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Abstract
The aim of this paper is to classify the cubic polynomials

H(z, x, y) =
∑

j+k≤3

a jk(z)x j yk

over the field of algebraic functions such that the corresponding Hamiltonian system
x ′ = Hy, y′ = −Hx has at least one transcendental algebroid solution. Ignoring trivial
subcases, the investigations essentially lead to several non-trivial Hamiltonians which
are closely related to Painlevé’s equations PI, PII, P34, and PIV. Up to normalisation
of the leading coefficients, common Hamiltonians are

HI : −2y3 + 1
2 x2 − zy

HII/34 : x2y − 1
2 y2 + 1

2 zy + κx

HIV : x2y + xy2 + 2zxy + 2κx + 2λy
1
3 (x3 + y3) + zxy + κx + λy,

but the zoo of non-equivalent Hamiltonians turns out to be much larger.
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1 Introduction

Malmquist’s so-called First Theorem [6] singles out (linear and) Riccati differential
equations

w′ = a0(z) + a1(z)w + a2(z)w
2 (1)

among the variety of differential equations

w′ = R(z, w) (R rational) (2)

by postulating the existence of some transcendental meromorphic solution (always in
the whole plane). For a long time, Malmquist’s theorem was viewed as a singular and
isolated result in the field of complex differential equations. With Nevanlinna theory
as a tool it became the template for various theorems of this kind. Instead of citing the
legion of original papers the reader is referred to Laine’s monograph [5] and the more
recent book [8].

If R is merely rational in w with coefficients analytic on some planar domain,
the very same result is obtained by postulating the absence of movable critical and
essential singularities of the solutions. This is abbreviated by saying that among the
Eqs. (2) only (1) has the Painlevé property. For the first- and second-order case (Fuchs
and Painlevé, respectively) the reader is referred to the books of Ince [3] and Golubew
[1]. It is quite reasonable to believe that (algebraic) differential equations having
the Painlevé property may also be characterised by the aforementioned Malmquist
property, although the situation is quite different: arbitrary analytic versus rational
coefficients ononehand, and the totalityof solutions versusone transcendental solution
on the other.

The nature of the problemmakes the appearance of ‘many-valued’ algebroid instead
of ‘single-valued’ meromorphic functions inevitable. One of our main tools will there-
fore be theSelberg–Valiron theoryof algebroid functions in place ofNevanlinna theory.
The interested reader will find a rudimentary description in the appendix at the end of
this paper.

2 Six Theorems of Malmquist-Type

The aim of this paper is to support the aforementioned duality principle by proving
Malmquist-type theorems for two-dimensional Hamiltonian systems

x ′ = Hy(z, x, y), y′ = −Hx (z, x, y) (3)

with cubic Hamiltonians

H(z, x, y) =
∑

j+k≤3

a jk(z)x j yk (4)
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Malmquist-Type Theorems for Cubic Hamiltonians

over the field of algebraic functions. It is nothing more than an exercise to show
that our results may be generalised insofar as the terms ‘algebraic coefficients’ and
‘transcendental algebroid solutions’ may be replaced with ‘algebroid coefficients’
and ‘admissible algebroid solutions’, that is, solutions that grow much faster than the
coefficients measured in terms of the Selberg–Valiron characteristic. AnyHamiltonian
(4) such that the corresponding Hamiltonian system possesses some transcendental
algebroid solution is said to have the Malmquist property.

We will start with polynomials

H(z, x, y) = 1
3 (x3 + y3) +

∑

j+k≤2

a jk(z)x j yk .

Replacing x and y with x − a20 and y − a02, respectively, the corresponding Hamil-
tonian system may easily be transformed into

x ′ = y2 + cx + a

y′ = −x2 − cy − b
(5)

with Hamiltonian

H(z, x, y) = 1
3 (x3 + y3) + c(z)xy + b(z)x + a(z)y. (6)

This system has the Painlevé property if and only if

c′′ = a′ = b′ ≡ 0 (7)

holds, see Kecker [4]. Of course, the trivial case a = b = c = 0 will be excluded.

