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Abstract
We study a scalar elliptic problem in the data driven context. Our interest is to study the
relaxation of a data set that consists of the union of a linear relation and single outlier. The
data driven relaxation is given by the union of the linear relation and a truncated cone that
connects the outlier with the linear subspace.

Mathematics Subject Classification 35J20 · 49J45

1 Introduction

The data driven perspective is new in the field of material science and partial differential
equations, we mention [18] and [6] as the two fundamental contributions of this young field.
In the data driven perspective certain laws of physics are accepted as invariable, e.g. balance
of forces or compatibility. On the other hand, material laws (such as Hooke’s law) can be
questionable. In the classical approach, measurements are used to estimate constants of
material laws. The new paradigm is to use a set of data points, obtained from measurements;
the data points are not interpreted as realizations of some law, but calculations and analysis
are based directly on the cloud of data points.

On a more formal level, one introduces a set E of functions that satisfy the invariable
physical laws. A second set D denotes those functions that are consistent with the data. In
this setting, the aim is to find functions in E that minimize the distance to the data set D.

The emphasis in [18] was to derive computing algorithms for this new approach. The
mathematical analysis in [6] establishes well-posedness properties and introduces, among
other tools, data convergence and relaxation in the data driven context. It is shown that data
driven relaxation differs markedly from traditional relaxation, see the discussion below.
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In thework at hand,we investigate a scalar setting,which can be used, e.g., in themodelling
of porous media. We seek two functions, G (a gradient) and J (a negative flux). Given a
domain Q ⊂ R

n and a source f : Q → R, the invariable physical laws are the compatibility
G = ∇U for some U : Q → R and the mass conservation ∇ · J = f (in other contexts, the
second law is the balance of forces). We introduce

E f := {
(G, J ) ∈ L2(Q;Rn) × L2(Q;Rn) |G = ∇U , U ∈ H1

0 (Q,R), ∇ · J = f
}

. (1.1)

In the classical approach, one might be interested in the linear material law given by
J = AG for A ∈ R

n×n . We note that a pair (G, J ) ∈ E f with J = AG can be found be
solving the scalar elliptic equation ∇ · (A∇U ) = f .

In the data driven perspective, the material law is replaced by a data set D. In a simple
setting, we are given a local data set Dloc := {(gi , ji ) | i ∈ I } ⊂ R

n ×R
n for some index set

I . This data set might be obtained by measurements, in this case the index set I is finite and
Dloc is a cloud of points in Rn × R

n . The set of functions that respect the data is

D := {
(g, j) ∈ L2(Q;Rn) × L2(Q;Rn) | (g(x), j(x)) ∈ Dloc for a.e. x ∈ Q

}
. (1.2)

In the data driven perspective, the task is:Find a pair (G, J ) ∈ E f that minimizes the distance
to the set D.

We remark that we recover the classical problem if we introduce

DA
loc := {

(g, j) ∈ R
n × R

n | j = Ag
}

(1.3)

and the corresponding set of functions DA as in (1.2). For typical choices of Q, A, and
f , the linear problem can be solved; in this case, there exists (G, J ) ∈ E f ∩ DA and the
minimization task has a solution that realizes the distance 0.

The advantage of the data driven perspective is the generality of the data set. In the
minimization task above, an arbitrary data set D can be considered. Three different types of
questions can be asked:

1. Minimality conditions: When E f ∩D is empty, what are conditions for minimizers of the
distance?

2. Families of data sets: Given a family of data sets Dh and solutions (Gh, Jh) of the mini-
mization problems, what can we say about limits?

3. Relaxation: Given D and sequences of pairs (Gh, J h) ∈ E f and (gh, j h) ∈ D. Which
limits are attainable in the sense of data convergence?

The present paper is devoted to the third question. We investigate a special data set: Dloc

is the union of DA
loc and DB

loc, where DA
loc is as in (1.3) and DB

loc is a one-point set of a single
outlier. In this setting, the minimization problem is solvable with distance 0 sinceD is larger
than DA. Our interest is to study the relaxation problem.

The motivation to study the data set Dloc = DA
loc ∪ DB

loc is to understand the effect of a
single outlier in a cloud of measurement points. When an increasing number of data points
approximates the plane of Hooke’s law DA

loc, then the data driven solutions to these data sets
approximate the classical solution with Hooke’s law; this is one of the results in [6]. Our
interest is an outlier: When the measurements contain a single point that is not in DA

loc, the
data driven solutions can always use this data point in the further process. How far off can
the data driven solutions be because of the single outlier? Our result characterizes the relaxed
data set and shows that it is only changed locally in the vicinity of the outlier. In this sense,
the outlier has only a limited effect on the data driven solutions.
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Relaxation analysis in a data driven problem Page 3 of 22 119

In more mathematical terms, the analysis of this article is concerned with sequences of
pairs (Gh, J h) ∈ E f and (gh, j h) ∈ D that converge in the sense of data convergence.
The set of all limits (g, j) constitutes the relaxed data set Drelax. Our main result is the
characterization of this set. We prove that it consists of functions that attain values in a local
relaxed data set Drelax

loc . This set contains Dloc, it is the “data driven convexification” of Dloc.
We find that the set is strictly larger than Dloc, but smaller than the convex hull of Dloc. We
will characterizeDrelax

loc as the union ofDA
loc with a truncated cone that connects the additional

pointDB
loc with the hyperplaneDA

loc. Denoting the truncated cone byC , our main result states
Drelax
loc = C ∪ DA

loc, see Theorem 1.
The proof consists of two parts. The fact that any pair (g, j) with values in C ∪ DA

loc
belongs to Drelax requires the construction of a sequence of functions that use a fine mixture
of materials. We will first approximate constant functions with values in C ∪ DA

loc by con-
structions of simple and iterated laminates. In order to realize a point in DA

loc, it suffices to
use constant functions. In order to realize a point on the lateral boundary of the cone C , it is
sufficient to construct a simple laminate with phases A and B. For a point in the interior of
C , an iterated laminate must be constructed. Such iterated laminates are quite standard, we
mention [13] and [22]. The technical difficulty in the derivation of the inclusion for functions
lies in the glueing process for the local constructions. We adapt an approach of [6] and use a
suitable Vitali covering.

The other part of the proof regards necessary conditions for limits of data convergent
sequences. More precisely, we have to show that limits take only values inC∪DA

loc. This part
of the proof relies on the div-curl lemma [24]. In our context, the notion of data convergence
of [6] provides exactly the prerequisites in order to use the div-curl lemma for data convergent
sequences.

Literature. Relaxation is a classical problem in the calculus of variations. For a functional
I : X → R̄ on a Banach space X , one introduces the relaxed functional I relax : X → R̄ as
I relax(u) := inf

{
lim infk I (uk) | uk⇀u

}
. A related notion is that of quasiconvexity; loosely

speaking, quasiconvex functionals coincide with their relaxation. For fundamental results on
these important concepts we refer to [2,8,12]. For a functional I which is not quasiconvex,
one can construct laminates or more complex patterns in order to find the relaxed functional
and/or the quasiconvex envelope of the integrand, see e.g. [3] and [5]. For an introduction
we refer to [22].

The data driven perspective introduces a new concept of a relaxation. For a data setD, the
task is to study the relaxed data set, which consists of points that are attainable as limits in
the sense of data convergence. A relaxed data set in this sense has been calculated in [6] for
a problem in the vectorial case: For a data set that describes a non-monotone material law
(corresponding to a non-convex energy), the authors determine the relaxed data set, compare
(3.26) and Theorem 3.6 in [6]. The relaxed data set is larger than the original data set, but it
is smaller than the convex hull of the original data set. A similar phenomenon appears in our
main result.

