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1 ABSTRACT 

Phenotypic screening is a powerful approach to evaluate the bioactivity of small molecules. 

However, it is restricted to a phenotype of interest, that is detected in the corresponding assay. 

Capturing a broader range of bioactivity would require the performance of multiple assays. 

This limitation may be overcome by the Cell Painting Assay (CPA), which is an unbiased 

morphological profiling approach. The CPA generates a holistic view on the bioactivity of 

perturbed cells and enables the prediction of targets and mode-of-actions by morphological 

fingerprint comparison to reference compounds, i.e. with known targets or mode-of-action 

(MoA). This is especially important for compounds with non-protein targets as they are difficult 

to identify with commonly applied approaches like affinity-based chemical proteomics, which 

are limited to the identification of protein targets. 

In order to examine the applicability of the CPA to identify non-proteins targets, the 

morphological fingerprint of the iron chelator Deferoxamine (DFO), as well as references and 

so far uncharacterized compounds with similar fingerprints, were investigated. Reference 

compounds, biosimilar to DFO, possess different annotated targets and activities but share a 

common MoA of cell cycle arrest. This was experimentally confirmed for a representative 

selection of references. The cluster analysis enabled not only the identification of annotated 

iron chelators and cell cycle modulators but also novel and so far uncharacterized chelating 

agents and DNA synthesis modulators. Furthermore, hierarchical clustering, using the CPA 

fingerprints, revealed a first insight into the different mechanisms of action. 

To investigate the bioactivity of a small tetrahydroindolo[2,3-a]quinolizine compound class, a 

combination of morphological profiling using the CPA and proteome profiling was pursued. 

The results revealed an altered cholesterol homeostasis induced by the compound’s 

physicochemical properties that led to an accumulation and an increased pH in lysosomes. 

More than 400 reference compounds and well-characterized drugs with different annotated 

targets and activities share high biosimilarity to the most active derivative. The majority of the 

compounds in this cluster also possess physicochemical properties, that are predictive for the 

accumulation in lysosomes. However, also direct modulators of cholesterol biosynthesis like 

statins are among them. Modulation of cholesterol homeostasis was experimentally confirmed 

for a representative selection of references. Therefore, this cluster can be used to identify 

novel modulators of cholesterol homeostasis but also to associate the regulation of 

corresponding genes or proteins to an effect induced by the physicochemical properties of the 

compounds rather than by their annotated primary targets. 
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Compounds with different annotated targets and activities may induce biosimilar 

morphological fingerprints due to a shared MoA or biological process, in which the targets are 

involved. However, morphological fingerprint similarity can also be a result of shared 

physicochemical properties, which is an effect that is independent of the primary annotated 

target. Bioactivity induced by the physicochemical properties as well as its biological 

consequences is often disclosed in profiling approaches only because they cover a broad 

range of bioactivity in an unbiased manner. For these reasons, morphological profiling 

approaches more often identify MoA rather than direct targets. The findings presented in this 

thesis emphasize the power of the CPA to evaluate bioactive small molecules and to predict 

diverse MoA for uncharacterized compounds as well as to uncover and expand so far 

unknown activity for already characterized small molecules and drugs. 
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2 KURZZUSAMMENFASSUNG 

Phänotypisches Screening ist eine leistungsfähige Methode, um die Bioaktivität von 

niedermolekularen Verbindungen zu charakterisieren. Ein Nachteil dieser Methode ist jedoch 

die Limitierung auf einen bestimmten Phänotyp, der in dem jeweiligen Assay detektiert wird. 

Um eine größere Spannbreite an Bioaktivität abzudecken, müssten die niedermolekularen 

Verbindungen in mehreren Assays getestet werden. Diese Limitierung könnte durch das Cell 

Painting Assay (CPA) überwunden werden, ein Assay zur morphologischen Profilierung, das 

ein ganzheitliches Bild der Bioaktivität von mit Substanzen behandelten Zellen liefern kann. 

Das CPA kann Angriffspunkte und Wirkungsweisen von niedermolekularen Verbindungen 

durch den Vergleich zu Referenzsubstanzen vorhersagen, deren Angriffspunkte und 

Wirkungsweisen bereits bekannt sind. Das ist insbesondere dann von Vorteil, wenn die 

Zielmoleküle keine Proteine sind. Diese sind nur sehr schwer mit den gängigen Methoden wie 

der affinitäts-basierten chemischen Proteomik zu identifizieren, da diese auf die Identifizierung 

von Proteinen limitiert sind. 

Um zu überprüfen, ob das CPA Angriffspunkte vorhersagen kann, die keine Proteine sind, 

wurden der morphologische Fingerabdruck des Eisenchelators Deferoxamin (DFO) sowie 

biologisch ähnliche Referenzen und bisher nicht charakterisierte Substanzen untersucht. 

Referenzen mit hoher Ähnlichkeit zu DFO weisen unterschiedliche Angriffspunkte und 

Aktivitäten auf, haben aber den Zellzyklusarrest als gemeinsamen Wirkungsmechanismus, 

der anschließend experimentell für eine Auswahl an Referenzen bestätigt wurde. Dieser 

Cluster erlaubt nun die Identifizierung von bereits bekannten als auch von neuen und bisher 

nicht charakterisierten Eisenchelatoren und Zellzyklusmodulatoren. Darüber hinaus hat eine 

hierarchische Clusteranalyse erste Einblicke in verschiedene Wirkungsmechanismen 

geliefert. 

Um die Bioaktivität von Tetrahydroindolo[2,3-a]chinolizin-Derivaten zu untersuchen, wurde 

eine Kombination aus dem CPA und einer Proteom-Profilierung zurate gezogen. Das aktivste 

Derivat führte zu einem veränderten Cholesterol-Gleichgewicht und zur Ansammlung und 

einem erhöhten pH-Wert in Lysosomen, hervorgerufen durch die physikochemischen 

Eigenschaften der Substanz. Über 400 Referenzsubstanzen und gut charakterisierte 

Wirkstoffe mit verschiedenen Angriffspunkten und biologischen Aktivitäten zeigen eine hohe 

Ähnlichkeit zu dem morphologischen Fingerabdruck des aktivsten Derivates. Der größte Teil 

der Substanzen in diesem Cluster weist ebenfalls physikochemische Eigenschaften auf, die 

stark auf eine Ansammlung in den Lysosomen hindeuten. Aber auch direkte Modulatoren der 

Cholesterolbiosynthese wie z. B. Statine befinden sich in diesem Cluster. Die Modulation der 

Cholesterol-Homöostase wurde experimentell für eine repräsentative Auswahl an Referenzen 
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aus diesem Cluster bestätigt. Aus diesem Grund kann der Cluster dafür verwendet werden 

neue Modulatoren der Cholesterol-Homöostase zu identifizieren und die Regulierung von 

dazugehörigen Proteinen und Genen auf einen Effekt zurückzuführen, der durch die 

physikochemischen Eigenschaften induziert wird, unabhängig von der annotierten primären 

Bioaktivität. 

Substanzen mit verschiedenen Angriffspunkten und Aktivitäten können aufgrund einer 

gemeinsamen Wirkungsweise oder eines gemeinsamen biologischen Prozesses, in den die 

Angriffspunkte involviert sind, einen ähnlichen morphologischen Fingerabdruck induzieren. 

Ähnlichkeit im morphologischen Fingerabdruck kann allerdings auch durch gemeinsame 

physikochemische Eigenschaften hervorgerufen werden. Dieser Effekt ist unabhängig von 

den primären annotierten Angriffspunkten der Substanzen und wird häufig nur in 

Profilierungen entdeckt, da sie unvoreingenommen eine große Spannbreite an Bioaktivität 

abdecken. Aus diesem Grund werden in morphologischen Profilierungen häufiger 

Wirkungsweisen als Angriffspunkte identifiziert. Die Erkenntnisse, die in dieser Arbeit 

präsentiert werden, unterstreichen den Wert des CPA, bioaktive Substanzen zu evaluieren 

und diverse Wirkungsweisen für nicht charakterisierte Substanzen vorherzusagen, als auch 

unbekannte Aktivität für bereits charakterisierte Substanzen aufzudecken und ihre Annotation 

zu erweitern. 
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3 INTRODUCTION 

3.1 Chemical Biology 

Chemical biology is a relatively new and growing field that links chemical, biological and 

medical sciences. Researchers from multiple disciplines work in this field and utilize chemical 

tools to study biological systems. Historically, classical genetics has played a central role in 

elucidating biology by manipulating a genetic sequence to study the gene-phenotype 

correlation. The chemical biology approach ‘chemical genetics’ operates in analogy to 

classical genetics but uses small molecules to perturb biological systems.[1, 2] The discovery 

and characterization of small-molecule perturbagens of a biomolecule’s function or cellular 

processes are at the heart of chemical biology and pharmaceutical research. Small molecules 

are inevitable as tools to study human physiology and more importantly, as therapeutics.[3, 4] 

 

3.1.1 Classical versus chemical genetic approaches 

Classical genetics, typically applied by biologists to understand biological processes, uses 

mutagenesis to examine how the perturbation of a protein’s function affects the phenotype. 

There are two fundamental approaches illustrated in Figure 1, a hypothesis-generating 

(forward) and a hypothesis-based (reverse) approach. In forward classical genetics, a gene 

responsible for an altered or abnormal phenotype is identified by random mutagenesis. Vice 

versa, reverse classical genetics selectively alters a gene of interest to characterize its function 

via detection of the altered phenotype.[2] Classical genetics has long proven to be a valuable 

tool for biologists and helped to reveal the molecular basis of fundamental processes like cell 

division and programmed cell death.[5] However, also techniques for genetic manipulation 

have their advantages and disadvantages. RNA interference (RNAi)[6] for example is one of 

the most applied methods for genetic perturbation[7] and silences a gene as a consequence of 

the degradation of messenger RNA (mRNA) into short RNAs that activate ribonucleases to 

target homologous mRNA[8]. RNA is easy to synthesize and apply to cells. On the other hand, 

RNAi is limited in in vivo applications and may possess off-target effects. Likewise, conditional 

knockout animals, in which a targeted gene is deleted[9, 10], allow gene- and even tissue-

specific manipulation of protein function. However, creating knockout animals is not only labor-

intensive but also leads to a total functional loss of the deleted gene.[2] 
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Figure 1: Classical versus chemical genetics to study biological systems. Adapted from 
Kawasumi and Nghiem.[2]  
 
A reverse study is a hypothesis-driven approach in which a molecular target of interest is selectively 
manipulated by using genetics (classical genetics) or small molecules (chemical genetics). A forward 
study is a hypothesis-generating approach through which a gene (classical genetics) or a small 
molecule (chemical genetics), responsible for a phenotype of interest, is identified. 

 

Chemical genetics has emerged in the past 20 years as a complementary approach and 

replaces the genetic removal by small molecules to intervene in biological systems. Like RNAi, 

small molecules may have the drawback to be unspecific but they also overcome many 

disadvantages of classical genetics. Small molecules act rapidly and mostly reversibly, as they 

can often be washed out of the system again. They are typically active across cell types and 

species and are not limited to protein targets. But especially in the case of a protein target, 

they may selectively modulate only one function of a multifunctional protein and they may also 

have the potential to disrupt protein-protein interactions.[2]  

 

3.1.2 Reverse chemical genetics 

Reverse chemical genetics, also referred to as target-based drug screening, starts with the 

manipulation of a defined molecular target, that is assumed to play an important role in a 

disease state. Due to the development of molecular genetics in the twentieth century, target-

based screening has long been the method of choice for the discovery of new medicines.[11] 
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Sequencing of the human genome and further genetic achievements like RNAi as well as 

recombinant technologies have led to an increase in disease-relevant molecular targets, for 

which small-molecule interaction partners can be identified by high-throughput screening of 

large compound libraries.[2] The modulation of target molecules is typically monitored in in vitro 

setups like biochemical or biophysical assays, which are often fast and simple to execute. 

Diverse methods like crystallography, kinetic or molecular pharmacology studies, available to 

examine the drug-target interaction, offer excellent opportunities for hit optimization and lead 

discovery. However, simplified systems using, e.g., recombinant proteins neither reflect the 

immense biological complexity nor the potential polypharmacology[12, 13], i.e., the interaction of 

a small molecule with multiple targets. Targets engineered into simplified biochemical or cell-

based systems do not always behave as in their physiological environment resulting in a poor 

translation when tested in a more complex system like animals or humans. Besides, drugs are 

rarely selective for only one target, but initial target-based screenings are limited to the 

detection of the desired bioactivity and even this may be influenced by the drug’s 

promiscuity.[14]  

 

3.1.3 Forward chemical genetics 

Forward chemical genetics is also referred to as ‘phenotypic screening’. A phenotype 

describes the composition of observable traits of a cell or a higher organism like morphological 

properties, gene and protein expression pattern or anatomy and behavior. Phenotypes drive 

much of the research in life sciences and remain the primary data used to define a pathological 

condition.[15, 16] The rise of forward chemical genetics began with advancements in phenotypic 

readouts, automated microscopes, and when image analysis algorithms became available. 

While these technologies were rather innovative at that time, the approach as a whole was 

established long ago. Before the implementation of target-based screens, bioactive small 

molecules have already been discovered by evaluating them in complex biological systems 

such as animals or cells. And within the last decade, phenotypic screening has again gained 

growing attention.[11, 17] In this approach, a specific biological process or phenotype is selected 

for a high-throughput study to identify small-molecule perturbagens. Phenotypic assays may 

utilize primary cells, tissues or animals and can be conducted using sophisticated culturing 

techniques such as co-cultures or spheroids.[14] The desired phenotype can be detected using 

marker genes or proteins, e.g., in reporter gene assays, antibody-based cellular 

immunoassays, functional assays that directly monitor cellular activities such as cell division, 

metabolism or apoptosis, or by imaging.[18] Unlike target-based screening, forward chemical 

genetics offers the opportunity to identify novel targets related to the desired phenotype as 



INTRODUCTION 

8 
 

there is no bias towards a specific target. Furthermore, the approach features a higher degree 

of physiological relevance as it enables capturing a broader complexity of a biological system 

compared to biochemical and biophysical assays. Thereby novel targets and mechanisms and 

even side effects can be identified.[14]  

Analysis of FDA-approved first-in-class small-molecule drugs illustrated that between 1999 

and 2008 more drugs were discovered by phenotypic screening than by target-based 

approaches.[17] This was a period of time, when the focus of drug discovery was actually on 

target-based approaches. It was proposed that the lower productivity is a result of the 

neglected molecular complexity of a drugs’ molecular mechanism of action (MMoA) and that 

the development of best-in-class medicines is facilitated by phenotypic assays to not only 

identify bioactive small molecules but also their MMoA.[17] A mechanism of action can be 

described at the level of the biomolecule by identifying a target or a cellular entity that is bound 

by the compound, at the level of a biochemical pathway, at the level of the cell or an 

organism.[19] However, the broader biological complexity of phenotypic screening may at the 

same time be the bottleneck of this approach as target or mode-of-action (MoA) identification 

remains unknown. Their identification poses a major challenge, which is often labor- and time-

intensive and requires many resources.[20] Moreover, small molecules are often promiscuous, 

i.e., they interact with more than one target. Non-specific interactions can induce assay 

artifacts like pan-assay interference compounds[21] and eventually lead to unwanted off-target 

effects. However, compound promiscuity is not always undesired as the therapeutic efficiency 

can also rely on the simultaneous modulation of multiple targets and biological pathways.[22] 

To more precisely describe this process, the term “target deconvolution” was introduced.[23]  

The identification of novel targets and MoA not only expands the biological space targeted by 

small molecules but also enhances the understanding of human disease mechanisms and the 

ability to modulate cellular systems.[24] The typically employed target identification process 

comprises methods such as affinity-based chemical proteomics, protein microarrays or 

computational approaches.[20, 23] However, except for computational approaches, they all 

share a major limitation as they are restricted to the identification of protein targets. In silico 

approaches predict bioactivity based on reported ligand-target interactions or based on 

structural similarity of ligands and target molecules, which are then extracted and re-assigned 

to the query ligands.[23, 25, 26] Those approaches are mainly focused on the interaction between 

a small molecule and a protein, but compounds can also target other biomolecule classes.[2, 

27-29] Modulating lipids[30], DNA[31] or RNA[32, 33] by small molecules developed as a new 

research field in recent years. Conventional phenotypic screening assays are limited to the 

phenotype of interest and only monitor the sought bioactivity. Hence, to capture a wider range 

of bioactivity and to explore selectivity and potential toxicity, compounds must be screened in 
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multiple phenotypic and target-based assays. This limitation can be overcome by using less 

biased profiling approaches that look at a broad range of bioactivity including whole pathways 

and processes. These approaches are also crucial for the identification of compounds with 

non-protein targets, which are difficult to discover with usually employed target identification 

methods, as they can predict a target or MoA based on biological similarity alone.[34] 

 

3.2 Bioactivity profiling of small molecules 

A central objective and challenge of chemical biology is to find a way to receive a 

comprehensive bioactivity profile of compound libraries as early as possible. On- and off-target 

interaction networks provide a valuable resource to map the bioactivity profile of a small 

molecule and to enhance the understanding and make use of polypharmacological effects.[35] 

Conventional phenotypic screens are mainly used to detect a single bioactivity of interest, 

addressing the already known drug targets, for example, GPCRs, kinases and enzymes. In 

contrast, high-content image-based screening and ‘omics approaches, like transcriptomics or 

proteomics, enable profiling as they collect a myriad of parameters.[36] Profiling means, firstly, 

to represent a sample by a profile, which is a collection of features, and secondly, to make a 

prediction about the sample based on the profile.[37] Profiling is a powerful approach for target 

or MoA deconvolution as it generates an unbiased and more holistic view of the compound’s 

influence on a biological system. Compared to conventional phenotypic screening, profiling 

approaches offer an even higher degree of physiological relevance and the chance to analyze 

the perturbed cell as a whole. As profiling approaches are less restricted in terms of the 

detected bioactivity, they may not deliver direct information about a molecular target, but offer 

insight into various alterations induced by small-molecule perturbators.[36] However, the 

complexity may at the same time represent a drawback as it can add useless noise or the data 

may be more difficult to interpret than a single selected phenotypic feature.[7, 37] 

 

3.2.1 Gene expression profiling 

The so-called “central dogma” of molecular biology, depicted in Figure 2, describes the flow 

of genetic information from the gene to the protein level. DNA can be sequenced and 

investigated by genomic approaches. Genes are transcribed and processed into functional 

RNA, which can be explored by transcriptomics. mRNA transcripts are then translated into 

proteins, the end product of gene expression, which can be profiled by means of proteomic 

approaches. Thus, the term gene expression profiling comprises analysis on different levels 

depending on the specific research objective.  
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Figure 2: Schematic illustration of the central dogma of molecular biology. Adapted from M. P. 
Richards.[38] 
 
Flow of genetic information from the genome to the proteome. DNA is transcribed and processed by, 
e.g., alternative splicing into functional RNA. mRNA is translated into a protein and can further be 
modified by, e.g., proteolytic cleavage or post-translational modification.  

 

The human genome consists of around 30-40 thousand genes but the estimated number of 

unique proteins within a cell is 10 times higher (10,000-100,000). This is due to post-

transcriptional and post-translational modifications that RNA transcripts and proteins undergo, 

which are not investigated by genomics. Hence, it is crucial to have different techniques in 

hand to fully assess activity and function at the level of protein, RNA and DNA.[38] 

 

3.2.2 Genomics 

Functional genomics has evolved as a new research field in the “post-genomic” era and deals 

with the identification and characterization of genes to explore their function under different 

conditions like health and disease states or certain environmental conditions, as well as the 

connections between different expression profiles of single genes or gene networks. 

Functional genomics also allows relating this information to a certain phenotype.[38] The central 

technology of genomics is DNA sequencing, which underwent a long and fruitful development 

over the past 50 years. The first-generation Sanger sequencing, developed in the mid-1900s, 

was replaced by massively sequencing in parallel using Next-Generation Sequencing (NGS) 

techniques and this, in turn, was replaced by third-generation real-time single-molecule 

sequencing. Still, NGS, as well as single-molecule sequencing methods, can be optimized 

regarding cost and throughput and there are even additional concepts in the pipeline.[39]  
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3.2.3 Transcriptomics 

Transcriptome studies investigate if and at which level specific mRNA sequences are present 

in certain biological samples like chemically perturbed cells. This can be done using a single-

gene transcript, small related groups, and even thousands of unique transcripts to study gene 

activity and function. For this, RNA can either directly be used or it needs to be converted into 

complementary DNA (cDNA) by reverse transcription before amplification via polymerase 

chain reaction (PCR). All high-throughput techniques to study gene transcripts on a global 

scale rely on the conversion from RNA into cDNA and hence, on high-throughput DNA 

sequencing. 

Gene expression signatures can be obtained from different biologicals states including 

physiological and disease states or a state induced by chemical perturbation or gene editing. 

Therefore, these signatures can also be used to discover the mechanism of action of a small 

molecule, to identify and connect small molecules with a shared target, or to discover an 

unexpected activity of a compound that might, e.g., lead to an off-target effect. Technically 

genomic signatures could arise from DNA methylation pattern, mRNA level, protein 

expression, or metabolite profiles. However, only mRNA expression assayed on DNA 

microarrays offers to receive genomic signatures on a large scale, generated from a small 

number of cells at low cost but with sufficient complexity to provide a meaningful biological 

output.[40, 41] Advances in genome studies led to a great many of microarray data available in 

public databases.[42] For example, the Connectivity Map (CMap)[40], established in 2006, 

provides a large reference collection of gene expression profiles from human cells, treated 

with 164 FDA-approved drugs and bioactive tool compounds as well as a pattern-matching 

tool to detect signature similarities. This collection was afterwards expanded by reducing the 

representation of the transcript to 1000 landmark genes to prevent the high costs of 

commercial gene expression microarrays. Those landmark genes (L1000) are sufficient to 

recover 82 % of the information in the full transcriptome and are part of the NIH Library of 

Integrated Network-Based Cellular Signatures (LINCS) initiative.[41] Over the last decade, the 

CMap has been used in numerous applications with a focus in drug discovery and 

development. It was used to identify novel phenotypic relations and new therapeutic drug 

targets[43] as well as to discover clusters of compounds with a shared MoA like anti-psychotics 

and calcium channel binders that both lead to the modulation of genes involved in cholesterol 

biosynthesis[42, 44]. Moreover, the CMap can be used to repurpose already known drugs that 

reverse the gene expression signature of another disease state.[45, 46] This underlines the 

power of the CMap to allow the generation of a target or MoA hypothesis even without 

experimental lab work[46, 47], which, e.g., led to the successful identification of a novel casein 

kinase inhibitor[41]. 
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However, the transcriptome, the sum of all RNA transcripts in an organism, only captures a 

snapshot in time and therefore the analysis of the proteome, the sum of all proteins in an 

organism, provides additional information about the genotype-phenotype relationship.[38, 48]  

 

3.2.4 Proteomics 

Translation is the last step of gene expression, in which the genetic information is transferred 

from mRNA to proteins. Compared to genomics and transcriptomics, proteome profiling, i.e., 

the expression analysis of the proteome is more challenging as proteins are further processed 

or modified into various forms. Proteome profiling can for example also be performed using 

protein arrays, however, mass-spectrometry-based approaches became a central technology 

in profiling the proteome.[38] Chemical proteomics was originally used to study unknown 

function of proteins by small-molecule perturbation.[49] However, in recent years it turned into 

the other way around and chemical proteomics is used to study the function of a small 

molecule, the small molecules-phenotype relation as well as to identify the target of small 

molecules.[50-53] Although proteins are the target of most drugs and therefore, proteome 

responses can be more specific than gene expression profiles, less efforts are made to 

establish connectivity maps based on proteome signatures.[54] ProTargetMiner[55] is one of a 

few publicly available and expandable library of proteome signatures induced by anti-cancer 

molecules.[54] This study demonstrated that proteomic signatures cluster by compound targets 

and MoA and thus, can be used for bioactivity predictions. For example, a group of kinase 

inhibitors with different targets clustered together based on a shared MoA that relies on an off-

target effect, which is the modulation of the cholesterol biosynthesis.[54] 

All in all, public databases of gene expression profiles are very valuable to gain a first insight 

into the potential bioactivity of a small molecule by signature comparison. In general ‘omic 

studies are well suitable to provide a holistic view of the bioactivity space, however, most 

approaches do not facilitate the screening of large compound libraries.[36, 37] 

 

3.2.5 Morphological profiling  

In the past two decades, morphological profiling, also known as image-based or cytological 

profiling, received rising attention in academia and pharmaceutical research.[37] Images are 

rich in data compared to a single readout, target-based, or cell reporter approaches. 