Theorem 1 Suppose the Hamiltonian (6) has the Malmquist property. Then the reso-
nance condition

c′′(z) + ωb′(z) − ω̄a′(z) ≡ 0 (8)

holds for either one or two or all third roots of unity (ω3 = 1). In the third case, (6)
certainly has the Malmquist and Painlevé property (7).

The question whether or not just one or two of the necessary conditions (8) are also
sufficient for the polynomial (6) to have the Malmquist resp. Painlevé property will
be answered in the following theorem.

Theorem 2 Suppose the necessary condition (8) holds

(i) for ω = 1, say, but not for ω = e±2π i/3;
(ii) for ω = e±2π i/3, say, but not for ω = 1.
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Then (6) has the Malmquist property in both cases. In case (ii), the necessary condition
b = −a holds in addition to the Painlevé property, while in case (i) even

x + y − c = c′ + b − a ≡ 0

is true, but the Painlevé property fails.

Remark In case (i), x satisfies some Riccati differential equation

x ′ = x2 − cx + a − c2.

Then (x, c − x) solves (5), but is ‘too weak’ to enforce the Painlevé property. In any
other case with c(z) = z, say, and a and b constant, x + y − c satisfies some second-
order differential equation which is closely related to Painlevé’s fourth differential
equation

2ww′′ = w′2 + 3w4 + 8zw3 + 4(z2 − α)w2 + 2β, (PIV)

see [7]. Moreover, in case (ii) the functions ω̄x +ωy −c (ω = e±2π i/3) satisfy simple
Riccati equations.

Next we will consider the (already simplified) polynomials

H(z, x, y) = a(z)y + b(z)xy + 1
2 x2 − 2y3 (9)

containing only one third power.

Theorem 3 Suppose the Hamiltonian (9) has the Malmquist property. Then the coef-
ficients a and b are coupled,

a = −α + 1
24 (−2b′′′ + 4bb′′ + 3b′2 + 2b2b′ − b4), (10)

where α is linear; in that case the corresponding Hamiltonian system has the Painlevé
property without any restriction on b.

Remark If α is non-constant we may assume α(z) = z by a linear change of the
independent variable. Then w = y + β/12 with β = b2 − b′ satisfies Painlevé’s first
equation

w′′ = z + 6w2, (PI)

hence y is transcendental algebroid and so is x = −y′ − by, and the Malmquist and
Painlevé property hold. Nevertheless the occurrence of the Hamiltonians with b �≡ 0
is really surprising.

123



Malmquist-Type Theorems for Cubic Hamiltonians

By

x = u + 1
12bβ, y = v − 1

12β (β = b2 − b′)

the Hamiltonian (9) is transformed into

K (z, u, v) = (
a − 1

24β
2 + 1

12b2β
)
v + 1

2u2 + buv + 1
2βv2 − 2v3. (11)

Our next Theorem shows that the Hamiltonian systems corresponding to (9) and (11)
simultaneously can have the Malmquist (and Painlevé) property in very special cases
only. In particular, this shows that in general neither the Malmquist nor the Painlevé
property is invariant under a linear change of variables of the Hamiltonian.

Theorem 4 Suppose the Hamiltonians (9) and (11) have the Malmquist property. Then
b is either constant or has the form

b(z) = R

z − z0
(R = −1 or R = 6).

Under these circumstances both Hamiltonian systems have the Painlevé property.

We note the different cases explicitly:

−
(
α(z) + b4

24

)
y + 1

2 x2 + bxy − 2y3;
−α(z)y + 1

2 x2 − xy
z−z0

− 2y3;
−

(
α(z) + 105

2(z−z0)4

)
y + 1

2 x2 + 6xy
z−z0

− 2y3;

b and z0 are arbitrary constants, and α is constant or linear.
Finally we will consider cubic polynomials with dominating terms x2y, xy2, again

in simplified form:

H(z, x, y) = x2y − 1
2 y2 + a(z)x2 + b(z)xy + c(z)x + d(z)y (12)

and

H(z, x, y) = x2y + xy2 + c(z)xy + b(z)y + a(z)x (13)

(a, b, c, d algebraic functions). The reader will not have any difficulty to adapt the
proofs to more sophisticated cases.

