on the permutation in O(1) time. The runtime to calculate the inverse depends on the

distance b between the shortcuts, it is O(b) time.

Our implementation, called permutation_inverse, offers to choose the shortcut distance b by an

integer class template parameter. We store the permutation itself as int_vector with size n and width

logn (compare to Section 4.1). The static bit vector to mark the indices with a shortcut has n entries

and needs o(n) additional bits to support rank1 queries (compare to Section 4.2.2). The positions of the

shortcuts are stored as int_vector with size s ≤ bn/bc and width w = logn for a shortcut distance of

b. The size s of the shortcuts vector is equal to the real number of shortcuts, worst case this is bn/bc.
If the input permutation is the identity, i.e. π[i] = i for every index i, we just use the default constructor

and reduce to construct the succinct representation. A global boolean variable mark this case, so the

operations can evaluate if they return π[i] = i or respectively π−1[k] = k.
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Figure 4.1: Data structure that can calculate π[i] in constant time and π−1[i] in O(b) time. A shortcut is stored
every three elements in a cycle, so b = 3. It stores the permutation π[i], a bit vector B and the shortcuts S, (Figure
taken from [Nav16].)
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Figure 4.2: Benchmark results for the space requirement of our permutation implementations

Comparison

We benchmark our implementations of both representations by generating a std::vector<uint64_t>

of size n = 2k with 15≤ k≤ 28. The vector is filled with values from 0 to n−1 and shuffled by std::-

random_shuffle. To benchmark the read and inverse operation we call these functions one million

times for random indices. We decided to choose b = 16 for the shortcut distance of the succinct repre-

sentation to yield constant runtime for the inverse.

Figure 4.2 shows the comparison of our naive implementation (two integer vectors) and permutation_inverse

(shortcuts) space-wise. The space requirement of both grows quadratic. In Figure 4.3, we see that the

naive representation requires significantly less construction time. In the theoretical worst case com-

parison both need linear construction time. But while permutation-naive just iterates over the input

permutation and copies the content to two integer vectors, permutation-inverse iterates three times to

copy the permutation, to fill the bit vector and to fill the shortcut vector. The differences in the running

times of the read operations are not significant (compare to Figure 4.4). The succinct permutation needs

to calculate the inverse instead of just one access operation by the naive one. But both yield a low con-

stant running time even for high sizes (compare to Figure 4.5).

Therefore, we decide to use permutation_inverse<16> if a permutation data structure is needed.
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Figure 4.3: Benchmark results for the construction time (in seconds) of our permutation implementations
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Chapter 5

Dynamic Bit Vector

In Section 2.5, we saw how to store bit vectors supporting rank and select operations in a compact

manner. In order to allow fast rank and select queries, some additional support structures need to be

constructed on top of the bit vector. These support structures become invalidated whenever the contents

of the bit vector change, requiring reconstruction. Additionally, as the bit vector is stored as a contigu-

ous array of integers in memory, its size cannot easily be changed once constructed. We rectify these

problems by using an alternate representation of bit vector, Dynamic Bit Vectors. They were presented

in [Nav16, Section 12.1] and use a binary tree structure to allow for both fast queries and fast updates.

Every leaf stores a pointer L to an array of bits. From left to right, the bit arrays of the individual leaves

form the complete bit vector. Every leaf may store up to Θ(w2) bits, where w refers to the number of bits

in a computer word. Ordinarily, w is a 64-bit word in modern computer systems (see Section 2.1). Each

inner node of the tree contains two attributes, num and ones. The attribute num holds the total number

of bits contained in the leaves of the left subtree of the node. Similarly, ones contains the number of bits

in the left subtree that are set. These attributes are used for traversal and must be kept up to date as the

bit vector is modified. The extra space incurred by the tree nodes on top of the n bits of the bit vector is

O(n/w) bits. As each inner node holds four attributes, each taking w bits of space, the space incurred

by a node is 4w bits. There are O(n/w2) nodes in total. In order to achieve fast navigation of the tree

nodes, we use a balanced search tree, specifically an AVL tree (see Section 2.7). This ensures finding a

leaf can always be done in logarithmic time.

If only set operations are required, i.e. no insertion or deletion, the size of a bit vector will always stay

the same. In this case, it is possible to store all bits in a simple array. Instead of a binary tree, a heap

can be used for the node attributes, so that the pointers to the child nodes do not need to be stored any

more. This avoids the need to store pointers to the left and right subtrees of a node, saving memory

space [CLRS09a, Chapter 6.1].

5.1 Construction

A dynamic bit vector can trivially be constructed by starting with an empty tree, in which bits are

repeatedly inserted into. We will see that insertions on this data structure can be performed in logarithmic
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Input: index i

Output: B[i]

1: v← T.root

2: while v is not a leaf do
3: if i≤ v.num then
4: v← v.left

5: else
6: i← i− v.num

7: v← v.right

8: end if
9: end while

10: return v.L[i]

Algorithm 5.1: Operation Access for a dynamic bit vector [Nav16].

time, resulting in a required construction time of O(n logn). It is much faster to construct a dynamic

bit vector B from an existing bit array B′ by splitting B′ into O(n/w2) leaves, and constructing the tree

structure bottom up. To accomplish this, we first create the leaves from the given bit array, and then

repeatedly join two adjacent nodes under a common parent, until we reach the root. For each node v, the

correct values for the attributes num and ones can be determined recursively. The method for obtaining

the attributes is shown in Equation (5.1) and Equation (5.2). For a bit array pointed to by L, num(L)

returns its size in bits. Correspondingly, ones(L) returns the number of set bits in L. We also refer to an

attribute a of a node v with v.a.

num(v) =

v.left.num+num(v.left.right) if v is not a leaf

num(v.L) otherwise
(5.1)

ones(v) =

v.left.ones+ones(v.left.right) if v is not a leaf

ones(v.L) otherwise
(5.2)

5.2 Queries

All queries are handled in a similar manner. For a dynamic bit vector B, access(B, i) returns the value

of the bit at index i. The operations rankb(B, i) and selectb(B, i) are analogous to static bit vectors.

Unlike with static bit vectors, no separate data structures are required to support select0 and select1. For

access(B, i), we start at the root v. If v.num is less than or equal to i, we descend into the left subtree.

Otherwise, we subtract v.num from i and descend into the right subtree, skipping the bits in the left tree.

Once a leaf is reached, the bit is read with the methods discussed in Section 2.5.1. The procedure is

outlined in Algorithm 5.1. The binary search tree guarantees O(logn) time for traversal, and the bit

array can be read in constant time, making access operations require O(logn) time total.
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Input: index i

Output: rank1(B, i)

1: v← T.root

2: ones← 0

3: while v is not a leaf do
4: if i≤ v.num then
5: v← v.left

6: else
7: i← i− v.num

8: ones← ones+ v.ones

9: v← v.right

10: end if
11: end while
12: return ones+ rank1(v.L, i)

Algorithm 5.2: Operation Rank for a dynamic bit vector [Nav16].

In the case of rank0(B, i), it can once again be computed as i− rank1(B, i). For rank1, we traverse the

tree as with access, but maintain a counter of set bits named ones. If we descend into a right subtree,

we skip the ones from the left subtree, so we add v.ones to ones to compensate. v.L is processed as it

would be in the static case: we can process the array one word at a time using popcount operations. As

the array contains Θ(w2) bits, it can be processed in O(w) steps, making the entire operation take O(w)

time. Algorithm 5.2 shows rank1 in detail.

The operation selectb(B, j) is performed slightly differently. We maintain a counter pos, which repre-

sents the total number of bits skipped in the left subtrees. If j ≤ v.ones, that means the desired bit must

be in the left subtree. Otherwise, the desired bit is in the right subtree, so v.num is added to pos, and

v.ones is subtracted from j. For select0, v.num− v.ones conveniently equals the number of clear bits in

the left subtree, so v.num− v.ones is used for deciding which subtree to descend into. Accordingly, j is

set to j− (v.num− v.ones) instead. Once at a leaf, we look for the j-th 1 or 0. This can once again be

done in O(w) time using popcount operations: we scan v.L word-wise until we come across the word

that contains the desired bit. The final word may then be scanned bitwise, taking a maximum of O(w)

steps. The pseudocode for selectb is shown in Algorithm 5.3.

5.3 Update Operations

Updating a bit vector means deleting, inserting or flipping a bit. Since insertions increase the size of a

leaf, we have to pay special attention to the maximum allowed leaf size. As aforementioned, every leaf

may store up to Θ(w2) bits. We allow the leaf size to be less than 2w2. Regarding deletions that reduce

the leaf size, we require every leaf to contain at least w2/2 bits. This does not need to be adhered if the

whole tree consists of only one root node.
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Input: index j

Output: select0|1(B, j)

1: v← T.root

2: pos← 0

3: while v is not a leaf do
4: if j ≤ {(v.num− v.ones) | v.ones} then
5: v← v.left

6: else
7: j← j−{(v.num− v.ones) | v.ones}
8: pos← pos+ v.num

9: v← v.right

10: end if
11: end while
12: p← select0|1(v.L, j)

13: return pos+ p

Algorithm 5.3: Operation Select for a dynamic bit vector[Nav16].

5.3.1 Inserting a Bit

Given a bit b and an index i for the position, the procedure of inserting can be described as follows: first

of all, we determine the correct leaf to insert into and the position within that leaf as we would in an

access operation. Whenever the left subtree of a node v is visited, the num attribute of the node has to

be increased by one. If the handled bit is set, ones has to be increased by one, too. Arriving at the leaf

into which b is to be inserted, the size of the corresponding bit vector has to be checked. If by inserting

the new bit the maximum leaf size of 2w2 is reached, the respective bit vector has to be split into two

halves. The current leaf gets converted into an inner node and becomes the parent node of two new

leaves: the left child represents the first half of the split bit vector and the right child the second half.

The attributes num and ones must be updated accordingly. The last step of this procedure is checking

whether the tree structure is a balanced AVL tree. If the balance factor is not an element of the set

{1,0,−1}, then the tree has to be rebalanced. Here it is important to adjust the values of num and ones

correctly. If v2 is the right child node of v1, then performing a left rotation requires the following updates

on v2, which now represents the new root: v2.num← v2.num+v1.num and v2.ones← v2.ones+v1.ones.

For a right rotation, let v1 be the left child node of v2. The attributes of v2 are changed as follows:

v2.num← v2.num− v1.num and v2.ones← v2.ones− v1.ones.

Traversing and rebalancing the tree is done in O(logn) time. When inserting a bit into a leaf, all bits

after the insertion point in the leaf must be shifted to the right by one. Since bits are shifted word-wise,

inserting a bit at position i requires O(w) time. As w ≥ logn, we have an upper bound of O(w). The

following gives an overview of the described steps. Hereby the de-/incrementation of both attributes

num and ones is not included.
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1. If i is less than or equal to num, move down to the left node. Otherwise move down to the right

node. Repeat this step recursively until a leaf is reached.

2. After the insertion of the bit b at position i, two cases have to be considered:

• Case 1: The size of the leaf node is less than 2w2. In this case nothing has to be done since

the required maximum size is not violated.

• Case 2: The size of the leaf node is equal to 2w2. In this case, the node has to be split into

two leaves that now represent the left and right child of the current node.

3. Rebalance the tree using one of the rotations mentioned in Section 2.7.2 if the condition described

in Definition 2.7.2 is no longer satisfied. Since a recursive approach is used, every node is exam-

ined after exiting the recursion.

An example of the procedure for inserting a bit is visualized in Figure 5.1.

5.3.2 Deleting a Bit

To delete a bit at position i, the tree is traversed as in the insert operation. If after deletion the leaf size

equals w2/2−1, so that the minimum leaf size of w2/2 is no longer met, a bit needs to be stolen from

another leaf or leaves are merged. The attributes num and ones must be decremented accordingly. It is

only clear after the bit has been determined whether a set or a clear bit is deleted and the corresponding

attributes can only be adjusted afterwards. As in the case of an insertion, the delete operation is imple-

mented using a recursive algorithm. Thus, the attributes can be adapted when leaving the recursion.

The tree has to be rebalanced if necessary. Like the tree traversal, this is done in O(logn) time. As

aforementioned, bits are shifted word-wise. Hence, the overall time complexity again corresponds to

O(w). Given this information, the procedure of the process can be explained:

1. If i is less than or equal to num, move down to the left node. Otherwise move down to the right

node. Repeat this step recursively until a leaf is reached.

2. When deleting a bit at position i, two cases have to be considered:

• Case 1: The size of the leaf node is greater than w2/2. In this case, remove the bit at position

i.

• Case 2: The size of the leaf node is equal to w2/2 and removing a bit results in a size of

w2/2−1. If the current leaf node is a left child, move to the next leaf positioned on the right

side. If the current leaf node is a right child, move to the next leaf positioned on the left.

Here again, two cases are considered:

- Case 2a: The found leaf, which stores a pointer v′.L, has a size greater than w2/2 and

we are able to steal a bit from it. The position to be stolen from depends on the position

of our original leaf node storing v.L. If v.L is a left child, the first bit of v′.L is removed.

On the other hand, if v.L is a right child, the last bit of v′.L is removed and inserted into

v.L.
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0 1 1 0

num = 14

ones = 6

num = 7

ones = 4 

0 1 1 0 0 0 1 0 1 0

0 1 1 0 0 1 1w = 2

insert(10, 1)

(a) Inserting the bit 1 at position 10.

0 1 1 0

num = 15

ones = 7

num = 7

ones = 4 

0 1 1 0 1 00 0 10 0 0 1

1

0 1 1 0 0 1 1w = 2

insert(10, 1)

(b) Go left (10 < num=15), then right (10 > num=7)

0 1 1 0

num = 15

ones = 7

num = 7

ones = 4 

0 1 1 0 1 000 10 1 10 8 ≥ 2w²

0 1 1 0 0 1 1w = 2

insert(10, 1)

(c) After inserting the bit, the maximum leaf size is

reached.

num = 15

ones = 7

num = 7

ones = 4
0 1 1 0 0 1 1

0 1 10 1 1 0

num = 7

ones = 4

1 0 1 0

num = 4

ones = 1

1000

w = 2

insert(10, 1)

(d) The leaf node is split into two leaves.

num = 15

ones = 7

num = 11

ones = 5 
0 1 1 0 0 1 1

0 1 10 1 1 0

num = 7

ones = 4 
1 0 1 0

1000

w = 2

insert(10, 1)

(e) After splitting, balance has to be restored.

num = 11

ones = 5

0 1 1 0 0 1 1

num = 4

ones = 2

1000 1 0 1 00 1 10 1 1 0

num = 7

ones = 4w = 2

insert(10, 1)

(f) Now the tree is balanced.

Figure 5.1: The procedure of inserting a bit into a tree structure.
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- Case 2b: The found leaf node, which stores a pointer v′.L, has a size of w2/2. In this

case, stealing a bit from it is not possible and our leaf, storing v.L, has to be merged

with it by inserting the contents of v.L into v′.L. Since v.L has a size of w2/2− 1, the

final size of the newly created leaf will not exceed 2w2. After merging the two leaves,

the leaf node storing v.L is deleted.

3. Rebalance the tree using one of the rotations mentioned in Section 2.7.2 if the condition described

in Definition 2.7.2 is no longer satisfied. Since a recursive approach is used, every node is exam-

ined after exiting the recursion.

In Figure 5.2, an example of the procedure for deleting a bit is visualized.

5.3.3 Flipping a Bit

The update operation of setting a bit can easily be performed by deleting a bit and then inserting the new

bit at this position. This can be done in O(w) time.

However, it is more efficient to change the bit in one operation and to adjust the attributes accordingly.

If the handled bit is changed from clear to set, the attribute ones has to be incremented. On the other

hand, changing a set bit to a clear bit means decrementing ones. As previously shown in the delete

operation, the way in which the node attributes have to be modified becomes only apparent after finding

the required bit. Therefore, the recursive approach demonstrated in the pseudocodes of bitset and of

bitclear that are listed in Algorithms 5.4 and 5.5 is used.

When calling bitset(v, i), a tree node v is traversed until the leaf which holds position i is reached (lines

1-11). This again is done in O(logn) time. In the case that the bit at position i is set, false is returned,

as no bit had to be changed (lines 12-13). Otherwise, the bit is set to one and true is returned (lines

15-16). In this case, the attribute ones is incremented by one (line 5).

The procedure of bitclear(v, i) is similar to that of bitset: if the bit at position i is a clear bit, false is

returned (lines 12-13). Otherwise, the bit is changed from set to clear and true is returned (lines 15-16).

The attribute ones then is decremented by one (line 5).

Since setting and reading a bit requires only constant time, the overall time complexity of the two

operations corresponds to O(logn).

5.4 Compressed Dynamic Bit Vectors

In this section we examine another variant of dynamic bit vectors, presenting different methods that

allow reducing space usage. This idea of compression is based on the zero-order entropy H0 mentioned

in Section 2.9 and presented in [Nav16, Section 4.1.1]. We start by explaining the basic concept of

compressing bit vectors and finish by applying it to our data structure.
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num = 9

ones = 3

num = 5

ones = 2
0 1 1 1 0

1 0 0 1 0 1 0 0

delete(7)

000

(a) Deleting the bit at position 7.

num = 9

ones = 3

num = 5

ones = 2
0 1 1 1 0

1 0 0 1 0 1 0 0

delete(7)

0

(b) Go left (7 < num=9), then right (7 > num=5)

num = 9

ones = 3

num = 5

ones = 2
0 1 1 1 0

1 0 0 1 0 0

delete(7)

00

(c) After deleting the bit, the minimum leaf size is

violated.

num = 9

ones = 3

num = 5

ones = 2
0 1 1 1 0

1 0 0 1 0 0

delete(7)

00

(d) Therefore a bit from the left neighbor ist stolen.

num = 9

ones = 3

num = 4

ones = 1
0 1 1 1 0

1 0 0 0 0

delete(7)

00 1

(e) After stealing the bit, num and ones are up-

dated.

num = 8

ones = 2

num = 4

ones = 1
0 1 1 1 0

1 0 0 0 0

delete(7)

00 1

(f) The attributes num and ones of the root node

are updated. No balancing is required.

Figure 5.2: The procedure of deleting a bit from a tree structure.
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Input: tree node v and index i

Output: sets the bit at index i below v to one and returns if it changed

1: if v is not a leaf then
2: if i≤ v.num then
3: flipped← bitset(v.left, i)

4: if flipped then
5: v.ones← v.ones+1

6: return flipped

7: end if
8: else
9: return bitset(v.right, i− v.num)

10: end if
11: end if
12: if v.L[i] = 1 then
13: return false

14: end if
15: v.L[i]← 1

16: return true

Algorithm 5.4: Operation Bitset for a dynamic bit vector [Nav16].

5.4.1 Bit Vectors and Zero-Order Compression

Compression in our case affects only the leaves of our tree structure. Therefore, we are concerned with

transforming the leaf bit vectors in such a way that space reduction is guaranteed. However, for this to be

achieved, certain requirements concerning the values of the bit vector must be satisfied: as already stated

in Section 2.9, the lowest possible bound for compressing a bit vector B corresponds to nH0(B) bits. In

the case that B contains about as many ones as zeroes, nH0(B) will be approximately n and space as

well as time will be increased. Consequently, the method described in this section is only recommended

if the following condition is met with respect to a bit array: #ones� #zeroes or #zeroes� #ones.

Transformation of the Bit Vector

To begin, a bit vector B is divided into blocks Bi of length b each, where 0 ≤ i < dn/be. The number

of ones in a block Bi is called the class ci of the block. The number of all possible representations of a

block is described by the binomial coefficient
(b

ci

)
. Thus, each class ci has

(b
ci

)
elements.

5.4.1 Example. Given a block length of b = 8, class c = 1 has eight elements, since
(8

1

)
= 8. There

are eight possible representations of the block: 00000001, 00000010, 00000100, 00001000, 00010000,

00100000, 01000000, 10000000.

Apart from the class ci of a block, there is another important number: the offset oi, with oi <
(b

ci

)
, serves

as an identifier, allowing to identify a block among all possible block variants belonging to a class ci.
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Input: tree node v and index i

Output: sets the bit at index i below v to zero and returns if it changed

1: if v is not a leaf then
2: if i≤ v.num then
3: flipped← bitclear(v.left, i)

4: if flipped then
5: v.ones← v.ones−1

6: return flipped

7: end if
8: else
9: return bitclear(v.right, i− v.num)

10: end if
11: end if
12: if v.L[i] = 0 then
13: return false

14: end if
15: v.L[i]← 0

16: return true

Algorithm 5.5: Operation Bitclear for a dynamic bit vector [Nav16].

Each offset oi requires
⌈

log
(b

ci

)⌉
bits to store. The more balanced the ratio between the number of ones

and the number of zeroes is, the larger the offset becomes. A ratio of 0.5 represents the worst case.