Furthermore, microscopy imaging is one of the most direct methods to monitor a phenotype. 

Morphological profiling is the least expensive profiling approach and compatible with different 

biological species and samples like cells, tissues, or organisms.  
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Technological and analytical innovations in high-throughput microscopy have enabled the 

screening of large compound libraries to generate morphological profiles providing information 

on a putative target, MoA, or toxicity. To this end, algorithms detect morphological patterns 

and differences, which are often invisible to the human eye, and hundreds of morphological 

features are extracted to explore small molecule-related bioactivity.[7, 36, 56-58] 

 

 
Figure 3: General workflow of morphological profiling of small molecules adapted from Ziegler 
et al..[36] 
 
Cells are treated with small molecules prior to staining of different organelles and cell components with 
fluorescent dyes or antibodies. Fluorescent tags can also be introduced by gene editing receiving a 
reporter cell line. Image acquisition and processing is conducted automatically. Single cells and cellular 
regions are identified (object detection) and cellular features are extracted and combined into a 
morphological profile. 

 

A general workflow of morphological profiling is depicted in Figure 3. First, cells are treated 

with small molecules and afterwards cellular organelles and cell components are visualized 

by a multiplexed staining with fluorescent dyes or antibodies to detect morphological changes 

compared to the control. As an alternative, reporter cell lines can be used, where different 

combinations of fluorescent tags are introduced by gene editing.[57] Automated image 

acquisition and processing is required due to the enormous number of acquired images and 

measured features. The analysis is done on a single-cell level by detecting cells and cellular 

regions as objects utilizing, for example, the nucleus and the cytoplasm staining.[36, 58, 59] Based 

on the staining, hundreds of cellular features like size, shape, intensity and texture are 

extracted as numerical descriptors of the phenotype and combined into a morphological 

profile. These profiles represent high-dimensional readouts of numerous features and 

comprehensively capture the bioactivity of a small molecule. 
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3.2.6 Data analysis and application of morphological profiling 

The idea of morphological profiling was first implemented by Boland and Murphy[60] twenty 

years ago. They aimed for an automated image analysis process to achieve an objective, 

reliable and reproducible approach to describe the subcellular localization pattern of proteins. 

Although they were still imaging their samples manually, they successfully set up an 

automated image analysis workflow. Upon staining HeLa cells for DNA and one cellular 

organelle or compartment, they extracted and selected 84 features per image and were able 

to localize and distinguish pattern of proteins in ten different subcellular compartments.[60] At 

that time, Boland and Murphy[60] already foresaw that automated image analysis will become 

an increasingly important tool. Since then, morphological profiling has proven its value in many 

studies and can be used to address a broad range of scientific questions in the field of 

chemical biology and medicinal chemistry.[7]  

In general, morphological profiling can be used to assess the bioactivity of a small molecule, 

i.e., the ability to induce a morphological change. Of note, compounds that do not induce a 

morphological change are not necessarily inactive, when their bioactivity is not linked to a 

morphological change. Furthermore, the data can be used to assess toxicity of screened 

compounds but also to guide small-molecule library synthesis efforts.[7, 37] 

 

Figure 4: Target or mode-of-action prediction for uncharacterized compounds (cmp) based on 
comparison of morphological profiles to annotated reference (ref) compounds.  

 

The inclusion of a set of annotated reference compounds allows target or MoA prediction by 

morphological fingerprint comparison presuming that compounds sharing a target or MoA also 
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induce a similar morphological change (Figure 4).[7, 61-64] However, this nearest-reference 

approach strongly relies on the composition of the reference set as well as on the 

comprehensiveness of their annotated bioactivity. Besides, the references must be sufficiently 

active and fairly selective because not every morphological change is necessarily related to 

the primary target. Compounds are often promiscuous and the a priori annotation of a 

compound is solely based on anticipated targets and disregards off-target effects.[54] 

Therefore, it remains a major challenge to deconvolute a target or MoA of a promiscuous 

compound when functionally unrelated targets are as well reflected in the profile.[37, 57] A report 

by J. Simm et al.[65] demonstrated that a supervised machine learning model could help to 

overcome this issue and predict bioactivity by repurposing images from high-throughput 

phenotypic screens. The researchers combined image-based profiles of small molecules out 

of existing data on compound activity from other phenotypic screens. Based on the data, a 

supervised machine learning approach was able to make useful bioactivity predictions.[65] 

However, this approach is quite elaborative and requires, besides the expertise in machine 

learning, a sufficient number of reference compounds that have been tested in other 

phenotypic-, target- or MoA-specific assays.[57] 

In general, the embedding of supervised and unsupervised machine learning pipelines into 

the image analysis process of large data sets can help to identify pattern, relationships and 

cluster of compounds with a shared target, mode- or mechanism-of-action.[66-69] Supervised 

machine learning approaches require the generation of a training data set. This is generated 

by annotating representative samples of predefined classes, e.g., different phenotypes. 

Afterwards, the machine-learning algorithm can automatically apply the learned rules to the 

whole data set and distinguish between the defined classes based on the measured features. 

Unsupervised machine learning does not require training of the algorithm. This approach 

extracts information by similarity measures or facilitates data mining by reducing its 

complexity. Unsupervised machine learning is commonly used to cluster compound profiles 

based on their similarity, e.g., by hierarchical clustering.[68, 69]  
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Figure 5: Schematic representation of morphological profiles subjected to hierarchical 
clustering or dimensionality reduction used for the clustering of low-dimensional profiles. 

 

The high-dimensional morphological profiles can be subjected to hierarchical clustering or 

converted into low-dimensional profiles to assist the clustering of similar profiles and assigning 

bioactivity (Figure 5). Reducing the dimensionality can, e.g., be done by Principal Component 

Analysis (PCA), which removes features that are redundant or irrelevant but keeps the 

variance of the data set. Thereby bioactivity can be mapped and MoAs can be assigned to 

clusters. This has been successfully used to identify clusters enriched for individual targets, 

e.g., histone deacetylase or tubulin, signaling pathways like PIK3/AKT/mTOR and clusters of 

compounds that share a common MoA like iron chelating agents and DNA synthesis inhibitors, 

which then could be used to identify novel compound-target associations.[63, 64, 70] Furthermore, 

clustering can be used to analyze the overall contribution of different scaffolds, 

stereochemistry, residues and chemical properties on the biological performance diversity of 

compound libraries.[71] This enables the generation of structure-phenotype relationships (SPR) 

and qualitative structure-activity relationships (SAR) that can guide hit triaging efforts.[57, 72, 73] 

Wawer et al.[74] demonstrated that compounds with diverse morphological profiles led to higher 

performance diversity in high-throughput phenotypic screens rather than a random selection, 

or compounds with diverse chemical structures. Furthermore, they showed that compounds 

with a strong activity in the morphological profiling assay had larger hit frequencies in 
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phenotypic screens, which suggests that multiplexed morphological profiling could provide a 

way to tag potentially promiscuous compounds early on. 

Morphological profiling has also been applied to study genetic perturbation using deletion 

strains, overexpression, CRISPR or RNAi to identify genetic regulators, disease-specific 

phenotypes, annotate genes by function and group disease-associated alleles.[7] However, 

morphological profiles induced by RNAi, the most applied method for genetic perturbation, 

revealed that the profiles are dominated by an off-target effect. This is the so-called seed 

effect, based on a nucleotide sequence, whose short length results in low specificity.[75] 

 

 

Figure 6: Schematic representation of morphological profiling for small molecules to reverse 
disease phenotype.  

 

As illustrated in Figure 6, morphological profiling can also be used as a combination of 

chemical and genetic perturbation to screen for small molecules that reverse a disease 

phenotype of interest.[7] As an example, C. C. Gibson et al.[66] sought for differences between 

wild-type and disease cells. They knocked down the gene and protein of interest by siRNA 

(small interfering RNA) to create the disease cells and afterwards screened a large compound 

library to find a compound that reversed the disease phenotype. Moreover, they demonstrated 

that hits picked by a machine-learning software outperformed those chosen by human analysis 

in their secondary screen.  

The combination of chemical and genetic perturbation can also be used to determine the MoA 

for small molecules. For this, the image-based profile of the small molecule is matched to that 

of cells perturbed via gene editing to predict a target or MoA.  
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This approach is not widely used but a pioneering study in yeast[76] demonstrated that genetic 

perturbations can be used to identify drug targets based on morphological profile similarity.[37] 

Taken together, morphological profiling has a variety of applications including target and MoA 

deconvolution, toxicity testing, library enrichment, hit expansion, and lead optimization. But it 

is also able to uncover, e.g., unexpected off-target activities and, thus, is a valuable and 

powerful approach for the evaluation of bioactive small molecules and provides a basis to 

accelerate the drug discovery process by doing multiple steps at once.[37, 67] 

 

3.2.7 Cell Painting Assay 

The Cell Painting Assay[77, 78] is the most commonly used unbiased assay for image-based 

profiling and has gained increasing interest by academia and the pharmaceutical industry 

within recent years.[37] It was described in 2013 by researchers of the Broad Institute to study 

various aspects of cell biology as well as genetically and chemically perturbed cells, to predict 

bioactivity, toxicity, targets and MoAs of small molecules, match drugs with disease states, 

and to discover and develop new therapeutics. 

The CPA multiplexes six fluorescent dyes imaged in five channels to reveal eight different 

cellular organelles or components. It was established in the U-2OS cell line, and still, most 

studies use this osteosarcoma cell line for chemical and functional genomic screens. U-2OS 

cells are especially suitable for imaging cellular structures as they possess large, flat cell 

bodies, grow in a monolayer, and adhere well to plastic.[79] However, the CPA can be 

performed in many other cell types like A549, MCF7, 3T3, HeLa, HTB-9, ARPE-19, HEKTE, 

SH-SY5Y, HUVEC or HepG2, including primary cells and coculture systems.[56, 72, 78] Warchal 

et al.[80] for example applied the CPA to a panel of eight genetically distinct human breast 

cancer cell lines to identify and rank compounds with distinct responses between the cell 

types. Cell lines suitbale for CPA should in general be adherent, grow in a monolayer, and at 

best, should be well characterized in the biological area of interest.[78]  

Since there is no standardized workflow for image processing and data analysis, the following 

section describes the workflow and data analysis of the CPA performed at the Compound 

Management and Screening Center (COMAS), Dortmund (Figure 7), which was used to 

generate the data presented in this thesis.[59] However, the workflow closely follows the 

protocol, which was established by Bray et al..[78] 
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Figure 7: Workflow of the CPA and data analysis performed at the COMAS and MPI, Dortmund 
adapted from Ziegler et al..[36, 59] 
 
(A) U-2OS cells are seeded in a 384-well plate and treated for 22 h with annotated reference compounds 
as well as uncharacterized research compounds at varying concentrations. Before automated image 
acquisition and processing on a single-cell level, cells are stained with six multiplexed fluorescent dyes 
to visualize mitochondria, actin, Golgi, plasma membrane, nucleoli/RNA, the endoplasmic reticulum 
(ER), and the nucleus. Cellular features are measured, extracted and summarized in a morphological 
fingerprint in form of a heatmap profile. Fingerprints can be compared among small molecules or 
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reduced into low-dimensional profiles for clustering. (B) The morphological fingerprint is a list of Z-
scores, calculated for each feature. To obtain the Z-score, the median value of the DMSO control is 
subtracted from the median value of the compound for each feature. This difference is afterwards 
divided by the median absolute deviation (MAD) of the DMSO control to yield the fold change of this 
feature induced by the small molecule compared to the DMSO control. 

 

For this, U-2OS cells are seeded in a 384 well plate and treated with uncharacterized research 

compounds or annotated reference compounds for 20 h at 10 µM. Kinase inhibitors or 

particular natural product classes, known to be toxic at high concentrations were screened at 

lower concentrations of 1-2 µM. Before fixing the cells, the mitochondrial staining is performed 

as the uptake of MitoTracker dyes is dependent on the mitochondrial membrane potential. 

However, the dye stays well preserved after fixation. After fixing and permeabilization, cells 

are stained with the remaining five dyes prior to automated image acquisition at 20X 

magnification. The distinct localization and morphology of the F-actin cytoskeleton and the 

Golgi and plasma membrane enable their image acquisition using the same filter set. To cover 

many cells (> 1000 per well) nine microscope sites per well are imaged. To obtain numerical 

data, image analysis is performed using the open-source software CellProfiler[81], which is 

especially suitable for high-throughput image analysis. The images are subjected to an image 

analysis pipeline. This comprises different modules for image processing and object detection 

to measure features of the cell and its compartments including cell size, shape, intensity, and 

texture. For each cell, over 1.700 features are measured and aggregated as a median value 

of each microscope site and afterwards grouped on the median per well and finally over all 

plates of a screening batch. Irrelevant and highly correlated features are removed, obtaining 

579 robust features. Z-scores are calculated for each feature to generate the morphological 

fingerprint, which is a listing of all relevant and uncorrelated features visualized as a heatmap 

profile (Figure 7B). The Z-score corresponds to the fold change of the given feature induced 

by the compound in comparison to the DMSO control. Therefore, the median value of the 

DMSO control is subtracted from the median value of the compound-treated condition and 

afterwards the difference is divided by the median absolute deviation (MAD) of the DMSO 

control. Fingerprints can be compared between small molecules, subjected to hierarchical 

clustering and they can be reduced into low-dimensional profiles for cluster analysis. 

Therefore, the similarity between profiles is calculated from the correlation distance[82]. 

 

 

 

 



 INTRODUCTION  

21 
 

 

Figure 8: Workflow for bioactivity prediction performed at the MPI, Dortmund.  
 
Compounds with an induction value of ≥ 5 % are considered as active, i.e., induce a morphological 
change in the CPA. Compounds similar (≥ 75%) to annotated reference compounds are called Inliers 
and presumably possess a related MoA. Compounds not similar ≤ 65 % to any reference are called 
Outliers and may presumably have a new MoA.  

 

The first step in the workflow for bioactivity prediction (Figure 8) is to filter out inactive 

compounds. To assess activity in the CPA, an induction value is calculated. The induction is 

determined as the percentage of significantly changed features within a compound profile 

compared to the DMSO control. Compounds with an induction ≥ 5 % are considered to be 

active in the CPA, i.e., they induce a morphological change. In the second step, a similarity 

filter is applied to evaluate the similarity between the morphological fingerprint of a compound 

or compound library of interest and reference compounds (biosimilarity). Empirically, 

fingerprints with a similarity ≥ 75 % are considered biosimilar and therefore presumably share 

a target or MoA. Uncharacterized compounds biosimilar to a reference compound are called 

‘Inliers’. Compounds with a similarity ≤ 65 % are considered dissimilar. Uncharacterized small 

molecules dissimilar to any reference compound potentially possess a new target or MoA and 

are called ‘Outliers’. For compounds with biosimilarity values between 65 and 75 %, it is 

advisable to decide individually, if those compounds are rather Outliers or Inliers. 

This workflow has already led to the successful identification of novel bioactive compounds as 

well as their targets or MoA.[73, 83-85] For example, pyrano-furo-pyridones, a new pseudo-natural 

product (pseudo-NP) class, were identified to induce mitochondrial superoxide formation 

based on fingerprint comparison to annotated reference compounds. Furthermore, the 

analysis of the CPA data, using the induction as a qualitative measure for bioactivity, enabled 

the establishment of general trends in the structure-phenotype relationship of the pyrano-furo-

pyridones.[73]  
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Moreover, Laraia et al.[84] employed the CPA to identify the MoA of the autophagy inhibitor 

autoquin. Whereas affinity-based proteomics data were inconclusive in this case, the CPA 

revealed fingerprint similarity to references that accumulate in lysosomes, a MoA that does 

not require direct binding to a target protein. However, the proteomics pointed towards the 

possibility that an altered iron homeostasis may be conducive to the bioactivity of autoquin. 

This was afterwards experimentally confirmed and again highlights the CPA also as an 

excellent complementary tool for target or MoA identification.[84]  

Yet another study, performed by Zimmermann et al.[85], revealed an unexpected bioactivity of 

benzo-sulfonamides using the CPA. The fingerprint of two derivatives of this new compound 

class, containing a cyclic sulfonamide, showed high biosimilarity to the tubulin modulating 

agents Fenbendazole and tubulexin A and to a PLK1 (Polo-like kinase 1) inhibitor. Tubulin 

and PLK1 play crucial roles in mitosis. An increased number of cells in mitosis and an inhibited 

in vitro tubulin polymerization activity in the presence of the two derivatives was afterwards 

experimentally confirmed. Clustering of tubulin modulating agents is commonly observed.[63, 

64, 86] Although a substantial amount of bioactive compounds lead to a significant morphological 

change, a limited number of MoAs can directly be identified by the nearest-reference approach 

and new clusters are rarely identified. Frequently observed clusters, like tubulin agents or 

inhibitors of the histone deacetylase, tend to represent bioactivity with a disruptive mechanism. 

Studies that identified other and more subtle MoA did not increase much in recent years.[37] 

But also targets were identified using the CPA. For example, Foley et al.[83] synthesized 

indocinchona alkaloids, a new class of pseudo-NPs, by merging cinchona alkaloids with the 

indole ring system. A phenotypic screening assay revealed autophagy inhibiting activity for 

this new compound class. To gain further insight into the bioactivity, they were subjected to 

CPA, which uncovered biosimilarity to an inhibitor of the phosphatidylinositol-3 kinase VPS34, 

namely SAR405. A kinase assay confirmed the inhibitory effect and target engagement in cells 

was demonstrated by using a cellular thermal shift assay, underlining the potential of CPA to 

identify targets of small molecules.  
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4 AIM OF THE THESIS 

There is a high demand in the field of chemical biology to map and expand bioactivity space. 

This can be achieved by identifying on- and off-target interaction networks or by the discovery 

of novel bioactivity. Small molecules and drug candidates addressing cellular structures that 

go beyond the already known drug targets are particularly interesting.[36] Especially the 

identification of targets, which are not proteins, and MoAs in general, are of interest but difficult 

to achieve with commonly employed target identification methods.[20, 34]  

Morphological profiling gains increasing interest in the field and offers an approach with the 

potential to address all these issues using a single assay. In contrast to conventional 

phenotypic screens, morphological profiling measures hundreds of features that capture a 

much broader picture of bioactivity, which is not limited to a specific phenotype, pathway, or 

biological process of interest. However, researchers are often restricted in their experimental 

setup and measure only individual features, which leads to a loss of potentially useful and 

important phenotypic information.  

To overcome this limitation, the Compound Management and Screening Center (COMAS), 

Dortmund, set up the Cell Painting Assay (CPA) in order to assess bioactivity of large 

compound libraries early on, to guide synthesis efforts, assign so far unknown targets or MoAs 

to annotated compounds and to identify novel bioactive small molecules and bioactivities. 

Therefore, this thesis aimed to evaluate the applicability of the CPA to identify MoAs that are 

not mediated via small molecule-protein interactions, by investigating iron-chelating 

compounds. Furthermore, the bioactivity of an example compound class, namely the 

tetrahydroindolo[2,3-a]quinolizine derivatives, should be explored by means of the CPA.  

The ability of the CPA to identify non-protein targets should be assessed using the example 

of the iron-chelating agent Deferoxamine (DFO). The requirement to use references for activity 

prediction is, that the morphological fingerprints of references, sharing a target or MoA, are 

highly biosimilar to ensure that the induced morphological change is related to the annotated 

target or MoA. Therefore, biosimilar references to DFO should be examined and a potential 

underlying target or MoA should be experimentally confirmed using secondary assays. If a 

common target or MoA can be confirmed, this cluster should be used to seek for novel, i.e., 

uncharacterized and biosimilar compounds that presumably share the same target or MoA. 

The tetrahydroindolo[2,3-a]quinolizines are pre-validated by nature as numerous natural 

products embody the indolo[2,3-a]quinolizine scaffold and possess various biological 

activities.[87-89] To investigate the bioactivity of the tetrahydroindolo[2,3-a]quinolizine 

derivatives, the morphological fingerprints should be examined and compared to reference 
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compounds for target or MoA prediction. Depending on the outcome, further experiments to 

characterize the phenotype and to identify and confirm the potential target or MoA should be 

performed. 

The CPA has the potential to overcome limitations of commonly applied target identification 

methods, to discover novel bioactive small molecules and new bioactivity areas including 

targets that are not proteins. 
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5 MATERIAL AND METHODS 

5.1 Materials 

5.1.1 Chemicals and reagents 

Compounds used in this thesis but not specified in this section were synthesized by chemists 

of the department of Chemical Biology at the Max Planck Institute of Molecular Physiology, 

Dortmund. Annotated reference compounds used in this thesis but not registered in this 

chapter were obtained from COMAS, Dortmund. 

Name Supplier Cat. No 

4’,6-Diamidin-2-phenylindole (DAPI) Sigma Aldrich D9542 

Acetone Carl Roth 7328.1 

Acrylamide solution (30 %) AppliChem A1672 

Ammonium persulfate Serva 13375.05 

Bovine Serum Albumin (BSA) Serva 11945.03 

Bromphenol blue, sodium salt Carl Roth A512.1 

Chloroquine Sigma Aldrich C6628 

cOmpleteTM, EDTA-free protease inhibitor 

cocktail 
Sigma Aldrich 11873580001 

Diminazene aceturate (Berenil) Sigma Aldrich D7770 

Dithioerythritol (DTE) Gerbu 1007.0025 

Dithiothreitol (DTT) Gerbu 1008.0005 

DNase-free RNase A 
Thermo Fisher 

Scientific 
EN0531 

Dynasore Enzo Life Sciences ALX-270-502-M005 

EDTA Gerbu 10341000 

EGTA AppliChem A0878,0100 

Ferrozine 
Thermo Fisher 

Scientific 
10522194 

Formaldehyde solution (37 %) AppliChem A3592 

Glycerol Carl Roth 3783.1 

Glycine Carl Roth 3790.2 

HEPES Gerbu 10090250 

Hoechst 33342 Sigma Aldrich B2261 

Hydrochloric acid (HCl) Applichem A0658 

Iodoacetamide AppliChem A1666.0025 

Iron (II) sulfate heptahydrate Sigma Aldrich F8633 
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Name Supplier Cat. No 

Lipofectamine® 2000 
Thermo Fisher 

Scientific 
11668019 

LysoTracker® Red DND-99 
Thermo Fisher 

Scientific 
L7528 

Magnesium chloride hexahydrate AppliChem A3618 

Methanol Sigma Aldrich 32213 

Nonfat dried milk powder AppliChem A0830 

NP-40 alternative Calbiochem 492016 

Opti-MEMTM 
Thermo Fisher 

Scientific 
31985062 

PageRulerTM Plus prestained protein ladder, 10 

to 250 kDa 

Thermo Fisher 

Scientific 
26620 

PBS tablets Jena Bioscience AK-102P-L 

PhosSTOP phosphatase inhibitors Sigma Aldrich 04906837001 

PIPES Sigma Aldrich P6757 

Propidium iodide Sigma Aldrich P4864 

SDS Gerbu 12,120,100 

Sodium chloride AnalaR NORMAPUR 27810295 

SuperSignalTM West Femto 
Thermo Fisher 

Scientific 
34095 

SuperSignalTM West Pico 
Thermo Fisher 

Scientific 
34580 

TEMED Carl Roth 2367.3 

Transferrin from human serum, Alexa FluorTM 

594 (AF594) 

Thermo Fisher 

Scientific 
T13343 

Triethylammonium bicarbonate buffer Sigma Aldrich T7408 

TRIS Carl Roth 4855.2 

TCEP 
Thermo Fisher 

Scientific 
20491 

Triton® X-100 Serva 39795.02 

Trypan Blue Stain (0.4 %) 
Thermo Fisher 

Scientific 
T10282 

Trypsin recombinant, proteomics grade Sigma Aldrich 3708969001 

TweenTM 20 Fisher Bioreagents BB3337-100 

U18666A Abcam Ab133116-192test 

UltraPure™ Calf Thymus DNA Solution 
Thermo Fisher 

Scientific 
15633019 
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5.1.2 Buffers and media 