Theorem 5 Suppose the Hamiltonian (12) has the Malmquist property. Then u =
x + b/2 and v = y + a separately solve second-order differential equations

u′′ = α + βu + 2u3 (14)
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and

2vv′′ − v′2 = 4v3 − 2βv2 + (β ′′ − 2α′)v − 1
4 (β

′ − 2α)2, (15)

respectively. The coefficients

β = 2a + b′ − 1
2b2 + 2d and α = −ab + c − a′ + 1

2β
′ (16)

satisfy either (i) α = ±β ′/2 for one sign or else (ii) α′ = β ′′ ≡ 0.

Remark In the second case of Theorem 5, Eq. (15) takes the form

2vv′′ − v′2 = 4v3 − 2βv2 − λ;

λ = (2α − β ′)2/4 is constant. In particular, each Hamiltonian with α′ = β ′′ ≡ 0 has
the Malmquist and Painlevé property. In the most important case β(z) = z (remember
β ′′ = 0) we obtain Painlevé’s equation

2vv′′ = v′2 + 4v3 − 2zv2 + (
α − 1

2

)2
, (P34)

which is closely related to equation XXXIV in Ince’s book [3, p. 340], and, of course,
Painlevé’s second equation

u′′ = α + zu + 2u3. (PII)

Theorem 6 Suppose the Hamiltonian (13) has the Malmquist property. Then either
the Painlevé property

c′′ = a′ = b′ ≡ 0

or else x + y − c ≡ 0 holds.

Remark In the most important case c(z) = z and a and b constant, x and y sepa-
rately satisfy Painlevé equations PIV. In the exceptional case, x and y satisfy Riccati
equations

x ′ = −x2 + 3c(z)x + b(z) and y′ = −y2 − 3c(z)y − a(z).

3 Proof of Theorem 1

From

x ′ = y2 + cx + a

y′ = −x2 − cy − b
(17)
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it follows that our algebroid solutions satisfy 2m(r , y) ≤ m(r , x)+ O(log(rT (r , x)))

and 2m(r , x) ≤ m(r , y) + O(log(rT (r , y))), hence

m(r , x) + m(r , y) = O(log(rT (r , x)) + log(rT (r , y)))

(for notations and results in Nevanlinna–Selberg–Valiron theory see the appendix). In
particular, x and y have infinitely many poles. It is easily seen that the poles of (x, y)

are simple with residues (−ω̄, ω) restricted to ω3 = 1. Assuming

x = −ω̄
1

t
+ ξ0 + ξ1t + ξ2t2 + · · ·

y = ω
1

t
+ η0 + η1t + η2t2 + · · ·

(t = z − p)

it turns out that ξ0, η0, ξ1, and η1, but not ξ2 and η2 may be computed (and one of
these numbers may be prescribed), but the resonance condition

c′′(p) + ω̄b′(p) − ωa′(p) = 0[1]
1 is obtained instead. Thus (8) holds if infinitely many poles with residues (−ω̄, ω)

exist, and a′ = b′ = c′′ ≡ 0 if this is true for each third root of unity. It is, however,
not at all clear that the poles are regular (not branched)! To exclude this case let p be
any pole of (x, y) with residues (−ω̄, ω) and assume that a, b, and c are regular at
z = p, but x and/or y have a branched pole there:

x = −ω̄

t
+

∞∑

j=−q+1

ξ j t
j/q and y = ω

t
+

∞∑

j=−q+1

η j t
j/q (t = z − p).

Let n and m denote the first index, if any, such that n �≡ 0 mod q, ξn �= 0 and m �≡ 0
mod q, ηm �= 0. Then the first branched terms

n
q ξnt−1+n/q and m

q ηmt−1+m/q

on the left hand sides of the Hamiltonian system (17) are equal to the first branched
terms

2ωηmt−1+m/q and 2ω̄ξnt−1+n/q

on the right hand sides corresponding to y2 and −x2, respectively. This implies

n = m, nξn = 2qωηn, and nηn = 2qω̄ξn,

hence also n2 = 4q2, which contradicts n �≡ 0 mod q and proves Theorem 1.