We want to emphasize the close relation to homogenization. In the primal problem of
homogenization, one prescribes different material laws in different points x of the macro-
scopic domain, and asks for the effective law for fine mixtures. Building upon such results,
one then asks: With anymaterial laws in different points x (material laws of some admissible
set), which effective material laws can be obtained by homogenization? This leads to bounds
for effectivematerial laws as in [14,15,19] and to optimization of the distribution of the single
material laws, see [1,4]. For early results in this direction which also highlight the relation
to relaxation see [20,21].
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Our main result may be interpreted in the perspective of homogenization. We use the two
material laws DA and DB in different regions of the macroscopic domain, possibly in a fine
mixture. We ask what effective laws can be obtained in the limit. The warning about this
description is that DB is not a linear relation and hence does not describe a material law in
the classical setting of homogenization.

We will make use of the div-curl Lemma in the second part of the proof. This lemma is
also used in the compensated compactness method of homogenization, see [16,23]. Related
concepts are those of �-convergence [9], Young-measures [12], and H -convergence [13].

For recent developments of the data driven approach we refer to [10] and [17], which are
both concerned with numerical aspects. Finite plasticity in the context of data driven analysis
is treated in [7].

1.1 Themain result

Let n ≥ 2 be the dimension, Q ⊂ R
n be a bounded Lipschitz domain, f ∈ H−1(Q;R)

a given source, and A ∈ R
n×n a positive definite symmetric matrix. We consider the local

material data sets

DA
loc := {

(g, j) ∈ R
n × R

n | j = Ag
}

, (1.4)

DB
loc := {(g, j) ∈ R

n × R
n | g = 0, j = e1} = {(0, e1)} , (1.5)

and

Dloc := DA
loc ∪ DB

loc . (1.6)

We therefore enrich the data set DA
loc of the classical approach with the one point set DB

loc.
We choose here (0, e1) /∈ DA

loc as the position of the outlier; by elementary transformations,
an arbitrary outlier can be analyzed. Functions with values in the data set are defined by

D := {
(g, j) ∈ L2(Q;Rn) × L2(Q;Rn) | (g(x), j(x)) ∈ Dloc for a.e. x

}
. (1.7)

We recall that the fundamental task in the data driven approach is to find a pair (G, J ) ∈ E f

from (1.1) that minimizes the distance to D. In the above setting, a vanishing distance can
be realized since D is larger than DA.

Our interest is to study the relaxed data set, which is the set of states that can be approxi-
mated in the sense of data convergence with sequences in E f ×D. We use the notion of data
convergence of Definition 3.1 in [6].

Definition 1 (Relaxed data set Drelax; data convergence) We use E f from (1.1) and D from
(1.7). A pair (g, j) ∈ L2(Q;Rn) × L2(Q;Rn) is in the relaxed data set and we write
(g, j) ∈ Drelax if the following holds:

There exists a sequence h → 0 and sequences (gh, j h)h and (Gh, J h)h and a limit
(G, J ) ∈ E f such that, for every h,

(Gh, J h) ∈ E f and (gh, j h) ∈ D . (1.8)

The sequence of pairs ((gh, j h), (Gh, J h))h converges in the sense of data convergence to
((g, j), (G, J )), which means that

gh⇀g , j h⇀ j , Gh⇀G , J h⇀J in L2(Q;Rn) ,

gh − Gh → g − G , j h − J h → j − J in L2(Q;Rn) ,

as h → 0.
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Relaxation analysis in a data driven problem Page 5 of 22 119

We remark that the relaxed data setDrelax can also be characterized as a Kuratowski limit.
The precise statement is provided in Lemma 1 below.

We will characterize the relaxed data set Drelax in terms of a local relaxed data set Drelax
loc

which, in turn, is the union of two sets: the hyperplane DA
loc and a truncated cone C with

vertex in the outlier DB
loc. The cone is truncated by the hyperplane DA

loc.
We define the cone in the following steps. For b ∈ [0, 1], we set

Cb :=
{
(g, j) ∈ R

n × R
n
∣∣ g · Ag ≤ (1 − b)g1 , j = be1 + Ag

}
. (1.9)

For fixed b, the set Cb is an n-dimensional closed ellipsoid in Rn×n . For b = 1, the ellipsoid
degenerates to a point, C1 = {(0, e1)} = DB

loc. On the other hand, for b = 0, every vector in
C0 satisfies j = Ag, hence C0 ⊂ DA

loc. We define the truncated cone C as

C :=
⋃

b∈[0,1]
Cb . (1.10)

Our main result is the characterization of the relaxed data set.

Theorem 1 (Characterization of the relaxed data set) The set Drelax of Definition 1 is char-
acterized as

Drelax = {
(g, j) ∈ L2(Q;Rn)2 | (g, j)(x) ∈ Drelax

loc for a.e. x ∈ Q
}
, (1.11)

where the local relaxed data set Drelax
loc is given by

Drelax
loc = C ∪ DA

loc , (1.12)

with the truncated cone C of (1.9)–(1.10).

Theorem 1 characterizes the relaxation of the data set in the context of data driven analysis.
The convexification of a set consisting of an hyperplane and an outlier yields the union of
the plane with a truncated cone that connects the outlier with the plane, compare Fig. 1 and
Fig. 2. In particular, the data driven relaxation does not yield the (classical) convexification
of the original set, which is an infinite strip (the infinite strip can be regarded as the truncated
cone with opening angle π ; in this sense, the data driven relaxation yields a cone with smaller
opening angle).

Fig. 1 A sketch for A = id,
showing only the plane
(g1, j1) ∈ R

2. The diagonal line
corresponds to the set DA

loc of
points with j = g. The
exceptional point P is
(g1, j1) = (0, 1), corresponding
to the one-point set of additional
data points, DB

loc = {(0, e1)}

g1

j1

P

j1 = g1

j1 = 1

g1 = 1
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Fig. 2 Three dimensional
illustration of the cone C and part
of the planeDA

loc in the g1, g2, j1
space for A = id

We note that the representation of Drelax in particular implies that the local relaxed data
set Drelax

loc coincides with the set of attainable values,

Drelax∗ :=
{
(g, j) ∈ R

n × R
n
∣∣∣∣(g, j) ∈ Drelax (as constant functions)

}
. (1.13)

The inclusion C ∪ DA
loc ⊂ Drelax∗ will be a crucial part in the proof of Theorem 1, see

Section 2.1 below.

1.2 An alternative description of the relaxed data set

Our definition of Drelax was given in terms of sequences. As noted above, the set Drelax can
also be described in terms of a Kuratowski limit as in [6].

Lemma 1 (Kuratowski limit) Let data convergence be denoted as�−lim. We use Kuratowski
convergenceof sets,which coincideswith�-convergenceof the indicator functions.With these
topological tools, the data relaxation can be written as a limit:

Drelax × E f = K (�)- lim D × E f . (1.14)

Proof Similar to [6] the sequential characterization of the Kuratowski limit follows from an
(equi-)transversality condition.

