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Abstract The possibility of accurately identifying

thermal material parameters on the basis of a simple

tension test is presented, using a parameter identifica-

tion framework for thermo-mechanically coupled

material models on the basis of full field displacement

and temperature field measurements. Main objective is

to show the impact of the material model formulation

on the results of such an identification with respect to

accuracy and uniqueness of the result. To do so, and as

a proof of concept, the data of two different experi-

ments is used. One experiment including cooling of

the specimen, due to ambient temperature, and one

without specimen cooling. The main constitutive

relations of two basic material models are summarised

(associated and non-associated plasticity), whereas

both models are extended so as to introduce an

additional material parameter for the thermodynami-

cally consistent scaling of dissipated energy. The

chosen models are subjected to two parameter iden-

tifications each, using the data of either experiment

and focusing on the determination of thermal material

parameters. The influence of the predicted dissipated

energy of the models on the identification process is

investigated showing that a specific material model

formulation must be chosen carefully. The material

model with associated evolution equations used within

this work does neither allow a unique identification

result, nor is any of the solutions for the underlying

material parameters close to literature values. In

contrast to that, a stable, that is locally unique, re-

identification of the literature values is possible for the

boundary problem at hand if the model with non-

associated evolution equation is used and if cooling is

included in the experimental data.

Keywords Parameter identification � Thermo-

mechanically coupled problem � Displacement field �
Temperature field � Model dependency � Dissipation

1 Introduction

Accurate material parameters are the basis of every

predictive simulation. The optimal values of these

parameters are usually determined by means of a

parameter identification. Optimal parameters, how-

ever, are not useful if the chosen material model itself

is not able to represent important key features of the

material behaviour under consideration. If, for exam-

ple, an isotropic yield surface is used to predict the

material response of a strongly anisotropic material

undergoing inhomogeneous stress states, the
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computed results will not reflect the real material

behaviour, regardless whether the parameters are

optimal or not. Likewise, insufficient experimental

data may allow a good fit of a model, but the fitted

parameters may not represent any other type of

boundary value problem due to overfitting.

Although it may be obvious as to what kind of

models should be avoided, it is not always clear how

certain aspects of a model must be chosen exactly.

Regarding the example from before, it is not intu-

itively clear what kind of anisotropic yield surface fits

best to what kind of material, seeing that there are

various different formulations established. This

knowledge has to be acquired by trial and error,

comparing model predictions and experiments. One

modelling aspect that has been subject to scientific

discussion for almost a century is the question of how

to model dissipation within thermo-plastic material

models. No final answer exists and it will therefore be

the focus of this work to compare two thermodynam-

ically consistent model formulations which differ only

in the amount of predicted dissipation in the context of

a parameter identification. More precisely speaking, it

is the intention of this work to show the impact of two

different material models on the result of a parameter

identification for thermo-mechanically coupled mate-

rial models and, furthermore, to show what kind of

experimental data is necessary to ensure a stable iden-

tification process. This work is a follow-up of a

previous publication [22] and addresses further

research topics such as model and experiment depen-

dencies in the context of a parameter identification.

Only brief summaries are given regarding the frame-

work of the identification, experimental setup as well

as the description of the underlying boundary value

problem. The reader is referred to the afore mentioned

publication for more detailed descriptions.

One of the first reports about the correlation of cold

work and heat was published in 1925 by Farren and

Taylor, see [5]. Their measurements during dynamic

tension tests suggested that a near constant fraction of

the cold work was transformed to heat and that the

remainder was stored as latent energy in the material.

Some time later, Taylor and Quinney reasoned that

this finding could not be true for larger strain states,

since the latent energy of a material should saturate,

see [24]. Within that work, experiments with a twisted

rod underlined this line of thought, showing that the

dissipated energy depends on the current load state.

This led to the introduction of the so-called Taylor-

Quinney factor which describes the ratio of cold work

to dissipated energy. In later years, a similar factor was

introduced to describe the ratio between the rate of

cold work, i.e. the stress power, and the rate of

dissipated energy, see e.g. [15] and [20]. The latter

work also clearly differs between the two aforemen-

tioned factors, which were usually denoted by the

same symbol albeit describing fundamentally differ-

ent ratios. At that point, the idea of a strain and strain

rate dependent ratio between cold work and dissipated

energy was well established, and many further scien-

tific contributions can be found with the focus on the

determination of this dependency. Whereas some

researchers mainly seek to determine the Taylor-

Quinney coefficient experimentally, e.g. in [7, 12]

using a Kolsky (Split-Hopkinson) pressure bar, or in

[9] under uniaxial tension, others place a stronger

emphasis on thermodynamical consistency. It has

often been stated, that the simple replacement of the

predicted dissipation of a model with a fraction of the

plastic stress power does not necessarily fulfil the first

law of thermodynamics, so that a thermodynamically

consistent model which predicts the dissipated energy

accurately should be used instead. Hence, several

modelling approaches have been proposed and their

predictions have usually been compared to experi-

mental data of a dynamic Kolsky (Split-Hopkinson)

bar test assuming adiabatic conditions, see e.g.

[21, 23, 25] and [2]. In the latter work, an additional

material parameter is introduced by making an

extension to the postulated Helmholtz free energy

function. This parameter determines how much energy

is stored in the material and how much is dissipated

during plastic deformations. Thus, it allows a better

adaptation of the model to real material behaviour

while still satisfying the laws of thermodynamics.

Although the overview above is just a brief excerpt

and many more publications could be mentioned,

attention is drawn to only two more approaches to the

identification of plasticity induced dissipation. In [19]

a slightly different concept is presented which tries to

avoid the test of all kind of possible energy formula-

tions and rather aims at deducing an appropriate

Helmholtz free energy function directly from exper-

imental data. The approach is tested on data of a tensile

test assumed to be adiabatic and compares two

fundamentally different plasticity model approaches,

i.e. associated and non-associated plasticity. The
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results show that the associated format is not able to

correctly predict the dissipation obtained from the

experiment. The second approach can be found in [18]

where an inverse analysis with full field displacement

and temperature measurements of an inhomogeneous

boundary value problem (BVP) is used to fit the

mechanical parameters and the evolution of a Taylor-

Quinney factor of a simple, not necessarily thermo-

dynamically consistent model to an observed temper-

ature field. A similar method was used in [22] to fit the

mechanical as well as the thermal material parameters

of a potential based material model to the experimen-

tal full field displacement and temperature data of a

tensile test under monotonic loading. Apart from

differences in the handling of experimental data and

the employed material model, the main distinction in

these two works is the set of parameters which is

optimised. Whereas heat capacity, thermal conductiv-

ity and thermal expansion were taken from literature in

[18], these parameters were part of the optimisation in

[22]. It was therefore shown in the latter work that a

stable identification of the thermal material parameters

is possible on the basis of a simple tension test.

Regarding the identification of thermal material

parameters such as the heat capacity, there are mainly

two different approaches to obtain these parameters of

a material. The first is the use of calorimetry,

necessitating special experimental devices which can

be used almost exclusively for that purpose. An

alternative was first introduced in [17], the so-called

flash-method, where a specimen is subjected to a short

laser impulse measuring the thermal response of the

material close to the laser impact. This approach was

further refined e.g. in [10] and [1] to include an inverse

analysis similar to the approach of the Finite-Element-

Model-Updating (FEMU) method.

Most of the literature above is either concerned

with a precise prediction of dissipated energy, aiming

at an equally precise prediction of temperature evo-

lution but taking thermal parameters from literature, or

it is concerned with the identification of thermal

material parameters leaving aside all coupling effects.

In [22], however, a scheme can be found which

combines both aspects. The framework presented

therein can be used to identify all material parameters

of a thermo-mechanically coupled material model,

including the thermal ones, under any kind of

mechanical load. While the aforementioned publica-

tion shows that a stable optimisation is possible on the

basis of a specific example (simple tension test with

monotonous loading, associated evolution equations

without possibility to scale dissipation independently),

it also states that the resulting, optimal parameters may

vary for different material model formulations. The

thermal parameters identified in [22] lead to a very

precise fit of the measured temperature field, and the

model of that publication was therefore able to

represent the plastic heating of the material. The value

of the optimal thermal material parameters however,

differed significantly from literature values and it can

be assumed that they are therefore unable to also

represent the cooling of the specimen.