1 Assuming the Painlevé property this holds for every p in the domain of the coefficients and every third
root of unity, see [4]. This illuminates the difference between both concepts.
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4 Proof of Theorem 2

In the first case, (x, y) has simple poles with residues (−1, 1) and almost no others,
hence

x = −(z − p)−1 + 1
2c(p) + ( 1

4c(p)2 + c′(p) − 1
3a(p) + 2

3b(p)
)
(z − p) + · · ·

y = (z − p)−1 + 1
2c(p) − ( 1

4c(p)2 − c′(p) + 2
3a(p) − 1

3b(p)
)
(z − p) + · · ·

holds, and we obtain

x + y − c(z) = (c′(p) + b(p) − a(p))(z − p) + · · ·

at almost every pole. Then x + y − c has at most finitely many poles, and from
m(r , x+y−c) = O(log r+log T (r , x)+log T (r , y)) andm(r , c′+b−a) = O(log r)

it follows that

x + y − c and c′ + b − a

vanish identically. Also x and y satisfy Riccati differential equations

x ′ = a + c2 − cx + x2 and y′ = −b − c2 + cy − y2, (18)

respectively. Conversely, starting with any solution x to the first equation (18), the pair
(x, c − x) solves the Hamiltonian system provided c′ + b − a ≡ 0 holds. This yields
the Malmquist property.

In the second case the substitution u = ω̄x +ωy −c, v = ωx + ω̄y −c, ζ = i z/
√
3

transforms the given Hamiltonian system (17) into

u′ = −c′ + A − 3cu − 2uv − u2

v′ = −c′ + B + 3cv + 2uv + v2
(19)

with A = (ω − 1)a + (ω̄ − 1)b, B = (1 − ω̄)a + (1 − ω)b, and Hamiltonian

(c′ − B ′)u + (A − c′)v − 3cuv − u2v − uv2.

The functions u and v can have only finitely many poles in common. The second
equation (19) shows that v even vanishes at almost every pole of u (since uv has to be
regular), and from resp u = 1 it follows that −v′(p) = B(p) − c′(p) and so

uv ≡ c′ − B

sincem(r , uv) = O(log r+log T (r , x)+log T (r , y)). Similarly u′(q) = A(q)−c′(q)

is obtained at poles of v (resq v = −1), hence

uv ≡ A − c′,
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and

2c′ = A + B = i
√
3(a − b) and 2c′′ = i

√
3(a′ − b′)

holds. On the other hand the hypothesis c′′ + ωb′ − ω̄a′ ≡ 0 for ω = e±2π i/3 implies
c′′ = b′ = −a′, hence c′′ = b′ = a′ ≡ 0, this proving the Malmquist and Painlevé
property. We note that (19) together with uv = A − c′ = c′ − B imply the Riccati
differential equations

u′ = c′ − A − 3cu − u2 and v′ = c′ − B + 3cv + v2.

5 Proof of Theorem 3

From the Hamiltonian system

x ′ = a + bx − 6y2

y′ = −by − x
(20)

the second-order equation

y′′ = −a + (b2 − b′)y + 6y2

is easily obtained: differentiate the second equation in (20) and then eliminate x and
x ′. The substitution w = y + 1

12β with β = b2 − b′ leads to

w′′ = α(z) + 6w2 (21)

with

α = −a + 1
12β

′′ − 1
24β

2. (22)

To proceed we will derive the resonance condition α′′ = 0, which holds for alge-
braic α and algebroid solutions to (21) as well as for rational α and transcendental
meromorphic solutions; here the argument is due to Wittich [9]. From