Step 1: Transversality.We claim that there exist constantsC1,C2 > 0 such that every pair
z = (g, j) ∈ D and Z = (G, J ) ∈ E f satisfies

‖z‖L2(Q;Rn)2 + ‖Z‖L2(Q;Rn)2 ≤ C1‖z − Z‖L2(Q;Rn)2 + C2 . (1.15)

The inequality is concluded with the help of the positivity of A ∈ R
n×n , ξ · Aξ ≥ c0|ξ |2

for some c0 > 0. From this estimate and the fact that z ∈ D implies g = 0 on { j = Ag} we
deduce

c0

∫

Q
|G|2 ≤

∫

Q
G · AG =

∫

Q
G · Ag + G · A(G − g)

≤
∫

{ j=Ag}
G · j + |A|‖G‖L2(Q;Rn)‖g − G‖L2(Q;Rn) . (1.16)
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Since Z ∈ E f implies G = ∇U and ∇ · J = f , we further obtain
∫

{ j=Ag}
G · j ≤

∫

{ j=Ag}
G · J + ‖G‖L2(Q;Rn)‖ j − J‖L2(Q;Rn)

=
∫

Q
∇U · J −

∫

{ j =Ag}
G · j + ‖G‖L2(Q;Rn)‖ j − J‖L2(Q;Rn)

= −
∫

Q
U f −

∫

{ j =Ag}
(G − g) · j + ‖G‖L2(Q;Rn)‖ j − J‖L2(Q;Rn)

≤ C‖G‖L2(Q;Rn)‖ f ‖H−1(Q) + ‖ j‖L2(Q;Rn)‖g − G‖L2(Q;Rn)

+ ‖G‖L2(Q;Rn)‖ j − J‖L2(Q;Rn) , (1.17)

where we have used Poincaré’s inequality and G = ∇U in the last step; here and below,
C denotes a constant that depends only on A, Q, n and that may change from line to line.
Together with (1.16) we deduce that

‖G‖2L2(Q;Rn)
≤ C

(‖g − G‖2L2(Q;Rn)
+ ‖ j − J‖2L2(Q;Rn)

)

+ C‖ f ‖2H−1(Q)
+ C‖ j‖L2(Q;Rn)‖g − G‖L2(Q;Rn) . (1.18)

The triangle inequality yields an analogous inequality for g,

‖g‖2L2(Q;Rn)
≤ C

(‖g − G‖2L2(Q;Rn)
+ ‖ j − J‖2L2(Q;Rn)

)

+ C(‖ f ‖2H−1(Q)
+ C‖ j‖L2(Q;Rn)‖g − G‖L2(Q;Rn) . (1.19)

Since j = e1 holds in { j = Ag} we next observe that
∫

Q
| j |2 ≤

∫

{ j=Ag}
|Ag|2 + |{ j = Ag}| ≤ C‖g‖2L2(Q;Rn)

+ |Q| .

Using (1.19) and Young’s inequality, this provides

‖ j‖L2(Q;Rn) ≤ C
(‖g − G‖L2(Q;Rn) + ‖ j − J‖L2(Q;Rn)

) + C(1 + ‖ f ‖H−1(Q)) . (1.20)

This estimate can be inserted in (1.18) and we obtain the corresponding estimate for G. By
the triangle inequality, we control all functions g,G, j, J in L2(Q;Rn) by the right-hand
side of (1.20). This proves the transversality (1.15).

Step 2: Sequential characterization of Kuratowski convergence. The Kuratowski limit
K (�)- lim D×E f is given by the domain of the�-limit of the (constant sequence of the) indi-
cator function ofD×E f . To characterize this set consider any point (z0, Z0) ∈ L2(Q;Rn)2.
Since �-convergence is a local property, when computing the �-limit in this point we may
restrict ourselves to any neighborhood of (z0, Z0) with respect to the �-topology. In par-
ticular, we may choose a neighborhood in which all pairs (z, Z) ∈ L2(Q;Rn)2 satisfy
‖(z − z0) − (Z − Z0)‖L2(Q;Rn) < 1 (note that strong convergence of differences is part
of the definition of �-convergence). Then the transversality property implies that we can
restrict the computation of the Gamma limit to a bounded set in L2(Q;Rn)2. On bounded
sets the data convergence topology is metrizable. Hence the topological and the sequential
characterization of � convergence coincide [9, Proposition 8.1].

The sequential characterization of the lim inf and lim sup inequalities that characterize
�-convergence of the indicator function of D × E f to Drelax × E f are described by the
properties:

(i) For any sequence (zh, Zh) in D × E f that �-converges to a limit (z, Z) ∈ L2(Q;Rn)2,
there holds (z, Z) ∈ Drelax × E f .
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(ii) For any (z, Z) ∈ Drelax×E f there exists a sequence (zh, Zh) inD×E f that�-converges
to (z, Z).

This is equivalent to the characterization of Drelax given in Definition 1. ��

1.3 Equivalent descriptions for the truncated cone C

The main purpose of this section is to derive a convenient description of the lateral boundary
of C .

Before we do so, let us study briefly the cone C in the special case that the dimension is
n = 2 and that the linear law is given by A = id ∈ R

2×2. In this situation, we can use the
new variable r = (1 − b)/2 to write the condition g · Ag ≤ (1 − b)g1 as g21 + g22 ≤ 2rg1.
We find

C = {
((g1, g2), (g1 + 1 − 2r , g2)) | r ∈ [0, 1/2], (g1 − r)2 + g22 ≤ r2

}
. (1.21)

The last condition expresses that g = (g1, g2) is contained in the disc Br ((r , 0)) with radius
r and center (r , 0). Because of j1 = g1 + 1 − 2r , the disc is mapped into an inclined plane.

The lateral boundary of C . For b ∈ [0, 1] fixed, the lateral boundary of Cb is

∂latCb :=
{
(g, j) ∈ C

∣∣ g · Ag = (1 − b)g1, j = be1 + Ag
}

.

The lateral boundary of C can be expressed as ∂latC := ⋃
b∈[0,1] ∂latCb. With this notation,

the boundary of C is given by

∂C = ∂latC ∪ (DA
loc ∩ {

g · Ag ≤ g1
})

. (1.22)

We can generalize (1.21) as follows. Let y ∈ R
n be a vector that satisfies Ay = e1.

We introduce the scalar product 〈v1, v2〉A := v1 · Av2 and the associated norm | · |A. The
corresponding sphere with center 1

2 y that contains 0 is

SA
y :=

{
x ∈ R

n
∣∣∣∣
∣∣x − 1

2 y
∣∣
A = 1

2

∣∣y
∣∣
A

}
.

Then (g, j) ∈ ∂latCb if and only if g ∈ (1 − b)SA
y and j = be1 + Ag. In fact, for b = 1,

there holds ∂latCb = {(0, e1)} and the equivalence is valid. For b ∈ [0, 1), we find
g · Ag = (1 − b)g1 ⇐⇒ 〈g, g − (1 − b〉Ay) = 0

⇐⇒ ∣∣g − 1−b
2 y

∣∣2
A = (1−b)2

4

∣∣y
∣∣2
A

⇐⇒
∣∣∣ 1
1−b g − 1

2 y
∣∣∣
2

A
= 1

4 |y|2A .

For later use we include the following alternative characterization of ∂latCb.

Lemma 2 The lateral boundary can also be written as

∂latCb =
{
(g, j) ∈ R

n × R
n
∣∣∣∣ ∃ν ∈ R

n \ {0} : g = (1 − b)
ν1

ν · Aν
ν, j = be1 + Ag

}
.

(1.23)
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Proof We fix b ∈ [0, 1] and denote by Kb the right-hand side of (1.23). Consider any (g, j)
with j = be1 + Ag and g = 0. Then

(g, j) ∈ ∂latCb ⇐⇒ g · Ag = (1 − b)g1

⇐⇒ |g|2Ag = (1 − b)g1g

⇐⇒ g = (1 − b)
g1

|g|A
g

|g|A
�⇒ (g, j) ∈ Kb ,

where the choice ν = g provides the last implication (Fig. 2).
Vice versa, let (g, j) with g = 0 be in Kb. By definition, there exists ν = 0 with

g = (1 − b) ν1
ν·Aν

ν. We can calculate g · Ag = (1 − b)2ν21/(ν · Aν) and (1 − b)g1 =
(1 − b)2ν21/(ν · Aν), which shows g · Ag = (1 − b)g1. ��

2 Construction of approximating sequences

The goal of this section is to prove the inclusion
{
(g, j) ∈ L2(Q;Rn)2 | (g, j)(x) ∈ C ∪ DA

loc for a.e. x ∈ Q
} ⊂ Drelax . (2.1)

This is one of the inclusions in (1.11). It is that part of Theorem 1 that must be verified by
the construction of approximations. We show in Subsection 2.1 that constant functions with
values in C ∪ DA

loc can be approximated by data convergence, i.e. the inclusion C ∪ DA
loc ⊂

Drelax∗ . In Subsection 2.2 the construction is extended to nonconstant functions with values
in C ∪ DA

loc.