The model formulation is therefore vitally impor-

tant for the identification of material parameters which

can be used to accurately predict the material response

of different BVPs, and the cited literature provides

information on sensible model formulations. For this

work, two thermodynamically consistent material

models, either standard associated or non-associated

plasticity, are extended to allow a greater flexibility in

the predicted dissipation, following the modelling

approach presented in [2]. These models are then

subjected to a parameter identification for thermo-

mechanically material models by using the framework

presented in [22]. That is to say, two different

experiments are used as the basis of the identifications

to see what kind of data is necessary to obtain a

(locally) unique solution and to investigate if mono-

tonous loading (as is used in almost all of the

publications mentioned above) holds enough infor-

mation to find a parameter set which can also represent

several loading scenarios, i.e. plastic heating and

conduction based cooling of the specimen. The aim of

this work is not to compute reliable parameter values

which can be used for predictive simulations. This

would require the consideration of more than two

experiments as in case of this work. Aim of this work

is to show that the model formulation has a non-

neglectable influence on the numerical value of the

optimal material parameters and that a stable identifi-

cation is possible, albeit adding an additional

unknown, i.e. a further material parameter which

scales dissipation.

To do so, this article is structured as follows. The

essentials of the underlying identification framework

for coupled models are summarised in Sect. 2. It is

followed by information on the experimental setup in

Sect. 3, including a description of the specimens that
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are used for two different tensile tests (monotonous

loading and loading-unloading-cooling) as well as a

representation of the obtained experimental data.

From this experimental data, two material models

are motivated in Sect. 4 which are able to represent

observed key features. Two different modelling

approaches are chosen, whereas one model uses

associated evolution equations and the second model

uses non-associated evolution equations. The Helm-

holtz free energy function of both models is extended

to account for a material parameter which has an

influence on the amount of latent energy during plastic

deformations, c.f. [2]. It is worth noting that both

models predict the same mechanical material beha-

viour and only differ in the amount of dissipated

energy. All material parameters are analysed with

respect to possible correlations. Section 5 provides

information on the specific identifications that are

performed, starting with a definition of the discretised

BVP. The parameters of both models are fitted to the

experimental data of either of the two experiments

presented before to see what kind of data is necessary

for a (locally) unique result that can represent loading

and cooling alike. The obtained results are presented

and analysed with respect to the remaining error,

possible correlations, as well as their distance to

literature values. At last, a short discussion can be

found in Sect. 6, summing up the main results of this

work.

2 Parameter identification framework

A Finite-Element-Model-Updating (FEMU) method

is used for the parameter identifications within this

work. The general concept of this approach can be

found in numerous publications and a comprehensive

description of the specific framework that was used for

this work can be found in [22]. Thus, the framework of

a FEMU method is considered to be state of the art and

only the essentials of the extension for the handling of

temperature data is summarised within this section.

InterpolationAn interpolation is usually required in

order to compare experimental and simulated data at

the same points in space. Experimental displacement

data is interpolated on the referential coordinates of

the FE mesh in a pre-processing step. Thus, a set of

displacements describes the movement of each node

throughout the experiment. In contrast to the

displacement data, temperature data is only available

in the current configuration of the experiment. The

experimental displacement sets are therefore used to

interpolate the experimental temperature in the current

configuration on the position which each node

possessed during the experiment at the respective

time step.

Objective function For the sake of completeness,

the objective function used is specified, i.e.

f ¼
X

i2fx;y;zg
Wu

i

Xnts

t¼1

Duexp
i � Dui jð Þ½ �2t

þWh
Xnts

t¼1

Dhexp � DhðjÞ½ �2t

¼ f u þ f h;

ð1Þ

cf. [22]. It combines the error in relative displacements

and the error in temperature rise. The weighting

factors W are used to avoid a clash of units and to

ensure an equal contribution of each of the different

error contributions. It is worth noting that the use of

relative displacements Du compensates unwanted

rigid body motions which would otherwise have a

strong influence on the results of the identification

process, if not treated otherwise. The objective

function can furthermore be extended to include

additional measurable quantities, such as the integral

reaction force, see [14] or [13].

3 Experiments

Information about the experiments which are used for

the parameter identification process is given within

this section. The type of specimen which is chosen for

the experiments as well as the experimental setup are

briefly introduced first. A more detailed description

can be found in [22] where the same setup was used.

Since two types of experiments are performed, the

different load types are explained, introducing an

experiment with and one without the cooling down

phase of the specimen. Data of the former experiment

was also already used in [22] whereas data of the latter

experiment marks a distinct extension of the work at

hand. Afterwards, the measured displacement field

and temperature field data is visualised and analysed.

Only one experiment per testing condition is later used

within this proof of concept. A real parameter
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identification should be based on a statistically rele-

vant number of experiments, if its result shall be used

for predictive simulations.

3.1 Specimens

The experiments were performed with flat tensile test

specimens made from the aluminium alloy AW6016.

All specimens are cut from a sheet metal plate such

that the tensile direction aligns with the rolling

direction of the plate. Figure 1 displays the chosen

geometry which is based on the recommendations for

tensile tests as defined in DIN 50125.

3.2 Experimental setup

Each specimen is observed by means of a DIC as well

as by a thermography system throughout the whole

experiment. Thus, displacement field and temperature

field are measured parallelly to be later used for the

identification process. Regarding the mechanical load,

all experiments are controlled by an electro-mechan-

ical tension machine. DIC and thermography system

are placed on opposite sides of the specimen to avoid

erroneous temperature measurements, see [22] for

further details. All systems are started simultaneously

by means of a trigger signal but may save correspond-

ing data at different rates.

All experiments are subjected to the same displace-

ment controlled loading path with a constant cross

head speed of 0.14 mm/s over a time interval of 140 s.

Some measurements were stopped right after this

loading phase and some were continued to also include

an unloading and cooling towards room temperature

of the specimen. More precisely speaking, the respec-

tive specimens are unloaded displacement controlled

until the force reaches a value of 0 N. The unloading

takes about 3 s and the specimen is observed until a

total time of 10 minutes has passed, see Fig. 2. The

first type of experiment will henceforth be referred to

as ‘‘without cooling’’ and the second type as ‘‘with

cooling’’.

3.3 Experimental data

Although full field measurements are made, the

experimental stress strain relation can be computed

on the basis of the obtained displacement field and

force signal. Assuming a homogeneous distribution of

stress and strain within the area of interest, the

associated component of the Piola stress tensor and

of the deformation gradient in tensile direction, Pk and

Fk respectively, allow a direct visualisation and

interpretation of the experimental data. Figure 3

shows that both experiments have an almost identical

stress strain relation starting with linear elastic mate-

rial behaviour followed by plasticity with a saturation

type of hardening. Neither experiment shows indica-

tions of necking.

Due to the boundary conditions which are displayed

in Table 1, the temperature field is inhomogeneously

distributed throughout the experiment with its extre-

mum in the centre of the specimen, see Fig. 4.

33

60 102

246

25

R
20

(a) Technical drawing — top view.

1.
2

(b) Technical drawing — front view.

(c) Stochastic pattern for DIC system
on topside of specimen.

(d) Black paint for thermography system
on backside of specimen.

Fig. 1 Dogbone specimen for tensile testing. Reprinted from

[22], with permission from Elsevier
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Fig. 2 Loading path for the experiments, with cooling (- -) and

without cooling (–)
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The temperature of the centre point of the specimen

over time is given in Fig. 5, since the evolution of a

local quantity over time can be visualised and

interpreted straightforwardly.