6|w|2 ≤ |α(z)| + |w| |w
′′|

|w′|
|w′|
|w|

it follows that m(r , w) = O(log(rT (r , w))) as r → ∞ outside possibly some excep-
tional set, hence w has infinitely many poles. Assuming

w(z) = 1

(z − p)2
+

∞∑

j=−1

c j (z − p) j ,
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an elementary computation gives c−1 = c0 = c1 = 0, c2 = −α(p)/10, and c3 =
−α′(p)/6, while c4 remains undetermined (and free), but

w′′ − α(z) − 6w2 = − 1
2α

′′(p)(z − p)2 + O((z − p)3) (z → p)

holds instead. This requires α′′(p) = 0, and since w has infinitely many poles and α

is algebraic, the assertion α′′ ≡ 0 follows. Again we have to assure that the poles p
of w are not branched, at least when α is regular at z = p. To this end write

w(z) = 1

(z − p)2
+

∞∑

j=−2q+1

c j (z − p) j/q

and let n denote the smallest index, if any, such that cn �= 0 and n �≡ 0 mod q. Then
the first branched terms on the left and right hand side of the differential equation (21)
are

n
q

(
n
q − 1

)
cn(z − p)−2+n/q and 12cn(z − p)−2+n/q .

Thus ξ = n/q satisfies ξ2−ξ = 12, which is absurd since the roots ξ = 4 and ξ = −3
are integers. This finishes the proof of Theorem 3 since

2β ′′ − β2 = −2b′′′ + 4bb′′ + 3b′2 + 2b2b′ − b4.

6 Proof of Theorem 4

From

u′ = (
a − 1

24β
2 + 1

12b2β
) + bu + βv − 6v2

v′ = −u − bv

the second-order differential equation

v′′ = (−a + 1
24β

2 − 1
12b2β

) + 6v2

easily follows, hence

α1 = −a + 1
24β

2 − 1
12b2β (23)

is also linear. In combination with (22) we obtain

β2 − b2β − β ′′ = 12(α1 − α), (24)

hence b satisfies the differential equation

� = b′′′ − 2bb′′ − b′2 − b2b′ = κz + λ. (25)
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The proof of Theorem 4 then follows from the subsequent

Proposition Algebraic solutions to (25) do not exist if κz + λ �≡ 0. If κ = λ = 0, the
non-constant algebraic solutions have the form

b(z) = R

z − z0
(R = −1 or R = 6, z0 arbitrary). (26)

Proof Let b be any algebraic solution with p-fold pole at z = z0. Then the single
terms in (25) have poles of order p + 3, 2p + 2, 2p + 2, and 3p + 1, respectively. For
p > 1, 3p + 1 dominates the other orders, while for p < 1 this role is taken by p + 3.
This means p = 1 and b(z) ∼ R/(z − z0) as z → 0 with

− 6R − 4R2 − R2 + R3 = 0, (27)

hence R = −1 or R = 6. Now suppose

b(z) = R

z − z0
+ c(z − z0)

q + o(|z − z0|q) as z → z0 (c �= 0)

is any local solution, where q > −1 is some rational number. Then (25) yields

�(z) = (R3 − 5R2 − 6R)z−4 + J (R, q) c(z − z0)
q−3 + o(|z − z0|q−3)

as z → z0 with

J (R, q) = 4R − 2R2 − (2 + 4R − R2)q + (3 + 2R)q2 − q3.

This requires (27) and

J (6, q) = − 48 + 10q + 15q2 − q3 = 0 resp.

J (−1, q) = − 6 + 3q + q2 − q3 = 0

if κ = λ = 0.2 Apart from q = −2 < −1 in both cases, the roots are irrational
(q = (17±√

193)/2) and non-real (q = (3± i
√
3)/2), respectively, which is absurd.

Non-constant algebraic solutions have either finite poles or a pole at infinity of order
p > 0, say. Here the term −b2b′ ∼ cz3p−1 dominates the other terms which are
O(|z|2p−2) = o(|z|3p−1) as z → ∞ and inhibits � ≡ 0. This proves (26) for non-
constant solutions in case of κ = λ = 0. We have to exclude the case |κ| + |λ| > 0.
Here

�(z) = J (R, q) c(z − z0)
q−3 + o(|z − z0|q−3) = κz0 + λ + κ(z − z0)

2 Like many other computations also these were performed by my favourite toolmaple.
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requires q = 3 and J (R, 3) c = κz0 +λ if κz0 +λ �= 0, and q = 4 and J (R, 4) c = κ

if κz0 + λ = 0. This way we get a unique formal solution

R

z − z0
+

∞∑

q=3

cq(z − z0)
q

by successively solving rather elaborate equations

J (R, q) cq = �q(c3, . . . , cq−1) (q = 4, 5, . . .)

