

Preventive Arms Control for Small and Very Small Armed Aircraft and Missiles

Report No. 1

Survey of the Status of Small Armed and Unarmed Uninhabited Aircraft

Mathias Pilch, Jürgen Altmann and Dieter Suter

February 2021

Chair Experimental Physics III TU Dortmund University This report has been written in the research project 'Preventive Arms Control for Small and Very Small Armed Aircraft and Missiles' of TU Dortmund University. The project is being funded by the German Foundation for Peace Research (DSF, https://bundesstiftung-friedensforschung.de/) in its funding line 'New Technologies: Risks and Chances for International Security and Peace'.

About the Authors

Mathias Pilch

Mathias Pilch, M.Sc, is a physicist and researcher at Technische Universität Dortmund, Germany. In January 2018 he has finished his M.Sc. thesis about numerical modelling of seismic tracked-vehicle signals for co-operative verification.

Jürgen Altmann

Jürgen Altmann, PhD, is a physicist and peace researcher at Technische Universität Dortmund, Germany. Since 1985 he has studied scientific-technical problems of disarmament. Another focus is assessment of new military technologies and preventive arms control.

Dieter Suter

Dieter Suter, Prof. Dr., is a physicist, researcher and professor at Technische Universität Dortmund, Germany since 1995. His fields of interest are the development of advanced magnetic resonance techniques, optically enhanced magnetic resonance, quantum information processing and medical physics applications of magnetic resonance.

(C) 2021. Except where otherwise noted, this work is available under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License CC BY-NC-ND 4.0, see https://creativecommons.org/licenses/by-nc-nd/4.0/.

Contents

Abbreviations and Acronyms5					
1	Introduction				
2	Defi	nition	s and Classifications	9	
	2.1	Uninh	abited Aircraft	9	
	2.2	Small	and Very Small (Uninhabited) Aircraft	10	
3	Aer	odynai	mics	11	
4	Tec	hnical	Overview	17	
	4.1	Airfra	me Configurations	17	
		4.1.1	Fixed-wing Configurations	17	
		4.1.2	Rotary-wing Configurations	19	
		4.1.3	Hybrid Configurations	20	
		4.1.4	Flapping Wings	20	
		4.1.5	Tethering	21	
	4.2	Mater	ials and Manufacturing	21	
	4.3	Power	and Propulsion	22	
	4.4	Guida	nce and Navigation	23	
		4.4.1	Navigation and Autopilots	23	
		4.4.2	Control Stations	24	
	4.5	5 Launch and Recovery		24	
	4.6	Payloa	ads	27	
		4.6.1	Sensor Payloads	27	
		4.6.2	Offensive Payloads	28	
5	Res	earch	and Development Programmes in the USA	30	
	5.1	The D	ARPA Nano Air Vehicle (NAV)	30	
	5.2	Lethal	Miniature Aerial Missile System (LMAMS)	31	
	5.3	Greml	lins	31	
	5.4	Perdix		32	
	5.5	5 Low-Cost UAV Swarming Technology (LOCUST)		33	
	5.6	Anubi	S	33	

Contents

	5.7 Cluster UAS Smart Munition for Missile Deployment	33	
	5.8 Short Range Reconnaissance (SRR)	33	
	5.9 Offensive Swarm-Enabled Tactics (OFFSET)	33	
	5.10 Air Launch Effects (ALE)	34	
	5.11 Air Force and Army MAV Programmes	34	
6	UAV Swarms	36	
7	UAV Countermeasures	37	
8	Small and Very Small UAV Database	39	
	8.1 Database Properties	39	
	8.2 General Overview	42	
	8.3 Armed UAVs	46	
	8.4 Parameter Distributions and Correlations	51	
	8.4.1 Fixed- and rotary-wing UAVs	52	
	8.4.2 Flapping-wing UAVs	57	
9	Conclusion		
	Acknowledgements		
	Bibliography		
Α	Table of Small and Very Small UAVs		
	UAV Table References		

Abbreviations and Acronyms

ACT	
AGL	Above ground level
AMSL	Above mean sea level
BAV	Biomimetic air vehicle
BDS	BeiDou navigation satellite system
C-UAS	Counter uninhabited aircraft system
COMINT	Communications intelligence
COTS	Commercial off-the-shelf
DARPA	Defense Advanced Research Projects Agency
EFP	Explosively formed penetrator
EO	Electro-optical
GCS	Ground control system
GLONASS	Global navigation satellite system
GNSS	Global navigation satellite system
GPS	Global positioning system
HTOL	Horizontal take-off and landing
ICAO	International Civil Aviation Organization
IMU	Inertial measurement unit
INS	Inertial navigation system
IR	Infrared
ISR	Intelligence, surveillance and reconnaissance
LiDAR	Light detection and ranging
LOCUST	Low-cost UAV swarming technology
LWIR	Long-wave infrared
MAV	Micro air vehicle
MEMS	Microelectromechanical systems
MTOW	Maximum take-off weight
MWIR	Midwave infrared
NAV	Nano Air Vehicle
NIR	Near infrared
PEO	Program Executive Office
R&D	Research and development
RF	Radio frequency
RPG	Rocket-propelled grenade
SCO	Strategic Capabilities Office
SWIR	Short-wave infrared
UA	Uninhabited aircraft
UAS	Uninhabited aerial system
UAV	Uninhabited aerial vehicle
VTOL	Vertical take-off and landing
-	0

1 Introduction

The project 'Preventive Arms Control for Small and Very Small Armed Aircraft and Missiles', funded by the German Foundation for Peace Research DSF, is investigating the properties to be expected of ever smaller aircraft and missiles, including their use in swarms (https://url.tu-dortmund.de/pacsam). Small and very small aircraft as covered here are uninhabited by their size, thus the designation uninhabited aerial vehicle (UAV) or uninhabited aircraft (UA) applies. While the focus is on armed systems, unarmed ones will be covered as well, since modifications for carrying or acting as a weapon are possible. This report no. 1 covers the status of UAVs. Further reports will deal with missiles and consider dangers and preventive arms control.

Uninhabited vehicles are increasingly being deployed and used by armed forces, with UAVs most advanced. Since 2001 UAVs have been armed and used for attacks by a few states, the number of countries with armed UAVs is rising dramatically. In 2017, there were 28 (World of Drones, 2017), while in 2020 the number rose to 39 (World of Drones, 2020). These UAVs have wingspans of many metres.

The principal possibility of small and very small armed UAVs and missiles was mentioned early, fuelled by emerging microsystems technology and nanotechnology, but proposals for limits or prohibitions¹ have not been taken up so far. In the meantime, the first small armed UAVs with a size of only very few metres, down to centimetres, have arrived. Although small UAVs are far more limited in their capabilities than large UAVs, they can be a considered a cheap alternative to larger systems that nevertheless provides a basic level of aircraft capabilities.

A rapid increase in popularity, availability, variety and capability of commercial off-the-shelf (COTS) small UAVs over the past decade has led to an increase in usage of these systems by non-state actors and armed groups. Usually much less sophisticated than their military counterparts, improvised armed UAVs have been built and used by non-state actors using commercial and hobby multicopters as well as home-built fixedwing UAVs. Because non-state actors are not the drivers of technology development, their activities are mentioned only in this introduction. Activities by non-state actors using small (here: mass < 25 kg) COTS UAVs are covered in (Friese et al., 2016). The authors conclude that historically, the use of UAVs by non-state actors has been sporadic and rudimentary. However, recent jumps in capabilities and availability of small COTS UAVs, including smaller size and easier piloting, are leading to an increased use of these systems by non-state actors. Non-state actors which have used COTS small UAVs include, among others, Syrian militants, e.g. attacking Russian air and naval bases in Syria (MacFarquhar, 2018; Binnie, 2018), the so-called Islamic State using them as scouts or for attacks with explosive charges (Hambling, 2016), and non-state actors in the Ukraine (Friese et al., 2016). Criminals have used small commercial UAVs to illicitly transport narcotics between Mexico and the USA (Friese et al., 2016), as well

¹ Mainly by (Altmann, 2001; Altmann, 2006): prohibition of missiles and 'mobile micro-robots' below 0.2-0.5 m size.

1 Introduction

as weaponised modified versions for gang wars (Hambling, 2020b).

In military small armed UAs a next step could be equipping them with missiles. Traditional missiles such as the AGM-114 *Hellfire* (length: 163–175 cm, mass: 45-48 kg (FAS, 2012)) are far too large and heavy for smaller UAVs. However, smaller missiles have been developed, too, one intent being the wish to arm smaller UAVs. Small and very small missiles will be covered in the next report.

To assess the potential effects to be expected from small and very small armed aircraft and missiles, including dangers to military stability and international security, as well as options for preventive arms control, the first precondition is reliable information about already existing systems and current trends in research and development.

Based on databases, scientific and internet publications, this report lists small armed UAVs deployed and used worldwide, as well as systems under research and development, with their properties. Non-armed systems are included to investigate the global usage of small UAVs and thus overall interest in smaller systems. This comprises non-armed systems which could be provided with or used as weapons.

In order to minimise a contribution to proliferation of these systems, only public sources were investigated, i.e. the internet as well as publicly available databases and catalogues. Furthermore, where information is incomplete, no estimates based on the laws of physics or stemming from engineering expertise are given. Improvised or modified versions of UAVs or missiles, already in use by non-state actors, are left out for the same reason.

The results of our research are collected in two databases, one each for the UAVs and the missiles; here the one for the UAVs is covered. As far as has been available, their basic properties with the year of introduction are listed to allow statements on trends of UAV capabilities in recent years. Due to the sheer number of UAV types available today, we focused mainly on UAVs intended to fulfil military roles, such as reconnaissance or combat. An exception are UAVs that fall under the very small category. There, most UAVs are still in the research or development stages and not in military service nor designed for military use. However, research and development (R&D) of some systems had been funded originally by military institutions (sections 5.1 and 5.11). In any case, these projects are important indicators of the future potential of these small-sized aircraft.

Similar work has been done by the Center for the Study of the Drone at Bard College in the USA. In 2019, it released the Drone Databook (Gettinger, 2019) (with an update in March 2020 (Gettinger, 2020)), evaluating the military drone capabilities of over 100 countries known to possess or operate uninhabited aircraft. It includes lists of military UAV infrastructures and technical specifications of over 170 UAVs of all sizes.

Technical specifications of so-called loitering munitions, a special variant of UAVs equipped with a warhead and the ability to loiter in the air for an extended amount of time before attacking with self-destruction, were collected in (Gettinger & Michel, 2017).

An overview of countries that have conducted UAV attacks, that possess and develop armed UAVs, including non-state-actor activities, is given in the World of Drones

1 Introduction

database (World of Drones, 2020).

In 2014, Cai et al. published a survey of 'small-scale' UAVs with a total of 132 civilian and military models (Cai et al., 2014). The UAVs collected vary in size from less than ten metres down to centimetres. UAV properties are given only for a few examples and far less detailed than in our database. The development of key UAV elements, such as on-board processing units, sensors, communication modules etc. is presented and analysed as well. Among the predictions for the near-term future (2-5 years) are an increased popularity in flapping-wing UAVs in research, as well as an increasing demand of small-scale UAVs for military applications.

In 2015, Ward et al. presented a bibliometric review of engineering and biology articles published between 1984 and 2014 on so-called biomimetic air vehicles (BAVs), flapping-wing UAVs that mimic the kinematics of flying organisms (Ward, Rezadad et al., 2015). The general focus of articles is aerodynamics, guidance and control, mechanisms, structures and materials, and system design, with a rapid increase in publications since 2005. Most research was done in the United States, South Korea, Japan, the United Kingdom and China. The authors expect an increase in numbers and variety of bio-mimicry species as technological challenges are overcome.

This article was followed by Ward et al. in 2017 with a bibilometric review on micro air vehicles (MAVs) between the years 1998 and 2015 (Ward, Fearday et al., 2017). The majority of research articles were written in the USA, China, UK, France and South Korea. The authors conclude that biomimetic MAVs are most popular, rivalled by a growing popularity of rotary-wing MAVs.

The focus of the present report is on small and very small UAVs. Before we present the results of the data collection, we need to establish a technical background and factual information. Chapter 2 lays a terminology basis and chapter 3 presents basic aspects of aerodynamics. Chapter 4 gives a technical overview, with subchapters on airframe configurations, materials and manufacturing, power and propulsion, guidance, launch and recovery and payloads.¹ Research and development in the USA are the subject of chapter 5. Swarms and countermeasures are treated in Chapters chapter 6 and chapter 7, respectively. Chapter 8 presents summary properties of the database which itself is presented in the appendix A and at an internet location.²

¹ Since many aspects of communication to and from UAVs apply in general and are not specific to small UAVs, they are not discussed here; they are covered in (Gundlach, 2012, ch. 12). MAV communication is treated in (Michelson, 2015).

² https://url.tu-dortmund.de/pacsam for the project description and https://url.tu-dortm und.de/pacsam-db for a description of the databases. The small and very small aircraft database is available at https://url.tu-dortmund.de/pacsam-db-sa.

2 Definitions and Classifications

2.1 Uninhabited Aircraft

There exist many different definitions of a UA given by institutions, policymakers or by individual scientists in research articles. We use the term UA and UAV synonymously for an uninhabited aircraft, following the definitions of the International Civil Aviation Organization (ICAO) (definitions 2.1.1 and 2.1.2). However, instead of the ICAO's use of the term 'unmanned' we prefer the gender-neutral and more precise 'uninhabited' since uninhabited aircraft that are remotely piloted can still be considered 'manned'.

Definition 2.1.1: Aircraft

Any machine that can derive support in the atmosphere from the reactions of the air other than the reactions of the air against the earth's surface (ICAO, 2010, p. I-1). Consequently cruise and other guided or unguided missiles count as (uninhabited) aircraft, except ballistic missiles not using aerodynamic lift when travelling in the atmosphere.

Definition 2.1.2: Uninhabited Aircraft

Aircraft intended to be flown without a pilot on board (ICAO, 2020).

The UA itself is part of an uninhabited aerial system (UAS), which in addition to the aircraft includes all key elements required for a UA mission. These additional elements are the payload, the communication data link, the launch and recovery element, the human element and a command and control structure.

Definition 2.1.1 includes so-called 'loitering munitions', which can be considered as both a UA and a guided missile. Their purpose is to attack a target in the same manner as a missile, e.g. with an explosive warhead. However, in contrast to a missile, a loitering munition can spend an extended amount of time in the target zone and fly a search pattern before attacking. Therefore, as long as the loitering munition is in flight, the attack can still be called off, with the aircraft either returning back to base or self-destructing in a chosen area, a capability that does not exist with most missiles.

Definition 2.1.3: Loitering Munition

An uninhabited aircraft with its main purpose to attack targets with a fixed builtin warhead (usually explosive) that leads to self-destruction of the aircraft. In contrast to missiles, it has the ability to loiter above a designated area before striking its target.

Loitering munitions can appear in the same configurations as other UAs, i.e. as rotary-wing, fixed-wing or any other aircraft type. A rotary-wing example is the IAI

2.2 Small and Very Small (Uninhabited) Aircraft

ROTEM, the WB Group Warmate uses fixed wings (figures 2.1 and 2.2).

Figure 2.1: IAI *ROTEM*, exact size unknown (public domain) (Reise Reise, 2019).

Figure 2.2: WB Group *Warmate*, Poland (public domain) (VoidWanderer, 2016). Wingspan: 1.4 m (WB Group, 2019).

2.2 Small and Very Small (Uninhabited) Aircraft

There is no single standard of UA classification. Manufacturers, defence agencies and civilian organizations all use their own terminologies and classification systems. Uninhabited aircraft can be classified e.g. by size, mass, maximum flight altitude and range. A combination of these can be used to define a tier system. Even among researchers, no consensus exists, thus all terms describing the size or mass of an UA are always understood in the context of a pre-defined classification system. Comprehensive overviews of various UA classifications are given in (Hassanalian & Abdelkefi, 2017; Dalamagkidis, 2015).

Our classification system is based only on the size of the aircraft. The size is defined by the length, wingspan or rotor diameter of the aircraft. For multicopters this means the diameter over all rotors. We define every aircraft below a size of 2 m as *small*, and below 0.2 m as *very small* (table 2.1). We choose these limits because aircraft of this size and below are typically much more limited in endurance, range, armament and payload mass compared to larger aircraft. Often the notion of MAV is used.

	Tuble 2.1. Demittens of small and		110.
	Defining property	'Small'	'Very small'
Aircraft	Wingspan, rotor diameter and length	$\leq 2 m \text{ and} > 0.2 m$	$\leq 0.2 \mathrm{m}$

Table 2.1: Definitions of 'small' and 'very small' sizes of UAs.

Conditions of flight change as aircraft size decreases. For some understanding, this chapter gives an elementary introduction into aerodynamics (for an in-depth introduction, see (Anderson, 1999) and (McCormick, 1979)). Non-technical readers may skip it.

If some body moves through air – or, equivalently, if air flows in the opposite direction toward and around the body – the body experiences a force. In case of level flight at constant velocity (figure 3.1), the lift force L points vertically upward and is equal and opposite to the weight force W of the aircraft. The drag force D points backward; in order to prevent its slowing down the movement, an equal and opposite thrust force Tis needed that points in the forward direction – it is provided e.g. by a propeller or a jet engine. If lift and weight do not balance, the aircraft climbs or descends. If thrust is not equal to drag, the aircraft accelerates or decelerates.

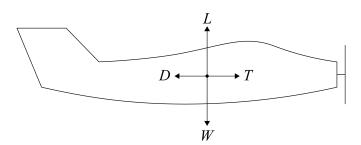


Figure 3.1: Balance of forces for level flight at constant velocity: The lift force L has to compensate the weight force W, the thrust force T has to compensate the drag force D.

If the force is referred to an axis of rotation, a moment exists around that axis (figure 3.2).

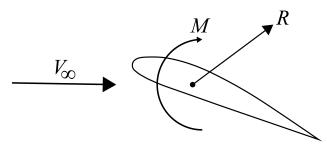


Figure 3.2: Resultant aerodynamic force *R* and moment *M* on the body. V_{∞} is the freestream velocity.

For flight the most relevant body is the wing. The resultant force on the wing R is the sum of the partial forces exerted on all parts of the total wing surface, and similarly for the total moment M. Due to the wing form and the angle between the air flow and the wing, usually overpressure develops at the bottom side of the wing and

underpressure at the upper side. Thus the force *R* contains a component orthogonal to the velocity through the air, the lift *L*. The air flow against the wing induces friction that exerts a force opposite to the air flow, the drag *D*. The free-stream velocity V_{∞} holds at large distance from the wing (close to the wing, the velocity varies in magnitude and direction). Figure 3.3 shows the splitting of the resultant force *R* into the lift *L* perpendicular to V_{∞} and the drag *D* parallel to V_{∞} . *L* and *D* depend on the angle of attack α between the chord *c*, that is the line connecting the extreme points of the wing profile, and V_{∞} .

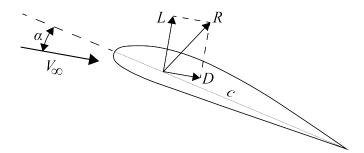


Figure 3.3: Resulting aerodynamic force *R* split into its components *L* perpendicular to the freestream velocity V_{∞} and *D* parallel to it. The angle of attack α is measured between the freestream velocity and the chord *c* of the wing.

Both forces scale linearly with the area S of the wing projection and the so-called dynamic pressure q_{∞} which is one half of the air density ρ_{∞} times the free-stream velocity V_{∞} squared. The dimensionless proportionality constants are the lift coefficient $C_{\rm L}$ and the drag coefficient $C_{\rm D}$, respectively. Thus

$$L = q_{\infty}SC_{\rm L},\tag{3.1}$$

$$D = q_{\infty} SC_{\rm D}, \tag{3.2}$$

with the dynamic pressure q_{∞} :

$$q_{\infty} = \frac{1}{2} \rho_{\infty} V_{\infty}^2, \tag{3.3}$$

and ρ_{∞} is the density of the freestream far ahead of the body. *S* is the reference wing area defined as the planform area of the main wing including the area of the wing extended through the fuselage (figure 3.4).

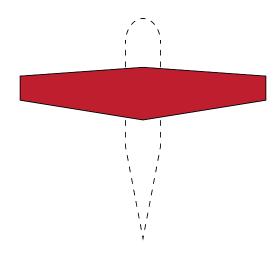


Figure 3.4: Aircraft fuselage (dashed line) and reference wing area S in red.

The coefficients C_L and C_D are functions of the angle of attack α , the freestream velocity (figures 3.5a and 3.5b) and the Reynolds number. C_L at first increases with angle of attack α , but beyond a critical angle the flow separates from the upper wing surface, severely reducing the underpressure there and thus the lift – the aircraft stalls. C_D increases with the angle of attack. The lift and drag characteristics are highly dependent on the shape of the airfoil, the Mach number and the Reynolds number.

For very high velocities the lift and drag coefficients are no longer constant, but are functions of the Mach number M, that is defined as the ratio of the body's velocity to the speed of sound a:

$$M = \frac{V_{\infty}}{a}.$$
(3.4)

The other extreme is more relevant in the present context. For very low velocity and/or small wings, lift and drag are functions of the Reynolds number *Re*. This number is given by

$$Re = \frac{\rho_{\infty} V_{\infty} c}{\mu},\tag{3.5}$$

where *c* is the length of the wing chord (figure 3.3) and μ is the dynamic viscosity of the air, causing friction when moving past the wing.

The Reynolds number is a key parameter that represents the influence of inertial versus viscous forces. Due to their size, very small UAs operate in a Reynolds number regime much lower than habited aircraft. We give an example and calculate the Reynolds number of a typical passenger jet, assuming a mean aerodynamic chord of 4.0 m, a flight altitude of 9000 m and a cruise speed of 250 m/s. At an altitude of 9000 m, and

assuming an air temperature of -45 °C, the air density ρ and the viscosity μ are:¹

$$\rho = 0.469 \,\mathrm{kg/m^3}, \quad \mu = 1.497 \times 10^{-5} \,\mathrm{Pas.}$$
 (3.6)

Inserting all values into equation (3.5) yields:

$$Re \approx 3.1 \times 10^7. \tag{3.7}$$

In contrast, a much smaller aircraft with a chord length of 5.5 cm flying at the same altitude with a flight velocity of 30 m/s yields

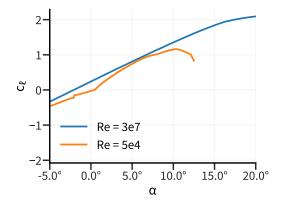
$$Re_{\rm small} \approx 5.2 \times 10^4,$$
 (3.8)

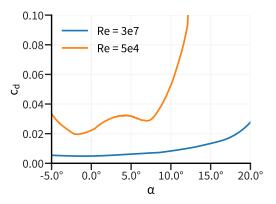
which is three orders of magnitude below the previous results. However, small UAs typically fly only several hundred metres above ground level (AGL). Assuming flight at ground level and a temperature of 23 °C, the air density and viscosity values increase to

$$\rho_{\rm GL} = 1.192 \, \rm kg/m^3, \quad \mu_{\rm GL} = 1.852 \times 10^{-5} \, \rm Pa\, s,$$
 (3.9)

and the Reynolds number decreases to

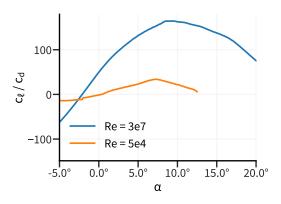
$$Re_{\text{small,GL}} \approx 4.2 \times 10^4.$$
 (3.10)


Figures 3.5a and 3.5b show the lift and drag coefficients c_{ℓ} and c_{d} versus the angle of attack α for Reynolds numbers 3×10^{7} and 5×10^{4} for a NACA 2411 airfoil (figure 3.6). The lower case notation of the coefficients indicates that calculations are valid only for a purely two-dimensional shape (of theoretically infinite span) such as an airfoil.


Figure 3.5c shows the ratio c_{ℓ}/c_d ; in general, a decrease of the Reynolds number leads to a substantial reduction in the lift to drag ratio L/D. Note however, that airfoils are designed to operate in certain Reynolds number regimes, and that the NACA 2411 airfoil is not optimized to operate in low-Reynolds-number regimes. The lift-to-drag ratio L/D is used as a measure of aerodynamic efficiency and creating lift efficiently means generating as little drag as possible (Anderson, 1999, p. 105).

From figure 3.5c, we see that the maximum ratios are 164 at $Re = 3 \times 10^7$ and 34 at $Re = 5 \times 10^4$. However, these values only hold for wings with infinite span. Finite wings suffer from additional drag due to strong vortices produced at the wing tips. Furthermore, a complete aircraft shows more drag components, they stem from the fuselage and the tail, plus other parts in the air stream. As a consequence, the maximum lift-to-drag ratio is 13-16 for (normal-size) propeller aircraft, 17-20 for jet airliners (Loftin, 1985, chs. 6, 13). Typically the ratio decreases with size, very small UAVs may have ratios in the range of small birds and insects, i.e. below 10 (Mueller, 1999), e.g. 6 for the *Black Widow* (wingspan: 15.2 cm) (Grasmeyer & Keennon, 2001, table 5, p. 524).

¹ ρ and μ were calculated using the AeroToolbox Standard Atmosphere Calculator (AeroToolbox, 2020).


Furthermore, small flyers are highly susceptible to environmental effects due to their low mass and slower flight speed. These challenges are typically overcome by using flapping wings and wing-tail coordination (Shyy et al., 2013, p. 40). Also, airfoil profiles that optimize aerodynamic behaviour for a specific Reynolds number regime are used.

(a) Typical dependence of lift coefficient c_{ℓ} with angle of attack α . C_{ℓ} decreases beyond a critical angle.

(b) Typical dependence of drag coefficient c_d with angle of attack α .