Description Name Method 

DNA binding buffer 
2 mM HEPES, 9.4 mM NaCl, 0.01 mM EDTA, pH 

7.0 

DNA binding 

assay 

Lysis buffer 

50 mM PIPES  (pH 7.4), 50 mM NaCl, 5 mM EGTA, 

5 mM MgCl2, 0.1 % NP-40, 0.1 % Triton X-100, 0.1 

% Tween 20, freshly add: 1 mM DTT, PhosSTOP, 

cOmpleteTM, EDTA-free protease inhibitor cocktail 

Cell lysis for 

immunoblot 

Lysogeny broth (LB) 

medium 

10 g/L bacterial tryptophan, 5 g/L yeast extract, 10 

g/L NaCl in mH2O 
Bacterial culture 

PBS-T 0.1 % Tween 20 in PBS 
General washing 

buffer 

Resolving gel 
6-12.5 % acrylamide, 1.5 M TRIS-HCl (pH 8.8), 0.1 

% SDS, 0.1 % APS, 0.004 % TEMED in mH2O 
SDS-PAGE 

Running buffer (10X) 250 mM TRIS, 2 M glycine, 1 % SDS in mH2O SDS PAGE 

SDS sample buffer (5X) 
0.5 M TRIS, 40 % glycerol, 8 % SDS, 0.4 M DTE, 

0.02 % bromphenol blue in mH2O 
SDS PAGE 

Stacking gel 
5 % acrylamide, 1 M TRIS-HCl (pH 6.8), 0.1 % 

SDS, 0.1 % APS, 0.01 % TEMED in mH2O 
SDS PAGE 

Transferrin wash buffer 50 mM glycin, 150 mM NaCl, pH 3.0 
Transferrin 

uptake assay 

Wet blotting buffer 25 mM TRIS, 190 mM glycine, 10 % (v/v) methanol 

Wet protein 

transfer 

(immunoblot) 

 

5.1.3 Antibodies 

5.1.3.1 Primary antibodies 

Antigen Host Supplier Cat. No 

LC3 Rabbit Cell Signaling Technology 2775S 

p62/SQSTM1 Rabbit MBL Life science PM045 

Vinculin Mouse Sigma Aldrich V9131 

 

5.1.3.2 Secondary antibodies 

Antigen Conjugate Host Supplier Cat. No 

Mouse 800CW dye Donkey Li-COR 926-32210 

Rabbit HRP Goat Abcam Ab97051 
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5.1.4 Plasmids 

Name Backbone Insert Source 

pRL-TK pRL Renilla luciferase 
Promega 

E2241 

pSyn-SRE-Mut-T-

Luc[90] 

pGL2 

basic 

HMG-CoA synthase promoter with four point 

mutations (G → C or A →C) in the SRE 

binding region 

Addgene 

#60490 

pSyn-SRE-T-

Luc[91] 

pGL2 

basic 
HMG-CoA synthase promoter 

Addgene 

#60444 

 

5.1.5 Cell lines 

Name Description Culture conditions Source 

HeLa 
Female human 

adenocarcinoma 

DMEM supplemented with 

10 % (v/v) FBS, 1 mM sodium 

pyruvate, 1% (v/v) non-

essential amino acids 

DSMZ, ACC 57 

L Male mouse fibroblasts 

DMEM supplemented with 

10 % (v/v) FBS, 1 mM sodium 

pyruvate, 1% (v/v) non-

essential amino acids 

ATCC, CRL-2648 

MCF7-LC3 

Human epithelial, stably 

transfected with eGFP-

LC3 

Eagle’s MEM supplemented 

with 10 % (v/v) FBS, 1 mM 

sodium pyruvate, 1 % (v/) non-

essential amino acids, 0.01 

mg/mL human insulin and 200 

µg/mL G418 

The cell line was kindly 

provided by Yaowen 

Wu.[92] 

U-2OS 
Female human 

osteosarcoma 

DMEM supplemented with 

10 % (v/v) FBS, 1 mM sodium 

pyruvate, 1% (v/v) non-

essential amino acids 

CLS, 300364 
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5.1.6 Cell culture media and supplements 

Description Supplier Cat. No 

DMEM PAN Biotech P04-03550 

Eagle’s MEM PAN Biotech P04-08500 

EBSS Sigma Aldrich E3024 

Fetal bovine serum  Gibco 10500-084 

G418 Sigma Aldrich G8168 

Insulin Sigma Aldrich I9278 

Non-essential amino 

acids, 100X 
PAN Biotech P08-32100 

Sodium pyruvate PAN Biotech P04-43100 

Trypsin/EDTA PAN Biotech P10-023100 

 

5.1.7 Kits 

Description Supplier Cat. No 

Actin Polymerization Kit Tebu-bio 027BK003 

Cholesterol Assay Kit (Cell-Based) Abcam 
Ab133116-

192test 

Click-itTM Plus EdU Alexa FluorTM 488 Flow Cytometry 

Assay 

Thermo Fisher 

Scientific 
C10632 

DC protein assay Bio-Rad 5000112 

Dual-Glo® luciferase assay system Promega E2980 

EndoFree Plasmid Maxi Kit Qiagen 12362 

MycoAltertTM Mycoplasma Detection Kit Lonza LT07-318 

 

5.1.8 Instruments and devices 

Description Name Supplier 

Automated cell counter 
CountessTM II Automated Cell 

Counter 
Thermo Fisher Scientific 

Automated screening 

microscope 
Axiovert 200 M Carl Zeiss 

Cell freezing container 
CoolCell® LX cell freezing 

container 
BioCision 

Centrifuge Table-top centrifuge, 5415D Eppendorf 

Centrifuge Table-top centrifuge, 5415R Eppendorf 

Centrifuge Large table-top centrifuge, 5810R Eppendorf 



MATERIAL AND METHODS 

30 
 

Description Name Supplier 

Clean bench for cell 

culture 
NU-437-400E Ibs tecnomara 

Clean bench for 

proteomics experiments 
MSC-Advantage 1.2 Thermo Fisher Scientific 

Device for running SDS 

gels and wet blotting 
Mini-PROTEAN® Tetra Cell Bio-Rad 

Device for SDS gel 

preparation 

Mini-PROTEAN® Tetra Cell 

Casting Module 
Bio-Rad 

Fine scale Analytical Plus Sartorius 

Flow Cytometer BD LSRII analyzer Becton Dickinson 

Holder for SDS geld 
Mini-PROTEAN® Tetra Electrode 

Assembly 
Bio-Rad 

Holder for wet blotting 2-Gel Tetra and Blotting Module Bio-Rad 

Live-cell imaging system Incucyte® ZOOM / Incucyte® S3 Essen BioScience 

Multi-channel pipettes, 10 

and 100 µL 
Research Plus Eppendorf 

Plate reader Spark® Tecan 

Scale CP3202S OHAUS 

Spectrophotometer Nanodrop 2000c Thermo Fisher Scientific 

Thermomixer Thermomixer comfort 1.5 mL Eppendorf 

Widefield fluorescence 

microscope 
Zeiss Observer Z1 Zeiss 

 

5.1.9 Software 

Description Name Supplier 

Graphical 

representation 

GraphPadPrism 

6.0 
https://www.graphpad.com/scientific-software/prism/ 

Live-cell imaging 
IncuCyte 

Software 
https://www.essenbioscience.com/en/products/incucyte/ 

Quantification of filipin 

staining 
Fiji-ImageJ https://imagej.net/Fiji 

Quantification of LC3 

puncta formation  
MetaXpress Molecular Devices 

Quantification of 

Western blots 

Image Studio 

Ver 5.2 
LI-COR 
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5.1.10 Other material and consumables 

Name Supplier 

0.5 mL tubes Sarstedt 

1.5 mL tubes Sarstedt 

10 µL pipette tips Sarstedt 

1000 µL pipette tips Diagonal 

15 mL tubes Sarstedt 

2 mL tubes Sarstedt 

200 µL pipette tips Diagonal 

5 mL Round Bottom Tube with Cell Strainer (FACS tubes) Corning 

50 mL tubes Sarstedt 

6-well plate (transparent, standard) Sarstedt 

6-well plate, tissue culture-treated, clear, flat bottom Sarstedt 

96-well plate, black, clear-bottom Corning 

96-well plate, tissue culture-treated, clear, flat bottom 

(standard) 
Falcon/Sarstedt 

CountessTM Cell Counting Chamber Slides Thermo Fisher Scientific 

Cryo vials Sarstedt 

Glass slides, 76 x 26 cm Diagonal 

Immobilon-DL PVDF Membrane Millipore 

Mini Cell Buffer Dam Bio-Rad 

Mini-PROTEAN® Comb, 10-well, 1.0 mm, 44 µL Bio-Rad 

Mini-PROTEAN® Comb, 15-well, 1.0 mm, 26 µL Bio-Rad 

Mini-PROTEAN® Short Plates Bio-Rad 

Mini-PROTEAN® Spacer Plates with 

1.0 mm Integrated Spacer 
Bio-Rad 

Protein LoBind Tubes 0.5 mL Eppendorf 

Protein LoBind Tubes 1.5 mL Eppendorf 

Protein LoBind Tubes 2.0 mL Eppendorf 

Serological pipette 1 mL Sarstedt 

Serological pipette 10 mL Sarstedt 

Serological pipette 25 mL Sarstedt 
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Name Supplier 

Serological pipette 5 mL Sarstedt 

T175 cell culture flask Sarstedt 

T25 cell culture flask Sarstedt 

T75 cell culture flask Sarstedt 

Whatman® gel blotting paper, Grade GB005 Sigma Aldrich 

X1000 Round Coverslips, diameter 12 mm Fisher Scientific 

 

 

5.2 Methods 

5.2.1 Molecular biology methods 

5.2.1.1 Plasmid amplification, isolation and DNA sequencing 

To amplify a plasmid of interest, bacteria from a glycerol stock were inoculated in LB culture 

medium containing the respective selection antibiotic and incubated overnight at 37 °C. To 

prevent contamination, the inoculation was performed close to a Bunsen burner and with 

sterile equipment. The plasmid was isolated by using the EndoFree Plasmid Maxi Kit 

according to the manufacturer’s protocol. Precipitated DNA was dissolved in autoclaved water 

and the concentration was determined with the Nanodrop 2000 spectrophotometer. DNA 

sequencing was performed by StarSEQ using the Sanger sequencing. 

 

5.2.2 Cell biology methods 

5.2.2.1 Sub-cultivation of adherent cell lines 

All cell lines were handled under sterile conditions and cultured at 37 °C and 5 % CO2 until 

the cells reached 90 % confluence (5.1.5 and 5.1.6). For sub-culturing, medium was removed 

and cells were carefully washed with PBS. A trypsin/EDTA solution was added to detach the 

cells and the flask was incubated at 37 °C and 5 % CO2. Depending on the cell line, the flask 

was incubated between 1 and 5 min. Cells were fully detached by gently tapping against the 

flask. Subsequently, the respective growth medium was added to inactivate the trypsin. To 

resuspend and collect all cells, the flask was slowly flushed with the suspension three to four 

times. 
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Table 1: Volumes used to wash, detach and resuspend the cells depending on the flask size. 
 

Volumes [mL] T25 T75 T175 

PBS 2 5 10 

Trypsin/EDTA 0.5 2 3 

Growth medium 2 8 12 

 

A suitable volume of cell suspension was transferred into a new flask in a total volume of T25 

(5 mL), T75 (12 mL) and T175 (22 mL). 

 

5.2.2.2 Cell counting and seeding 

Cells were detached as described in 5.2.2.1 and the cell suspension was collected in a 50 mL 

tube. 10 µL trypan blue were added to 10 µL cell suspension and cells were counted in 

duplicates using an automated cell counter. 

 

5.2.2.3 Cryo-conservation of cells 

For long-term storage, cells were preserved in the gas phase of liquid nitrogen. Therefore, 

cells were collected and counted as described in 5.2.2.1 and 5.2.2.2, respectively. The cell 

suspension was centrifuged for 3 min at 198 x g, the supernatant was removed and the cells 

were diluted to 1 x 106 cells/mL in growth medium containing 5 % DMSO (v/v) to avoid 

membrane damage by ice crystals. 1 mL of the cell suspension was then transferred into a 

cryovial. To assure slow reduction in temperature the cryovials were placed in a freezing 

container, frozen overnight at -80°C and afterwards transferred to the liquid nitrogen tank. 

 

5.2.2.4 Thawing of cryo-conserved cells 

To ensure rapid thawing of the cells, the cryovial was transferred on ice from the liquid nitrogen 

tank to the cell culture and then directly placed into a water bath (prewarmed to 37 °C) until 

most of the suspension was thawed. Subsequently, the cells were transferred into a containing 

5 mL growth medium and centrifuged for 3 min at 380 x g to remove the DMSO containing 

freezing medium. The cell pellet was resuspended in 5 mL growth medium and transferred 

into cell culture flask that contained an appropriate volume of fresh growth media. The cells 

were cultured until 90 % confluence and passaged for at least one more time before they were 

used for experiments. 
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5.2.2.5 Mycoplasma test 

Bacterial contamination of cell cultures with mycoplasma can alter cell physiology and 

metabolism without being noticed because mycoplasma are invisible under a conventional 

light field microscope. This is mainly due to their small size, the lack of a cell wall and their 

adherence to the cell surface.[93] Therefore, cell cultures were monthly tested for mycoplasma 

contamination using the MycoAltertTM Mycoplasma Detection Kit according to the 

manufacturer’s protocol. 

 

5.2.2.6 Real-time kinetic live-cell imaging 

Live-cell imaging and monitoring of cell growth was performed using the Incucyte® ZOOM or 

Incucyte® S3 system. Therefore, cells were seeded into a 96-well plate at a density of 4,500 

U-2OS/well, 3,500 L cells/well or 4000 HeLa/well in 90 µL medium per well. To let the cells 

attach to the surface, plates were incubated overnight and treated in triplicates with compound 

or 0.3 % DMSO as a control the following day. If toxicity was assessed, 16.67 µg/µL propidium 

iodide was added to the assay medium. Cell growth was monitored by means of confluence 

and toxicity by means of propidium iodide (PI) fluorescence as a readout through quantitative 

kinetic processing metrics obtained from the time-lapsed image acquisition using the 

Incucyte® ZOOM or Incucyte® S3 software. 

 

5.2.2.7 Cell Painting Assay 

The Cell Painting Assay was performed by the Compound Management and Screening 

Center, Dortmund and follows closely the method described by Bray et al..[78, 94]  

Initially, 5 µL U-2OS medium was added to each well of a 384-well plate (PerkinElmer 

CellCarrier-384 Ultra). Subsequently, U-2OS cells were seeded with a density of 1600 cells 

per well in 20 µL medium. The plate was incubated for 10 min at the ambient temperature, 

followed by an additional 4 h incubation (37 °C, 5 % CO2). Compound treatment was 

performed with the Echo 520 acoustic dispenser (Labcyte) at final concentrations of 1, 3 or 

10 µM. Incubation with compound was performed for 20 h (37 °C, 5 % CO2). Subsequently, 

mitochondria were stained with Mito Tracker Deep Red (Thermo Fisher Scientific, Cat. No. 

M22426). The Mito Tracker Deep Red stock solution (1 mM) was diluted to a final 

concentration of 100 nM in prewarmed medium. The cell medium was removed from the plate 

leaving 10 µl residual volume and 25 µl of the Mito Tracker solution were added to each well. 

The plate was incubated for 30 min in the dark (37 °C, 5 % CO2). To fix the cells, 7 µL of 



 MATERIAL AND METHODS  

35 
 

18.5 % formaldehyde in PBS were added, resulting in a final formaldehyde concentration of 

3.7 %. Subsequently, the plate was incubated for another 20 min in the dark at room 

temperature (RT) and washed thrice with 70 µL of PBS (Biotek Washer Elx405). Cells were 

permeabilized by the addition of 25 µL 0.1 % Triton X-100 to each well, followed by 15 min 

incubation (RT) in darkness. The cells were washed thrice with PBS leaving a final volume of 

10 µL. To each well 25 µL of a staining solution were added, which contains 1 % BSA, 5 µL/mL 

Phalloidin (Alexa594 conjugate, Thermo Fisher Scientific, A12381), 25 µg/mL Concanavalin 

A (Alexa488 conjugate, Thermo Fisher Scientific, Cat. No. C11252), 5 µg/mL Hoechst 33342 

(Sigma, Cat. No. B2261-25mg), 1.5 µg/mL WGA-Alexa594 conjugate (Thermo Fisher 

Scientific, Cat. No. W11262) and 1.5 µM SYTO 14 solution (Thermo Fisher Scientific, Cat. No. 

S7576). The plate is incubated for 30 min (RT) in darkness and washed three times with 70 µl 

PBS. After the final washing step, the PBS was not aspirated. The plates were sealed and 

centrifuged for 1 min at 500 rpm.  

The plates were prepared in triplicates with shifted layouts to reduce plate effects and imaged 

using a Micro XL High-Content Screening System (Molecular Devices) in 5 channels (DAPI: 

Ex350-400/ Em410-480; FITC: Ex470-500/ Em510-540; Spectrum Gold: Ex520-545/ Em560-

585; TxRed: Ex535-585/ Em600-650; Cy5: Ex605-650/ Em670-715) with 9 sites per well and 

20X magnification (binning 2). 

The generated images were processed with the CellProfiler package (https://cellprofiler.org/, 

version 3.0.0) on a computing cluster of the Max Planck Society to extract 1716 cell features 

per microscope site. The data was then further aggregated as medians per well (9 sites -> 1 

well), then over the three replicates. 

Further analysis was performed with custom Python (https://www.python.org/) scripts using 

the Pandas (https://pandas.pydata.org/) and Dask (https://dask.org/) data processing libraries 

as well as the Scientific Python (https://scipy.org/) package (separate publication to follow). 

From the total set of 1716 features, a subset of highly reproducible and robust features was 

determined using the procedure described by Woehrmann et al.[63] in the following way: 

Two biological repeats of one plate containing reference compounds were analyzed. For every 

feature, its full profile over each whole plate was calculated. If the profiles from the two repeats 

showed a similarity ≥ 0.8, the feature was added to the set. This procedure was only performed 

once and resulted in a set of 579 robust features out of the total of 1716 that was used for all 

further analyses. 

To determine the phenotypic fingerprint for each test compound z-scores were calculated for 

each feature: 

https://cellprofiler.org/
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The morphological fingerprint of a compound is then determined as the list of z-scores of all 

features for one compound. 

In addition to the phenotypic fingerprint, an induction value was determined for each 

compound as the fraction of significantly changed features, in percent: 

 

Similarities of morphological fingerprints were calculated from the correlation distances[95] 

between two fingerprints (Similarity = 1 - Correlation Distance) and compounds with the most 

similar fingerprints were determined from a set of 3000 reference compounds that was also 

measured in the assay. 

 

5.2.2.7.1 Hierarchical clustering 

The hierarchical clustering was performed and visualized using the clustermap tool from the 

seaborn package.[96] The tool in turn uses the hierarchical clustering module from the scipy 

package.[95] The linkage method was "complete", the used metric was "correlation" which 

corresponds to the similarity measure used for profile comparison. The clustermaps were 

either generated from the full parameter profiles or, to improve the visibility of less pronounced 

areas of the profiles, by forming sub-profiles in the following way: 

For all considered profiles, keep only those parameters from the profile, where all of the 

absolute values over all the rows are less than 10.0.  

 

PseudoCode: 

    cutoff_filter = 10.0 

    parameters_to_keep = [] 

    for parameter in ALL_PARAMETERS: 

        absmax = 

abs(dataframe_with_considered_profiles[parameter]).max(

) 

        if absmax < cutoff_filter: 

            parameters_to_keep.append(parameter) 
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5.2.2.8 Flow Cytometry 

To quantify the DNA amount of cells and to determine the percentage of cells in S phase, the 

Click-itTM Plus EdU Alexa FluorTM 488 Flow Cytometry Assay Kit was used according to the 

manufacturer’s protocol. Therefore, 1.25 x 105 U-2OS cells were seeded in a 6-well plate and 

incubated overnight. The following day, cells were treated with indicated concentrations of 

compound or 0.3 % DMSO as a control for 22 h. To determine the percentage of cells in S 

phase of the cell cycle, cells were pulsed for another 2 h with 10 µM 5-ethynyl-2’-deoxyuridine 

(EdU) or medium as a control. EdU is a thymidine analog that is incorporated into the DNA 

during active DNA synthesis.[97] Cells were washed with PBS, detached using trypsin/EDTA 

and re-suspended in PBS. Cells were centrifuged at 1258 x g for 5 min at room temperature 

and washed with 1 % BSA in PBS. Cells were fixed with 4 % PFA in PBS and subjected to a 

click-reaction to label incorporated EdU with a fluorophore. Afterwards, cells were stained with 

a propidium iodide (PI) solution (100 µg/mL PI, 0.1% (v/v) Triton X-100 and 100 µg/mL DNase-

free RNase A in PBS) for 30 min at room temperature. PI intercalates into DNA in a 1:1 ratio 

causing a red shift of the PI excitation maximum and an increase in fluorescence intensity. 

The DNA amount is proportional to the fluorescence intensity, if PI is used in excess. For the 

measurement, the cell suspension was filtered to FACS tubes through a nylon mesh. For each 

sample 10,000 cells were sorted by the BD LSRII analyzer (Becton Dickinson, USA). FlowJo 

10.6.1 software was used for quantification and data analysis. For every analysis, FSC and 

SSC (forward and side scatter, respectively) gating was performed to exclude doublets and 

debris and to select single cells. All results were plotted using GraphPad Prism 6 software.  

 

5.2.2.9 Sterol Regulatory Element (SRE) reporter gene assay 

The SRE reporter gene assay was employed to study the effect of small molecules on sterol 

regulatory binding protein (SREBP)-dependent transcriptional activation. Therefore, cells were 

transfected with the pSynSRE-T-Luc plasmid, which contains the promoter of 3-hydroxy-3-

methylglutaryl-CoenzymA (HMG-CoA) synthase harboring the SREBP responsive region 

linked to a firefly luciferase. As a control, cells were transfected with a mutant version 

(pSynSRE-Mut-T-Luc) containing four point mutations (A→C or G→C) in the promoter region 

that abolish SRE-induced firefly luciferase expression. Cells transfected with pSynSRE-T-Luc 

or pSynSRE-Mut-TLuc were in addition transfected with a Renilla luciferase construct (pRL-

TK) as a cell viability and transfection efficiency control. Cells were transfected via lipofection 

using Lipofectamine 2000 according to the manufacturer’s protocol. 1,42 x 106 U-2OS cells 

per T25 flask were transfected with 3 µg of the respective pSyn-SRE plasmid and 0.3 µg pRL-

TK using a DNA to Lipofectamine ratio of 1:3. Cells were incubated for 6 h at 37 °C and 5 % 
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CO2 and afterwards re-plated in a standard 96-well plate with 2,5 x 104 cells per well. Cells 

were incubated for another hour to allow attachment, treated with compounds and incubated 

for 24 h. Luciferase activities were measured using the Dual-Glo® Luciferase Assay System 

according to the manufacturer’s instruction. In order to obtain normalized data the expression 

of the firefly luciferase reporter was divided by the Renilla luciferase signal. Modulation of the 

firefly and Renilla luciferase by the compounds was excluded by performing a Luciferase 

inhibition assay (see 5.2.2.10). 

 

5.2.2.10 Luciferase inhibition assay 

To identify small molecules that inhibit the activity of the firefly or Renilla luciferase, which 

would falsify the results of the reporter gene assay (see 5.2.2.9), a luciferase inhibition assay 

was performed. For this purpose, U-2OS cells were transfected with the pRL-TK and 

pSynSRE-T-Luc plasmid plasmid encoding the Renilla and firefly luciferase and re-plated as 

described in 5.2.2.9. But instead of treating the cells with compounds, cells were incubated 

overnight and lysed according to the manufacturer’s protocol of the Dual-Glo® Luciferase 

Assay System. Prior to the readout, lysates were incubated with compounds for 1 h to restrict 

the source of a reduced signal to a direct inhibition by a compound. The readout performed 

according to the manufacturer’s protocol of the Dual-Glo® Luciferase Assay System. 

 

5.2.2.11 Lysosomotropism assay 

Staining of lysosomes with LysoTracker® Red DND-99 was employed to assess the ability of 

small molecules to increase lysosomal pH. LysoTracker® Red DND-99 is a weak base linked 

to a fluorophore for a selective staining of acidic organelles. In the neutral environment of the 

cytosol, the probe is able to freely permeate through cell membranes. Once protonated in the 

acidic environment of the lysosome, the charged probe is unable to cross the lysosomal 

membrane to re-enter the cytoplasm. Lysosomotropic compounds lead to an increase in 

lysosomal pH which results in a decreased LysoTracker® Red DND-99 staining. For the 

assay, 7.000 U-2OS cells per well were seeded in 100 µL into a black 96-well plate (clear 

bottom) and incubated overnight at 37 °C and 5 % CO2 to let the cells attach. The next day the 

cells were treated with compounds and incubated for 1 h. 50 µL medium were removed from 

each well and 50 µL medium containing LysoTracker® Red DND-99 (1 µM) and Hoechst 

33342 (10 µg/µL) were added and incubated for 30 min at 37 °C and 5 % CO2. The medium 

was removed, cells were washed with 60 µL PBS and afterwards fixed with 50 µL 3.7 % 

formaldehyde in PBS by incubating for 10 min at RT in the dark. Cells were washed twice with 
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PBS prior to imaging using an Axiovert 200 M microscope at 10X magnification. Image 

analysis was performed using CellProfiler[81], which identified cells via the Hoechst-33342 

staining. LysoTracker® Red DND-99 mean intensity was measured per cell. For background 

correction, the mean intensity of 100 µM Chloroquine, which was used as a control, was 

subtracted from all other conditions and the obtained values were normalized to the 

corresponding vehicle control. 