Encoding and Decoding Methods

In order to obtain the class and offset representations of a bit block, we employ a method to convert each

block of the bit vector. However, it is also essential to be able to reconvert the classes and offsets into

the previous form of the block.

The two algorithms for encoding bit blocks and decoding classes and offsets are shown in Algorithm 5.6

and Algorithm 5.7. Both algorithms make use of a global two-dimensional table K, which consists of

precomputed binomial coefficients and is defined as follows:

K[i][ j] =
(

i
j

)
∀ i, j . 0≤ i≤ b∧0≤ j ≤ b (5.3)

The space used by table K adds up to b2 integers, the time required by each algorithm meets O(b).

The idea behind Algorithm 5.6 can be explained as follows: since it suffices to count the ones in the

given block in order to obtain the classes (line 4), the focus lies on computing the offset values. Offsets

are assigned to classes in increasing order of the block integers. There exist
(b−1

c

)
bit blocks that start

with zero, followed by
(b−1

c−1

)
blocks that start with one. Using this information, we start with setting

offset o to zero (line 7) and check if the first bit of the block corresponds to one (line 11). If this is the
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Input: bit array B[1,b] (an integer), block length b

Output: pair (c,o) which encodes B

1: c← 0

2: for j← 1 to b do
3: if B[ j] = 1 then
4: c← c+1

5: end if
6: end for
7: o← 0

8: c′← c

9: j← 1

10: while 0 < c′ ≤ b− j do
11: if B[ j] = 1 then
12: o← o+K[b− j][c′]

13: c′← c′−1

14: end if
15: j← j+1

16: end while
17: return (c,o)

Algorithm 5.6: Operation Encode for a dynamic bit vector [Nav16].

case, we add
(b−1

c

)
to offset o, skipping over all offset values that belong to blocks which start with zero

(line 12). If the first bit of the block corresponds to zero, we do not perform any modifications on o.

Algorithm 5.7 employs the mechanism of encode, but in the reverse direction. If the condition o≥
(b−1

c

)
(line 4) is not true, then the block starts with zero and a decremented b is used for the next iteration step

to consider the succeeding bits. On the other hand, if o≥
(b−1

c

)
holds, then the current block starts with

one and lines 5-7 are executed, setting the bit to one (line 5) and reducing the offset (line 6) as well as

the class (line 7) to continue with the rest of the block.

Encoding and Decoding in Constant Time

In order to decode an offset in constant time, a lookup table Tc can be used storing all b block integers

that belong to class c, as well as their corresponding offset values. Table T consists of all tables Tc

regarding a block length b. As table Tc contains
(b

c

)
entries, the overall number of entries of T add up

to ∑
b
c=0
(b

c

)
= 2b. Consequently, depending on the value chosen for b, storing every single table Tc can

increase space usage.

In Table 5.1 an excerpt of table T with respect to a block length of b = 4 is shown, demonstrating the

two tables T0 and T1 . Here the rows represent the classes and the columns represent the offsets, such

that each line stands for a table Tc. For example, obtaining the corresponding block of class c = 1 and

offset o = 2 would mean calling T [1][2] = 0100.
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Input: class c, offset o, block length b

Output: bit array B (an integer) decoding (c,o)

1: B← 0

2: j← 1

3: while c > 0 do
4: if o≥ K[b− j][c] then
5: B[ j]← 1

6: o← o−K[b− j][c]

7: c← c−1

8: end if
9: j← j+1

10: end while
11: return B

Algorithm 5.7: Operation Decode for a dynamic bit vector [Nav16].

offset
0 1 2 3 · · ·

0 0000

cl
as

s

1 0001 0010 0100 1000
... · · · · · · · · · · · · · · ·

Table 5.1: Table T containing tables T0 and T1, with b = 4

For encoding an offset in constant time, a table similar to table T can be used, storing the blocks as keys

to identify their associated offsets.

5.4.2 Application

When applying the compression scheme to our data structure, the attributes num and ones remain un-

changed. Traversing the tree until a leaf is reached is still accomplished in O(logn) time, the process of

rebalancing the AVL tree continues to be executed. Each leaf vector is divided into blocks. As a result,

the leaves of our compressed data structure no longer consist of bit vectors, but of class components

c and offset components o describing the blocks of a bit vector. When trying to access or modify the

tree, decoding a pair (c,o) is always necessary. By this means, accesses and modifications of the data

structure like getting or deleting a bit can still be performed.

The minimum and maximum leaf sizes are still defined in terms of bits represented, not physical bits

used. Consequently, the space used corresponds to O(n/w)+nH0(B)+o(n) bits.

45



class c 0 1 2 3 4 5 6 7 8

L[c] 0 3 5 6 7 6 5 3 0

Table 5.2: Table L for a block length of b = 8

num = 16
ones = 3

num = 8
ones = 2

10000010 00000100

num = 16
ones = 5

num = 8
ones = 2

00001010 00001011

10000001

Figure 5.3: Example for an uncompressed dynamic bit vector with
B = 10000010 00000100 00001010 00001011 10000001 [Nav16].

As shown in Section 5.4.1, the amount of bits required for representing an offset plays a crucial role in

achieving compression, as it can vary significantly. Here a lookup table L can be employed containing

the number of bits required for representing an offset oi in dependence of a class ci:

|oi|= L[ci] =

⌈
log
(

b
ci

)⌉
. (5.4)

Table 5.2 shows table L for a block length of b = 8 and all corresponding classes 0≤ c≤ b. Obviously,

the value of L[c] tends to be larger the closer c is to the middle.

If the block length b corresponds to Θ(w) bits, a leaf is divided into O(w) = O(b) blocks. Get, rank

and select operations require traversing the O(w) class elements and decoding only one offset element

in O(w) time. On the other hand, performing the update operations insert and delete is less efficient.

When inserting or deleting a bit at a certain position, we must decode all the following blocks, update

the position and finally re-encode all the decoded blocks. As this is done bitwise, the required time

corresponds to O(w2).

Figure 5.3 illustrates an example for an uncompressed dynamic bit vector, while Figure 5.4 shows the

compressed variant of the same tree.
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num = 16
ones = 3

num = 8
ones = 2

(1,3)(1,1) (0,0)(1,2)

num = 16
ones = 5

num = 8
ones = 2

(0,0)(2,4) (0,0)(3,1)

(1,3)(1,0)

Figure 5.4: Example for a compressed dynamic bit vector, with
B = 10000010 00000100 00001010 00001011 10000001 and b = 4 [Nav16].

5.5 Implementation

We use an AVL tree (see Section 2.7) to ensure that the binary search tree remains balanced. Each

leaf may hold no more than 2w2− 1 bits and must hold at least w2/2 bits. As a leaf grows above its

maximum size with repeated insertions, we split the leaf as described in Section 5.3. We also perform a

tree rotation if necessary. Correspondingly, two adjacent leaves are merged if they are both smaller than

w2/2 bits. As w is 64 bits on modern systems, this puts the maximum and minimum leaf sizes at 8191

and 2048 bits, respectively.

5.5.1 Construction

Trees are constructed in a bottom-up manner, as described in Section 5.1. We first divide a static bit

vector into leaves that are of size w2 bits. If the final leaf contains less than w2 bits, it is merged with the

previous leaf to ensure that no leaf is smaller than the minimum leaf size. Let z = bn/w2c be the number

of leaves that make up the new bit vector. To ensure that the tree is balanced, the tree is constructed in

a heap-like structure, where the first 2(z−2blogzc) leaves are placed one level lower than the remaining

leaves. Then, any two adjacent leaves are merged by creating a common predecessor one layer above.

This process repeats until we arrive at the root.

It is also possible to construct a tree based on given pre-built leaves. Here we start at the bottom,

recursively building the tree until we reach the top. However, the condition must be satisfied for the total

number of given leaves to be equal to a power of two, so that the construction results in a full tree.

5.5.2 Uncompressed Leaves

For space usage, uncompressed leaves are managed by a custom-built class that is internally backed by

a std::vector<uint64_t>. Every bit we store is assigned to one bit of a uint64_t. When reading
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or writing a bit, we use the methods discussed in Section 2.5.1, first finding the correct word in the

std::vector and then finding and reading the correct bit in the word. Insertions are handled by finding

the affected bit using the same procedure, then inserting the bit into the word. All subsequent words are

shifted to the right by one bit, and an extra word is appended to the std::vector if necessary. Deletions

are handled analogously, shifting to the left and truncating the vector if necessary. This ensures insertions

and deletions are carried out in O(w) time. For rank and select operations, we process the vector word-

wise, using the popcount and count leading zeroes instructions discussed in Sections 2.5.2 and 2.5.3

which also results in O(w) time.

5.5.3 Compressed Leaves

In the case of compressed bit vectors, the data structure for the leaf changes: For maintaining the se-

quence of classes, we use a int_vector (see Section 4.1). For offsets, we use a purpose-built class

called var_vector. A var_vector is a (static) bit vector which permits setting or reading up to b bits

at once at any bit position. It too is backed by a std::vector<uint64_t>.

When encoding or decoding, we make use of a global lookup table consisting of binomial coefficients( i
j

)
, where 0 ≤ i ≤ b and 0 ≤ j ≤ b with b being the size of each block (see table K of Equation (5.3)).

We choose a block size of 64.

For access operations, we must decode a block from the class and offset vectors of a leaf. The correct

class in the class vector can be straightforwardly computed by dividing the bit position within the leaf

by the block size. Finding the right offset however requires determining the correct bit position in the

offset vector, which can only be computed by iterating through all classes up to the desired class.

Access operations therefore require O(w) time to carry out. Further, if a bit is changed, the class and

offset of its block change, which means all subsequent offsets in the offset vector need to be rewritten into

the vector at a new bit position. In order to obtain the number of bits used for an offset, we implement

the table of Equation (5.4) as a global lookup table.

With insertions, we decode all blocks from the insertion point into a temporary bit vector, which is pro-

cessed word-wise in O(w) time, as in the uncompressed case. The same procedure applies to deletions.

As any block requires O(w) time to decode, the total runtime of insertions and deletions is O(w2). How-

ever, for certain very unbalanced blocks, we store pre-calculated results in global lookup tables, reducing

the decoding and encoding time for those blocks to O(1). Specifically, if a block contains less than 3 set

bits, or more than 61 set bits, we delegate to a lookup table. As these blocks also compress well, this is

a fitting combination. For decoding in constant time, we employ table T described in Section 5.4.1, for

encoding in constant time, we use a table similar to T , but consisting of blocks and their corresponding

offsets. In contrast to the rest of the work, we do not use a data structure of std for the latter table, but

represent it with a robin_hood::unordered_map (see Section 3.1.1). In this way we ensure an even

more efficient time.

To solve rank, we can read the number of bits in a block directly from its class, leaving us with decoding

the final block and counting its bits using a popcount operation. Similarly, to solve select, we can quickly

iterate through blocks by summing the number of ones or zeroes from their respective class indices, then
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decoding the final word, similar to the uncompressed case. As a result, both rank and select require

O(w) time.

5.5.4 Further Remarks on Space Usage

The use of std::vector<uint64_t> incurs some space overhead, as a std::vector may store addi-

tional attributes which are not strictly required for our purposes: In typical implementations, a vector

holds three attributes of 8 bytes each, amounting to 24 bytes per std::vector. We also maintain a

count of the bits in the leaf. Further, each node stores its own height to allow for testing if the AVL tree

needs balancing. Additionally, we always store distinct pointers for the left and right children as well

as a pointer to a leaf, regardless of whether a node represents a leaf or not. The attributes num, ones,

left and right are unused if the node is a leaf, and L is unused otherwise, incurring more space overhead.

We deem the trade-off to be acceptable, although further space savings could be achieved with using

separate inner node and leaf types, as well as using a specialized data structure instead of std::vector.

For compressed vectors, the space required is governed by the class vector and the offset vector. As both

use a std::vector, the space overhead described above applies to them as well. Both vectors must

also manage some attributes of their own. In total, the int_vector requires 48 bytes of storage, and the

var_vector requires 32 bytes of storage. We investigate the space requirements of both data structures

in detail in Section 5.6.

5.6 Benchmarks

When testing the data structures, we focus on measuring the construction time as well as on testing the

efficiency of the functions delete, insert, get, set, rank and select. For all operations, we measure the

throughput as bits processed per second. We measured all operations on bit vectors of different sizes,

starting at a minimum of 216 bits, and reaching 234 bits as a maximum size.

We compare our data structures against Nicola Prezza’s DYNAMIC library [Pre17], which is freely

available online1. DYNAMIC offers two kinds of dynamic bit vectors which we compare against. One,

Succinct_Bitvector, is based on searchable partial sums, while the other, Gap_Bitvector, is based on a

gap encoding (see Section 2.11) of set bits in the bit vector. Both data structures offer functionality for

all the standard operations, i.e. set, get, insert, delete, rank and select, making them suitable to compare

to our bit vectors.

We refer to the ratio of set bits to the number of total bits in a bit vector as its fill rate. Unless otherwise

noted, we assume an evenly distributed vector, i.e. a fill rate of 0.5. As mentioned in Section 5.5, for

compressed bit vectors, we make use of pre-calculated lookup tables for very sparse and very dense

blocks. Because of this, the performance of compressed bit vectors is highly subject to the fill rate. We

will therefore examine the performance of the compressed bit vector for different fill rates in more detail

in Section 5.6.4. We will also compare its performance to that of the gap bit vector, as it also exhibits

different performance characteristics with different fill rates.

1https://github.com/xxsds/DYNAMIC
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Figure 5.5: The space usage of the four tested bit vectors for a fill rate of 0.001. On the x axis, the size of
the bit vector is displayed, while the y axis shows the number of bits required to encode one bit of information.
For example, a factor of 2 would mean that to store 10 bits of information, the data structure requires 20 bits of
memory. We see that for such a sparsely populated bit vector, the compressed bit vectors massively outperform
the static succinct bit vector and our uncompressed bit vector.

5.6.1 Construction

First we examine the overall space usage of the different bit vectors. The resulting plots are displayed

in Figures 5.5 to 5.7 for the fill rates of 0.001, 0.5 and 0.999, respectively. We note that for a low fill

rate of 0.001, the gap bit vector of Nicola Prezza performs extremely well, which is expected, as it has

only few bits to encode. Overall, it requires only 0.02 physical bits to encode 1 bit of information.

Our compressed bit vector still offers a significant improvement over the other two implementations,

as it uses 0.48 physical bits per stored bit for such a sparse arrangement. Nicola Prezza’s succinct bit

vector performs slightly better than our bit vector, using 1.13 physical bits per stored bit, whereas our

uncompressed bit vector requires 1.25 physical bits per stored bit.

With an even distribution of bits, the performance of the compressed bit vector and Prezza’s gap bit

vector degrade strongly, while the other two data structures are not affected by the change in fill rate.

The compressed bit vector now requires 1.42 physical bits of space per stored bit, whereas the gap bit

vector now requires 4.62 physical bits per stored bit. All in all, we can see that our compressed bit vector

still offers a reasonable space usage for such an evenly distributed bit vector, whereas the performance

of the gap bit vector is unacceptable.

If the bit vector is very densely filled, the performance of the gap bit vector degrades even more. For a

fill rate of 0.999, it requires 5.46 physical bits of space, whereas our compressed bit vector once more

offers excellent space usage. However, if the distribution of bits is known in advance, the bit vector can

easily be inverted to take advantage of the gap bit vector’s improved performance again.
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Figure 5.6: The space usage of the four tested bit vectors for a fill rate of 0.5, analogous to Figure 5.5. For such
very evenly distributed data, the compressed bit vector and the gap bit vector perform worse than the other two bit
vectors.

16 18 20 22 24 26 28 30 32 34
0

1

2

3

4

5

Element Count [log]

Ph
ys

ic
al

B
its

pe
rS

to
re

d
B

it

DBV Space Usage, compared with DYNAMIC (Fill Rate: 0.999)

Uncompressed
Compressed
DYNAMIC_Succinct_Bitvector
DYNAMIC_Gap_Bitvector

Figure 5.7: The space usage of the four tested bit vectors for a fill rate of 0.999, analogous to Figure 5.5. The
gap bit vector performs worst, though if the distribution is known beforehand, the bits can simply be inverted. The
compressed bit vector benefits from a very uneven distribution, allowing it to use the least space of all vectors.
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Figure 5.8: The construction time for the four bit vectors, measured by their throughput. The y axis shows bits
per second.

We now turn our attention to the construction time of the bit vectors. The results are shown in Figure 5.8.

For a size of 234 bits, the uncompressed bit vector can be constructed at 93.50 MBit/s, while construc-

tion of the compressed bit vector is somewhat slower at 70.81 MBit/s. The succinct bit vector can be

constructed by appending one word of 64 bits at a time, making it by far the fastest of the four data

structures to construct, at 906.97 MBit/s. The gap bit vector exhibits by far the weakest performance. It

can be constructed at just 1.05 MBit/s. In summary, the succinct bit vector takes significant advantage

of inserting multiple bits at a time, whereas the gap bit vector is not fast to construct whatsoever. Our bit

vectors perform much better than the gap bit vector, but lag behind the succinct bit vector’s word-wise

construction.

5.6.2 Access

For get, the results are shown in Figure 5.9. We can see that performance of the uncompressed bit vector

decreases as the number of bits increase. Overall, performance bottoms out at 831.31 KBit/s. Prezza’s

succinct bit vector performs better, and even at 234 bits, still manages to achieve 1.42 MBit/s. Both

the compressed bit vector and the gap bit vector perform worse than the other two. The compressed

bit vector performs better than the gap bit vector however, achieving 514.97 KBit/s, while the gap bit

vector accomplishes only 253.72 KBit/s. We also note that the difference between the compressed and

the uncompressed vector is very large for smaller inputs, but gradually becomes smaller as the number

of bits increases. This is probably because processing a leaf takes long in the compressed bit vector

compared to navigating the tree, whereas for larger trees, the cost of finding the right leaf becomes

larger for both vectors.

The results for rank1 are shown in Figure 5.10. We see similar performance characteristics to get, albeit

the total performance is somewhat lower. Unlike with get, the uncompressed bit vector performs fastest

52



for small input sizes, but is overtaken by the succinct bit vector at 218 bits. The uncompressed bit vector

exhibits a throughput of 977.13 KBit/s at 234 bits, whereas the compressed bit vector can only achieve

622.04 KBit/s. The succinct bit vector once again performs better at 1.36 MBit/s, while the gap bit

vector once again performs worst, at only 419.50 KBit/s.

For select, the performance for evenly distributed bit vectors is very similar between select0 and select1.

The results are visualized in Figure 5.11. For small inputs, the uncompressed bit vector performs best,

but as the input size approaches 234, the data structures begin to perform closer to each other: The

uncompressed bit vector and the succinct bit vector are nearly equal to each other, at 752.23 and 762.99

KBit/s, respectively. The compressed bit vector is slightly worse, at 555.69 KBit/s, and once more, the

gap bit vector performs worst of all at 430.14 KBit/s.

5.6.3 Modify

We will now look at operations which modify the bit vector. First off, the results for set are shown in

Figure 5.12. For smaller inputs, the uncompressed bit vector performs best, but it is again overtaken by

the succinct bit vector: At a size of 234 bits, the uncompressed bit vector exhibits a throughput of 844.20

KBit/s, while the succinct bit vector accomplishes 1.08 MBit/s. The compressed bit vector still achieves

448.54 KBit/s, whereas the gap bit vector significantly lags behind at only 7.20 KBit/s.

The results for insert are shown in Figure 5.13. The uncompressed bit vector performs much better here

than the others, but its performance once more evens out at higher input sizes. All in all, at 234 bits,

the uncompressed bit vector can perform insertions at 470.94 KBit/s, followed by the succinct bit vector

at 349.72 KBit/s. The gap bit vector is next, at 227.85 KBit/s. The weakest performance is from the

compressed bit vector, at 26.81 KBit/s. This is likely caused by the need to decompress and recompress

each block in a leaf.

In the case of deletion, the bit vectors of DYNAMIC perform notably worse. At 234 bits, the performance

of the uncompressed bit vector is even better than with insertions, at 550.72 KBit/s. The compressed bit

vector performs similar to before, at 27.65 KBit/s, also surpassing the throughput of insert. The gap bit

vector struggles with deletion, at 7.52 Kbit/s. Worse yet, the succinct bit vector can only delete 43 bits

per second.