(c) Ratio $c_{\ell}/c_{\rm d}$, or ratio of lift *L* over drag *D*, versus angle of attack α .

Figure 3.5: Two-dimensional lift and drag coefficients dependent on the angle of attack α of a NACA 2411 airfoil (shown in figure 3.6) calculated with XFOIL 6.99 (Drela, 2013) at M = 0 for Reynolds numbers of $Re = 3 \times 10^7$ and 5×10^4 .

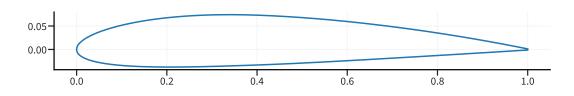


Figure 3.6: NACA 2411 airfoil generated with XFOIL 6.99 (Drela, 2013). The lengths are normalized relative to the chord.

Aircraft with fixed/variable-geometry wings have to move with a certain velocity to stay airborne. Their direction of movement usually is controlled by control flaps (small additional wings) that by aerodynamic forces create a moment around the vertical axis (rudder) or a horizontal axis in wing direction (elevator). The velocity, climbing or descent can be controlled by varying the engine thrust.

In rotary-wing aircraft, the above considerations about lift and drag apply to each individual blade of the rotor(s). Because the velocity through the air increases along the blade, the blade is twisted to keep the lift distribution approximately constant. The blade pitch can be varied during one rotation; in case of one main rotor, if the blade pitch is increased when the blades are in the backward half circle, the craft is tilted up at the back and some component of the total rotor force points forward, creating forward thrust. In order to compensate for the torque, often a small tail rotor is used. Since multiple rotors can counter-rotate, no special counter-torque mechanism is needed. Tilting the craft in some direction for thrust does not need varying the blade pitch during rotation, but can be achieved by varying the rotation rates among the rotors.

4 Technical Overview

4.1 Airframe Configurations

In general aircraft are divided into three categories (Austin, 2010, ch. 3.5):

- 1. horizontal take-off and landing (HTOL),
- 2. vertical take-off and landing (VTOL),
- 3. HTOL / VTOL hybrids.

The acronym HTOL designates aircraft which require a horizontal acceleration to achieve flight speed. HTOL aircraft are typically in fixed-wing configuration, while VTOL aircraft use rotary or flapping wings. The range of airframe configurations for UAs is the same as for crewed aircraft. Most common for small UAVs are fixed- and rotary-wing configurations. Very small UAVs typically use flapping wings.

4.1.1 Fixed-wing Configurations

The three fundamental types of fixed-wing aircraft are the 'tailplane aft', the 'tailplane forward' and the 'tailless' configuration. Almost all UAs in our database use a pusher-propeller configuration with the power-plant at the rear of the fuselage. This allows payload placement in front of the aircraft and an unobstructed forward view. Payload placement in front of the engine also prevents contamination of the payload with leaked fluids from the forward engine exhaust (Gundlach, 2012, p. 134). A typical example is shown in figure 4.1.

From an aerodynamic viewpoint, if a propeller is used, the induced air velocity of the rear-mounted propeller does not increase the friction drag of the fuselage as much as the slipstream would from a front-mounted tractor propeller (Austin, 2010, p. 34). However, tractor propellers have clean airflow to the propeller, which leads to higher propeller efficiency (Gundlach, 2012, p. 134). Gundlach adds that tractors can also be quieter because there is no wake impingement upon the propeller and that tractors allow a large tail moment arm due to the forward engine location.

Flying-wing (including delta-wing) aircraft are tailless and suffer from a reduced effective tail arm in both pitch and yaw axes,¹ although the rearward sweep of the wing adds to directional stability (Austin, 2010, p. 36). An argument in favour of the flying-wing configuration is that the removal of the horizontal stabiliser avoids the additional profile drag due to that surface. However, the poorer lift distribution of the flying wing can result in negative lift at the tip sections and result in high induced drag (Austin, 2010, p. 36). An example of a flying-wing UAV is the Spaitech *Sparrow* shown in figure 4.2.

¹ An aircraft in flight can rotate around three axes with their origins at the centre of gravity. The pitch axis is parallel to the wings of a winged aircraft, the roll axis is drawn through the aircraft's body from tail to nose in forward direction, and the yaw axis is directed towards the bottom of the aircraft, perpendicular to the other two axes.

4.1 Airframe Configurations

Figure 4.1: Conventional fixed-wing configuration: IAI *GreenDragon* ((C) IAI, reprinted by permission) (IAI, 2019a). Wingspan: 1.7 m (IAI, 2019b).

Figure 4.2: Flying wing with tractor propeller: Spaitech *Sparrow*. Wingspan: 0.98 m ((C) Spaitech, reprinted by permission) (Spaitech, 2019).

Another typical form is the tandem-wing configuration. It uses two wings of similar areas with one at the front and one in the back of the aircraft. The advantage is that in case of wing folding along the fuselage, for the same total wing area the stowage space is reduced. The maximum wingspan is then twice the fuselage length. However, the forward wing produces a downwash field on the rear wing, leading to a higher induced drag, so that tandem-wing configurations usually have lower aerodynamic efficiency than conventional configurations (Gundlach, 2012, p. 118). Tandem-wing UAVs can easily be deployed from the stowed state, typically from tube launchers, and unfold their wings after launch (figure 4.11). An example is the Raytheon *Coyote* shown in figure 4.3.

Figure 4.3: Tandem-wing configuration: Raytheon *Coyote* (public domain, cropped) (NOAA, 2016). Wingspan: 1.47 m (Streetly & Bernadi, 2018).

Figure 4.4: Custom wing configuration: UVision *HERO-30* (public domain, cropped) (Swadim, 2019). Exact size unknown.

An alternative to increase the wing area while still allowing a folding mechanism is to use four primary and four secondary wings as shown on the UVision *Hero-30*

4.1 Airframe Configurations

(figure 4.4). This design allows a shorter fuselage length compared to a tandem-wing configuration while maintaining a large wing area.

Advantages of HTOL UAs are typically a higher endurance compared to rotary-wing aircraft, while they lack the manoeuvrability and VTOL ability of rotorcraft. A major disadvantage is the reliance on an extended space to launch and land and the necessity for constant forward movement to stay airborne.

4.1.2 Rotary-wing Configurations

Rotary-wing aircraft or rotorcraft use one or more main rotors to generate lift (figure 4.5). Designs using multiple rotors are called multi-rotors, or e.g. tri- or quadrotors (-copters) indicating the number of rotors used. In case of multiple rotors, their blades are fixed in pitch and horizontal thrust is generated by changing the speed of rotation of each rotor, tilting the craft in the intended direction. An example of a quadrotor is the Bitcraze *Crazyflie* (figure 4.6).

Their main advantage over fixed-wing aircraft is their VTOL capability, allowing them to access spaces unavailable to fixed-wing aircraft. Moreover their ability to hover allows them to remain stationary which simplifies surveillance, even allowing them to land during a mission to save fuel or battery capacity. Compared to fixed-wing aircraft, no additional equipment such as airbags or a parachute is required for recovery. However, rotary-wing aircraft usually have a lower endurance (Gundlach, 2012, pp. 47–50), a lower cruise speed and thus longer response time, and achieve lower altitudes (Austin, 2010, p. 181), which makes them more suitable for short ranges.

Figure 4.5: Helicopter configuration: AeroVironment *VAPOR35*. Rotor diameter: 1.7 m ((C) AeroVironment, reprinted by permission) (AeroVironment, 2019).

Figure 4.6: Quadrotor Bitcraze *Crazy-flie 2.1*. Width (motor-to-motor and including motor mount feet): 9.2 cm ((C) Bitcraze, reprinted by permission) (Bitcraze, 2020).

4.1 Airframe Configurations

4.1.3 Hybrid Configurations

Hybrid configurations intend to combine the capabilities of both HTOL and VTOL aircraft. In the tilt-rotor configuration, rotors are mounted onto the front tip of the main wing and can be rotated forward by 90° to act as propellers for cruise flight (figure 4.7). An special combination of a tri- and tiltrotor is the Skyborne Technologies *Cerberus* with one rotor at its tail and two main lift fans at the front that can tilt forward (Skyborne Technologies, 2019).

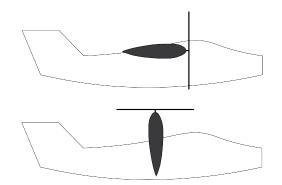


Figure 4.7: Tilt-rotor configuration during cruise and hover flight.

4.1.4 Flapping Wings

Flapping-wing aerial vehicles use their wings to generate thrust in addition to lift. Flapping wings can significantly increase the manoeuvrability of an aircraft. A combination of flapping motion, wing deformation, body contour and tail adjustment allows a precise trajectory control at high speeds (Shyy et al., 2013, p. 7). Flapping wings are used almost always by UAVs of very small sizes.

Current very small flapping-wing UAVs face the challenge of relatively high design complexity, low endurance and low payload mass.

Figure 4.8: *DelFly Nimble*. Wingspan: 33 cm (public domain) (MAVLab TU Delft, 2018; de Croon et al., 2016).

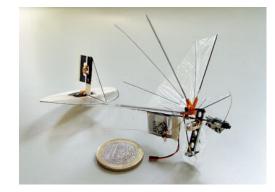


Figure 4.9: *DelFly Micro*. Wingspan: 10 cm (public domain) (de Wagter, 2008; de Croon et al., 2016).

4.2 Materials and Manufacturing

We divide flapping-wing UAVs into the tailless and 'with tail' categories, since the former are less conventional as the tail is typically used as an important control structure. Tailless flapping-wing UAVs have to use the same wings for lift generation as well as control. An example of a tailless design is the *DelFly Nimble* (mass: 29 g) (figure 4.8) as well as the *Nano Hummingbird* (figure 5.1) (mass: 19.0 g). A design with tail is the *DelFly Micro* (mass: 3.07 g) (figure 4.9).

4.1.5 Tethering

Tethered UAVs are VTOL aircraft connected to a power-supply ground unit. Their radius of action is limited for a stationary ground unit, but is much larger if the power supply is transported on a ground vehicle. For example, the *HoverMast 100* can reach an altitude of 100 m (SCR, 2019) and operate along a moving pick-up truck (figure 4.13 below). As long as a steady power supply is ensured, tethered configurations offer basically limitless flight time until maintenance is required. Since the on-board battery can be much smaller and lighter compared to non-tethered rotary-wing aircraft, the remaining aircraft components can be much heavier, increasing overall aircraft performance. Tethered UAVs are typically used for surveillance missions such as border control or for guarding infrastructure.

However, a UA might simply be tethered because it would not fly or achieve a certain flight performance with the increased weight of an on-board power supply unit. An example is the research system *RoboBee*, which would otherwise not achieve flight due to its extremely small size (mass: 80 mg) (Ma et al., 2013).

4.2 Materials and Manufacturing

Small UAs developed by professional institutions tend to use modern materials and manufacturing methods (Gundlach, 2012, sec. 7.3). Various types of plastics, foam and sandwich structures are used, metal only for special parts. Composite materials provide high strength at low weight; the load is borne by fibres, sometimes woven, often with plies of unidirectional fibre sheets in different directions. Fibres of graphite (carbon) provide higher strength than fibres of glass or aramid. They are supported and bonded together by a matrix material, sometimes thermoplastic, often a resin such as epoxy that polymerises. With two components this happens at normal temperature; for higher requirements a thermoset resin is used that has to be cured at high temperature. Consolidation and better fit to a mould can be supported by pressure, often from the air by a vacuum under an airtight film. Wings and fuselages can be made with integrated ribs and from fewer pieces, requiring fewer fasteners. Tapered wings and rounded shapes can be made easily.

Additive manufacturing (often called 3-D printing) provides much more flexibility, moulds are not needed and complex forms, e.g. with inner cavities, can be produced. Several methods and materials can be used to print parts or complete structures (Goh et al., 2017). Beside wings and fuselages mechanical parts have been made, e.g. in gears.

In very lightweight UAs, special work has been done to produce the flapping wings, often emulating insect wings. Various methods have been described how stiffeners, membranes and links can be made and bonded, e.g. by laser cutting (Liu et al., 2017) or microsystems technology (also called microelectromechanical systems (MEMS) technology) (Bao et al., 2011); carbon nanotubes have been added for strength (Kumar et al., 2019). For driving, beside electrical motors with transmissions, 'artificial muscles' are made from piezoelectric materials, dielectric or electrostatic elastomers (Chen & Zhang, 2019).

A special concept can make manufacture easier and allow series production, potentially at low cost: producing structures in two dimensions and then folding them up, creating a three-dimensional object, as in Japanese paper folding (origami) (Sreetharan et al., 2012; Dufour et al., 2018). Laser cutting, lamination and microsystems technology have been used; the latter can produce integrated electronic circuits in the same process. Rigid and flexible materials have been combined for movable elements. Actuation for moving elements out of the plane can use shape-memory materials, flapping wings can be driven by piezoelectric or dielectric elastomers. Used for mass production such methods may enable swarms of immense numbers of disposable MAVs.

4.3 Power and Propulsion

The vast majority (89%) of the 129 UAVs in our database uses electric power, mostly from batteries; for one type a fuel cell is stated, the few tethered ones receive external power. For one very small (80 mg) tethered, flapping-wing UAV, *RoboBee*, an upgraded version has been equipped with solar cells (*RoboBee X-Wing*, 259 mg, that can fly as long as it is under intense light.

The advantage of using electric motors is their low acoustic signature compared to combustion and jet engines. In addition, depleted batteries may be replaced with fully charged ones in a few seconds, so-called 'hotswapping'. Furthermore, the UAV mass stays constant throughout the flight, unlike with engines that use fuel, simplifying centre-of-gravity considerations in the initial UAV design phase. The disadvantage of using batteries is their lower energy density compared to fuel, leading to a shorter flight time.

Nine UAVs use combustion engines, and two can use either electric or combustion power. The eleven types with (optional) combustion have maximum take-off masses of 2.5 to 13 kg, with the exception of the rotary-wing *Comandor* with 110 kg that is an outlier in many respects.

There is one type with turbojet propulsion (Futura) with 70 kg mass, also an outlier.

Propulsion is by propeller for all others of the 65 fixed-wing UAVs, for two thirds in the pusher arrangement (propeller in the back). Two types use tilt-rotors. The rotary-wing UAVs have one main rotor or several rotors.

4.4 Guidance and Navigation

Flapping wings, with or without tail, are used with very lightweight UAVs only; the masses of the twelve types lie between 80 mg and 29 g.

4.4 Guidance and Navigation

4.4.1 Navigation and Autopilots

Most small UASs use a global navigation satellite system (GNSS) to determine the aircraft's position and to navigate between waypoints. A GNSS consists of a collection of satellites orbiting the Earth at an altitude of approximately 20000 km (Austin, 2010, ch. 11.1). Each satellite transmits radio signals that contain the start time of the signal and travel at the speed of light. A receiver can then calculate the range to the satellite by using the arrival time. Determining the exact position in three dimensions, however, requires signals from four or more satellites. The result is a sequence of discrete aircraft positions. GNSS signals can be jammed by emitting a radio-frequency signal strong enough so that the satellite's signals are outweighed. To avoid the loss of the aircraft, usually an additional, so-called dead-reckoning system, is used. It uses the aircraft's position at the start of the mission and time, speed and direction measurements to calculate the current position. These calculations can be combined with the data provided by the GNSS to receive a smoothing between calculated positions and to continue navigation in case of a GNSS signal loss. Current GNSSs in use are the US-owned global positioning system (GPS), the Russian global navigation satellite system (GLONASS), the European Galileo and the Chinese BeiDou navigation satellite system (BDS).

In addition to jamming, GNSS signals can be spoofed, i.e. the satellite's transmissions are mimicked and false location information is fed to the receiver. This can be used to either completely deny the use of GNSS by feeding obviously wrong information or by slowly directing the aircraft away from the original route. For these reasons, navigational systems independent of external inputs, such as an inertial measurement unit (IMU), may be used. An IMU functions independently of external signals. Using inertial forces, accelerometers measure the change of the velocity in three dimensions. To refer these measurement to fixed coordinate directions the rotations of the system are measured e.g. by gyroscopes. With knowledge of the starting velocity, the acceleration is integrated over time to yield the changed velocity. With the given start location, integrating the velocity gives the changed location. IMUs have the disadvantage that their estimates drift over time. For high-grade accelerometers and gyroscopes the drift can be low, but for miniaturized systems used by small UAVs which tend to use MEMS devices that have very high drift and can provide nonsense estimates in seconds or minutes (Gundlach, 2012, p. 392).

An IMU and GNSS system can be combined to an inertial navigation system (INS), where the IMU provides state estimates at a high rate, while the GNSS provides discrete positions at a lower rate, allowing for correction of the IMU drift.

Inertial measurement systems are sometimes complemented with magnetic-field

4.5 Launch and Recovery

sensors for orientation in the earth magnetic field and barometric sensors for altitude. Autopilots – systems for controlling the trajectory of aircraft, often including waypoint-navigation – can integrate such systems. Miniaturization in particular of microelectromechanical sensors has been advanced greatly by their introduction in every-day electronics such as smart phones. One exemplary device with three-axis accelerometer, three-axis gyroscope and three-axis magnetometer measures $3 \times 3 \times 3$ mm³ with a mass of 0.14 g (TDK, 2021). University researchers have built autopilots of extremely small size and extremely light weight. One example including telemetry and remote control had 2.8 g mass on a 2×2 cm² board (Remes et al., 2014), another had 1.3 g including communication (Runco et al., 2019).

A different method of navigation uses optical flow, that is the apparent motion of (parts of) a camera image as the camera moves and/or changes its view angles. This motion can be derived from the time sequence of the pictures, e.g. by identifying landmarks or by image correlation. In order to provide coordinates in an external reference system, additional information is needed, e.g. the UAV attitude and its altitude. In particular for small UAVs, optical flow can be combined with IMUs and an altimeter (e.g. Santamaria-Navarro et al., 2018).

4.4.2 Control Stations

The control station is a human-machine interface allowing communication with the UAV as well as its control. The control station may be based aboard ships or aboard another aircraft ('mothership') or based on the ground. Almost all small and very small UAVs in our database use a ground control system (GCS). GCSs typically consist of ruggedized laptops or tablets, displaying the UAV's attitude, altitude, airspeed and position or video and camera feed from the payloads. Remote controls with joysticks and switches may be included for manual control.

Using the GCS the UAV's flight path can either be directly controlled, e.g. by using a remote control and video feed, or by using a pre-progammed waypoint system that may also be updated during flight. The UAV may also have on-board programs that allow it to execute tasks without operator control, such as orbiting at a given speed, radius and altitude for loitering (e.g. WB Group, 2019) or returning home automatically (IAI, 2020). These in-built functions lower the number of direct inputs necessary for flight and thus reduce pilot workload.

4.5 Launch and Recovery

Launch methods include hand-launching the vehicle by throwing it forward, launch from a catapult via e.g. a bungee rope, from a pneumatic tube (figure 4.10), multiple tube launchers in quick succession (figure 4.11) or a grenade launcher (figure 4.12b).

4.5 Launch and Recovery

Figure 4.10: AeroVironment *Switchblade* (AeroVironment, 2021b) ((C) AeroVironment, reprinted by permission).

Figure 4.11: Raytheon *Coyote* launched from low-cost UAV swarming technology (LOCUST) launcher (public domain, cropped) (Smalley, 2015).

A hand launch can influence the UA configuration to avoid injury of the person throwing the UAV (Gundlach, 2012, p. 442). Tube launchers can be very compact and prepared in a short amount of time. However, they can only be used with UAVs that can unfold their wings and propeller after deployment. The UAVs launched from tubes usually have a pusher propeller at the back of the aircraft, that has a small shield protecting it from the launch and which is lost after launch (figure 4.11).

Launches from aircraft are also possible, allowing a transport of the UAVs close to the mission area, thus increasing their mission range. An example is the *Perdix* UAV deployment from a F/A-18 *Super Hornet* fighter jet (figure 4.14). The *Perdix* UAVs use containers similar in size to flare canisters so that the flare ejection mechanism already available on the aircraft can be used for a UAV launch instead. An aircraft can also be used as a mothership with an aircraft recovery function as in the Defense Advanced Research Projects Agency (DARPA) Gremlins project (figure 4.15). The ability to recover UAVs removes the necessity for ground landings or UAV loss after a completed mission.

Launch from ground vehicles, such as the autonomous Rheinmetall *Mission Master* (Monroy, 2019), is also possible. UAVs can also be tethered to a moving ground vehicle such as the SkySapience *HoverMast* (figure 4.13).

4.5 Launch and Recovery

(a) After launch, the rotor arms extract and the UAV acts as a quadcopter.

(b) *Drone-40* inserted into M320 40 mm grenade launcher.

Figure 4.12: DefendTex *Drone-40* rotary-wing UAV with integrated warhead, launched from a hand-held 40 mm grenade launcher (US DoD photos, public domain) (Soldier Systems, 2019).

Figure 4.13: Sky Sapience *HoverMast* tethered to power supply unit transported on a pick-up truck ((C) SkySapience, reprinted by permission) (Sky Sapience, 2020).

The conventional landing with a landing gear with wheels and a (small) airstrip is rare for small and very small fixed-wing aircraft. They usually come without a landing gear due to weight and volume limitations, but also because it is not needed. They are so lightweight that simpler mechanisms can be used, such as a deep-stall or belly landing.

During a deep-stall landing, the aircraft flies at a low altitude and its nose is pulled up to induce a stall, so that the aircraft falls onto the ground.

A skid or belly landing is only applicable to UAV rugged enough to survive the

4.6 Payloads

landing or cheap enough as to be considered expendable.

In other cases where these simpler methods are not viable, a parachute or an airbag may be used instead. The airbag acts as an energy absorbing system that reduces the severity of ground impact. Both the parachute and the airbag have the disadvantage of adding to the overall weight and taking additional space inside the aircraft.

Another option is a guided flight into a net, by which the UAV is captured and stopped mid-air. However, the net has to be placed on the ground beforehand, thus limiting the landing location to a specific area.

Figure 4.14: Swarm deployment from three F/A-18 *Super Hornets* in October 2016 (public domain) (TIME, 2018).

Figure 4.15: DARPA Gremlins project (artist's concept, public domain) (DARPA, 2018).

4.6 Payloads

Austin defines payload as the part of an aircraft specifically carried to achieve a mission or to fulfil a certain role. The aircraft should be capable of flight with the payload removed (Austin, 2010, ch. 8, p. 127). The mission requirements determine the optimal configuration of payload and aircraft to perform a specific role.

Payloads can be divided into two basic categories:

- 1. sensors, cameras, weapons, etc. which remain attached to the aircraft,
- 2. dispensable loads such as missiles, bombs, fluids, etc.

In the following, we give a brief overview of the sensor and offensive payloads found in the UAV database.

4.6.1 Sensor Payloads

Payloads meant for intelligence, surveillance and reconnaissance (ISR) purposes are mainly cameras with variable viewing direction. They contain both electro-optical (EO) and infrared (IR) sensors.

EO sensors operate in the visible (wavelength $0.4 \,\mu\text{m}$ to $0.8 \,\mu\text{m}$) or near-infrared (NIR) band, ranging from $0.7 \,\mu\text{m}$ to $1.0 \,\mu\text{m}$ (Gundlach, 2012, p. 519). Usually the output is colour video if the camera records in the visible band, or greyscale for increased contrast and for low light (Gundlach, 2012, p. 558). Usually there are zoom capabilities.

4.6 Payloads

IR sensors typically operate in three different wavelength bands: short-wave infrared (SWIR) ranging between 1 μ m to 1.7 μ m, midwave infrared (MWIR) ranging between 3 μ m to 6 μ m and long-wave infrared (LWIR) ranging between 6 μ m to 14 μ m (Gundlach, 2012, p. 520). SWIR sensors have good resolution in low light conditions and do not require cooling, but are not thermal imagers like MWIR and LWIR sensors. Their detection relies on energy reflected by the object. MWIR sensors can detect both reflected and emitted energy, while LWIR sensors primarily detect energy emitted by the object, making them especially useful to detect heat signatures.

EO and IR sensor systems are usually combined to so-called EO/IR balls. These may additionally include laser illuminators, designators and rangefinders (Gundlach, 2012, p. 557). A laser illuminator illuminates a target in the band of the night-vision sensor, which may be seen by the EO/IR ball or external night-vision equipment. Laser designators are used to point towards targets in the wavelength band of the detector, similar to laser pointers but not necessarily in a visible band.

EO payloads are usually mounted in two ways:

- 1. Forward looking from a mounting in the nose, with the sensors mounted on gimbals with actuators. The range can be upwards and forwards to above the horizon or upwards and rearwards. Capabilities for a pan in azimuth and image stabilisation may be present (Austin, 2010, p. 132).
- A rotatable turret mounted beneath the aircraft to cover a 360° azimuth field of view, with sensors, elevation and roll gimbals and their actuators (Austin, 2010, p. 132) (e.g. as seen in figures 4.1 and 4.2).

Positioning the EO/IR ball below or in front of the aircraft provides an unobstructed view. Internal payloads, in contrast to external ones such as turrets, reduce aerodynamic drag and thus increase the aircraft's endurance, range and speed. A gimbal allows an independent movement of the payload, the simplest are able to pan and tilt while more advanced gimbals may include inertial stabilisation to mitigate effects of manoeuvring, vibration and air turbulence (Friese et al., 2016).

Further non-standard non-weapon payloads used by small and very small UAs as listed in our database are:

- gas (Streetly & Bernadi, 2018, pp. 59-60) and fire detector (IAI, 2020),
- radiological detector (Streetly & Bernadi, 2018, pp. 124-125), spectrometer (Streetly & Bernadi, 2018, pp. 59-60), dosimeter (Spaitech, 2019),
- communications intelligence (COMINT) equipment (IAI, 2020),
- radar (Sky Sapience, 2019); (Streetly & Bernadi, 2018, pp. 216–217),
- light detection and ranging (LiDAR) (AeroVironment, 2019),
- (radio) relay (Sky Sapience, 2019); (Streetly & Bernadi, 2018, pp. 278-280),
- hyperspectral sensor (AeroVironment, 2019).