 

5.2.2.12 Proteome profiling  

Sample preparation for mass spectrometry 

One day prior to treatment with compounds or DMSO as a control, 1 x 106 U-2OS cells were 

seeded in a T75 flask. At the end of the incubation time, the medium was removed and 

transferred into a 50 mL tube. Cells were washed with 5 mL PBS, which was also collected in 

the tube, and then cells were detached using 2 mL trypsin/EDTA. Cells were resuspended in 

8 mL PBS and the flask was washed with another 5 mL. All fractions were collected in the 

same falcon. The cells were centrifuged for 5 min at 652 x g, the supernatant was removed, 

the cell pellet was washed with 10 mL PBS and centrifuged again. The supernatant was 

removed and the cells were washed with 5 mL ice-cold PBS, centrifuged and washed again 

with 1 mL ice-cold PBS. The cell suspension was transferred into a 1 mL tube and again 

centrifuged. The supernatant was removed and cells were resuspended in 100 µL PBS 

containing protease- and phosphatase inhibitors. Cells were lysed by subjecting them to seven 

freeze-thaw cycles. Cells were therefore frozen in liquid nitrogen and thawed at 37 °C in a 

thermomixer until only a small ice clump was visible. Afterwards the samples were centrifuged 

for 15 min at 16,000 x g at 4 °C. The protein concentration of the received supernatant was 

determined by means of the DC protein assay. 75 µL of 100 mM triethylammonium 

bicarbonate (TEAB) buffer was added to each sample containing 50 µg protein. 7.5 µL 

200 mM TCEP were added to each sample, the tubes were directly inverted and all samples 

were vortexed followed by a short centrifugation at 10,000 g to collect the liquid. The samples 

were incubated for 1 h at 55 °C in a thermomixer to reduce the proteins. To alkylate the 

proteins 7.5 µL of iodoacetamide were added to each sample and incubated for 30 min at RT 

in the dark. The proteins were precipitated by adding 900 µL ice-cold acetone. Precipitation 

proceeded overnight at -20 °C. Samples were centrifuged for 10 min at 8,000 x g at 4 °C to 

collect the precipitated proteins. The supernatant was carefully removed and pellets were 

dried for 45 min. To digest the proteins, 107.5 µL of 0.4 µg/mL trypsin in 100 mM TEAB were 

added to each sample. The tubes were vigorously vortexed for about 20 s followed by a short 

centrifugation step to collect the liquid. Digestion proceeded overnight at 37 °C in a 
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thermomixer with shaking at 300 rpm. Afterwards samples were labeled with TMT label 

(TMT10plex, # 90110 ThermoFisher Scientific) according to the manufacturer’s instruction. 

The TMT labeling as well as the nanoHPLC-MS/MS measurement and analysis was 

performed by the mass spectrometry group of the MPI Dortmund, namely Jens Warmers, 

Andreas Brockmeyer, Malte Metz and Dr. Petra Janning. 

Mass spectrometry 

Prior to nanoHPLC-MS/MS analysis samples were fractionated into ten fractions on a C18 

column using high pH conditions to reduce the complexity of the samples and thereby increase 

the number of quantified proteins. Therefore, samples were dissolved in 120 μL of 20 mM 

ammonium formate (HCOONH4) at pH 11, followed by incubation in an ultra-sonicator for 

2 min, subsequent vortexing for 1 min and centrifugation at 8,000 x g for 3 min at room 

temperature. 50 μL of the supernatant were injected onto a XBridge C18 column (130 Å, 

3.5 μm, 1mm x 150 mm) using a U3000 capHPLC system (ThermoFisher Scientific, 

Germany). Separation was performed at a flow rate of 50 μL/min using 20 mM HCOONH4 pH 

11 in water as solvent A and 40 % 20 mM HCOONH4 pH 11 in water premixed with 60 % 

acetonitrile as solvent B. Separation conditions were 95 % solvent A /  5% solvent B isocratic 

for the first 10 min, to desalt the samples, followed by a linear gradient up to 25 % in 5 min, a 

second linear gradient up to 65 % solvent B in 60 min, and a third linear gradient up to 100 % 

B in 10 min. Afterwards, the column was washed at 100 % solvent B for 14 min and re-

equilibrated to starting conditions. Detection was carried out at a valve length of 214 nm. The 

eluate between 15 and 100 min was fractionated into ten fractions (30 s per fraction, circular 

fractionation using ten vials). Each fraction was dried in a SpeedVac at 30 °C until complete 

dryness and subsequently subjected to nanoHPLC-MS/MS analysis. For nanoHPLC-MS/MS 

analysis samples were dissolved in 20 μL of 0.1 % TFA in water and 3 μL were injected onto 

an UltiMateTM 3000 RSLCnano system (ThermoFisher scientific, Germany) online coupled to 

a Q Exactive™ HF Hybrid Quadrupole-Orbitrap Mass Spectrometer equipped with a 

nanospray source (Nanospray Flex Ion Source, Thermo Scientific). All solvents were LC-MS 

grade. To desalt the samples, they were injected onto a pre-column cartridge (5 μm, 100 Å, 

300 μm ID * 5 mm, Dionex, Germany) using 0.1 % TFA in water as eluent with a flow rate of 

30 μL/min. Desalting was performed for 5 min with eluent flow to waste followed by back-

flushing of the sample during the whole analysis from the pre-column to the PepMap100 RSLC 

C18 nano-HPLC column (2 μm, 100 Å, 75 μm ID × 50 cm, nanoViper, Dionex, Germany) using 

a linear gradient starting with 95 % solvent A (water containing 0.1 % formic acid) / 5 % solvent 

B (acetonitrile containing 0.1 % formic acid) and increasing to 60 % solvent A 0.1 % formic 

acid / 40 % solvent B in 120 min using a flow rate of 300 nL / min. Afterwards, the column was 
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washed (95 % solvent B as highest acetonitrile concentration) and re-equilibrated to starting 

conditions. The nanoHPLC was online coupled to the Quadrupole-Orbitrap Mass 

Spectrometer using a standard coated SilicaTip (ID 20 μm, Tip-ID 10 μM, New Objective, 

Woburn, MA, USA). Mass range of m/z 300 to 1,650 was acquired with a resolution of 60,000 

for full scan, followed by up to 15 high energy collision dissociation (HCD) MS / MS scans of 

the most intense at least doubly charged ions using a resolution of 30,000 and a NCE energy 

of 35 %. Data evaluation was performed using MaxQuant software (v.1.6.3.4)[98] including the 

Andromeda search algorithm and searching the human reference proteome of the Uniprot 

database. The search was performed for full enzymatic trypsin cleavages allowing two 

miscleavages. For protein modifications, carbamidomethylation was chosen as fixed and 

oxidation of methionine and acetylation of the N-terminus as variable modifications. For 

relative quantification, the type “reporter ion MS2” was chosen and for all lysines and peptide 

N-termini TMT labels were defined. The mass accuracy for full mass spectra was set to 20 

ppm (first search) and 4.5 ppm (second search), respectively and for MS/MS spectra to 20 

ppm. The false discovery rates for peptide and protein identification were set to 1 %. Only 

proteins for which at least two peptides were quantified were chosen for further validation. 

Relative quantification of proteins was carried out using the reporter ion MS2 algorithm 

implemented in MaxQuant. The proteinGroups.txt file was used for further analysis. All 

proteins which were not identified with at least two razor and unique peptides in at least one 

biological replicate were filtered off. For further data analysis, the “Reporter intensity corrected” 

corresponding to compound treatment was divided by the “Reporter intensity corrected” of the 

corresponding vehicle control and the results were written into a new column. This file was 

stored under a different file name in txt-format. For further data analysis, Perseus version 

1.6.2.3[99] was used. The calculated ratios of the above-mentioned file were defined as main 

columns. Proteins resulting from the reverse database search, just identified by site, typical 

contaminants and not quantified in at least three out of three or four replicates, respectively, 

were filtered off. The ratios of the “Reporter intensities corrected” were logarithmized (log2) 

and normalized to the median. The mean of the replicates was calculated and the outlier test 

“Significance A” was performed. Proteins with a p-value < 0.05 were considered as statistically 

significantly up-or down-regulated, depending on the direction of change. 

 

5.2.2.13 Protein levels of LC3 and p62/SQSTM1 

Protein levels of LC3 and p62/SQSTM1 are widely used to monitor the autophagic flux. 

Therefore, MCF7 cells stably expressing the GFP-tagged LC3, were used. 3 x 105 MCF7-LC3 

cells per well were seeded in a 6-well plate and incubated overnight. The cell line was kindly 
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provided by Yaowen Wu.[92] On the next day, cells were treated with compounds or DMSO as 

a control for 24 h. As a control, autophagy was induced by amino acid starvation using EBSS 

(Earle’s Balanced Salt Solution). In order to lyse the cells, medium was removed, cells were 

washed with PBS and detached by adding 250 µL trypsin/EDTA per well. Cells were 

resuspended in 1 mL PBS and transferred into a 15 mL tube. Cells were centrifuged for 5 min 

at 3,220 x g, washed with 1 mL PBS and transferred into a 1 mL tube. Cells were centrifuged, 

the supernatant was removed and 50 µL lysis buffer for immunoblotting was added. Samples 

were incubated for 30 min on ice by inverting the tube every 10 min and afterwards centrifuged 

for 20 min at 15,700 x g at 4 °C. The protein concentration of the received supernatant was 

determined by means of the DC protein assay (see 5.2.3.3). Proteins were separated by size 

via a sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (see 5.2.3.4) 

using 15 % SDS polyacrylamide gels and transferred onto a PVDF membrane by the wet blot 

technique (see 5.2.3.5). Membranes were cut according to the used antibodies and 

corresponding protein size and blocked in 5 % nonfat dried milk in PBS-T. Antibody treatment 

(see Table below) and detection of the protein bands was performed as described in section 

5.2.3.5. 

 

Table 2: Antibodies, blocking solution and detection method for LC3 and p62 p62/SQSTM1 immunoblot. 
 

Primary 

antibody 

Dilution 

primary 

antibody 

Secondary 

antibody 

Dilution 

secondary 

antibody 

Blocking 

solution 
Detection 

Rabbit anti-

p62/SQSTM1 
1:10,000 

Anti-rabbit 

HRP 
1:10,000 

5% nonfat dried 

milk in PBS-T 
Chemiluminescence 

Rabbit anti-

LC3 
1:1000 

Anti-rabbit 

HRP 
1:10,000 

5% nonfat dried 

milk in PBS-T 
Chemiluminescence 

Mouse anti-

Vinculin 
1:1000 

Anti-mouse 

IRDye 800CW 
1:5000 

5% nonfat dried 

milk in PBS-T 
Fluorescence 

 

 

5.2.2.14 Transferrin uptake assay 

A fluorescently labeled transferrin was used to monitor receptor-mediated endocytosis under 

compound treatment. For this, 3*104 U-2OS cells were seeded on round coverslips (12 mm 

diameter) placed in a 24-well plate. The plate was incubated overnight to let the cells attach. 

On the next day, cells were washed once with serum-free medium (DMEM without 

supplements) followed by a 3 h treatment in duplicates in serum-free medium containing 
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compounds or DMSO as a control. Afterwards, the medium was removed and replaced by 

fresh serum-free medium containing 25 µg/mL Transferrin-AF594 and the compounds or 

DMSO. The plate was incubated for 2 min at RT to pause endocytosis and afterwards 

incubated for 5 min at 37 °C and 5 % CO2 to initiate the internalization of the labeled transferrin. 

Coverslips were washed carefully but as fast as possible twice with transferrin wash buffer 

(see 5.1.2) to remove residual transferrin attached to the cell surface. Subsequently, cells 

were washed twice with PBS and then fixed in 3.7 % formaldehyde in PBS for 20 min at RT 

in the dark. A first sample was thereby already taken after the incubation step at RT in order 

to have a sample at timepoint 0. After fixation, cells were washed twice with PBS and nuclei 

were stained by incubating the coverslips for 10 min at RT in the dark in PBS containing 

1 µg/mL DAPI. Finally, cells were washed again with PBS and mounted on a glass slide for 

microscopic examination. Images were acquired using the Zeiss Observer Z1 with a 63X oil 

objective. Image analysis was performed using CellProfiler[81], which identified cells via the 

DAPI staining. Mean integrated intensity Transferrin-AF594 was determined per image using 

12 images per experimental condition. 

 

5.2.2.15 Cholesterol staining 

The cellular distribution of cholesterol can be visualized using naturally fluorescent filipin, a 

polyene macrolide antibiotic and antifungal, that binds unesterified cholesterol. Cholesterol 

staining using filipin was performed using the Cholesterol Assay Kit (Abcam) according to the 

manufacturer’s protocol. Briefly, 4,700 U-2OS cells were seeded in a 96-well glass bottom 

plate and incubated overnight. Cells were treated with the compounds or DMSO as a control 

for 3 h prior to fixation and staining with filipin. Images were acquired using the Zeiss Observer 

Z1 with a 63x oil objective. Fiji-ImageJ was used to determine the stained area per cell. 

 

5.2.2.16 GFP-LC3 puncta formation assay 

MCF7 cells stably expressing GFP-tagged LC3 were used to detect the formation of 

autophagosomes during autophagy. The cell line was kindly provided by Yaowen Wu.[92] The 

assay was performed to test compounds for their ability to induce autophagy. As a control 

autophagy was induced by amino acid starvation using Earle’s Balanced Salt Solution (EBSS). 

MCF7-GFP-LC3 cells were seeded at a density of 1.5 x 104 cells per well in a black 96-well 

plate (clear bottom) and incubated overnight. The next day cells were treated with compounds 

or DMSO as a control both, in the presence and absence of 50 µM Chloroquine, for 24 h at 

37 °C and 5 % CO2. The medium was removed and cells were fixed with 3.7 % formaldehyde 
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in PBS containing Hoechst 33342 (10 µg/µL) by incubating for 20 min at RT. Cells were 

washed thrice with PBS and images were acquired using an Axiovert 200 M microscope at 

20X magnification. Automated image analysis was performed using the granularity setting of 

MetaXpress Software (Molecular Devices). 

 

5.2.3 Biochemical methods 

5.2.3.1 Iron chelation assay 

The ability of the compounds to chelate iron was assessed in a colorimetric way by ferrozine-

Fe(II)-complex formation. Ferrous ions form a purple complex with the chromogen ferrozine 

which can be followed spectrophotometrically.[100] Chelating compounds will compete with 

ferrozine for the ferrous ions leading to a restricted complex formation, i.e., reduced 

absorbance. Therefore, 12.5 µM iron(II) sulfate was incubated with compounds in mH2O for 

10 min at RT in a 96-well plate. DMSO and Deferoxamine were used as controls. Afterwards, 

0.5 mM ferrozine was added and absorbance was detected at 561 nm with a plate reader. 

 

5.2.3.2 DNA binding assay 

The binding of small molecules to DNA was assessed by performing a competition assay 

using DAPI as a minor groove binder and propidium iodide (PI) as a DNA intercalator. Binding 

of a compound to DNA would displace DAPI or PI depending on the binding mode and result 

in a decreased fluorescence signal. Therefore, 1 µg calf thymus DNA was incubated with 

different concentrations of the compound and either 0.625 µM DAPI or 0.625 µM PI in DNA 

binding buffer. Fluorescence was measured immediately. The assay was performed in 

technical triplicates in black 96-well plates with clear bottom using 100 µL per well. First, the 

fluorescence of DAPI (ex/em: 350/470 nm) and afterwards the fluorescence of PI (ex/em: 

535/617 nm) was measured using a plate reader.  

 

5.2.3.3 DC protein assay 

The colorimetric DC protein assay was performed to determine the protein concentration of 

lysates. The assay is based on the reaction between proteins and copper ions and the folin 

reagent. Two steps lead to the color development, first the reaction between the proteins and 

the copper ions at basic pH followed by the reduction of the folin reagent by the copper-treated 

proteins. The responsible amino acid residues are primarily tyrosine and tryptophan and to a 
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lesser extent cysteine and histidine. The reduction of the folin reagent by the amino acids 

results in a species with a characteristic blue color, whose absorbance can be measured at 

750 nm.[101] For this, lysates were diluted 1:5 in lysis buffer in order to be in the linear range. 

A BSA dilution series was used as a standard to determine the protein concentration. All 

samples were measured in duplicates in a standard 96-well plate according to the 

manufacturer’s protocol using a plate reader. 

 

5.2.3.4 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

In preparation for an immunoblot (see 5.2.3.5), proteins, e.g., in lysates need to be separated 

by size by using an SDS-PAGE. At first, proteins were denatured by reducing disulfide bonds 

and by boiling the lysate in 5X SDS-sample buffer containing DTE for 5 min at 95 °C and 

shaking at 350 rpm. SDS covers the intrinsic charge of the proteins enabling the separation in 

the gel solely based on the size. The Mini-PROTEAN® Tetra Cell was assembled, the comb 

was removed from the SDS polyacrylamide gel and the tank was filled with 1X running buffer. 

Protein samples were loaded into the gel pockets including 10 µL of PageRulerTM Plus 

prestained protein ladder. First, a voltage of 80 V was applied until the proteins passed the 

stacking gel and the ladder started to separate. Afterwards, the voltage was increased to 120 

V until the marker band completely separated or the running front reached the end of the gel. 

 

5.2.3.5 Immunoblot 

An immunoblot was performed subsequent to an SDS-PAGE. Upon separation by size using 

an SDS-PAGE, proteins need to be transferred onto a suitable membrane that allows binding 

of antibodies to detect proteins of interest. In this thesis, wet blotting was performed using the 

Mini-PROTEAN® Tetra Cell. After electrophoresis, the gel was transferred into water until 

blotting. The Immobilon-FL PVDF membrane was activated by incubation in methanol for 1 

min. The membrane and two filter papers were equilibrated in freshly prepared and pre-chilled 

wet blotting buffer. The sandwich, consisting of fiber pads, filter papers, the gel and the 

membrane, was assembled in a tank filled with wet blotting buffer. First, one fiber pad was 

placed on top of the white side of the plastic holder belonging to the transfer cassette followed 

by one filter paper, the membrane, the gel, another filter paper and in the end the second fiber 

pad. Bubbles were removed by flattening the layers with a plastic roller. The plastic holder was 

closed, inserted into the cassette and placed inside the blotting tank. A thermal pack and a 

magnetic stirrer were added to the tank to ensure cooling of the sandwich. The tank was filled 

with wet blotting buffer, placed on top of a magnetic stirrer and the transfer was performed by 
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applying a voltage of 100 V for 100 min. After blotting, the membrane was placed in a tube 

and incubated for 1 h at RT in blocking solution. Primary antibodies were diluted in blocking 

solution and incubated overnight at 4 °C. The membrane was washed thrice for 5 min with 

PBS-T and afterwards incubated with the secondary antibodies in blocking solution for 1 h at 

RT. Finally, the membrane was washed once with PBS-T for 5 min and twice with PBS for 5 

min and stored in PBS until imaging. The secondary antibodies were either linked to a 

horseradish peroxidase (HRP) for chemiluminescent detection or to a near-infrared dye (Li-

COR antibodies, 680RD or 800CW) for fluorescent detection. For fluorescence detection, the 

membrane can be directly imaged. For HRP detection, the membrane was incubated with 

SuperSignalTM Pico or Femto reagent according to the manufacturer’s protocol. Imaging was 

carried out with an Odyssey Fc imaging system. Protein bands were quantified by 

normalization to a housekeeping protein. 

 

5.2.3.6 Actin polymerization assay 

The assay was performed to study the effect of small molecules on the polymerization of actin 

based on the enhanced fluorescence of pyrene-conjugated actin that occurs during 

polymerization. The experiment was carried out according to the manufacturer’s protocol. 

Briefly, pyrene-conjugated actin was diluted in G-actin buffer (5 mM TRIS-HCl, pH 8.0, 0.2 mM 

CaCl2, 0.2 mM ATP) to a final concentration of 0.4 mg/mL. The actin solution was kept on ice 

for 1 h for de-polymerization followed by centrifugation at 86,700 g for 30 min at 4 °C. The 

supernatant was collected in a fresh tube. Pyrene-conjugated actin was added to black bottom 

96-well plates at 4 °C. Different concentrations of compounds or DMSO as control were 

dissolved in 10X actin polymerization buffer (500 mM KCl, 20 mM MgCl2, 0.05 M guanidine 

carbonate, and 10 mM ATP) and added to the actin solution in the 96-well plate at 4 °C. The 

final concentration of pyrene-conjugated actin in the assay was 0.36 mg/mL. After shaking for 

1 min at 600 rpm the time course of actin polymerization was monitored over 100 min by 

reading the fluorescence (ex/em: 360/410 nm) at 30 °C in a plate reader. 

 

5.2.3.7 Topoisomerase activity assay 

Topoisomerase activity assays were performed at Inspiralis. In all experiments, the activity of 

the enzyme was determined prior to the testing of the compounds. 1 U was defined as the 

amount of enzyme required to fully decatenate or relax the substrate. Compounds were tested 

at a fixed concentration of 30 μM and added to the reaction before the addition of the enzyme. 

The final DMSO concentration in the assays was 10 % (v/v).  
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Human DNA Topoisomerase I relaxation assay  

1 U of human DNA topoisomerase I was incubated with 0.5 μg supercoiled plasmid DNA 

(pBR322) in a 30 μL reaction at 37 °C for 30 min under the following conditions: 20 mM TRIS-

HCl (pH 7.5), 200 mM NaCl, 0.25 mM EDTA and 5 % glycerol plus 10 % DMSO. Each reaction 

was stopped by the addition of 30 μl chloroform/iso-amyl alcohol (24:1) and 30 μl Stop Dye 

(40 % sucrose, 100 mM TRIS-HCl (pH 7.5), 10 mM EDTA, 0.5 μg/ml bromophenol blue), 

before being loaded on a 1.0 % TAE (0.04 mM Tris-acetate, 0.002 mM EDTA) gel and run at 

80 V for two h.  

Human DNA topoisomerase II (alpha) decatenation assay  

1 U of human DNA topoisomerase IIα was incubated with 200 ng kinetoplast DNA in a 30 μL 

reaction at 37 °C for 30 min under the following conditions: 50 mM TRIS-HCl (pH 7.5), 125 

mM NaCl, 10 mM MgCl2, 5 mM DTT, 0.5 mM EDTA, 0.1 mg/mL bovine serum albumin (BSA) 

and 1 mM ATP in 10 % DMSO. Each reaction was stopped by the addition of 30 μl 

chloroform/iso-amyl alcohol (24:1) and 30 μL Stop Dye (40 % sucrose, 100 mM TRIS-HCl 

(pH 7.5), 10 mM EDTA, 0.5 μg/ml bromophenol blue), before being loaded on a 1.0 % TAE 

(Tris-acetate 0.04 mM, EDTA 0.002 mM) Gels run at 80 V for two h. 

Data acquisition and analysis  

Bands were visualized by ethidium staining for 10 min, destained for 10 min in water and 

analyzed by gel documentation equipment (Syngene, Cambridge, UK) and quantitated using 

Syngene Gene Tools software. Raw gel data (fluorescent band volumes) collected from 

Syngene, GeneTools gel analysis software were calculated as a % of the control (the fully 

supercoiled or decatenated band) and converted to % inhibition. Raw gel data were analyzed 

using SigmaPlot Version 13 (2015). The global curve fit non-linear regression tool was used 

to calculate IC50 data using the following equation: Exponential Decay, Single, 2 Parameter f 

= a*exp(-b*x) 

 

5.2.3.8 CDK/cyclin activity assay 

The screening of selected CDK/cyclin complexes was performed by SelectScreen Kinase 

Profiling Service of Life Technologies according to the instructions provided on the company’s 

website: https://www.thermofisher.com/de/de/home/products-and-services/services/custom-

services/screening-and-profiling-services/selectscreen-profiling-service/selectscreen-kinase-

profiling-service.html 
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6 RESULTS 

6.1 Applicability of the Cell Painting Assay (CPA) to predict non-protein 

targets 

It is rather difficult to identify a target of a small molecule, which is not a protein because 

commonly applied target or MoA identification methods are designed to identify proteins only. 

To evaluate the usefulness of the CPA to predict bioactivity that goes beyond protein targets, 

morphological fingerprints for the iron chelator Deferoxamine (DFO) were generated and 

afterwards used as a query profile to examine biosimilar reference compounds. 