2.1 Approximation of constant functions

The aim of this subsection is to verify C ∪DA
loc ⊂ Drelax∗ . To this end, we choose an arbitrary

point (g, j) ∈ C ∪ DA
loc ⊂ R

n × R
n . We have to construct sequences (gh, j h) ∈ D and

(Gh, J h) ∈ E f such that the pairs data converge, satisfying (gh, j h)⇀(g, j). To fulfil the
condition ∇ · J h = f , it is convenient to fix a vector field J f ∈ L2(�;Rn) with ∇ · J f = f .

In the case (g, j) ∈ DA
loc there holds j = Ag and we can use trivial sequences (in

particular, j h = j and gh = g) in order to obtain (g, j) ∈ Drelax∗ . When (g, j) ∈ C is a point
on the lateral boundary of the cone, we use simple laminates to construct data convergent
sequences (gh, j h) and (Gh, J h). Finally, when (g, j) ∈ C is an inner point, we use iterated
laminates to construct the data convergent sequences.

In order to motivate the subsequent constructions, we present what can be achieved in the
case A = id with simple laminates of horizontal or vertical layers. With respect to Fig. 1
we can say: The simple laminates show that all points in the vertical line of the cone and all
points in the horizontal line of the cone can be constructed.

Remark 1 (Horizontal layers) We consider A = id and fix b ∈ (0, 1). We decompose Q into
thin horizontal layers such that e1 is a tangential vector of the interfaces. The layers have the
width (1 − b)h and b h in an alternating fashion. The layers with width (1 − b)h are called
A-layers, the other layers are B-layers. In the A-layers, we set j h := Gh := gh := 0, in the
B-layers we set Gh := gh := 0 and j h := e1. We finally set J h := j h + J f , for J f as above.

By construction, (gh, j h) ∈ D. Since layers are horizontal, j h has a vanishing divergence
and Jh has the divergence f . As a trivial function, Gh is a gradient. We find (Gh, J h) ∈
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E f . The functions converge weakly in L2(Q;Rn) and the differences gh − Gh = 0 and
j h − J h = J f converge strongly. We therefore obtain that the vertical line {(g, j) | g =
0, j = ( j1, 0, ..., 0), j1 ∈ [0, 1]} is contained in Drelax∗ .

Remark 2 (Vertical layers) We consider again A = id. We proceed as in Remark 1, but we
now decompose Q into thin layers with normal vector e1. In the interior of Q, in the A-layers,
we set j h := Gh := gh := e1, in the B-layers we set Gh := gh := 0 and j h := e1, and
J h := j h + J f .

Up to truncations near the boundary, one can verify (Gh, J h) ∈ E f , (gh, j h) ∈ D,
and the convergence properties. We therefore obtain that the horizontal line {(g, j) | g =
(g1, 0, ..., 0), g1 ∈ [0, 1], j = 0} is contained in Drelax∗ .

After these motivating examples, we move on to the construction in the general case.

Lemma 3 (Simple laminates) Let (g, j) ∈ DA
loc ∪ ∂C be a point in the plane or on the

boundary of the cone. Then, for every sequence h ↘ 0, there exist (Gh, J h) ∈ E f and
(gh, j h) ∈ D such that the sequence of pairs is data convergent with (gh, j h)⇀(g, j) and
(Gh, J h)⇀(0, j + J f ) in L2(Q;Rn). In particular, there holds

DA
loc ∪ ∂C ⊂ Drelax∗ .

The sequence can be chosen such that |gh | + | j h | ≤ C(n, A)(1 + |g|) in Q.

Proof For a point (g, j) ∈ DA
loc, i.e., j = Ag, trivial sequences can be used: We choose

constant functions gh = g, Gh = 0, j h = j , and J h = j + J f .
The vertex of the cone (i.e.: the case (g, j) ∈ DB

loc) is also treated by choosing constant
functions.

It remains to treat the case that, for some parameter b ∈ (0, 1), there holds (g, j) ∈ ∂latCb.
By Lemma 2, we can express this point in the form

g = (1 − b)
ν1

ν · Aν
ν , j = be1 + Ag ,

for some ν ∈ R
n \ {0}.

Step 1: Construction of approximating sequences. For h > 0, we consider the following
layered subdivision of Q, using the direction ν,

Bh := {x ∈ Q | x · ν ∈ [0, bh) + hZ} ,

Ah := {x ∈ Q | x · ν ∈ [bh, h) + hZ} .

For the volume fractions we note that |Bh | → b|Q| and |Ah | → (1 − b)|Q| as h ↘ 0. The
field (gh, j h) is chosen as

gh = 0 and j h = e1 in Bh , (2.2)

gh = ν1

ν · Aν
ν and j h = Agh in Ah . (2.3)

By definition of the fields, (gh, j h) ∈ D is satisfied and |gh | + | j h | ≤ C(n, A) holds in Q.
We note that the construction assures j h · ν = e1 · ν in Bh and

j h · ν = Agh · ν = A
( ν · e1

ν · Aν
ν
)

· ν = (Aν · ν)
ν · e1
ν · Aν

= e1 · ν in Ah .

This shows ∇ · j h = 0 in Q.
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We want to find a function uh : Q → R that satisfies

gh = ∇uh in Q .

The function uh can be constructed explicitly. We use the continuous (and piecewise affine)
function vh : R → R with vh(0) = 0 and with the derivatives ∂ξ v

h(ξ) = 0 for ξ ∈
(0, bh) + hZ and ∂ξ v

h(ξ) = ν1/(ν · Aν) for ξ ∈ (bh, h) + hZ. Using vh , we set

uh(x) := vh(x · ν) with ∇uh(x) = ∂ξ v
h(x · ν) ν = gh(x) .

We may introduce

u(x) := (1 − b)
ν1

ν · Aν
x · ν for x ∈ Q .

Then uh⇀u and ‖uh − u‖L∞ ≤ Ch hold for a constant C that does not depend on h.
In order to define a corresponding pair (Gh, J h), we choose a cut-off functionϕh ∈ C1

c (Q)

with values in [0, 1], satisfying ϕh = 1 in {x ∈ Q | dist(x, ∂Q) ≥ 2h} and ϕh = 0 in
{x ∈ Q | dist(x, ∂Q) ≤ h} and |∇ϕh | ≤ 2

h . With these preparations we define

Uh := (uh − u)ϕh , Gh = ∇Uh , J h := j h + J f . (2.4)

Step 2: Verification of the properties. By definition, Gh is a gradient of a function in
H1
0 (Q). The field J h has the divergence ∇ · J h = ∇ · j h + ∇ · J f = f . This shows

(Gh, J h) ∈ E f .
We now verify the data convergence property. We clearly have

gh⇀g = (1 − b)
ν1

ν · Aν
ν , (2.5)

j h⇀ j = be1 + (1 − b)
ν1

ν · Aν
Aν , (2.6)

Uh⇀0, J h⇀ j + J f (2.7)

in L2(Q;Rn). Finally we have J h − j h = J f and

gh − Gh = ∇uh − ∇Uh = ∇uh − ϕh∇(uh − u) − (uh − u)∇ϕh

= (1 − ϕh)∇uh + ϕh∇u − (uh − u)∇ϕh → g .