It is worth mentioning that, although the thermog-

raphy system only measures the temperature of areas

which are fixed in space, the simultaneously obtained

displacement data is used to find the temperature at the

current location of the centre point. Such an algorithm

can for example be found in [22] and [11]. The data of

Fig. 5 indicates that each experiment considered here

undergoes some elastic cooling before plastic heating

leads to a temperature rise of approximately 3 K. The

experiment with cooling furthermore shows a rise in

temperature during elastic unloading, followed by the

expected cooling down of the specimen.

Figure 5 furthermore highlights the reproducibility

as the two experiments were performed with speci-

mens from the same batch but several months apart.

4 Material models

The choice of a specific model can have a significant

influence on the result of a parameter identification.

Hence, two different material models are introduced

within this section to be later compared in the context

of parameter identification. The underlying material

parameters are briefly analysed with respect to iden-

tifiability on the basis of the experimental data at hand.

4.1 Model formulation

The dissipated energy during plastic material defor-

mations is the main reason for the heating of the

specimen considered here. Thus, and for the sake of

comparison, the main assumptions and equations

necessary for the derivation of two material models

are presented which differ qualitatively in the amount

of dissipated energy. The first material model uses

associated evolution equations and includes the

Gough-Joule-Effect as well as plastic heating. It

features isotropic elasticity, a Hill-type yield surface

and exponential hardening. The second material

model uses non-associated evolution equations. It also

includes the Gough-Joule-Effect and plastic heating as

well as isotropic elasticity, a Hill-type yield surface

and a saturation type of isotropic hardening. Further-

more, a factor b scaling single dissipation contribu-

tions is included which does not influence the

thermodynamic consistency of either model as is

proposed in [2]. Heat exchange with the environment

is considered by means of surface elements for either

model.

The models will show a similar mechanical

behaviour, yet differ in the prediction of dissipated

energy. Furthermore, the aforementioned factor b can

be used to scale the amount of dissipated energy which

1 1.05 1.1 1.15 1.2
0

50

100
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250

  with cooling
 without cooling

P
in

M
Pa

F

Fig. 3 Stress-strain relation of the experiments

Table 1 Measured temperatures at the boundaries of the

specimen

Experiment Clamping jaws [�C] Air [�C]

With cooling 23.80 24.50

Without cooling 23.10 24.25

(a) Initial temperature distribution.

(b) Temperature field at 140 s.

24.0 ◦C

25.0

26.0

27.0

28.5

Fig. 4 Temperature field of specimen during the experiment
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would otherwise solely depend on mechanical mate-

rial parameters. It is worth noting that b, as introduced

in [2] and as used within this work, is not a Taylor-

Quinney factor. In general, it describes neither the

ratio of plastic to dissipated work nor the ratio of

plastic power to dissipated energy. It is merely an

additional material parameter, describing the amount

of energy which is for example necessary for the

creation and upholding of dislocations, the so-called

stored or latent energy of cold work.

Both material models are set up in a finite

deformation setting with the deformation gradient

F ¼ rX u of the deformation mapping x ¼ u X; tð Þ.
We shall assume a multiplicative split into an elastic

contribution and a plastic part, i.e. F ¼ Fel � Fpl . The

free energy function

w ¼wel þ wpl þ wther þ wcoup þ wns with ð2Þ

wel ¼ k
2

ln2ðJelÞ þ l
2

trðCelÞ � 3
� �

� l lnðJelÞ; ð3Þ

wther ¼ c0 h� h0 � h ln
h
h0

� �� �
; ð4Þ

wcoup ¼ � 3 aexp Kbulk h� h0½ � lnðJelÞ
Jel

; ð5Þ

wns ¼ 1 � b½ �My0
a; ð6Þ

is postulated for both models, using the determinant of

the elastic deformation gradient Jel ¼ det Fel
� 	

, the

right, elastic Cauchy-Green tensor Cel ¼ Fel
� �t�Fel, as

well as the internal hardening variable a and the

absolute temperature field h X; tð Þ. A non-standard

contribution is added, as is proposed in [2], which will

turn out to control the amount of energy which is either

dissipated or latent during plasticity evolution. The

only difference in the two free energy formulations

lies within the chosen plastic part,

Model 1 wpl ¼
�
My1 �My0

�
aþ

exp �Hexp a
� 	

Hexp

� �

ð7Þ

Model 2 wpl ¼ 1

2
h a2: ð8Þ

Regarding the derivation of the required constitutive

equations, the local form of the Clausius-Duhem

inequality can be used to obtain the constitutive

equations for the Piola stress tensor P, driving force K

for the internal hardening variable and, based on P, for

the Mandel stress tensor M, i.e.

P ¼ ow

oFel
� Fpl
� ��t

; ð9Þ

K ¼� ow
oa

; ð10Þ

M ¼ Fel
� �t�P � Fpl

� �t¼ Fel
� �t� ow

oFel
ð11Þ

by following the steps of the Coleman and Noll

procedure. The driving force of the internal hardening

variable is reduced to
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temperature evolution over

time for the two

experiments, with cooling

(- -) and without cooling (–)
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�K ¼ � owpl

oa
ð12Þ

for standard models without the non-standard energy

contribution, which can also be retrieved by choosing

b ¼ 1. Fourier’s law

q ¼ �jthermrxh ð13Þ

is assumed to govern the heat flux in the spatial

configuration, so that the Fourier part of the Clausius-

Duhem inequality is always fulfilled. Regarding heat

exchange with the environment, the heat flux normal

to the current surface of the body is incorporated by

using the equation

q0 ¼ n � q ¼ �acon hM � h
� �

; ð14Þ

depending on the convection or conduction coefficient

acon and on the temperature of the surrounding

medium hM, see e.g. [3] for more details.

The approach for a standard model formulation is

used to define the evolution equations for the plastic

velocity gradient Lpl ¼ _Fpl � Fpl
� ��1

and the internal

hardening variable a, i.e.

Lpl ¼ kpm

og

oM
; ð15Þ

_a ¼ kpm

og

o �K
; ð16Þ

with the Lagrange or plastic multiplier kpm and the

plastic potential g. The plastic potential is chosen

differently for each model,

Model 1 g ¼U ð17Þ

Model 2 g ¼Uþ 1

2

b

h
�K2: ð18Þ

Both potentials make use of the yield function

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M : G : M

p
� bMy0

þ K ð19Þ

with the fourth order tensor G representing Hill-type

plastic anisotropy. A comment on the reason for the

specific formulation of the plastic potential for the

non-associated model can be found in Remark 2 at the

end of this subsection. If the definition of the driving

force K is inserted into the chosen form of the yield

function, the standard formulation of a Hill type yield

surface

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M : G : M

p
�My0

þ �K;

¼
h
F M11 �M22½ �2þG M33 �M11½ �2

þ H M22 �M33½ �2þ 2LM2
12 þ 2MM2

23

þ 2N M2
13

i1
2 �My0

þ �K

ð20Þ

is retrieved, introducing the six Hill parameters F, G,

H, L, M, N with the coefficients of the Mandel stress

tensor referring to the underlying (aligned) orthonor-

mal frame. Time integration is done by means of a

simple backward Euler scheme.

For the sake of interpretation in later sections, the

balance of energy is given as

c0
_h ¼ q0r �rX � QþDmech þ h

o2w

oFeloh
: _Fel ð21Þ

with Q ¼ det Fð Þ q � Ft and with the referential heat

capacity c0 ¼ �h o2w
ohoh being constant due to the chosen

form of the thermal free energy contribution as

introduced in (4). Furthermore, the particular models

at hand yield fundamentally different equations for the

mechanical dissipation,

Model 1 Dmech ¼ b kpm My0
ð22Þ

Model 2 Dmech ¼ kpm

�
b h a2

þ 1 � b½ � bMy0
aþ bMy0

�
:

ð23Þ

Equations (22) and (23) show that the dissipation of

both models is always larger or equal to zero as long as

b lies within the model specific boundaries

Model 1 b� 0; ð24Þ

Model 2 0� b� 1 _ bl � b� bu; with ð25Þ

bu;l ¼
My0

bþ 2 h 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
My0

b

h þ 1

q� �

My0
b

:
ð26Þ

A detailed derivation of the limit values of b for model

2 can be found in Appendix 1.