 

6.1.1 Morphological profiling of the iron-chelating agent Deferoxamine (DFO) 

DFO (Figure 9A) is an FDA-approved drug and has been used for decades in the treatment 

of iron-overload diseases.[102] It is a hexadentate siderophore from Streptomyces pilosus with 

a high affinity for Fe(III).[103]  

U-2OS cells were exposed to different concentrations of DFO and the CPA was employed to 

generate morphological fingerprints.[59, 78]  
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Figure 9: Morphological fingerprints of DFO.  
 
(A) Chemical structure of DFO. (B) Morphological fingerprints generated for different concentrations 
(conc) of DFO visualized as line plots and heatmap profiles Shown similarities (biosimilarity, BioSim) 
are relative to the respective previous entry. The set of 579 features is divided into cell (1-229), 
cytoplasm (230-461) and nuclei (462-579) related features. Values were normalized to the DMSO 
control. Blue: decreased feature, red: increased feature. Ind: induction. Conc: concentration. (C) 
Biosimilarity among different concentrations of DFO. 

 

The morphological fingerprints of DFO depicted in Figure 9B displayed a concentration-

dependent increase in the induction value. The induction is defined as the fraction of 

significantly changed features compared to the DMSO control. Even at the lowest 

concentration of 2 µM, DFO possessed activity in the CPA with an induction value of 9 %. At 

3 µM, DFO had an induction of 21 %, at 10 µM the value further increased to 36 % and at the 

highest concentration of 30 µM, DFO showed an induction of 46 %. The concentration-

dependent increase in induction paired with the constant biosimilarity of over 80 % points 



RESULTS 

50 
 

towards a dose-dependent phenotype. This hypothesis is supported by the cross-correlation 

of the biosimilarity among the different concentrations (Figure 9C) with a median biosimilarity 

percentage (MBP) of 83.5 %. 

 

 
 
Figure 10: Selected features of the morphological fingerprints of DFO. 

Nucleus (Hoechst)-related (A) and Hoechst-unrelated (B) features. Values were normalized to the 
DMSO control. Blue: decreased feature, red: increased feature. 

 

Interestingly, a closer look into the set of measured features revealed that those related to the 

Hoechst staining of the nucleus (Figure 10A) were induced much stronger than Hoechst-

unrelated features (Figure 10B). Among the Hoechst-unrelated features, only those describing 

the cell and cytoplasm area shape were dose-dependently altered and reached z-score values 

≥ 10 at the two highest concentrations of 10 and 30 µM (Figure 10B). 

Taken together, DFO is active in the CPA and induced concentration-dependent 

morphological changes, which can be attributed to the same phenotype based on the high 

cross-similarity among the different concentrations. Furthermore, the phenotype is mainly 

related to morphological changes in the nucleus and cell size. 

 

6.1.2 Identification of annotated reference compounds biosimilar to DFO 

3,580 annotated reference compounds were profiled in the CPA to compare their 

morphological fingerprints to fingerprints of uncharacterized compounds with the aim to predict 

a target or MoA. Among others, the reference set contained the Library of Pharmacologically 

Active Compounds (LOPAC)[104], libraries of kinase inhibitors and the Prestwick Chemical 

Library[104]. References that share a target/MoA are supposed to possess high morphological 

fingerprint similarity, defining a cluster. This is the prerequisite for using references for 
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bioactivity predictions as this ensures that their morphological fingerprints result from the 

annotated target/MoA-related bioactivity. If this is not the case, the morphological profile of a 

reference is most likely influenced by an additional target or off-target effect, which might not 

be reflected in its annotation. 

The fingerprint of 10 µM DFO was used as a query profile to investigate if the CPA is able to 

identify biosimilar references that share the same target/MoA. The analysis revealed that the 

four metal ion chelating agents Ciclopirox[105-107], 1,10-phenanthroline[108-110], PAC-1[111] and 

catechol [102, 112] were among the references with the highest biosimilarity to DFO (Figure 

11A, B). 
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Figure 11: Morphological profiling of different metal-chelating agents with high biosimilarity to 
DFO.  

(A) Chemical structures of metal ion chelators. (B) Morphological fingerprints of metal ion chelators 
visualized as line plots and heatmap profiles. The fingerprint of DFO is set as a reference (100 % 
biosimilarity, BioSim) to which the following fingerprints are compared. The set of 579 features is divided 
into cell (1-229), cytoplasm (230-461) and nuclei (462-579) related features. Values were normalized 
to the DMSO control. Blue: decreased feature, red: increased feature. Conc: concentration. Ind: 
induction. (C) Biosimilarity among metal ion chelators. 

 

The metal ion chelators Ciclopirox and 1,10-phenanthroline were identified as the top two 

references sharing the highest biosimilarity to DFO of 95 and 94 %, respectively. Also, their 

induction values (38 and 44 %, respectively) were within the same range as the values 
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recorded for DFO (36 %) at 10 µM. PAC-1 and catechol shared high biosimilarity values as 

well (89 and 81 %, respectively). However, their induction values were slightly lower (25 and 

24 %, respectively) although the biosimilar fingerprint of catechol derived from a higher 

concentration of 30 µM (Figure 11B). The metal ion chelating agents did not only exhibit a high 

biosimilarity to DFO but also among each other. The cross-similarity matrix (Figure 11C) 

reflects the same trend in biosimilarity, i.e., higher than 80 % among all references. 

35 additional references were identified as biosimilar (> 75 %) to the morphological fingerprint 

of 10 µM DFO (Figure 12, for structures, see Table 11 in the appendix). Although the 

fingerprints of the identified references originate from different concentrations (0.2- 30 µM) 

and cover a broad induction range between 5 and 58 %, they also displayed a high cross-

similarity among each other with a MBP of 82.5 %.  

 

 

Figure 12: Morphological fingerprints of reference compounds with high biosimilarity (> 75 %) 
to 10 µM DFO. 

The fingerprint for 10 µM DFO is set as a reference fingerprint (100 % biosimilarity, BioSim). The set of 
579 features is divided into cell (1-229), cytoplasm (230-461) and nuclei (462-579) related features. 
Values were normalized to the DMSO control. Blue: decreased feature, red: increased feature. Conc: 
concentration. Ind: induction. Inh.: inhibitor. 
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The annotated activities and targets of those references are diverse, comprising nucleoside 

analogs, cyclin-dependent kinases (CDKs), topoisomerases, folic acid analogs, MAP kinase 

p38, poly(ADP-Ribose)-polymerase (PARP), lysine-specific histone demethylase 1 (LSD1), 

matrix metalloproteinase-2 (MMP-2), dopamine 1 receptor, adenosine kinase, β-catenin 

signaling and DNA intercalation. At first sight, these references are not only chemically diverse 

but also their annotated bioactivity seemed entirely different from metal ion chelation. 

However, iron is crucial for various cellular processes, e.g., DNA synthesis and repair, as 

many enzymes involved in these processes require iron as a cofactor.[102, 112, 113] Iron chelators 

not only inhibit cell growth but also block the cell cycle in G1/S phase.[114] Another reason for 

the cell cycle arrest in the presence of iron-chelating agents is their ability to modulate the 

expression of a number of cyclins and cyclin-dependent kinases, which are the main cell cycle 

regulators.[115] Hence, the high biosimilarity within this large cluster of diverse annotated 

reference compounds could be based on a shared MoA, i.e., cell cycle modulation, rather than 

a shared target. 

 

6.1.3 Biological characterization of reference compounds biosimilar to DFO 

To investigate the bioactivity of the reference cluster that shared high biosimilarity with DFO 

and, hence, to confirm the hypothesis of a shared MoA linked to cell cycle modulation, a 

representative selection of references was subjected to further biological characterization.  

Real-time live-cell imaging at different compound concentrations was performed to monitor 

cytotoxicity and the influence of the selected references on the growth behavior of U-2OS 

cells. To determine the ability of the references to chelate iron, the colorimetric reagent 

ferrozine was used. Ferrozine binds ferrous iron[100] and a restricted complex formation, i.e., a 

decreased absorbance after compound addition is indicative of iron chelation by the tested 

compounds. Furthermore, to analyze the influence of the references on cell cycle modulation, 

the nucleoside analog EdU (5-ethynyl-2’-deoxyuridine) was used as cells incorporate EdU into 

their DNA during S phase.[97] Additional staining of cells with propidium iodide (PI) allows the 

investigation of a compounds’ influence on the DNA content.  

DFO was subjected to these three experiments (Figure 13), thus serving as a control for the 

reference cluster. 
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Figure 13: Influence of DFO on cell growth, iron chelation and cell cycle. 

(A) Influence of DFO on the growth behavior. U-2OS cells were incubated for 72 h with DFO or DMSO 
as control at indicated concentrations in the presence of propidium iodide (PI) to detect dead cells. 
Images were acquired in a 2-hour interval using the IncuCyte S3 imaging system. Image-based analysis 
was used to quantify cell growth through cell confluence as a readout, or dead cells through PI 
fluorescence. Data (mean values ±.SD of N=3) are representative of three independent replicates. (B) 
Representative images from the live-cell imaging using the IncuCyte S3. U-2OS cells were treated with 
30 µM DFO of DMSO as a control after indicated time points. Scale bar: 200 µm. (C) Iron chelation by 
DFO or EDTA as control at indicated concentrations determined by interference with ferrozine-Fe(II)-
complex formation. Data shown are mean values ± SD of three independent experiments. (D) Influence 
of DFO on the cell cycle. U-2OS cells were treated with DFO or DMSO as a control for 22 h and 
subsequently pulsed for 2 h with 10 μM EdU (5-ethynyl-2´-deoxyuridine) prior to fixation and staining of 
DNA with PI. The number of cells in G1, S and G2 phase was determined by means of flow cytometry. 
Data shown are mean values ± SD of three independent experiments. The percentage values of cells 
in the G1 (DNA content of 2N), S (2N-4N) and G2 phase (4N) of the cell cycle are shown in the appendix 
(Table 12). 
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Figure 13A illustrates that DFO dose-dependently restricted the growth of U-2OS cells after 

24 h of treatment. At the highest concentration of 30 µM and after 72 h of compound 

incubation, the cell confluence was at 68 %, which corresponds to a reduction of approx. 30 

% compared to the DMSO control. However, this degree of confluence was already reached 

after 24 h (62 % confluence) indicating either a cytotoxic or cytostatic effect. The PI staining 

revealed that the growth reduction was not a result of cytotoxicity as the PI fluorescence of 

cells treated with DFO was decreasing in a concentration-depend manner compared to the 

DMSO control. Cells that were treated with DMSO reached 100 % confluence after three days 

and the number of dead cells was increasing within the last twenty hours as space and 

nutrients became increasingly limited. The restricted growth paired with the low number of 

dead cells was not only suggesting a cytostatic effect for DFO but also the phenotypic 

appearance was pointing towards a cell cycle arrest. Images taken from cells treated with 

DMSO after one, two and three days of treatment exhibited a small proportion of round cells, 

which is normal under physiological conditions and indicative for cells that reside in mitosis 

(Figure 13B). However, images of cells treated with 30 µM DFO from the same time points 

showed, if at all, a far lower number of round cells, pointing towards a cell cycle arrest in either 

G1, S or G2 phase of the cell cycle. In addition, the cell shape changed upon treatment with 

30 µM DFO. The cells were shaped homogenously after 24 h, whereas a substantial number 

of cells were smaller and more elongated after 72 h of treatment. As expected for an iron-

chelating agent, DFO dose-dependently decreased the formation of the ferrozine-Fe(II)-

complex (Figure 13C). The cell cycle analysis (Figure 13D) revealed that DFO treatment led 

to a strong enrichment of cells in S phase, thus, confirming reported literature references and 

is in line with the growth reduction observed in the live-cell imaging experiment (Figure 

13A, B).  

The four nucleoside analogs Trifluridine[116], Arabinocytidine[117], Cladribine[118] and 

Fludarabine[118], depicted in Figure 14A, were explored for their influence on cell viability and 

growth, their ability to chelate iron and their influence on the cell cycle. 
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Figure 14: Influence of selected nucleoside analogs on cell growth, iron chelation and cell cycle.  

(A) Chemical structures of nucleoside analogs. (B) Influence of selected nucleoside analogs on the 
growth behaviour of U-2OS cells. Cells were incubated for 72 h with compounds or DMSO as a control 
at indicated concentrations in the presence of propidium iodide (PI) to detect dead cells. Images were 
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acquired every two hours using the IncuCyte S3 imaging system. Image-based analysis was used to 
quantify cell growth through cell confluence as a readout, or dead cells through PI fluorescence. Data 
(mean values ±.SD of N=3) are representative of three independent replicates. (C) Iron chelation by the 
compounds at indicated concentrations determined by interference with ferrozine-Fe(II)-complex 
formation. Data shown are mean values ± SD of three independent experiments. (D) Influence of 
selected nucleoside analogs on the cell cycle. U-2OS cells were treated with the compounds or DMSO 
as a control for 22 h and subsequently pulsed for 2 h with 10 μM EdU (5-ethynyl-2´-deoxyuridine) prior 
to fixation and staining of DNA with PI. The number of cells in G1, S and G2 phase was determined by 
means of flow cytometry. Data shown are mean values ± SD of three independent experiments. The 
numerical percentage values of cells in the G1 (DNA content of 2N), S (2N-4N) and G2 phase (4N) of 
the cell cycle can be reviewed in the appendix (Table 12). 

 

Trifluridine reduced the growth of U-2OS cells after 24 h of treatment by 20 and 25 % at 

concentrations of 10 and 30 µM, respectively (Figure 14B). Like DFO, the restricted growth 

was a result of a cytostatic effect rather than cytotoxicity as the number of dead cells was 

lower compared to cells treated with DMSO. Arabinocytidine reduced cell growth after 24 h of 

treatment by approx. 20 % at all four measured concentrations without cytotoxic effects. 

Cladribine decreased cell growth by approx. 50 % at all measured concentrations, as already 

implied by the bell-shaped confluence curve. It was also cytotoxic after 36 hours of treatment. 

Fludarabine led to a growth reduction by approx. 50 % at 30 µM and by approx. 20 % at 10 µM 

after 72 h of treatment without showing cytotoxic effects. At the lower concentrations of 1.11 

and 3.33 µM, Fludarabine did not reduce cell growth. As expected, none of the four nucleoside 

analogs showed iron-chelating properties (Figure 14C) but all of them induced cell cycle arrest 

(Figure 14D). Trifluridine, Arabinocytidine and Cladribine, like DFO, caused a strong 

enrichment of cells in S phase, whereas Fludarabine increased the number of cells in G1 

phase. 

Two CDK inhibitors PHA-793887[119] and roscovitine[120] and the topoisomerase I inhibitor 

Topotecan[121] were tested for their influence on cell growth, iron chelation and cell cycle 

modulation (Figure 15).  
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Figure 15: Influence of PHA-793887, roscovitine and Topotecan on cell growth, iron chelation 
and cell cycle.  

(A) Chemical structures of PHA-793887, roscovitine and Topotecan. (B) Influence on the growth 
behavior of U-2OS cells. Cells were incubated for 72 h with compounds or DMSO as a control at the 
indicated concentrations in the presence of propidium iodide (PI) to detect dead cells. Images were 
acquired every two hours using the IncuCyte S3 imaging system. Image-based analysis was used to 
quantify cell growth through cell confluence as readout, or dead cells through PI fluorescence. Data 
(mean values ±.SD of N=3) are representative of three independent replicates. (C) Iron chelation by the 
compounds at the indicated concentrations determined by interference with ferrozine-Fe(II)-complex 
formation. Data shown are mean values ± SD of three independent experiments. (D) Influence of the 
references on the cell cycle. U-2OS cells were treated with the compounds or DMSO as a control for 
22 h and afterwards pulsed for another 2 h with 10 μM EdU (5-ethynyl-2´-deoxyuridine) prior to fixation 
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and staining of DNA with PI. The number of cells in S phase was determined by means of flow 
cytometry. Data shown are mean values ± SD of three independent experiments. The numerical 
percentage values of cells in the G1 (DNA content of 2N), S (2N-4N) and G2 phase (4N) of the cell 
cycle can be reviewed in the appendix (Table 12). 

 

Treatment of U-2OS cells with PHA-793887 and Topotecan resulted in a concentration-

dependent growth reduction and cytotoxicity at concentrations ≥ 3.33 µM after 24 h of 

treatment (Figure 15B). Even the lowest concentration of 1.11 µM reduced cell growth by 

approx. 30 %, however, without cytotoxic influence. Roscovitine only led to a minor growth 

reduction at 30 µM of approx. 15 %, however, increased the number of dead cells. Iron 

chelating properties of the CDK inhibitor PHA-793887 are not reported in the literature, but 

30 µM PHA-793887 reduced the ferrozine-Fe(II)-complex formation by approx. 40 % (Figure 

15C). The EdU pulse-chase assay for PHA3793887 was performed at 3.33 µM and showed 

enrichment in cells that reside in the G2 phase of the cell cycle (Figure 15D). As PHA-793887 

did not possess iron-chelating properties at 10 µM, the G2 phase arrest was therefore most 

likely not a result of the iron-chelating ability. Roscovitine and Topotecan did not influence the 

ferrozine-Fe(II)-complex formation, neither at 10 nor at 30 µM, but both led to cell cycle arrest. 

Alike the CDK inhibitor PHA-793887, roscovitine-treatment enriched the cells in the G2 phase, 

whereas Topotecan led to an S phase arrest. In general, an increase in the number of cells 

with a double amount of DNA (4N) can emerge from cytokinesis failure or a cell cycle arrest 

in the G2 or M phase. However, time-resolved live-cell imaging (representative images are 

shown in Figure 16) did not reveal an accumulation of round cells, which would be an indication 

of a mitotic arrest or failed cytokinesis. Moreover, the accumulation of round cells, i.e., a 

shrinkage in cell size, would also lead to a drop in cell confluence as it represents the growth 

area of the well, which is covered by the cells. Therefore, the increase in 4N after treatment 

with the two CDK inhibitors is most likely attributed to a cell cycle arrest in G2 phase. 
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Figure 16: Images of U-2OS cells treated with PHA-793887 and roscovitine. 

Representative images from live-cell imaging using the IncuCyte S3. U-2OS cells were treated with 30 
µM of the compounds of DMSO as a control. Images at the indicated time points after compound 
addition are shown. Scale bar: 200 µm. 

 

The last group of tested references contained the iron chelator Ciclopirox[106] and the two DNA 

intercalating agents resveratrol[122] and Doxorubicin[123] (Figure 17). Similar to DFO, Ciclopirox 

reduced the growth of U-2OS cells in a dose-dependent manner without exhibiting cytotoxic 

effects (Figure 17B). Resveratrol at 30 µM only slightly reduced cell growth by approx. 17 % 

and to an even lesser extent at 10 µM and was not cytotoxic. Doxorubicin already induced cell 

death at 3.33 µM within the first 24 h of treatment. Also, a concentration of 1.11 µM was 

cytotoxic, however, only after 24 h of treatment. The lower concentrations of 0.37 µM and 

0.12 µM were not cytotoxic but reduced cell growth by approx. 40 and 20 %, respectively. 
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Figure 17: Influence of Ciclopirox, resveratrol and Doxorubicin on cell growth, iron chelation 
and cell cycle.  
 
(A) Chemical structures of selected references. (B) Influence on the growth behavior of U-2OS cells. 
Cells were incubated for 72 h with compounds or DMSO as control at indicated concentrations in the 
presence of propidium iodide (PI) to detect dead cells. Images were acquired every two hours using the 
IncuCyte S3 imaging system. Image-based analysis was used to quantify cell growth through cell 
confluence as readout, or dead cells through PI fluorescence. Data (mean values ±.SD of N=3) are 
representative of three independent replicates. (C) Iron chelation by compounds at indicated 
concentrations determined by interference with ferrozine-Fe(II)-complex formation. Data shown are 
mean values ± SD of three independent experiments. (D) Influence of selected references on the cell 
cycle. U-2OS cells were treated with compound or DMSO as a control for 22 h and subsequently pulsed 
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for 2 h with 10 μM EdU (5-ethynyl-2´-deoxyuridine) prior to fixation and staining of DNA with PI. The 
number of cells in G1, S and G2 phase was determined by means of flow cytometry. Data shown are 
mean values ± SD of three independent experiments. The numerical percentage values of cells in the 
G1 (DNA content of 2N), S (2N-4N) and G2 phase (4N) of the cell cycle can be reviewed in the appendix 
(Table 12). 

 

As expected, 30 µM Ciclopirox inhibited the ferrozine-Fe(II)-complex formation by approx. 

60 %; which is in line with the reported iron chelation. No iron complexing ability was detected 

for the two DNA intercalating agents resveratrol and Doxorubicin (Figure 17C). As anticipated 

all three compounds modulated the cell cycle (Figure 17D). Ciclopirox and resveratrol strongly 

enriched the cells in S phase whereas Doxorubicin led to an accumulation of cells in the G2 

phase. As previously mentioned, an increase in the number of cells with a double amount of 

DNA (4N) can emerge from cytokinesis failure or a cell cycle arrest in the G2 or M phase 

 

 

Figure 18: Images of U-2OS cells treated with 0.37 µM Doxorubicin. 

Representative images from live-cell imaging using the IncuCyte S3. U-2OS cells were treated with 
0.37 µM Doxorubicin of DMSO as a control. Images at the indicated time points after compound addition 
are shown. Scale bar: 200 µm. 

 

Time-resolved live-cell imaging of Doxorubicin-treated cells did not reveal accumulation of 

round cells or failed cytokinesis, hence, G2 phase arrest can be assumed (Figure 18). 

Collectively, the results confirmed the hypothesis that the cluster of references (Figure 12) 

with diverse annotated activities but high biosimilarity to the iron chelator DFO shares a 

common MoA that is independent of chemical similarity or the cellular target. All selected 

references of the cluster led to an accumulation of cells in either the S or G2 phase.  
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Besides the annotated iron chelator Ciclopirox, the CDK inhibitor PHA-793887 showed a weak 

iron-chelating ability at 30 µM. The G2 arrest induced by PHA-793887 was however already 

detected at a concentration of 10 µM and is, therefore, most likely not a result of iron chelation 

(Figure 15). 

 

 
 
Figure 19: Iron chelation by compounds with high biosimilarity to DFO. 

Iron chelation by reference compounds at indicated concentrations determined by ferrozine-Fe(II)-
complex formation. Data shown are mean values ± SD of three independent experiments. 

 

The bioactivity of the antifolate Pralatrexate, the LSD1 inhibitor SP2509, the MMP-2 inhibitor 

ARP 101, the D1 dopamine receptor agonist (±)-SKF-81297, the adenosine kinase inhibitor 

A-134974 and the β-Catenin/p-300 signaling inhibitor IQ 1 is at first sight not directly related 

to the cell cycle. Therefore, those references were additionally tested for their ability to chelate 

iron. However, none of the references showed a restriction in the ferrozine-Fe(II)-complex 

formation (Figure 19). 
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6.1.4 Identification and biological evaluation of uncharacterized compounds 

biosimilar to DFO 

Morphological fingerprint similarity based on a shared target or MoA is the requirement to use 

a cluster of references for bioactivity prediction. The common MoA of cell cycle arrest in G1, 

S or G2 phase was experimentally confirmed for the large cluster of references biosimilar to 

DFO (see 6.1.3). Therefore, the morphological fingerprint of DFO was used as a query profile 

to search for uncharacterized biosimilar compounds within the in-house library of 9619 novel 

and structurally diverse natural product-inspired compounds[124, 125] or pseudo-natural 

products[126]. 

 

 
 
Figure 20: Morphological profiling of 8-hydroxyquinoline derivatives 1-7 with high biosimilarity 
to DFO. 

(A) Chemical structures of compounds (cmp) 1-7. (B) Morphological fingerprints of 8-hydroxyquinolines 
at indicated concentrations (Conc) visualized as line plots and heatmap profiles. The fingerprint of DFO 
is set as a reference (100 % biosimilarity, BioSim) to which the following fingerprints are compared. The 
set of 579 features is divided into cell (1-229), cytoplasm (230-461) and nuclei (462-579) related 
features. Values were normalized to the DMSO control. Blue: decreased feature, red: increased feature. 
Conc: concentration. Ind: induction. 
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Several derivatives of 8-hydroxyquinoline, which is a known motif for a metal-chelating 

ligand[102, 127], displayed high biosimilarity (≥ 82 %) to the morphological fingerprint of 10 µM 

DFO (Figure 20A, B). Compound 1-3, whose induction values (37, 46 and 25 %, respectively) 

were within the same induction range as 10 µM DFO (approx. ± 10), were also the top three 

biosimilar compounds. 
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Figure 21: Influence of compounds 1-7 on cell growth.  