4.6.2 Offensive Payloads

Offensive payloads for small UAs include lethal and non-lethal weapons. The UA may function as a either a weapons platform or as a guided weapon itself. A list of lethal

4.6 Payloads

weapons and UAV types they are carried by is given in table 4.1 (see also section 8.3).

Most prominent are warheads integrated into the aircraft's fuselage. The UAV then acts similar to a missile or guided munition and is destroyed by the warhead's detonation. These are usually designed to work against specific targets, such as fragmentation or anti-personnel warheads, e.g. the Polish *Warmate* (WB Group, 2019), anti-tank (Israeli *Green Dragon* (IAI, 2019b)) or a high-explosive charge (Australian *Drone-40* (N., 2019)).

Lethal weapons not destroying the aircraft during the attack are a rocket-propelled grenade launcher, a 40 mm grenade launcher or free-falling bombs ejected from the UAV.

Small UAVs armed with missiles or precision-guided munitions do not appear to have been developed yet. The manufacturers of the *Comandor* and *Cerberus* mention the possibility of using missiles (table 4.1, but have not shown or mentioned any existing missile to be used.

Non-lethal weapons used are an (anti-UAV) net launcher (Delft Dynamics BV, 2016), a kinetic anti-UAV tip (Soldier Systems, 2019), as well as smoke grenades (Soldier Systems, 2019) and tear gas released from a canister mounted under the UAV (ISPRA, 2019).

Armament	Types	
Integrated warhead	Alpagu, Alpagu Block II, CH-901, Coyote, Demon, Drone-40, Futura, Green Dragon, HERO-20, HERO-30, HERO-70, KYB-UAV, Kargu, ROTEM, Spike Firefly, Switchblade, Warmate, Warmate TL, Warmate V, ZALA LANCET-1	
Shotgun	Cerberus	
40 mm grenade launcher	Cerberus	
Rocket-propelled grenade (RPG)	Demon	
Bombs	Comandor	
Missile	Comandor, Cerberus	

Table 4.1: Offensive payloads and UAV types using them. Some types can use a variety of weapons and are thus listed multiple times. The most prominent armament is an integrated warhead, with a total of 20 UAV types. For references, see the UAV database in appendix A.

5 Research and Development Programmes in the USA

As our database indicates, several countries are active in developing small and very small UAVs; research probably is being done by a smaller number. Future possibilities and possible trends in military technology can be assessed by considering present activities in R&D. Because the USA spends by far the most for military expenditure is about 40% of the world total) – the USA is the technological leader and sets precedents for other countries, a consequence of its permanent goal of maintaining military-technological superiority (Altmann, 2017; Altmann, 2020). Here we present a cursory overview about US military R&D for small and very small UAVs; this is made easier because the USA is much more transparent about its activities than any other country.

5.1 The DARPA Nano Air Vehicle (NAV)

In 2005 DARPA announced the Nano Air Vehicle (NAV) programme with the objective to develop and demonstrate very small, i.e. < 7.5 cm in any dimension, lightweight (gross take-off mass: < 10 grams, payload: 2 g) air vehicle systems with the potential to perform challenging indoor and outdoor military missions (Hylton et al., 2012; Keennon et al., 2012). The most prominent result is the AeroVironment *Nano Hummingbird* tailless flapping-wing UAV biologically inspired by a hummingbird (figure 5.1).

Figure 5.1: AeroVironment *Nano Hummingbird* prototype with right body panel removed. Total mass: 19.0 g, Flap rate: 30 Hz, wingspan: 16.5 cm, speed: from hover to 6.7 m/s, endurance: 4.0 min (Keennon et al., 2012, p. 4, fig. 11, table 2). Image source: (AeroVironment, 2021a) ((C) AeroVironment, reprinted by permission).

5.2 Lethal Miniature Aerial Missile System (LMAMS)

The main technical challenges include low-Reynolds-number aerodynamic performance, navigation in complex, confined environments, radio communication through buildings and extreme constraints on size, weight and power (Hylton et al., 2012, p. 2).

5.2 Lethal Miniature Aerial Missile System (LMAMS)

The Lethal Miniature Aerial Missile System (LMAMS) is an active programme run by the US Army. It seeks to provide a small tactical unit with the capability to engage threat targets beyond current line-of-sight weapons or indirect fire. Required properties include (US Programs Executive Office Missiles and Space, 2020):

- launcher: single man-portable / operable,
- munition: small visual and thermal signature,
- modular warhead: < 0.315 kg,
- weight of munition and warhead: 2.475 kg,
- endurance: $\geq 15 \text{ min}$,
- range: $\geq 10 \text{ km}$,
- loitering and wave-off capability,
- automatic tracking of targets,
- assembly in two minutes.

The system currently in use by the US Army is the AeroVironment *Switchblade* (AeroVironment, 2020) (figure 4.10).

5.3 Gremlins

Launched in 2016, the DARPA Gremlins programme seeks to develop technologies enabling aircraft to launch volleys of low-cost, reusable UAS which can be launched and recovered by manned aircraft. Dynetics first demonstrated a launch of its *X-61A Gremlins Air Vehicle* (GAV) (wingspan: 3.48 m, mass: 680 kg (Dynetics, 2020c)) in November 2019 (Dynetics, 2020b). In 2020, a second flight test was conducted to demonstrate formation flight with the Lockheed C-130 *Hercules* functioning as mothership (figure 5.2). However, an airborne recovery has not been achieved yet (Dynetics, 2020a), even in a third flight test in the same year (DARPA, 2020a). Although the size of the UA is larger than the 2 m size of our definition of a 'small' UA, the principle can be used with small UAs as well.

5.4 Perdix

Figure 5.2: Third flight of the Dynetics *X-61A Gremlins Air Vehicle* launched from a customized Lockheed C-130 *Hercules* (public domain) (DARPA, 2020a).

5.4 Perdix

Perdix is a small (wingspan: 30 cm, mass: 290 g) UA intended for ISR missions, capable of swarm flight (US SCO, 2019). It was first developed in 2012 at MIT (Tao, 2012) and then was upgraded by the Strategic Capabilities Office (SCO), US Department of Defense. *Perdix* was first air-launched from F-16 *Fighting Falcon* flare canisters in 2014. In 2016, three F/A-18 *Super Hornets* launched 103 *Perdix* UAs which then flew in swarm formation (figures 4.14 and 5.3) (US SCO, 2019). The SCO claims that the Perdix are not preprogrammed, synchronized individuals but instead share a distributed brain for decision making. Each UA communicates with each other. *Perdix* is produced via additive manufacturing.

Figure 5.3: SCO *Perdix* with swarm-flight capability (public domain) (Dyndal et al., 2017).

5.5 Low-Cost UAV Swarming Technology (LOCUST)

The LOCUST of the Office of Naval Research (ONR) is launched from a tube canister that sends UAs into the air in rapid succession (figure 4.11) (Smalley, 2015). It was first demonstrated in 2015. In 2016 30 ship-based autonomous swarming UAVs were launched. The UA currently in use is the Raytheon *Coyote* armed with an integrated warhead (figure 4.3).

5.6 Anubis

In 2008 the US Air Force started the research project 'Anubis' to develop a small loitering munition designed to strike high-value individuals. The research phase of the project was completed, but no information on the actual system or status of the project is available (Hambling, 2010; Gettinger & Michel, 2017).

5.7 Cluster UAS Smart Munition for Missile Deployment

In 2016, the US Army announced a programme that seeks to develop a cluster payload that is launched and deployed from a MGM-140 Army Tactical Missile System (ATACMS) surface-to-surface missile or the Guided Multiple Launch Rocket System (GMLRS). The payload should consist of multiple deployable smart quadcopters delivering small explosively formed penetrators (EFPs) to designated targets (SBIR, 2016; Gettinger & Michel, 2017). The missile releases the quadcopter payload during flight. The quadcopters shall be able to identify potential targets, land on them and detonate their EFP charges. Targets include tanks and large-calibre-gun barrels, fuel storage barrels, vehicle roofs and ammunition storage sites.

5.8 Short Range Reconnaissance (SRR)

In 2019, the US Army Program Executive Office (PEO) Aviation announced the Short Range Reconnaissance (SRR) programme (PEO Aviation, 2019). It seeks to develop a small, inexpensive, rucksack-portable VTOL UAV with a focus on open-source tools for reconnaissance missions. The PEO awarded six commercial companies with \$11 million to prototype new UAV capabilities (Defence Procurement International, 2020).

5.9 Offensive Swarm-Enabled Tactics (OFFSET)

The DARPA Offensive Swarm-Enabled Tactics (OFFSET) programme seeks to provide small-unit infantry forces with upwards of 250 small UAVs and/or small uninhabited ground systems. Goals include an advanced human-swarm interface that allows direct control of the swarm in real time and a real-time networked virtual environment to

support a swarm-tactics game which allows players to determine the best tactical swarm approach (Chung, 2020; DARPA, 2020b).

5.10 Air Launch Effects (ALE)

The US Army's Air Launch Effects (ALE) programme seeks to provide an autonomous or semi-autonomous UAS working together with other UAVs as well as manned aircraft (PEO Aviation, 2020). Its goal is to increase the aircraft's operational reach by using expendable, low-cost systems that are e.g. launched directly from the aircraft. In September 2020, the US Army demonstrated the launch of an Area-I *ALTIUS-600* UAV (wingspan: 2.54 m, mass: 12.3 kg (Area-I, 2020)) from a UH-60 *Black Hawk* helicopter (Roque, 2020) (figure 5.4). In total, six UAVs were launched simultaneously from Black Hawks, ground-rail launchers and a truck. Again, although the *ALTIUS-600* is larger than 2 m the principle can be used with small UAs as well.

Figure 5.4: UH-60 *Black Hawk* launching a Area-I *ALTIUS-600* UAV during flight (public domain) (PEO Aviation, 2020).

5.11 Air Force and Army MAV Programmes

From 2007 to 2012 the Air Force Office of Scientific Research had a programme for a 'Micro-Robotic Fly'. Carried out at Harvard University, a flapping-wing UAV of 3 cm wingspan was built, with power supplied via wires (Callier, 2010; AFOSR, 2013, p. 73). The Harvard work was then continued under the name 'RoboBee' with funding from the National Science Foundation (Ma et al., 2013) (see also section 4.1.5). Much

5.11 Air Force and Army MAV Programmes

of the Air-Force research had transitioned to the US Army, which had a big programme 'Micro Autonomous Systems and Technology' from 2008 to 2017. Here many aspects of small autonomous systems were studied by 19 partners from industry and academia, including wings, navigation, sensors and communications (McNally, 2017; MAST, 2016).

6 UAV Swarms

A UAV swarm is a group of uninhabited aircraft acting together in flight to achieve a common goal, in a military context often attack(s). Through their potentially large numbers, they are intended to overwhelm their targets, while the communication between the individual elements allows highly coordinated, multidirectional and simultaneous attacks. A swarm can be directly controlled by a human as a whole, while its full effectiveness is reached if the swarm is completely autonomous (e.g. Scharre, 2018). Together with a decentralized command structure, a swarm cannot be defeated by destroying e.g. a leader or group of leader units. Furthermore, initiative can be taken by single units, i.e. they can take the 'lead' of the swarm once an opportunity arises and give it away once another member signals a more effective way to attack. Thus, the flat-hierarchy command structure inside the swarm makes each member expendable for the swarm to achieve its goal. Developing algorithms for swarm behaviour and control poses very high requirements, in particular if 'intelligent' reaction to changes is intended.

The limited endurance and range of these small systems are typically overcome by transporting the swarm to the mission area in a larger vehicle. This vehicle can either be an aircraft or a maritime ship, a so-called 'mothership', or a ground vehicle as shown in section 4.5.

A coordinated swarm flight of 20 *Perdix* UAs, already mentioned in section 5.4, was demonstrated in 2015, followed by a swarm of 103 in 2016. Although no information on the payloads used during both exercises is available, the aircraft were most likely unarmed, since *Perdix* has not been advertised or described as an armed system so far. In the same year, Raytheon announced a coordinated flight of 24 of their *Coyote* UAs, which are able to perform strikes using an integrated warhead (figures 4.3 and 4.11).

In 2017, DARPA held a small-UAV swarms competition, in which teams of the US Military, Naval and Air Force Academies competed in a game of Capture the Flag swarm-vs-swarm matches using self-developed swarm tactics (DARPA, 2017). The swarms consisted of a mixture of fixed- and rotary-wing UAVs, with a total of up to 25 UAVs each.

Significant advances in UAV swarming outside the United States have been made in China. In 2016, the Chinese company CETC demonstrated a swarm flight of 67 small fixed-wing UAVs, followed by another demonstration in 2017 with 119 UAVs (Kania, 2017, p. 23).

A tube-launch system similar to LOCUST mentioned in section 5.5 has been demonstrated by CETC in September 2020 (Hambling, 2020a). Their launcher is mounted on a ground vehicle and consists of 48 tubes. Information on the UAVs is not given, but pictures show that they have tandem wings and unfold after launch in the same way as the Raytheon *Coyote* (figure 4.11).

7 UAV Countermeasures

The increasing number of small and inexpensive UAS worldwide has given states as well as non-state actors the capability to perform airborne attacks, which was previously restricted to states with a sophisticated aircraft programme (Michel, 2019). Thus the demand for countermeasures that can detect, disable or destroy uninhabited aircraft has risen as well. Current air-defence systems are designed with inhabited aircraft in mind, with higher speeds and bigger sizes, making them ineffective in detecting, tracking and shooting down small UAVs (Michel, 2019) as well as cost-inefficient (Schlegel, 2018).

Between 2015 and 2019, the number of counter uninhabited aircraft systems (C-UASs) available increased from a dozen to 537 systems (Michel, 2019). A list of detection, tracking and identification methods is given in table 7.1, a list of interdiction methods in table 7.2 and a list of platform types in table 7.3.

Radar	Detects the presence of small uninhabited aircraft by their radar echo. These systems often employ algorithms to dis- tinguish between drones and other small, low-flying objects, such as birds.
Radio frequency (RF)	Detects, locates, and in some cases identifies nearby drones by scanning for the frequencies on which most drones are known to operate.
EO	Identifies and tracks drones based on their visual signature.
IR	Identifies and tracks drones based on their heat signature.
Acoustic	Detects drones by recognizing the unique sounds produced by their motors.
Combined sensors	Integration of different sensor types in order to provide a more robust detection, tracking, and identification capability.

Table 7.1: Detection, tracking and identification methods (Michel, 2019, p. 3).

Radio-frequency jamming	Disrupts the radio-frequency link between the drone and its operator by RF interference. With a broken RF link a drone will usually descend to the ground or return to a specified location.
GNSS jamming	Disrupts the link to navigation satellites, such as GPS or GLONASS. With a lost link, the drone will usually hover in place, land, or return to home.
Spoofing	Allows one to take control of or misdirect the targeted drone by feeding it spurious communications or navigation signals.
Dazzling	Employs a high-intensity light beam or laser to temporarily 'blind' the camera on a drone.
Laser	Destroys vital segments of the drone airframe using directed energy.
High power microwave	Directs pulses of high intensity microwave energy at the drone, disabling the aircraft's electronic systems.
Nets	Designed to entangle the targeted drone and/or its rotors.
Projectile	Regular or custom-designed ammunition.
Collision drone	Destroy by collision.
Combined interdiction elements	Combination for higher interdiction likelihood. E.g. RF and GNSS jamming, or an electronic system with a kinetic backup.

Table 7.2: Interdiction methods (Michel, 2019, p. 4).

1000 7.5. 0	c on o platorin types alter (Mienel, 2017, p. 4).
Ground-based: fixed	Systems to be used from stationary positions or mobile on the ground.
Ground-based: mobile	Systems mounted on vehicles.
Hand-held	Systems to be operated by a single individual by hand. Many of these systems resemble rifles or other small arms.
UAV-based	Systems mounted on drones.

Table 7.3: C-UAS platform types after (Michel, 2019, p. 4).

8 Small and Very Small UAV Database

8.1 Database Properties

The small and very small aircraft (and missile) databases are publicly available via https://url.tu-dortmund.de/pacsam-db as HTML tables. The tables are fully searchable and columns can be sorted. The data can be downloaded in .csv or .JSON file format by clicking on the CSV or JSON button. Empty cells indicate that no information was found. A screenshot of the web page is shown in figure 8.1. The complete database is shown in appendix A. Additionally, all data files, including the interactive HTML file, are available under https://doi.org/10.5281/zenodo.4537704 (Pilch et al., 2021). The printed version here was updated on 5th February 2021.

All UAV types listed have a size below or equal to 2 m.¹ The UAV database contains 26 categories, listed in table 8.1. In addition to basic properties such as size, mass and payload, we also included the category *In Service*, with the names of countries whose militaries adopted the system into their service, which allows statements on the proliferation of these systems.

As mentioned in the introduction only public sources were investigated, consisting mainly of fact sheets published by manufacturers or catalogues such as (Streetly & Bernadi, 2018). The focus of our investigation was mainly on systems designed to be used in a military context. An exception are very small UAVs still in the research or development phase. In general, these are not in military service or intended for military use, although some systems had been funded originally by military institutions (sections 5.1 and 5.11). We include them because they are are important indicators for trends and future capabilities of very small UAVs. The amount of effort put into collecting systems still in research was thus limited, and only a representative number of systems was included in our database.

In the next section, we give a general overview of the data, with a special look on armed UAs in section 8.3. In section 8.4 we present parameter distributions and correlations of technical parameters.

¹ There exist UAVs with wingspans slightly above that, like the Aeronautics *Orbiter 1K* with a wingspan of 2.2 m (Aeronautics Defense Systems, 2019) and the Tekever *AR4* with a wingspan of 2.1 m (Tekever, 2019). The *Orbiter 1K* was used by Azerbaijan in the war against Armenia in autumn 2020 (Frantzman, 2020). In early 2021, version 2 of the *Orbiter 1K* is listed with 2.9 m wingspan (Aeronautics Defense Systems, 2021).

8.1 Database Properties

Category	Description
Name	Name of the UAV
Manufacturer	Name of the UAV's manufacturer
Origin	Manufacturer's origin country
Intro	Year aircraft is first mentioned in media
Status	Includes commercial availability, development, military deployment or already ordered by a nation for service, legacy (no longer produced by manufacturer), advertised by manufacturer, research stage and unclear if status information is missing or outdated
In service	Nations with military usage
Configuration	Aircraft configuration
Armament	Type of weaponry with mass (if available)
Maximum take-off weight (MTOW)	Maximum take-off weight (mass) in kilograms
Wingspan or rotor diameter	Given in metres. In case of a fixed-wing or flying-wing UAV, the wingspan is given. For rotary-wing aircraft, the diameter of the main rotor is given instead. For multicopters, the overall diameter is used. Aircraft with ducted fans are actually larger, because of the shroud or duct that contains the propeller
Length	Aircraft length in metres
Endurance	Maximum flight time in minutes
Range	Flight range in kilometres
Speed	Aircraft speed as given by the manufacturer. Can be a range of values or cruise, dive and maximum speed, in km/h
Cruise speed	Speed of normal cruise once the aircraft has reached its cruise altitude in $\rm km/h$
Maximum speed	Includes the maximum speed achieved through diving in km/h
Altitude AGL	Maximum altitude above ground level in metres
Altitude above mean sea level (AMSL)	Maximum altitude above mean sea level in metres
Power	Form of power supply
Propulsion	Method of thrust generation
Guidance	Navigation systems
Targeting	Targeting capabilities, e.g. object tracking, detection, classification
Payload	Payload type with mass in kilograms
Launch	Launch methods
Recovery	Recovery methods
References	Data sources

Table 8.1: The 26 categories used in the small and very small aircraft database.

Preventive Arms Control for Small and Very Small Armed Aircraft and Missiles

List of small and very small unmanned aerial vehicles (UAVs) below 2 m size

Researchers: Mathias Pilch, Jürgen Altmann Project website: https://url.tu-dortmund.de/pacsam

In case of errors or questions, please do not hesitate to contact us.

Please note that the sorting algorithm may not work properly for columns which include mixed data types.

l ast undate: 29.01.2020

Last update: 29.01.2020 Json csv	31.2020											SEARCH:	
Name	🍝 Manufacturer	¢ Origin ¢	¢ Intro¢ Status		In service	¢ Type	🌣 Armament	¢ MTOW/k	$\Leftrightarrow $ MTOW / kg $ \Leftrightarrow $ Wingspan or rotor diameter / m $\Leftrightarrow $ Length / m $\Leftrightarrow $ Endurance / min	n≑ Length/m		🌣 Range / km	≑ Range / km≑ Speed / km/h
A1-S Furia	SPE Athlon Avia	Ukraine	Э	Unclear		Fixed wing	None	None	1.95	0.65		120	65-100
AID-MC8	AlDrones	Germany	0	On offer		Rotary wing	None	80		6:0	30	m	40 (max.)
AL-4	Aeroland	Taiwan	2010 Ur	Unclear		Fixed wing	None	4.2	2	1.4	60	24	56 (cruise), 100 (max)
ALADIN	EMT	Germany	2003 De	Deployed	Germany	Fixed wing	None	4	1.46	1.57	>60	15	40-70
Alpagu	STM	Turkey	2017 0	On offer		Fixed wing	Warhead (mass unknown)	1.9			10	2	93 (cruise), 120 (max.)
Alpagu Block II	STM	Turkey	2017 01	On offer		Fixed wing	<1.3 kg or <1.5 kg or <5.0 kg warhead	None			10-20	5-10	
ALUDRA SR-08	UST	Malaysia	0	On offer		Fixed wing	None	2.1	0.81	0.43	100	15	65 (cruise), 130 (max.)
AR1 Blue Ray	Tekever	Portugal	2013 01	On offer		Fixed wing	None	5.0	1.8	1.4	120-180	20	55 (cruise)
AR4	Tekever	Portugal	2011 De	Deployed	Portugal	Fixed wing	None	4	2.1	1.35	120	20	54 (cruise), 54 (max.)
AR4 Light Ray Compact	Tekever	Portugal	2012 De	Deployed	Portugal	Fixed wing	None	2	1.1	6:0	45	2	57 (cruise)
AR4 Light Ray Evolution	Tekever	Portugal	2014 De	Deployed	Portugal	Fixed wing	None	2	1.1	6.0	45	5	57 (cruise), 80 (max.)
Aster-T	SCR & Everis	Spain	2019 Or	On offer		Tethered- rotary wing	None	14		0.65			
ATLAS C4EYE / ppx	C-ASTRAL	Slovenia	0	On offer		Fixed wing	None	2.4	1.55	0.82	59	15	54 (cruise), 108 (max.)
Bat Bot (B2)	Coordinated Science Laboratory, Urbana; University of Illinois, California Institute of Technology	USA	2017 Re	Research	None	Flapping wing, tailless	None	0.0093					20
Doverside w Mini	Decilians	Turkous	anne Daalaaad		Turkon Ontre	Etund winn	hinna	u u	ç	¢ †	V0 V2	1	EE (review)

Figure 8.1: Screenshot of the small and very small aircraft database available at https://url.tu-dortmund.de/pacsam-db-sa.

8.1 Database Properties

8.2 General Overview

8.2 General Overview

A general overview is given in figure 8.2. Here, we see that the majority of UAVs is either of fixed- or rotary-wing configuration. Out of all 129 UAVs types produced in 27 different countries, only 25 are armed and produced in ten countries.

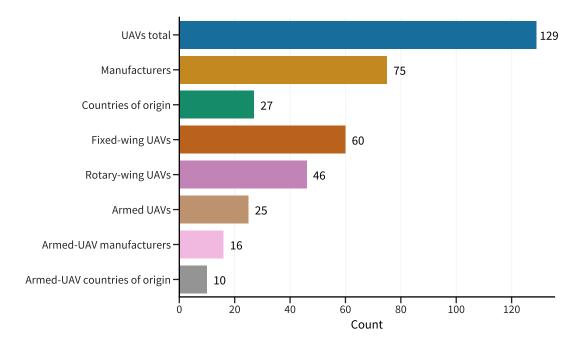
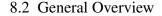



Figure 8.2: General database properties.

All of the diagrams shown in this and the following sections present data on all UAVs listed in our database. This does not necessarily mean that these systems are currently in use, especially for systems that were developed in the early 2000s. Figure 8.3 shows the UAV status distribution.

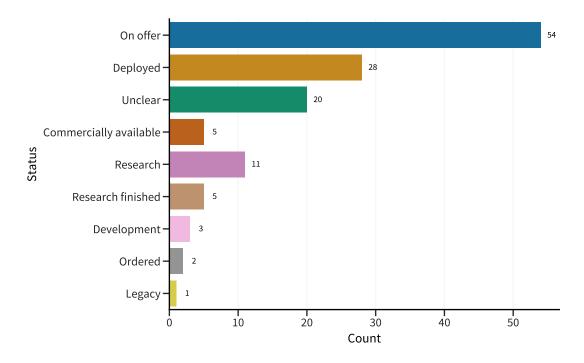


Figure 8.3: Status of small and very small UAV types.

Figure 8.4 shows the number of small and very small UAV types introduced per year, beginning in 2000. Between the years 2000 and 2011, the average number of UAVs introduced is 2.5, between 2011 and 2019 this number nearly quadrupled to 9.9 per year. The highest number of newly introduced systems was reached in 2014 with 17. In the following years, the numbers per year decreased to single digits. In general, we see a great increase of small and very small systems in the last decade.