Remark 1 Regarding model 1, the constitutive

equation for stresses, the evolution equation for the

plastic contribution to the deformation gradient and

internal hardening variables as well as the yield
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surface are independent of the non-standard addend to

the free energy and therefore independent of the

parameter b which only influences the amount of

dissipated energy. The mechanical response of model

1 is therefore identical to the associated standard

model formulation, if coupling effects due to the rise

of 3 K for the case at hand are neglected. Furthermore,

the chosen evolution equations for model 1 can also be

obtained through the postulate of maximum

dissipation.

Remark 2 There are general frameworks well-

established, such as the one of generalised standard

material (GSM), which guarantee a non-negative

dissipation if the plastic potential of a model with

non-associated evolution equations is defined accord-

ingly. The commonly used formulation

~g ¼ Uþ 1

2

b

h
K2 ð27Þ

meets all requirements of the GSM approach and

therefore also guarantees a non-negative dissipation.

However, this choice for a plastic potential leads to

evolution equations that depend on parameter b. Thus,

the evolution equations are no longer comparable to

the ones of a standard model formulation, i.e. without

the non-standard energy contribution. This, in our

case, undesired effect can be remedied by the simple

modification in Equation (19). The alternative formu-

lation may violate some of the conditions of the GSM

approach, so that its line of reasoning can not be

applied to the second model. It is therefore shown in

Appendix 1 that this specific choice nonetheless fulfils

the dissipation inequality. The mechanical response of

model 2 is therefore identical to the standard model

formulation if coupling effects due to the experimen-

tally observed rise of 3 K are neglected so that

parameter b only influences the amount of dissipated

energy.

Remark 3 The mechanical response of both models

is identical to the one of a standard model without the

non-standard addend wns of the free energy, since this

addend only influences the amount of dissipated

energy. It was shown in [22] for such standard

formulations of these two models that the mechanical

response is identical if

b ¼Hexp and ð28Þ

h

b
¼ My1 �My0

� �
ð29Þ

in the range of small strains assuming a neglectable in-

fluence of the low rise in temperature. The mechanical

response of the two models at hand is therefore also

identical for small strains and can be assumed to be at

least comparable for large deformations. Thus, the

hardening parameters Hexp and My1 will be used for

both models in the following sections.

Remark 4 It is worth noting that Young’s modulus E

and Poisson’s ratio m are used within the identification

process instead of the two Lamé parameters k, l and

the bulk modulus Kbulk which were used for the

definition of the energy contributions above.

4.2 Material parameters

It is important to know which influence each material

parameter has on the material response in order to

obtain meaningful results through a parameter iden-

tification scheme. More precisely speaking, the ques-

tion of identifiability must be raised and answered with

respect to the kind of experiments which are required

for the model at hand. This can be done either by

means of the sensitivity of the objective function w.r.t.

the material parameters, i.e. the Jacobian matrix of the

objective function evaluated at the solution point of

the identification, see [6], by an analysis of the

underlying constitutive equations, or by using a grid

search method in order to receive information towards

the uniqueness of the solution within a certain area in

parameter space.

The last two options are considered within this

work, starting with an analysis of the constitutive

equations to see which of the 15 material parameters

from Table 2 are correlated and which are not. This

analysis provides information as to which parameters

of the models can and which can not be identified on

the basis of the experiments at hand, information on

the correlation of material parameters and information

on the possibility to identify subsets independently.

Mechanical parameters which are found to have no

influence on the boundary value problem at hand are

directly excluded from the identification process.

Different and suitable experiments should generally

be used for such cases, but it is not the aim of this work

to obtain mechanical material parameters which can

be used for predictive simulations of different
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boundary value problems. Rather, the identification of

suitable thermal material parameters which can be

used for different load scenarios is investigated and the

influence of certain parts within the model formula-

tions are to be underlined.

The mechanical response of both models consid-

ered is almost identical and the predicted mechanical

response does not differ from the standard formulation

of either model for a low rise in temperature.

There is no significant correlation between the two

elastic material parameters E and m if displacements in

tension and lateral direction are used. Furthermore,

these parameters can be identified separately in a first

step, since the material response at the start of the

experiments is unaffected by the plastic material

parameters and is also assumed to be unaffected by the

low rise in temperature and hence unaffected by the

thermal material parameters. Regarding the plastic

material parameters My0
, My1 , Hexp, F, G, H, L, M and

N, all (apart from F, G and H) have a unique

interpretation so that no significant correlation is to

be expected. However, L, M and N have no effect on

the simulation results of the simple tension test

considered since these are related to shear components

of the Mandel stress tensor. Of the three Hill

parameters related to normal stress components F, G

and H, only one can be identified by means of data

from a simple tension test. It was discussed in [22] that

the two remaining parameters can be randomly

prescribed without affecting the identification result.

Regarding the subdivision of the identification pro-

cess, the assumption that the small increase in

temperature has no significant effect on the mechan-

ical response allows the identification of the plastic

material parameters after the elastic parameters and

prior to the fit of the thermal material parameters aexp,

jtherm, c0 and b. As presented in [22], the standard

formulation of the model which is reproducible by

choosing b ¼ 1 allows a stable identification of the

three parameters aexp, jtherm and c0 on the basis of a

simple tension test without cooling. This indicates that

there is no significant correlation between these three

thermal material parameters for that specific inverse

problem. In the case of the non-standard model

formulation, however, parameter b can have a high

correlation to the remaining thermal material param-

eters, depending on the chosen BVP. The parameter is

not redundant, but its unique identification greatly

depends on the thermal boundary conditions as well as

on the precise influence of b on the dissipation. A

general statement about the correlation between the

four thermal parameters of the models at hand

therefore proves to be difficult, but an interpretation

is given in Sects. 5.2.3 and 5.3.3, where the thermal

boundary conditions for the BVP considered in this

work are defined.

In summary, it is therefore sufficient to further

investigate the correlation between b and the other

three thermal material parameters, since the correla-

tion of all other material parameters is already

specified and non-critical. This investigation is done

by means of a grid search approach during the

identification of the thermal material parameters. If

several initial guesses lead to the same result, it is a

strong indicator that a unique solution exists within a

certain area in parameter space. In contrast thereto, the

inverse problem is ill-posed in case several starting

points lead to different solutions yielding an identical

objective function value and an identical material

response.

With the two material models at hand, it is now

possible to determine which model formulation, i.e.

which kind of dissipation, and within each formulation

what amount of dissipation represents the observed

material behaviour most appropriately. It can also be

determined what kind of data is necessary to find a

unique solution (within a certain area in parameter

space) for all four thermal material parameters. We

will furthermore investigate whether it is possible to

retrieve thermal parameters which can predict plastic

heating as well as purely thermal effects with the data

at hand.

Table 2 Material parameters of the models

E Young’s modulus

m Poissons ratio

My0
Initial yield limit

F, G, H, L, M, N Hill parameters

My1 Exponential hardening limit

Hexp Exponential saturation speed

aexp Thermal expansion coefficient

jtherm Thermal conduction coefficient

c0 Heat capacity

b Dissipation factor
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5 Parameter identification

The two material models of Sect. 4 are compared in

the context of a parameter identification within this

section. More precisely speaking, the influence of the

different kinds of dissipation behaviour of the two

models are of interest when determining which of the

two models can predict the mechanical and the

thermal material behaviour more accurately. Hence,

the two different experiments from Sect. 3 are used to

test whether the models are able to represent different

loads equally well. The parameter identification

process is split into three parts, identifying first the

elastic, then the plastic and finally the thermal material

parameters as was proposed in [22]. The applied

optimisation scheme itself is a gradient-free method

from the open source toolbox NLopt [8], as docu-

mented in [16] and [4]. At first, however, the boundary

value problem as well as the weighting factors

W within the objective function are specified.

5.1 Boundary value problem

The definition of the boundary value problem (BVP)

must represent the experimental setup as closely as

possible. The BVP at hand was already described in

[22] and differs only in the applied load curves. Hence,

only a brief summary is given below and the interested

reader is kindly referred to the afore mentioned

publication.