Here, the convergence follows from the following facts: (1−ϕh) → 0 strongly in L2(Q;Rn)

implies convergence to 0 for the first term. The pointwise convergence ϕh∇u → ∇u with the
uniform bound |ϕh∇u| ≤ |∇u| implies strong convergence of the second term to g = ∇u.
The last term (uh − u)∇ϕh is uniformly bounded and converges to zero almost everywhere,
hence strongly to 0.

Altogether, we obtain that
(
(gh, j h), (Gh, J h)

) → (
(g, j), (G, J )

)
in the sense of data

convergence. In particular, (g, j) ∈ Drelax∗ . ��
We next show that also the interior of the cone C will be reached by suitable iterated

laminate constructions.

Lemma 4 (Iterated laminates) Let (g, j) ∈ C be a point of the cone. Then, for every sequence
h ↘ 0, there exist (Gh, J h) ∈ E f and (gh, j h) ∈ D such that the sequence of pairs is data
convergent with (gh, j h)⇀(g, j) and (Gh, J h)⇀(0, J f + j) in L2(Q;Rn). In particular,
there holds

C ⊂ Drelax∗ .
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The sequence can be chosen such that |gh | + | j h | ≤ C(n, A) in Q and, in the case f = 0,
such that in addition Jh ≡ j holds in a neighborhood of ∂Q.

Proof In view of Lemma 3 it remains to consider interior points of the cone C . In this case
we use iterated laminates for the construction.

Step 1: Preparations. Let pC = (gC , jC ) ∈ C̊ be an arbitrary point in the interior of the
cone.We show inLemmaA.1of the “Appendix” thatwe canwrite pC as a convex combination
as follows: There exist two points pA = (gA, jA) ∈ DA

loc and pL = (gL , jL) ∈ ∂latC and a
parameter λ ∈ (0, 1) such that

pC = λpL + (1 − λ)pA (2.8)

and such that, additionally,

( jA − jL) · (gA − gL) = 0 . (2.9)

As in the proof of Lemma 3 we exploit Lemma 2: We can express the point pL ∈ ∂latC
as a convex combination with some vector ν ∈ R

n \ {0}:
(gL , jL) = pL = b pb + (1 − b) pa = b (gb, jb) + (1 − b) (ga, ja)

with

ga = ν1

ν · Aν
ν , ja = Aga , gb = 0 , jb = e1 .

The iterated laminate is constructed as a coarse laminate with layers of width
√
h and a fine

laminate with layers of order h. Every second layer of the coarse mesh uses pA = (gA, jA).
The fine laminate uses (ga, ja) and (gb, jb). The two functions in the fine layer produce, in
average, pL = (gL , jL). The mixture of the coarse layers with values pA and pL provide the
desired values pC . For a sketch see Fig. 3.

Step 2: Construction of the approximating sequence. From now on, the points pC , pA,

pL , pa, pb, and the volume fractions λ and b are fixed. In addition to ν, we introduce the
normal vector to the coarse layer interfaces

θ := (gA − gL)/‖gA − gL‖ . (2.10)

For every k ∈ Z, the coarse layers Lh
k and Mh

k are defined as

Lh
k :=

{
x ∈ Q

∣∣∣∣ x · θ ∈ k
√
h +

[
0, λ

√
h
)}

,

Mh
k :=

{
x ∈ Q

∣∣∣∣ x · θ ∈ k
√
h +

[
λ
√
h,

√
h
)}

.

The unions are denoted as Lh := ⋃
k∈Z Lh

k and Mh := ⋃
k∈Z Mh

k .
The iterated laminate is based on a subdivision of every layer Lh

k . We set

Lh
k,b :=

{
x ∈ Lh

k

∣∣∣∣ x · ν ∈ [0, bh) + hZ

}
,

Lh
k,a :=

{
x ∈ Lh

k

∣∣∣∣ x · ν ∈ [bh, h) + hZ

}
.

The unions are denoted as Lh
b := ⋃

k∈Z Lh
k,b and Lh

a := ⋃
k∈Z Lh

k,a .
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Mh
Lh

ga gb

Lh

ga

gb

ga

gb

ga

∼ √
h

gA

∼ h

x1

x2
ΣM

ΣL

ΣL,A

−(1 − b) 0

ΣL,B

b

θ

ν

Fig. 3 Left: A sketch of the iterated laminate. Right: The local geometry as considered in Step 3

We define the fields gh and j h as

gh(x) :=

⎧
⎪⎨

⎪⎩

gA for x ∈ Mh ,

ga for x ∈ Lh
a ,

gb for x ∈ Lh
b ,

j h(x) :=

⎧
⎪⎨

⎪⎩

jA for x ∈ Mh ,

ja for x ∈ Lh
a ,

jb for x ∈ Lh
b .

(2.11)

By definition (gh, j h) ∈ D. Using (A.2) we deduce that |gh | + | j h | ≤ C(n, A) holds in Q.
We next define a function uh : Rn → R that is piecewise affine and which has piecewise the
gradient gh . In order to construct uh we introduce the points xk := k

√
h θ ∈ R

n for k ∈ Z.
The point xk is chosen such that, if xk happens to be in Q, it is a point in ∂Lh

k ∩ ∂Mh
k−1. By

construction, the weak limit of gh is gC . We therefore set uh(xk) := gC · xk . Accordingly,
in the layer Mh

k−1, we set u
h(x) := gC · xk + gA · (x − xk). In the layer Lh

k , we define u
h as

the unique continuous function with uh(xk) = gC · xk , with the gradient ga in Lh
k,a and the

gradient gb in Lh
k,b. A continuous function uh exists in Lh

k since (ga − gb) ‖ ν.

As in the proof of Lemma 3, we can use a cutoff function ϕk
h in the layer Lh

k to construct
Uh
k : Lh

k → R with bounded gradient such that

Uh
k (x) = gC · xk + gL · (x − xk) for x ∈ ∂Lh

k ,

Uh
k (x) = uh(x) for x ∈ Lh

k with dist(x, ∂Lh
k ) > h .

The function Uh can be defined on all of Q by setting

Uh(x) :=
{
Uh
k (x) for x ∈ Lh

k ,

uh(x) for x ∈ Mh
k .

By construction, the functionUh is continuous. This property follows by inserting the vector
λ
√
h θ , the normal vector of layer Lh

k , whereU
h has the averaged gradient gL , and the vector

(1 − λ)
√
h θ in normal direction of layer Mh

k , where U
h has the gradient gA:

gL · λ
√
h θ + gA · (1 − λ)

√
h θ = (λgL + (1 − λ)gA) · √

h θ = gC · √
h θ .
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This is consistent with the choice of Uh(xk+1).
Furthermore, the function Uh has a bounded gradient. This can be seen as in the proof of

Lemma 3: In the layer Lh
k , the difference between uh(x) and gC · xk + gL · (x − xk) is of

order h (uniformly in x) since gL is the average slope of uh and uh oscillates at order h. The
gradient of the cutoff function ϕk

h is of order h−1.
The gradient of Uh coincides with gh except for a set with a volume bounded by C

√
h:

the strips of width h in the layers Lh
k , and there are O(1/

√
h) such layers. With the choice

Gh := ∇Uh , this guarantees the strong convergence ‖gh − Gh‖L2(Q) → 0.
We do not perform here the modification ofUh at the boundary ∂Q. We restrict ourselves

to the observation that the weak limit of the sequence Uh is the function U : R
n → R,

U (x) = gC · x . Moreover, there holds ‖Uh − U‖L∞ ≤ C
√
h for some constant C > 0,

which is independent of h. This fact allows to use the cutoff argument of Lemma 3 at ∂Q.
After this modification we have Uh⇀0, see Lemma 3.