In figure 8.5 we present the number of UAVs types for each country of origin. Out of the 129 systems collected, the USA produced the highest number of types with a total of 30, followed by Israel with 15. In all other countries the UAV-type count is in the single digits. As expected, the USA is leading in numbers, however, only two out of 30 are armed (AeroVironment *Switchblade* and Raytheon *Coyote*).

Figure 8.6 shows the number of UAV types in the different configurations, with the fixed-wing category leading with 60 UAVs followed by rotary-wing aircraft with 46. Tethered types are counted in their own categories, since their movement radius is restricted and thus can only fulfil a specific role such as area protection or surveillance.

In table 8.2 we list the countries exporting and importing small and very small UAVs. The USA is leading by far in the number of countries it exports to, followed by Norway. For a much more detailed analysis of import and export of UAVs in general we refer to (World of Drones, 2020).

8.2 General Overview

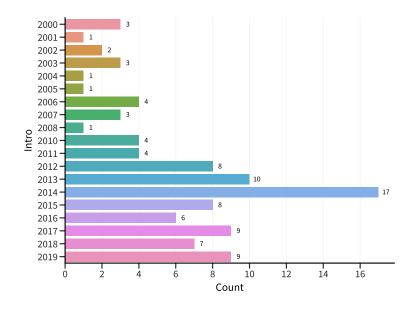


Figure 8.4: Number of small and very small UAV types introduced per year. Here, the total number is 101 out of 129, since in some cases it was not possible to determine a year of introduction.

The total humo	ber of recipient countries is 59.
Origin	Exports to
Germany	South Africa, USA
Israel	Peru
Italy	Brazil
Norway	Australia, France, Germany, India, Netherlands, New Zealand, Poland, Spain, Turkey, USA, United Kingdom
Poland	Peru, Ukraine
Taiwan	China
Turkey	Qatar
USA	Australia, Belgium, Bulgaria, Burundi, Canada, Colombia, Czechia, Estonia, Hungary, Iraq, Kenya, Lebanon, Lithuania, Luxembourg, Netherlands, Norway, Philippines, Poland, Portugal, Romania, Spain, Sweden, Thailand, Uganda, Ukraine, United Kingdom, Uzbekistan

Table 8.2: List of countries exporting small and very small UAVs based on our database. The total number of recipient countries is 39.

8.2 General Overview

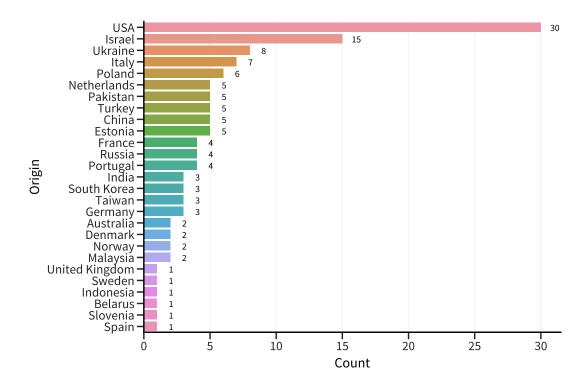


Figure 8.5: Number of small and very small UAV types per country of origin. The total number of countries is 27.

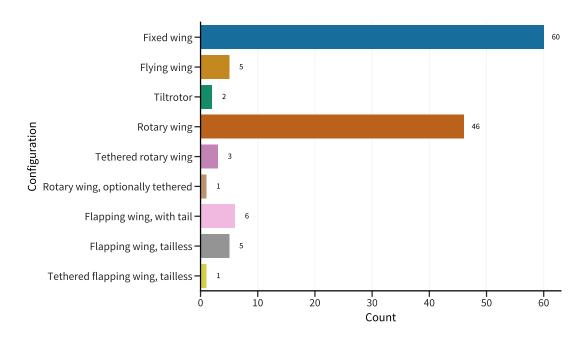


Figure 8.6: Number of small and very small UAV configurations. Here, flying-wing UAVs are counted separately.

8.3 Armed UAVs

A shortened overview of technical properties of armed UAVs is presented in table 8.5. The full data are given in the database in appendix A. Except for the *Cerberus*, which is a tiltrotor aircraft, all armed UAVs are of either rotary-wing or fixed-wing configuration. For armed UAVs, we see from figure 8.7 that the first armed small system was introduced in 2000, but a general trend towards small armed systems started in 2015.

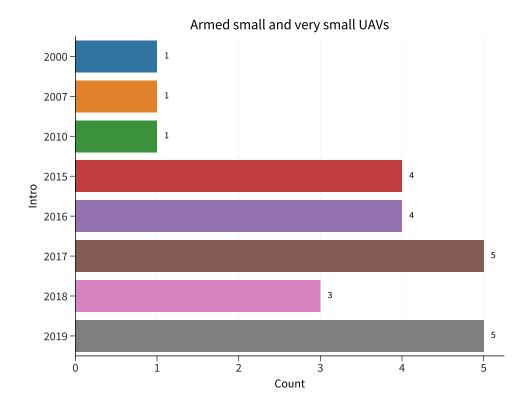


Figure 8.7: Number of small and very small armed UAV types introduced per year. Here, we list all 24 armed UAV types.

Figure 8.8 shows the count of armed UAV types per country. Here, we see that Israel is leading with seven systems. At the second and third place with three systems each are Turkey (STM's *Alpagu* series and *Kargu*) and Poland (WB Group's *Warmate* series), all loitering-munition systems.

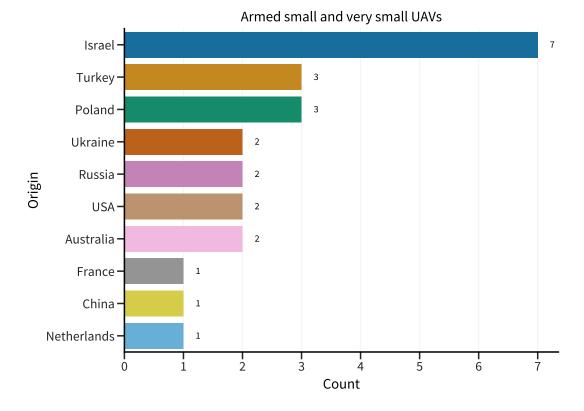


Figure 8.8: Number of armed small and very small UAV types per country of origin. The total number is 24 from 16 different manufacturers and ten countries.

As already discussed in section 4.6.2, most armed UAVs use integrated warheads. The relationship between warhead mass and MTOW is shown in figure 8.9. Table 8.3 lists the data points used in figure 8.9 as well as the percentage of the warhead mass relative to the MTOW. On average, warhead mass equals 19 % of the MTOW.

Name	Туре	Wingspan or rotor diameter / m	Warhead mass / kg	MTOW / kg	Warhead mass/MTOW
Hero-20	Fixed wing		0.2	1.8	0.11
Spike Firefly	Rotary wing		< 0.35	3	0.12
Hero-30	Fixed wing		0.5	3	0.17
Coyote	Fixed wing	1.47	< 0.9	6.4	0.14
Hero-70	Fixed wing		1.2	7	0.17
ROTEM	Rotary wing		1.2	5.8	0.21
Warmate	Fixed wing	1.4	<1.4	5.3	0.26
Warmate TL	Fixed wing	1.7	1.4	4.5	0.31
Warmate V	Rotary wing		1.6	7.0	0.23
Green Dragon	Fixed wing	1.7	2.5	15	0.17

Table 8.3: List of UAV types with integrated warheads for which the warhead mass and MTOW were stated by the manufacturer (10 out of 20 armed with a warhead).

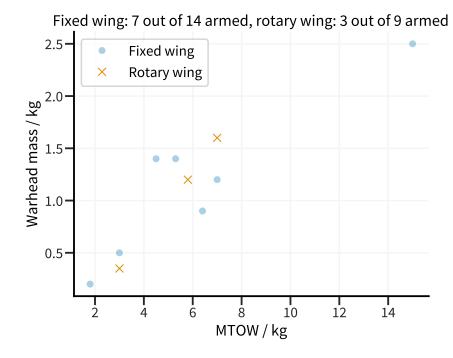


Figure 8.9: Warhead mass versus MTOW of armed fixed- and rotary-wing UAVs. Other types of UAVs do not carry any warheads. In case only an upper limit of the warhead mass is given by the manufacturer, we choose this value.

Of the very small UAs (i.e. < 0.2 m wingspan or rotor diameter) in our database none have been armed. The heaviest among them is the flying-wing *Black Widow* with 0.15 m wingspan, it has 0.80 kg mass. Assuming that a similar armed system could carry a warhead of 11 to 31 % of the total UA mass as in table 8.3, the warhead mass could be between 0.08 and 0.25 kg. This is in the range of anti-personnel mines (ICRC, 1996, p. 10), and the latter value is similar to the one of the most lightweight small armed UAs of table 8.3. Thus, very small UAs near 0.2 m size could be used for attacking personnel and light vehicles. Much smaller UAs could still kill humans; in order to check whether the attacks in the fictitious video 'Slaugherbots' (Russell, 2017) would be feasible, the Swiss Federal Office for Defence Procurement built a shape charge of 3 g of explosive and conical copper foil that penetrated a skull simulant (Drapela, 2018). An unspecified attack against a human sniper by an MAV of centimetres size had already been shown in 2009 in a video animation by the U.S. Air Force Research Laboratory (US AFRL, 2009). Of course, chemical or biological agents could kill with a mass much below 1 g.

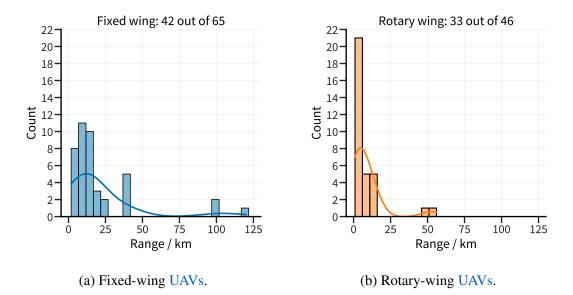
A description of the methods for targeting is only given in few cases, but in general targets can be tracked in real-time. 'Autonomous tracking' or 'autonomous targeting' is mentioned for *Alpagu Block II* and *Kargu*. The actual degree of autonomy in target selection and engagement in these and the other armed UAVs is unclear. A list of armed UAVs in the database that potentially target autonomously is given in table 8.4.

Table 8.4: List of armed UAVs in the database that potentially target autonomously.

Туре	Targeting
Alpagu	Embedded and real-time object tracking, detection and classification
Alpagu Block II	Autonomous, real-time object tracking, detection and classification
Kargu	Autonomous targeting
Patriot R2	Real-time air vehicle location tracking
Sparrow	Automatic tracking of moving targets, target aiming and artillery fire correction
Warmate R	Automatic target lock
Warmate TL	Automated videotracker even under communication loss
ZALA 421-08M	Active target tracking unit

	e list and re	a complete list and references see the		UAV database in appendix A.						
Name	Type	Armament	MTOW / kg	Wingspan or rotor diameter / m	Endurance / min	Range / km	Speed / km/h	Cruise speed / km/h	Max. speed / km/h	Targeting
Alpagu	Fixed wing	Warhead (mass unknown)	1.9		10	5		93	120	Embedded and real-time object tracking, detection and classification
Alpagu Block II	Fixed wing	<1.3 kg or <1.5 kg or <5.0 kg warhead			10-20	5-10				Autonomous, real-time object tracking, detection and classification
CH-901	Fixed wing	Warhead (mass unknown)	6		120	15	64-113			Ó
Cerbenus	Tiltrotor	40 mm grenade launcher or 12-gauge shotgun or micro munitions or net launcher	6.0		22 (3 x 40mm Grenades), 28-32 (no payload)	ŝ	60-80			
Comandor	Rotary wing	Anti-tank missile or free-fall bombs	110	1.5	210	200			60	
Coyote	Fixed wing	<0.9 kg warhead	6.4	1.47	90	37		111	157	
Cyclone	Rotary wing	Tear gas	1.5			10.00				
Demon	Kotary wing	KPG-22/26 or KPG-7 or 5 kg bomb or 7 kg high-explosive fragmentation warhead				10-20				
Drone-40	Rotary wing	Kinetic anti-UAV or high-explosive warhead or anti-armour warhead or smoke grenade				10		72		
DroneCatcher	Rotary wing	Net launcher	9>		30				72	
Futura	Fixed wing	Fragmentation warhead (mass unknown)	70.0	5	70	400	130 (loitering)	341	359	
Green Dragon	Fixed wing	2.5 kg warhead: anti-personnel or anti-tank or both combined	15	1.7	75	40	120-157 (loitering)		370	
HERO-20	Fixed wing	0.2 kg anti-personnel warhead	1.8		20	10				
HERO-30	Fixed wing	0.5 kg anti-personnel warhead	3		30	5-10-40				
HERO-70	Fixed wing	 1.2 kg anti-light-vehicle warhead 	7		45	40			185	
KYB-UAV	Fixed wing	<3 kg warhead		1.21	30		80-130			
Kargu	Rotary wing	Multiple warhead configurations (mass unknown)								Autonomous targeting
ROTEM	Rotary wing	1.2 kg warhead, <1 m strike precision	5.8		30	10		102-157	370	Strike precision <1 m
Spike Firefly	Rotary wing	<0.35 kg omnidirectional	3		15	5-10	70 (diving)	60	70	Proximity sensors, tracker designed
Switchblade	Fixed wing	Iragmentation wannead Warhead (mass unknown)	2.5	0.61	>15	10-45		101	161	Target selection by operator
Warmate	Fixed wing	<1.4 kg fragmentation or shaped fragmentation warhead	5.3	1.4	50	10				
Warmate TL	Fixed wing	1.4 kg warhead	4.5	1.7	40	10		75	120	Automated videotracker even under communication loss
Warmate V ZALA LANCET-1	Rotary wing Fixed wing	1.6 kg warhead Warhead (mass unknown)	7 5		30 30	12 40	80-110	27		

Table 8.5: Excerpt of the UAV database listing only armed types and 12 out of 26 categories, with a focus on technical properties. For


8.3 Armed UAVs

In this section we present distributions of important parameters singly as well as one versus another, first for fixed- and rotary-wing UAVs, then for flapping-wing ones. Since flying-wing UAVs are technically also fixed-wing UAVs, we include them in the fixed-wing category in the diagrams. Altitude is not presented here since the data acquired are poor: in many cases, only the maximum flight altitude is given but not the typical one for cruising. In other cases, altitude ranges were given or it was not clear whether altitude was given as measured from ground or mean sea level.

In general, note that because of missing data, the number of data points in the diagrams is lower than the total of UAV types. The actual number is given in the title of each diagram.

A detailed analysis is beyond this report, but the general tendency fits to what one would expect: bigger UAVs are heavier, can carry higher payloads, have longer endurances and ranges. Rotary-wing UAVs tend to have lower speeds and smaller ranges. Flapping wings are exclusively used with very small aircraft with correspondingly lower take-off masses and shorter endurances.

Of all UAVs listed in the database, two exhibit properties far beyond all other UAVs. These are the Alcore *Futura* and the Matrix UAV *Comandor*. The *Futura* is the only small UAV with a turbojet engine, allowing a cruise speed of 341 km/h and a range of 400 km at an MTOW of 70 kg (Streetly & Bernadi, 2018, p. 73). The rotary-wing *Comandor* UAV uses either 12 electric or 2 piston engines, with an MTOW of 110 kg, an endurance of 210 min and a range of 200 km (Streetly & Bernadi, 2018, pp. 216–217). However the status of both the *Futura* and the *Comandor* is unclear. For the other UAV types, a typical value for the MTOW is < 15 kg as can be seen from figure 8.12.

8.4.1 Fixed- and rotary-wing UAVs

Figure 8.10: Range distribution of fixed- and rotary-wing UAVs. The bin width is 5 km, and curves represent a Gaussian kernel density estimation. Not included: *Futura* (range: 400 km), *Comandor* (range: 200 km).

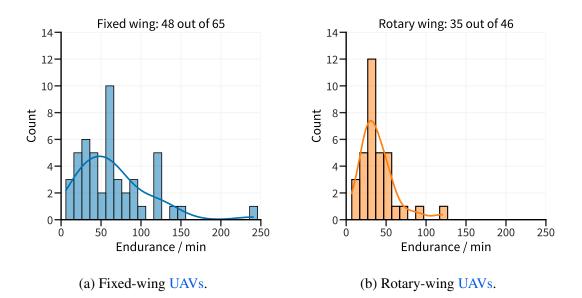


Figure 8.11: Endurance distribution of fixed- and rotary-wing UAVs. The bin width is 10 min, and curves represent a Gaussian kernel density estimation.

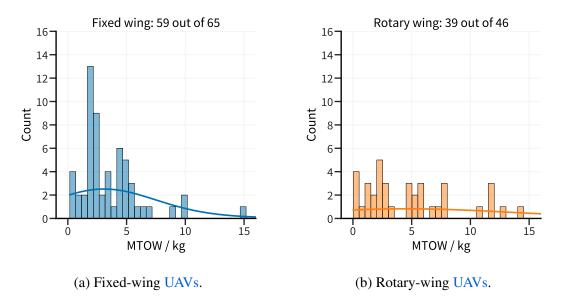


Figure 8.12: MTOW distribution of fixed- and rotary-wing UAVs. The bin width is 0.5 kg, and curves represent a Gaussian kernel density estimation. Not included: *Futura* (MTOW: 70 kg), *Comandor* (MTOW: 110 kg).

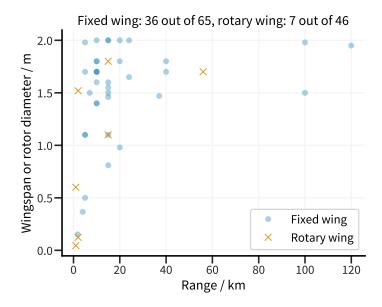


Figure 8.13: Wingspan or rotor diameter versus range of fixed- and rotary-wing UAVs. Deeper shades of colour indicate multiple data points. Not included: *Futura* (range: 400 km, wingspan: 2 m), *Comandor* (range: 200 km, rotor diameter: 1.5 m).

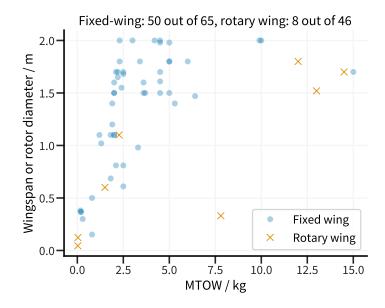


Figure 8.14: Wingspan or rotor diameter versus MTOW of fixed- and rotary-wing UAVs. Deeper shades of colour indicate multiple data points. Not included: *Futura* (MTOW: 70 kg, wingspan: 2 m), *Comandor* (MTOW: 110 kg, rotor diameter: 1.5 m).

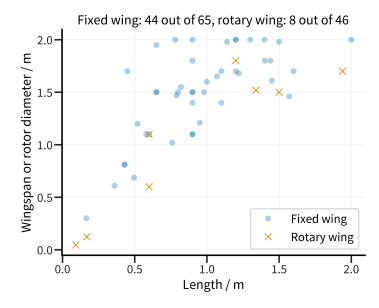


Figure 8.15: Wingspan or rotor diameter versus length of fixed- and rotary-wing UAVs. Deeper shades of colour indicate multiple data points.

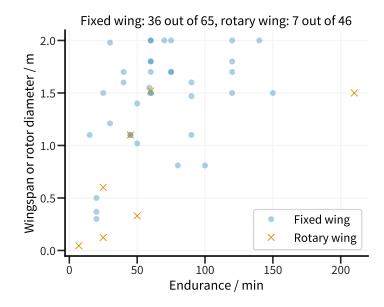


Figure 8.16: Wingspan or rotor diameter versus endurance of fixed- and rotary-wing UAVs. Deeper shades of colour indicate multiple data points.

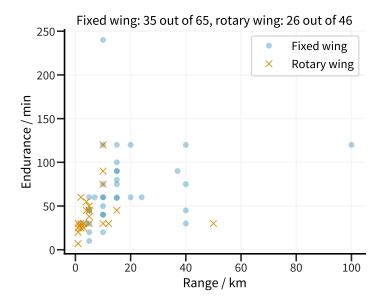


Figure 8.17: Endurance versus range of fixed-wing (blue) and rotary-wing (orange) UAVs. Deeper shades of colour indicate multiple data points. Not included: *Futura* (range: 400 km, endurance: 70 min), *Comandor* (range: 200 km, endurance: 210 min).

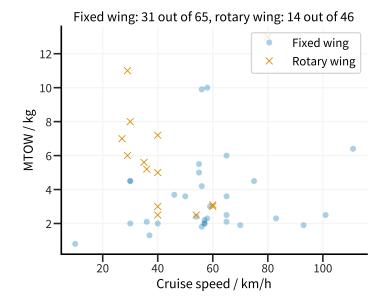


Figure 8.18: MTOW versus cruise speed of fixed-wing (blue) and rotary-wing (orange) UAVs. Deeper shades of colour indicate multiple data points. Not included: *Futura* (cruise speed: 341 km/h).

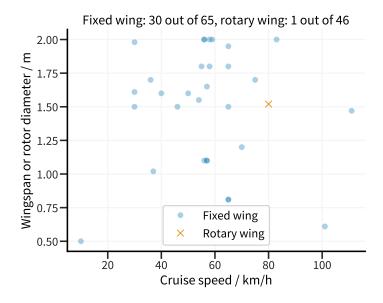
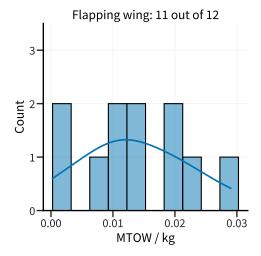
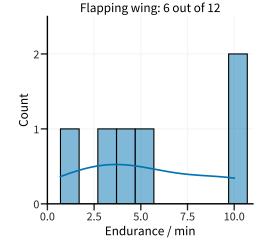




Figure 8.19: Wingspan versus cruise speed of fixed-wing (blue) and rotary-wing (orange) UAVs. Deeper shades of colour indicate multiple data points. Not included: *Futura* (cruise speed: 341 km/h).

8.4.2 Flapping-wing UAVs

(a) MTOW distribution of flapping-wing UAVs. The bin width is 3 g.

(b) Endurance distribution of flapping-wing UAVs. The bin width is 1 min.

Figure 8.20: MTOW and endurance distributions of flapping-wing UAVs. Here we count all flapping-wing configurations, including tethered ones. Curves represent a Gaussian kernel density estimation.

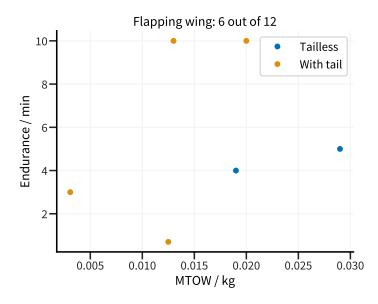


Figure 8.21: Endurance versus MTOW of flapping-wing UAVs. No data pair was available for tethered UAVs.

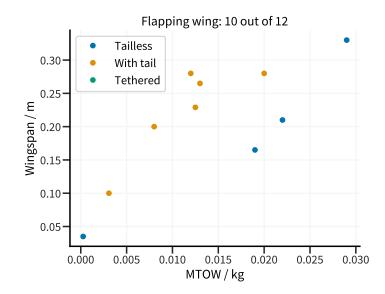


Figure 8.22: Wingspan versus MTOW of flapping-wing UAVs.

9 Conclusion

While hobbyists have built and used model aircraft since many decades, small and very small uninhabited aircraft started to play a role in military research and development about 20 years ago. Since then the number of types has increased greatly; our database – that excludes hobby multicopters – has 129 entries. At the same time the number of countries researching, developing or building small and very small UAs in or for a military context has increased to at least 27, exports went to at least 39 countries.

Various configurations are being used, mostly fixed wings and rotary wings. Most of them have take-off masses of 2 to 10 kg and sizes between 0.5 and 2 m. Propeller power is usually provided by a battery. Typical endurances are tens of minutes and typical ranges 5 to 40 km.

Flapping wings are only used by very small aircraft all of which are at the research stage. Their mass is below 30 g, with a few minutes of endurance at most. Some types are extremely light-weight (below 1 g or even below 0.1 g).

Armed forces use small UAs mainly for intelligence, surveillance and reconnaissance, they carry various types of sensors. But ten countries have built UAs with offensive payloads. In most cases, a warhead is integrated so that the UAs self-destruct in operation. These armed UAs can fly for tens of minutes above a target area and thus can function as loitering munitions. The warhead mass is between 0.2 and 2.5 kg, with 11 to 31 % of the total UA mass.

The degree of autonomous targeting is unclear. Specific missiles or precision-guided munitions for re-usable small armed UAs seem to not have been developed yet.

Very small UAs (i.e. < 0.2 m wingspan or rotor diameter) have not yet been armed. The heaviest in our database has 0.80 kg mass. Assuming a similar percentage, such UAs could carry a warhead of 0.08 to 0.25 kg, in the range of anti-personnel mines. But lethal action against a human is possible with only a few grams of explosive, a chemical or biological agent could function with a much smaller mass.

Whether flapping-wing UAs will be deployed by armed forces remains to be seen; one possible application is inside buildings where wind gusts to not present a problem.

In the near future, small UAs will be made more capable. In particular the number of armed types will likely increase. Research and development will continue to increase autonomy.

Concerning small-UA swarms, first demonstrations of unarmed systems have occurred, with some autonomy. One can expect more efforts in this direction, and towards armament.

The military capabilities of small and very small UAs will remain limited for several reasons: the payload is small, the cruise speed is low, the endurance and range are limited. Thus, the qualitative arms race in (armed) UAs will mostly take place in bigger systems. Nevertheless, relevant countries probably will continue to compete in small armed UAs, with a particular focus on swarms. If the former could be built at low cost, swarms of high numbers could become formidable tools for applying military force.