U-2OS were incubated for 72 h with the compounds or DMSO as a control at the indicated 
concentrations in the presence of PI to detect dead cells. Images were acquired in a 2-hour interval 
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using the IncuCyte S3 imaging system. Image-based analysis was used to quantify cell growth through 
cell confluence as readout, or dead cells through PI fluorescence. Data (mean values ±.SD of N=3) are 
representative of three independent replicates. 

 

Live-cell imaging of compounds 1-7 (Figure 21) revealed a strong reduction in cell growth at 

30 µM after 24 h of treatment. However, no cell death was detected, indicating that the 

compounds induce cell cycle arrest. Cells treated with a dose of 10 µM also affected the cell 

growth and thereby reflecting the trend in induction (Figure 20). Compounds 1-4 that 

possessed the highest induction of ≥ 20 % also showed the strongest inhibition in cell growth. 

Whereas no changes were observed for any of the compounds at the lowest concentration of 

1.11 µM compared to the DMSO control, compound 1 and 2 suppressed cell growth at 

3.33 µM. The confluence of cells treated with 1.11 µM compound 3 and 4 was lower than 

DMSO, however, this effect most likely originated from an initial deviation in the seeding 

density and not from an inhibited cell growth. 

 

 
 
Figure 22: Influence of compounds 1-7 on iron chelation and cell cycle.  

(A) Iron chelation by compounds (cmp) 1-7 at indicated concentrations determined by interference with 
ferrozine-Fe(II)-complex formation. Data shown are mean values ± SD of three independent 
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experiments. (B) Influence of 10 µM compounds 1-7 on the cell cycle. U-2OS cells were treated with 
the compounds or DMSO as a control for 22 h and afterwards pulsed for another 2 h with 10 μM EdU 
(5-ethynyl-2´-deoxyuridine) prior to fixation and staining of DNA with PI. The number of cells in S phase 
was determined by means of flow cytometry. Data shown are mean values ± SD of three independent 
experiments. The numerical percentage values of cells in the G1 (DNA content of 2N), S (2N-4N) and 
G2 phase (4N) of the cell cycle can be reviewed in the appendix (Table 13). 

 

As expected for an annotated iron-chelating scaffold, all 8-hydroxyquinoline derivatives 1-7 

restricted the ferrozine-Fe(II)-complex formation exhibiting iron-chelating abilities (Figure 

22A). Whereas only a minor influence was observed at 10 µM (approx. 30 % reduction), all 

compounds, except for compound 7, reduced the complex formation to more than 50 % at 

30 µM. The EdU pulse-chase assay revealed that 10 µM compound 1, 3-5 and 6 led to an 

accumulation of cells in S phase. However, the effect of compound 1 and 5 was only weak. 

Compound 2 and 7 induced a cell cycle arrest in the G1 phase (Figure 22B). 

In addition, the macrocycle 8[128] and the natural product-inspired[126] compound 9 exhibited 

high biosimilarity (≥ 80 %) to the morphological fingerprint of 3 µM DFO with induction values 

of 41 and 45 %, respectively (Figure 23A, B). 

 

 

Figure 23: Morphological profiling of compounds 8 and 9 with high biosimilarity to DFO.  

(A) Chemical structures of compounds (cmp) 8 and 9. (B) Morphological fingerprints of compounds 8 
and 9 visualized as line plots and heatmap profiles. The fingerprint of DFO is set as a reference (100 
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% biosimilarity, BioSim) to which the following fingerprints are compared. The set of 579 features is 
divided into cell (1-229), cytoplasm (230-461) and nuclei (462-579) related features. Values were 
normalized to the DMSO control. Blue: decreased feature, red: increased feature. Conc: concentration. 
Ind: induction. 

 

The exploration of the phenotype induced by compounds 8 and 9 revealed that both 

compounds restricted cell growth at 30 µM (Figure 24A). Compound 8 suppressed cell growth 

by approx. 60 % at 30 µM and compound 9 only by approx. 30 %. The PI staining revealed 

toxic effects for both small molecules. Whereas the cytotoxicity by compound 8 appeared only 

after 24 h of treatment at concentrations ≥ 3.33 µM, compound 9 increased the number of 

dead cells within the first four hours of treatment but remained constant over the whole 72 h 

of treatment.  
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Figure 24: Influence of compounds 8 and 9 on cell growth, iron chelation and cell cycle.  

(A) Influence on the growth behavior of U-2OS cells. Cells were incubated for 72 h with the compounds 
or DMSO as a control at the indicated concentrations in the presence of propidium iodide (PI) to detect 
dead cells. Images were acquired every two hours using the IncuCyte S3 imaging system. Image-based 
analysis was used to quantify cell growth through cell confluence as readout, or dead cells through PI 
fluorescence. Data (mean values ±.SD of N=3) are representative of three independent replicates. (B) 
Iron chelation by the compounds at the indicated concentrations determined by interference with 
ferrozine-Fe(II)-complex formation. Data shown are mean values ± SD of three independent 
experiments. (C) Influence of compounds 8 and 9 on the cell cycle. U-2OS cells were treated with the 
compounds or DMSO as a control for 22 h and subsequently pulsed for 2 h with 10 μM EdU (5-ethynyl-
2´-deoxyuridine) prior to fixation and staining of DNA with PI. The number of cells in G1, S and G2 
phase was determined by means of flow cytometry. Data shown are mean values ± SD of three 
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independent experiments. The numerical percentage values of cells in the G1 (DNA content of 2N), S 
(2N-4N) and G2 phase (4N) of the cell cycle can be reviewed in the appendix (Table 13). 

 

Figure 24B and C illustrate that neither compound 8 nor 9 displayed an iron-chelating ability 

but both of them led to an accumulation of cells in S phase that was twice as high as compared 

to the DMSO control.  

Collectively, these findings demonstrate that the cluster of references around the iron chelator 

DFO enables the identification of new iron complexing small molecules in particular and new 

modulators of the G1, S or G2 phase in general. Therefore, the cluster is hereinafter referred 

to as Fe/DNA synthesis cluster. 

The cell cycle arrest induced by compounds 1-7 is most likely a result of their iron chelating 

activity. In contrast, the reason for the accumulation of cells in S phase induced by compounds 

8 and 9 is unknown. To get a deeper insight into the possible mechanism of action, compounds 

8 and 9 were investigated for their ability to bind DNA. 

 

 
Figure 25: DNA binding of compounds 8 and 9.  

(A) Chemical structures of PI and DAPI. (B and C) Calf thymus DNA was incubated with the minor 
groove binder DAPI and the intercalator PI in the presence of the positive control Berenil (B) or 
compounds 8 and 9 (C). 
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Two different binding modes were analyzed. Binding to the minor groove by DAPI, which 

increases its fluorescence or DNA intercalation by PI. Compounds with similar binding modes 

are expected to decrease DAPI- and/or PI-related fluorescence. Berenil, which was used as 

a control, displaced DAPI and less potently also PI. However, compounds 8 and 9 did neither 

displace the minor groove binder DAPI nor the DNA intercalator propidium iodide (Figure 25) 

and hence, do not bind to DNA. However, based on the annotated bioactivity of the references 

from the cluster, further mechanisms of action like topoisomerase or CDK inhibition are 

possible. Therefore, compounds 8 and 9 were further tested for modulation of topoisomerase 

I and II. 

 

Table 3: Inhibition of human topoisomerase I relaxation and topoisomerase IIα decatenation by 
30 µM compounds 8 and 9.  

Measurements were performed by Inspiralis. Data are mean values of two replicates. 
 

Topoisomerase I relaxation Topoisomerase IIα decatenation 

Compound % Relaxed DNA Compound % Decatenated DNA 

Camptothecin, 10 μM 97.72 Etoposide, 10 μM 90.28 

Camptothecin, 30 μM 94.24 Etoposide, 30 μM 36.23 

Camptothecin, 50 μM 78.25 Etoposide, 50 μM 27.89 

Camptothecin, 100 μM 41.42 Etoposide, 100 μM 19.77 

Compound 8, 30 μM 97.97 Compound 8, 30 μM 99.70 

Compound 9, 30 μM 98.89 Compound 9, 30 μM 80.55 

 

Compared to the known inhibitors camptothecin and etoposide, 30 µM compound 8 and 9 did 

neither inhibit topoisomerase I induced relaxation of DNA nor topoisomerase IIα-mediated 

DNA decatenation. Both small molecules displayed residual activity ≥ 80 % at 30 µM in both 

assays (Table 3). For this reason, compounds 8 and 9 were further analyzed for their 

modulation of selected CDK/cyclin complexes (Table 4). 
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Table 4: Inhibition or binding of selected CDK/cyclin complexes by 30 µM compounds 8 and 9.  

Measurements were performed by the SelectScreen Kinase Profiling Service of Life Technologies. Data 
are mean values of two technical replicates.  
 

Kinase 
% Inhibition 

compound 8 

% Inhibition 

compound 9 
[ATP] / µM Technology 

CDK4/cyclin D1 8 -11 10 Adapta 

CDK4/cyclin D3 -11 -12 10 Adapta 

CDK6/cyclin D1 -13 -3 10 Adapta 

CDK1/cyclin B 3.5 1 Km app Z’Lyte 

CDK2/cyclin A 2 0.5 Km app Z’Lyte 

Kinase 
% Replacement 

compound 8 

% Replacement 

compound 9 
[ATP] / µM Technology 

CDK2/cyclin A1 5.5 4 - 
LanthaScreen 

Binding 

CDK2/cyclin E1 5 9 - 
LanthaScreen 

Binding 

 

The screening results depicted in Table 4 illustrate that both compounds did not inhibit the 

activity or bind to selected CDK/cyclin complexes in vitro.  

 

6.1.5 Hierarchical clustering for mechanism of action deconvolution 

Hierarchical clustering, performed by Dr. Axel Pahl (COMAS, Dortmund), was conducted to 

explore the applicability of the CPA to differentiate between the different mechanisms of action 

within the cluster of references biosimilar to DFO. Therefore, the reference compounds 

biosimilar to DFO as well as compound 4, representing the 8-hydroxyquinoline derivatives and 

compounds 8 and 9 were analyzed. 
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Figure 26: Hierarchical clustering of fingerprints from compounds biosimilar (> 80 %) to 10 μM 
DFO.  

Compounds biosimilar (> 80 %) to 10 µM DFO, including different concentrations and compound 
batches, were subjected to hierarchical clustering performed by Dr. Axel Pahl (COMAS, Dortmund). For 
this, the list of similar compounds was further filtered for compounds with an induction between 17 and 
37 % to mitigate induction effects and was restricted to references with a reported MoA of iron chelation 
or cell cycle arrest that is shared by the Fe/DNA synthesis cluster. To improve the visibility of less 
pronounced areas of the fingerprints, the hierarchical clustering was performed using sub-profiles, 
where only those features were kept, for which the Z-score was less than 10. Inh: inhibitor. 

 

The hierarchical clustering of the fingerprints showed a separation in two subclusters (Figure 

26). The upper subcluster contained the nucleoside analogs and antifolates, which function 

as mimetics of biological macromolecules, and the lower subcluster included the iron 

chelators, topoisomerase and CDK inhibitors, which modulate the activity of a protein. Only 

the CDK inhibitor oxindole-based inhibitor-1 was an outlier as it was assigned to the group of 

mimetics. Compounds 4, 8 and 9 were assigned to the lower subcluster of iron chelators, 

topoisomerase and CDK inhibitors. However, compound 4 was distinguishable from 

compounds 8 and 9 and clustered together with the other annotated iron-chelating agents, 

which is in line with the experimentally observed iron-chelating activity (Figure 22A). 

Clusters of iron chelators and DNA synthesis modulators have been identified in previous 

morphological studies, however, with a reduced number of stains.[64, 129] To examine if there is 

a benefit, for the assignment of a mechanism of action, in using a reduced number of stains, 

the hierarchical clustering was additionally performed with only three stains. 
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Figure 27: Hierarchical clustering of fingerprints from compounds biosimilar (> 80 %) to DFO 
based on selected features. 

Only features that are related to Hoechst-33342, Phalloidin-Alexa Fluor 568 and WGA-Alexa Fluor 555) 
staining were used for clustering performed by Dr. Axel Pahl (COMAS, Dortmund). Compounds 
biosimilar (> 80 %) to DFO, including different concentrations and compound batches, were subjected 
to hierarchical clustering. For this, the list of similar compounds was further filtered for compounds with 
an induction between 17 and 37 % to mitigate induction effects and was restricted to references with a 
reported MoA of iron chelation or cell cycle arrest that is shared by the Fe/DNA synthesis cluster. To 
improve the visibility of less pronounced areas of the fingerprints, the hierarchical clustering was 
performed using sub-profiles, where only those features were kept, for which the Z-score was less than 
10. Inh: inhibitor. 

 

Figure 27 illustrates that hierarchical clustering exclusively based on the staining of DNA, actin 

and plasma membrane/Golgi did not result in a separation of relevant subcluster. 
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6.2 Investigation of the bioactivity of tetrahydroindolo[2,3-a]quinolizines 

The indolo[2,3-a]quinolizine scaffold is present in many natural products that exhibit a variety 

of biological activities.[87-89] Hence, tetrahydroindolo[2,3-a]quinolizine derivatives represent a 

pre-validated compound class and they have not yet been investigated in terms of their 

biological activity.[130]  

 

6.2.1 Morphological profiling of tetrahydroindolo[2,3-a]quinolizines 10-13 

To assess a broad range of possible bioactivities, four selected tetrahydroindolo[2,3-

a]quinolizines[130] were subjected to morphological profiling using the CPA (Figure 28).  

 

 

Figure 28: Morphological fingerprints of tetrahydroindolo[2,3-a]quinolizines 10-13.  

(A) Chemical structures of compounds 10-13. (B) Morphological fingerprints of compounds 10-13 at 
10 µM visualized as line plots and heatmap profiles including the induction value (ind). The set of 579 
features is divided into cell (1-229), cytoplasm (230-461) and nuclei (462-579) related features. Values 
were normalized to the DMSO control. Blue: decreased feature, red: increased feature. 
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Compounds 10-13 displayed bioactivity in the CPA without affecting the cell count. While the 

activity of 10 µM compound 10, 11 and 12 was weak, with induction values below 10 %, 10 µM 

compound 13 led to greater morphological changes with an induction value of 57.9 %. For this 

reason, compound 13 was selected for MoA deconvolution. 

 

 

Figure 29: Morphological profiling of compounds 10-13. 

(A) Biosimilarity among compounds 10-13 at 10 µM. (B) Morphological fingerprints visualized as line 
plots and heatmap profiles including the induction value (ind). The set of 579 features is divided into 
cell (1-229), cytoplasm (230-461) and nuclei (462-579) related features. Values were normalized to the 
DMSO control. Blue: decreased feature, red: increased feature. 

 

The median biosimilarity percentage (MBP) of 47.5 % illustrates a low biosimilarity among the 

derivatives 10-13 at 10 µM (Figure 29A). Only the two most active compounds 12 and 13 

possessed high biosimilarity (85 %) indicating a similar target or MoA. The most active 

compound 13 was screened at a lower concentration of 3 µM and was still active with an 

induction value of 19 % (Figure 29B). To predict bioactivity for compound 13, the 

morphological fingerprint was compared to the set of measured reference compounds. 

Surprisingly, the fingerprint, induced by 10 µM compound 13, showed high 

biosimilarity (≥ 75 %) to more than 400 references that can be reviewed in the appendix (Table 

14). This large reference cluster comprised compounds with diverse annotated targets and 
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activities but was predominantly enriched in G protein-coupled receptor (GPCR) ligands, 

including anti-psychotics, and kinase inhibitors (Figure 30).  

 

 

Figure 30: Distribution of target classes among references biosimilar to 10 µM compound 13.  

 

GPCRs are the largest family of membrane receptors and targeted by around 30 % of the 

marketed drugs.[131, 132] This includes anti-psychotics, that need to cross the blood-brain barrier 

in order to exert their therapeutic effect. Therefore, they need a cationic amphiphilic character 

comprising a hydrophobic part and a hydrophilic side chain containing basic amines.[133, 134] 

However, these structural, i.e., physicochemical properties often result in promiscuity for off-

targets.[135, 136] Small molecules can intercalate and accumulate in membrane structures if they 

are highly lipophilic. Moreover, this increases the chance of binding to multiple targets. 

Accumulation of compounds in acidic organelles is primarily associated with a basic pKa. This 

effect is called lysosomotropism.[44, 134, 137] For simplicity reasons, the term ‘lysosomes’, to 

relate to acidic organelles, is often used, like in this thesis, however, it also includes other 

acidic organelles like endosomes and Golgi. Lysosomotropic compounds can freely pass 

through membranes within the neutral pH of the cytoplasm but once they become protonated 

in acidic organelles they are trapped due to the low retro-diffusion of protonated species.[138] 

This effect is largely species- and cell type-independent and also independent of the 

compound and its target class because the effect is determined by the physicochemical 

properties.[139] Compounds possessing physicochemical properties of a logP value above 2 

and a bpKa between 6.5 and 11 are prone to accumulate in lysosomes.[140]  
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To investigate the physicochemical properties of the reference cluster, their logP and bpKa 

values were calculated[141] (Figure 31). 

 

 

Figure 31: Physicochemical properties of references biosimilar to compound 13. 

Calculated[141] clogP value of references biosimilar (≥ 75 %) to 10 µM compound 13 plotted against their 
calculated basic pKa (bpKa) value. Grey region corresponds to clogP > 2 and bpKa > 6.5. 

 

Interestingly, the properties of 75.7 % of the references biosimilar to 10 µM compound 13 were 

assigned to the physicochemical properties of lysosomotropic compounds (clogP > 2, 

bpKa > 6.5, Figure 31, grey box). The calculated[141] physicochemical properties of compound 

13 were as well predictive for lysosomal accumulation (clogP: 3.7, bpKa: 9.1). 

 

6.2.2 Lysosomotropic properties of compounds 10-13 

To validate the potential lysosomotropic activity of compound 13, which was suggested by the 

analysis of biosimilar references, the tetrahydroindolo[2,3-a]quinolizine derivatives 10-13 were 

subjected to a lysosomotropism assay using the fluorophore LysoTrackerTM Red DND-99. This 

dye is itself a weak base and therefore gets trapped in acidic compartments upon protonation 

and thus, selectively stains acidic organelles. Chloroquine was used as a positive control as 

it is reported to be lysosomotropic[142], leading to an increase in lysosomal pH and 

subsequently to a decreased LysoTrackerTM Red DND-99 staining (Figure 32). 
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Figure 32: Influence of compounds 10-13 on lysosomal accumulation of LysoTrackerTM Red 
DND-99. 

(A) Representative images and (B) quantification of U-2OS cells incubated for 1 h with the compounds 
(cmp) or DMSO or Chloroquine as controls prior to staining with LysoTrackerTM Red DND-99 and 
fixation. Scale bar: 100 µm. Data are mean values ± SD of four independent experiments. 

 

The images as well as the quantification of the LysoTrackerTM Red DND-99 staining (Figure 

32) illustrate that compound 13 led to a concentration-dependent decrease in staining and 

hence, most likely to an increase in lysosomal pH. At 10 µM the staining was reduced by 37 % 

and at 30 µM by 64 %. Also, compound 12, which showed a high biosimilarity to compound 13, 

reduced the staining by 48 % at 30 µM. Compound 11 was inactive, whereas compound 10 

showed weak lysosomotropic activity at 30 µM, reducing the signal by 38 %.  
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6.2.3 Live-cell imaging of compounds 10-13 

Lysosomotropism may lead to cell death for various reasons, e.g., due to lysosomal cell 

death[143-145] or the influx of water into lysosomes yielding enlarged vacuoles, which may cause 

irreversible cellular injuries[146]. To investigate the influence of the compounds on cell growth, 

viability and morphology, a real-time live-cell analysis was performed. 
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Figure 33: Influence of compounds 10-13 on cell growth and morphology. 

(A-C) U-2OS cells were incubated with compounds or DMSO as a control for 48 h and (B) in the 
presence of propidium iodide (PI) to detect dead cells. Images were acquired in a 1-hour interval over 
48 h using the IncuCyte S3 imaging system. Image-based analysis was used to quantify cell growth 
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through cell confluence as a readout, or dead cells through PI fluorescence. (C) Representative images 
of treated cells after 1 h and 2 days. Data (mean values ±.SD of N=3) are representative of three 
independent replicates. 

 

Only compound 13 affected the cell growth (Figure 33A). Whereas 10 µM only led to a slight 

reduction, 20 µM completely inhibited cell growth. However, at both concentrations, a drop in 

the confluence curve was detected within the first hour of compound treatment. The 

corresponding morphological phenotype of cells 1 h after treatment are depicted in 

representative images in Figure 33C, which show that the initial drop in the curve was a result 

of cell shrinkage and rounding. The confluence determined with the IncuCyte S3 imaging 

system represents the growth area, which is covered by the cells. Cell shrinkage and rounding 

lead to a smaller covered area and hence, to a decrease in the curve, which is therefore not 

necessarily linked to an inhibited cell growth or cytotoxicity. Images taken 48 h after compound 

treatment at a dose of 20 µM depict cell debris and only a few primarily rounded cells, 

indicating cytotoxicity. The propidium-iodide staining confirmed the cytotoxic effect of 20 µM 

compound 13 as the fluorescence, i.e., number of dead cells increased already 1 h after 

treatment compared to the DMSO control (Figure 33B). In contrast, cells treated with 10 µM 

compound 13 only displayed a minor reduction in confluence (Figure 33C), reflecting the 

course of the growth curve. Moreover, the propidium-iodide staining revealed only a slight 

increase in dead cells upon treatment with 10 µM compound 13 (Figure 33B). 

 

 

Figure 34: Influence of compound 13 on cell morphology. 

Cells were incubated with the compound or DMSO for 1 hour. Images were acquired at 20X 
magnification using the IncuCyte S3 imaging system. White arrows indicate vacuolar structures. Scale 
bar: 50 µm. 
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At the first glance, no changes in morphology, e.g., cell shape, were observed for cells treated 

with 10 µM compound 13 (Figure 33C). However, cells that were treated with compound 13 

(Figure 34) contained vacuoles, which are most likely enlarged acidic organelles that gained 

volume due to the influx of water as a consequence of the treatment with a lysosomotropic 

agent[147]. 

 

 

Figure 35: Influence of compound 13 on the growth of HeLa and L cells. 

(A) HeLa and (B) L-cells were treated with 10 µM compound (cmp) 13 or DMSO as a control. Images 
were acquired in a 2-hour interval for 48 h using the IncuCyte S3 imaging system. Image-based analysis 
was used to quantify cell growth through cell confluence as readout. Data (mean values ±.SD of N=3) 
are representative of three independent replicates. 

 

As lysosomotropism is largely cell-type independent, compound 13 was tested for its influence 

on the cell growth of the cervix carcinoma cell line HeLa and the mouse fibroblast L cells 

(Figure 35). Similar to U-2OS cells, 10 µM compound 13 slightly reduced the cell growth of 

HeLa and L cells. Furthermore, the same initial drop in confluence, related to cell shrinkage 

and rounding, was detected directly after compound treatment.  
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To investigate if the initial shrinkage and rounding of the cells is related to lysosomotropism, 

a co-treatment with Bafilomycin A (Baf A1) was performed. Baf A1 is an inhibitor of the 

lysosomal proton-transporting V-type ATPase (v-ATPase), a proton pump, that is responsible 

for the acidic pH in lysosomes.[148] Inhibition of the v-ATPase by Baf A1 leads to an increase 

in lysosomal pH and may therefore abolish lysosomotropic-related effects induced by a 

compound. 

 

 

Figure 36: Influence of Bafilomycin A1 co-treatment on cell morphology and viability of U-2OS 
cells that were treated with compound 13. 

(A and B) U-2OS cells were treated with the indicated concentrations of Bafilomycin A1 (Baf A1) and 
10 µM compound 13 or DMSO as a control in the presence of propidium iodide. Images were acquired 
using the IncuCyte S3 imaging system. Image-based analysis was used to quantify cell growth (A) 
through cell confluence as readout, or dead cells through PI fluorescence (B). Data (mean values ±.SD 
of N=3) are representative of three independent replicates. 

 

Figure 36 illustrates that Baf A1 was cytotoxic after 36 hours of treatment as the confluence 

decreased along with an increased number of dead cells within the concentration range of 10-

100 nM.  
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Compound 13 alone showed the same effect as in the previous experiment (Figure 33). A 

dose of 10 µM led to a slight reduction in confluence and a slight increase in dead cells as well 

as to the initial drop in the confluence due to cell shrinkage and rounding within the first 30 

min of treatment. A dose of 20 µM compound 13 was cytotoxic within the first hour of treatment. 