for cq ; this is possible since J (R, q) �= 0 for q ∈ N and R = −1, 6. Thus our algebraic
function b has no finite algebraic poles. To exclude other algebraic singularities, that
is, to prove that b is a rational function, it does not suffice to indicate that every initial
value problem � = κz + λ, b(z0) = b0, b′(z0) = b1, b′′(z0) = b2 has a unique local
solution. Assume

b(z) =
∞∑

ν=0

cν(z − z0)
ν/q

and let n denote the smallest integer, if any, such that cn �= 0 and n �≡ 0 mod q; call
this n index of b. Then b′′′ has index n − 3q, while the indices of bb′′, b′2, and b2b′
are ≥ n − 2q, which is not possible. Also at z = ∞,

−b2b′ + o(|b2b′|) = κz + λ (z → ∞)

holds, and again we obtain a contradiction since |κ| + |λ| > 0 was assumed. This
finishes the proof of the proposition. �

To finish the proof of Theorem 4 we just note that for any (local) solution to the
Hamiltonian systems x ′ = Hy, y′ = −Hx resp. u′ = Kv, v

′ = −Ku ,

w = y + 1
12b2, w = y, w = y + 7

2 z−2 resp. v

solve Painlevé’s first equation w′′ = α(z) + 6w2 resp. v′′ = α(z) + 6v2 (with the
very same α). Thus y and v are meromorphic in C, and so are u = −v′ − bv and
x = −y′ − by, hence H has the Malmquist (and Painlevé) property.

7 Proof of Theorem 5

Starting with the Hamiltonian system

x ′ = x2 − y + bx + d

y′ = −2xy − 2ax − by − c
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we obtain

u′ = u2 − v + a + d + 1
2b′ − 1

4b2

v′ = −2uv + ab + a′ − c
(28)

by the transformation

u = x + 1
2b, v = y + a.

Then (14) and (15) with coefficients (16) are obtained in the usual way from (28):
differentiate the first and second equation and replace the variable v and u with the help
of the second and first equation, respectively. To proceed we note that any algebroid
solution to (14) has infinitely many poles, almost all of them simple with residues ±1.
The latter follows by inspection, while the former stems from the dominating term
2u3, which immediately implies

m(r , u) = O(log(rT (r , u))).

Proposition Suppose the differential equation (14) has some transcendental algebroid
solution having infinitely many poles with residue ε ∈ {−1, 1}. Then

α′ = 1
2εβ

′′ (29)

holds, and

α′ = β ′′ ≡ 0 (30)

if u has infinitely many poles also with residue −ε. Otherwise u satisfies

u′ = − 1
2εβ − εu2 and α = 1

2εβ
′. (31)

Proof Let p be a pole of u with residue ε and assume that α and β are regular at z = p.
Then

u(z) = ε(z − p)−1 − 1
6εβ(p)(z − p) − 1

2 (α(p) + εβ ′(p))(z − p)2 + c3(z − p)3 + · · ·

and

u′′ − α(z) − β(z)u − 2u3 = − 1
2 (2α

′(p) − εβ ′′(p))(z − p) + O(|z − p|2)

hold. Thus

u′′ − α(z) − β(z)u − 2u3, 2α′ − εβ ′′ and u′ + εu2 + 1
2εβ
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vanish at z = p. If u has infinitely many poles with residue ε, (29) follows at once,
and also (30) if u in addition has infinitely many poles with residue −ε. If, however,
only finitely many poles with residue −ε exist,

� = u′ + εu2 + 1
2εβ

vanishes identically since � has at most finitely many poles, vanishes at almost each
pole of u with residue ε, and has characteristic

T (r ,�) ≤ 2m(r , u) + O(log r) = O(log(rT (r , u)))

as r → ∞, possibly outside some set of finite measure. �

8 Proof of Theorem 6

Hamiltonians H(z, x, y) and

K (z, u, v) = k H(z, au + bv, cu + dv)

with a, b, c, d, k ∈ C and k(ad − bc) �= 0 simultaneously have or fail to have the
Malmquist resp. Painlevé property. Choosing a = d = 1, b = c = λ = e2π i/3, and
k = −1/3 we obtain

K (z, u, v) = − 1
3 (λa + b)u − 1

3 (a + λb)v − 1
3λc(u2 − uv + v2) + 1

3u3 + 1
3v

3

and

u′ = − 1
3 (a + λb) − 2

3λcv + 1
3cu + v2

v′ = 1
3 (λa + b) + 2

3λcu − 1
3cv − u2.