Acknowledgements

This project is being funded by the German Foundation for Peace Research (DSF) in its funding line 'New Technologies: Risks and Chances for International Security and Peace'. We want to thank the Foundation for this support. We thank Robin Geiß (University of Glasgow) for helpful comments. Additional thanks go to the institutions who have allowed reprinting their pictures.

- Aeronautics Defense Systems (2021). Orbiter 1K Loitering Munition UAS. URL: https://aeronautics-sys.com/wp-conten t/themes/aeronautics/pdf/orbiter_1k_v2.pdf (visited on 07/02/2020).
- (2019). Orbiter IK. URL: https://aeronautics-sys.com/home-page/page-systems/page-systems-orbiter-1k -muas/ (visited on 25/10/2019).

AeroToolbox (2020). Standard Atmosphere Calculator. URL: https://aerotoolbox.net/atmcalc/ (visited on 31/03/2020).

- AeroVironment (2020). United States Army awards AeroVironment \$146 Million Lethal Miniature Aerial Missile Systems (LMAMS) Contract funded at \$76 Million for first Year of Switchblade Systems Procurement. URL: https://www.avinc.com/resourc es/press-releases/view/united-states-army-awards-aerovironment-146-million-lethal-miniature-a erial (visited on 01/09/2020).
- (2021a). Nano Air Vehicle (Hand). URL: https://www.avinc.com/images/uploads/media_assets/744/nano_inhan d.jpg (visited on 27/01/2021).
- (2021b). Switchblade 300 Launch. URL: https://www.avinc.com/images/uploads/media_assets/1813/switchbla de_launch.jpg (visited on 27/01/2021).
- (2019). VAPOR All-electric Helicopter UAS. URL: https://www.avinc.com/uas/view/vapor-vtol (visited on 27/11/2019).
- Air Force Office of Scientific Research (AFOSR) (2013). Air Force Office of Scientific Research 1951-Present Turning Scientific Discovery into Air Force Opportunity. URL: https://www.afrl.af.mil/Portals/90/Documents/AFOSR/AFOSR/2060 th%20Monograph.pdf?ver=2020-08-24-144422-047 (visited on 19/01/2020).

Altmann, Jürgen (2001). Military Uses of Microsystem Technologies - Dangers and Preventive Arms Control. Münster: agenda.

--- (2006). Military Nanotechnology - Potential applications and preventive arms control. London, New York: Routledge.

- (2017). In: Altmann, Jürgen, Ute Bernhardt, Kathryn Nixdorff et al. Naturwissenschaft Rüstung Frieden. Basiswissen für die Friedensforschung (Science – Armament – Peace – Basic Knowledge for Peace Research). 2nd ed. Wiesbaden: Springer VS. Chap. Militärische Forschung und Entwicklung (Military Research and Development).
- (2020). Technology, Arms Control and World Order: Fundamental Change Needed. Toda Peace Institute Policy Brief No. 89. URL: https://toda.org/assets/files/resources/policy-briefs/t-pb-89_jurgen-altmann.pdf.

Anderson, John (1999). Aircraft Performance and Design. Boston: WCB / McGraw-Hill.

Area-I (2020). Altius-600 fact sheet. URL: https://areai.com/wp-content/uploads/Slick-600-V1.pdf (visited on 28/12/2020).

Austin, Reg (2010). Unmanned Air Systems: UAV Design, Development and Deployment. Chichester: Wiley.

- Bao, X.Q., Alexandre Bontemps, Sébastien Grondel et al. (2011). 'Design and fabrication of insect-inspired composite wings for MAV application using MEMS technology'. In: *Journal of Micromechanics and Microengineering* 21, 125020 (12). DOI: 10.1088/0960-1317/21/12/125020.
- Binnie, J. (2018). Russians reveal details of UAV swarm attacks on Syrian bases. URL: http://www.janes.com/article/7701 3/russians-reveal-details-of-uav-swarm-%20attacks-on-syrian-bases (visited on 23/01/2018).

Bitcraze (2020). Crazyflie 2.1. URL: https://store.bitcraze.io/products/crazyflie-2-1 (visited on 12/11/2020).

- Cai, Guowei, Jorge Dias & Lakmal Seneviratne (2014). 'A Survey of Small-Scale Unmanned Aerial Vehicles: Recent Advances and Future Development Trends'. In: *Unmanned Systems* 2.2, pp. 175–199. DOI: 10.1142/S2301385014300017.
- Callier, Maria (2010). *Tiny MAVs May Someday Explore and Detect Environmental Hazards*. URL: https://www.wpafb.af.mil /News/Article-Display/Article/400057/tiny-mavs-may-someday-explore-and-detect-environmental-h azards/ (visited on 19/01/2020).
- Chen, Chen & Tianyu Zhang (Feb. 2019). 'A Review of Design and Fabrication of the Bionic Flapping Wing Micro Air Vehicles'. In: *Micromachines* 10, 144. DOI: 10.3390/mi10020144.
- Chung, Timothy (2020). OFFensive Swarm-Enabled Tactics (OFFSET). URL: https://www.darpa.mil/program/offensive -swarm-enabled-tactics (visited on 02/09/2020).
- Dalamagkidis, Konstantinos (2015). 'Classification of UAVs'. In: *Handbook of Unmanned Aerial Vehicles*. Ed. by Kimon P. Valavanis & George J. Vachtsevanos. Dordrecht: Springer, pp. 83–91. URL: https://doi.org/10.1007/978-90-481-970 7-1_94.
- DARPA (2017). Service Academies Swarm Challenge Live-Fly Competition Begins. URL: https://www.darpa.mil/news-eve nts/2017-04-23 (visited on 30/12/2020).
- (2018). Gremlins: Airborne Launch & Recovery of Unmanned Aerial Systems. URL: https://www.youtube.com/watch?v =Bvf9v4EHovY (visited on 30/11/2019).
- (2020a). DARPA Gremlins Project Completes Third Flight Test Deployment. Next capture attempts scheduled to occur in spring of 2021. URL: https://www.darpa.mil/news-events/2020-12-10 (visited on 08/02/2020).

- DARPA (2020b). OFFensive Swarm-Enabled Tactics (OFFSET). URL: https://www.darpa.mil/work-with-us/offensive -swarm-enabled-tactics (visited on 02/09/2020).
- De Croon, G.C.H.E., M. Perçin B.D.W. Remes, R. Ruijsink et al. (2016). *The DelFly. Design, Aerodynamics, and Artificial Intelligence of a Flapping Wing Robot*. Dordrecht: Springer.
- Defence Procurement International (2020). US Army Short Range Surveillance Drones. Six companies awarded \$11 million to develop prototypes for a short range surveillance drone for the US Army. URL: https://www.defenceprocurementinter national.com/news/air/us-army-short-range-surveillance-drones (visited on 02/09/2020).
- Delft Dynamics BV (2016). DroneCatcher. URL: https://dronecatcher.nl/ (visited on 21/08/2020).
- De Wagter, C. (2008). DelFly Micro, a 3.07 gram camera equipped flapping wing MAV. URL: https://en.wikipedia.org/wi ki/DelFly#/media/File:DelFly_Micro_2008_V1.jpg (visited on 08/02/2020).
- Drapela, Philippe (2018). Fake news? Lethal effect of micro drones. Federal Office for Defence Procurement armasuisse. URL: https://www.ar.admin.ch/en/armasuisse-wissenschaft-und-technologie-w-t/home.detail.news.html /ar-internet/news-2018/news-w-t/lethalmicrodrones.html (visited on 03/02/2021).
- Drela, Mark (2013). XFOIL Subsonic Airfoil Development System. URL: https://web.mit.edu/drela/Public/web/xfoil/ (visited on 19/07/2020).
- Dufour, L., K. Owen, S. Mintchev et al. (2018). 'A Drone with Insect-Inspired Folding Wings'. In: International Conference On Intelligent Robots And Systems (IROS 2016). New York: IEEE, pp. 1576–1581. URL: https://infoscience.epfl.ch/rec ord/221316/files/IROS_2016.pdf (visited on 28/01/2018).
- Dyndal, G. Lage, T. Arne Berntsen & S. Redse-Johansen (2017). Autonomous military drones: no longer science fiction. URL: https://www.nato.int/docu/review/articles/2017/07/28/autonomous-military-drones-no-longer-sci ence-fiction/index.html (visited on 21/01/2020).
- Dynetics (2020a). Dynetics Flies Second X-61A Gremlins Air Vehicle. URL: https://www.dynetics.com/news/2 020/dynetics-flies-second-x-61a-gremlins-air-vehicle (visited on 01/09/2020).
- (2020b). Dynetics' X-61A Gremlins air vehicle performs its maiden flight. URL: https://www.dynetics.com/newsroom/n ews/2020/dynetics-x-61a-gremlins-air-vehicle-performs-its-maiden-flight (visited on 01/09/2020).
- (2020c). Gremlins fact sheet. URL: https://www.dynetics.com/_files/fact-sheets/pdf/K170437_Gremlins-Fac t-Sheetv2.pdf (visited on 01/09/2020).
- FAS (Federation of American Scientists) (2012). *HELLFIRE Family of Missiles*. URL: https://fas.org/man/dod-101/sys/l and/wsh2012/132.pdf (visited on 23/01/2018).
- Frantzman, Seth J. (2020). Israeli drones in Azerbaijan raise questions on use in the battlefield. URL: https://www.jpost.c om/middle-east/israeli-drones-in-azerbaijan-raise-questions-on-use-in-the-battlefied-644161 (visited on 09/02/2020).
- Friese, Larry, N. R. Jenzen-Jones & Michael Smallwood (2016). Emerging Unmanned Threats: The use of commercially-available UAVs by armed non-state actors. Perth, Utrecht: ARES, PAX. URL: http://armamentresearch.com/wp-content/uploa ds/2016/02/ARES-Special-Report-No.-2-Emerging-Unmanned-Threats.pdf (visited on 27/07/2020).
- Gettinger, Dan (2019). The Drone Databook. URL: https://dronecenter.bard.edu/projects/drone-proliferation/d atabook/ (visited on 24/07/2020).
- (2020). Drone Databook Update: March 2020. URL: https://dronecenter.bard.edu/projects/drone-proliferati on/drone-databook-update-march-2020/ (visited on 24/07/2020).
- Gettinger, Dan & Arthur Holland Michel (2017). Loitering Munitions in Focus. URL: https://dronecenter.bard.edu/loite ring-munitions-in-focus/ (visited on 24/07/2020).
- Goh, G.D., S. Agarwala, G.L. Goh et al. (2017). 'Additive manufacturing in unmanned aerial vehicles (UAVs): Challenges and potential'. In: *Aerospace Science and Technology* 63, pp. 140–151. DOI: https://doi.org/10.1016/j.ast.2016.12.019.
- Grasmeyer, Joel & Matthew Keennon (2001). 'Development of the Black Widow Micro Air Vehicle'. In: *Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications*. Ed. by Thomas J. Mueller. Reston: American Institute of Aeronautics and Astronautics, pp. 519–535.
- Gundlach, Jay (2012). Designing Unmanned Aircraft Systems: A Comprehensive Approach. Reston, Virginia: American Institute of Aeronautics and Astronautics, Inc.
- Hambling, David (2010). Air Force Completes Killer Micro-Drone Project. URL: https://www.wired.com/2010/01/killermicro-drone/ (visited on 01/09/2020).
- (2016). How Islamic State is using consumer drones. URL: http://www.bbc.com/future/story/20161208-how-is-is -using-consumer-drones (visited on 25/01/2018).
- (2020a). 'China Releases Video Of New Barrage Swarm Drone Launcher'. In: URL: https://www.forbes.com/sites /davidhambling/2020/10/14/china-releases-video-of-new-barrage-swarm-drone-launcher/ (visited on 03/12/2020).
- (2020b). Mexican Drug Cartel Carries Out 'Drone Strikes' In Gang War. URL: https://www.forbes.com/sites/da vidhambling/2020/08/24/mexican-drug-cartel-carries-out-drone-strikes-in-gang-war/ (visited on 02/09/2020).

- Hassanalian, M. & A. Abdelkefi (2017). 'Classifications, applications, and design challenges of drones: A review'. In: Progress in Aerospace Sciences 91, pp. 99–131. DOI: https://doi.org/10.1016/j.paerosci.2017.04.003.
- Hylton, Todd, Christopher Martin, Richmon Tun et al. (2012). 'The DARPA nano air vehicle program'. In: 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2012-0583. Nashville, Tennessee, USA. DOI: 10.2514/6.2012-583.
- IAI (2019a). Green Dragon Compact Tactical Loitering Munition. URL: https://www.iai.co.il/drupal/sites/default /files/2019-05/Green%20Dragon%20Brochure.pdf (visited on 14/10/2019).
- (2019b). Green Dragon Mini Loitering Munition System. URL: https://www.iai.co.il/p/green-dragon (visited on 14/10/2019).
- (2020). ROTEM Loitering Munition based on a Light Multi-Rotor Platform. URL: https://www.iai.co.il/p/rotem (visited on 12/08/2020).
- ICAO (International Civil Aviation Organization) (2010). Airworthiness of Aircraft Annex 8 to the Convention on International Civil Aviation. 11th ed. Montréal: International Civil Aviation Organization.
- (2020). Frequently Used Terms. URL: https://www.icao.int/safety/UA/UASToolkit/Pages/Frequently-Used-Terms.aspx (visited on 03/08/2020).
- ICRC (International Committee of the Red Cross) (1996). Anti-personnel Landmines Friend or Foe? A study of the military use and effectiveness of anti-personnel mines. Geneva: International Committee of the Red Cross. URL: https://shop.icrc.org/download/ebook?sku=0654/002-ebook (visited on 03/02/2021).
- ISPRA (2019). Riot Control Drone System. URL: http://www.ispraltd.com/Riot%2DControl%2DDrone%2DSystem.html (visited on 25/10/2019).
- Kania, Elsa B. (2017). Battlefield Singularity. Artificial Intelligence, Military Revolution, and China's Future Military Power. URL: https://www.cnas.org/publications/reports/battlefield-singularity-artificial-intelligence-mil itary-revolution-and-chinas-future-military-power (visited on 28/12/2020).
- Keennon, Matthew, Karl Klingebiel & Henry Won (2012). 'Development of the Nano Hummingbird: A Tailless Flapping Wing Micro Air Vehicle'. In: 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. DOI: 10.2514/6.2012-588.
- Kumar, David, Preetamkumar Mohite & Sudhir Kamle (2019). 'Dragonfly Inspired Nanocomposite Flapping Wing for Micro Air Vehicles'. In: Journal of Bionic Engineering 16, pp. 894–903. DOI: 10.1007/s42235-019-0104-6.
- Liu, Zhiwei, Xiaojun Yan, Mingjing Qi et al. (2017). 'Artificial insect wings with biomimetic wing morphology and mechanical properties'. In: *Bioinspiration and Biomimetics* 12, 056007 (5).
- Loftin, Laurence K. (1985). Quest for Performance. The Evolution of Modern Aircraft. Washington D.C.: US Government Printing Office.
- Ma, Kevin Y., Pakpong Chirarattananon, Sawyer B. Fuller et al. (2013). 'Controlled Flight of a Biologically Inspired, Insect-Scale Robot'. In: Science 340.6132, pp. 603–607. DOI: 10.1126/science.1231806.
- MacFarquhar, Neil (2018). Russia Says Its Syria Bases Beat Back an Attack by 13 Drones. URL: https://www.nytimes.com/2 018/01/08/world/middleeast/syria-russia-drones.html (visited on 25/01/2018).
- MAST (2016). MAST (Micro Autonomous Systems and Technology). URL: https://alliance.seas.upenn.edu/~mastwiki /wiki/index.php?n=Main.HomePage (visited on 19/01/2020).
- MAVLab TU Delft (2018). DelFly Nimble Photo Gallery. URL: https://surfdrive.surf.nl/files/index.php/s/q9uo1 na7ldYlVzv#/files_mediaviewer/dsc_0483-2.jpg (visited on 08/02/2020).

McCormick, Barnes W. (1979). Aerodynamics, Aeronautics, and Flight Mechanics. New York: Wiley.

- McNally, David (2017). Army completes autonomous micro-robotics research program. URL: https://www.army.mil/articl e/192947/army_completes_autonomous_micro_robotics_research_program (visited on 19/01/2020).
- Michel, Arthur Holland (2019). Counter-Drone Systems. URL: https://dronecenter.bard.edu/projects/counter-dron e-systems-project/counter-drone-systems-2nd-edition/ (visited on 24/07/2020).
- Michelson, Christian (2015). 'Issues Surrounding Communications with Micro Air Vehicles'. In: Handbook of Unmanned Aerial Vehicles. Ed. by Kimon P. Valavanis & George J. Vachtsevanos. Dordrecht: Springer, pp. 1415–1439. URL: https://doi.org /10.1007/978-90-481-9707-1_12.
- Monroy, Matthias (2019). Rheinmetall zeigt Drohnenpanzer mit Kamikazedrohne. URL: https://netzpolitik.org/2019/rhe inmetall-zeigt-drohnenpanzer-mit-kamikazedrohne/ (visited on 07/09/2019).
- Mueller, Thomas J. (1999). 'Aerodynamic Measurements at Low Reynolds Numbers for Fixed Wing Micro-Air Vehicles'. In: RTO AVT Course on Development and Operation of UAVs for Military and Civil Applications, pp. 8.1–8.32.
- N., Leigh (2019). DefendTex Drone-40 The Australian UAV That Can Be Fired From a 40mm Grenade Launcher. URL: https://www.overtdefense.com/2019/06/07/defendtex-drone-40-the-australian-uav-that-can-be-fir ed-from-a-40mm-grenade-launcher (visited on 18/11/2019).
- National Oceanographic and Atmospheric Administration (NOAA) (2016). NOAA flew the unmanned Coyote on January 7, 2016 to successfully test improvements made to the system. (NOAA). URL: https://en.wikipedia.org/wiki/Raytheon_Co

yote#/media/File:Coyote_UAS_in_flight_over_Avon_Park_FL_(cropped)_credit-_NOAA.jpg (visited on 08/02/2020).

- PEO Aviation (2019). U.S. Army Partners with Defense Innovation Unit to Leverage Commercial Drone Companies for Short Ran. URL: https://www.army.mil/article/221053/u_s_army_partners_with_defense_innovation_unit_to_leve rage_commercial_drone_companies_for_short_ran (visited on 02/09/2020).
- (2020). Air Launched Effects (ALE). URL: https://www.army.mil/article/238407 (visited on 28/12/2020).
- Pilch, Mathias, Jürgen Altmann & Dieter Suter (2021). Databases of Small and Very Small UAVs and Missiles. Version v1.0. Zenodo. URL: https://doi.org/10.5281/zenodo.4537704.
- Reise Reise (2019). Rotem L, IDET/PYROS/ISET 2019, Brno. URL: https://en.wikipedia.org/wiki/IAI_Rotem_L#/med ia/File:Rotem_L_(2).jpg (visited on 08/02/2020).
- Remes, B.D.W., P. Esden-Tempski, F. van Tienen et al. (2014). 'Lisa-S 2.8g autopilot for GPS-based flight of MAVs'. In: *IMAV 2014: International Micro Air Vehicle Conference and Competition*. Delft, The Netherlands. DOI: 10.4233/uuid:29e5367f-6c16-43e1-989e-d51cf8b51f7d.
- Roque, Ashley (2020). Unmanned-Unmanned teaming: US Army demos Area-I's Altius-600 air-launched effects. URL: https: //www.janes.com/defence-news/news-detail/unmanned-unmanned-teaming-us-army-demos-area-is-alti us-600-air-launched-effects (visited on 28/12/2020).
- Runco, Carl C., David Coleman & Moble Benedict (2019). 'Design and Development of a 30 g Cyclocopter'. In: *Journal of the American Helicopter Society* 64, 012008 (1).

Russell, S. (2017). Slaughterbots. URL: https://www.youtube.com/watch?v=9C06M2HsoIA (visited on 25/01/2018).

- Santamaria-Navarro, Angel, Giuseppe Loianno, Joan Sola et al. (2018). 'Autonomous navigation of micro aerial vehicles using high-rate and low-cost sensors'. In: Autonomous Robots 42 (6), pp. 1263–1280.
- SBIR (2016). Cluster UAS Smart Munition for Missile Deployment. URL: https://www.sbir.gov/sbirsearch/detail/120 7935 (visited on 01/09/2020).

Scharre, Paul (2018). Army of None. Autonomous Weapons and the Future of War. New York, London: W. W. Norton.

- Schlegel, Linda (2018). Interview: Rising drone capabilities of non-state actors. URL: https://globalriskinsights.com/20 18/04/interview-risk-non-state-actor-drone-capabilities/ (visited on 03/09/2020).
- SCR (2019). Aster-T data sheet. URL: https://scrdrones.com/wp-content/uploads/2019/11/FOLLETO-ASTER-T-CAUTIVO-EN.pdf (visited on 13/12/2019).
- Shyy, Wei, Hikaru Aono, Chang-kwon Kang et al. (2013). An Introduction to Flapping Wing Aerodynamics. Cambridge: Cambridge University Press.
- Sky Sapience (2020). Gallery | Sky Sapience. URL: https://skysapience.com/wp-content/uploads/2019/12/image.j pg (visited on 26/08/2020).
- (2019). HoverMast 100. URL: https://www.skysapience.com/defense-products/drone/hovermast-100 (visited on 25/10/2019).
- Skyborne Technologies (2019). Cerberus GL. URL: https://skybornetech.com/cerberus-gl (visited on 26/11/2019).
- Smalley, David (2015). LOCUST: Autonomous, swarming UAVs fly into the future. URL: https://www.onr.navy.mil/Media-Center/Press-Releases/2015/LOCUST-low-cost-UAV-swarm-ONR.aspx (visited on 18/01/2018).
- Soldier Systems (2019). SOFIC 19 DefendTex Drone-40. URL: http://soldiersystems.net/2019/05/24/sofic-19-de fendtex-drone-40/ (visited on 18/11/2019).

Spaitech (2019). Sparrow Brochure. URL: https://spaitech.net/sparrow_eng.pdf (visited on 04/12/2019).

- Sreetharan, P. S., J. P. Whitney, M. D. Strauss et al. (2012). 'Monolithic fabrication of millimeter-scale machines'. In: Journal of Micromechanics and Microengineering 22.5, 055027. URL: http://iopscience.iop.org/article/10.1088/0960-13 17/22/5/055027/meta.
- Streetly, Martin & Beatrice Bernadi (2018). Jane's All the World's Aircraft Unmanned Yearbook 2018-2019. Coulsdon: IHS Markit.
- Swadim (2019). Loitering Munitions HERO (UVision Air Ltd, Israel), DSEI 2019, London. URL: https://en.wikipedia.org /wiki/Loitering_munition#/media/File:HERO_DSEI_IMG_6905.jpg (visited on 08/02/2020).
- Tao, Tony S. (2012). Design and Development of a High-Altitude, In-Flight-Deployable Micro-UAV. MSc Thesis. Massachusetts Institute of Technology, USA. URL: https://dspace.mit.edu/handle/1721.1/76168 (visited on 30/03/2020).
- TDK (2021). *IMU (Inertial Measurement Unit) MPU-9250*. URL: https://product.tdk.com/en/search/sensor/mortion -inertial/imu/info?part_no=MPU-9250 (visited on 26/01/2020).

Tekever (2019). Tekever AR4. URL: http://airray.tekever.com/ar4-evo/ (visited on 14/10/2019).

TIME (2018). Perdix Swarm Demo. URL: https://www.youtube.com/watch?v=f0ajJMm011w (visited on 01/12/2019).

US AFRL (Air Force Research Laboratory) (2009). US Air Force Flapping Wing Micro Air Vehicle. URL: http://www.youtube .com/watch?v=_5YkQ9w3PJ4 (visited on 03/02/2021).

- US Programs Executive Office Missiles and Space (2020). Lethal Miniature Aerial Munition System (LMAMS) Product Description. URL: https://web.archive.org/web/20181226183136/https://www.msl.army.mil/Documents/Briefings /CCWS/LMAMS%20PE0%20Website%20Brief.pdf (visited on 01/09/2020).
- US Strategic Capabilities Office (2019). Perdix Fact Sheet. URL: https://dod.defense.gov/Portals/1/Documents/pubs /Perdix%20Fact%20Sheet.pdf?ver=2017-01-09-101520-643 (visited on 25/10/2019).
- VoidWanderer (2016). Warmate UAV (Poland/Ukraine). URL: https://en.wikipedia.org/wiki/WB_Electronics_Warmat e#/media/File:Warmate_UAV_01.jpg (visited on 08/02/2020).
- Ward, Thomas A., Christopher J. Fearday, Erfan Salami et al. (2017). 'A bibliometric review of progress in micro air vehicle research'. In: *International Journal of Micro Air Vehicles* 9.2, pp. 146–165. DOI: 10.1177/1756829316670671.
- Ward, Thomas A., M. Rezadad, Christopher J. Fearday et al. (2015). 'A Review of Biomimetic Air Vehicle Research: 1984-2014'. In: International Journal of Micro Air Vehicles 7.3, pp. 375–394. URL: https://doi.org/10.1260/1756-8293.7.3.375.
- WB Group (2019). WARMATE loitering munitions. URL: https://www.wbgroup.pl/en/produkt/warmate-loitering-mu nnitions/ (visited on 14/10/2019).
- World of Drones (2017). Who Has What: Countries with Armed Drones. URL: https://www.newamerica.org/in-depth/wo rld-of-drones/3-who-has-what-countries-armed-drones/ (visited on 25/01/2018).
- (2020). Who Has What: Countries with Armed Drones. URL: https://www.newamerica.org/international-securit y/reports/world-drones/who-has-what-countries-with-armed-drones (visited on 23/11/2020).