5.1.1 Finite element discretisation

Only a fourth of the specimen is modelled using the

dimensions from Sect. 3.1, taking into account the

symmetry of the specimen and of the deformation.

Each specimen geometry is measured prior to an

experiment, but deviations towards the technical

drawing are small enough to be neglected.

3840 linear brick elements are used for the

approximation of the displacement and temperature

fields together with an additional 1280 surface

elements to take into account heat exchange with the

environment.

5.1.2 Boundary conditions

The boundary conditions include mechanical and

thermal parts and must represent the underlying

experiments as closely as possible

Mechanical boundary conditions Nodes on the

green (left) surface in Fig. 6 are clamped in y-direction

and the experimental reaction force is applied to the

nodes on the blue (right) surface. The simulation is

therefore force driven following the experimental

reaction force of the related experiment as displayed in

Fig. 2. Not the entire loading path is used for all

identifications, and the exact part which is prescribed

is defined in the related subsections as this work

proceeds. Furthermore, symmetry boundary condi-

tions are applied.

Thermal boundary and initial conditions Surface

elements are used to incorporate the heat exchange

with the environment. The heat exchange through the

clamping jaws appears to dominate for the specific

experiments at hand. In that sense, the convection

coefficients for those elements which model contact to

air are set to aair
con ¼ 0 W/[m2 K], while the conduction

coefficients of the surface elements which model

contact to the clamping jaws are set to aclamp
con [ 108 W/

[m2 K]. Regarding the initial temperature assigned to

each node, the measured temperature of the clamping

jaws, see Table 1, is used for all nodes.

Weighting factors The weights W for the error in

displacements and temperatures within the objective

function (1) are set as follows. Nodes outside the black

rectangle (jyj[ 20 mm) in Fig. 6a are neglected, as

well as nodes which are too close to the edge of the

specimen (x[ 11 mm). The respective weights are set

to zero. The weights for x- and y-components of the

remaining nodes are chosen so that an almost equal

x

yz

(a) Top view – Nodes on the green (left) surface are clamped and
nodes on the blue (right) surface are loaded with the measured
reaction force. Symmetry conditions are applied.

x y

z
(b) Side view from left.

Fig. 6 Discretised FE model of the specimen. Tension direction

aligns with 22 direction from the chosen material models, cf.

(20), i.e. M22 ¼ Myy ¼ Mk. Reprinted from [22], with permis-

sion from Elsevier
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influence on the overall objective function value is

ensured. Values vary for different identifications and

are specified in Sects. 5.2 and 5.3. Displacement data

in z-direction is not used and the related weights are

also set to zero for all nodes. All identifications that

involve temperature data are performed with a value of

Wh ¼ 1.

Evaluation points are chosen to cluster around

points, respectively loading states of significance, such

as temperature maxima and minima or the onset of

plasticity to enforce a better fit of the associated

phenomena. The exact load steps at which the

objective function is evaluated for each identification

are indicated by markers in the associated stress-strain

and temperature-time curves in Sects. 5.2 and 5.3.

With the definitions above at hand, the two different

experiments are subjected to a parameter

identification.

5.2 Experiment without cooling

Data of the experiment without cooling is used for the

following identification which is split into three parts.

Results for model 1 and model 2 are presented side by

side for each step of the process.

5.2.1 Elastic material parameters

The experimental reaction force of up to two seconds

is prescribed as load to ensure that the elastic

parameters are identified on the basis of purely elastic

experimental data, see Fig. 7. Only the error in

displacements is considered for this part and the

missing weighting factors are set to Wu
x ¼ 1 and

Wu
y ¼ 1. The initial guess as well as the resulting

material parameters of model 1 and model 2 are

displayed in Table 3. The optimal elastic material

parameters for model 1 and model 2 are identical,

since both models share the same purely elastic

material behaviour.

Regarding the quality of the fit, Fig. 9 exemplarily

shows that the remaining error f ¼ f u is distributed

rather homogeneously over the area which was

considered for the identification. The distribution of

the remaining deviation between experimental data

and simulation results over time of a single, represen-

tative node can be seen in Fig. 8. The two Figures sug-

gest a good fit of either model to the elastic material

behaviour.

5.2.2 Plastic material parameters

With the elastic material parameters at hand, the

plastic material parameters are identified in a second

step by using experimental data up to the end of the

experiment without cooling, i.e. up to 140 s. The

prescribed load path is displayed in Fig. 10.

Only the error in displacements is considered and

the weighting factors are set to Wu
x ¼ 5 and Wu

y ¼ 1.

The identification process is started with the initial

guesses from Table 4 yielding the optimal material

parameters displayed in the same Table.

Remaining deviations to the experimental data are

sufficiently small as Figs. 11 and 12 indicate. Thus,

the fit of the two models to the plastic material

behaviour appears to be acceptably accurate.

Independent from the fit, a closer look at the

obtained optimal plastic material parameters in

Table 4 and the material response in Fig. 12 shows

that the two models predict an almost identical
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Fig. 7 Prescribed force Fpre over time. Black, vertical line

indicates end time tel
end ¼ 2:0 s for identification of elastic

parameters on the basis of the experiment without cooling

Table 3 Initial and obtained values for elastic material

parameters on the basis of the experiment without cooling

Material parameter E [MPa] m [-]

Initial guess 60000 0.30

Optimal value-model 1 67913 0.35

Optimal value-model 2 67913 0.35
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mechanical material response for the almost same set

of material parameters. Thus, the assumption made in

Remark 3, stating that the mechanical parts of the two

models are comparable for large deformation, appears

to be valid for the boundary value problem considered.

5.2.3 Thermal material parameters

Finally, the thermal material parameters of each model

can be fitted to the temperature data of the experiment

without cooling. The identification is started from

several initial guesses, see Table 5, to investigate the

uniqueness of the solution within a certain area of the

parameter space, since a general statement about the

correlation of the four thermal material parameters in

Sect. 4.2 was not possible. Bounds for the parameter b
in model 2 are set in accordance with (26) to

0� b� 6:92. The predicted temperature evolution is

almost identical for all optimised material parameter

sets, and remaining errors per node are rather small for

both models as is indicated in Figs. 13 and 14.

Model 1 The optimal material parameter sets of

model 1 differ significantly as can be seen in Table 6.

Thus, the inverse problem at hand has several

solutions close to each other, and the assumption that

a whole valley of solutions exists for the specific

inverse problem at hand comes to mind. Either way, a

strong correlation between scaling parameter b and the

remaining thermal material parameters becomes evi-

dent for this pair of model and experimental data.

Although a general statement was not possible in

Sect. 4.2, the specific thermal boundary conditions for

the BVP at hand eventually allow an interpretation of

the correlation between b, aexp, jtherm and c0. It was

already shown in [22], that the identification of

thermal material parameters on the basis of an

experiment without cooling, i.e. with monotonic

loading, yields a unique (at least locally) result if a

standard formulation of model 1 is used. The main

0.0 × 10−7 2.4 × 10−7 4.9 × 10−7 7.3 × 10−7 9.7 × 10−7

Fig. 9 Remaining nodal contribution to the mechanical (displacement) part of the objective function f u at time t ¼ 2:0 s using data

from the experiment without cooling. The remaining error is the identical for model 1 and model 2 since the elastic response is identical
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P
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M
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Fig. 8 Local stress-strain relation of experiment without

cooling and of simulation with optimal elastic parameter set,

evaluated at the midpoint of the specimen. Elastic response is

identical for model 1 and model 2
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Fig. 10 Prescribed force Fpre over time. Vertical, black line

indicates end time tpl
end ¼ 140:0 s for identification of plastic

parameters on the basis of the experiment without cooling
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difference between such a standard formulation and

the non-standard formulation used within this work is

the parameter b. Whereas the dissipation of a standard

model only depends on the mechanical material

parameters, the amount of dissipated energy can still

be scaled for the non-standard model without affecting

the mechanical response, as was explained in Sect. 4.