In summary, for access queries Prezza’s succinct bit vector performs slightly better than our uncom-

pressed bit vector, while also having a slightly lower space requirement. The compressed bit vector

typically performs worse, whereas the gap bit vector performs worse than any of the others, with the

exception of insertions, where the compressed bit vector performs worse. While the succinct bit vector

can be constructed very fast thanks to its word-wise insertion, the gap bit vector struggles, while our

two bit vectors are in the middle. Both the succinct bit vector and the gap bit vector have very poor

performance for deletions, making our bit vectors better at erasing for large vector sizes. As mentioned,

all performance benchmarks were done assuming a fill rate of 0.5. Next up, we will examine the per-

formance of the compressed dynamic bit vector and the gap bit vector in more detail for different fill

rates.
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Figure 5.9: The query time for get for the four bit vectors, measured by their throughput. The y axis shows bits
per second.
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Figure 5.10: The query time for rank1 for the four bit vectors, measured by their throughput. The y axis shows
bits per second.
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Figure 5.11: The query time for select1 for the four bit vectors, measured by their throughput. The y axis shows
bits per second.
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Figure 5.12: The query time for set for the four bit vectors, measured by their throughput. The y axis shows bits
set per second.
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Figure 5.13: The query time for insert for the four bit vectors, measured by their throughput. The y axis shows
bits added per second.
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Figure 5.14: The query time for delete for the four bit vectors, measured by their throughput. The y axis shows
bits removed per second.
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5.6.4 Performance of Compressed Bit Vectors and Gap Bit Vectors

In this section, the performance of the compressed dynamic bit vector is compared to the performance

of DYNAMIC’s gap bit vector for fill rates of 0.001, 0.999 and 0.5. Since there are methods of the gap

bit vector that behave differently for different fill rates, it is chosen as an object of comparison.

Figure 5.15 illustrates the construction time of the compressed bit vector compared to the construction

time of the gap bit vector. For all fill rates, the compressed vector performs considerably better than the

gap bit vector, reaching a peak at a throughput of 212.12 MBit/s for fill rate 0.001 and 204.02 MBit/s

for fill rate 0.999. A balanced distribution of bits leads to a throughput of about 71 MBit/s. The strong

performance of the first two fill rates can be explained as follows: as aforementioned, we employ lookup

tables for certain values of class c, enabling decoding and encoding in constant time. Hence, when

constructing our data structure, time performance depends on the number of set bits.

On the other hand, the overall construction time of the gap bit vector does not change significantly for

fill rates of 0.999 and 0.5. Here, the performance of both cases does not exceed 1.7 MBit/s. The curve

of fill rate 0.001 shows a better performance with a maximum throughput of 21.35 MBit/s at a size of

216 bits.

Figure 5.16 visualizes the results for rank0. As in the previous case, the compressed bit vectors with

fill rates of 0.001 and 0.999 perform remarkably better than those containing evenly distributed bits.

Nonetheless, as the size of the bit vector increases, the performance degrades, exhibiting a throughput

of about 900 KBit/s at a size of 234 after reaching a throughput of 4.33 MBit/s (fill rate 0.001) and 4.26

MBit/s (fill rate 0.999) at a size of 216.

The gap bit vector clearly reveals a poorer performance. However, the course of the curves is similar

to the compressed vector: both sparse and dense bit vectors reach a peak at a size of 216 with 2.71

MBit/s for a fill rate of 0.001 and 2.42 MBit/s for a fill rate of 0.999. At size 234, fill rate 0.001 leads to

644.95 KBit/s and fill rate 0.999 shows 377.29 KBit/s. As in the case of the compressed bit vector, the

performance worsens for a fill rate of 0.5.

Figure 5.17 presents the results for select0, while Figure 5.18 illustrates the results for select1.

In the case of compressed bit vectors, select0 yields the best performance for densely populated vectors

with a throughput of 6.26 MBit/s at a size of 216. On the other hand, select1 performs best for sparsely

populated vectors at size 216 with a throughput of 7.21 MBit/s. The larger the vector size becomes, the

lower the throughput is. Both operations show similar results for a fill rate of 0.5: at size 216 select0

leads to 1.67 MBit/s and select1 yields 1.72 MBit/s, at size 234 select0 yields 553.05 KBit/s and select1

leads to 555.69 KBit/s.

Generally, the compressed vector again shows an overall better performance than the gap bit vector

for both operations select0 and select1. For a fill rate of 0.001, the gap bit vector reaches a peak of

2.72 MBit/s for select0 and 3 MBit/s for select1 at the minimum vector size. With increasing size, the

throughput decreases, and the curve of 0.001 levels out at a size of 218. Only for the operation select1

and a fill rate of 0.999 the gap bit vector performs better than the compressed vector at sizes 216 (17.73

MBit/s), 218 (11.64 MBit/s) and 219 (9.54 MBit/s).
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The results for insert (Figure 5.19) once again display the slow performance of compressed vectors for

evenly distributed bit vectors with an overall throughput of about 28 KBit/s. In contrast, fill rates 0.001

and 0.999 peak at a vector size of 223 and 224, respectively, yielding a throughput of 463.05 KBit/s and

387.01 KBit/s.

For a fill rate of 0.5, the performance of the gap bit vector is similar to fill rates of 0.001 and 0.999

with a throughput of 360.86 KBit/s at size 216. Also, the gap bit vector performs better than the com-

pressed vector for a balanced distribution of bits. Regarding very dense and very sparse bit vectors, the

compressed vector yields better results for sizes 221 to 228.

The query time for delete is visualized in Figure 5.20. Both data structures show the poorest perfor-

mance for a fill rate of 0.5. For a fill rate of 0.999, the compressed vector consistently displays a better

performance than the gap bit vector.

To conclude, in all cases the compressed vector achieves a lower throughput for a fill rate of 0.5. The

same holds for the gap bit vector, except for construction and insertion, where it does not reveal any

significantly slower performance for evenly distributed vectors.

5.6.5 Space Usage of Compressed Dynamic Bit Vectors

Now we move on to analyse the space usage of compressed dynamic bit vectors regarding different

values for block size b and compare the results against our uncompressed data structure.

Figure 5.21 presents the results for a bit vector of 224 bits, or 16 megabits. Apart from a block size of

b = 64, which we use in our implementation, we measure the space usage for b = 32 and b = 16.

While the size of the uncompressed bit vector approximately corresponds to 21 megabits of physical

space, the used space of the compressed bit vector varies in dependence of the values for the H0 entropy.

For all three block lengths, the required size reaches its minimum when the block is either very sparsely

or very densely populated. Here, block length b = 64 shows the best results with a size of about 7.86

megabits at an entropy of H0 = 0 and H0 = 1. Block lengths b = 32 and b = 16 yield similar sizes

requiring 9.17 and 11.27 megabits respectively for memory storage.

As the entropy converges towards a value of H0 = 0.5, space usage of the compressed bit vector in-

creases significantly. The course of the curves of the block lengths is similar to the binary entropy

visualized in Figure 2.7.

Among all three block lengths, the block consisting of 64 bits leads to the overall best results. Thus, the

larger the value of b, the higher the space reduction is.

5.7 Further Work

As seen in the benchmark plots, the compressed bit vector shows deviating results, yielding an overall

good performance for dense or sparse blocks, but performing less well for an even distribution of bits.

A potential improvement could be allowing encoding and decoding in constant time even for a fill rate

of 0.5. This can be accomplished by including all possible values for class c in our global lookup tables.

However, as this will place a significant load on the memory, ways need to be found to improve time
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Figure 5.15: The construction time of the compressed dynamic bit vector and the gap bit vector regarding different
fill rates. The y axis shows bits per second. For all fill rates, the compressed vector performs better than the gap
bit vector.
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Figure 5.16: The query time for rank0 of the compressed bit vector and the gap bit vector regarding different
fill rates. The y axis shows bits per second. The measured throughput for fill rates 0.001 and 0.999 shows better
results than the throughput for a fill rate of 0.5.

60



16 18 20 22 24 26 28 30 32 34

1

2

3

4

Element Count [log]

M
B

it/
s

Compressed,fill_rate=0.001
DYNAMIC_Gap_Bitvector,fill_rate=0.001

16 18 20 22 24 26 28 30 32 34
0

2

4

6

Element Count [log]

M
B

it/
s

Compressed,fill_rate=0.999
DYNAMIC_Gap_Bitvector,fill_rate=0.999

16 18 20 22 24 26 28 30 32 34

0.5

1

1.5

Element Count [log]

M
B

it/
s

Compressed,fill_rate=0.5
DYNAMIC_Gap_Bitvector,fill_rate=0.5

Figure 5.17: The query time for select0 of the compressed bit vector and the gap bit vector regarding different fill
rates. The y axis shows bits per second. For all fill rates, the compressed vector shows a better performance than
the gap bit vector.

61



16 18 20 22 24 26 28 30 32 34
0

2

4

6

Element Count [log]

M
B

it/
s

Compressed,fill_rate=0.001
DYNAMIC_Gap_Bitvector,fill_rate=0.001

16 18 20 22 24 26 28 30 32 34

0

5

10

15

Element Count [log]

M
B

it/
s

Compressed,fill_rate=0.999
DYNAMIC_Gap_Bitvector,fill_rate=0.999

16 18 20 22 24 26 28 30 32 34

0.5

1

1.5

Element Count [log]

M
B

it/
s

Compressed,fill_rate=0.5
DYNAMIC_Gap_Bitvector,fill_rate=0.5

Figure 5.18: The query time for select1 of the compressed bit vector and the gap bit vector regarding different fill
rates. The y axis shows bits per second. For fill rates of 0.5 and 0.001 the compressed vector performs better than
the gap bit vector. For a fill rate of 0.999 the gap bit vector shows a better performance at sizes 216, 218 and 219.
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Figure 5.19: The query time for insert of the compressed bit vector and the gap bit vector regarding different fill
rates. The y axis shows bits per second. The performance of the compressed vector clearly drops for a fill rate of
0.5, while a balanced distribution of bits does not worsen the performance of the gap bit vector.
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Figure 5.20: The query time for delete of the compressed bit vector and the gap bit vector regarding different fill
rates. The y axis shows bits per second. For a fill rate of 0.999, the compressed vector performs better than the
gap bit vector. Both data structures show the poorest performance for a fill rate of 0.5.
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Figure 5.21: The space usage of the compressed and uncompressed dynamic bit vector for a vector size of 16
megabits. The size of the compressed bit vector is measured using different values for block size b. The x axis
describes the H0 entropy, which is the percentage of set bits per block of length b. The y axis displays the number
of megabits used for memory storage. The compressed bit vector is more space efficient than the uncompressed
bit vector as long as the bit block is either very sparsely or very densely populated.

efficiency without increasing space usage.

Another important point to mention is the result visualized in the very last plot, Figure 5.21. Apparently,

the larger the value for block length b, the less space will be used. Since we store various lookup tables

in the background, limits were set on determining a suitable value for b. The block length of 64 could

be replaced by a higher number as long as possibilities are found for representing the employed global

lookup tables in a space efficient way.

The overall strong performance of the uncompressed bit vector degrades as the number of bits increases.

Thus, finding a way to traverse the tree structure more efficiently could be a good starting point for a

further optimization. Since we only used an AVL tree in our implementation, which requires rebalancing

the tree, other data structures for representing a tree storing dynamic bit vectors can be tested.
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Chapter 6

Grammar-Compressed Strings

A computer program often has to work on long sequences of symbols. In many applications, for instance

analysing parts of DNA, these strings are too long to be stored explicitly, but it is often still needed to

access any part of the string and to be able to answer certain queries. Therefore, the compression of

strings has been a vivid research topic in the past.

In this chapter, we present a succinct compression of strings based on grammars. We first describe how

to construct a special type of grammar, the so-called straight line program, representing a given string.

Then, we show a way to store such a grammar space optimally.

In Section 6.3, we describe how some basic operations on strings can be realized using our compression.

The operations that our representation of a string S supports are:

• size(): returns the size of S,

• access(i): returns S[i],

• contains(s): returns whether s is a substring of S, and

• lce(i, j): returns the largest k with S[i . . .(i+k)] = S[ j . . .( j+k)], computing the longest common

extension of i and j.

Afterwards, in Section 6.4, we elaborate on some details of our implementation and in Section 6.5, we

see the results of our benchmarks. We analyse in which cases our implementation is useful in practice

and what could be improved in further research.

6.1 Preliminaries

We use some other terms and operations concerning strings that need to be defined. We call a substring

with more than one occurrence repeat. If any word w ∈ Σ∗ (see Section 2.2) is added to the substring

s in the form of ws or sw, we call that a left or right extension. The maximal extension of a substring

is the substring that can not be extended any further without decreasing the frequency of the substring.

If all other extensions occur less often, this maximal extension is called a maximal repeat. For the

text T = abracadabra the substring abra is a maximal repeat, br, however, is not, because it can be
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extended to the left (abr) or right (bra) side without decreasing the frequency.

A big part of our work relies on grammar compression. Therefore, we first discuss grammars. In the

following, we use the definitions from [TTS13]. A context free grammar (CFG) is a 4-tuple G with

G = {X ,Σ,Xstart,R}. The set X is an ordered set of variables, which we use to define R, a finite set

of binary relations called production rules. The set Σ is the ordered finite alphabet storing the characters

of the text and Xstart ∈X is the start variable from which the whole text can be (re-)constructed. The

production rules define how the variables are substituted and have the form X→ α with X ∈X and α ∈
(X ∪Σ)∗. A tuple Ĝ = {X̂ , Σ̂, R̂, X̂start} is called subgrammar of G if X̂ ⊆X , Σ̂⊆X ∪Σ and R̂⊆ R.

Grammar compression is the name for a CFG that produces exactly one given text and is therefore

lossless and deterministic. To ensure determinism, for every variable v at most one production rule of

the form v→α exists. The language L(G) generated by the grammar contains only the text and therefore

|L(G)| = 1 holds. From now on, we assume that all grammars are deterministic and only contain rules

of the form Xi→ σ with σ ∈ Σ or Xi→ X j1X j2 . . .X jn , where i > jk for all 1≤ k ≤ n, n ∈ N.

We use grammars to efficiently compress texts. The quality of such a compression is determined by the

size of the grammar, meaning the number of its variables and symbols on the right sides of its production

rules. An important specialization of context free grammars are straight line programs (SLPs):

6.1.1 Definition. Straight line programs are grammars with the following properties:

1. X = {X1, . . . ,Xn} is a countable set of variables,

2. for every variable Xi, exactly one rule of the form Xi→ α with α ∈ (X ∪Σ)∗ exists,

3. |L(G)|= 1, and

4. every rule has the form Xi→ σ for any σ ∈ Σ or Xi→ X jXk with 1≤ j,k ≤ i≤ |X |.

Straight line programs can be represented as graphs that can be constructed as follows: we initialize

X ∪ Σ as the set of vertices. For every rule Xi → X jXk, two edges (Xi,X j) (called a left edge) and

(Xi,Xk) (right edge) are added to the graph for the left and right side of the rule. For every rule following

the pattern Xi→ σ we add the edge (Xi,σ). The vertices from Σ are connected to an additional vertex

s. If all edges of this graph are inverted (meaning we replace an edge (i, j) with the edge ( j, i)) and then

remove all left edges or all right edges respectively, the resulting graph is a tree with s as the root.

Figure 6.1 shows a SLP for the string abab and its representation as a graph.

A naive approach to store a SLP, called dictionary, uses an array D of length 2n. For a rule Xi→ X jXk in

the SLP, D[2i−1] := j and D[2i] := k are set. For Xi→ σ for σ ∈ Σ, we set D[2i−1] = D[2i] = 0. This

approach uses 2ndlogne bits of space. For an index k, the rule Xk→ XiX j can then be found in constant

time. Of course, if the string uses an alphabet that does not have the form {1, . . . ,m}, we need to store

the original symbols and their corresponding rule numbers explicitly to restore the original string.

We further use rank and select queries on strings over arbitrary alphabets, as defined in Section 2.8.

67



SLP:

X1→ a,

X2→ b,

X3→ X1X2,

X4→ X2X3,

X5→ X1X4

stored in array (dictionary):
1 2 3 4 5 6 7 8 9 10

0 0 0 0 1 2 2 3 1 4

X5

X4

X3X2

X1

b a

s

Figure 6.1: A straight line program for the string abab and its representations as graph and dictionary

6.2 Construction

In this section, we will describe how to construct a SLP representing a given string and how to store that

SLP efficiently.

6.2.1 Constructing the SLP

As first step, the given string has to be transformed into a CFG that is deterministic and lossless. We are

using RePair [LM00] to achieve this in linear time. RePair looks for the most common pair of symbols

in the given text S ∈ Σ∗ and creates a grammar G = {X ,Σ,Xstart,R}. The set of rules R is filled with the

following steps:

1: Replace every symbol σ ∈ Σ with a variable Xσ and add a new rule Xσ → σ to R.

2: Find the most frequent pair p = Xp1Xp2 in S.

3: Replace every occurrence of p with a new variable X and add a new rule X → Xp1Xp2 to R.

4: If the maximum frequency of all pairs in the text generated by step 3 is 1, terminate and add the

rule Xstart→ (current text) to R. Else return to step 2.

RePair works in O(n) expected time and 5n+ 4|Σ|2 + 4|R|+ d
√

n+1e− 1 words of space, where n is

the length of the source text, |Σ| the cardinality of the source alphabet Σ and |R| the cardinality of the

final dictionary, the set of rules R.

Since RePair selects only pairs and only creates one rule at a time, all rules in R follow the conditions

for SLPs set in property 4 of Definition 6.1.1. Step 1 in RePair corresponds directly to property 2.

Since only the source text should be possible to recreate with the generated grammar, property 3 is also

fulfilled. The first rule however, the start variable, violates the SLP property 4. We stop compressing

the text after no more pairs can be found with a frequency of at least two and the given text is not likely

to be fully compressed. Therefore, there is a rest left over that contains more than two variables. This

means we have to compress the text further and we do that by modifying our start variable.

A start variable constructed by RePair can have the form Xstart = X1 . . .Xn for any given n. Since our
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X ′1 X ′2 X ′3 X ′4 X ′5

X ′6 X ′7

X ′8

X ′9

Figure 6.2: The tree structure of the series of rules used to transform a start variable of length 10 into a SLP

definition of a SLP needs a start variable from X , we have to create new rules on top of the grammar

to represent the start variable. To reduce the height of the derivation tree, we take pairs of variables to

make into a new rule in the form of X (1)
i → XiXi+1, starting at X1 until Xn is reached. Then, the next level

of rules is constructed: X (2)
i → X (1)

i X (1)
i+1. On levels with an odd number of variables, the last variable

will be carried over to the next level that again has an odd amount. This makes the tree of rules slightly

unbalanced in practice, but creating new rules or empty variables to change the length of input start

variable to a power of two would create a big overhead in the number of rules and does not improve the

derivation time of the start variable. The whole process terminates when only one variable is left, the

new start variable. These new rules follow the constraints of SLPs since we always take pairs and can

therefore be stored efficiently, as we will see later. An example tree is shown in Figure 6.2. The variable

X ′5 has no partner on its level and is carried over until only X ′8 is left. The new start variable is then X ′9
with the first rule X ′9→ X ′8X ′5.

6.2.2 Succinct Representation of the SLP

In this subsection, we describe how to store SLPs space efficiently. The data structure is developed in

[TTS13]. The authors also prove a lower bound for storing a SLP: an SLP with n variables requires at

least 2n+ logn!+o(n) bits to be represented. The shown compression asymptotically meets this lower

bound.

The main idea of the succinct representation is to store the dictionary (the representation of a SLP in an

array) using less space.

The first step is to rename the variables X1, . . . ,Xn. For that, we consider the subgraph that consists

of all inverted non-right edges of our graph representation from Section 6.1. We rename the variables

according to their occurrence in a breadth-first search of this subgraph starting in s. This process is

illustrated in Figure 6.3 for the example SLP of Section 6.1. During a breadth-first search from s, the

variables are reached in the order X1,X2,X5,X3,X4. Therefore we rename X5 to X3, X3 to X4 and X4 to

X5. The grammar and dictionary have to be changed accordingly.

After renaming, the dictionary fulfils the property D[1]≤D[3]≤ ·· · ≤D[2n−1]. That means the values

in the array form a monotonically increasing sequence, if we omit the even indices. With a gap encoding
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X5

X4

X3

X2

X1

b

a s

X1→ a,X2→ b,

X3→ X1X2, X4→ X2X3,

X5→ X1X4

1 2 3 4 5 6 7 8 9 10

0 0 0 0 1 2 2 3 1 4

X3

X5

X4

X2

X1

b

a s

X1→ a,X2→ b,

X4→ X1X2, X5→ X2X4,

X3→ X1X5

1 2 3 4 5 6 7 8 9 10

0 0 0 0 1 5 1 2 2 4

Figure 6.3: On the left, the original SLP, its dictionary and the graph from Figure 6.1 are shown. The graph is
depicted after inverting its edges. The highlighted edges form a tree with root s that contains all non-right edges.
On the right, the SLP, dictionary and modified graph are shown, after the variables are renamed according to their
occurrence in a BFS starting in s.

original dictionary:

D:
1 2 3 4 5 6 7 8 9 10

0 0 0 0 1 5 1 2 2 4

omitted odd indices:

D′:
1 2 3 4 5

0 0 5 2 4

s1 = {1,2,4} (monotonically increasing),

s2 = {3,5} (monotonically decreasing)

Figure 6.4: The original array is reduced to its even indices. The indices of the resulting array are divided into
two monotonic subsequences.