The construction is complete up to the choice of the sequence J h , which we postpone to
Step 3. At this point, we have found the following functions: (gh, j h) are functions that are
compatible with the data set,Gh is a gradient (after themodification at ∂Q, it is the gradient of
an H1

0 (Q)-function), and gh −Gh converges strongly in L2(Q;Rn). All functions converge
weakly in L2(Q;Rn) with

gh⇀λgL + (1 − λ)gA = gC ,

j h⇀λ jL + (1 − λ) jA = jC .

If an appropriate sequence J h can be constructed (with the right divergence and such that
the difference to j h is strongly convergent), this shows that pC = (gC , jC ) is in the relaxed
data set Drelax∗ .

Step 3: The divergence of the approximation. Let us calculate the divergence of j h . In
Mh , the flux is constant and hence ∇ · j h = ∇ · jA = 0 in Mh . In Lh , the construction uses
the fluxes ja and jb which satisfy ( ja − jb) · ν = (Aga − e1) · ν = (

ν1
ν·Aν

Aν − e1
) · ν = 0.

This shows that j h satisfies ∇ · j h = 0 in Lh .
Along ∂Lh , the function j h has the jumps

[ j h] · θ = ( jA − e1) · θ on ∂Mh ∩ ∂Lh
b , (2.12)

[ j h] · θ =
(
jA − ν1

ν · Aν
Aν

)
· θ on ∂Mh ∩ ∂Lh

a . (2.13)

Important for the following construction is that the total flux through two subsequent pieces
of ∂Mh vanishes:

b ( jA − e1) · θ + (1 − b)
(
jA − ν1

ν · Aν
Aν

)
· θ

= jA · θ −
(
be1 + (1 − b)

ν1

ν · Aν
Aν

)
· θ

= ( jA − jL) · θ = 0 (2.14)

by (2.10) and (2.6).
After a rescaling by h and a shift into the origin, the local geometry is as follows:

�M := {x ∈ R
n | x · θ < 0} , �L := {x ∈ R

n | x · θ > 0} ,

�L,B := {x ∈ �L | 0 < x · ν < b} , �L,A := {x ∈ �L | b − 1 < x · ν < 0} ,

compare the right part of Fig. 3. We emphasize that only three regions of unit dimensions
are considered.
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We claim that there exists a bounded vector field p : �L → R
n with support in {x ∈

�L | x · θ < 1} and with the properties

∇ · p = 0 in �L , (2.15)

p · θ = jA − e1 on ∂�L,B ∩ ∂�L , (2.16)

p · θ = jA − ν1

ν · Aν
Aν on ∂�L,A ∩ ∂�L , (2.17)

p · ν = 0 on ∂
(
�L,A ∪ �L,B

) \ ∂�L . (2.18)

The divergence in the first line is understood in the sense of distributions. The func-
tion can be constructed in R

2 as follows: We use an ansatz with a rotated gradient,
p := ∇⊥ = (−∂2, ∂1) with a smooth function  that is piecewise affine on the bound-
ary ∂

(
�L,A ∪ �L,B

)
. The fact that the total flux vanishes by (2.14) implies that  can be

chosen such that it vanishes on ∂
(
�L,A ∪ �L,B

) \ ∂�L . This allows, in particular, to choose
a compactly supported function . The rotated gradient p has all the desired properties. In
higher dimension, the two-dimensional function can be extended as a constant function in
the remaining directions.

Rescaling p as ph(x) := p(x/h) and extending the function ph first periodically with
period h in all directions perpendicular to θ , then extending the result periodically with period√
h in direction θ , we obtain a function ph that has the same distributional divergence as j h ,

see (2.12) and (2.13).
We construct J h(x) := j h − ph . This choice assures ∇ · J h = 0. Furthermore, the strong

convergence j h − J h = ph → 0 in L2(Q;Rn) is a consequence of the boundedness of
p together with the fact that ph = 0 holds only on a set with volume fraction of order
h/

√
h = √

h.
This concludes the proof for f = 0. If a function J h with ∇ · J h = f = 0 has to be

constructed, it suffices to add an h-independent function J f as in the proof of Lemma 3.
In the case f = 0, the property J h ≡ j in a neighborhood of ∂Q can be achieved by a

similar construction: One defines all sequences as constructed above in the smaller domain
Qh := {x ∈ Q|dist(x, ∂Q) > h1/4}. In the boundary region Q \ Qh we set Uh ≡ 0,
Gh := ∇Uh = 0, J h = j , j h := gh := 0. The extension J h to all of Q is defined as above
with a local construction. The local construction is possible since all averages of J h over
periodicity cells are given by j . ��

Remark on the last step in the above proof. The property J h ≡ j near ∂Q can be obtained
also with cut-off functions: One constructs J h in all of Q bymeans of a potential with respect
to a suitable differential operator, and uses a cut-off function to construct a transition from
J h to j . Such a construction is used in Lemma 3.14 of [6].

2.2 Approximation of general functions

The next lemma is a variant of Lemma 4. It contains no more than the observation that we
can perform a local construction and, at the same time, keep boundary conditions for J h .

Lemma 5 (Iterated laminates with boundary condition) Let (ḡ, j̄) ∈ C ∪DA
loc be a point, let

j ∈ L2(Q;Rn) be a function. We set F := ∇ · j . Then there exist sequences (Gh, J h) ∈ EF
and (gh, j h) ∈ D that are data convergent with (gh, j h)⇀(ḡ, j̄) and (Gh, J h)⇀(0, j) in
L2(Q;Rn)2. The sequences can be chosen such that |gh |+| j h | ≤ C(n, A)(1+|ḡ|) pointwise
in Q and such that J h ≡ j holds in a neighborhood of ∂Q.
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Proof We set f = 0 and (ḡ, j̄) as a limit point. Let (gh, j h) and (Gh, J̃ h) be sequences in
D and E0 as in Lemma 3 or Lemma 4, the limits are (ḡ, j̄) and (0, j̄). Furthermore, we can
assume that J̃ h coincides with j̄ close to ∂Q.

We set J h := J̃ h− j̄+ j . The new sequence is still data convergent, there holds∇·J h = F ,
J h⇀ j , and J h = j near ∂Q. ��

In the last subsection, we have shown the local property C ∪ DA
loc ⊂ Drelax∗ . Glueing

together the constructions, we will now obtain the corresponding approximation result for
non-constant functions with values in C ∪ DA

loc.

Proposition 1 (Glueing the constructions) There holds
{
(g, j) ∈ L2(Q;Rn)2 | (g, j)(x) ∈ C ∪ DA

loc for a.e. x ∈ Q
} ⊂ Drelax . (2.19)

Proof Let (g, j) : Q → C ∪ DA
loc of class L

2 be given. Our aim is to construct a sequence
((gk, j k), (Gk, J k))k in D × E f .

We set F := ∇ · j . We will construct a sequence with ∇ · J k = F . This is sufficient, since
we can add a function J f −F with ∇ · J f −F = f − F in the very last step of the construction.
Without loss of generality we assume |Q| ≤ 1.