The co-treatment of 10 µM and 20 µM compound 13 with different concentrations of Baf A1 

(10-100 nM) led as well to immediate cell death. Therefore, the co-treatment did neither rescue 

the initial cell shrinkage and rounding induced by 10 µM compound 13 nor the cytotoxic effect 

induced by 20 µM compound 13, suggesting a lysosomotropic-independent mechanism for 

the cell rounding and cytotoxicity.  

 

6.2.3.1 Influence of compound 13 on the actin cytoskeleton 

The cytoskeleton is a major determinant of cellular shape.[149] As compound 13 led to initial 

cell shrinkage and rounding, its influence on the in vitro actin polymerization and the actin 

cytoskeleton in cells was investigated. 
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Figure 37: Influence of compound 13 on actin dynamics. 

(A) Influence on the in vitro actin polymerization. Pyrene-conjugated actin was incubated with 
compound 13 or DMSO, cytochalasin B or jasplakinolide as controls and polymerization was monitored 
by measuring the fluorescence intensity (ex/em: 360/410 nm). Results are representative of three 
independent experiments. (B) Influence on the actin cytoskeleton. U-2OS cells were treated with 
compound 13 or DMSO as a control for 25 min prior to fixation and staining with DAPI (blue), anti-α-
tubulin antibody (green) and phalloidin (orange) for visualizing DNA, microtubules, and actin, 
respectively. White arrows indicate deformed nuclei. Red arrows indicate actin fibers in cropped and 
enlarged images (adjusted brightness) of the area within the white box. Representative images of three 
independent replicates. Scale bar: 50 µm.  

 

Cytochalasin B reduces the actin polymerization rate by inhibiting actin monomer addition[150] 

and jasplakinolide induces actin filament polymerization and stabilizes F-actin.[151] Whereas 

10 µM compound 13 did not affect actin polymerization, 50 µM slightly reduced the 

polymerization rate.  
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In contrast, the staining of the actin cytoskeleton in cells revealed that compound 13 led to a 

concentration-dependent formation of fibers 25 min after treatment (Figure 37B, red arrows, 

right column). These are most likely retraction fibers, whose formation is a concomitant of de-

adherence, and they are extending from the cell margin to the original site of adhesion [152], 

which is in line with the observed cell rounding induced by compound 13 (Figure 33). 

Compound 13 did not influence the tubulin network but led to deformed nuclei (white arrows), 

which can also be related to alterations in the cytoskeleton[153, 154]. The formation of fibers and 

deformed nuclei was not observed after a treatment time of six hours (Figure 38A). However, 

the formation of actin aggregates was detected for the highest concentration of 20 µM 

compound 13 (Figure 38A, red arrows). 
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Figure 38: Influence of compounds 12 and 13 on the actin cytoskeleton. 

(A-C) Representative images of U-2OS cells treated with the compounds or DMSO as a control prior to 
fixation and staining with DAPI (blue), anti-α-tubulin antibody (green) and phalloidin (orange) for 
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visualizing DNA, microtubules, and actin, respectively. Representative images of three independent 
replicates. Scale bar: 50 µm. (A) 6 h treatment with compound 13. Red arrows indicate actin aggregates. 
(B) 25 min treatment with compound 12. (C) 6 h treatment with compound 12. 

 

For comparison, the influence of compound 12 on the actin dynamics was explored as its 

morphological fingerprint was biosimilar to compound 13. Compound 12 was also 

lysosomotropic, although, less potent. However, treating cells for 25 min and 6 h with 10 and 

30 µM compound 12 did neither lead to the formation of fibers and aggregates nor to deformed 

nuclei. Moreover, the tubulin network was not affected by compound 12.  

 

6.2.4 Proteome profiling of compounds 10-13 

To gain deeper insight into the bioactivity of the tetrahydroindolo[2,3-a]quinolizines 10-13 and 

potential regulated pathways and proteins, a global proteome profiling was performed. U-2OS 

cells were treated with the compounds or DMSO as control and lysed 24 h later. The lysates 

were reduced, alkylated, and digested into peptides. Afterwards, peptides were labeled with 

tandem mass tags, which enable peptide quantification by nanoHPLC-MS/MS analysis. 
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Figure 39: Proteome profiling analysis of compound 13. 

(A and B) U-2OS cells were treated for 24 h with 10 µM compound 13 prior to proteome profiling using 
tandem mass tags for quantification by nanoHPLC-MS/MS. Data are mean values ± SD of three 
independent experiments. Pathway enrichment analysis was performed using the Ingenuity Pathway 
Analysis software to determine significantly affected pathways (FDR < 0.05, Benjamini-Hochberg 
corrected). (A) Top 10 enriched pathways. Red line: p = 0.05. (B) List of proteins that were significantly 
upregulated by 13 and are involved or related to cholesterol homeostasis. 

 

Treatment with 10 µM compound 13 led to the significant up- or downregulation of 118 proteins 

(FDR < 0.05, Benjamini-Hochberg corrected), which can be reviewed in the appendix (Table 

15). To identify potentially affected signaling pathways, the data set was analyzed for pathway 

enrichment with the Ingenuity Pathway Analysis (IPA) software (QIAGEN Inc., 

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis). The analysis 

revealed an enrichment in proteins involved in the biosynthesis of cholesterol (Figure 39A, 

depicted in bold). Five proteins are directly involved in the biosynthesis of cholesterol: 3-

hydroxy-3-methylglutaryl-coenzyme A synthase (HMGCS1), acetyl-coenzyme A synthetase 

(ACSS2), lanosterol synthase (LSS), isopentyl-diphosphate delta-isomerase 1 (IDI1) and 

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
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squalene synthase (FDFT1) (Figure 39B).[155-158] In addition, compound 13 upregulated the 

protein amount of the cholesterol transport protein STARD4 (StAR-related lipid transport 

protein 4)[159] and the fatty acid desaturase 2 (FADS2), which is part of the fatty acid 

biosynthesis[160] (Figure 39B). 

 

 

Figure 40: Proteome profiling analysis of compound 12. 

(A-C) U-2OS cells were treated for 24 h with compound 12 prior to proteome profiling using tandem 
mass tags for quantification by nanoHPLC-MS/MS. Data are mean values ± SD of three independent 
experiments. Pathway enrichment analysis was performed using IPA to determine significantly 
(FDR < 0.05, Benjamini-Hochberg corrected) affected pathways. (A and B) Top 10 enriched pathways. 
Red line: p = 0.05. (A) 10 µM compound 12. (B) 30 µM compound 12. (C) List of proteins that were 
significantly upregulated by 30 µM compound 12 and are involved or related to cholesterol biosynthesis. 
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In total, 107 proteins were significantly up- or down-regulated (FDR < 0.05, Benjamini-

Hochberg corrected) by 10 µM compound 12 and 99 proteins by 30 µM compound 12 (data 

can be reviewed in the appendix (Table 16)). Whereas the IPA analysis revealed that 10 µM 

compound 12 increased the level of FDFT1 (epoxysqualene biosynthesis, Figure 40A) as the 

only protein involved or related to the biosynthesis of cholesterol, 30 µM compound 12 led, 

similar to 10 µM compound 13, to an upregulation of the same proteins involved in the 

biosynthesis of cholesterol, namely HMGCS1, ACSS2, LSS, IDI1 and FDFT1 (Figure 40B, C). 

In addition, STARD4 and FADS2 were as well upregulated by 30 µM compound 12 (Figure 

40C). However, besides modulated proteins involved or related to cholesterol homeostasis, 

the top pathway for 10 and 30 µM compound 12 is the protein ubiquitination pathway 

containing, amongst others, several subunits of the proteasome. 
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Figure 41: Proteome profiling analysis of compounds 10 and 11. 

(A and B) U-2OS cells were treated for 24 h with compounds (cmp) 10 and 11 prior to proteome profiling 
using tandem mass tags for quantification by nanoHPLC-MS/MS. Data are mean values ± SD of three 
independent experiments. Pathway enrichment analysis was performed using IPA to determine 
significantly (FDR < 0.05, Benjamini-Hochberg corrected) affected pathways. Top 10 enriched 
pathways. Red line: p = 0.05. (A) 10 and 30 µM compound 10. (B) 10 and 30 µM compound 11. 

 

In total, 88 proteins (FDR < 0.05, Benjamini-Hochberg corrected) were significantly up- or 

down-regulated by 10 µM compound 10 and 89 proteins by 30 µM compound 10 (data can be 
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reviewed in the appendix (Table 17)). 10 µM compound 11 led to a significant up- or down-

regulation of 93 proteins and 30 µM to the modulation of 69 proteins (data can be reviewed in 

the appendix (Table 18). 30 µM compound 10 induced the upregulation of FDFT1 

(Epoxysqualene Biosynthesis, Figure 41A) involved in the biosynthesis of cholesterol. Besides 

this, the top pathway for 10 and 30 µM compound 10 is again the protein ubiquitination 

pathway containing, amongst others, several subunits of the proteasome. 

Collectively, the proteome profiling revealed predominantly proteins involved or related to 

cholesterol homeostasis for the most active derivatives 12 and 13, providing a starting point 

for further biological investigations towards the MoA. 

 

6.2.4.1 Validation of cholesterol-modulating activity of tetrahydroindolo[2,3-a] 

quinolizines  

The proteome profiling suggested modulated cholesterol biosynthesis upon treatment with 

tetrahydroindolo[2,3-a]quinolizine derivatives. The biosynthesis of cholesterol and fatty acids 

is regulated by transcription factors of the sterol regulatory element (SRE) binding proteins 

(SREBPs) family.[161, 162] To investigate the influence of compounds 10-13 on the biosynthesis 

of cholesterol, a reporter gene assay was performed using the 3-hydroxy-3-methylglutaryl-

coenzyme A synthase (HMG-CoA) promoter, which is regulated by SREBP.  
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Figure 42: Influence of compounds 10-13 on SREBP-dependent transcriptional activation. 

(A and B) U-2OS cells were transfected with a firefly luciferase construct under the control of the HMG-
CoA synthase promoter and a plasmid for constitutive Renilla luciferase expression. Cells were treated 
for 24 h with the compounds or DMSO prior to the determination of both luciferase activities. Data are 
mean values ± SD of three independent experiments. (A) Co-treatment with or without 25-
hydroxycholesterol (25OHC). Values are normalized to the DMSO control in the absence of 25OHC. 
(B) Dose-dependent analysis for compounds 12 and 13 in the absence of 25OHC. Values are 
normalized to the DMSO control. Data are mean values ± SD of three independent replicates. 

 

Figure 42 demonstrates that 25-hydroxycholesterol (25OHC) suppressed the SRE-dependent 

reporter activity in cells. This was expected as under physiological conditions cholesterol de 

novo synthesis is only induced if sterol levels, sensed at the ER membrane, are too low.[163] 

Compound 13 most potently and dose-dependently activated SREBP-responsive transcription 

in the absence of 25OHC by 5- and 14-fold at 3.3 µM and 10 µM, respectively (Figure 42A, 

B). Compound 12 also led to the activation of SREBP-responsive transcription in the absence 

of 25OHC by 5- or 13-fold, however, at 10 µM and 30 µM, respectively (Figure 42A, B). 

Whereas compound 11 was inactive, compound 10 showed a 3-fold activation at the highest 

concentration of 30 µM (Figure 42A). The presence of 25OHC suppressed the activation by 

the compounds, indicating a modulation of SREBP-dependent transcription upstream of 

cholesterol sensing. 
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Collectively, these results demonstrate that the activity and potency of compounds 10-13 in 

the SRE-reporter gene assay exactly reflect the activity suggested by the IPA analysis of the 

proteome profiling. Compound 13 and, less potently, compound 12 activated the SREBP-

responsive transcription, whereas compound 11 was inactive and compound 10 only showed 

a weak activation at 30 µM. 

 

6.2.5 Investigation of lysosomotropism-related bioactivity 

Lysosomotropic agents may disturb various cellular processes.[44, 146, 164, 165] The hydrophobic 

moiety allows intercalation and accumulation in the lysosomal membrane, which may lead to 

altered activity of inherent membrane proteins and to a disturbed lysosomal lipid 

homeostasis.[44, 166] One example are the intracellular cholesterol transporters NPC1 and 

NPC2 (Niemann-Pick C1 and C2 proteins), which guide cholesterol out of the lysosomes. 

Their activity is disturbed by the intercalation of lysosomotropic compounds in membrane 

structures and by an increased lysosomal pH.[44, 167, 168] For this reason, the influence of the 

tetrahydroindolo[2,3-a]quinolizines 10-13 on the intracellular localization of cholesterol was 

explored. For this, filipin was used, which binds unesterified cholesterol and is naturally 

fluorescent.[169] 
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Figure 43: Influence of compounds 10-13 on cellular cholesterol distribution. 

U-2OS cells were treated with 10 µM compound or DMSO or U-18666A as a control for 3 h prior to 
fixation and staining with filipin. Representative images of three independent experiments. 
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The cationic sterol U-18666A was used as a control. U-18666A blocks cholesterol egress by 

binding to the sterol-sensing domain of NPC1, which results in lysosomal accumulation of 

cholesterol.[170] The images of filipin-stained cells in Figure 43 illustrate that cells, treated with 

DMSO, exhibited a filipin staining in form of diffuse dots mainly located around the nucleus. In 

contrast, U-18666A treatment led to an accumulation of cholesterol, visible as bright puncta. 

Treatment of cells with 10 µM compounds 10-12 did not influence the intracellular cholesterol 

distribution. 

 

Figure 44: Quantification of filipin staining for 
compound 13. 

U-2OS cells were treated with 10 µM compound or DMSO 
or U-18666A as a control for 3 h prior to fixation and 
staining with filipin. Quantification was performed with Fiji-
ImageJ. Significance was determined using a two-tailed, 
unpaired t-test. ****p < 0.0001. 

 

 

 

 

 

 

 

 

Treatment of the cells with 10 µM compound 13 led, similar to U-18666A, to a significant 

intracellular accumulation of cholesterol, visible as brighter puncta, primarily located around 

the nucleus (Figure 43 and Figure 44). Because of the short treatment time of three hours, an 

accumulation due to the increased de novo synthesis can be excluded, and therefore the 

accumulation can solely be attributed to trapped cholesterol. 

Recent studies link cholesterol homeostasis also to autophagy[171-173] and report an 

accumulation of LC3II-labeled autophagosomes after exposure to amphiphilic molecules.[134, 

171, 174-177] Autophagy is a highly dynamic and evolutionary conserved pathway. It preserves 

cellular homeostasis by balancing sources of energy via the degradation of cytoplasmic 

organelles and long-lived and damaged proteins.  
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The process of autophagy comprises the formation of autophagosomes, which are double-

membrane vesicles that sequester the cargo before fusion with lysosomes. Within the 

lysosomes, acid hydrolases degrade the cargo for recycling.[178-181] During this process, the 

microtubule-associated light chain protein 3 (LC3) plays an important role in autophagosome 

biogenesis and closure and undergoes lipidation with phosphatidylethanolamine, which yields 

LC3II, that associates to the surface of the autophagosome and is released upon completion. 

Monitoring the protein level of LC3II and p62/SQSTM1, an autophagy substrate, is one of the 

most common methods used to study the autophagic flux.[180] Chloroquine inhibits the 

autophagic flux by interfering with the autophagosome-lysosome fusion. Therefore, the 

presence of Chloroquine allows quantifying the amplitude of the autophagic flux as it stops the 

turnover of LC3II and p62/SQSTM1.[182]  

To investigate the influence of the tetrahydroindolo[2,3-a]quinolizines 10-13 on the autophagic 

flux, the number of LC3II puncta per cell was monitored in the presence and absence of 50 µM 

Chloroquine. 

 



RESULTS 

102 
 

 

Figure 45: Influence of compounds 10-13 on the number of LC3II puncta. 

MCF7 cells stably expressing EGFP-LC3 were treated for 3 h (A) and 24 h (B) with compounds (cmp), 
DMSO or EBSS (for amino acid starvation) as controls, in the absence or presence of 50 µM 
Chloroquine (CQ) prior to staining with Hoechst for visualizing DNA. The number of LC3II puncta was 
quantified as a measure of autophagy. Data were normalized to the DMSO control and are mean values 
± SD of three independent experiments. 

 

Treatment of cells with Earle’s Balanced Salt Solution (EBSS), which does not contain amino 

acids, activates autophagy via amino acid starvation.  
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Figure 45 illustrates that EBSS induced autophagy after 3 h and to a lesser extent after 24 h 

of treatment. As expected, the corresponding increase in LC3II puncta was only visible in the 

presence of Chloroquine as it blocks the autophagosome-lysosomal fusion and thus, the 

degradation of EGFP-LC3II. Treatment of cells with 30 µM compounds 10 and 11 showed 

neither an effect in the presence or absence of Chloroquine nor at the different time points. 

On the contrary, 10 µM compound 13 and less potently 30 µM compound 12 increased the 

number of puncta in the absence of Chloroquine, whereas no effect was observed in the 

presence of Chloroquine. Compared to the 24 h treatment, which increased the number of 

puncta of approx. 3 and 4- fold for 30 µM compound 12 and 10 µM compound 13, respectively, 

the influence was less pronounced after 3 h of treatment. The lower concentrations of 10 µM 

compound 12 and 3.33 µM compound 13 were inactive in all measured conditions.  

To distinguish between induction or perturbation of the autophagic flux, the protein levels of 

LC3II and p62/SQSTM1 upon treatment with compound 12 and 13 were analyzed by 

immunoblotting, as they possessed an effect in the LC3II puncta assay. 

 

 

Figure 46: Influence of compounds 12 and 13 on the protein levels of LC3II and p62/SQSTM1. 

U-2OS cells were treated for 24 h with 10 µM compound 12 and 13 or DMSO or EBSS in the absence 
or presence of 50 µM Chloroquine (CQ). Protein levels were determined using immunoblotting. (A) 
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Images are representative of four independent experiments. (B) Quantified band intensities are mean 
values ± SD of four independent experiments. 

 

As expected, amino acid starvation using EBSS increased the LC3II protein level in the 

presence of Chloroquine (Figure 46A, B). p62/SQSTM1 functions as an adaptor molecule 

interacting with polyubiquitinated protein aggregates and LC3II at the phagophore for the 

selective uptake and degradation of the autophagic cargo.[183] p62/SQSTM1 itself is a 

substrate of autophagy[184] and therefore is degraded upon amino acid starvation in the 

absence of Chloroquine, which can be seen by the decreased protein level compared to the 

DMSO control. In accordance with the LC3II puncta assay, 10 µM compound 12 did not 

influence the protein levels of LC3II and p62/SQSTM1 compared to the DMSO control. Also, 

in line with the LC3II puncta assay (Figure 45), 10 µM compound 13 increased the LC3II 

protein level in the absence but not in the presence of Chloroquine. However, compound 13 

did not affect the protein levels of p62/SQSTM1 compared to the DMSO control. An increase 

in the LC3II protein level solely in the absence of Chloroquine without changes in the 

p62/SQSTM1 level indicates that at 10 µM only compound 13 inhibited autophagy at a later 

stage of the autophagic flux. Hence, compound 13 acts similar to Chloroquine, which may 

result from their lysosomotropic properties. 

Moreover, a disturbed intracellular cholesterol homeostasis upon exposure to amphiphilic 

molecules may affect the transport and budding of endocytic vesicles. This could be due to an 

altered lipid raft composition, a change in membrane elasticity or due to a defective calcium 

homeostasis inside the acidic compartments.[44] For this reason, the influence of 

tetrahydroindolo[2,3-a]quinolizines 10-13 on the endocytic uptake of transferrin was 

investigated using transferrin conjugated to a fluorophore (AF594-Transferrin). 
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Figure 47: Influence of compounds 10-13 on the endocytotic uptake of transferrin. 

U-2OS cells were treated for 3 h with the compounds (cmp) or DMSO or dynasore as controls prior to 
addition of AF594-Transferrin (red) and incubation for 2 min at RT to stop endocytosis. A background 
DMSO sample (t0) was immediately fixed and stained with DAPI for visualizing DNA (blue). All other 
samples were incubated for 5 min at 37 °C to initiate endocytosis before fixation and staining with DAPI. 
(A) Representative images (scale bar: 50 µm) and (B) quantification of three independent experiments. 

 

Dynasore was used as a control as it inhibits the GTPase activity of dynamin, which is 

responsible for the constriction and fission of endocytic vesicles.[185] Figure 47 illustrates that 

treatment of the cells with dynasore led as expected to a concentration-dependent decrease 

in the uptake of transferrin compared to the DMSO control. However, none of the compounds 

affected the transferrin uptake at 10 µM. 

Collectively, the experiments to investigate the lysosomotropic-related bioactivity of the 

tetrahydroindolo[2,3-a]quinolizines 10-13 revealed that compound 13 exhibited the most 

pronounced effects, which is in line with the lysosomotropic potency of the compounds (Figure 

32). Compound 13 led to an accumulation of cholesterol, most likely in acidic organelles, 

disturbing the intracellular distribution. Furthermore, compound 13 blocked the autophagic 

flux, similar to the lysosomotropic drug Chloroquine, at a later stage of autophagy. However, 

compound 13 did not influence the endocytic uptake of transferrin. 

 

6.2.6 Analysis of reference compounds biosimilar to compound 13 

The morphological fingerprint of compound 13 was biosimilar to 12.5 % of the reference 

compounds (449 of 3580) and to 8 % of the in-house compounds (768 of 9619), hence a 

similar effect on lysosomes and cholesterol homeostasis was assumed. For neuronal 

receptors, morphological profile similarity has been suggested based on their accumulation in 
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lysosomes as a consequence of their physicochemical properties.[84, 186] Therefore, 32 

references, representing different chemical structures and target classes were selected and 

tested for their modulation of SREBP-dependent transcription and their influence on lysosomal 

staining. The structures of the selected references can be reviewed in the appendix (Table 

19). For most of the references from the cluster, a link to lysosomotropism is already reported. 

Therefore, references, for which lysosomotropism was not indicated, were selected and 

comprise compounds targeting GPCRs, enzymes and especially kinases, ion channels and a 

group of compounds with miscellaneous activities. These compounds were tested at 

concentrations for which the highest biosimilarity to 10 µM compound 13 was detected in the 

CPA. 

 

 

Figure 48: Influence of selected GPCR-targeting references on SREBP-dependent 
transcriptional activation and lysosomal staining. 

(A) U-2OS cells incubated for 1 h with the compounds or DMSO or Chloroquine as controls prior to 
staining with LysoTrackerTM Red DND-99. Data are mean values ± SD of three or four independent 
experiments. Values were normalized to DMSO (100 %, dotted line). (B) U-2OS cells were transfected 
with a firefly luciferase construct under the control of the HMG-CoA synthase promoter and a plasmid 
for constitutive Renilla luciferase expression. Cells were treated for 24 h with the compounds or DMSO 
prior to the determination of both luciferase activities. Data are mean values ± SD of three independent 
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experiments. Missing concentrations were toxic and therefore excluded from the data set. Values were 
normalized to DMSO (100 %, dotted line). 

 

Chloroquine was used as a positive control for the lysosomal staining as it reduces the staining 

based on its lysosomotropic properties. Figure 48 demonstrates that the four selected GPCR-

targeting references SB216641, Ozanimod, Zotepine and LP 44 not only dose-dependently 

decreased lysosomal staining (Figure 48A) but also activated the SREBP-dependent reporter 

in a concentration-dependent manner (Figure 48B). Whereas the lowest tested concentrations 

(≤ 1.1 µM) decreased the LysoTracker staining only to a maximum of 30 %, the highest 

concentrations (≥ 10 µM) reduced the staining by at least 60 %. Concentrations ≥ 6 µM 

activated the reporter to at least 5-fold. 

 

 

Figure 49: Influence of selected ion channel-targeting references on SREBP-dependent 
transcriptional activation and lysosomal staining. 

(A) U-2OS cells incubated for 1 h with the compounds or DMSO or Chloroquine as controls prior to 
staining with LysoTrackerTM Red DND-99. Data are mean values ± SD of three independent 
experiments. Values were normalized to DMSO (100 %, dotted line).  (B) U-2OS cells were transfected 
with a firefly luciferase construct under the control of the HMG-CoA synthase promoter and a plasmid 
for constitutive Renilla luciferase expression. Cells were treated for 24 h with the compounds or DMSO 
prior to the determination of both luciferase activities. Data are mean values ± SD of three independent 
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experiments. Missing concentrations were toxic and therefore excluded from the data set. Values were 
normalized to DMSO (100 %, dotted line). 