(see Section 2.11), we can store that half of the dictionary using 3n− 1 bits of space, as the dictionary

contains 2n values and the largest value is smaller than n.

Hereafter, we omit the uneven indices from D, defining D′[i] := D[2i], so that D′ has length n. This

new array is not necessarily a monotonic sequence, but we follow a similar idea. We divide the indices

1, . . . ,n into a partition S = {s1, . . . ,sk} so that for every si, its associated values in D′ are a monotonic

subsequence of D′.

Figure 6.4 shows an example partition. We omit the uneven indices and get a new array D′ of half

length. The sequence s1 is monotonically increasing, because D′[1] ≤ D′[2] ≤ D′[4] holds. Along the

same lines, s2 is monotonically decreasing, because 5 = D′[3] ≥ D′[5] = 4 holds. This partition is by

no means unique, we could as well choose s′1 = {1,2,4,5} and s′2 = {3} as a partition. For our string
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1 2 3 4 5

D′ : 0 0 5 2 4

1 2 3 4 5

sorted indices: 1 2 4 5 3

s1 = {1,2,4},s2 = {3,5}
1 2 3 4 5

Dρ : 1 1 2 1 2

1 2 3 4 5

Dπ : 1 1 1 2 2

B = gap_encoding(0,0,2,4,5)

= 1100100101

b = 01

Figure 6.5: Our succinct representation for the example from Figure 6.4.

representation, we rely on the ability to find a partition that consists of as few sequences as possible.

How to compute such a partition was one challenge for our implementation. If given such a partition we

can represent the remaining array D′ space efficiently.

Our data structure is a tuple (Dρ ,Dπ ,B,b). The array Dρ encodes which indices of D′ are included

in which sequence in S . That means, Dρ [i] = k holds if and only if i ∈ sk. The array Dπ denotes

a permutation of Dρ , ordered by the values of D′. That means if D′[l1] ≤ D′[l2] ≤ ·· · ≤ D′[ln] holds,

then Dπ [i] = Dρ [li]. Both Dρ and Dπ are arrays over the alphabet {1, . . . ,n}. We use wavelet trees (see

Section 2.8) to store them, because we later need efficient rank and select queries to reconstruct the

dictionary from our representation. The bit vector B gap encodes the array D′, sorted by values in as-

cending order. Lastly, b is a bit vector that indicates for every sequence in S whether it is monotonically

increasing or monotonically decreasing. In other words, b[k] = 0 iff sk is monotonically increasing. We

store both bit vectors as described in Section 4.2, to ensure efficient rank and select queries in this case

as well.

In Figure 6.5, the encoding for our previous example is illustrated. The array D′ only stores the even

indices of its original version. The monotonic sequences are the ones from Figure 6.4. The property

Dρ [1] =Dρ [2] =Dρ [4] = 1 holds, because those indices belong to s1 and analogously Dρ [3] =Dρ [5] = 2,

because 3 and 5 belong to s2. The array Dπ matches Dρ [1],Dρ [2],Dρ [4],Dρ [5],Dρ [3]. The bit vector

B encodes D′, in ascending order, using gap encoding and b indicates that the indices in s1 correspond

to a monotonically increasing subsequence of D′ and the indices in s2 correspond to a monotonically

decreasing subsequence of D′.

We describe how to reconstruct the original dictionary from this representation in Section 6.3.

Intuitively, this construction needs less space than the naive approach of just storing the dictionary be-

cause we only store the indices of the sequences explicitly. If we find a partition with few sequences,

those indices are much smaller than the values from D′. The explicit values in D′ are only stored implic-

itly in the gap encoding and therefore take much less space than in the naive approach. Nevertheless, it is

clear that our space requirement is dependent of our ability to find appropriate monotone subsequences.

The exact space needed is analysed in [TTS13] and is 2n log |S |(1+o(1)). In [BF98] it is shown that

we can find a partition with S ≤ 2
√

n for every SLP. Asymptotically, this space requirement meets the

proven lower bound of 2n+ logn!+o(n) bits, as both bounds are in Θ(n logn).
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6.3 Operations

In this section, we discuss how to realize the intended operations access, size, contains and lce for

our grammar compressed string. The main component of our data structure is the succinct representation

of a dictionary. Since operations require access to rules of the SLP, we have to discuss first how any rule

of the SLP can be reconstructed in short time.

Then we will discuss how we realised the operations in theory, and which additional components our

data structure needs to ensure efficient operations.

6.3.1 Accessing Rules of the SLP from the Succinct Storage

First, we show how our grammar representation simulates the original dictionary D. To compute the

value D[p], where p is even, we first determine to which set sk of our partition S the index p belongs

with k = Dρ [p]. Then we determine whether sk corresponds to a monotonically increasing sequence

(b[k] = 0) or to a monotonically decreasing sequence (b[k] = 1).

In the first case, we count how often the value k occurs in Dρ up to index p and therefore determine how

many smaller indices also belong to sk. Afterwards, we use Dπ to see how many values in D are smaller

than D[p] and with that knowledge, we can read D[p] from B. Altogether, we compute:

k = Dρ [p] and D[p] = rank0(B,select1(B,selectk(Dπ , rankk(Dρ , p))))

In the case that sK corresponds to a monotonically decreasing subsequence, we also want to count how

many smaller indices belong to sk. In this case however, we first compute how many indices belong to

sk altogether and then subtract the number of indices larger than p. All in all, in this case we compute:

k = Dρ [p] and D[p] = rank0(B,select1(B,selectk(Dπ , rankk(Dρ ,n)+1− rankk(Dρ , p)))).

Since the components are represented as wavelet trees and bit vectors, we can ensure that the needed

rank and select queries can be executed runtime efficiently. In [TTS13] it is stated that we can achieve

O(log logn) time to access an even value in D′.

To get the values of D for the odd indices, we merely have to read the value from the gap encoding as

described in Section 2.11 and therefore compute:

D[p] = rank0(ge,select1(ge,bp/2c)),

where ge is the gap encoding of the odd indices. This needs a rank and a select query on a static bit

vector and is therefore possible in constant time.

Altogether, we need O(1+ log logn) time to reconstruct any rule from the SLP.

6.3.2 The Access Operation

A naive approach to get the symbol at a specific position in the original text is to retrieve the text from

the SLP (fully or up to the desired index). This can be achieved step by step through replacing a variable

Xi with α iff Xi→ α is a rule of the SLP, starting with the start variable. This process always terminates
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and returns the original text. Since the length of the string can be exponential in the size of the SLP, the

derivation can take exponential time in the size of the SLP and is therefore not practical.

To make access faster, especially for high indices, we concede some extra space usage. For every

variable in the SLP, we store the length of the string it produces. Then we can find the symbol we

need without deriving the rest of the text. The extra space needed is O(|D| log(|T |)) bits, one number

≤ |T | for every rule of the SLP. The time needed to find the wanted rule is O(log |D|), since we only

need to compare the needed index with the saved string lengths of each rules’ left and right side. Since

the dictionary and our rules are built similar to a binary tree structure, the number of comparisons is

O(log |D|). After finding the right rule we only have derive a single rule for which we only need O(1)

extra time. How the array of string lengths is built and how access is managed in detail is shown in

Section 6.4.6 and Section 6.4.7 respectively.

6.3.3 The Other Operations

The size operation can be easily realised in constant time by storing the size of the input string explic-

itly. In theory, this takes O(log |T |) additional space for a text T .

The lce and contains operations are realised naively using the access operation.

For lce(i,j), we reconstruct the text starting from the indices i and j until they differ. This takes time

O(|D| · l) where l ≤ |T | is the longest common extension.

The contains(s) operation can be solved in constant time if |s| = 1, since every symbol stored in the

SLP representation is contained in the original text. However, if s is longer, we follow the naive approach

and reconstruct the original text until s is found or the whole string is reconstructed.

6.4 Implementation

In this section we describe some challenges and properties of our implementation.

6.4.1 Building the SLP

To build a SLP, we firstly need to generate a grammar for the given text. To manage this, we used

Navarro’s implementation of RePair1. It works in linear time and could be incorporated into our project

fairly easily. However, we had to make some adjustments to the RePair implementation. Navarro’s

implementation works on files with a command line input. While leaving the core functionality the

same, we changed it so RePair uses input text directly and works on that. Since the output is also saved

into a file, we removed the whole file creation and extracted the necessary results directly. We get a start

variable, a dictionary for all symbols and a list of all pairs from RePair. Using the pairs and the old start

variable we can then build a new start variable as described in Section 6.2.
1See https://users.dcc.uchile.cl/~gnavarro/software/repair.tgz
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6.4.2 Finding Monotone Sequences

We saw that finding a fitting partition into monotone subsequences is of utmost importance to the per-

formance of our succinct construction. In [BF98], it is shown that a partition into no more than 2
√

n sets

exists for any sequence of length n. Sadly, the problem of finding such a partition is NP-hard.

Since our dictionaries can get really big, time efficiency is a crucial factor in the computation of se-

quences for us. Nevertheless, if too many sequences are computed, the succinct storing will have no

advantage over storing the SLP explicitly.

Therefore, we chose a relatively simple greedy algorithm in our implementation. In Section 6.5, we will

see that it computes a satisfyingly small partition.

The pseudocode can be found in Algorithms 6.1 and 6.2. The main idea is to always start at the first

index and then greedily compute a decreasing and an increasing sequence simultaneously. This is done

by always adding the next fitting index to a sequence. The longer sequence is then put into our partition

and its indices can be removed. Algorithm 6.1 is used to repeatedly call Algorithm 6.2 in line 2, add the

computed partition to the set in line 3 and store which indices from D are not partitioned in the set R.

In detail, Algorithm 6.2 computes two monotone sequences, Sinc, which is increasing, and Sdec, which

is decreasing, that both begin with the first unpartitioned index that is given as input i. The variables

last_value_inc and last_value_dec are used to store the current last values in the sequences. We need

those to decide whether another value continues one of the sequences. The variables are initialized in

lines 1−3, so that both sequences contain i and the last value is the corresponding value in D. The loop

from line 4 is used to iterate through all indices from i to the end of the array that were not partitioned

when the algorithm was called. If the value at the current index continues the current increasing sequence

(line 5), Sinc and last_value_inc are updated (lines 6-7). Similarly, the index is potentially added to Sdec

(lines 9-11). After iterating over all indices, the longer sequence is returned. If both have equal length

the increasing sequence is returned instead(lines 14-17).

Input: array D of length n

Output: partition of indices 1, . . . ,n in which the corresponding values from D form a monotone subse-

quence for every set

1: Set R = {1, . . . ,n}
2: while D has indices that are not in the partition (|R|> 0) do
3: Compute greedy monotone subsequence S starting in first unpartitioned index (see Algorithm 6.2)

4: Add S to partition

5: Remove indices in S from R

6: end while

Algorithm 6.1: Greedy algorithm for calculating monotone subsequences

In our current implementation we can use a parameter to restrict the maximal length of a subsequence.

In Section 6.5 we will see which value works best in practice. The runtime of the algorithm depends on

the size of D and of the number of calculated sequences, which makes its analysis a bit complicated. In

the worst case, our array D contains the values 1 to n (where n is even) and has the following form:
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Input: array D of length n, index i, set R containing active indexes from D

Output: subset of indices {i, . . . ,n} where the corresponding values in D form a monotone subsequence

1: Initialize Sinc and Sdec with {i}
2: last_value_inc← D[i]

3: last_value_dec← D[i]

4: for each j ∈ {i+1, . . . ,n} with j ∈ R do
5: if (D[ j]≥ last_value_inc) then
6: Add j to Sinc

7: last_value_inc← D[ j]

8: end if
9: if (D[ j]≤ last_value_dec) then

10: Add j to Sdec

11: last_value_dec← D[ j]

12: end if
13: end for
14: if |Sinc| ≥ |Sdec| then
15: return Sinc

16: end if
17: return Sdec

Algorithm 6.2: Greedy algorithm for calculating a monotone subsequence starting at a given index
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1,n,2,n−1,3,n−2, . . . , n
2 ,

n
2 +1.

For this array, the first iteration of our algorithm computes an increasing sequence of length 2, because

the second index contains the maximal value. The decreasing sequence is even shorter and only contains

the first index, as the first value is the minimum. Therefore, the first two indices will be extracted and

as the new maximal and minimal values are again at the beginning of the remaining array, the algorithm

repeatedly only computes sequences of length 2. Therefore, the whole array is partitioned into n/2

monotonically increasing sequences, even though the optimal partition is really simple and only contains

two sequences. As the whole array is iterated n/2 times, the computation time is in O(n2). Even though

these bounds seem impractical, we will see in Section 6.5 that this algorithm shows good results in

practice.

We have also implemented some alternative algorithms (mostly small modifications of the greedy algo-

rithm) which have all shown less useful for our needs (some are compared in Section 6.5).

The algorithms we implemented are the following:

• A simple linear time algorithm that only creates subsequences of consecutive indices. This creates

at most dn/2e sequences. The practical runtime of this approach is really good but the number of

sequences is not small enough for our means (see Section 6.5).

• An algorithm that divides the sequence in d sequences of size n/d and computes a partition for

every part with our greedy implementation. The motivation is that the number of sequences only

increases by a constant factor, while the original sequence is iterated over less often.

• An approach that works like the greedy algorithm, but does only add an index to a subsequence

if its value is within a certain interval of the last added value. The motivation is that the greedy

algorithm may produce short subsequences if the original sequence contains really large and really

small values at small indices. However, this approach did not show better results than the greedy

algorithm, as the number of sequences actually increased.

• Our first approach was to repeatedly find the longest monotone subsequence. Starting at the first

position, we add a new sequence for every index that does not fit in our current subsequences. For

indices that fit in one or more sequences, we add a new sequence for every fitting subsequence that

additionally contains the current index. This algorithm creates a lot of sequences in every iteration

and therefore its runtime is really high, even for small sequences. Therefore, we discarded this

idea early on.

6.4.3 Renaming the Variables

To rename the variables in the dictionary, we use a breadth-first search (BFS, see Section 2.3.1) on

the graph representation of the SLP. In our implementation, the BFS is done directly on the dictionary

without changing its representation. We use a std::queue<uint64_t> to implement the queue of

processed vertices and a bit_vector that indicates for every variable if it has already been renamed.

The new names for the variables are stored in a std::vector<uint64_t>.
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We implemented the search naively using the dictionary. This is space efficient, because we only need

additional space for the queue and the search results. Before the BFS, we store the reversed dictionary

in a std::unordered_map<uint64_t,std::vector<uint64_t>> (The vector is needed because a

variable can occur on the right side of multiple rules). Therefore we are able to find the left side of the

rules, meaning all indices j with D[ j] = i, in expected constant time during the BFS. Therefore, the time

needed for the BFS is O(n) for n variables, because the graph representation has exactly two edges per

variable. The time needed to build the hash table is also in O(n), as we only have to take each edge into

account once.

6.4.4 Creating Dπ

The array Dπ corresponds to Dρ sorted with respect to the values from D′. To realise that, we use

std::pair<uint64_t,uint64_t> to connect the values D′[i] and Dρ [i] for every index i. We store the

pairs in a std::vector of pairs and sort this with std::sort with respect to the copied values from D′.

Afterwards, we have to extract the values from Dρ in the new order to store them in Dπ and construct

the wavelet tree.

6.4.5 Wavelet Tree

We use the wavelet tree from Section 2.8 to store the arrays Dπ and Dπ over the alphabet {1, . . . ,n}
from Section 6.2. Our implementation concatenates the bit vectors in the nodes of a layer and therefore,

we store one bit vector of length n for every layer of the tree. The wavelet tree itself is then stored as

a std::vector<bit_vector>. We construct the tree bottom-up, as described in [FK17]. The imple-

mentations of the access, rank and select operations use the algorithms from [CNP15].

6.4.6 Calculating Rule Lengths

To make the access to our data structure fast, we calculate the length of the string each rule produces and

store them as a std::vector<size_t> We can do this bottom-up from the rules that only produce a

single symbol. After filling the array with these values, the string lengths of the rules can be calculated as

follows: for a rule Xa→ XbXc it is string_length(Xa) = string_length(Xb)+string_length(Xc).

Since the variables were renamed in one of the previous steps (Section 6.4.3), it can be possible that the

string length of a variable Xc was not calculated yet. If this happens, we go into a subroutine to calculate

the string length of Xc and, recursively, all other variables it may need that have not yet been calculated.

To make sure that every variable is only calculated once, each result of the main- and subroutine is saved

inside our array and can be used for other calculations.

6.4.7 Operations

To realize the needed operations on our data structure, we used the idea from Section 6.3 to use the string

lengths.

We implemented the operations in the following way:
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• size(): returns the length of the string s,

• access(i): finds the rule that produces s[i] and return the symbol,

• contains(s′): iterates through s and look whether s’ is a substring, and

• lce(i, j): iterates through s starting from indices i and j and compare values until they differ.

The size operation takes constant time as we store the string size in a member variable of the main

class.

For the access operation we can go through the string lengths array. To find a position i in the string,

we take the first rule of the grammar and check if i is greater than the string length of the left side of the

rule. If this is the case, we go into the variable on the right side and repeat the process while decreasing i

by the length of the left side of the rule. If we reach a rule that produces only a single symbol we return

that. This method needs logarithmic time depending on the number of rules.

For contains, we can separate queries for single symbols and longer substrings. For single symbols,

we can check the symbol list we store whether the wanted symbol is contained. For longer substrings,

we use the access function to return symbols and check them against the substring one by one.

The lce operation uses a similar approach by using access to compare two symbols at a time.

To summarize, we compromised on the need of faster operations by using more space. The approach of

reconstructing the whole string would save some extra space here, but is a lot slower, as the string has

to be derived for every operation. The improved access operation is the main part we were trying to

improve and we will see in the results later how big the time improvements and space trade off are.

6.5 Benchmarks

We implemented benchmarks to evaluate different parts of our data structure, namely:

• the computation of monotone subsequences of a sequence,

• the succinct way to store a SLP from [TTS13] and how efficiently we can reconstruct the original

rules, and

• our text compression based on SLPs with the operations access, size, lce and contains.

All benchmarks were executed on the Lido3-Cluster, as described in Section 3.2.

6.5.1 Calculating Monotone Sequences

In Section 6.4.2, we described our approaches of calculating a partition of monotone subsequences. The

goal of this benchmark was to find the approach that is most practical for our needs. The benchmark

generates a number of random sequences of uint64_t values with a given length. Then a partition

was computed with the algorithms “easy_sequences”, “greedy_sequences” (with a parameter for the

maximal length of a subsequence) and “greedy_partition_sequences” (with a parameter for the number
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Figure 6.6: Benchmark results for the calculation of monotone subsequences. Results for random sequences of
length between 224 and 226 were plotted in one graph, respectively. On the x axis, the time needed for computation
is plotted on a logarithmic scale. The y axis shows the number of calculated sequences on a logarithmic scale.

of parts the original sequence is divided into). The other approaches showed to be way less efficient

regarding both time and the number of subsequences. Therefore, we decided to not include them in

the benchmark results, as they could not be executed on large sequences. The number of generated

sequences, iterations and length can be given as input to the benchmark. We executed the benchmark

on sequences of length up to 226 and with multiple parameters. For our goal of implementing a succinct

grammar representation, the most important aspect is that the number of computed subsequences is as

low as possible. Also, the time needed for computation should be reasonable.

The results of this benchmark are plotted in Figure 6.6. While the “easy_sequences” is really fast,

the computed number of sequences is way too high to be of practical use for us. The results of the

“greedy_partition_sequences” turn out to be worse than the standard greedy algorithm, both in time and

space usage. We therefore decided to use the “greedy_sequences” algorithm for the construction of our

SLP representation. Altogether, its results seem satisfying, and much better than the worst case described

in Section 6.4.2. As the number of calculated sequences is our most pressing aspect, we decided to take

264 as parameter in practice.
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Figure 6.7: Benchmark results for the calculation of monotone subsequences using the greedy_sequences algo-
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In Figure 6.7 more detailed results for greedy_sequences are shown. We can see that the number of

calculated sequences seems to be really close to the bound of 2
√

n that was shown in [BF98]. This is

satisfactory as a result, even though one has to consider that a partition into 2
√

n sequences is not an

optimal solution, but merely a proven upper bound. The second plot shows that the computation time is

linear in the length of the original sequence. Both, number of sequences and computation time turn out

to be much more practical than the worst case analysis in Section 6.4.2 indicated.

Unfortunately, the dictionaries in our data structure can get really long, so that even a linear-time com-

putation of the partition will still take up a huge part of construction.