On the following pages, the complete UAV database is presented in table format. We recommend using the interactive online version available at https://url.tu-dortmund.de/pacsam-db-sa instead, which allows searching and sorting. Additionally, all data files, including the interactive HTML file, are available under https://doi.org/10.5281/zenodo.4537704 (Pilch et al., 2021). The printed version here was updated on 5th February 2021.

Name	Manufacturer	Origin	Intro	Status	In service		Configuration Armament	at MTOW / kg	Wingsp	Length / m	Endurance / min	Range / km
									rotor diameter / m			
A1-S Furia	SPE Athlon Avia	Ukraine		Unclear					1.95	0.65		120
AL-4	Aeroland	Taiwan		Unclear				4.2	2.00	1.40	09	24
ALADIN	EMT	Germany	ny 2003	Deployed	Germany			<4	1.46	1.57	>60	15
ALUDRA SR-08	UST	Malaysia		On offer				2.1	0.81	0.43	100	15
ARI Blue Ray	Tekever	Portugal		On offer				5.0	1.80	1.40	120-180	20
AR4 Light Ray Compact	Tekever	Portugal	al 2012	Deployed	Portugal		Fixed wing None	2	1.10	06.0	45	ŝ
AR4 Light Ray Evolution	Tekever	Portugal	al 2014	Deployed	Portugal		Fixed wing None	5	1.10	06.0	45	5
ATLAS C4EYE / ppx	C-ASTRAL	Slovenia	ia	On offer			Fixed wing None	2.4	1.55	0.82	59	15
AiD-MC8	AiDrones	Germa	DV	On offer			Rotary wing None	~		0.90	30	ę
Alpagu	STM	Turkey		On offer				Warhead (mass unknown) 1.9			10	5
Alpagu Block II	STM	Turkey	2017	On offer				<1.3 kg or <1.5 kg or <5.0 kg warhead			10-20	5-10
Aster-T	SCR & Everis	Spain	2019	On offer			Tethered rotary None wing	14		0.65		
Name	Speed / C km/h sr	Cruise speed / sp km/h h	Max. Alt. AGL/m speed/ km/h	n Alt. AMSL / m	Power	Propulsion	Guidance	Targeting	Payload	Launch	Recovery	References
A1-S Furia		65 1	100.0 80 (minimum, cruising), 2500 (ceiling)	°"	Electric	Pusher propeller	GPS, autopilot, automatic take-off and landing, manual, semi-automatic and automatic flight modes, GCS		Day/night vision module	Catapult		Streetly & Bernadi, 2018, p. 219
AL-4		56 1	100.0 3000 (ceiling)	0	Brushless electric motor	Pusher propeller	GPS, IMU, autopilot, truck-mounted GCS		1.0 kg total, 0.4 kg batteries, TV camera	Hand	Belly landing	Streetly & Bernadi, 2018, p. 206; Aeroland UAV, 2019
ALADIN	40-70		30 (minimum), 100-300 (typical), 4500 (ceiling)		Electric	Tractor propeller	Automatic and manual flight mode, autopilot, GCS		4 CCD cameras, IR	Hand or bungee rope		EMT Penzberg, 2019a
ALUDRA SR-08		65 1	130.0	4000 (ceiling)	Electric	Tractor propeller	GPS, GLONASS, autonomous and semi- autonomous flight modes, GCS		Video, IR	Hand	Parachute	Streetly & Bernadi, 2018, p. 146
AR1 Blue Ray		55			Electric	Pusher	Semi- and fully autonomous, laptop and tablet GCS		1.5 kg payload	Hand, catapult	Parachute	Streetly & Bernadi, 2018, p. 168
AR4 Light Ray Compact		57			Electric	Pusher propeller	GPS, IMU, autopilot, autonomous, lapton and tablet GCS		EO/IR	Hand	Parachute	Streetly & Bernadi, 2018, pp. 169–170
AR4 Light Ray Evolution		57	80.0		Electric	Pusher propeller	GPS, IMU, autopilot, autonomous, GCS		EO/IR	Hand	Parachute	Streetly & Bernadi, 2018, pp. 169–170
ATLAS C4EYE / ppx		54 1	2000 (/		Brushless electric	Tractor propeller	GCS		0.3 kg EO/IR	Hand	Parachute	C-Astral, 2019a; C-Astral, 2019b
AiD-MC8			4	0	Electric	6 rotor blades	GPS, autonomous flight, waypoint navigation, GCS			TOTV	VTOL	Streetly & Bernadi, 2018, pp. 69–70; AiDrones, 2020
Alpagu		93 1	120.0 122		Electric	Pusher propeller	Autonomous, GCS	Embedded and real-time object tracking, detection and classification		Tube		STM, 2019a
Alpagu Block II			250-400	0 2000-3500	Electric	Pusher propeller	Autonomous or manually via GCS	Autonomous, real-time object tracking, detection and classification		Tube, single or multi-launcher		STM, 2019b; Army Recognition, 2019
Aster-T			70-100	0	Electric ground supply unit and on-board battery	Rotor blades	GCS		4 kg total, EO/IR	TOLA	VTOL	SCR, 2019a; SCR, 2019b

;			:	ċ			:						:
Name	Manufacturer	Origin	Intro	Status	In service		Configuration	Armament	MIUW / Kg WI	wingspan or Le	Length/m E	Endurance / min	Kange / Km
Bat Bot(B2)	Coordinated Science Laboratory, Urbana; University of Illinois, California Institute of Tachrohom	USA	2017	Research	None		Flapping wing, tailless	None	£ 600 0				
Bayraktar Mini Black Hornet PRS	Baykar FLIR Systems	Turkey Norway	2005 2013	Deployed Deployed	Turkey, Qatar Australia, Franc Germany, India, Spain, Turkev, D	Turkey, Qatar Australia, France, United Kingdom, Germany, India, Norway, USA, Poland, Spain, Turkey, Netherlands	Fixed wing 1, Rotary wing land,	None None	9.9 0.033	2.000 0.123	1.200 0.168	60-80 25	15 2
Black Widow	AeroVironment	USA	2000	Research finished	None		Flying wing	None	0.80	0.152		30	1.8
Blackstart	Blue Bear Systems Research	United Kingdom	2010	On offer			Fixed wing	None	5	1.500	0.980	09	٢
Blackwing	AeroVironment	USA	2013	Deployed	USA		Fixed wing		1.814	0.686	0.495		
CEUAV CH-901	UAV Solutions China Aerospace Science and Technology	USA China	2018 2016	On offer Unclear			Fixed wing	None Warhead (mass unknown)	6		0.483 1.200	40-60 120	>10
COLIBRI	Corporation TU Delft	Netherlands	2017	Research	None		Flapping wing,	None	0.022	0.210		0.25-0.3	
CREX-B	Leonardo Airborne & Space Systems	Italy		Unclear			Fixed wing	None	2.1	1.700	0.450	75	10
Cardinal II Casper 200	NCSIST Top I Vision	Taiwan Israel	2014 2004	Deployed Unclear	China		Fixed wing Fixed wing	None None	5.5 2.3	2.000	1.900 1.300	60 140	
Name	Speed / Cruise km/h speed / km/h	ise Max. d/ speed/ n/h km/h	Alt. AGL / m	Alt. AMSL/m	Power	Propulsion	Guidance	Targeting	Payload	Launch	Recovery	References	
Bat Bot (B2)	20				Electric coreless DC motor	2 morphing wings	Autonomous flight manoeuvers (zero-path flight, banking turn, diving)	None iving)		Hand		Ramezani et al., 2017	
Bayraktar Mini		56	1000		Electric	Pusher propeller	Automatic take-off and cruise, re home and landing, GCS	turn	2 axis day/night camera	Hand	Automatic body or parachute landing	Baykar, 2019b; Army Technology, 2019b; Baykar, 2019a	nology,
Black Hornet PRS		22.0			Electric	Rotor blades	GCS, GPS and in GPS denied areas, BLOS navigation, auto and manual hover and axars, route and user selectable waypoint actions, automatic return, lost link navigation	eas, tal matic	EO/IR, video HD snapshot, thermal	VTOL	VTOL	FLIR, 2019b; Army Recognition, 108; FLIR, 2019a; Army Technology, 2019a; Asia Pacific Defence News, 2019, Military.com, 2016; DroningON, 2017	nition, fechnology, e News, DroningON,
Black Widow			234 (max.)		Electric 10 W DC motor	Tractor propeller	3 g radio control system, GCS	None	Colour video system and transmitter	Pneumatic		Shkarayev et al., 2007	
Blackstart		120.0			Brushless electric	Tractor propeller	Autopilot, fully autonomous flight, point-and-click loiter/waypoint control, GCS	it, ontrol,	EO/IR	Hand, catapult	Belly landing	Streetly & Bernadi, 2018, pp. 232-233	p. 232–233
Blackwing					Electric	Pusher propeller			EO/IR	Underwater-to- Air delivery canister, tube, multipack launcher		Naval Drones, 2019); AeroVironment, 2017b; LaGrone, 2016	vironment,
CEUAV					Electric	Pusher propeller			EO/IR	Tube		UAV Solutions, 2019	
CH-901	64-113				Electric	Pusher				Tube		IHS Jane's 360, 2017	
COLIBRI					Electric EPS8-brushed DC motor, Nanotech LiPo 160 mAh 25 C	2 flapping wings		None		VTOL	VTOL	Roshanbin et al., 2017	
CREX-B		36 110.0	30 (operating), 500 (max.)	3100 (ceiling)	Electric	Tractor propeller	Waypoint navigation, automatic landing, autonomous/semi-autonomous flight modes, return home, portable GCS	anding, ight S	EO/IR	Hand	Belly landing	Streetly & Bernadi, 2018, p. 130; Leonardo, 2019	s. 130;
Cardinal II		55			Brushless electric motor	Tractor propeller				Hand	Parachute	Air Force Technology, 2019	6
Casper 200		83	70		Electric	Tractor propeller	GPS, pre-programmed, portable or vehicle-mounted GCS	or	TV camera, thermal, radiological	Hand	Belly landing	Streetly & Bernadi, 2018, pp. 124-125	p. 124–125

Name	Manufacturer	Origin	Intro	Status	In service		Configuration	Armament	MTOW / kg	Wingspan or rotor diameter / m	Length / m	Endurance / min	Range / km
Cerberus	Skyborne	Australia	2018	Development			Tiltrotor	40 mm grenade launcher or 12-gauge shotgun or micro munitions or net launcher	6.0		0.820	22 (3 x 40mm Grenades), 28-32 (no payload)	S
Comandor	Matrix UAV	Ukraine	2016	Unclear			Rotary wing	Anti-tank missile or free-fall bombs	110	1.500	1.500	210	200
Coyote	Raytheon	USA	2007	Ordered	:		Fixed wing	<0.9 kg warhead	6.4	1.470	0.790	96 '	37
Crazyflie 2.1	bitcraze	Sweden	>2014	Commercially available	None		Rotary wing	None	0.027	0.045	0.092	L	1
Cyclone	ISPRA	Israel	2015	Deployed	Israel		Rotary wing	Tear gas	1.5	1 200		8	
Cygnus A10	Asteria	India	2015	On offer			Fixed wing	None	3.0	1.600		88	0 s
Da-VIDCI	Flying Production/ Elbit Systems	Israel		On offer			Kotary wing	None	0.0			06	10
DelFly Explorer	MAVLab TU Delft	Netherlands		Research	None		Flapping wing, with tail	None	0.020	0.280		10	
DelFly Micro	MAVLab TU Delft	Netherlands	2008	Research	None		Flapping wing, with tail	None	0.00307	0.100		3	0.050
DelFly Nimble	MAVLab TU Delft	Netherlands	2018	Research	None		Flapping wing, tailless	None	0.029	0.330		5	~
Demon	Matrix UAV	Ukraine	2018	Development			Rotary wing	RPG-22/26 or RPG-7 or 5 kg bomb or 7 kg high-explosive fragmentation warhead					10-20
Desert Hawk	Integrated Dynamics	Pakistan		On offer			Fixed wing	None	4.5	1.500	006.0	>60	10-15
Name	Speed / Cruise km/h speed / km/h	se Max. d/ speed/ h km/h	Alt. AGL / m	Alt. AMSL / m	Power	Propulsion	Guidance	Targeting	Payload		Launch	Recovery	References
Cerberus	60-80		<400		Electric	Trirotor	GCS		1.5 kg total, micro munit cameras	 S kg total, grenade launchers, micro munitions, shotguns or cameras 	VTOL	VTOL	Skyborne Technologies, 2019
Comandor		60.0	5-1500 (operating), 2000 (ceiling)		12 electric or 2 piston engines	12 rotor blades	GPS, autopilot, manual, semi-automatic and automatic flight modes, GCS	S	50 kg total, civil and mil cargo, fire suppressants, ant-ank missiles, free-if bombs, video, radar, lask scanners, nuclear/explos detectors	50 kg total, civil and military cargo, fire suppressants, anti-ank missilos, free-fall bombs, video, radar, laser scamers, nuclear/explosives detectors	TOTV	VTOL	Streetly & Bernadi, 2018, pp. 216–217
Coyote	-	111 157.0	150-365 (operating), 6095 (ceiling)		Electric	Pusher propeller	GCS		1.4 kg maximum	unu	Tube, canister	None	Raytheon, 2019; Streetly & Bernadi, 2018, pp. 340–341
Crazyflie 2.1					5 x 7 mm electric DC coreless motor, 240 mAh LiPo batterv	4 rotor blades	IMU	None	15 g maximum	E.	VTOL	VTOL	Bitcraze, 2020; Ben-Moshe et al., 2018
Cyclone					Electric	6 rotor blades	GCS				VTOL	VTOL	ISPRA, 2019; Amity Undersround: 2018
Cygnus A10		50 85.0	300-1000		2-cylinder, 2-stroke engine	Pusher propeller	Fully autonomous and pre-programmable, 2-person GCS	S	EO/IR		Hand	Belly landing	Streetly & Bernadi, 2018, pp. 81–82
Da-Vinci		35 45.0	610		Electric	6 rotor blades	Autonomous take-off and landing, programmed flight patterns, waypoint navigation, "click and fly", return home, GCS	g, GPS assisted point-to-target point function, target management n home, modes	rget EO/IR ment		VTOL	VTOL	Streetly & Bernadi, 2018, pp. 105–106
DelFly Explorer					Brushless electric motor, 180 mAh LiPo batterv	2 pairs of flapping wings	4.0 g stereo vision system, autonomous, barometer, IMU, autopilot, GCS	nomous, None	4.0 g stereo	4.0 g stereo vision system	Hand		de Croon et al., 2016
DelFly Micro					Electric, 1 g 20 mAh LiPo battery	2 flapping wings	Radio GCS	None	0.4 g camera g receiver	0.4 g camera and transmitter, 0.2 g receiver	Hand		de Croon et al., 2016; MAVLab TU Delft, 2019b
DelFly Nimble	10.8-25.2 10 (forward), 25 14.4 (sidewavs)	10.8- 25.2			Brushless DC motor, battery	2 pairs of flapping wings	Onboard 2.8 g autopilot, GCS	None	4.0 g total		Hand		Karásek et al., 2018; MAVLab TU Delft, 2019a
Demon					Electric	4 rotor blades			5-7 kg total,	5-7 kg total, video, weaponry	VTOL	VTOL	Kasyanov, 2019
Desert Hawk	30-100	100.0			Electric	Tractor propeller	GPS, autonomous, telemetry, laptop GCS	otop	0.5 kg daylight/IR	ght/IR	Hand	Belly-/deep- stall landing	Integrated Dynamics, 2019a

Name	Manufacturer	Origin	Intro	Status	In service		Configuration	Armament	MTOW / kg	Wingspan or rotor diameter / m	Length / m	Endurance / min	Range / km
Desert Hawk IV	Lockheed Martin	NSN	2014	On offer			Fixed wing	None	3.69	1.500		150	0
LDrone-40	Defend lex	Australia		Ch olla			Kotary wing	Kuretic and-UAV or high-explosive warhead or anti-armour warhead or smoke grenade					2
DroneCatcher	Delft Dynamics	Netherlands	ls 2015	On offer			Rotary wing	Net launcher	9€		0.75	30	
FanCopter	EMT	Germany		Deployed	Germany, USA, South Africa	th Africa	Rotary wing	None	1.5	0.600	0.60	22	
FlyFast	Al	Italy	0000	On otter			Fixed wing	None	1.2	1.100	0.58 0.0	51 55	100
Futura	Alcore		2000	Unclear			Fixed wing	Fragmentation warhead (mass unknown)	0.0/	2:000	2.000	0/	400
Golden Snitch	Tamkang University, Taipei		2012	Research	None		Flapping wing, with tail	None	0.008	0.200			
Green Dragon	Israel Aerospace Industries		2016	On offer			Fixed wing	2.5 kg warhead: anti-personnel or anti-tank or both combined	15	1.700	1.60	75	40
H2 Bird	Univ. of California, Berkeley; Carnegie Mellon University	USA	2013	Research	None		Flapping wing, with tail	None	0.013	0.265		10	
HERO-20 UEDO 30	UVision	Israel	2019	On offer On offer			Fixed wing	0.2 kg anti-personnel warhead	1.8			20	10 5 10 40
HERO-70	UVision	Israel	2015	On offer			Fixed wing	1.2 kg anti-light-vehicle warhead				45	40
Name	Speed / Cr km/h spc k	Cruise Max. speed / speed / km/h km/h	k. Alt. AGL/m / a	Alt. AMSL/ m	Power	Propulsion	Guidance	Targeting	Payload		Launch	Recovery	References
Desert Hawk IV		46 102.0			Electric	Tractor propeller	GCS		0.9 kg		Hand	Deep-stall landing	Lockheed Martin, 2019a; Jane's 360, 2019
Drone-40		72			Electric	Rotor blades	GCS		Camera		Grenade launcher, VTOL	VTOL	Australian Defence Magazine, 2019; N., 2019; Soldier Systems, 2019
DroneCatcher		72.0	0		Electric	4 rotor blades			EO		VTOL	VTOL	Delft Dynamics BV, 2015; Delft Dynamics BV, 2016
FanCopter					Electric	2 coaxial rotor blades, 3 steering rotor blades	Portable GCS		EO/IR		TOLA		Streetly & Bernadi, 2018; EMT Penzberg, 2019b
FlyFast					Electric	Pusher propeller	GPS, IMU, waypoint navigation, man-portable GCS	ion,	0.3 kg modular	dular	Hand	Parachute	IDS, 2019a
Futura	130 (loitering)	341 359.0	0 200-1000-4000		Turbojet	Turbojet	Automatic flight control, pre-programmed, GCS		EO/IR		Catapult	Skid landing	Streetly & Bernadi, 2018, p. 73
Golden Snitch					Electric motor, battery	2 flapping wings		None	None		Hand		Hsiao et al., 2012
Green Dragon	120-157 (loitering)	370.0	304-912		Electric	Pusher propeller					Canister		IAI, 2019; Army Technology, 2019c
H2 Bird	4				Electric, 90 mAh LiPo hatterv	2 flapping wings	GCS	None	2.8 g VGA camera	A camera	Hand		Julian et al., 2013
HERO-20					Electric	Pusher propeller			EO		Canister		UVision, 2019a
HERO-30					Electric	Pusher			E0/IR		Canister		UVision, 2019b
HERO-70		185.0			Electric	Pusher propeller			EO		Canister		UVision, 2019c

Name	Manufacturer	Origin	Intro	Status	In service		Configuration	Armament	MTOW / kg	kg Wingspan or rotor	Length / m	Endurance / min	Range / km
										diameter / m			
HORUS	Leonardo Airborne & Space Systems	Italy	2012	Deployed	Brazil		Fixed wing	None	2.3	1.800	006:0	99	5-10
Heidrun V1	Sky-Watch	Denmark		On offer			Fixed wing	None	2.2	1.650	1.070		24
	AeroVironment	USA	2003	Research finished	None		Flying wing	None	0.170	0.381		9	
HoverMast 100	Sky Sapience	Israel	2013	Deployed	Israel		Tethered rotary wing	None					
Huginn X1D	Sky-Watch		2012	Unclear			Rotary wing	None	1.59		0.630	25	2
	Univ. of California, Berkelev		2010	Research	None		Flapping wing, with tail	None	0.012	0.280	0.210		
IA-12 Stark	IDS	Italy	2014	Unclear			Rotary wing	None	12		1.500	120	10
nta	IDS	Italy	2014	On offer			Flying wing	None	5.0	1.800	1.150	240	10
IA-3 Colibri IB15	IDS Loonordo Airhorno	Italy Holv	2014 2013	On offer On offer			Rotary wing	None	5-7		1 700	50	5 10
	& Space Systems	Italy	C107				rotary willg	INOIR	71		1./00	CC.	01-0
INTISAR 100 Indago	UST I ockhood Martin	Malaysia	2015	On offer Denloved	115.4		Rotary wing Rotary wing	None	13	1.520	1.340	09	2 2-10
		2000	C1 07	mondar	200		Sund wing	MION	1.17 1.17		6100	00	7-10
	Speed / Cruise km/h speed / km/h	se Max. d/ speed/ /h km/h	Alt. AGL / m	Alt. AMSL/ m	Power	Propulsion	Guidance	Targeting		Payload	Launch	Recovery	References
		58 72.0	300 (operating), 3500 (max.)		Electric	Tractor propeller	GPS, autopilot, waypoint navigation, semi-autonomous loitering, autonomous take-off and landing, GCS	gation, itonomous			Automatic, hand, catapult, pneumatic	Conventional landing, parachute	Streetly & Bernadi, 2018, pp. 136–137; Army Technology, 2019d
Heidrun V1	.,	57 107.0	30-175		Electric	Tractor propeller	Fully autonomous, tracking antenna, compact GCS	atenna,		EO/IR	Hand	Deep-stall landing	Streetly & Bernadi, 2018, p. 43
					Hydrogen fuel cell	Tractor propeller	GCS	None					Shkarayev et al., 2007
HoverMast 100			50-150		Electric power supply from ground vehicle	Rotor blades	Autonomous, GCS			11-8 kg (Alt. AGL/ m: 50/150 m), CCD/IR, radar, relay, cellular antennas, hyperspectral sensors	VTOL	VTOL	Sky Sapience, 2019; Eshel, 2013
Huginn X1D	22	22.0	0.4-200		Electric	Rotor blades	GCS			EO/IR	VTOL	VTOL	Streetly & Bernadi, 2018, p. 44
					Electric, 1.6 g DC motor, 1.6 g 60 mAh LiPo battery	4 flapping wings		None		IR camera, bluetooth module	Hand		Baek & Fearing, 2010
IA-12 Stark		100.0			Petrol engine	Main and tail rotors	Vehicle-mounted or portable GCS, mission planning, real time mission management	3CS, ission		EO/IR, thermal	VTOL	VTOL	Streetly & Bernadi, 2018, pp. 128–129
IA-17 Manta		200.0		4500	2-stroke petrol engine	Pusher propeller	Pre-programmed mission, real-time mission management with portable GCS	l-time table GCS		EO/IR	Catapult	Parachute	Streetly & Bernadi, 2018, p. 129
IA-3 Colibri					Electric	4 rotor blades	GPS/IMU, person-portable GCS, auto-stabilisation, pre-programmed navigation	CS, nmed		EO/IR	NTOL	VTOL	Streetly & Bernadi, 2018, p. 128; IDS, 2019b
		90.0			Electric	Main rotor blades, tail rotor	Fully autonomous mode, autopilot, waypoint navigation, loitering, take-off and landing, GCS	pilot, , take-off		EO/IR	TOTV	VTOL	Streetly & Bernadi, 2018, p. 137
INTISAR 100		80	245		Petrol engine	Main and tail rotor	GPS, GLONASS, automatic ta and landing, GCS	ake-off		Digital stills, HD Video	VTOL	VTOL	Streetly & Bernadi, 2018, p. 147
			3-91		Electric	4 rotor blades	GCS			Multiple, hot-swappable, EO/IR VTOL	TOTV	VTOL	Lockheed Martin, 2019b; Lockheed Martin, 2017