That is to say that b affects the dissipation of all time

steps alike by simply shifting the quantity of dissipated

energy as can also be seen in Fig. 15. This constant

difference in available heat is simply compensated by

an adaptation of the other thermal material parameters.

The following example is considered:If twice as much

energy is transformed to heat at each time step, the

heat capacity must be twice as high to ensure that the

same (optimal) temperature is reached. The thermal

conduction must be twice as high in order to transport

twice as much heat towards both ends of the specimen

where it can leave the specimen (due to the specific

thermal boundary conditions at hand). By considering

the balance of energy in (21), it follows that the heat

expansion coefficient, which is featured in the addend

responsible for the Gough-Joule effect, must also be

twice as high for such a case. Accordingly, the ratio of

aexp=b, jtherm=b and c0=b should be constant if the

amount of dissipated energy scales linearly in b. This

is the case for model 1 and the results underline the

reasoning above.

Apart from the correlation of the parameters, it is

not possible to retrieve a thermal material parameter

Table 4 Initial and obtained values for plastic material parameters on the basis of the experiment without cooling

Material parameter My0
[MPa] My1 [MPa] Hexp [-] F [-]

Initial guess 140.00 290.00 15.00 0.50

Optimal value - Model 1 131.13 297.97 10.62 0.37

Optimal value - Model 2 130.38 295.60 10.92 0.37

(b) Model 2.

0.0 × 10−5 0.3 × 10−5 0.5 × 10−5 0.8 × 10−5 1.1 × 10−5

(a) Model 1.

Fig. 11 Remaining nodal contribution to the mechanical

(displacement) part of the objective function f u at time t ¼
140:0 s using data from the experiment without cooling
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(a) Model 1.
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(b) Model 2.

Fig. 12 Local stress-strain relation of experiment without

cooling and of simulation with optimal plastic parameter set,

evaluated at the midpoint of the specimen
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set for model 1 which is close to the literature values,

see Table 5. Thus, monotonous loading (a standard

experiment in literature) does not hold enough infor-

mation for an acceptable fit of this model which can be

used to predict plastic heating as well as cooling due to

thermal conduction.

Model 2 All obtained solutions for model 2 are

numerically identical, see Table 7, suggesting that a

(locally) unique optimum has been found and that no

correlation between the thermal parameters exists.

This appears reasonable due to the difference to model

1 regarding the way b affects the dissipation. The

resulting format of the dissipation, see Equations 22

and 23, shows that b leads to a constant shift of

dissipation for model 1, but scales the dissipation load

state dependent for model 2. Thus, if only a particular

functional relation between strain and dissipation is

favourable regarding the plastic heating of the spec-

imen, only one optimum exists.

The values of the optimal set, however, do also not

resemble the literature values in Table 5 and it can be

deduced that an experiment with monotonous loading

alone does not hold enough information for an

acceptable fit of model 2 which can be used to predict

plastic heating as well as cooling due to thermal

conduction.

Table 5 Initial values for

thermal material parameters

for model 1 and model 2

and literature values

Material parameter aexp [10�6/K] jtherm [mW/mm K] c0 [mJ/mm3 K] b [-]

Initial guess jA 23.00 200.00 2.43 1.00

Initial guess jB 23.00 200.00 2.43 0.10

Initial guess jC 23.00 200.00 2.43 0.50

Initial guess jD 12.00 400.00 1.22 0.50

Literature value 23.00 200.00 2.43 –

(b) Model 2.

0.0 × 10−2 0.3 × 10−2 0.7 × 10−2 1.0 × 10−2 1.3 × 10−2

(a) Model 1. Distribution is almost identical for all optimal parameter
sets.

Fig. 13 Remaining nodal contribution to the thermal (temper-

ature) part of the objective function f h at time t ¼ 140:0 s using

data of the experiment without cooling
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Fig. 14 Local temperature-time relation of experiment without

cooling and of simulations with optimal thermal parameter sets,

evaluated at the midpoint of the specimen
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5.3 Experiment with cooling

Data of the experiment which includes a stage of

cooling down to ambient temperature is used for the

following identification. Results for model 1 and

model 2 are presented side by side for each step of the

identification process.

5.3.1 Elastic material parameters

The experimental reaction force of up to two seconds

is prescribed as load to ensure that the elastic

parameters are identified on the basis of purely elastic

experimental data, see Fig. 16.

Only the error in displacements f ¼ f u is consid-

ered for this part and the missing weighting factors are

set to Wu
x ¼ 1 and Wu

y ¼ 1. Initial guess as well as the

resulting material parameters of model 1 and model 2

are displayed in Table 8. The optimal elastic material

parameters for model 1 and model 2 are again

identical, since both models share the same purely

elastic material behaviour.

Figure 18 shows that the remaining error f ¼ f u is

distributed rather homogeneously over the area which

was considered for the identification, similar to the

identification on the basis of the experiment without

cooling. The distribution of the remaining error over

time of a single, representative node can be seen in

Fig. 17. Both figures suggest a good fit of either model

to the elastic material behaviour of the experiment

with cooling.

5.3.2 Plastic material parameters

The plastic parameters are identified on the basis of

experimental data up to 144 s, taking into account the

unloading of the specimen. Figure 19 shows the

prescribed load path of the experimental reaction

Table 6 Obtained values for thermal material parameters and remaining error contribution to the objective function f h for model 1

on the basis of the experiment without cooling

Material parameter aexp [10�6/K] jtherm [mW/mm K] c0 [mJ/mm3 K] b [-] f h [-]

Optimal value j	A 28.74 99.32 3.68 1.13 8.76

Optimal value j	B 37.06 128.15 4.68 1.46 8.76

Optimal guess j	C 30.57 105.65 3.90 1.21 8.76

Optimal guess j	D 18.97 65.49 2.46 0.75 8.76
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(a) Model 1.
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Fig. 15 Predicted local dissipation contribution during simu-

lations of the experiment without cooling with optimal thermal

parameter sets evaluated at midpoint of the specimen and at

output time steps (subset of all time steps). Amount of dissipated

energy density depends on applied load, i.e. the difference of

applied force between two load steps. Due to the noise in the

prescribed, experimental reaction force, some time steps have a

larger or smaller increase in force than an ideal, smooth load

path would generate. This leads to jumps in the dissipated

energy density, which would otherwise represent a more smooth

function for the case at hand
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force. Only the error in displacements is considered

and the weighting factors are set to Wu
x ¼ 5 and

Wu
y ¼ 1.

Starting from the parameter sets identified on the

basis of the experiment without cooling, the identifi-

cation yields the optimised parameters depicted in

Table 9.

Remaining deviations from the experimental data

are sufficiently small as Figs. 20 and 21 indicate.

Thus, both models have an almost identical and

accurate fit to the elasto-plastic material behaviour,

underlining once again the similarities of the two

chosen model formulations with respect to the

mechanical part.

5.3.3 Thermal material parameters

Finally, the thermal material parameters of each model

are fitted to the temperature data of the experiment

with cooling. The initial guesses from Table 5 are used

0.0 × 10−7 1.6 × 10−7 3.3 × 10−7 4.9 × 10−7 6.5 × 10−7

Fig. 18 Remaining nodal contribution to the mechanical

(displacement) part of the objective function f u at time t ¼ 2:0
s using data of the experiment with cooling. The remaining error

is the same for model 1 and model 2 since the elastic response is

identical

Table 7 Obtained values for thermal material parameters and remaining error contribution to the objective function f h for model 2

on the basis of the experiment without cooling

Material parameter aexp [10�6/K] jtherm [mW/mm K] c0 [mJ/mm3 K] b [-] f h [-]

Optimal value j	A 53.74 166.53 6.31 2.29 8.63

Optimal value j	B 53.74 166.53 6.31 2.29 8.63

Optimal guess j	C 53.74 166.53 6.31 2.29 8.63

Optimal guess j	D 53.74 166.53 6.31 2.29 8.63
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Fig. 16 Prescribed force Fpre over time. Vertical, black line

indicates end time tel
end ¼ 2:0 s for identification of elastic

parameters on the basis of the experiment with cooling

Table 8 Initial and obtained values for elastic material

parameters on the basis of the experiment with cooling

Material parameter E [MPa] m [-]

Initial guess 60000 0.30

Optimal value–model 1 67026 0.36

Optimal value–model 2 67026 0.36

1 1.001 1.002 1.003
0

50

100

150

F

P
in

M
Pa

experiment
simulation

Fig. 17 Local stress-strain relation of experiment with cooling

and of simulation with optimal elastic parameter set, evaluated

at the midpoint of the specimen. Elastic response is identical for

model 1 and model 2
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again to see whether the strong correlation between the

four thermal material parameters of model 1 shown in

Sect. 5.2.3 vanishes for the enhanced set of experi-

mental data which includes the cooling of the spec-

imen. The rough grit search approach furthermore

shows whether it is possible to retrieve a parameter set

that is sufficiently close to literature values. Bounds

for the parameter b in model 2 are set in accordance

with (26) to 0� b� 6:93.