6.5.2 Succinct Storing of SLPs

One part of our implementation is the succinct data structure for SLPs (see Section 6.2). The goal of

this structure is to store a SLP in a succinct manner. The space usage should be as low as possible while

still allowing to reconstruct a rule from the SLP in little time. In Section 6.2 and Section 6.3, we saw

that the theoretical space usage for a SLP of size n is 2n logm(1+ o(1)) bits with m ≤ 2
√

n and that a

rule can be reconstructed in O(log logn) time. It is clear that the space usage can only fulfil this bound

with an optimal algorithm for computing monotone sequences. Therefore it is probably not possible to

implement the data structure space-optimally and with a practical construction time. We compare our

succinct data structure to the naive approach of storing the dictionary in a std::vector<uint64_t>.

For our benchmark, we generate a number of SLPs from random texts of given length using the RePair

algorithm. Since we use our succinct storing in our library only for dictionaries generated by RePair,

it was our goal to see how well the succinct storing stores those SLPs. Since random texts are not

likely to be very repetitive we can assume that a big part of the generated SLPs are constructed by our

algorithm that splits the starting variable, as described in Section 6.2. After generating the SLPs, our

data structure is constructed, but only the parts described in Section 6.2 and then the additional data

structure, which contains the lengths of the string per variable and is needed for the access operation.

This means that the construction time here does not include the RePair algorithm and the construction of

the naive dictionary is merely a copy instruction. After construction, a number of get_rule operations

is executed on the naive and succinct data structure.

We generate strings and corresponding SLPs for every size of the form 2x, the maximal x can be

given as a parameter to the benchmark, as well as the number of generated SLPs per size, the num-

ber of get_rule operations performed per SLP, and which type of dictionary should be constructed

(‘naive”,“succinct”,“succinct_lengths” or “all”).

The results of this benchmark are shown in Figures 6.8 to 6.10.

In Figure 6.8 the space usage of our dictionary implementation is shown. The naive dictionary constantly

takes 16 bytes of space per rule, as every rule is stored as two 64 bit integers. We can see that the succinct

dictionary is useful for dictionary sizes between 211 and 221. For larger dictionaries, the naive approach

seems to be more space efficient. The succinct dictionary that additionally stores an array of lengths

of course takes exactly 8 additional bytes per rule. This takes up more space than the naive dictionary

for every dictionary size, but makes up with a better runtime for the access operation. The graph
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for our succinct implementation shows some interesting behaviour. The higher space usage for small

dictionaries seems to be comprehensible, as we store bit vectors with additional structures for rank and

select queries. These are likely to take up the main part of the space for really small dictionaries. As

for the larger dictionaries, it seems interesting that the space usage per rule only increases every second

point. This behaviour corresponds to the number of layers in the wavelet tree. For example, dictionaries

of sizes 222 and 223 always produced wavelet trees with 13 layers, while those of size 224 needed 14

layers. This explains the sudden increase in space. In turn, the number of layers in the wavelet tree

depends on the number of calculated monotone subsequences, as the number of subsequences is the

alphabet size of the wavelet tree. Here, we were able to observe a similar behaviour. The number of

calculated sequences increases more for every second dictionary size. As we were not able to observe

this behaviour when benchmarking our algorithm on random sequences (see Section 6.5.1) we assume,

that the special form of SLPs and our algorithm to split the starting variable induced these results.

In Figure 6.9 we can see and compare the construction time of the naive and our succinct dictionary. For

the naive dictionary, this is still copying the dictionary. Therefore, it is clear that our succinct dictionary

will need significantly more time to construct. The construction time for the naive dictionary jumps

between 222 and 223. Most likely, this is the point where the dictionary cannot fully be stored in the

cache. As we used 25 MB caches for the execution of our benchmarks and need (8 = 23) bytes for

the naive storing of a rule in the dictionary, this seems reasonable. We see that the computation of the

lengths does not increase the construction time of our succinct data structure significantly. The overall

construction time for large sizes seems to correspond to the time needed for computing the partition into

83



sequences as seen in Figure 6.7. This was predictable, since this is the only part of construction that

takes more than linear time in the size of the dictionary.

In Figure 6.10 we see the throughput for get_rule operations. For the naive dictionary, this takes

constant time, as we only have to read two values from an array. It is clear that the get_rule operation

of the succinct dictionary is not able to achieve constant time. Nevertheless, the plot shows that our

implementation corresponds to the theoretical O(log logn) bound, where n is the size of the dictionary.

6.5.3 Grammar Compressed Strings

To evaluate our succinct string compression, we take into account the space usage, construction time

and operation time. The goal is to compress the text as much as possible, while still allowing efficient

operations.

We compare our data structure to the naive approach to merely storing the whole text without any

compression as a std::vector<char>. In this approach all operations were implemented naively,

achieving constant runtime for access and size. The operations contains and lce have a linear time

bound. In our succinct data structure we also follow the naive approach for contains and lce. We

therefore will not be able to exceed the operation time of the naive approach, but try to get as near as

possible to these bounds. As discussed in Section 6.4.7, in our succinct implementation we realised the

access operation utilizing the string lengths array, resulting in a theoretic logarithmic time bound.

Of course, our main goal is to achieve a profoundly better space usage than the naive approach and

therefore accept the worse time bounds for construction and operation.

We tested on the texts of the Pizza and Chili Corpus 2, that were made to have reference texts for

benchmarks on text indexing and other applications on texts. The corpus features highly repetitive texts,

which are of special interest to us, as RePair is designed to efficiently compress those in particular.

We used the following standard texts:

• pitches, pitch values of various MIDI files,

• sources, source code of linux and gcc distributions,

• proteins, protein sequences,

• dna, gene DNA sequences,

• english, a concatenation of english text files, and

• XML, bibliography information on computer science journals.

For the english text, we had to use a prefix of 1024 MB, since the size of the full text exceeds the

maximal value of a 32-bit signed integer. Unfortunately, the implementation of RePair that we used

does not work on strings of that length.

Since our data structure is working best on repetitive texts, we also considered the texts from the repeti-

tive corpus of Pizza and Chili, both artificial and real:

2http://pizzachili.dcc.uchile.cl
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real cere, coreutils, einstein.de.txt, einstein.en.txt, Escherichia Coli,

influenza, kernel, para, world leaders

artificial fib41, rs.13, tm29

Text Size (bytes) Alphabet size Compressibility

SOURCES 210,866,607 230 28.01%

PITCHES 55,832,855 133 30.59%

PROTEINS 1,184,051,855 27 49.71%

DNA 403,927,746 16 32.46%

ENGLISH 2,210,395,553 239 45.07%

XML 294,724,056 97 21.01%

Table 6.1: Statistics about the used data. The compressibility shown is a measure of the size compressed text
divided by the original size. Method used here is Gzip (www.gzip.org) with parameter −1. The other texts had no
such data available.

Some insight into the used data is given in Table 6.1. Firstly, we test the construction time and space

requirement of our data structure. In the case of space usage, we take a look on the total space needed for

our data structure after construction and compare it to the naive version and the explicit storing of the

SLP as a dictionary. A small dictionary size means that RePair compresses the text well and produces

a small starting variable. Our succinct representation aims at compressing the dictionary and storing it

as small as possible, while still allowing efficient operations. To measure the time constraints, we take

a more detailed look into the construction process and measure each major step in building our data

structure (see Section 6.2). For all of these steps, we will need to look at a median over all the different

files to eliminate any inaccuracies the texts may cause by themselves.

After construction, the benchmark can make a more detailed analysis of space usage and measures the

space used by the components of our data structure. Afterwards, we execute the operations on the text,

both for the naive string and our succinct version.

To execute our benchmark directly, it needs three command line inputs. The first is the file path of the

file you want to execute the benchmark on. Then, the next four arguments specify the number of times

the operations (in the order access,size,lce,contains) are executed. The last input is the number of

iterations that the succinct data structure is constructed with detailed space measurement. If you do not

want the extra space benchmark, simply choose "0" as the last argument. The executable can be found

at src/benchmark_gcs/benchmark_gcs.o after building the library.

Space Usage

Firstly, we will analyse the space usage of our implementation. In Figure 6.11, we can see the total

space usage of our grammar compressed string after construction for every test file in the fourth column.

These numbers do include the space needed for the array of lengths used for our implementation of the

access operation. The compression ratio compared to the length of the original file is shown in the fifth
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text length #rules space compression% time #access #size #lce

text in dictionary gcs (Bytes) gcs total (s) per s per s per s

fib41 267,914,296 84 2,890 0.0 33.73 253,164.56 2,717,391.30 69,681.56
rs.13 216,747,218 182 7,282 0.0 24.43 99,745.65 2,732,240.44 46,231.02
tm29 26,8435,456 164 5,770 0.0 31.76 142,592.33 2,890,173.41 40,406.49
einstein.en.txt 467,626,544 326,444 7,834,067 1.68 180.91 9,216.72 2,949,852.51 4,595.77
einstein.de.txt 92,758,441 125,460 2,385,533 2.57 34.16 11,942.22 3,021,148.04 5,869.75
kernel 257,961,616 2,255,000 59,869,256 23.21 129.17 2,340.40 2,808,988.76 1,066.25
cere 461,286,644 6,433,188 141,642,397 30.71 173.60 6,382.15 3,086,419.75 2,156.08
world leaders 46,968,181 601,846 15,426,457 32.84 14.12 10,546.24 2,724,795.64 4,337.61
coreutils 205,281,778 3,950,630 82,261,284 40.07 121.42 1,601.97 2,594,033.72 451.21
influenza 154,808,555 3,060,874 69,000,143 44.57 56.42 10,342.65 2,739,726.03 4,728.52
para 429,265,758 8,483,054 237,636,341 55.36 200.76 5,219.49 2,785,515.32 2,442.54
Escherichia Coli 112,689,515 7,227,166 150,914,983 133.92 76.66 6,975.71 2,590,673.58 2,247.53
dblp.xml 296,135,874 26,249,572 587,888,913 198.52 391.77 7,227.57 2,699,055.33 3,601.63
sources 210,866,607 32,469,760 707,429,918 335.49 1,111.78 6,242.06 2,923,976.61 3,007.02
english.1024MB 1,073,741,824 173,233,416 4,583,756,957 426.90 10,553.80 4,055.45 2,680,965.15 360.43
proteins 1,184,051,855 254,664,362 5,534,722,027 467.44 7,307.33 4,148.70 2,724,795.64 1,795.76
dna 403,927,746 85,207,846 2,155,965,384 533.75 1,391.26 6,955.60 2,906,976.74 3,399.95
pitches 55,832,855 18,695,494 532,349,005 953.47 875.71 6,556.22 2,808,988.76 3,168.86

Figure 6.11: Summary of benchmark results for the test text files. For every text, the original length of the text
file is shown in the second column. The third and fourth columns show the number of rules in the dictionary that is
computed with the RePair algorithm, and the space in bytes used by our grammar compression. The compression
ratio in the fifth column was computed as space gcs

length text · 100. The sixth column shows the construction time needed
for the grammar compression, including the RePair algorithm. The last three columns contain information about
the operations access, size and lce. For every text, the number of operations that can be executed per second
is shown.

column. It is clear to see that the quality of our compression profoundly differs depending on the original

text. In general, it shows good results for repetitive texts (the first twelve texts in the table). Especially

the artificial repetitive texts can be compressed really well. For them, the grammar compressed string

needs less than 0.1% of the original file size. The texts einstein.de.txt and einstein.en.txt also can be

compressed well, with 2.57% and 1.68%, respectively. The other repetitive texts show a compression

ratio between 23% and 55.36%. The non-repetitive texts do not show satisfying results altogether. For

pitches, our grammar compression does need nearly ten times as much space as the original text. We can

explain these results with a look at the dictionary sizes. It is clear that our compression heavily relies

on the RePair algorithm and the size of its resulting dictionary. While this dictionary is really small

for the artificial repetitive files, the non-repetitive files produce dictionaries that are nearly half as large

as the original string and therefore will naturally need more space to be stored. Here it is to be said

that the large dictionaries are probably not a result of the RePair algorithm itself, meaning that RePair

may produce a way smaller grammar compression with a long start variable. The splitting of this start

variable as described in Section 6.2 then produces a huge SLP and dictionary.

In Figure 6.12, we can see this connection in more detail. Here, we plot the space usage of our grammar

compression against the size of the dictionary computed by RePair. The data points represent our test

texts. We see that the dictionary size and space usage correspond approximately linearly. We also see

that only some of our text files produce a dictionary with a length between 211 and 221. This is the

interval for which our succinct storing of SLPs seems to be practical, as seen in Section 6.5.2.
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Figure 6.12: The plot connects the dictionary size with the space usage of our grammar compression for the test
text files. The x axis shows the length of the dictionary, that the RePair algorithm computed, on a logarithmic
scale. On the y axis the space usage in bytes of our compression is plotted, also on a logarithmic scale. The data
points represent our texts.

In Figure 6.13, the size of our compression is illustrated a bit more. We compare it with our grammar

compression that does not include the lengths array, as well as with a naive storing of the dictionary

computed by RePair. The space is measured relatively to the original string size. The plot shows the

space needed for one byte of the original text. Therefore, smaller values are better in practice. We

mostly see the results that were already stated above. Our compression is really useful for the artificial

repetitive text, as well as for the einstein texts. The other repetitive texts at least show some practical

use. For the non-repetitive texts, we can see that even the naive dictionary does not compress the texts.

As our implementation with the lengths array, that ensures a faster access operation than the naive

dictionary, does need more space than the naive dictionary in all cases, it is not surprising that we do

not achieve compression either. We also see that our succinct storing of the dictionary, even without the

additional length array, is seldomly useful for the test files. It only shows some small improvement for

Escherichia_Coli, cere, einstein.de.txt, einstein.en.txt, influenza, kernel and world_leaders. Here we can

again conclude that these are the only files where the size of the dictionary is in the useful interval.

To analyse the space usage better and to see which parts have room for improvement, we plotted the

space usage in more detail for the non-repetitive texts in Figure 6.14. Here, we see the parts of our data

structure and their space requirement in bytes on a logarithmic scale. We see that the array of lengths

does take the most space for all the texts. Still, we actually assumed that the space requirement for this

array would be a lot higher compared to the other parts, as the array of lengths is always half the size

of the original dictionary. However, for these big dictionaries produced by the non-repetitive texts this

does not seem to matter much, as the succinct storing of the dictionary does not work well in general.

Furthermore, we see that the wavelet trees and the gap encodings have the highest space usage. This
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Figure 6.13: The plots show the space usage of the naive dictionary and our grammar compression (with and
without lengths array) for our text files. On the x axis are the test files. The y axis shows the bytes that are needed
to store one byte of the original text on a logarithmic scale.
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files. The test files are on the x axis. The y axis shows the space in bytes on a logarithmic scale.

does seem reasonable when viewing from a theoretical point of view. For dblp.xml, the wavelet trees

need about 4 bytes per dictionary entry. Considering that the wavelet tree additionally stores the rank

and select data structures for every inner bit vector, as described in Section 2.5, this seems reasonable.

Construction Time

In this section, we will take a closer look on the construction time of our data structure. In Figure 6.11,

we can see the total construction time needed in the sixth column. It ranges between 14.12 seconds for

world_leaders and 10,553.8 seconds for english.1024MB. We saw in Section 6.5.2 that the construction

time of the succinct dictionary grows in accordance with the size of the dictionary. This can be seen in the

table, as the non-repetitive texts, which imply huge dictionaries, also need a long time for construction.

Still, we see that the construction time also depends on the text size and the text itself, as the RePair

algorithm generally does take more time for longer and less repetitive texts.

In Figure 6.15, we see the this in a bit more detail. In general, RePair does need more time for larger

texts and this explains why world_leaders has the smallest construction time overall. But wee see that

the dots corresponding to the fib41, tm29 and rs.13 show a significantly lower runtime, as these texts can

be compressed best.
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Figure 6.15: The plot shows the time of the RePair algorithm based on the size of the original text. On the x axis
the original string size is shown on a logarithmic scale. The y axis shows the runtime of the RePair algorithm on
a logarithmic scale. The data points correspond to the test texts.

To analyse the construction time in more detail, we take a look at Figure 6.16. Here, we see for every

test file how much time the individual parts of construction take up. The observations we can make here

correspond to the previous analysis. For the artificial repetitive text, where the dictionary is very small,

the RePair algorithm nearly accounts for all of the construction time. For the non-repetitive texts the

runtime of RePair is overshadowed by the dictionary construction, even though we saw in Figure 6.15

that RePair takes significantly longer for those text files. The longest part of construction is always the

computing of monotone subsequences. Especially for the large dictionaries from english.1024MB and

proteins, the time nearly reaches 104 seconds, meaning over 2 hours. The breadth first search on the

dictionary, that is needed to sort the odd indices to be monotonically increasing, does also take more

time for larger dictionaries. Since the runtime should be linear, this seems reasonable. The BFS, as well

as the construction of the wavelet trees, still need less time than RePair in any case.

Operations

Now, we will look at the time requirements of our implementation of the operations access, size and

lce. We do not show details for contains here. As we implemented this operation naively, in the worst

case (when a text does not contain the string) this operation has to reconstruct the whole string from the

succinct dictionary. As we implemented contains using the access method, this method turned out to

be really inefficient and of no practical use. Therefore, we will disregard this operation for now, and will

leave the implementation of a more efficient contains operation as a possibility for further research.

For the access operation, we can take a look at the seventh column of Figure 6.11. Here, we can

see the mean number of access operations that can be executed per second on the succinct storing of

our test files. Here, the succinct storing includes the array of lengths. The naive implementation that
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Figure 6.17: The plot compares the access operation of the naive string and our grammar compression. The x

axis has the length of the dictionaries that RePair constructs on a logarithmic scale. The y axis shows the number
of operations per second on a logarithmic scale.

reconstructs the whole string instead of individual symbols turned out to be of no practical use. We see

that the number of access operations per second shows a similar behaviour to the space usage and the

construction time: for the artificial repetitive text the number is highest. The real repetitive texts and the

non-repetitive texts show worse numbers, but the access operation still shows practical results. This can

also be seen in Figure 6.17. In this figure, the number of access operations per second is plotted against

the size of the dictionary. We can see that the graph is logarithmic. This corresponds to our theoretical

run time from Section 6.4.7. In particular, for our largest dictionaries, the number of access operations

is still satisfactorily high at about 1012 per second. In Figure 6.17 we also compare the naive string with

our compression. As the access operation for the naive string does only read from a std::vector and

therefore needs constant time, it is clear that a compression will most likely not reach similar results.

Nevertheless, for the artificial repetitive texts, we at least get relatively close and our run time gets close

to constant for large dictionaries.

The lce operation does mainly rely on the access operation in our implementation. As expected,

the lce operation shows a similar behaviour in our benchmarks. In Figure 6.11, the mean number of

operations per second can be found in the last column. For the non-repetitive texts, this number is in

general about half the number of access operations per second. For very repetitive texts, like fib41, it

is a smaller portion. We expected this, since the implementation of lce does more access operations

when the symbols on the two given indices (and following indices) are the same. This is more likely

for repetitive files. The plot Figure 6.19 therefore looks really similar to the corresponding plot for the

access operation. The curve is just a bit flatter in the beginning, as the texts get less repetitive with

larger dictionary size. The comparison to the naive dictionary also yields the same results. The naive
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Figure 6.18: The plot compares the size operation of the naive string and our grammar compression. The x axis
shows the length of the dictionaries that RePair constructs on a logarithmic scale. The y axis shows the number of
operations per second on a logarithmic scale.

implementation also relies on the access operation and therefore shows the same behaviour as the naive

string does in Figure 6.17.

For the size operation, we can show good results. As shown in Figure 6.11 in the eight column,

the number of size operations that can be executed per second is really high, up to three million.

In Figure 6.18, we can see that these numbers correspond to the results for the naive string. This is

explained fairly easy, as we store the size of the original string explicitly and therefore only have to

return it.

6.6 Summary and Further Work

In conclusion, we managed to build a data structure that is able to store texts succinctly in regards

to space and within a reasonable runtime. This applies to mostly smaller texts and texts that can be

compressed into small grammars. If the grammar is small, we barely need any space compared to the

original text. On bigger grammars our implementation gets worse, in some cases even worse than just

storing the dictionary as an array, but it is still feasible for use.

A big challenge for the construction of the data structure was finding a good partition of monotone

sequences, which we managed to do fairly well, considering that the problem is NP-complete. Still, we

believe our algorithm can surely be improved to make the overall compression better regarding space

and time.

We also made several operations on the original text possible through our data structure. While we

needed some extra space to make the access to single symbols inside the text possible in a reasonable

time frame, the running times, again especially for the smaller grammars, were quite good. The fact that
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Figure 6.19: The plot compares the lce operation of the naive string and our grammar compression. The x axis
has the length of the dictionaries that RePair constructs on a logarithmic scale. The y axis shows the number of
operations per second on a logarithmic scale.

our access function is only really competitive on smaller texts or grammars also shows some scalability

issues that we did not manage to fix. Something we also leave for further work is the implementation

of the contains method, which we were not able to fully realize as we wanted to. Here, a possible

solution is building a separate structure for pattern matching inside a grammar, which would however

also increase the needed space again. Another point of optimization is the use of the RePair algorithm.