Name	Manufacturer	Origin	Intro	Status	In service		Configuration Armament	ent MTOW / kg	/ kg Wingspan or rotor diameter / m	Length / m	Endurance / min	Range / km
InstantEye Mk-3 GENAL D1/TSD1	InstantEye Robotics	USA	2019	On offer			Rotary wing None	1.361		0.309	45	4
InstantEye Mk-3 GEN5-D1/D2	InstantEye Robotics	NSA	2018	On offer			Rotary wing None	<0.255		0.330	27	1.5
Irkut-3	Irkut Engineering	Russia	2011	Unclear			Fixed wing None	3.0	2.000	0.900	75	15
KX4-Interceptor	Thread	Estonia		On offer			Rotary wing None	9		0.850	>30	ŝ
KX4-LE Titan	Thread	Estonia		Deployed	Estonia					1.180	45	ŝ
KYB-UAV	Zala Aero Group	Russia	2019	On offer				arhead	1.210	0.950	30	
Kargu	STM	Turkey	2017	Deployed	Turkey		Rotary wing Multiple	Multiple warhead configurations (mass unknown)				
Koliher	ITWI.	Poland		Unclear			Rotary wing None			0.870	25	"
Leleka-100	DeViRo	Ukraine		Unclear				5.0	1.980	1.140	120-150	100
MAGNI	Elbit Systems	Israel		On offer			Rotary wing None	2.5			30	3
MITE 2 (Configuration B)	U.S. Naval Research	NSA	2001	Research finished	None			0.213	0.368		20	
Malazgirt	Baykar	Turkey	2006	Unclear	Turkey		Rotary wing None	12	1.800	1.200	35-90	15
Name	Speed / Cruise km/h speed / km/h	Tuise Max. Deed / speed / km/h km/h	Alt. AGL / m	Alt. AMSL / m	Power	Propulsion	Guidance	Targeting	Payload	Launch	Recovery	References
InstantEye Mk-3 GEN4-D1(ISR)		56.0	3658 (MSL, ceiling)		Electric	4 rotor blades	Operator-controlled waypoint navigation, GCS		0.454 g total, EO/IR	VTOL	VTOL	InstantEye Robotics, 2019; Air Force Technology, 2018
InstantEye Mk-3 GEN5-D1/D2		32.0	3658 (MSL, œiling)		Electric	4 rotor blades	Operator-controlled waypoint navigation, GCS		EO/R	VTOL	VTOL	InstantEye Robotics, 2019; Air Force Technology, 2018
Irkut-3		59 89.0	100-500 (operating), 3000 (ceiling)		Piston engine	Pusher propeller	Radio link, GCS		0.5 kg total, TV/IR, stills camera	Hand	Parachute	Streetly & Bernadi, 2018, p. 172
KX4-Interceptor		29	400		Electric	4 rotor blades	Fully autonomous or fly-by-camera flight mode, remote video terminal, GCS		Dual EO/IR	VTOL	VTOL	Threod, 2019a
KX4-LE Titan		29	400		Electric	4 rotor blades	GCS		Dual EO/IR	VTOL	VTOL	Threod, 2019b; Threod, 2019c
KYB-UAV	80-130				Electric	Pusher	GCS		3 kg max.	Hand		ZALA Aero, 2019a
Kargu						Rotor blades		Autonomous targeting	EO/IR	VTOL	VTOL	STM, 2019c; Jane's 360, 2017
Koliber		99			Electric	4 rotor blades	GPS, autopilot, fully automatic, manual, pre-programmed, imagery exploitation package, GCS		Camera	VTOL	VTOL	Streetly & Bernadi, 2018, p. 164
Løleka-100	60-70	70 120.0	1500 (max.)		Electric	Pusher propeller	Autopilot, anti-GPS spoofing/jamming, inertial navigation, autonomous functionality, pre-programmed routes, GCS	None	Daylight camera	Hand, catapult	Parachute, belly landing	Streetly & Bernadi, 2018, pp. 214–215
MAGNI		40	13123 (ASL)		Electric	4 rotor blades	GCS	Coordinate tracking capabilities	EO	VTOL	VTOL	Elbit Systems, 2020; Elbit Systems, 2019a
MITE 2 (Configuration B)	32				2 x 7 W coreless, geared electric, 45 g 12 V LiSO2 primary (CR2)	2 tractor propellers	Remote, Range / km-based vision for object recognition and pose estimation, monocular vision for navigation and collision avoidance	None	Colour video system	Hand		Shkarayev et al., 2007; Christopher et al., 2001; Kellogg et al., 2002
Malazgirt			1095 (operating), 3660 (ceiling)		Petrol or electric engine	Main and tail rotor blades	GPS, INS, autonomous cruise, waypoint navigation, automatic take-off, landing and hover, return home, GCS		CCD, thermal	ATOL	VTOL	Streetly & Bernadi, 2018, p. 210

	Manufacturer	Origin	Intro	Status	In service		Configuration	Armament		MTOW / kg	Wingspan or rotor diameter / m	Length / m	Endurance / min	Range / km
Mavic Mini DJ	DII	China	2019	Commercially available			Rotary wing	None		0.249		0.245	30	
Ċ	IſQ	China	2006	Commercially available			Rotary wing	None		0.734		0.200	21-27	13
A BI	Alcore BlueBird Aero Svstems	France Israel	2002 2018	Unclear On offer			Rotary wing Fixed wing	None None		2.5	1.700	0.320	30	50
	Innocon California Institute of Technology, Pasadena, University of California, Los Angeles; Angeles;	lsrael USA	2011 2000	Deployed Research	Peru None		Fixed wing Fiapping wing, with tail	None None		6 0.0125	1.800 0.229		0.7	40
	Uconsystem ELi ELi	South Korea Estonia Estonia	2014 2014 2014	On offer On offer On offer			Rotary wing Rotary wing Rotary wing	None None None		8 2.5 4.7		1.530 0.760 1.100	30 30 45	- v v
Multirotor ELIX EI XXL	ELi	Estonia	2014	On offer			Rotary wing	None		5.5		1.160	50	5
	Elbit Systems Novadem	Israel France		On offer Deployed	France		Rotary wing Rotary wing	None None		5 1.7		1.100	55 20	4
	Speed / Cruise km/h speed / km/h	ise Max. ed/ speed/ n/h km/h	Alt. AGL / m	Alt. AMSL / m	Power	Propulsion	Guidance	F	Targeting	Payload		Launch	Recovery	References
Mavic Mini		47.0	3000 (ASL)		Electric	4 rotor blades	GPS, GLONASS, remote control via smarthone		None	Image/Video	eo	VTOL	VTOL	DJI, 2019b; O'Kane, 2019
Mavic Pro		65.0	5000 (AMS)		Electric	4 rotor blades	GPS, GLONASS, GCS	2	None	EO		VTOL	VTOL	Streetly & Bernadi, 2018, p. 33; DJI, 2019a
		54 104.0	50-1000		Rotary piston engine	fan	GPS, autopilot, GCS			CCD/IR		VTOL	VTOL	Streetly & Bernadi, 2018, pp. 57-58
			1000-4000		Electric	Pusher propeller	GCS			0.3 kg EO/IR		Hand-held launcher		BlueBird Aero Systems, 2020
MicroFalcon LP		65 120.0	4570		Electric		Fully autonomous flight control, including launch and recovery, 1-person GCS	ol, /, 1-person		EO/IR		Bungee catapult		Streetly & Bernadi, 2018, pp. 119–120
					Electric, DC motor, 3 g Sanyo Ni-Cad 50 mAh battery	2 flapping wings	Remote control		None			Hand		Pornsin-Sirirak et al., 2001
MultiRotor		30	150 (operating), 500 (max.)		Electric	Rotor blades	Autonomous navigation, 1-person GCS	rson GCS		EO/IR		VTOL		Streetly & Bernadi, 2018, p. 143
Multirotor ELIX		58.0	200		Electric	4 rotor blades	GPS, GCS, compass avionics, waypoint awigation, autonomous flight control and mission execution, return home, emergency modes, pre-programmed flight patterns	, waypoint t control home, mmed		EO/IR		VIOL	VTOL	Streetly & Bernadi, 2018, pp. 45-46
Multirotor ELIX XL		43.0	200		Electric	4 rotor blades	GPS, GCS, compass avionics, waypoint navigation, autonomous flight control and mission execution, return home, emergency modes, pre-programmed flight patterns	, waypoint t control home, mmed		EOIR		VTOL	VTOL	Streetly & Bernadi, 2018, pp. 45-46
Multirotor ELIX XXL		43.0	200		Electric	4 rotor blades	GPS, GCS, waypoint navigation, autonomous flight control and mission execution, return home, emergency modes, pre-programmed flight patterns, GCS	ion, 1 mission gency t patterns,		EOIR		JOTV	VTOL	Streetly & Bernadi, 2018, pp. 56-57
		40 50.0	3-457		Electric	3 rotor blades	Fully autonomous, GCS			0.7 kg total, EO	l, EO	VTOL	VTOL	Elbit Systems, 2019b
NXI 10m		36.0	2200		Electric		GPS, waypoint, go-to, return home, emergency mode, autopilot, altimeter, GCS	home, Itimeter,		CCD/IR, g monitoring	CCD/IR, gas detection, radiation monitoring, spectrometer	VTOL	VTOL	Streetly & Bernadi, 2018, pp. 59-60

Name	Manufacturer	Origin	Intro	Status	In service		Configuration	Armament	MTOW / kg	Wingspan or rotor diameter / m	Length / m	Endurance / min	Range / km
NX70	Novadem	France	2016	Deployed	France		red	None	1		0.510	45	1-5
Nano Hummingbird	AeroVironment	NSA	2012	Research finished	None		ці.	None	0.019	0.165		4	
PC-1	Ukrspecsystems	Ukraine		Deployed	Ukraine			None	5.2	0021	0.560	38	5
Perdix	Strategic Capabilities Office, US DoD	USA	2013	Development			Fixed wing	None	0.290	0.300	0.165	20	81
Phoenix 30	UAV Solutions	USA	2014	Deployed	Romania. Bulgaria		Rotary wine	None	4.54		0.500	25-30	
Pigeon	Sparkle Tech	China	2017	Commercially available				None	1.9	1.200	0.520	06-09	
Pride	Integrated	Pakistan		On offer			Fixed wing	None	4.5	1.610	1.450	30-45	3-5
Dezcada	Dynamics	Doland		Unclear				None	0.8	0.500		00	2
REMOEYE-002B	UCONSYSTEM	South Korea		Deployed	South Korea		Fixed wing	None	3.4	1.800	1.440	8	10
ROTEM	Israel Aerospace Industries	Israel	2016	On offer				1.2 kg warhead, <1 m strike precision	5.8			30	10
RQ-11B Raven	AeroVironment	USA	2006	Deployed	USA, Philippines, Thailand, Ukraine, Uzbekisan Belgum, Bulgaria, Czechia, Estonia, Hungary, Lithuania, Luxembourg, Netherlands, Norway, Portugal, Romania, Spain, Coothisi, Iraq, Lebanon, Canada,	ailand, Ukraine, , Bulgaria, Czechia, thuania, Luxembourg , Portugal, Romania, , <u>1</u> , Lebanon, Canada,	Fixed wing	None	61	1.400	006:0	06-09	10
Name	Speed / Cri km/h spe	Cruise Max. speed / speed /	Alt. AGL / m	Alt. AMSL/m	Power	opulsion	Guidance	Targeting	Payl	Payload	Launch	Recovery	References
NX70	2				Electric		GCS		Dua	Dual EO/IR	VTOL	VTOL	Novadem, 2019; sUAS
													News, 2019a
Nano Hummingbird					DC brushed electric motor, LiPo battery pack	2 flapping F wings	Remote	None	0.61	0.61 g camera and transmitter	VTOL	VTOL	Keennon et al., 2012
PC-1		36	1000 (ceiling)		Electric	4 twin rotors /	Automatic take-off and landing, programmable flight route, GCS		EO/IR	IR	VTOL	VTOL	Ukrspecsystems, 2020
Patriot R2		65	100 (operating, minimum), 2000 (ceiling)		Electric	Pusher F	Pre-programmed, GPS/GLONNAS, incrtial navigation, GCS	AS, Real-time air vehicle location tracking		Video/Photo	Catapult	Parachute	Streetly & Bernadi, 2018, p. 215
Perdix	74-111	111.0			Electric	Pusher propeller, 6.6 cm diameter	Autonomous				Airborne, ground-based or shipboard launchers		US SCO, 2019
Phoenix 30			15 (typical), 150 (max.)		Electric	4 rotor 1 blades	Fully autonomous, laptop GCS		EO/IR	IR	VTOL	VTOL	Streetly & Bernadi, 2018, p. 360
Pigeon		70 100.0			Electric	;	Autopilot, inertia, GPS, GCS		0.51	0.5 kg EO	Hand, catapult	Parachute	Streetly & Bernadi, 2018 p. 36
Pride		30 100.0			Brushless electric		GPS, GCS		EO/IR	IR	Hand	Deep-stall landing	Streetly & Bernadi, 2018. pp. 156–157
Pszczoła		10 100.0	50-300				GCS		Camera	tera	Hand	0	Streetly & Bernadi, 2018, p. 165
REMOEYE-002B		80.0			Electric	Pusher A	Autopilot, pre-programmed flight, automatic return home, GCS	ıt,	EO/IR	К	Hand	Automatic air-bag recoverv	Uconsystem, 2019a; Air Recognition, 2019
ROTEM		102- 370.0 157	1524		Electric	4 rotor blades e	Obstacle avoidance, autonomous modes: emergency return home; nav-lo-route, observation, attack, abort and ATOL (auto takeoff and landing), GCS	s modes: Strike precision <1 m route, FOL		EO/IR, COMINT, fire detection sensors	VTOL	VTOL	IAI, 2020; Eshel, 2016
RQ-11B Raven	32-81	81.0	30-152		Electric	Pusher 6 propeller f	GPS, manually with GCS, programmed for autonomous flight	anmed	EO/IR	R	Hand	Deep-stall landing	AeroVironment, 2019a; Gettinger, 2019

Name	Manufacturer	Origin	Intro	Status	In service		Configuration A	Armament	MTOW / kg	Wingspan or rotor diameter / m	Length / m	Endurance / min	Range / km
RoboBee	Harvard University	/ USA	2013	Research	None		Tethered flapping N. wing tailless	None	0.000080	0.030			
RoboBee X-Wing	Harvard University	/ USA	2013	Research	None			None	0.000259	0.035	0.065		
Rover Mk I	Integrated Dvnamics	Pakistan	m 2007	On offer			ing	None	2.0	1.500	0.900	20-45	2-4
SIS A-3 Remez	SIS	Ukraine	e	Deployed	Ukraine		Fixed wing N	None	10.0	2.000	0.780	120	20
STORM	Blackbar Engineering	USA		On offer				one	2.5	1.680	1.220	60-80	6-10
Scout	GIDS	Pakistan	a	On offer			Fixed wing N	None	4.5	2.000	1.200	09	10
Skimmer Mk I	Swallow Systems	India	2011	Unclear				None	2.5	1.700	1.200	09	5
Sky.Spider	INDELA	Belarus		Legacy				None	7.2		1.580	20-40	15
SkyRanger R60	FLIR Systems	Norway	y 2013	Deployed	USA, New Zealand		Rotary wing N	None	10	1 000	1 500	30-50	3-10
экусаш	Dynamics	Pakista	8	OII OIIEE				one	C:+	1.960	0001	00	c
Skywalker X6	Skywalker	China	2016	Commercially available	China		Fixed wing N	None	1.8-2.0	1.500	0.650	25	
Name	Speed / C km/h sr	Cruise N speed / spe km/h k	Max. Alt. AGL / m speed / km/h	/m Alt. AMSL/m	Power	Propulsion	Guidance	Targeting	Payload		Launch	Recovery	References
RoboBee					External electric power source wire tether	2 flapping wings	External active flight controller	None	None		VTOL	VTOL	Ma et al., 2013
RoboBee X-Wing		23-28			Electric, six-cell photovoltaic array	4 flapping wings		None	70 mg total	P	Hand		Jafferis et al., 2019
Rover Mk I		30	100.0	1000	Electric	Pusher propeller	GPS, telemetry with GCS		EO/IR		Hand	Belly or deep-stall landing	Streetly & Bernadi, 2018, p. 157; Integrated Dynamics, 2019b
SIS A-3 Remez		58 10	105.0		Piston engine	Shrouded pusher propeller	GPS, GCS (laptop)		3.0 kg tot	3.0 kg total, 2 TV cameras	Wheeled take-off, catapult	Parachute	Streetly & Bernadi, 2018, p. 217–218
STORM			-	610	Electric	Tractor propeller	GCS		EO/IR		Hand	Skid or stall landing	Blackbar Engineering, 2019
Scout			455 (operating)	(Bi	Brushless electric motor	Pusher propeller	GPS, waypoint navigation, autonomous, æmi-autonomous, GCS	mous,	EO or IR		Hand	Skid landing	Streetly & Bernadi, 2018, p. 153; Global Industries & Defence Solutions, 2019
Skimmer Mk I			95.0	300	Electric	Pusher	Waypoint navigation, return home, manual override 2-nerson GCS		TV camer	TV camera, low-light TV camera_thermal	Hand	Belly landing	Streetly & Bernadi, 2018 n 83_84
Sky.Spider		40			Electric	4 rotor blades	2-screen GCS, auto-positioning antenna system	ntenna	EO/IR		ATOL	VTOL	Streetly & Bernadi, 2018. n. 83–84
SkyRanger R60		50			Electric	4 rotor blades	Automated flight planning, touchscreen-controlled GCS		EO/IR		VTOL	VTOL	FLIR, 2020; Pointon, 2018; sUAS News, 2018
Skycam		30 10	100.0 305 (operating)	(Bu	Combustion engine	Pusher propeller	Autopilot, telemetry, laptop GCS		Daylight	Daylight TV and still camera	Hand	Belly landing, net capture	Streetly & Bernadi, 2018, p. 157
Skywalker X6	40			200	Electric	Pusher propeller		None			Hand, catapult	Glide down, parachute	Skywalker, 2019; HobbyKing, 2019

Name	Manufacturer	Origin	Intro	Status	In service		Configuration A	Armament	MTOW / kg	Wingspan or rotor diameter / m	Length/m	Endurance / min	Range / km
Shine Nano UAS	AeroVironment	11SA	2017	Unclear				None	0.140			15	~
Sparrow	Spaitech	Ukraine		On offer			Flying wing N	None	3.3	0.98		09	20
Spike Firefly	Rafael	Israel	2018	Ordered	Israel			<0.35 kg omnidirectional fragmentation warhead	з			15	5-10
Switchblade	AeroVironment	USA	2010	Deployed	USA			Warhead (mass unknown)	2.5	0.61	0.36	>15	10-45
T-Hawk RQ-16A	Honeywell	USA		Unclear	USA, United Kingdom, Poland	lom, Poland		None	7.8	0.33		50	
T-Rotor	Uconsystem	South Korea		On offer			λ μ	None	20		1.80	>1440	
THOR	Flying Production/ Elbit Systems	Israel		Deployed			wing	None	з			75	10
Tactical UAV	IPCD	Indonesia	2012	Deployed	Indonesia			None	2	1.60	1.00	40	10
Urban View	Aurora Integrated Systems	India	2011	On offer				None	2.0	1.50	0.80	99	15
VR1 Colibri Vapor 35	Tekever AeroVironment	Portugal USA	2015 2012	Unclear On offer			Rotary wing N Rotary wing N	None	2.8 14.5	1.70	0.50 1.94	30 45-60	2 56
Name	Speed / Cruise km/h speed / km/h	ise Max. :d/ speed/ h/n km/h	Alt. AGL/m	Alt. AMSL/ m	Power	Propulsion	Guidance	Targeting	ă	Payload	Launch	Recovery	References
Snipe Nano UAS	35				Electric	4 rotor blades	GPS waypoint navigation, GCS		Ē	EO/IR	VTOL	VTOL	AeroVironment, 2017a; Digital Trends, 2017
Sparrow	60-120		300-700-2000		Electric	Tractor propeller	IMU, GNSS, GCS	Automatic tracking of moving targets, target aiming and artillery fire correction	ving	EO/IR or dosimeter or photo camera	Catapult	Parachute	Spaitech, 2019
Spike Firefly	70 (diving)	60 70.0			Electric	Coaxial twin rotor	Electro-optical / man-in-the-loop, autonomous: fly-by waypoints, fly-by video, GCS			<0.35 kg EO, IR, CMOS, proximity sensor	TOTV	VTOL	R afael, 2019; IHS Jane's 360, 2019; Ahronheim, 2020
Switchblade		101 161.0			Electric	Pusher propeller	GPS, automated waypoint navigation, GCS	tion, Target selection by operator		EO/IR	Tube launch, air and ground vehicle, water craft	None	AeroVironment, 2019b; Streetly & Bernadi, 2018, pp. 252-253; Bledsoe, 2015
T-Hawk RQ-16A		93.0	0-150	3200 (ceiling)	Piston engine	Ducted fan	GPS, INS, pre-planned waypoints, retasking and manual intervention, GCS	GCS	ΞË	EO or IR, radio relays, data links, radiation sensors	VTOL	VTOL	Streetly & Bernadi, 2018, pp. 278-280
T-Rotor			100 (operating)		Electric	8 rotor blades	Fully autonomous flight, waypoint navigation, real-time flight path modification, GCS	-	ш	O/IR	VTOL	VTOL	Streetly & Bernadi, 2018, p. 145; Uconsystem, 2019b
THOR		40 65.0	5-610		Electric	Four rotor blades	Automatic takeoff and landing, autonomous mission flight, GCS		ς.	3 kg total, EO/IR	JOTV	VTOL	Elbit Systems, 2019c; Streetly & Bernadi, 2018, p. 106; Frantzman, 2019
Tactical UAV		40 80.0	100-500		Electric	Pusher propeller	GCS		Н	HD camera	Hand	Belly landing	Streetly & Bernadi, 2018, pp. 84–85
Urban View		59.0	90-305		Electric	Pusher propeller	Fully autonomous, pre-set flight patterns, GCS	atterns,	ä	EO/IR	Hand	Belly landing	Streetly & Bernadi, 2018, pp. 82–83
VR1 Colibri			250 (max.)		Electric	Rotor blades	Fully autonomous take-off and landing, mobile GCS	nding,	ш́	EO/IR	VTOL	VTOL	Streetly & Bernadi, 2018, p. 128
Vapor 35		54.0		0-12000	Electric	Main and tail rotor	Fully automatic flight operation without operator intervention, post-processed kinematic (PPK) mapping, GCS	vithout sed	2. E	2.27 kg total, EO/IR, LiDAR, hyperspectral sensors	VTOL	VTOL	AeroVironment, 2019c

Name	Manufacturer	Origin	Intro	Status	In service		Configuration	Armament	MTOW / kg	kg Wingspan or rotor diameter / m	Length / m	Endurance / min	Range / km
Vector Hawk (VTOL)	Lockheed Martin	USA	2014	On offer			Rotary wing	None	2.27	1.100	09.0	45	15
Vector Hawk	Lockheed Martin	NSA	2014	On offer			Fixed wing	None	1.81	1.100	09:0	90	15
Vector Hawk (tiltrotor)	Lockheed Martin	NSA	2014	On offer			Tiltrotor	None	2.27	1.100	09.0	80	15
Warmate	WB Electronics	Poland	2017	Deployed	Poland, Ukraine, Peru	2	Fixed wing	<1.4 kg fragmentation or shaped fragmentation warhead	1aped 5.3	1.400	1.10	50	10
Warmate R	WB Electronics	Poland	2019	On offer			Fixed wing	None	5.2			80	15
Warmate TL	WB Electronics	Poland	2019	On offer			Fixed wing	1.4 kg warhead	4.5	1.700	1.10	40	10
Warmate V	WB Electronics	Poland	2019	On offer	M		Kotary wing	1.6 kg warhead	1 1	2200		96.8	12
wasp	AcroVironment	USA	7007	Research finished	None		Flying wing	None	0.181	0.000		30	4
Wasp AE RQ-12A	AeroVironment	USA	2012	Deployed	Australia, Czechia, Spain, Netherlands, Sweden, USA	spain, Netherlands,	Fixed wing	None	1.3	1.020	0.76	50	>5
ZALA 421-08M ZALA LANCET-1	Zala Aero Group Zala Aero Group	Russia Russia	2007 2019	On offer On offer			Fixed wing Fixed wing	None Warhead (mass unknown)	2.5 5	0.810	0.43	30	15-25 40
Name	Speed / Cruise km/h speed / km/h	ise Max. sd/ speed/ km/h	Alt. AGL / m	Alt. AMSL / m	Power	Propulsion C	Guidance	Targeting		Payload	Launch	Recovery	References
:	2												
Vector Hawk (VTOL)		130.0		3050 (ceiling)	Electric	4 rotor / blades h	Autopilot, autonomous GPS, flight and landing, virtual cockpit GCS	flight and		EO/IR, laser illuminator	VTOL	VTOL	Streetly & Bernadi, 2018, pp. 302–303
Vector Hawk (fixed wing)		56 130.0		5180 (ceiling)	Electric	Tractor propeller, 2 la rotor blades	Autopilot, autonomous GPS, flight and landing, virtual cockpit GCS	flight and		EO/IR, laser illuminator	Hand	Inverted skid, deep stall landing	Streetly & Bernadi, 2018, pp. 302-303
Vector Hawk (tiltrotor)		56 93.0		5180 (ceiling)	Electric	Tractor / propeller, 2 li rotor blades	Autopilot, autonomous GPS, flight and landing, virtual cockpit GCS	flight and		EO/IR, laser illuminator	Hand	VTOL	Streetly & Bernadi, 2018, pp. 302–303
Warmate					Electric		GCS			1.4 kg total, warhead	Canister	None	WB Group, 2019b; Gettinger, 2019
Warmate R			500 (ceiling)		Electric		GCS	Automatic target lock	get lock	EO/IR, laser illuminator		Parachute	WB Group, 2019c
Warmate TL		75 120.0	3000 (ASL, ceiling)		Electric		Pre-programmed waypoints, automatic loitering mode, fly-to-coordinate, cruise, i. e. flying into the direction the camera is facing, GCS		Automated videotracker even under communication loss	EO/IR	Tube	None	WB Group, 2019a
Warmate V		27	100 (operating), 300 (max.)	2000 (ceiling)	Electric	Trirotor	GCS			Observation (1.6 kg) or warhead payload		VTOL	WB Group, 2019d
Wasp	40-48		91 (max.)		10 W DC electric motor	Tractor A propeller	Autopilot	None		Colour video camera and transmitter	Hand		Shkarayev et al., 2007
Wasp AE RQ-12A		37 83.0	152		Electric		Autonomous, GCS			EOIR	Hard	Deep-stall landing	AnewYiconament, 20194; Naval Drones, 20194; Naval Drones, 2016; Eshti 2012; Armadni Noviny, 2017; Stevenson, 2017; ECC Confidencial Digital, 2013; Unmande Systems Unmande Systems
ZALA 421-08M		65 130.0	3600 (ceiling)		Electric	H	GPS, GLONASS, autopilot, telemetry, magnetometer, GCS	telemetry, Active target tracking unit	tracking unit	0.3 kg total, EO, thermal, stills and video	Hand or catapult	Parachute or net capture	Streetly & Bernadi, 2018, pp. 180-181
ZALA LANCET-I	80-110				Electric	Pusher C propeller	BCS			EO/IR			ZALA Aero, 2019b; sUAS News, 2019b