Model 1 All of the performed identifications

converge towards the same optimum, see Table 10.

Thus, the additional information of the cooling process

apparently stabilised the identification process for this

model, removing the correlation described in Sect.

5.2.3. The resulting, optimal material response of

model 1, however, still exhibits large remaining errors,

see Fig. 22. Even though the remaining deviation

from experimental data is distributed rather homoge-

neously in space, the comparison of experimental data

and the optimal thermal material response over time in

Fig. 24 reveals a substantial mismatch. It therefore

appears impossible to predict the heating as well as the

cooling of a specimen adequately with the associated

plasticity model and a single set of material param-

eters within the range of temperature changes

considered.

Model 2 All initial guesses lead to the same optimal

set of thermal material parameters, indicating that a

(locally) unique optimum is obtained for the case at

hand. The remaining error per node, as exemplarily

depicted in Fig. 23, is again rather low and statistically

distributed. A closer look at the temperature evolution

over time of a representative, single node in Fig. 24

reveals a very precise fit of computed to experimental

data. Thus, model 2 appears to be capable of predicting

plastic heating similarly well a thermal cooling effects

with a single set of material parameters. Moreover, this

optimal set is very close to the literature values in

Table 5 with a relative deviation of

alit
exp � aopt

exp

alit
exp

¼ 13:78%; ð30Þ

jlit
therm � jopt

therm

jlit
therm

¼ 5:06%; ð31Þ
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Fig. 19 Prescribed force Fpre over time. Vertical, black line

indicates end time tpl
end ¼ 144:0 s for identification of plastic

parameters on the basis of the experiment with cooling

Table 9 Initial and obtained values for plastic material parameters on the basis of the experiment with cooling

Material parameter My0
[MPa] My1 [MPa] Hexp [-] F [-]

Initial guess 131.13 297.97 10.62 0.37

Optimal value–Model 1 129.27 293.38 10.82 0.37

Optimal value–Model 2 129.28 293.36 10.97 0.37

(b) Model 2.

0.0 × 10−6 0.8 × 10−6 1.6 × 10−6 2.4 × 10−6 3.1 × 10−6

(a) Model 1.

Fig. 20 Remaining nodal contribution to the mechanical

(displacement) part of the objective function f u at time t ¼
140:0 s using data of the experiment with cooling
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clit
0 � copt

0

clit
0

¼ 9:05% ð32Þ

which is not too uncommon for material parameters.

The elastic parameters E and m, for example, exhibit a

relative deviation of 5% and 9% with respect to

literature values for aluminium.

It may appear odd that a similar set has not already

been found for the monotonous loading case in

Sect. 5.2 since both parameter sets lead to an appar-

ently equally good fit of the heating phase. A

comparison of the remaining error as described by

the objective function value f h would give a closer

insight to the quality of the fit but is not valid since the

number of time steps is not equal. Thus, the error

function is evaluated anew, comparing data from the

experiment including cooling with the computed data

of two simulations which both end at 140 s, just prior

to the unloading. One simulation uses the optimal

thermal parameters obtained in 5.2.3 resulting in an

remaining error of f h ¼ 5:16. The second simulation

uses the optimal thermal parameters from this section

leading to a remaining error of f h ¼ 12:85. It shows

that the parameter set of this section may be able to

describe heating and cooling alike. At the trade-off,

however, that a slightly less perfect fit may be obtained

than might be possible if only one phenomenon was

considered at a time. The trade-off itself is very small

and the fit nevertheless still very accurate as the

previously mentioned Figures show, so that an accu-

rate identification of the thermal parameters is possible

with model 2 in combination with an experiment with

cooling.
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(a) Model 1.
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(b) Model 2.

P

Fig. 21 Local stress-strain relation of the experiment with

cooling and of simulation with optimal plastic parameter set,

evaluated at the midpoint of the specimen

Table 10 Obtained values for thermal material parameters and remaining error contribution to the objective function f h for model 1

on the basis of the experiment with cooling

Material parameter aexp [10�6/K] jtherm [mW/mm K] c0 [mJ/mm3 K] b [-] f h [-]

Optimal value j	A 421.56 2653.29 
 1 18.92 211.63

Optimal value j	B 421.40 2652.13 
 1 18.91 211.63

Optimal guess j	C 421.35 2651.07 
 1 18.90 211.63

Optimal guess j	D 421.47 2652.10 
 1 18.91 211.63

0.0 × 10−1 0.6 × 10−1 1.3 × 10−1 1.9 × 10−1 2.6 × 10−1

Fig. 22 Remaining nodal contribution to the thermal (temper-

ature) part of the objective function f h at time t ¼ 140:0 s using

data of the experiment with cooling and material model 1

123

Meccanica (2021) 56:393–416 411



6 Summary

The material model formulation can have a large

impact on the outcome of a parameter identification,

especially with respect to the optimal values of the

thermal material parameters. This issue is more

closely investigated in this follow-up work to [22],

where the framework for a parameter identification

based on real, full field displacement and temperature

data was first introduced. Focus of the work at hand

lies on the influence of the predicted dissipation. Two

classic material models, associated and non-associated

plasticity, are extended to allow a thermo-mechani-

cally consistent scaling of the dissipation by means of

an additional material parameter. The dissipation itself

follows directly from the postulated potentials and is a

function of the current load state, requiring no further

assumptions, e.g. regarding the relation towards cold

work. It is shown that, for the low rise in temperature

considered in this work, the two models predict the

same mechanical response and differ only in the

prediction of dissipated energy. The two models at

hand are then subjected to two optimisation processes

each, investigating whether it is possible to obtain a

unique thermal parameter set which describes heating

as well as cooling and analysing as to what kind of data

is required to do so. All identifications make use of the

small increase in temperature, separating the optimi-

sation of mechanical and thermal material parameters.

At first, the data of an experiment with monotonous

loading is used as the basis of an identification. The

correlation in model 1 between the scaling parameter b
and the remaining thermal parameters leads to a whole

valley of solutions for that model. A (locally) unique

solution is obtained for model 2, due to the different

evolution of dissipation. Both models fit the experi-

mental data very well but neither parameter set is able

to reliably predict the cooling of the specimen. Thus,

data of an experiment with monotonous loading, a

standard experiment in literature, does not allow an

acceptable fit of the two standard models, meaning

that the obtained thermal material parameters cannot

be used for the computation of different (thermal) load

scenarios.

In a second step, the data of an experiment with

loading, unloading and cooling of the specimen is used

as the basis of an identification. The fit of the

mechanical field is again very precise. Regarding the

optimisation of the thermal parameters for that second

BVP, the results show that the afore mentioned

correlation between the thermal parameters vanishes.

Model 1, however, appears unable to represent both

phenomena, plastic heating and cooling of the exper-

imental temperature data at hand, resulting in an

0.0
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(a) Model 1.
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(b) Model 2.