Replacing it with another grammar compression could yield smaller grammars and therefore a better

compression. A big problem in this case is however our reliance on straight line programs. Any modified

grammars, for instance using more than two variables on the right side of a rule, would require heavy

modifications of our work.
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Chapter 7

Succinct Representations for Graphs

We analyse different methods to construct data structures for graphs. Our target is to support operations

on graphs in the same asymptotical time as on naive graph structures with a succinct space requirement.

The data structures we consider shall support the following operations for a given directed, unweighted

graph G = (V,E), where the vertices are named by numbers in [0, . . . |V |−1]:

• size(), number_of_nodes(): returns the number of vertices, i.e. |V |.

• number_of_edges(): returns the number of edges, i.e. |E|.

• degree(v): returns the out-degree of v ∈V .

• get(v, i): returns the i-th (outgoing) neighbour of v ∈ V with 0 ≤ i < |V | (the neighbour list is

sorted increasing by their names).

• is_neighbour(u,v): returns true iff there is an edge from u to v with u,v ∈V .

We implement GLOUDS (Section 7.1), a succinct graph data structure introduced by Fischer and Peters

[FP16] for tree-like graphs (Definition 2.3.1). As comparable representations we also implement the

adjacency list (Section 7.3.1) and adjacency matrix (Section 7.3.2).

7.1 Representing Tree-Like Graphs with GLOUDS

Fischer and Peters [FP16] designed a data structure optimised for tree-like graphs (Definition 2.3.1).

A spanning tree of the given graph can be transformed to a bit vector (LOUDS representation [Jac89],

Section 7.1.1), with additional information to store the whole graph.

7.1.1 LOUDS

The level order unary degree sequence (LOUDS) [Jac89] encodes a given ordered tree T as a bit vector

B. We start at the root and traverse T through a breadth-first search (BFS, see Section 2.3.1). For each
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discovered node, we add as many 1 bits as the current node has neighbours to the end of B. If the current

node is finished, we write 0 [FP16]. So, let k be the number of neighbours of a node, we add 1k0 to B.

An example for the construction of LOUDS can be found in Section 7.1.3. With rank and select queries

on B we can identify the corresponding children and the parent of a given node in the BFS spanning tree.

The nodes are named by the time step at which they were discovered by the BFS, i.e. the node that is

discovered fourth has the name 4. To find a parent p of node i, we can induce p = rank0(B,select1(B, i)).

To find the children of node i, we locate the i-th 0 via select0(B, i) and then simply iterate through the

following bits until we hit another 0 entry [FP16].

With this technique, we are able to represent a tree with n nodes by a bit vector with 2 · n+ o(n) bits.

The relations of the nodes, for example the parent of a node, can be calculated in O(1) time.

7.1.2 GLOUDS

Fischer and Peters [FP16] extend LOUDS to a data structure for storing arbitrary graphs. This data

structure is called graph level order unary degree sequence (GLOUDS). It uses LOUDS to encode the

spanning tree of a graph. This is enhanced to represent the non tree edges as well.

The following variables are used for GLOUDS:

• let G be a directed graph,

• n the number of vertices in G,

• m the number of edges in G,

• c≤ n the number of connected components in G,

• k = max{m+ c−n,0} the number of edges in G that need to be added to the spanning tree of G

to reconstruct G, i.e. the number of non-tree-edges, and

• h≤min{n,k} the number of vertices in G that have more than one incoming edge.

At the start, we choose a vertex r as the start point of the breadth-first search. We call r the root or start

point of its connected component (= all vertices that are reachable by r). If not all vertices are reachable

by r, we add a super root sr and connect sr to each required root. We encode sr as 1c0, where c is the

number of connected components.

Through the BFS, we create and encode a spanning tree T of the graph with LOUDS (see Section 7.1.1).

If a vertex v that is adjacent to the current vertex u is discovered, but not finished yet, v is added to T as

a child of u. These discovered, but not finished, child vertices are named shadow nodes [FP16]. Since

0 or 1 encode nodes and edges of the spanning tree, we expand the possible inputs with 2 to encode

shadow nodes. So, GLOUDS uses a trit vector B (Section 2.6) instead of a bit vector. During the BFS,

B is filled like LOUDS with the adaption that shadow nodes are encoded by 2. An example is given

in Section 7.1.3. The trit vector for G needs n+m+ c+ 1 trits. To support various operations on the

encoded graph, we additionally construct an array H to store the shadow nodes in the order they were
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Figure 7.1: Example graph

v1

v2 v3 v4

v5 v6v7

v8

Figure 7.2: Spanning tree of the graph given in Figure 7.1

discovered. With rank and select queries on B and access to H we are able to reconstruct all information

of the graph, for example neighbourhoods, in constant time.

7.1.3 Example Construction

Now we demonstrate via the graph G in Figure 7.1 how to represent a graph with GLOUDS. The span-

ning tree T of G is given through Figure 7.2 which is encoded by LOUDS. Figure 7.3 shows the pro-

cedure of the BFS over G which is starting at the super root sr. Shadow nodes, vertices that have been

discovered in the BFS multiple times, are highlighted by dotted lines.

The LOUDS representation of the spanning tree in Figure 7.2 is the following for each level:

sr-level 10

v1-level 1110

v2,v3,v4-level 10 10 10

v5,v7,v6-level 0 0 10

v8-level 0
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sr

v1

v2 v3 v4

v5 v5S v7 v6

v7S v8

Figure 7.3: Visualisation of the BFS over the graph in Figure 7.1 starting at sr, the vertices v5 and v7 are listed
twice, once as ’real’ vertices and once as ’shadow’ nodes

Which constructs the bit vector B = 10 1110 10 10 10 0 0 10 0.

The GLOUDS representation of the graph in Figure 7.1, whose construction is visualized in Figure 7.3,

is the following:

sr-level 10

v1-level 1110

v2,v3,v4-level 10 210 10

v5,v7,v6-level 0 0 210

v8-level 0

Which constructs the trit vector B′ = 10 1110 10 210 10 0 0 210 0. The array H contains the names

of shadow nodes in order of their discovery during the BFS. For this example the resulting array is

H = {v5,v7}.

7.1.4 Space Requirements

As mentioned in Section 7.1.2, n is the number of vertices, m the number of edges, k the number of

shadow nodes and c ≤ n the number of connected components. By using a lookup table, Fischer and

Peters [FP16] need (n+m+ c) · (log(3)+o(1)) bits to store the trit vector. Supporting rank and select

queries needs additional o(n+m) bits. The support list of shadow nodes H can be stored as a wavelet

tree (Section 2.8) with additional k log(n) bits plus o(k logn) bits to support select queries. Due to the

fact that the amount h of different shadow nodes could be smaller than k, Fischer and Peters use a more
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succinct way to store H with just h log(n)+k log(h)+o(h+k · log(h))+O(log(log(n))) bits (for details

see [FP16]).

Summed up, the representation of Fischer and Peters requires (2n+m) · log(3)+h · log(n)+k · log(h)+

o(m+ k · log(h))+O(log(log(n))) bits.

7.2 Implementation

GLOUDS works for any directed, unweighted graph, even though it is optimised for tree-like graphs.

The given graph does not have to be connected. We allow loops and isolated vertices.

Our implementation creates a GLOUDS representation of a graph which is isomorphic to the input

graph. This is because the representation names of the vertices according to the order they were dis-

covered during the BFS. Our implementation has a boolean template parameter that allows to choose

whether the names of the input graph (glouds<true>) or the isomorphic GLOUDS graph (glouds<false>)

should be used for input and output. A detailed explanation for this and our solution is given in Sec-

tion 7.2.3.

Fischer and Peters [FP16] start the BFS at the super root. The super root refers to the optimal start points,

or roots, of the connected components (see Section 7.1.2). The optimal set of start points is defined as

a minimum set of vertices from which each vertex of the graph can be reached. Since we allow an

arbitrary naming of the vertices the optimal start points cannot be given by the input. This implies a

pre-calculation of this minimal set of start points. We implement two versions of GLOUDS:

• glouds_startpoint calculates the optimal start points by a depth-first search (DFS, see Sec-

tion 2.3.2) before running the BFS. This takes O(m+ n) additional time for n vertices and m

edges. This solution is presented in Section 7.2.2.

• glouds starts the BFS at the vertex named 0 and always chooses the next (minimal name number)

undiscovered vertex as root for the next connected component. This reduces time, but generates

a possible non-minimal set of start points. Additionally it is necessary to store the names of the

start points. For more details see Section 7.2.1.

The different versions produce a different isomorphism to the input graph. The differences are shown in

Figure 7.4.

All of our GLOUDS implementations have the following common data structures: Our solution for the

trit vector is an adaption of a wavelet tree, instead of the lookup table used in Fischer and Peters [FP16]

(for more details see Section 4.3). We store the list of shadow nodes as integer vector of size m and

width logn (compare to Section 4.1).

Both versions require a graph which can be represented by its adjacency matrix (any binary vector (bit

or boolean), compare to Section 7.3.2) or adjacency list (std::vector<std::vector<uint64_t>>,

compare to Section 7.3.1). The constructor methods of both GLOUDS versions are using the adjacency

list because of its faster neighbourhood queries. The matrix input will be converted to a list. Converting

methods in quadratic time are offered by utils_for_adjacency.
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points

Figure 7.4: Example to show the different BFS order of the different GLOUDS versions and the corresponding
naming of the vertices

Each of our graph implementations store the number of vertices and the number of edges in uint64_t

member variables. So, number_of_nodes() and number_of_edges() are answered in O(1) time. The

values are calculated while constructing the representation: the number of vertices can be calculated in

O(1) time. The number of edges must be calculated in O(n) time for an adjacency list and O(n2) for

an adjacency matrix (explanations given in Sections 7.3.1 and 7.3.2). Methods for these calculations are

offered by utils_for_adjacency.

7.2.1 GLOUDS Implementation with Non-Optimal BFS Start Points

Our first version of GLOUDS starts the BFS directly at any start point (we choose the vertex named

0). During the BFS, the start point of the next connected component is the undiscovered vertex with a

minimal name number. Due to this procedure, the set of start points could be not minimal.

To implement get, we need the vertex names of the start points. We store these in a std::vector<uint64_t>.

The super root has no function in this version, so it does not exist here.

The GLOUDS representation glouds needs:

• a trit_vector of length n+m

• an int_vector for the shadow nodes with the size m and width max{logdn−1e,1}, and

• a std::vector<uint64_t> with length c′ for the start points,

where n is the number of vertices, m the number of edges and c′ ≤ n is the non-minimal number of start

points corresponding to the BFS. It holds k = max{m+c′−n,0} for the number of shadow nodes, but in

this version the start points arise while running the BFS. Therefore, c′ is not known at the initialisation

of the shadow node list. We choose the size m because for the worst case each edge might generate a

shadow node.

Construction

The constructor builds the trit vector and the list of shadow nodes like GLOUDS (see Section 7.1). In

addition, the list of start points must be constructed.
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2

1

0

optimal start points: {2}, BFS order is 2,1,0

start points by BFS: {0,1,2}, BFS order is 0,1,2

Figure 7.5: Worst-case for GLOUDS without pre-calculation the start points

To reduce construction time, the trit vector constructor receives the already calculated levels of the

wavelet tree, named level 0 and 1 (compare to Section 4.3). While traversing the given graph, both

levels must be calculated. First, we create two basic bit vectors (see Section 4.2.1) for each level of the

trit vector of the GLOUDS encoding (without super root). These will be filled while running a BFS over

the graph. The length of level 0 is n+m for the input graph with n vertices and m edges. This occurs,

because we list each vertex and its corresponding neighbours. The length of level 1 is m since we need

to clarify if a neighbour from level 0 is encoded as a shadow node or regular vertex.

Now we execute the BFS. It starts at vertex 0 and traverses all vertices that are reachable from 0. After

this, we start at the next (smallest number) undiscovered vertex for the next connected component. The

first time we visit a vertex (vertex becomes discovered), we start to enlist all neighbours for this vertex

in the trit vector. This means we iterate over its neighbours and write 1 for undiscovered neighbours

and 2 for discovered (shadow nodes). If a vertex v is finished, we write 0. We call the block in the trit

vector between two zeros neighbour information of the corresponding vertex v (whose zero completes

the block), because this block describes the outgoing edges from v. For example, the encoding of the

graph in Figure 7.3 is B′ = 10 1110 10 210 10 0 0 210 0. The neighbour information of vertex v3 is 21

which starts behind the third zero and ends at the fourth.

Figure 7.5 depicts an example graph showing why this order of the BFS is not optimal: The BFS starts at

vertex 0 and the connected component of that vertex is completed. Then it advances to the next smallest

undiscovered vertex, and all other vertices of the connected component of 1 (just 0) are already finished.

For 2 as a next start point, it is the same, so the BFS counts three instead of one connected components.

This means, for the worst case, the list of start points receives n−1 additional unnecessary entries.

The whole representation is constructed while running the BFS. Therefore, the construction time is

O(n+m) where n is the number of vertices and m is the number of edges.

The construction needs additional space for a std::queue<uint64_t> of length O(n) and a basic

bit_vector with length n to mark if a vertex is discovered (we do not need to know if a vertex is

finished in our use-case). Since we store shadow nodes by their GLOUDS name in the shadow node

list, we need to store the local isomorphism, no matter if the class template parameter is true or false

(with mapping or not). If the isomorphism is just needed locally (false) we choose a int_vector

with size n and width max{logdn− 1e,1}. Otherwise, we need a std::vector<uint64_t> because

our permutation implementations require this input (see also Sections 4.4 and 7.2.3).
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Graph Operations

With the trit vector we are able to reconstruct all information about the neighbourhoods of the vertices.

For this we usually have to calculate the neighbour information section of vertex v. This section ends at

the v-th zero and starts at the v−1-th zero. The starting and ending position of the neighbour information

can be calculated by combining select queries on the trit vector.

The degree(v) of a vertex v∈V is the length of its neighbour information section, so it can be calculated

by two select queries in constant time.

For get(v, i), we have to distinguish between tree and shadow nodes, because for tree nodes we need to

recalculate the name number of the vertex while shadow nodes can be read out from the list of shadow

nodes. If the i-th neighbour information of v is 1, we need to recalculate the name number of a tree node.

This number depends on the order the BFS visits the vertices. This is the only reason why we need to

save the start points. Via a binary search over the start points we calculate the number of the start point

which v belongs to. A binary search is directly possible because the list of start points always contains

ascending values. Therefore the case that the i-th neighbour information is a 1 takes O(logc′)=O(logn)

time for n vertices and c′ ≤ n start points. For example in the graph G of Figure 7.3 with the encoding

B= 1110 10 210 10 0 0 210 0: get(2,1) searches the second entry in the neighbour information of vertex

v3, called vertex 2 by the GLOUDS naming, i.e. B[8] = 1. The start point list of G just contains vertex

v1, i.e. vertex 0. So, the name of the second neighbour of v3 is vertex 0+ rank1(B,8)−1 = 0+5−1 = 4,

i.e. vertex v5. If the i-th neighbour information of v is 2, the neighbour is a shadow node and we look in

the list of shadow nodes H. To get the right index in H, we need one rank query, so the second case is

solved in constant time. Again for G of Figure 7.3: get(5,0) searches for the first entry in the neighbour

information of vertex v6, called vertex 5 by the GLOUDS naming, i.e. B[14] = 2. The list of shadow

nodes is H = {v5,v7}= {4,6}. So, get(5,0) returns H[rank2(B,14)−1] = H[2] = 6, i.e. vertex v7.

The operation is_neighbour(u,v) iterates over the neighbour information section of v and calls get(u, i)

for all neighbours of u (i = {0,1, . . . ,deg(u)−1}) to test if any neighbour of u is equivalent to v. Neigh-

bour queries can be answered with O(deg(u) · f ) time, where deg(u) ∈ O(n) and f is the runtime for

get. The worst case of a neighbour query is O(n logn) time.

7.2.2 GLOUDS Implementation with Pre-Calculating BFS Start Points

In this version we calculate the optimal start points before running the BFS. This requires an additional

graph traversal, for which we choose a DFS.

The GLOUDS representation glouds_startpoint needs:

• a trit_vector of length n+m+ c+1, and

• an int_vector for the shadow nodes with size k and width max{logdn−1e,1},

where n is the number of vertices, m the number of edges, k = max{m+c−n,0} the number of shadow

nodes and c≤ n is the minimal number of start points.
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0 1 2

Figure 7.6: Example graph to explain the necessity of storing all possible start points

Construction

First we run a DFS to calculate the optimal start points. Our approach is to choose an arbitrary vertex r

as a start point and mark every vertex which can be reached by r. Then we choose any next undiscovered

vertex r′. If r is reachable by r′, all vertices reachable by r are reachable by r′. The connected component

of r is then a subgraph of the connected component of r′. The vertex r is not a start point any longer.

The DFS maintains a static integer vector SP with SP[i] = n iff vertex i is undiscovered (because no

vertex has name n). Otherwise, SP[i] is the start point of the connected component which contains i. If

a connected component has multiple possible start points we have to store all these possibilities during

the DFS. We illustrate this in Figure 7.6: we start at vertex 0 and define 0 as a start point of the first

connected component, SP[0] = 0. We discover vertex 1, reachable by 0, SP[1] = 0. Then we need to

restart the DFS at vertex 2 as a start point of the next connected component, SP[2] = 2. From 2 we

just reach the already discovered vertex 1 and terminate the recursive search. To detect if the current

connected component includes another previously discovered component, we either have to check over

all reachable vertices (that would be too much time) or mark all potential start points of a component.

The reason why there are several possible start points in our example is that the edges between the

vertices 0 and 1 make a circle. Therefore, we store a static bit vector R with R[i] = 1 iff vertex i is on

a circle which includes the start point SP[i]. To maintain R, we hand over the start point of the current

connected component at each recursive step to the DFS. After the recursive DFS step, we update the

entry of the actual vertex v: if R[u] = 1 for a neighbour u of v follows R[v] = 1. If we detect that a

connected component C with start point sC contains another component C′ by reaching any possible

start point sC′ of C′, we set SP[SP[sC′ ]] = sC and R[sC′ ] = 0. As a consequence all other possible start

points of C′ are unmarked as start point. The vertex SP[SP[sC′ ]] is the first found start point of C′ and

thus all other possible start points, that have been found later, refer to SP[SP[sC′ ]], which is updated now.

At the end of the DFS, the vertices i with SP[i] = i yield the minimal start point set. Therefore, we just

need to iterate over SP one time and add these vertices to the optimal list of start points. The generated

start points list is used as the neighbour list of the super root sr (add sr to the input adjacency list).

Now we start the BFS at sr. All vertices are reachable by the super root because sr is adjacent to every

start point. Filling the trit vector levels and shadow node list works the same way as the BFS without

pre-calculating the start points.

The construction time is O(n+m) where n is the number of vertices and m edges.

The BFS needs the same additional local space as the BFS of our implementation without pre-calculating

the start points. The int_vector for SP, which is used by the DFS to store the start point of each vertex,

has size n and width max{logdn−1e,1}. The bit_vector for R to mark if a vertex is a possible start

point has length n. We use a std::vector<uint64_t> with size O(n) to store the optimal start point

list.
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Graph Operations

The operations degree(v) and is_neighbour(u,v) have not changed. The big advantage of this version

is that the changed BFS order (compare to Figure 7.4) results in the following equivalence: the i-th one

in the trit vector encodes the first discovery of vertex i− 1. So, the name of a vertex in the neighbour

information section of another vertex can be reconstructed by one rank query. Therefore, we are able to

implement the get(v, i) operation in constant time and do not need to store the names of the start points

in an additional integer vector.

7.2.3 Isomorphism

The GLOUDS representation is isomorphic to the input graph. This is due to the fact that for GLOUDS

the vertices are named by their number as they are processed by the BFS. In Figure 7.4 is an example

given where the input and constructed graphs are not identical. The isomorphism to reconstruct the

names of the original graph from the GLOUDS graph with non-optimal start points is {0 7→ 0,1 7→
1,2 7→ 3,3 7→ 2,4 7→ 4}.
We have two options to deal with this problem, these options can be chosen by a boolean class template

parameter:

• We allow an arbitrary naming of the graph. For get or neighbour queries we have to use the

GLOUDS names of the vertices. Alternatively, the input and output vertices are renamed before

or respectively after, outside of GLOUDS. Functions to rename the vertices for all graph imple-

mentations are offered by the class plads::graph::mapping. This option can be chosen by

using false as a template parameter.

• Otherwise, the GLOUDS implementation itself renames the input and output. Therefore, the

isomorphism must be stored. This option can be chosen by using true.

The isomorphism is a permutation of the integers in [0,n] (see Section 4.4). We choose the succinct

permutation permutation_inverse by Navarro [Nav16] with parameter b = 16.

The operation degree(v) needs one read query on the permutation to get the real input name. For

get(v, i) the input and output vertex have to be converted. The is_neighbour(u,v) operation calls

get and needs one additional reading on the permutation. Every read and inverse operation on the

permutation needs O(1) additional time.