Step 1: Lebesgue-points and covering. We use balls Qr (x) := {y ∈ R
n | |y − x | < r},

where x ∈ Q is the center and r > 0 is the radius; we only consider balls that are contained
in Q. Since almost all points x ∈ Q are Lebesgue points for g and j , there exists a set of
points ω ⊂ Q with full measure, |Q \ ω| = 0, such that, for every x ∈ ω:

(ḡ, j̄) = (g, j)(x) , lim
r↘0

1

|Qr (x)|
∫

Qr (x)
|(g, j) − (ḡ, j̄)|2 = 0 . (2.20)

For arbitrary δ > 0, we consider the sets Qr (x) with x ∈ ω, r > 0, and
∫
Qr (x)

|(g, j) −
(ḡ, j̄)|2 ≤ δ|Qr (x)|. This family of balls forms a regular Vitali covering of ω. By the Vitali
covering theorem, there exists a countable disjoint covering of ω \ N for some N ⊂ Q with
|N | = 0. Furthermore, we find a finite disjoint family of balls (Qi )i∈I , Qi = Qri (xi ), with

(ḡi , j̄i ) = (g, j)(xi ) ,

∫

Qi

|(g, j) − (ḡi , j̄i )|2 ≤ δ|Qi | , (2.21)

and
∫

Q\∪i Qi

|(g, j)|2 ≤ δ . (2.22)

Step 2: Local construction.We can now construct approximations with Lemma 5. In each
ball Qi , i ∈ I , of the finite and disjoint covering,we use the functions (Gh

i , J
h
i ) ∈ EF (Qi ) and

(ghi , j hi ) ∈ D(Qi ) provided by Lemma 5. Here, EF (Qi ) and D(Qi ) are defined analogously
to (1.1) and (1.2), with Q replaced by Qi . We note that Gh

i is the gradient of a function uhi
with uhi = 0 on ∂Qi . The function J hi satisfies J hi = j in a neighborhood of ∂Qi . This means
that these functions can be extended to Q \∪i Qi by 0 and j , respectively. This provides pairs
(Gh, J h) ∈ EF .

Similarly, we can extend the functions (ghi , j hi ) ∈ D(Qi ). Because of (0, 0) ∈ DA
loc, we

can extend both functions by 0 and obtain pairs (gh, j h) ∈ D.
Step 3: Properties of the constructed sequence.Our construction provides, for all δ > 0, a

sequence h → 0 (that depends on δ), and sequences of pairs (Gh
δ , J

h
δ ) ∈ EF and (ghδ , j hδ ) ∈ D.
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The data convergence property of the construction in Lemma 5 provides that, for all δ > 0,
along a subsequence h → 0,

(Gh
δ , J

h
δ )⇀(0, j) , (ghδ , j hδ )⇀(gδ, jδ) , (Gh

δ − ghδ , J hδ − j hδ ) → (−gδ, j − jδ) (2.23)

in L2(Q;Rn), with limit functions gδ = ∑
i ḡi 1Qi and jδ = ∑

i j̄i 1Qi . In particular,
∫

Q
|gδ − g|2 =

∑

i

∫

Qi

|ḡi − g|2 +
∫

Q\∪i Qi

|g|2 ≤
∑

i

δ|Qi | + δ ≤ 2δ , (2.24)

and similarly
∫
Q | jδ − j |2 ≤ 2δ.

The functions (ghδ , j hδ ) are uniformly bounded for all 0 < δ < 1. In fact, by Lemma 5,
we have

∫

Q
|ghδ |2 ≤

∑

i

C(n, A)

∫

Qi

(1 + |ḡi |2) ≤ C(n, A)(1 + ‖g‖2L2(Q)
) .

Similarly, one obtains the uniform bound for j hδ . From (2.23) and (2.24) we deduce

lim
δ→0

lim
h→0

‖Gh
δ − ghδ + g‖L2(Q) = 0 , (2.25)

and, for the fluxes,

lim
δ→0

lim
h→0

‖J hδ − j hδ ‖L2(Q) = 0 . (2.26)

The compact embedding L2(Q) ↪→ H−1(Q) together with (2.23) and (2.24) yield

lim
δ→0

lim
h→0

(
‖ghδ − g‖H−1(Q) + ‖ j hδ − j‖H−1(Q)

)
= 0 . (2.27)

We now construct a suitable diagonal sequence (Gk, J k, gk, j k)k∈N. By (2.25), (2.26),
and (2.27), we can choose δ(k) ↘ 0 such that

lim
h→0

(
‖ghδ(k) − g‖H−1(Q) + ‖ j hδ(k) − j‖H−1(Q)

)

+ lim
h→0

(
‖Gh

δ(k) − ghδ(k) + g‖L2(Q) + ‖J hδ(k) − j hδ(k)‖L2(Q)

)
≤ 1

k
.

We then choose h(k) ↘ 0 such that

‖gh(k)
δ(k) − g‖H−1(Q) + ‖ j h(k)

δ(k) − j‖H−1(Q)

+ ‖Gh(k)
δ(k) − gh(k)

δ(k) + g‖L2(Q) + ‖J h(k)
δ(k) − j h(k)

δ(k) ‖L2(Q) ≤ 2

k
. (2.28)

We finally define gk := gh(k)
δ(k) and analogously j k,Gk, J k .

Let us verify the properties. By construction, (Gk, J k) ∈ EF and (gk, j k) ∈ D. The
boundedness of the sequences (gk, j k)k , (2.28) and an identification argument show their
weak convergence in L2(Q;Rn) to (g, j). By (2.28) we therefore have

(gk, j k,Gk, J k)⇀(g, j, 0, j) weakly in L2(Q;Rn) ,

(Gk − gk, J k − j k) → (−g, 0) in L2(Q;Rn) .

This provides the required approximation of (g, j). ��
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Remark on related statements in [6]. The proof of Proposition 1 can be compared in both,
its statement and its methods of proof, with Theorem 3.16 in [6]. A difference is that we start
from the explicit constructions and we do not assume, e.g., that g is a gradient.

3 Necessary conditions for relaxed data points

The goal of this section is to prove the inclusion “⊂” in (1.11) of Theorem 1. For the proof,
we fix an arbitrary pair of functions (g, j) ∈ Drelax and show that (g, j)(x) ∈ C ∪ DA

loc for
almost all x ∈ Q.

By Definition 1, the condition (g, j) ∈ Drelax means that there exist sequences (gh, j h)
and (Gh, J h) and a limit (G, J ) ∈ E f such that

gh⇀g , j h⇀ j , Gh⇀G , J h⇀J in L2(Q;Rn) ,

gh − Gh → g − G , j h − J h → j − J in L2(Q;Rn) ,

as h → 0. The pairs (Gh, J h) are in E f , i.e.: Gh = ∇Uh is the gradient of someUh ∈ H1
0 (Q)

and ∇ · J h = f . The pairs (gh, j h) are in the data set D of (1.7).
In the arguments below the div-curl lemma plays an important role. Data convergence

provides the right properties to apply the lemma. The sequences Gh , J h have vanishing curl
and controlled divergence since (Gh, J h) belong to E f . Therefore the standard formulation
of the div-curl lemma in L2(Q;Rn), see for example [11, Theorem 5.2.1], yields the distri-
butional convergence of Gh · J h . The convergence of the products gh · j h can be deduced by
the strong convergence of differences, inherited from the definition of data convergence.

Proposition 2 (Necessary condition on limit functions) There holds

Drelax ⊂ {
(g, j) ∈ L2(Q;Rn)2 | (g, j)(x) ∈ C ∪ DA

loc for a.e. x ∈ Q
}
. (3.1)

Proof We split the proof into several parts.
Step 1: Preparation. In order to prove (3.1), we fix a pair (g, j) ∈ L2(Q;Rn)2 in the

relaxed data setDrelax, which means that there exist sequences (gh, j h) inD and (Gh, J h) in
E f with data convergence such that (gh, j h) weakly converges to (g, j). Our aim is to show
(g(x), j(x)) ∈ C ∪ DA

loc for almost every x ∈ Q.
The approximating sequences (gh, j h) in D and (Gh, J h) in E f with limit (G, J ) ∈ E f

satisfy, as h → 0,

gh⇀g , j h⇀ j , Gh⇀G , J h⇀J in L2(Q;Rn) ,

gh − Gh → g − G , j h − J h → j − J in L2(Q;Rn) .