- Aeroland UAV (2019). AL-4. URL: https://aerolanduav1.blogspot.com/2010/11/aeroland-al-4.html (visited on 26/11/2019).
- AeroVironment (2017a). Snipe Nano UAS fact sheet. URL: https://avinc.com/images/uploads/product_docs/Snipe __Datasheet_2017_web_rv1.3.pdf (visited on 09/09/2019).
- (2017b). U.S. Navy Awards AeroVironment \$2.5 Million Contract for Continuation and Expansion of Blackwing UAS Program. URL: https://www.avinc.com/resources/press-releases//view//u.s.-navy-awards-aerovironment-2.5million-contract-for-continuation-and-ex/ (visited on 11/10/2019).
- (2019a). Raven RQ-11B data sheet. URL: https://www.avinc.com/images/uploads/product_docs/Raven_Datashe et_2019_v1.pdf (visited on 05/09/2019).
- (2019b). Switchblade. URL: https://www.avinc.com/uas/view//switchblade/ (visited on 25/10/2019).
- (2019c). VAPOR All-electric Helicopter UAS. URL: https://www.avinc.com/uas/view/vapor-vtol (visited on 27/11/2019).
- (2019d). Wasp AE RQ-12A. URL: https://www.avinc.com/uas/view//wasp/ (visited on 25/10/2019).
- Ahronheim, Anna (2020). Defense Ministry orders Firefly loitering munition for IDF ground forces. URL: https://www.jpost.c om/israel-news/defense-ministry-order-firefly-loitering-munition-for-idf-ground-forces-626843 (visited on 12/12/2020).
- AiDrones (2020). AiD-MC8 Electrical Coaxial Octocopter Drone. URL: https://www.aidrones.de/english/drone-syst ems/octocopter-mc8/ (visited on 21/08/2020).
- Air Force Technology (2018). InstantEye Robotics unveils new InstantEye Mk-3 small UAS. URL: https://www.airforce-technology.com/news/instanteye-mk-3-uas/ (visited on 17/10/2019).
- (2019). Cardinal II Unmanned Aircraft System. URL: https://www.airforce-technology.com/projects/cardinalii-unmanned-aircraft-system/ (visited on 14/10/2019).
- Air Recognition (2019). ADEX 2017: Uconsystem's RemoEye-002B delivered to Korean Army. URL: https://www.airrecogni tion.com/index.php/archive-world-worldwide-news-air-force-aviation-aerospace-air-military-def ence-industry/defense-security-exhibitions-news/air-show-2017/adex-2017-news-coverage-report /3809-adex-2017-uconsystem-s-remoeye-002b-delivered-to-ukrainian-army.html (visited on 25/10/2019).
- Amity Underground (2018). Israel experiment with unmanned drones as crowd control instruments, dropping tear gas on Palestinian demonstrators. URL: https://amityunderground.com/israel-experiment-with-unmanned-drones-as-crowd-control-instruments-dropping-tear-gas-on-palestinian-demonstrators-drone-uav-riot-control-is pra-cyclone/ (visited on 24/10/2019).
- Armadni Noviny (2017). Robotické a autonomní systémy v Armádě ČR. URL: https://www.armadninoviny.cz/roboti-v-a rmade-cr.html (visited on 25/10/2019).
- Army Recognition (2018). Black Hornet micro-drones for Netherlands army scouts and marines. URL: https://www.armyrecognition.com/may_2018_global_defense_security_army_news_industry/black_hornet_micro-drones_for __netherlands_army_scouts_and_marines.html (visited on 11/10/2019).
- (2019). Expodefensa 2017: STM unveils Alpagu 2 tactical attack UAV. URL: https://armyrecognition.com/expodefen sa_2017_news_online_show_daily (visited on 14/10/2019).
- Army Technology (2019a). French DGA to procure FLIR Black Hornet 3 nano UAV and PRS. URL: https://www.army-technology.com/news/french-dga-flir-black-hornet-3-uav-prs/ (visited on 11/10/2019).
- (2019b). Bayraktar Mini Unmanned Aerial Vehicle. URL: https://www.army-technology.com/projects/bayraktaruav/ (visited on 14/10/2019).
- (2019c). Green Dragon Tactical Loitering Missile. URL: https://www.army-technology.com/projects/green-drago n-tactical-loitering-missile/ (visited on 14/10/2019).
- (2019d). Horus FT-100 Unmanned Aerial Vehicle (UAV). URL: https://www.army-technology.com/projects/horusft-100-unmanned-aerial-vehicle-uav/ (visited on 02/12/2019).
- Asia Pacific Defence News (2019). India acquires Black Hornet Nano world's smallest spy cam UAV. URL: https://asiapaci ficdefencenews.com/index.php/2018/11/03/india-acquires-black-hornet-nano-worlds-smallest-spycam-uav/ (visited on 11/10/2019).
- Australian Defence Magazine (2019). Industry pitches novel weapons and effects at Army's AID17. URL: https://www.austral iandefence.com.au/event-reporting/industry-pitches-novel-weapons-and-effects-at-army-s-aid17 (visited on 18/11/2019).
- Baek, Stanley & Ronald Fearing (2010). 'Flight Forces and Altitude Regulation of 12 gram I-Bird'. In: Proceedings of the IEEE RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. New York: IEEE, pp. 454–460. DOI: 10.1109/BIOROB.2010.5626347.

- Baykar (2019a). Baykar product catalogue. URL: https://www.baykarsavunma.com/upload/ingilizce/Baykar_catalo g_eng.pdf (visited on 14/10/2019).
- (2019b). Bayraktar Mini İHA. URL: https://www.baykarsavunma.com/iha-16.html (visited on 14/10/2019).
- Ben-Moshe, Boaz, Yael Landau, Revital Marbel et al. (2018). 'Bio-Inspired Micro Drones'. In: 2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE), pp. 1–5. DOI: 10.1109/ICSEE.2018.8645997.
- Bitcraze (2020). Crazyflie 2.1. URL: https://store.bitcraze.io/products/crazyflie-2-1 (visited on 12/11/2020).
- Blackbar Engineering (2019). STORM. URL: https://www.blackbarengineering.com/storm (visited on 26/11/2019).
- Bledsoe, Sofia (2015). *PEO workers receive Army acquisition awards*. URL: https://www.army.mil/article/148323/peo _workers_receive_army_acquisition_awards (visited on 25/10/2019).
- BlueBird Aero Systems (2020). MicroB. URL: http://www.bluebird-uav.com/microb/ (visited on 13/08/2020).
- Business Wire (2016). The Netherlands Ministry of Defence Awards AeroVironment Contract for Small Unmanned Aircraft Systems and Upgrades Valued at \$10.3 Million. URL: https://www.businesswire.com/news/home/20161031005408/en/Net herlands-Ministry-Defence-Awards-AeroVironment-Contract-Small (visited on 25/10/2019).
- C-Astral (2019a). Atlas ppX. URL: https://www.c-astral.com/en/unmanned-systems/atlas-ppx (visited on 14/10/2019).
- (2019b). Micro UAS ATLAS C4EYE in benchmark trials with NATO forces. URL: https://www.c-astral.com/en/newsro om/56/micro-uas-atlas-c4eye-in-benchmark-trials-with-nato-forces (visited on 14/10/2019).
- Christopher, James Kellogg, Christopher Bovais, Jill Dahlburg et al. (2001). 'The NRL MITE Air Vehicle'. In: *Proceedings of the Bristol RPV/AUV Systems Conference*. Bristol: University of Bristol.
- De Croon, G.C.H.E., M. Perçin B.D.W. Remes, R. Ruijsink et al. (2016). *The DelFly. Design, Aerodynamics, and Artificial Intelligence of a Flapping Wing Robot*. Dordrecht: Springer.
- Delft Dynamics BV (2015). DroneCatcher. URL: https://www.youtube.com/watch?v=sBWWrSL0z5Q (visited on 21/08/2020).
- (2016). DroneCatcher. URL: https://dronecatcher.nl/ (visited on 21/08/2020).
- Digital Trends (2017). AeroVironment's Snipe Nano Quadrotor is a Pocket-Sized Personal Drone. URL: https://www.digitalt rends.com/cool-tech/snipe-nano-drone-solider/ (visited on 11/10/2019).
- DJI (2019a). DJI Mavic Pro Spezifikationen, FAQ, Tutorials und Guides. URL: https://www.dji.com/de/mavic/info (visited on 03/10/2019).
- (2019b). Mavic Mini Technische Daten. URL: https://www.dji.com/de/mavic-mini/specs (visited on 22/11/2019).
- DroningON (2017). The \$40,000 Nano Drone Used By British, German and Norwegian Army. URL: https://www.droningon.co/2017/06/01/flir-pd-100-40k-nano-reconnaissance-drone/ (visited on 11/10/2019).
- ECD Confidencial Digital (2013). Dos mini UAV de última tecnología para la unidad de élite del Ejército del Aire. URL: https://www.elconfidencialdigital.com/articulo/defensa/UAV-tecnologia-unidad-Ejercito-Aire/20 131224120418071323.html (visited on 25/10/2019).
- Elbit Systems (2019a). Elbit Systems Introduces MAGNI, a Vehicle-Launched Multi-Rotor Micro-Drone. URL: https://elbits ystems.com/pr-new/elbit-systems-introduces-magni-a-vehicle-launched-multi-rotor-micro-drone/ (visited on 03/12/2019).
- (2019b). NOX. URL: https://elbitsystems.com/product/nox/ (visited on 03/12/2019).
- (2019c). THOR. URL: https://elbitsystems.com/product/thor/ (visited on 22/11/2019).
- (2020). MAGNI. URL: https://elbitsystems.com/product/magni/ (visited on 13/01/2020).
- EMT Penzberg (2019a). ALADIN UAV System. URL: https://www.emt-penzberg.de/en/produkte/aladin/aladin.html (visited on 14/10/2019).
- (2019b). FanCopter data sheet. URL: https://www.emt-penzberg.de/uploads/media/FANCOPTER_de_01.pdf (visited on 03/12/2019).
- Eshel, T. (2012). Sweden, Denmark Opt for PUMA AE, Wasp Mini-UAVs. URL: https://defense-update.com/20120612_sw eden-denmark-puma-wasp.html (visited on 25/10/2019).
- (2013). Sky Sapience Delivers the First Pre-Production Hovermast to the IDF. URL: https://defense-update.com/2013 0902_idf_receivehovermast.html (visited on 14/10/2019).
- (2016). IAI Introduces New Loitering Weapons for Anti-Radiation, Precision strike. URL: https://defense-update.com/2 0160215_loitering-weapons.html (visited on 14/10/2019).
- FLIR (2019a). FLIR Systems Awarded \$1.8 Million British Army Contract for Black Hornet 3 Personal Reconnaissance Systems. URL: https://www.flir.com/news-center/military/flir-systems-awarded-\$1.8-million-british-army-contract-for-black-hornet-3-personal-reconnaissance-systems/ (visited on 11/10/2019).
- (2019b). Black Hornet. URL: https://www.flir.com/products/black-hornet-prs/ (visited on 11/10/2019).
- (2020). SkyRanger R60. URL: https://www.flir.com/support/products/skyranger-r60#Resources (visited on 24/08/2020).

- Frantzman, S. (2019). Israel's Elbit sells over 1,000 mini-drones to Southeast Asian country. URL: https://www.defensenews.c om/unmanned/2019/10/09/israels-elbit-sells-over-1000-mini-drones-to-southeast-asian-country/ (visited on 03/12/2019).
- Gettinger, Dan (2019). The Drone Databook. URL: https://dronecenter.bard.edu/projects/drone-proliferation/d atabook/ (visited on 24/07/2020).
- Global Industries & Defence Solutions (2019). Scout data sheet. URL: http://www.gids.com.pk/UAV.pdf (visited on 02/12/2019).
- HobbyKing (2019). Skywalker X-6 FPV Wing EPO 1500mm (Kit). URL: https://hobbyking.com/en_us/skywalker-x-6-f pv-wing-epo-1500mm-kit.html?___store=en_us (visited on 24/10/2019).
- Hsiao, F.-Y., L.-J. Yang, S.-H. Lin et al. (2012). 'Autopilots for Ultra Lightweight Robotic Birds: Automatic Altitude Control and System Integration of a Sub-10 g Weight Flapping-Wing Micro Air Vehicle'. In: *Control Systems, IEEE* 32 (5), pp. 35–48. DOI: https://doi.org/10.1109/MCS.2012.2205475.
- IAI (2019). Green Dragon Mini Loitering Munition System. URL: https://www.iai.co.il/p/green-dragon (visited on 14/10/2019).
- — (2020). ROTEM Loitering Munition based on a Light Multi-Rotor Platform. URL: https://www.iai.co.il/p/rotem (visited on 12/08/2020).
- IDS (2019a). FlyFast 2.0 lightweight fixed wing UAV. URL: https://www.idscorporation.com/pf/flyfast-2-0/ (visited on 02/12/2019).
- (2019b). IA-3 Colibri UAV. URL: https://www.idscorporation.com/pf/ia-3-colibri/ (visited on 22/11/2019).
- IHS Jane's 360 (2017). DSA 2016: China details CH-901 UAV and loitering munition. URL: https://web.archive.org/web /20170413114223/http://www.janes.com:80/article/59623/dsa-2016-china-details-ch-901-uav-and-l oitering-munition (visited on 14/10/2019).
- (2019). Smart weapons for the battlefield [ES18D1]. URL: https://www.janes.com/article/80783/smart-weaponsfor-the-battlefield-es18d1 (visited on 14/10/2019).
- InstantEye Robotics (2019). InstantEye Mk-3 Systems. URL: https://instanteyerobotics.com/products/gen3/ (visited on 17/10/2019).

Integrated Dynamics (2019a). Desert Hawk. URL: http://idaerospace.com/desert-hawk/ (visited on 22/11/2019).

- (2019b). Rover Mk I. URL: http://idaerospace.com/rover-mk-i/ (visited on 05/12/2019).

- ISPRA (2019). *Riot Control Drone System*. URL: http://www.ispraltd.com/Riot%2DControl%2DDrone%2DSystem.html (visited on 25/10/2019).
- Jafferis, Noah T., E. Farrell Helbling, Michael Karpelson et al. (2019). 'Untethered Flight of an Insect-Sized Flapping-Wing Microscale Aerial Vehicle'. In: *Nature* 570.7762, pp. 491–495. DOI: 10.1038/s41586-019-1322-0.
- Jane's 360 (2017). STM begins serial production of loitering munitions. URL: https://web.archive.org/web/201710232 10739/https://www.janes.com/article/75140/stm-begins-serial-production-of-loitering-munitions (visited on 14/10/2019).
- (2019). Desert Hawk baby arrives. URL: https://www.janes.com/article/54619/desert-hawk-baby-arrives-ds ei15-d4 (visited on 14/11/2019).
- Julian, R.C., C.J. Rose, H. Hu et al. (2013). 'Cooperative control and modeling for narrow passage traversal with an ornithopter MAV and lightweight ground station'. In: 12th International Conference on Autonomous Agents and Multiagent Systems 2013, AAMAS 2013 1, pp. 103–110.
- Karásek, Matěj, Florian T. Muijres, Christophe De Wagter et al. (2018). 'A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns'. In: Science 361.6407, pp. 1089–1094. DOI: 10.1126/science.aat0350.
- Kasyanov, Yuriy (2019). Facebook post. URL: https://www.facebook.com/brtcomua/posts/1884605578266754 (visited on 26/11/2019).
- Keennon, Matthew, Karl Klingebiel & Henry Won (2012). 'Development of the Nano Hummingbird: A Tailless Flapping Wing Micro Air Vehicle'. In: 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. DOI: 10.2514/6.2012-588.
- Kellogg, J., C. Bovais, R. Foch et al. (2002). 'The NRL micro tactical expendable (MITE) air vehicle'. In: *The Aeronautical Journal* 106.1062, pp. 431–442. DOI: 10.1017/S000192400009223X.
- LaGrone, Sam (2016). UPDATED: AeroVironment to Supply Blackwing Mini UAVs for Navy Attack, Guided Missile Submarines. URL: https://news.usni.org/2016/05/16/aerovironment-to-supply-blackwing-mini-uavs-for-navy-att ack-guided-missile-submarines (visited on 11/10/2019).
- Leonardo (2019). CREX-B. URL: https://www.leonardocompany.com/en/products/crex-b (visited on 22/11/2019).
- Lockheed Martin (2017). Law Enforcement Pioneer Use of Lockheed Martin Indago Unmanned Aerial System with Project Lifesaver International. URL: https://news.lockheedmartin.com/2017-05-10-Law-Enforcement-Pioneer-Use -of-Lockheed-Martin-Indago-Unmanned-Aerial-System-with-Project-Lifesaver-International (visited on 14/10/2019).

- Lockheed Martin (2019a). Desert Hawk Brochure. URL: https://www.lockheedmartin.com/content/dam/lockheed-mar tin/rms/documents/desert-hawk/Desert_Hawk_Brochure.pdf (visited on 25/11/2019).
- (2019b). Indago Brochure. URL: https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/photo /procerus/Indago-brochure.pdf (visited on 25/10/2019).
- Ma, Kevin Y., Pakpong Chirarattananon, Sawyer B. Fuller et al. (2013). 'Controlled Flight of a Biologically Inspired, Insect-Scale Robot'. In: *Science* 340.6132, pp. 603–607. DOI: 10.1126/science.1231806.
- MAVLab TU Delft (2019a). DelFly. URL: http://www.delfly.nl/ (visited on 18/12/2019).
- (2019b). DelFly Micro. URL: http://www.delfly.nl/micro/ (visited on 18/12/2019).
- Military.com (2016). Marines Testing Out World's Smallest Drone. URL: https://www.military.com/defensetech/2016/0 9/27/marines-are-testing-out-the-worlds-smallest-drone (visited on 11/10/2019).
- N., Leigh (2019). DefendTex Drone-40 The Australian UAV That Can Be Fired From a 40mm Grenade Launcher. URL: https://www.overtdefense.com/2019/06/07/defendtex-drone-40-the-australian-uav-that-can-be-fir ed-from-a-40mm-grenade-launcher (visited on 18/11/2019).
- Naval Drones (2019a). RQ-12A Wasp AE UAV. URL: http://www.navaldrones.com/Aqua-Wasp.html (visited on 11/10/2019).
- (2019b). Blackwing. URL: http://www.navaldrones.com/Blackwing.html (visited on 11/10/2019).
- Novadem (2019). NX70. URL: https://novadem.online/en/nx70-defense-en/ (visited on 14/10/2019).
- O'Kane, S. (2019). The Mavic Mini is DJI's first drone that doesn't need FAA registration. URL: https://www.theverge.com /2019/10/30/20938530/dji-mavic-mini-price-specs-faa-ultra-light-combo-pack (visited on 22/11/2019).
- Pointon, J. M. (2018). Integration of NZDF Remotely Piloted Aircraft Systems (RPAS) into New Zealand Civil Airspace. URL: https://www.dta.mil.nz/assets/publication/a2a9062112/Report430.pdf (visited on 03/02/2021).
- Pornsin-Sirirak, T., Yu-Chong Tai, Chih-Ming Ho et al. (2001). 'Microbat: A Palm-Sized Electrically Powered Ornithopter'. In: *Proceedings of NASA/JPL Workshop on Biomorphic Robotics*.
- Rafael (2019). Spike Firefly brochure. URL: https://www.rafael.co.il/wp-content/uploads/2019/03/FIREFLY.pdf (visited on 14/10/2019).
- Ramezani, A., S.-J. Chung & S. Hutchinson (2017). 'A biomimetic robotic platform to study flight specializations of bats'. In: *Science Robotics* 2 (3). DOI: https://doi.org/10.1126/scirobotics.aal2505.
- Raytheon (2019). Coyote UAS. URL: https://www.raytheon.com/capabilities/products/coyote (visited on 25/10/2019).
- Roshanbin, A., H. Altartouri, M. Karásek et al. (2017). 'COLIBRI: A hovering flapping twin-wing robot'. In: *International Journal of Micro Air Vehicles* 9.4, pp. 270–282. DOI: 10.1177/1756829317695563.
- SCR (2019a). Aster-T data sheet. URL: https://scrdrones.com/wp-content/uploads/2019/11/FOLLETO-ASTER-T-CAUTIVO-EN.pdf (visited on 13/12/2019).
- (2019b). SCR and Everis ADS present the ASTER-T at the UME. URL: http://scrdrones.com/en/scr-everis-ads-tr ial-aster-t-to-ume/ (visited on 14/10/2019).
- Shkarayev, Sergey V., Peter G. Ifju, James C. Kellogg et al. (2007). *Introduction to the Design of Fixed-Wing Micro Air Vehicles*. *Including Three Case Studies*. Reston, Virgina: American Institute of Aeronautics and Astronautics. DOI: https://doi.org /10.2514/4.862106.
- Sky Sapience (2019). *HoverMast 100*. URL: https://www.skysapience.com/defense-products/drone/hovermast-100 (visited on 25/10/2019).
- Skyborne Technologies (2019). Cerberus GL. URL: https://skybornetech.com/cerberus-gl (visited on 26/11/2019).
- Skywalker (2019). Skywalker X6. URL: http://skywalkermodel.com/en/79.html (visited on 24/10/2019).
- Soldier Systems (2019). SOFIC 19 DefendTex Drone-40. URL: http://soldiersystems.net/2019/05/24/sofic-19-de fendtex-drone-40/ (visited on 18/11/2019).
- Spaitech (2019). Sparrow Brochure. URL: https://spaitech.net/sparrow_eng.pdf (visited on 04/12/2019).
- Stevenson, B. (2017). UAV Insect Repellent. URL: https://armadainternational.com/2017/09/uav-insect-repellen t/ (visited on 11/10/2019).
- STM (2019a). Alpagu. URL: https://www.stm.com.tr/en/products/alpagu (visited on 14/10/2019).
- (2019b). Alpagu Blok II. URL: https://www.stm.com.tr/en/products/alpagu-blok-ii (visited on 14/10/2019).
- (2019c). Kargu. URL: https://www.stm.com.tr/en/products/kargu (visited on 14/10/2019).
- Streetly, Martin & Beatrice Bernadi (2018). Jane's All the World's Aircraft Unmanned Yearbook 2018-2019. Coulsdon: IHS Markit.
- sUAS News (2018). The Next-Generation Aeryon SkyRanger R80. URL: https://www.suasnews.com/2018/05/the-next-g eneration-aeryon-skyRanger-r80/ (visited on 24/08/2020).

- sUAS News (2019a). Novadem NX70 micro-UAVs have arrived in operations. URL: https://www.suasnews.com/2019/09/no vadem-nx70-micro-uavs-have-arrived-in-operations/ (visited on 14/10/2019).
- -- (2019b). Zala Lancet loitering munition. URL: https://www.suasnews.com/2019/06/zala-lancet-loitering-munition/ (visited on 14/10/2019).
- Threod (2019a). KX-4 Interceptor. URL: https://threod.com/product/kx-4-interceptor/ (visited on 25/10/2019).
- (2019b). Titan. URL: https://threod.com/product/kx-4-le-titan/ (visited on 25/10/2019).
- (2019c). Titan UAV and THeMIS UGV deployed in Mali, Africa. URL: https://threod.com/titan-and-themis-deploy ed-in-mali/ (visited on 11/10/2019).
- UAV Solutions (2019). Compact Expendable Unmanned Aerial Vehicle (CEUAV). URL: https://uav-solutions.com/unman nedaircraft/ceuav/ (visited on 14/10/2019).
- Uconsystem (2019a). *REMOEYE-002B*. URL: http://www.uconsystem.com/eng/products/military/remoeye-002b.a sp (visited on 25/10/2019).

- (2019b). T-Rotor. URL: http://www.uconsystem.com/eng/products/military/trotor.asp (visited on 23/11/2019).

- Ukrspecsystems (2020). PC-1 Multirotor drone data sheet. URL: http://www.ukrspecsystems.com/pc-1/ (visited on 22/08/2020).
- Unmanned Systems Technology (2016). Australian Armed Forces to Adopt AeroVironment's Wasp AE sUAS. URL: https://www .unmannedsystemstechnology.com/2016/09/australian-armed-forces-to-adopt-aerovironments-wasp-a e-suas/ (visited on 25/10/2019).
- US Strategic Capabilities Office (2019). Perdix Fact Sheet. URL: https://dod.defense.gov/Portals/1/Documents/pubs /Perdix%20Fact%20Sheet.pdf?ver=2017-01-09-101520-643 (visited on 25/10/2019).

UVision (2019a). Hero-20. URL: https://uvisionuav.com/portfolio-view/hero-20/ (visited on 14/10/2019).

- (2019b). Hero-30, Lethal Miniature Aerial Missile System (LMAMS). URL: https://uvisionuav.com/portfolio-view /hero-30/ (visited on 14/10/2019).
- -- (2019c). Hero-70, Loitering Weapon Systems. URL: https://uvisionuav.com/portfolio-view/hero-70/ (visited on 14/10/2019).
- WB Group (2019a). Amunicja krążąca WARMATE TL. URL: https://www.wbgroup.pl/produkt/warmate-tube-launch/ (visited on 24/10/2019).
- (2019b). WARMATE loitering munitions. URL: https://www.wbgroup.pl/en/produkt/warmate-loitering-munnitions/ (visited on 14/10/2019).
- (2019c). Warmate R. URL: https://www.wbgroup.pl/en/produkt/warmate-r/ (visited on 14/10/2019).
- (2019d). WARMATE V loitering munitions. URL: https://www.wbgroup.pl/en/produkt/warmate-v-loitering-mun itions-system/ (visited on 14/10/2019).
- ZALA Aero (2019a). Loitering munition 'KYB-UAV'. URL: https://zala-aero.com/en/production/bvs/kyb-uav/ (visited on 14/10/2019).
- (2019b). Unmanned aerial vehicle ZALA LANCET-1. URL: https://zala-aero.com/en/production/bvs/zala-lance t-1/ (visited on 14/10/2019).