7.3 Other Representations for Graphs

In the following section, we introduce the adjacency list and adjacency matrix of graphs which are used

as a benchmark for the comparison.

104



v1

v2 v3

v4 v5

(a) Example Graph



0 1 1 0 0

0 0 0 1 1

0 0 0 0 1

0 0 0 0 1

1 0 0 0 0


(b) Matrix representation

Figure 7.7: Example of the adjacency matrix representation of a graph

7.3.1 Adjacency List

The adjacency list of a graph is a vector of integer vectors where all neighbours of each vertex are listed.

So, adjl[i] returns a list of the (outgoing) neighbours of vertex i where adjl[i][ j] is the j-th neighbour of

i.

We implement the adjacency list as std::vector<std::vector<uint64_t>> of length n for n ver-

tices. The inner vector adjl[i] has length deg(i) ∈ O(n).

The number of vertices is the length of the outer vector. The number of edges is the sum of the length of

all inner vectors. A method of utils_for_adjacency calculates this sum in O(n) time. The number of

vertices and the number of edges are stored as uint64_t member variables. The degree of a vertex v is

equal to the length of the corresponding inner vector. I.e. deg(v) = |adjl[v]| can be calculated in constant

time. Neighbour queries are answered by an iteration over all neighbours (inner vector) of the given

vertex. The operation is_neighbour takes O(deg(u)) ∈ O(n) time. For get(v, i) we return adjl[i][ j] in

constant time. This operation is the benefit of this representation.

7.3.2 Adjacency Matrix

For the adjacency matrix representation, the basic idea is that all outgoing edges from a vertex are listed

in a binary matrix. So, to rebuild the graph G = (V,E) out of the matrix, we have the equivalence

adjm[i][ j] = 1 ⇐⇒ (i, j) ∈ E,

i.e. there is an edge from the i-th vertex in the list to the j-th, where i is the row and j the column of the

matrix with i, j ∈ [0,n) for n vertices. See Figure 7.7 for an example.

In our implementation the matrix is stored as static bit vector (see Section 2.5.1). Its length is n2 bits

where n is the number of vertices. A std::vector<bool> can also be used as an input and will be

converted.
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The equation to rebuild the graph is

adjm[i ·n+ j] = 1 ⇐⇒ (i, j) ∈ E.

The number of vertices is the length of the adjacency matrix, i.e.
√
|adjm|. To calculate the number of

edges we count all 1 entries in the whole matrix. This is offered by utils_for_adjacency and costs

O(n2) time. The number of vertices and the number of edges are stored as uint64_t member variables.

The operation degree(v) is solved in linear time because deg(v) = ∑
n−1
i=0 = adjm[v · n+ i] holds. For

get(v, i) we iterate over the row of outgoing edges of v and stop at the i-th one. The reached index

corresponds to the i-th neighbour. So, get(v, i) needs O(n) time. The adjacency matrix is very effi-

cient for neighbourhood queries because it offers direct access to every outgoing edge. This gives us

is_neighbour(u,v) = true iff adj[u ·n+ v] = 1 in constant time.

7.4 Results and Further Work

In this section, we compare our implementations of the different graph representations. Table 7.1 sum-

marizes the space needed for the representations. The number of edges in a directed graph is 0≤m≤ n2,

but for a k-tree-like graph it is m = n− 1+ k for a small number k ∈ N0. Table 7.2 gives an overview

of the space and time requirement of the constructors of the different representations. A summary of

the running times of the three operations is given in Table 7.3. Here we see that our solution with pre-

calculating the optimal start points is asymptotically always at least as good as the other representations

except the adjacency matrix for neighbourhood queries.

7.4.1 Benchmark Results

In this section, we present the results of our benchmarking and discuss these in the context of the theo-

retically determined time and space requirements. For our benchmarks, we construct graphs of different

sizes with a given parameter k. Hereby, k denotes a factor with which the total amount of edges that will

be added to any given graph in relation to the number of its vertices is calculated. The amount of edges

m is described through m = n ·
(
1+ k

100

)
.

For each edge that has to be added, we generate two random numbers, that correspond to a start vertex

and a end vertex which are not yet connected. Since we benchmark only undirected graphs , we also add

the corresponding edge from the end vertex to the start vertex. Note that with an increasing k we move

further away from a tree-like graph. However our k is not the same as the k-tree-like graphs in [FP16]

since our k only is used for calculating the amount of edges that we add. While this approximates to

a tree-like structure, we do not guarantee that all vertices will be connected to a single graph (isolated

vertices might still occur, but less frequently with increasing k). The graph is then represented by its

adjacency list and used as an input for the different representations we implement. We compare the

following representations:

• graph-list for the adjacency list (see Section 7.3.1),
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representation space in bits

GLOUDS

by [FP16]

(n+m+ c) · (log(3)+o(1)) (trit vector)

h log(n)+k log(h)+o(h+k log(h))+O(log(log(n))) (shadow node list)

= O(n)

GLOUDS

with non-opt. start points

(m+n)+m+o(2m+n) (trit vector)

m · logn (shadow node list)

O(c′) (start point list for c′ ≥ c start points)

= O(n logn)

GLOUDS

with opt. start points

(m+n+ c+1)+(m+ c)+o(2m+n+2c+1) (trit vector)

k · logn (shadow node list)

= O(n)

adjacency list O(n)

adjacency matrix O(n2)

Table 7.1: Theoretical worst case comparison of space requirement of the discussed graph representations for
graphs with n vertices, m edges and c ∈ O(n) connected components. The summing up (in O-notation) is for k-
tree-likeness with a small constant k from which m∈O(n) follows (for details see Sections 7.1 to 7.3). If GLOUDS
stores the isomorphism O(n logn) additional bits are needed to store a object of permutation_inverse<16>
(compare to Section 4.4).

representation construction time additional construction space in bits

GLOUDS

with non-opt. start points

O(m+n) (BFS) O(n) (queue)

O(n) (discovered)

GLOUDS

with opt. start points

O ((m+n) ·n) (DFS)

O(m+n) (BFS)

O(n) (start point of each vertex)

O(n) (identify possible start points)

O(n) (super root neighbours)

O(n) (queue)

O(n) (discovered)

adjacency list O(1) (set reference) –

adjacency matrix O(n2) (convert) –

Table 7.2: Theoretical worst case comparison of construction time and space of the discussed graph represen-
tations for graphs with n vertices and m edges if the input graph is represented as adjacency list (for details see
Sections 7.1 to 7.3). If GLOUDS stores the isomorphism O(n) additional construction time is needed to construct
the succinct permutation (see Section 4.4). Otherwise, additional O(n) bits of construction space is needed to
store the isomorphism locally.

107



representation degree get(v, i) is neighbour(u,v)

GLOUDS

with non-opt. start points

O(1) O(logc′)

= O(logn)

O(deg(u) logc′)

= O(n logn)

GLOUDS

with opt. start points

O(1) O(1) O(deg(u))

= O(n)

adjacency list O(1) O(1) O(deg(u))

= O(n)

adjacency matrix O(1) O(n) O(1)

Table 7.3: Theoretical worst case comparison of running time of the discussed graph representations for graphs
with n vertices, m edges, c ∈O(n) optimal and c′ ≥ c non-optimal start points (for details see Sections 7.1 to 7.3).
If GLOUDS maps the isomorphic vertex names itself O(1) additional time for reading and inverting is needed
(see Section 4.4).

• graph-matrix for the adjacency matrix (see Section 7.3.2),

• glouds-true for the GLOUDS representation without pre-calculating the optimal start points and

with storing of the isomorphism (see Sections 7.2.1 and 7.2.3),

• glouds-false for the GLOUDS representation without pre-calculating the optimal start points and

without storing of the isomorphism (see Sections 7.2.1 and 7.2.3),

• glouds-startpoints-true for the GLOUDS representation with pre-calculating the optimal start

points and with storing of the isomorphism (see Sections 7.2.2 and 7.2.3), and

• glouds-startpoints-false for the GLOUDS representation with pre-calculating the optimal start

points and without storing of the isomorphism (see Sections 7.2.2 and 7.2.3).

The size of our graphs n is a power of two, starting with 215 going up to 228 vertices.

We measure a total of three steps for a given factor of k = 1, k = 30 and k = 100. First we evaluate

the time it takes to finish a constructor call with a specific amount of vertices in the graph. Then we

investigate the space in bytes to save one object. After that, we show a Pareto front to show which

implementation yields the best results for 218 vertices. Then later on, we measure the time it takes to call

the various operations one million times on each input graph. This includes get, degree and is_neighbour

operations. For each method, we construct a query input beforehand, which is then used to execute the

function call one million times.

We noticed that adding edges to the corresponding graph did not influence the construction time of

graph-matrix and graph-list. Since we merely copy the input for graph-list, the time needed stems from

said copy operation. As far as graph-matrix is concerned, the given adjacency list as input needs to be

converted to a adjacency matrix. This results in quadratic construction time. Therefore, after bench-

marking all classes, we decided to exclude graph-matrix results for graphs with more vertices than 219

since we could see that it lacks behind on both required space and calculation time.
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The construction times are sown in Figures 7.8 to 7.10. Although graph-matrix and graph-list do not

require any specific calculation, it appears that the size of the input object seems to be the main factor

of how fast these classes can construct one object. Since graph-matrix performed slow, we decided not

to list any results bigger than 219 for this class. However, graph-list outperforms any GLOUDS imple-

mentation because the construction is just copying the reference of the input adjacency list. As far as

our various GLOUDS implementations are concerned, we can see that if we add the construction of

data structure to store the isomorphism (here permutation_inverse<16>, see Sections 4.4 and 7.2.3)

it naturally adds more time to the constructor calculation by a linear factor (see also Figure 4.3). In ad-

dition to that, we see that our DFS to locate the best start points adds significantly to the runtime. While

the runtime of the GLOUDS constructors increases with higher k values, the respective increments are

linear. This incremental effect however does not appear for graph-matrix and graph-list.

For the space usage, we can deduce that the required space grows accordingly to the increase of ver-

tices (Figures 7.11 to 7.13). We can see that all GLOUDS implementations outperform graph-matrix

and graph-list. Furthermore, as far as the GLOUDS implementations are concerned, we can see that

performing the DFS to calculate the optimal start points yields a reduction of space usage for the object

later on. This is due the fact that the amount of shadow nodes is kept to a minimum, and we hence

do not encode these vertices more than required. In addition, pre-calculating the start points saves the

space of a list of start points, which is needed to realise the get function in glouds-true/false. This space

reduction superiors the space reduction of glouds-true/false by leaving out the super root. This improve-

ment however diminishes if we add more edges to the input graph. We explain this as follows: the more

edges a graph contains, the more likely it is that there are fewer connected components. Therefore for

a high parameter k, the advantage of glouds-startpoint-true/false, that we do not need to store a list of

start points, might have less influence, because the number of non-minimal start point becomes smaller

for a more connected graph. Figure 4.2 shows the comparison of a naive implementation and a succinct

implementation of permutation which is used to store the isomorphism. We can see that if we decide

to store the isomorphism, we automatically add a specific amount of space to every GLOUDS version.

Although we use an improved version of permutation, it still takes some space, which results in the

difference space requirement between glouds-false and glouds-true, and respectively glouds-startpoint-

false and glouds-startpoint-true.

While graph-list shows a constant runtime for get queries, graph-list requires constant time, while the

GLOUDS implementations require almost constant runtime (Figures 7.14 to 7.16). Increasing the

amount of edges has next to no impact on the runtime of get queries for all classes. However, if we

store the isomorphism, the runtime for get increases significantly because we need to include the map-

ping process as well. For the additional running times arising from the additional mapping of the input

and later the output see Figures 4.4 and 4.5.

The degree function behaves almost similar to the get function in terms of runtime. As seen through Fig-

ures 7.17 to 7.19 the increasing of k has no significant impact on the running times themselves. Overall
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Figure 7.8: Construction time (in seconds) required to construct a single object for the various listed implemen-
tations with k = 1.
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Figure 7.9: Construction time (in seconds) required to construct a single object for the various listed implemen-
tations with k = 30.
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Figure 7.10: Construction time (in seconds) required to construct a single object for the various listed implemen-
tations with k = 100.
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Figure 7.11: Amount of space (in bytes) it took to store each object with k = 1.
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Figure 7.12: Amount of space (in bytes) it took to store each object with k = 30.
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Figure 7.13: Amount of space (in bytes) it took to store each object with k = 100.
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Figure 7.14: Runtime (in seconds) required to execute one million get queries on the respective objects for k = 1.
Figures 7.15 and 7.16 exclude graph-matrix, because this figure demonstrates how poorly graph-matrix performs
in comparison to the other methods.
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Figure 7.15: Runtime (in seconds) required to execute one million get queries on the respective objects for k = 30.
We excluded graph-matrix to take a closer look on how the GLOUDS implementations perform in comparison to
graph-list (for graph-matrix see Figure 7.14).
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Figure 7.16: Runtime required to execute one million get queries on the respective objects for k = 100. We
exclude graph-matrix because it performs rather poorly than the other representations (compare to Figure 7.14).

the runtime is linear with an added factor once we include the isomorphism.

Since the is_neighbour function operates on all data structures rather quick, even when increasing k, we

decided to only show the time it took for the case of k = 1 in Figure 7.20. All classes show a very low

constant runtime with only minor peaks in between.

To conclude the benchmarks, we show in Figure 7.21 that glouds-false beats the other implementations’

runtime and space requirement for the construction of an object while also delivering an almost con-

stant runtime for each method. However depending on the amount of edges that the graph contains,

we showed that for a low amount of edges of any given graph, glouds-startpoint-false can save some

additional space, while requiring a longer runtime for the construction of the object itself.

In addition to that, our benchmark showed that once we store the isomorphism through glouds-true or

glouds-startpoint-true, we not only require a lot more space, but also incur slower running times. So,

whenever the isomorphism does not have to be stored, glouds-false and glouds-startpoint-false offer

benefits concerning space and runtime.

7.4.2 Further Work

Our trit vector uses a wavelet tree adaption. Fischer and Peters [FP16] use a lookup table. It is still left to

implement this solution and to evaluate in which case which approach is more efficient. We store the list

of shadow nodes with our integer vector implementation (see Section 4.1). Fischer and Peters [FP16]

decided to use a wavelet tree (see Section 2.8). The length of the string to be encoded is the number

of shadow nodes k. The size of the alphabet is h ≤ min{n,k} where h is the number of the n vertices

114



14 16 18 20 22 24 26 28

0

0.1

0.2

0.3

0.4

0.5

Vertex Count [log]

To
ta

lQ
ue

ry
Ti

m
e

[s
ec

on
ds

]

Time for 1M Degree Queries with k = 1

glouds-startpoint-true
glouds-startpoint-false
glouds-true
glouds-false
graph-list
graph-matrix

Figure 7.17: Total time (in seconds) it took to execute one million degree function calls for k = 1.
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Figure 7.18: Total time (in seconds) it took to execute one million degree function calls for k = 30.
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Figure 7.19: Total time (in seconds) it took to execute one million degree function calls for k = 100.
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Figure 7.20: Total time (in seconds) it took to execute one million is_neighbour function calls for k = 100.
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Figure 7.21: The Pareto front of the four respective objects shows the time versus space requirement. Each graph
contains three vertices to represent k = 1, k = 30 and k = 100.

that have more than one incoming edge. So, our implementation needs k · logn bits, while a wavelet tree

needs min{k · log(h),h · log(k)} bits.

In preparation for the project group, we got to know further techniques to encode trees and graphs. For

trees, there is the very popular parenthesis technique. For this method the tree is traversed with a depth-

first search. When a node is entered for the first time, an opening parenthesis or 0 is written. When it is

entered for the second time, a closing parenthesis or 1 is written [Nav16, Chap. 8]. In this way, a tree

can be converted to a bit vector of the length 2n where n is the number of nodes. Methods to determine

the parent or children of a given node can be realized by rank and select operations on this bit vector in

constant time.

This approach is transferred by Turán [Tur84] to planar graphs. Turán traverses the spanning tree and

stores it in the parenthesis representation. In addition, for each edge of the graph which is not included

in the spanning tree, the time of the first and second discovery of this edge during the traversal is stored.

Thus Turán achieves a representation with 4m bits for a planar graph with m edges. This representation

answers neighbourhood queries in O ( f (m)) time for a function f (m) ∈ ω (m) [FSG+16, Tur84].

The mentioned techniques are optimized for special graphs (trees, tree-like, planar graphs). Further a

data structure could be developed that selects the best representation according to the properties of the

input graph.
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Chapter 8

Retrieval and Perfect Hashing

A very common problem is to store a set of keys associated with information. This is solved by a

retrieval data structure (often also called dictionary). The naive solution is to save every key-value pair

in an array, leading to O(n) access. If we want faster queries, we can use the two common approaches,

search trees and hash tables. Besides this, we can also solve the problem with (minimal) perfect hash

functions (see Section 2.4).

In this chapter we will cover two data structures introduced by Mueller et al. [MSSZ14]. FiRe (Finger-

print retrieval) solves the retrieval problem and FiPHa (Fingerprint based hashing) is a (minimal) perfect

hash function. We implemented these two data structures and benchmarked them against state-of-the art

implementations which provide solutions to the same problem.

8.1 Retrieval

Given a set S of n keys from a universe U , a retrieval data structure stores information that is linked to

these keys. For a key k and information v it can:

• insert(k,v): insert a key with its information

• delete(k): delete the key and the information associated with it

• assign(k,v): assign a new value to a key

• lookup(k): return the value associated with k

If there is no need to manipulate the key set, insert and delete are not needed. There are two simple

solutions to the problem. We can store each key-value pair in a node and store all nodes in a search tree,

allowing O(logn) time operations when a total order on the key set exists. The other solution is a hash

table (see Section 2.4.2), which allows average constant time operations.
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8.2 Related Work

There are many different ideas for building minimal perfect hash functions. FiPHa is benchmarked

against three state-of-the-art implementations. These are outlined here.

8.2.1 Linear Systems

To explain the idea of random linear systems, we show how to represent a function as a linear system

[GOV16]. We start by looking at the special case where we map every key ki to a value vb ∈ F2, where F2

denotes the field with two elements. We shorten every key to m bits beforehand by using a hash function

hθ : U → Fm
2 from a hash family. Now we want to find a vector w so that for each i the following holds:

hθ (ki)
T w = vi,

where hθ (ki)
T is the transpose of hθ (ki). We can now stack the row vectors hθ (ki)

T into a matrix H and

the values vi into the vector v, so we get:

Hw = v

The next step is to generalize to the case where vi ∈ Fb
2 , v becomes a n×b matrix and w becomes a m×b

matrix. If we look at a set of 4 keys with hθ (k0) = 010, hθ (k1) = 011, hθ (k2) = 000, hθ (k3) = 111 and

associated values v0 = 00, v1 = 01, v2 = 10, v3 = 11, we get

hθ (ki)∗wT = vi. Here:


0 1 0

0 1 1

0 0 0

1 1 1

∗


w00 w01

w10 w11

w20 w21

=


0 0

0 1

1 0

1 1


If we find a solution, we can store the function by storing θ and w. Majewski, Wormald, Havas, and

Czech [HMWC93] introduced a construction for static functions using the connection between linear

systems and hyper graphs using the framework above. Chazelle, Kilian, Rubinfeld and Tal[CKRT04]

proposed this idea independently and noted that this can also be used to build MPHFs. The theoretic size

of this is 2.46+o(1) bits per key. Genuzio, Ottaviano, and Vigna [GOV16] made several improvements

to this idea and present a data structure that achieves 2.24+o(1) bits per key.

8.2.2 CHD

Belazzougui, Botelho, and Dietzfelbinger [BBD09] introduced an idea called CHD (compressed hash-

and-displace), which splits the keys into buckets with expected size λ and tries random hash functions

until there are no collisions in a bucket. For each bucket the index of the hash function is stored. It

can be parametrized to produce greater buckets, but finding a hash function without collisions becomes

much harder. Because this idea is used in RecSplit (see Section 8.2.3), it will be explained in more detail

later. In theory, 1.44 bits per element can be reached. In practice, this data structure does not manage to

go below 2 bits due to infeasible construction time. Figure 8.1 illustrates this idea.
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Figure 8.1: CHD for keys S. Three buckets are shown. The index of the collision free hash function is saved in
every bucket.

8.2.3 BooMPHF

BBHash [LRCP17] is a MPHF library based on fingerprinting that aims to handle large data sets. While

slightly larger (about 3 bits per key) than MPHFs from other libraries, it has a faster construction and

query time. Because FiRe and FiPHa share the same properties, this comparison is especially useful to

evaluate our implementation. BBHash also works in parallel.