(32)

By u = U + λc/3 and v = V + λc/3, system (32) is transformed into

U ′ = A + CU + V 2

V ′ = −B − CV − U 2
(33)

with

A = − 1
3 (λa + b + λc′), B = − 1

3 (a + λb − λc′), and C = 1
3λc.

Again (32) and (33) simultaneously have or fail to have the Malmquist resp. Painlevé
property. By Theorem 1, the latter holds for (33) if and only if

C ′′ = B ′ = A′ ≡ 0,
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that is, if and only if c′′ = b′ = a′ ≡ 0. And so the circle is complete, since by
Theorems 1 and 2 this is true except in one particular case, namely when

U + V − C = C ′ + B − A ≡ 0.

It is easily seen that this is equivalent with x + y − c = c′ + b − a ≡ 0.
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Appendix: Algebroid Functions and the Selberg–Valiron Theory

For the convenience of the reader we will give a short overview of the Selberg–Valiron
theory. Let

P(z, w) =
k∑

κ=0

Aκ(z)wκ (Ak(z) �≡ 0)

be any irreducible polynomial inw over the ring of entire functions. Then the solutions
w = fκ(z) (1 ≤ κ ≤ k) to the equation P(z, w) = 0 admit unrestricted analytic
continuation into C \ SP , where SP denotes the set of singularities; it consists of the
zeros of Ak and the discriminant of P w.r.t. w. The singularities (including poles) are
algebraic; ordinary poles will not be viewed as singularities. The branches fκ form
the algebroid function

f = { f1, . . . , fk}.

For algebroid functions, Selberg and Valiron independently developed an analogous
Nevanlinna theory as follows (see, for example [8]):

m(r , f) = 1

2kπ

k∑

κ=1

∫ 2π

0
log+ | fκ(reiθ )| dθ, N (r , f) = 1

k
N (r , 1/Ak)

and

TS(r , f) = m(r , f) + N (r , f)
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denote the proximity function, the counting function of poles, and the Selberg charac-
teristic of f, respectively. Up to a bounded term the latter coincides with the Valiron
characteristic

TV (r , f) = 1

2kπ

∫ 2π

0
U (reiθ ) dθ,

where

U (z) = 1

2π

∫ 2π

0
log |P(z, eiφ)| dφ

= log |Ak(z)| +
k∑

κ=1

log+ | fκ(z)|

= max
1≤κ≤k

log |Aκ(z)| + O(1);

the definition of TV is similar to the Ahlfors–Shimizu formula in ordinary Nevanlinna
theory (see, for example, Hayman’s monograph [2]). We will not distinguish between
both characteristics and just write T (r , f). The First Main Theorem

T
(

r ,
1

f − c

)
= T (r , f) + O(1)

follows from TV (r , 1/f) = TV (r , f) (based on wk P(z, 1/w) = ∑k
κ=0 Ak−κ(z)wκ )

combined with TS(r , f − c) = TS(r , f) + O(1) (based on || fκ | − | fκ − c|| ≤ |c|).
Algebraic functions have characteristic T (r , f) = O(log r) as r → ∞, while for
transcendental (non-algebraic) algebroid functions log r = o(T (r , f)) holds. The fun-
damental result in Nevanlinna theory, the Lemma on the proximity function of the
logarithmic derivative remains valid (f′/f has branches f ′

κ/ fκ ):

m(r , f′/f) = O(log(rT (r , f))) (r → ∞)

holds (possibly) outside some set E ⊂ (0,∞) of finite measure.
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