We denote by Bh ⊂ Q those points x ∈ Q for which (gh(x), j h(x)) is in DB
loc,

Bh :=
{
x ∈ Q | (gh(x), j h(x)) ∈ DB

loc

}
=

{
x ∈ Q | gh(x) = 0, j h(x) = e1

}
. (3.2)

The complement is denoted as Ah := Q \ Bh . Because of the bound 0 ≤ |Bh | ≤ |Q|, we
can select a subsequence (not relabeled) and a limit b ∈ L∞(Q) such that

1Bh → b weakly-* in L∞(Q) as h → 0, 0 ≤ b(x) ≤ 1 for a.e. x ∈ Q . (3.3)

As a consequence, 1Ah → (1 − b) weakly-* in L∞(Q).
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Step 2: A relation for averages. For any ϕ ∈ L2(Q;Rn) we can calculate, using the weak
convergence of gh , the property gh(x) = 0 for x ∈ Bh , then Agh(x) = j h(x) for x ∈ Ah ,
then gh(x) = e1 for x ∈ Bh , and finally the weak convergence of j h :

∫

Q
ϕ · Ag ←

∫

Q
ϕ · Agh =

∫

Ah
ϕ · Agh =

∫

Ah
ϕ · j h

=
∫

Q
ϕ · j h −

∫

Bh
ϕ · e1 →

∫

Q
ϕ · ( j − be1) . (3.4)

This shows

Ag = j − be1 in Q . (3.5)

In particular, we find (g, j)(x) ∈ DA
loc for almost all x ∈ {x ∈ Q | b(x) = 0}.

Step 3: Div-curl lemma. The data convergence properties allow to calculate the distribu-
tional limit of the product gh · j h . In the subsequent calculation, we use the standard div-curl
lemma in L2(Q;Rn) for the product Gh · J h , and the strong convergence of differences in
the other terms. In the limit h → 0, we obtain, for any ϕ ∈ C∞

c (Q),
∫

Q
ϕ gh · j h =

∫

Q
ϕ (Gh + (gh − Gh)) · (J h + ( j h − J h))

→
∫

Q
ϕ G · J +

∫

Q
ϕ G · ( j − J ) +

∫

Q
ϕ (g − G) · j =

∫

Q
ϕ g · j .

Step 4: The cone condition. We choose ε ∈ (0, 1) and set βε := (1 − b + ε)−1. For
arbitrary ϕ ∈ C∞

c (Q) with ϕ ≥ 0 we can calculate, exploiting the positivity and symmetry
of A,

0 ≤
∫

Ah
ϕ (gh − βεg) · A(gh − βεg)

=
∫

Ah
ϕ

[
gh · Agh − 2βεg

h · Ag + β2
ε g · Ag

]

=
∫

Q
ϕ

[
gh · j h − 2βεg

h · Ag
]

+
∫

Q
ϕ 1Ahβ

2
ε g · Ag . (3.6)

Using Step 3 and the weak-* convergence of 1Ah we deduce

0 ≤
∫

Q
ϕ [g · j − 2βεg · Ag] +

∫

Q
ϕ (1 − b)β2

ε g · Ag

=
∫

Q
ϕ

[
bg1 + g · Ag (

1 − 2βε + (1 − b)β2
ε

)]
, (3.7)

where we have used that j = be1+ Ag. Since ϕ was arbitrary, almost everywhere in Q holds

0 ≤ bg1 + g · Ag (
1 − 2βε + (1 − b)β2

ε

)
. (3.8)

Evaluating this inequality in {b = 1} = {βε = ε−1}, we find g · Ag ≤ ε
2−ε

g1 in this set.
Since ε > 0 was arbitrary, we find g = 0 and, as a consequence of (3.5), j = e1 almost
everywhere in {b = 1}. In particular, (g, j)(x) ∈ DB

loc ⊂ C for almost all x ∈ {b = 1}.
We next consider the set {0 < b < 1}. In this set, for ε → 0, there holds βε → 1/(1− b).

Relation (3.8) implies

0 ≤ g1 − 1

1 − b
g · Ag
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almost everywhere in {0 < b < 1}. This is one of the defining relations of the coneC , compare
(1.9). Combined with (3.5), we obtain that (g, j) ∈ C almost everywhere in {0 < b < 1}.

We recall that (g, j) ∈ DA
loc in the set {b = 0}was already obtained in Step 2. This implies

(3.1) and concludes the proof of the proposition. ��
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A Appendix

Weshowhere a property of the coneC of (1.9) and (1.10): Every inner point of the cone can be
written as a convex combination of two points on the boundary; the results is nontrivial, since
the additional requirement (2.9) has to be satisfied. The result was used in the construction
of iterated laminates in Lemma 4.

Lemma A.1 Let pC = (gC , jC ) ∈ C̊ be given. Then there exist two points pA ∈ DA
loc and

pL ∈ ∂latC and a parameter λ ∈ (0, 1) such that (2.8) and (2.9) hold.

Proof Since pC ∈ C̊ is an inner point of the cone, there exists b ∈ (0, 1) such that jC =
be1 + AgC and

gC · AgC < (1 − b)gC · e1 . (A.1)

We set ν := αgC with α := (gC · AgC )−1/2. The choice of α implies ν · Aν = 1. Given ν,
we set

gA := gC + bν1ν =
( 1

α
+ bν1

)
ν , jA := AgA . (A.2)

This choice guarantees (gA, jA) ∈ DA
loc. Next, for some bL ∈ [0, 1] to be determined below,

we define

gL := bL
b

(gC − gA) + gA =
(
(b − bL)ν1 + 1

α

)
ν , (A.3)

jL := bLe1 + AgL . (A.4)

The condition (gL , jL) ∈ ∂latC is equivalent to the condition

0
!= gL · AgL − (1 − bL)gL · e1
= (b − bL)2ν21 + 2

α
(b − bL)ν1 + 1

α2 − (1 − bL)
(
(b − bL)ν1 + 1

α

)
ν1

= (b − bL)
[
(b − bL)ν21 + 2

α
ν1

]
+ 1

α2 − (b − bL)
(
(b − bL)ν1 + 1

α

)
ν1

− (1 − b)(b − bL)ν21 − (1 − b)
1

α
ν1
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= (b − bL)
[

− (1 − b)ν21 + 1

α
ν1

]
+ 1

α2 − (1 − b)
1

α
ν1

= (b − bL)
[

− (1 − b)α2(gC · e1)2 + (gC · e1)
]

+ 1

α2 − (1 − b)gC · e1

= (b − bL)α2(gC · e1)
[

− (1 − b)gC · e1 + 1

α2

]
+ 1

α2 − (1 − b)gC · e1

=
(
(b − bL)α2(gC · e1) + 1

)[ 1

α2 − (1 − b)gC · e1
]
.

We note that the expression on the right hand side is negative for bL = b by (A.1). On the
other hand, for bL = 1, the expression on the right hand side is a product of two identical
terms and hence nonnegative. This implies that there exists a value bL ∈ (b, 1] such that
the expression vanishes. For this parameter bL , the above condition is satisfied and hence
(gL , jL) ∈ ∂latC .

We set λ := b
bL

∈ (0, 1). With this choice, by definition of gL in (A.3), we obtain

gL = 1
λ
(gC − gA) + gA and therefore

gC = λgL + (1 − λ)gA . (A.5)

Regarding the component j , we find

λ jL + (1 − λ) jA = λ(bLe1 + AgL) + (1 − λ)AgA

= λbLe1 + A(λgL + (1 − λ)gA) = be1 + AgC = jC .

Together with (A.5), this shows (2.8).
Finally, the definitions of gA, gL , jA, and jL imply gA − gL = bL

b (gA − gC ) = bLν1ν

and hence

(gA − gL) · ( jA − jL) = (gA − gL) · (AgA − bLe1 − AgL)

= (gA − gL) · A(gA − gL) − bLe1 · (gA − gL)

= b2Lν21ν · Aν − bLe1 · (bLν1ν) = 0 .

This shows (2.9) and completes the proof of the lemma. ��
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