8.2.4 RecSplit

The idea of RecSplit [EGV20] is to split the set of keys into small sets, for which we can find a MPHF

more easily. The first step is to partition the keys into manageable buckets of expected size b ∈ N+ by

using a random hash function g : S→ bn/bc. These buckets contain a subset of the keys which then can

be split recursively into smaller subsets until we reach a leaf size l. For these small sets we can calculate

a minimal perfect hash function by brute force using universal hashing. The two parameters b and l lead

to different data structure sizes, construction times and hash query times. To calculate a hash value of

a key we have to find the bucket of the key. The hash value is then calculated by adding the number of

keys in previous buckets and the value of the MPHF inside the bucket (see Figure 8.2).

Our FiRe data structure stores the perfect hash value of the keys in a way that O(1) time queries can

return this hash.

8.3 Fingerprint Retrieval (FiRe)

A perfect hash function maps keys uniquely to a small range of IDs. This can be used to build a structure

that stores data linked to keys, which in general is called a retrieval data structure. If the keys are too

long, e.g. in the case of websites, we can use short fingerprints[KR87] instead. Although fingerprinting

is a well known method for indexing structures, it has not been applied to perfect hashing or retrieval.

Mueller et al.[MSSZ14] propose a simple retrieval data structure that maps keys to buckets that are

capable of storing keys with several different fingerprints. This strategy may lead to the problem that

keys in the same bucket have the same fingerprint and therefore cannot be distinguished. To solve this
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Figure 8.2: Splitting tree that illustrates how RecSplit works. We calculate the hash value by going into the
correct bucket. We take the information that 145 keys have been stored in previous buckets. Now we use the hash
function with index 63 and see that the key is in the third split. Because the splitting strategy is shared globally
we know that we skip 4 keys per split. Now we use the hash function with index 5 and move to the first split. In
this we get the value 1 from the hash function with index 1. We now return 145+2∗6+0∗2+1 = 158.

problem, an overflow data structure is created to store all colliding keys. The overflow data structure

has the same structure as the original structure but is created with a different hash function. It stores

not only the colliding elements but also the elements that do not fit in an overfull bucket. We can have

many levels of overflow data structures. The elements are pushed recursively to the data structure until

the size of the last overflow data structure is small enough to change to a more expensive naive data

structure. Here we explain how the FiRe data structure is constructed and how data can be retrieved

with FiRe. We introduce our implementation shortly and show the result of our benchmark as well as

possible improvements.

8.3.1 Structure of FiRe

Our goal is to map a set of n keys to unique values in {0, ...,n− 1}. For that we say that the first key

has a hash value of 0, the second key has a hash value of 1 and so on. To construct this minimal perfect

hash function, the first level of a FiRe data structure has m = n/b buckets for some parameter b ∈ N+.

In each bucket we can store the hash value of up to a keys for some parameter a ∈ N+. To remember

which value belongs to which key, we save the fingerprint of the key for every cell. This is accomplished

by a bit vector of size k for some parameter k ≥ a. If rank1(B,y) = z for a bucket B, then the value in

cell z corresponds to the key with fingerprint y. To calculate the fingerprint of a key, we use a function

h f : U → {1, ...,k}. The correct bucket for a key is obtained from a function hB : U → {1, ...,m}. We

can calculate both correct bucket and fingerprint with one function h→ {1, ...,km}. If two keys collide
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(i.e. h(k1) = h(k2)), we are not able to distinguish them in the first level. In this case we build the

next level from these elements. It is also possible that too many keys map to a bucket. In this case we

can choose some elements and also put them in the next level. To solve collisions, every layer uses a

different hash function. Collisions in the second level can be passed to the next level and so on. After

enough repetitions or in the case only few elements are left, we can store the remaining keys in a naive

data structure, e.g. a list of (key,value) tuples.

Figure 8.3: Illustration of the FiRe data structure [MSSZ14]

The number of the buckets in the successive levels of FiRe decreases as we add more layers. For L as the

number of levels in FiRe, tuning the parameters (a,k,b,L) will be the main task for the implementation.

8.3.2 Hash Query

To get the hash value of the key, we have to check at each level whether the bit for the fingerprint is set.

We know that the first level for which this is true contains the correct fingerprint, because no collision

happened here. If nothing is found, the method will return a special value indicating that the key is not

in the data structure. Keys that are not in S could have the same hash as a valid key. In this case a hash

value will be output, even though the key does not exist.

8.3.3 Implementation

In our implementation, we build the data structure by constructing each level separately. The size of a

bucket is set and the number of buckets is decided by the number of elements. First, we look at every

element and remember which cell it would occupy (i.e. the fingerprint). For every bucket we save a list

with all elements that belong to the bucket. If two elements would occupy the same cell, we memorize

that a collision happened there. After considering every element, we sort the lists by their elements’

fingerprints and push the first a elements that did not collide into each bucket. Elements that overflow

are added to the next level.
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Theoretical parameters Template parameters
L t_levels

b t_b

k t_fp

a t_cells

Table 8.1: Corresponding template parameters to theoretic parameters

Usually we are able to store much more than half of the remaining elements per level, which means that

the level size decreases exponentially. Because this is not guaranteed, we only build up to thirty levels.

We also stop building levels if there are less than 1024 elements left. The remaining elements are saved

in a list that stores all remaining (key,hash) tuples (see Section 8.3.1). Searching for a key means going

through the list and returning the hash value as soon as we find the correct key.

Hash queries are answered by checking if the fingerprint bit is set in the corresponding bucket. If not,

we look in all the other layers and the fallback list. If it is set, we do a naive rank query and return the

hash value in the cell at index determined by the rank query. The main task of the implementation is to

find parameters which achieve low space overhead and fast query times. To this end, some combinations

of the parameters will be tested with a benchmark. For conveniently evaluating different combinations

of parameters, we used the template parameters listed in Section 8.3.3.

Besides these template parameters, we need also a maximal number of levels in the data structure which

can be controlled with t_levels. When the number of levels in the data structure reaches this boundary,

all of the remaining keys will be pushed to the naive data structure.

We tuned the template parameters step by step.

Bucket Size

A main advantage of FiRe is the low amount of cache misses. In order to achieve that, we need to

construct buckets that fit into one cache line. Cache misses correspond to the number of levels that have

to be scanned. To achieve few cache misses we tune the number of fingerprints per bucket k and the

number of cells per bucket a. Because we use naive rank queries to scan which fingerprint belongs to

which cell, more fingerprints mean that we have to do longer queries. In order to find good parameters,

we built a full FiRe level, where every bucket is full, and tested the speed of queries for different a and

k.

We choose a = 30,k = 127, so that k is a prime and a bit vector of size k fits into two 64-bit integers.

Level Size

Now that we have a fixed bucket size, we have to decide how many buckets we use per level. Because

fewer buckets result in more collisions, the more buckets the data structure has, the fewer levels it

requires. Since the hash query time is dependent on the number of levels, this will lead to better query
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times. Nevertheless, the buckets will not be filled as well as possible in this case. So the number of

buckets in each level must be controlled through parameters. In order to find good combinations of

parameters, we constructed a FiRe data structure from random numbers and tuned the parameter b,

which determines the number of buckets m = n/b. Here we looked at the space overhead and the query

time.

We choose b = 54, because it is the fastest among the ones that are close to 8 bytes per element.

Template parameters Default value
t_levels 30

t_b 54

t_fingerprints 127

t_cells 30

Table 8.2: Default values for the template parameters in FiRe

8.4 Fingerprint Based Perfect Hashing (FiPHa)

FiPHa is a optimized version of FiRe regarding space usage. In FiPHa, we do not store any information

about the key in the bucket besides the fingerprint information. This means that the cells in FiRe are

discarded and no bits are required to store the calculated values of the keys. Without the presence of

values, there is no collision in FiPHa. Therefore, retrieving data from this data structure can be seen as

perfect hashing.

8.4.1 Structure of FiPHa

In particular, the fingerprint for each key is calculated with the hash function h f which is introduced in

Section 8.3.1. If the fingerprint h f (x) of a key x is a valid fingerprint in the bucket determined by hb(x),

the fingerprint can be used to define the injective function hp(x) = ahb(x)−a+ rank1(B,x). If it is not a

valid fingerprint, we use the information hp(x) for the next level and add into it the offset am. Besides

these slight changes, the structure of FiPHa is analogous to FiRe.

8.4.2 Implementation

The implementation of FiPHa can be adapted from the implementation of FiRe introduced in Sec-

tion 8.3.3. In comparison to the structure explained above, there is little difference in the actual im-

plementation from FiPHa. We use the fingerprints directly as a replacement for the bucket and each

key x is allocated to the corresponding fingerprint with hb(x) = x mod p where p is the number of fin-

gerprints in the level. Essentially, these fingerprints act as buckets in this implementation. Therefore,

the structure for buckets in FiRe is discarded. Only the structure for level remains. The function hp is
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defined as hp(x) = n′+ rank1(B,hb(x))− 1 where n′ is the number of keys added to the level before x

and rank1(B,hb(x)) indicates rank1 at the position (i.e. fingerprint) hb(x).

Like FiRe, the levels are constructed separately. We use the template parameters t_levels for the

maximal number of levels in the data structure and t_b/t_fp for the number of fingerprints in each level

which is calculated together with the number of remaining keys. These parameters are currently set as

constants and can be changed for optimization. First, we determine the corresponding fingerprint for

each key in the level. If the fingerprint is already set, the key is collected in a list of overflow elements

and will be pushed to the next level.

When there are less than 1024 elements left, the construction of the levels is stopped and all the remain-

ing keys will be pushed into a naive data structure (see Section 8.3.3).

Hash query

To calculate the hash value of a key x, we go through all the levels in the data structure. In each level,

we must check if the fingerprint hb(x) is set. The fingerprint information hb(x) will be used to determine

the hash value hp(x).

Level size

Since the buckets were discarded in our implementation for FiPHa, we only need to search for a good

level size, which is also the number of fingerprints in this level. We tried to determine good parameters

for the level size in a similar way to FiRe.

The current values for the template parameters can be found in Section 8.4.2

Template parameters Default value
t_levels 30

t_b 6

t_fp 4

Table 8.3: Default values for the template parameters in FiPHa

8.5 Benchmark

We compare our FiRe- and FiPHa implementation against MPHFs BBHash from Limasset et. al.

and RecSplit from Emmanuel Esposito, Thomas Mueller Graf and Sebastiano Vigna [EGV20]. In

[LRCP17], the authors claimed that BBHash has a faster construction time, but a slightly bigger space

overhead than state-of-the art libraries. BBHash does not save the hash values because they are regained

by a rank query over a large bit vector. This is a big advantage over FiRe, because the hash values take

up several bytes per element, while the additional bit vectors only need a few bits per element.
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In RecSplit, the set of keys is partitioned in buckets and each bucket forms a tree which defines an in-

dependent MPHF. The authors analysed these trees exactly for efficient search by brute-force, for fast

lookup and efficient storing space. It is claimed that RecSplit has a better balance between lookup speed

and space usage, which is a problem for FiRe and FiPHa, since construction time and lookup is very

slow with the space usage of 2.58 bits per key.

We measured construction time by constructing a MPHF from sets with up to 229 keys (see Figure 8.4).

Then we measured the space consumption per element for different sized key sets (see Figures 8.5

and 8.6). After that, we looked at hash query times for different sized key sets (see Figure 8.7). At

the end, we also sketched the ratio between construction time and construction space of the observed

MPHFs (see Figure 8.8). To confirm that the query results are correct, we compared the sum of all hash

queries.

8.5.1 Construction Time

We only examine the construction time of the observed MPHFs with sets of keys that contain more

than 221 keys. For smaller key sets, all other MPHFs are constructed faster than RecSplit, which has

only a throughput of 2× 106 keys per second. Nevertheless, the construction time of RecSplit does

not change much when the key set gets larger, while the construction time of other MPHFs is strongly

affected by the size of the key set. With a key set that contains more than 226 keys, FiRe and BBHash

are constructed slower than RecSplit. The construction of FiPHa up to 229 keys is still the fastest one.

However, all observed MPHFs are constructed as fast as each other when the key set becomes larger.
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Figure 8.4: Construction time for random sets of keys by different MPHFs. The construction time for RecSplit is
quite stable, while the construction time of other MPHFs drops strongly with larger key sets.
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8.5.2 Space Overhead by Construction

Although BBHash needs more time than FiPHa to be constructed (see Figure 8.4), both of them have

quite similar space overhead for different key sets, which leads to the result that our implementation of

FiPHa is even slightly better than BBHash. Our FiRe implementation needs more than 4 bytes per key

due to storing the values, as 32 bits alone are needed to store the hash value. If these values can be

discarded, the space usage for FiRe would be better. This is shown in Figure 8.6. RecSplit is still the

best MPHF among the others regarding space overhead. This MPHF uses only about 2 bits per key in

its construction.
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Figure 8.5: Space overhead for random sets of keys. This diagramm is dominated by the space overhead of FiRe,
since each hash value alone is stored with 32 bits.

127



21 22 23 24 25 26 27 28 29

2

3

4

5

Keys [log]

Sp
ac

e
pe

rK
ey

[b
it/

ke
y]

MPHF Space Overhead

data_structure=BBHash,t_b=1,t_fp=1
data_structure=FiRe,t_b=54,t_fp=127
data_structure=FiPHa,t_b=6,t_fp=4
data_structure=RecSplit,t_b=100,t_fp=1

Figure 8.6: Enlarged diagram from Figure 8.5 with the assumption that the values in FiRe are discarded. Here,
FiRe requires only about 5 bits per key. BBHash does not need to store the hash values, which is a big advantage.
FiPHa is as good as BBHash, even a little bit better. The space optimization of RecSplit, which uses only about 2
bits per key, can be seen clearly.

8.5.3 Hash Query Time

For hash query time, FiRe seems to be faster with smaller sets of keys. With more than 222 keys, hash

query time for FiRe becomes slower, since more levels are added to the data structure. From 222 keys

up to 226 keys, FiPHa and BBHash are faster than FiRe regarding the hash query time. For a key set

which is smaller than 226 keys, FiPHa has the fastest hash query time with about 1.5×107 hash queries

per second. RecSplit is not the best one for small key sets, but hash queries with RecSplit are faster than

with other MPHFs. For a key set which contains more than 226 keys, RecSplit is the better choice, since

about 107 hash queries are performed per second, while the fastest hash query time among other MPHFs

can reach only 80% of this speed.
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Figure 8.7: Query time for random sets of keys. For bigger key sets, our FiRe- and FiPHa implementation is as
fast as BBHash and faster than RecSplit.

8.5.4 Ratio between Construction Time and Construction Space Overhead

In order to highlight the relation between space and time consumption of the construction of the observed

MPHFs, we also sketched a Pareto front for the ratio of these properties in Figure 8.8. For each data

structure, this ratio is shown for key sets with a size from 226 to 229 keys. The four markers for each data

structure correspond to the four sizes of key set in the order 226, 227, 228 and 229. Assuming that FiRe

does not use 32 bits for each hash value, we can see that the space consumption for the construction of

all MPHFs does not change much for different key sets. However, in order to keep the space usage low,

FiPHa needs more time to be constructed. Although this problem in construction time seems not to be

apparent in FiRe, the construction of our FiRe implementation still requires more space than the other

MPHFs. This diagram shows once again that RecSplit is still the best choice for large key sets, since

space and time consumption of the construction of RecSplit is not strongly affected by the size of key

set.

129



0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

·106

2

2.5

3

3.5

4

4.5

5

Throughput [Keys/second]

Sp
ac

e
[b

its
/k

ey
]

MPHF Construction Time vs. Construction Space

data_structure=BBHash,t_b=1,t_fp=1
data_structure=FiRe,t_b=54,t_fp=127
data_structure=FiPHa,t_b=6,t_fp=4
data_structure=RecSplit,t_b=100,t_fp=1

1.911.921.931.941.951.96

·106

1.951
1.9515
1.952

1.9525
1.953

1.9535

data_structure=RecSplit,t_b=100,t_fp=1
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8.6 Results and Further Work

The FiRe and FiPHa data structures in [MSSZ14] are competitive in build time and query time, but not

in space usage. In our implementations, the space usage is not yet optimal like in the literature, since we

want to keep a balance between construction time, query time and space usage.

In the data structure FiRe, the values of the keys are stored in the data structure. Therefore, it is like a

hash table and the space overhead is quite high in comparison to other data structures like BBHash or

RecSplit. FiPHa is an optimised version of FiRe and has a similar approach to BBHash. In addition, we

see that in the benchmark results, the hash query time, build time and the space usage of both structures

are not very different. RecSplit is still the best data structure with regard to the space usage.

It is surely possible to reduce the space needed by choosing better hash functions or parameters. How-

ever, there are no optimal parameters and we must accept a trade-off between time and space.
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Chapter 9

Summary and Further Work

In this report we gave an overview of the work we did during the year of our project group. We have de-

veloped a library for succinct data structures including static and dynamic bit vectors, graphs, grammar-

compressed strings and minimal perfect hash functions. All implemented methods work correctly and

build a good basis for further improvements. We developed benchmarks to evaluate our data structures

and compared them to other existing implementations. Here we give a more detailed overview of the

implemented data structures and discuss possible improvements.

• Dynamic bit vectors: We implemented dynamic bit vectors that allow dynamically inserting and

removing elements in addition to answering queries. We accomplish this by storing bits within

the leaves of an AVL tree. We also implemented a compressed variant of the bit vector which uses

the H0 entropy of the bits to reduce space usage. Bits are grouped into blocks of 64 and are then

assigned a class and an offset which may be stored in fewer physical bits than 64, provided the

block has many more ones than zeroes or vice versa.

Leaves have a maximum size of 2w2 bits, so if a leaf grows too large after an insertion, the

leaf must be split in two, creating a new inner node. Correspondingly, if a leaf becomes too

small after a deletion, two leaves are merged. Operations are performed in O(w) time, with the

exception of insertions and deletions on compressed bit vectors, which require O(w2) time, due

to needing to recompress the blocks of a leaf. We compared the two data structures to a succinct

bit vector implementation and a gap bit vector implementation from Nicola Prezzas DYNAMIC

library. Overall, the performance of our data structures with regard to space usage and run time are

satisfactory, although further space savings could be achieved by storing less redundant attributes

in a tree node.

• Grammar-compressed strings: We built a data structure that is able to compress texts into gram-

mars and stores them succinctly while also enabling operations on the string. It performs well on

highly compressible or small texts, but is able to handle larger texts as well.

We rely on the RePair [LM00] algorithm to find a small grammar and this could be a first target

for optimization. A big challenge for the construction of the data structure was also finding a

good partition of monotone sequences, which we managed to do fairly well, but we believe this
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can surely be improved to make the overall compression better regarding space and time.

While we needed some extra space to make the access to single symbols inside the text possible in

a reasonable time frame, the running times, again especially for the smaller grammars, were quite

good. The fact that our access function is only really competitive on smaller texts or grammars

also shows some scalability issues that we did not manage to fix. Something we also leave for fur-

ther work is the implementation of the contains method, which we were not able to fully realize

as we wanted to. Here, a possible solution is building a separate structure for pattern matching

inside a grammar, which would however also increase the needed space again.

• Graphs: We implement GLOUDS [FP16] by Fischer and Peters. This representation is optimised

for tree-like graph, but it works for any directed, unweighted graph. For GLOUDS we developed

an own solution for storing a trit vector and implement a succinct representation of permutations

by Navarro [Nav16]. We implement two versions of GLOUDS. The first one calculates the opti-

mal start points for the breath-first search which encode the graph. This is solved by a depth-first

search. The other version chooses the start points by increasing names which is possible not op-

timal. This reduce the construction runtime, but we need additional space and a slower runtime

for neighbour queries. We benchmark our implementations for arbitrary graphs with a number

of edges which is linear in the number of vertices. Both GLOUDS versions overtop the space

requirement of the naive representations, the adjacency matrix and the adjacency list. For get and

degree queries we did not beat the adjacency list, but all requested operations need a low constant

running time even for large graphs.

Fischer and Peters discuss some further optimisations, like using a wavelet tree or look-up-table.

While GLOUDS is optimised for tree-like graphs there exist different other data structure opti-

mised for other types of graphs, e.g. trees or planar graphs. A possible extension of our library

would be to implement more of these data structures and then automatically decide for a given

graph which of these structures is the best fit.

• Minimal perfect hash functions: We implemented FiRe and FiPHa and included default param-

eters that worked well on our test system. The implementation from FiPHa is adapted from FiRe

with some changes explained in Section 8.4. FiRe needs quite a lot of space for storing the hash

values, while FiPHa does not store the hash values in the data structure, but they can be calcu-

lated with the fingerprint information. With small space requirement (see Figure 8.6), FiPHa is

a succinct data structure. Our implementation is up to now comparative with BBHash but not

so good as RecSplit for large key sets, which has a quite stable construction time, construction

space overhead and hash queries time. For small key sets, both data structures FiRe and FiPHa

have fast construction and hash queries. Features, that could be implemented next are a parallel

construction or dynamic data structures that can insert and delete keys.
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