Fig. 24 Local temperature-time relation of experiment with

cooling and of simulations with optimal thermal parameter set,

evaluated at the midpoint of the specimen

0.0 × 10−2 0.3 × 10−2 0.6 × 10−2 1.0 × 10−2 1.3 × 10−2

Fig. 23 Remaining nodal contribution to the thermal (temper-

ature) part of the objective function f h at time t ¼ 140:0 s using

data of the experiment with cooling and material model 2
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optimum with a large remaining error. In contrast to

that, a unique solution can be obtained for model 2

which is also close to the literature values. Thus, even

though the overall fit to the temperature data may not

be as good as the fit to data for purely monotonic

loading, model 2 is nevertheless able to represent

plastic heating and cooling of the specimen almost

equally well with a single set of material parameters.

Model 1, however, can only represent either loading

condition, necessitating different parameter sets for

each type of loading, be it mechanical or purely

thermal.

This work shows that even small changes in the

model formulation can have a significant influence on

the numerical value of the optimal material parameters

and that a stable identification is possible, even if an

additional unknown is added, i.e. a further material

parameter which scales dissipation. While the results

presented in [22] differed significantly from the

literature values of the thermal material parameters,

this work further emphasises that the framework

presented therein can indeed be used to obtain such

values, depending on the overall suitability of the

chosen model. It underlines the statement that a

material model should be carefully chosen when it

comes to parameter identification for thermo-mechan-

ically coupled material models. The influence of the

predicted dissipation is non-neglectable. Not only

does the resulting dissipation have an impact on the

optimal value of the thermal material parameters, its

evolution also determines what kind of data is required

to avoid correlation between parameters and, even

more importantly, whether or not a model is able to

represent a certain BVP for a certain material accu-

rately. It is worth noting that, although model 2

performs better for the material and load case consid-

ered in this work, it may perform entirely different for

other materials. Regarding the uniqueness of the

obtained optimum, the results show that experimental

data of an experiment without cooling already holds,

in principle, enough information for a locally unique

solution of all thermal material parameters. This

unique solution, however, can only be found if the

model itself does not feature significant correlations

between the material parameters considered.

In conclusion, a reliable identification of all mate-

rial parameters, mechanical and thermal, of a thermo-

mechanically coupled material model is possible if a

careful choice regarding model and experimental data

is made. Experimental information about the cooling

down behaviour of the material significantly increases

the overall fit of the thermal material parameters.

Furthermore, the importance of validating material

models is shown, in the sense that they are able to

represent a certain load case for a specific material.

Seeing that a common model such as model 1

(associated plasticity) is not able to represent plastic

heating and cooling of the specimen equally well with

a single set of material parameters, such a validation

should probably be performed with every model

before applying it to a more complex loading situation.

Thus, the temperature evolution is either sound and

optimal, or otherwise a different model should be

chosen.
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Table 11 Obtained values for thermal material parameters and remaining error contribution to the objective function f h for model 2

on the basis of the experiment with cooling

Material parameter aexp [10�6/K] jtherm [mW/mm K] c0 [mJ/mm3 K] b [-] f h [-]

Optimal value j	A 19.83 189.89 2.21 0.81 26.73

Optimal value j	B 19.83 189.89 2.21 0.81 26.73

Optimal guess j	C 19.83 189.89 2.21 0.81 26.73

Optimal guess j	D 19.83 189.89 2.21 0.81 26.73
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Appendix: A Limits for scaling parameter b
in model 2

Boundaries for the material parameter b are derived in

this section to ensure that the dissipation of model 2,

with non-associated evolution equations, is always

larger or equal to zero.

The dissipation of model 2 is given in (23) so that

the associated dissipation inequality can be written as

Dmech ¼ kpm b h a2 þ 1 � b½ � bMy0
aþ bMy0

� �
� 0:

ð33Þ

For this model, the plastic multiplier will always be

non-negative and we will assume that the same holds

for the mechanical material parameters. Thus, inequal-

ity (33) is always fulfilled as long as

D að Þ ¼ b h a2 þ 1 � b½ � bMy0
aþ bMy0

� 0; with

kpm � 0:

ð34Þ

Recalling that b� 0 and h� 0, this function can be

identified to be a convex, quadratic function in a with a

y-intercept of D a ¼ 0ð Þ ¼ bMy0
. It is now sufficient to

ensure that

D� 0 8 a� 0 ð35Þ

since a evolves positive for the model at hand. A first,

lower boundary for the parameter b can easily be

obtained by considering the y-intercept of the contin-

uous function D. D a ¼ 0ð Þ� 0 has to be fulfilled in

order to ensure that the particular point of a ¼ 0

complies with (35). Hence

b� 0 ð36Þ

must hold to ensure a positive y-intercept. Further

conditions for b can be derived by considering that the

dissipation of the model will always be larger or equal

to zero if the function

D að Þ ¼ b h a2 þ 1 � b½ � bMy0
aþ bMy0

� 0; with

b; b; h; My0
� 0

ð37Þ

lies only in the first quadrant for a[ 0. There are only

two possibilities for a convex, quadratic function with

a positive y-intercept fulfilling this condition. Either

both roots of the function must be negative, see

Fig. 25a, or there are less than two roots, see Fig. 25b.

In summation, the dissipation of the model is guaran-

teed to be larger or equal to zero if b is chosen such that

either condition is met.

Case 1—negative roots The two roots a1;2 of

function D can be computed by

a1;2 ¼ � 1 � b½ �My0

2 h
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � b½ �2M2

y0

4 h2
� b

My0

h b

s������

������
:

ð38Þ

It has already been established that b� 0 so that only

two different cases must be considered.

1. b� 1—The first addend is negative for this case.

Hence, it suffices to enforce the larger of the two

roots

α

D (α)

(a) Case 1 - D has only nega-
tive roots.

α

D (α)

(b) Case 2 - D has less than
two roots.

Fig. 25 D is a convex, quadratic function in a and required to be

in the first quadrant for all a[ 0 to ensure a dissipation which is

larger or equal to zero
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a1 ¼ � 1 � b½ �My0

2 h
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � b½ �2M2

y0

4 h2
� b

My0

h b

s������

������

ð39Þ

to be negative, resulting in the inequality

a1 ¼ � 1�b½ �My0

2h
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�b½ �2M2

y0

4h2
�b

My0

hb

s������

������
�0

, 1�b½ �My0

2h
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�b½ �2M2

y0

4h2
�b

My0

hb

s������

������

, 1�b½ �My0

2h

����

�����

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�b½ �2M2

y0

4h2
�b

My0

hb

s������

������

with 0�b�1

,
1�b½ �2M2

y0

4h2
�

1�b½ �2M2
y0

4h2
�b

My0

hb

, b�0:

ð40Þ

This renders one set of bounds for the material

parameter b to be 0� b� 1.

2. b[ 1 —The first addend is positive for this case

and it must again be ensured that the larger of the

two roots a1 is negative. This however will not

occur since

a1 ¼ � 1 � b½ �My0

2 h
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � b½ �2 M2

y0

4 h2
� b

My0

h b

s������

������

ð41Þ

is the sum of two positive addends. It is therefore

impossible to have only negative roots if b[ 1

and the resulting bounds are again 0� b� 1.

The roots of function D are therefore negative if

0� b� 1, leading to a dissipation of the model which

is larger or equal to zero.

Case 2—less than two roots The quadratic function

D has less than two roots (in R) in the case that the

radicand of Equation (38)

r ¼
1 � b½ �2M2

y0

4 h2
� b

My0

h b
ð42Þ

is zero (only one root) or negative (no roots). This is

the case if b lies between the two roots of r

bu;l ¼
My0

bþ 2 h 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
My0

b

h þ 1

q� �

My0
b

ð43Þ

since r is a convex, quadratic function in b. Following

therefrom, the convex function D has less than two

roots in R so that the dissipation is always larger or

equal to zero for

bl � b� bu: ð44Þ

Hence, the total set of bounds for the material

parameter b which ensures a fulfilment of the second

law of thermodynamics reads

0� b� 1 _ bl � b� bu; with

bu;l ¼
My0

bþ 2 h 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
My0

b

h þ 1

q� �

My0
b

:

ð45Þ
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