 

Figure 49 demonstrates that the four selected ion channel-targeting references Benoxinate, 

Aprindine, EIPA and Crobenetine displayed different activities in both assays. Benoxinate did 

not influence the lysosomal staining but activated the SREBP-dependent reporter by 5-fold at 

the highest concentration of 30 µM. Aprindine treatment induced a concentration-dependent 

decrease in lysosomal staining with a residual signal of 50 % at the highest concentration of 

30 µM. Aprindine also led to a concentration-dependent activation of the SREBP-dependent 

reporter by 9-fold at 30 µM. EIPA treatment did not influence the lysosomal staining but 

activated the SREBP-dependent reporter by 8-fold at 30 µM. Crobenetine only showed a slight 

effect on the lysosomal staining and reduced the signal by 40 % at the highest concentration 

of 30 µM. On the other hand, treatment for 24 h with 30 µM was toxic and 10 µM Crobenetine 

only slightly activated the SREBP-dependent reporter by 3-fold. 

 

 

Figure 50: Influence of selected enzyme-targeting references on SREBP-dependent 
transcriptional activation and lysosomal staining. 

(A) U-2OS cells incubated for 1 h with the compounds or DMSO or Chloroquine as controls prior to 
staining with LysoTrackerTM Red DND-99. Data are mean values ± SD of three independent 
experiments. Values were normalized to DMSO (100 %, dotted line). (B) U-2OS cells were transfected 
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with a firefly luciferase construct under the control of the HMG-CoA synthase promoter and a plasmid 
for constitutive Renilla luciferase expression. Cells were treated for 24 h with the compounds or DMSO 
prior to the determination of both luciferase activities. Data are mean values ± SD of three or four 
independent experiments. Values were normalized to DMSO (100 %, dotted line). 

 

Figure 50 demonstrates that the five selected enzyme-targeting references Mardepodect, 

trequinsin, LLY-507, SGC0946 and EHop-016 displayed different activities in both assays. 

Mardepodect did not influence the lysosomal staining but activated the SREBP-dependent 

reporter in a concentration-dependent manner up to 8-fold at 10 µM. Trequinsin did not affect 

the lysosomal staining but inhibited the SREBP-dependent reporter by 50 % at 10 and 30 µM. 

3.4 µM trequinsin inhibited the SREBP-dependent reporter, however, only by 30 %. Treatment 

with LLY-507, SGC0946 and EHop-016 led to a concentration-dependent decrease in the 

lysosomal staining as well as to an activation of the SREBP-dependent reporter in a dose-

dependent manner. The highest tested concentration of 10 µM LLY-507, 30 µM SGC0946 and 

6 µM EHop-016 reduced the lysosomal staining by 99, 70 and 80 %, respectively, and 

activated the SREBP-dependent reporter by 35-, 27- and 5.5-fold, respectively.  

 

 

Figure 51: Influence of selected kinase-targeting references on SREBP-dependent 
transcriptional activation and lysosomal staining. 

(A) U-2OS cells incubated for 1 h with the compounds or DMSO or Chloroquine as controls prior to 
staining with LysoTrackerTM Red DND-99. Data are mean values ± SD of three independent 
experiments. Values were normalized to DMSO (100 %, dotted line). (B) U-2OS cells were transfected 
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with a firefly luciferase construct under the control of the HMG-CoA synthase promoter and a plasmid 
for constitutive Renilla luciferase expression. Cells were treated for 24 h with the compounds or DMSO 
prior to the determination of both luciferase activities. Data are mean values ± SD of three independent 
experiments. Missing concentrations were toxic and therefore excluded from the data set. Values were 
normalized to DMSO (100 %, dotted line). 

 

Among the enzyme-targeting references of the cluster, 75.4 % were kinase inhibitors (Figure 

30). Therefore, 12 kinase inhibitors were selected for testing their influence on the lysosomal 

staining and SREBP-mediated gene expression. Figure 51 shows that the treatment with 

Nemiralisib, Ponatinib, WZ4002, SGI-1776 and NVP-AEW541 induced a concentration-

dependent decrease in the lysosomal staining. At the highest concentration of 30 µM 

Nemiralisib, 10 µM Ponatinib, 10 µM WZ4002, 10 µM SGI-1776 and 10 µM NVP-AEW541, 

the lysosomal staining was reduced by 70, 95, 50, 65 and 62 %, respectively. VE-822, 

NU7441, JNK-IN-8, PP2, Avapritinib, AZ3146 and NVP-BHG712 did not influence the staining. 

10 µM Nemiralisib induced the SREBP-dependent transcription by 8-fold. The 24 h treatment 

with Ponatinib was toxic at all measured concentrations (2-10 µM). WZ4002 induced the 

SREBP-dependent transcriptional activation by 2-fold at 2 µM as well as 6 µM. Treatment with 

SGI-1776, NVP-AEW541 and VE-822 provoked a concentration-dependent increase of 

SREBP-dependent transcription by 23-, 29- and 6.5-fold at 10 µM. All tested concentrations 

of NU7441 suppressed the SREBP-mediated reporter gene expression. JNK-IN-8 stimulated 

the SREBP-dependent reporter at 3.4 µM by approx. 8-fold, whereas treatment of cells with a 

higher dose of 10 µM was toxic. PP2 did not influence the SREBP-mediated reporter gene 

expression. Avapritinib and AZ3146 led to a concentration-dependent induction of the SREBP-

mediated reporter by 6- and 3- fold at 30 and 10 µM, respectively. NVP-BHG712 showed 

cytotoxic effects at 10 and 30 µM and 6 µM induced the SREBP-mediated reporter by approx. 

2-fold.  
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Figure 52: Influence of selected references with miscellaneous targets and activities on SREBP-
dependent transcriptional activation and lysosomal staining. 

(A) U-2OS cells incubated for 1 h with the compounds or DMSO or Chloroquine as controls prior to 
staining with LysoTrackerTM Red DND-99. Data are mean values ± SD of three independent 
experiments. Values were normalized to DMSO (100 %, dotted line). (B) U-2OS cells were transfected 
with a firefly luciferase construct under the control of the HMG-CoA synthase promoter and a plasmid 
for constitutive Renilla luciferase expression. Cells were treated for 24 h with the compounds or DMSO 
prior to the determination of both luciferase activities. Data are mean values ± SD of three or more 
independent experiments. Missing concentrations were toxic and therefore excluded from the data set. 
Values were normalized to DMSO (100 %, dotted line). 

 

Figure 52 demonstrates that the selected references with miscellaneous targets displayed 

different activities in both assays. Tenovin-6 and deltarasin dose-dependently decreased the 

lysosomal staining. Deltarasin is an inhibitor of the KRAS-PDE𝛿 interaction[187] and tenovin-6 

is a potent activator of p53, but also inhibits the protein deacetylase activity of SIRT1-3 in 

vitro.[188, 189]. 6 µM tenovin-6 reduced the staining by 80 % and 10 µM deltarasin decreased 

the signal down to -25 %.  
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Since the LysoTracker mean intensity of 100 µM Chloroquine was used as a control in this 

assay and subtracted as a background signal, negative values can emerge from this analysis 

if a compound reduces the staining more potently than the control of 100 µM Chloroquine. 

6 µM tenovin-6 and 3.4 µM deltarasin activated the SREBP-dependent reporter by 9- and 15-

fold, respectively. The CECR2 (cat eye syndrome chromosome region, candidate 2) inhibitor 

NVP-CECR2-1[190] and OICR-9429 an antagonist of the interaction between WDR5 (WD 

repeat domain 5) and MLL1 (mixed lineage leukemia protein 1)[191] dose-dependently 

decreased the lysosomal staining and activated the SREBP-mediated gene expression. 3.4 

µM NVS-CECR2-1 and 30 µM OICR-9429 reduced the lysosomal staining by 90 and 60 %, 

respectively, and activated the reporter by 2- and 3-fold, respectively. The BET (bromodomain 

and extra-terminal motif) inhibitor I-BET151[192], the Bromodomain and PHD Finger 

Containing 1 (BRPF1) inhibitor GSK6853[193] and the P-glycoprotein modulator zosuquidar[194] 

did not affect the lysosomal staining. Zosuquidar did also not influence the SREBP-dependent 

gene expression. However, I-BET151 inhibited the SREBP-dependent gene expression at all 

measured concentrations (3.4-30 µM] by 90 %, whereas GSK6853 dose-dependently 

activated the gene expression up to 5-fold at 30 µM.  

Collectively, these results demonstrate that, besides two exceptions namely PP2 and 

zosuquidar, all references modulated SREBP-dependent gene expression. References that 

led to a decrease in lysosomal staining also activated the SREBP-dependent gene expression. 

References that did not influence the lysosomal staining were instead either activating or 

inhibiting the SREBP-dependent gene expression. 

Small molecules may also interfere with the cholesterol homeostasis by directly modulating 

enzymes involved in the cholesterol biosynthesis (i.e., mevalonate pathway) like statins that 

inhibit the 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), the rate-limiting 

enzyme of the mevalonate pathway. 
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Figure 53: Morphological fingerprints of statins and their influence on lysosomal staining and 
SRE-mediated gene expression. 

(A) Morphological fingerprints of statins biosimilar to ccompound 13, visualized as heatmap profiles. 
The top profile is set as a reference (100 % biosimilarity, BioSim) to which the following fingerprints are 
compared. The set of 579 features is divided into cell (1-229), cytoplasm (230-461) and nuclei (462-
579) related features. Values were normalized to the DMSO control. Blue: decreased feature, red: 
increased feature. (B) U-2OS cells incubated for 1 h with the compounds or DMSO or Chloroquine as 
controls prior to staining with LysoTrackerTM Red DND-99. Data are mean values ± SD of two 
independent experiments. (C) U-2OS cells were transfected with a firefly luciferase construct under the 
control of the HMG-CoA synthase promoter and a plasmid for constitutive Renilla luciferase expression. 
Cells were treated for 24 h with the compounds or DMSO prior to the determination of both luciferase 
activities. Data are mean values ± SD of two or three independent experiments.  

 

Figure 53 illustrates that the statins Mevastatin, Atorvastatin and Fluvastatin showed high 

biosimilarity (≥ 80 %) to the fingerprint of compound 13 (Figure 53A). However, without 

reducing the lysosomal staining (Figure 53B), they activate, as expected, the SRE-dependent 

reporter gene expression (Figure 53C). The reason may be a negative feedback mechanism 

that activates SREBP signaling due to reduced cholesterol that is sensed at the ER because 

of the statin-inhibited cholesterol biosynthesis.  

Additionally, SREBP-regulated genes can be explored by the analysis of gene expression 

profiles. The Broad Institute LINCS Center for Transcriptomics[41] 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70138) published gene expression 

profiles (L1000 Connectivity Map (CMap)) for more than 19,000 compounds.  

 

 

 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70138
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Table 5: Modulated genes involved in the biosynthesis of cholesterol upon treatment with 
indicated compounds.  

Publicly available gene expression profiling data analyzed with IPA. Genes involved in cholesterol 
biosynthesis were depicted in bold. 
 

Compound 
Conc. 
[µM] 

Treatment 
[h] 

Cell line Genes 
Expr. Log 

ratio 
Expr. p-

value 

SGI1776 10 24 A375 

ACAA2 -1.074 7.98E-03 

HADHA 1.07 1.97E-02 

ACAT2 1.35 4.03E-04 

HSD17B7 1.513 1.28E-05 

MVD 1.539 4.47E-14 

SC5D 1.969 5.34E-04 

FDPS 1.984 3.18E-09 

LSS 1.986 3.89E-05 

TM7SF2 2.37 4.32E-09 

CYP51A1 2.558 8.66E-11 

DHCR7 2.925 4.42E-12 

NSDHL 2.938 2.49E-16 

IDI1 3.068 3.17E-09 

HMGCR 3.374 3.13E-18 

FDFT1 3.427 3.02E-16 

DHCR24 3.757 4.28E-08 

SQLE 3.853 5.74E-07 

MSMO1 4.118 9.17E-13 

HMGCS1 5.807 1.27E-93 

AEW541 10 24 HepG2 

HADHA 0.88 2.14E-02 

EBP 0.895 3.20E-04 

CYP51A1 0.944 1.31E-02 

HSD17B7 0.962 6.25E-03 

ACAT2 1.187 2.09E-09 

FDFT1 1.231 2.02E-05 

SQLE 1.242 2.78E-03 

FDPS 1.296 5.61E-06 

TM7SF2 1.3 5.52E-04 

HMGCR 1.307 1.46E-12 

DHCR24 1.427 2.20E-02 

LSS 1.529 7.89E-05 

NSDHL 1.568 1.03E-06 

HMGCS1 1.573 5.93E-10 

SC5D 1.573 2.54E-02 

MSMO1 1.592 7.65E-04 

DHCR7 1.675 9.15E-06 

IDI1 1.874 2.50E-04 

I-BET151 3.33 24 
SKL 

myocyte 

ACAT2 -1.594 2.81E-07 

HMGCS1 -0.963 2.27E-10 

EBP -0.664 2.25E-02 

GGPS1 -0.538 2.95E-02 

MVK -0.431 2.75E-02 

 

From the 32 selected references, gene expression profiles for the Pim (provirus integration 

site for Moloney murine leukemia virus) kinase inhibitor SGI1776[195], the IGFIR (Insulin-like 
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growth factor I receptor) kinase inhibitor NVP-AEW541[196] and the bromodomain inhibitor I-

BET151[192] were found in the CMap database (Table 5). SGI1776 and AEW541 significantly 

upregulated genes involved in the de novo biosynthesis of cholesterol. I-BET151 reduced their 

expression as already observed in the SREBP-responsive reporter gene assay. 

These results demonstrate that modulation of the cholesterol homeostasis leads to a 

characteristic protein and gene expression signature, which can even be identified without 

experimental lab work if gene expression profiles are publicly available. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



DISCUSSION 

116 
 

7 DISCUSSION 

7.1 CPA identified a cluster based on a common MoA 

Target identification approaches that are usually employed, like affinity-based chemical 

proteomics, are limited in the detectable bioactivity space and often restricted to protein 

targets. Unbiased morphological profiling, e.g., using the CPA, represents a promising 

approach for the identification of compounds that target non-protein biomolecules like metal 

ions[197, 198], lipids[199], DNA[31] or RNA[32, 33], which emerged as a new research field in recent 

years. This requires morphological fingerprint similarity between reference compounds based 

on a shared target or MoA. To examine if CPA can be applied to identify iron-chelating activity, 

the morphological fingerprints of DFO and biosimilar reference compounds were investigated. 

The morphological fingerprints generated for different concentrations of the iron chelator DFO 

revealed that predominantly features related to the Hoechst staining of the nucleus were 

affected. Among the Hoechst-unrelated features, the induction of only those features, 

describing the cell and cytoplasm area shape, dose-dependently increased and reached z-

score values ≥ 10. The changes in the nucleus and cell size can be explained by the elemental 

role of iron. Iron is indispensable for many essential cellular processes, including cell growth 

and replication.[102, 113, 115]. DNA synthesis and repair processes require enzymes that need 

iron as a cofactor, hence, iron depletion is known to induce cell cycle arrest in G1/S phase 

and to act anti-proliferative.[114, 115] The fingerprints for the different concentrations of DFO 

showed a concentration-dependent increase in the induction and exhibited a high biosimilarity 

among each other indicating that the fingerprint of each concentration is related to the same 

bioactivity excluding the possibility of an additional off-target activity at higher concentrations.  

 

7.1.1 Annotated iron-chelating ligands are biosimilar to DFO 

The investigation of reference compounds with morphological fingerprint similarity to DFO 

revealed the metal ion chelating references Ciclopirox, 1,10-phenanthroline, catechol and 

PAC-1 among the compounds with the highest biosimilarity. Chelating agents are in general 

not entirely specific for certain metal ions[200] but they have preferences in binding (Table 6).  
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Table 6: Ion binding preferences of metal ion chelators. 

 

Chelating agent Preference  

Deferoxamine Fe3+ >> Al3+> Cu2+ > Zn2+ ≈ 𝐶o2+ > Ni2+ ≈ Fe2+ > Mg2+ >Ca2+ Sr2+[103, 200-204] 

Ciclopirox Fe3+, trivalent > divalent[204-206] 

1,10-Phenanthroline 
Fe2+[203] 

Fe3+ >> Cu2+ ≈ Ni2+ ≈ Zn2+[207] 

Catechol Fe3+, trivalent > divalent cations[203, 208] 

 

In general, DFO, Ciclopirox, 1,10-phenanthroline as well as catechol prefer trivalent over 

divalent metal ions. Ciclopirox, 1,10-phenanthroline and catechol exhibit the highest affinity 

for ferric (Fe3+) and ferrous (Fe2+) ions, whereas DFO has a very high selectivity for ferric ions. 

PAC-1 is known to activate procaspase-3 by chelating zinc ions[111] but also iron-chelating 

activity was reported recently.[209] Hence, the morphological fingerprint similarity among the 

identified metal ion chelators can be ascribed to the complexation of iron rather than other 

metal ions. Ciclopirox, 1,10-phenanthroline, PAC-1 and catechol did not only exhibit a high 

biosimilarity to DFO but were also highly biosimilar among each other with a median 

biosimilarity of 87.2 %, demonstrating that iron chelators form a cluster in the CPA. This led to 

the assumption that this small cluster can be used to identify not only annotated iron chelators 

but also novel iron-complexing agents. 

Target prediction using cheminformatic methods is often performed after phenotypic screening 

or morphological profiling. This in silico approach is typically based on chemical-structural and 

structure-sequence similarities among proteins, restricting the identification to protein targets. 
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Table 7: Target prediction for iron chelators using web-based cheminformatic tools.[210] 

Iron-chelating bioactivity is depicted in bold. 
 

Website 
Top predicted activity/target 

DFO Ciclopirox 1,10-Phenanthroline 

PASS 

Online 

• Iron antagonist 

• CDP-glycerol 
glycerophosphotransferase 
inhibitor 

• Polyamine-transporting 
ATPase inhibitor 

• Mucositis treatment 

• Antidote 

• Antiseborrheic 

• Testosterone 17β-
dehydrogenase inhibitor 

• Polarization stimulant 

• CYP2J substrate 

• Membrane permeability 
inhibitor 

• Dehydro-L-gulonate 
decarboxylase inhibitor 

• Glutathione thiolesterase 
inhibitor 

• Amine dehydrogenase 
inhibitor 

• Taurine dehydrogenase 
inhibitor 

• Alkane 1-monooxygenase 
inhibitor 

Similarity 

ensemble 

approach 

(SEA) 

• ATP-dependent molecular 
chaperone HSP82 

• Glutamate receptor 1 

• Deoxyhypusine synthase 

• Acetylpolyamine 
amidohydrolase 

• Putative agmatine deiminase 

• Heat shock protein 90 

• Acetyl-CoA carboxylase 

• Isocitrate dehydrogenase  

• Taste receptor type 1 
 

• Heat shock protein 90 

• C-C chemokine receptor 

• Mitochondrial import inner 
membrane translocase 

• Neutrophil collagenase 

• Matrix metalloproteinase-9 

Swiss 

Target 

Prediction 

• Matrix metalloproteinase 1 

• Endothelin-converting 
enzyme 1 

• Histone deacetylase 6 

• Histone deacetylase 2 

• Histone deacetylase 
3/Nuclear receptor 
corepressor 2 

• Isocitrate dehydrogenase 

• Poly [ADP-ribose] 
polymerase 1 

• Dihydroorotate 
dehydrogenase 

• Cystic fibrosis 
transmembrane conductance 
regulator 

• Nitric oxide synthase 

• C-C chemokine receptor 

• Monoamine oxidase B 

• Indoleamine 2,3-
dioxygenase 

• Quinone reductase 2 

• Serotonin 3a receptor 
 

SuperPred 

•  

• Iron chelating agent 

• DNA topoisomerase II alpha 

• Hypoxia-inducible factor 1 
alpha 

• DNA polymerase iota 

• Geminin 
 

• Adenosine receptors 

• Adrenergic receptor 

• Angiotensin II type 2 receptor 

• Bradykinin B2 receptor 

• C-C chemokine receptor 

• Androgen receptor 

• Arachidonate 5-
lipoxygenase 

• C-C chemokine receptor 

• Cytochrome P450 

• Estrogen receptor alpha 

STITCH 

• Transferrin receptor 

• Hypoxia-inducible factor 1 
alpha 

• Solute carrier family 11 
member 

• Aconitase 1 

• Tumor protein p53 

• Prostaglandin-endoperoxide 
synthase 

• ATPase alpha 1 polypeptide 

• Arachidonate 15-
lipoxygenase 

• Hypoxia inducible factor 1 

• Nuclear receptor subfamily 3 

 

PPB2 

• Matrix metalloproteinase-2 

• Arachidonate 5-lipoxygenase 

• Cannabinoid CB1 receptor 

• Matrix metalloproteinase-3 

• Carbonic anhydrase II 

• Isocitrate dehydrogenase 

• 11-beta-hydroxysteroid 
dehydrogenase 

• Phosphodiesterase 7A 

• Dopamine receptor 

• Adenosine receptor 

• Vascular endothelial growth 
factor receptor 2 

• Serotonin receptor 

• Nuclear factor NF-kappa-B 
p65 subunit 

• Kappa opiod receptor 

• Egl nine homolog 1 
 

 

Table 7 illustrates that several web-based cheminformatic tools failed to predict iron-chelating 

activity for Ciclopirox and 1,10-phenanthroline. This was not unexpected as those approaches 

rely on either structural similarity, which is not given for iron chelators, or on known compound-

protein interactions. Only the PASS algorithm[211, 212] and SuperPred[213] proposed an iron-



 DISCUSSION  

119 
 

chelating activity for DFO. This highlights the need to extend the target space of 

cheminformatic approaches to non-protein targets to enable MoA prediction as early as 

possible. 

 

7.1.2 CPA identified a cluster of iron chelators and cell cycle modulators 

sharing a common MoA 

The CPA revealed not only a high fingerprint similarity between DFO and the iron chelators 

but also to 35 additional references with diverse annotated targets and activities. Table 8 

illustrates that some enzymes, targeted by the references, require a metal ion for their activity. 

 

Table 8: Targets of references, biosimilar to DFO, that require metal ions for their activity. 

Target Metal ion binding 

CDK, MAPK p38, AK Mg2+ [214-216] 

Topoisomerase Mg2+, Mn2+, Ca2+, Co2+ [217, 218] 

poly(ADP-ribose) polymerase Zn2+ [219, 220] 

Lysine specific demethylase 1 Fe2+, Zn [221] 

Metalloproteinase-2 Zn [222] 

 

However, only the histone demethylase LSD1 is dependent on Fe(II)[214] and therefore iron 

chelation alone can not be the underlying MoA and explain the biosimilarity within the cluster.  

Nucleoside analogs, CDK inhibitors, topoisomerase inhibitors, antifolates, PARP inhibitors 

and DNA intercalating agents have the modulation of the cell cycle as a common denominator. 

Nucleoside analogs are incorporated into DNA by DNA polymerase during DNA synthesis, 

which blocks the extension of the nascent strand and activates the DNA damage checkpoint 

resulting in an S phase arrest of the cell cycle.[223] DFO displayed high biosimilarity to nine 

nucleoside analogs. The bioactivity of nucleoside analogs was investigated using Trifluridine, 

Arabinocytidine, Cladribine and Fludarabine as representatives, which did not exhibit an iron-

chelating activity but led to the accumulation of cells in S phase. One exception was 

Fludarabine that increased the number of cells in the G1 phase, which has also been reported 

in the literature[224]. Fludarabine is thought to activate p53[224], which has an essential function 

in DNA damage-induced G1/S arrest[225].  
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CDKs are the key regulatory proteins of the cell cycle and ensure the proper transitions from 

one cell cycle phase to the next. Their activity gets periodically activated and deactivated 

during cell cycle progression and is controlled by cyclins. Thereby, each cell cycle transition 

is regulated by a different CDK-cyclin-complex.[226] DFO displayed high biosimilarity to nine 

CDK inhibitors whose bioactivity was exemplified by PHA-793887 and roscovitine. Confirming 

literature reportings, PHA-79388[119] and roscovitine[120] led to cell cycle arrest in the G2/M 

phase. PHA-793882 also showed iron-chelating ability at a concentration of 30 µM, however, 

cell cycle arrest was already detected at a concentration of 3.33 µM and therefore the cell 

cycle modulating activity is most likely not a result of the iron-chelating ability.  

Topoisomerases control the superhelical density during DNA unwinding for replication by 

transiently cleaving either one (type I) or both (type II) strands of the helix.[227] The three 

topoisomerase inhibitors, biosimilar to DFO, were represented by Topotecan, which did not 

possess an iron-chelating ability but led to the accumulation of cells in S phase confirming 

literature findings[228]. 

Furthermore, DFO displayed morphological fingerprint similarity to antifolates, PARP inhibitors 

and one MMP-2 and LSD-1 inhibitor. An iron-chelating activity was experimentally excluded, 

except for the PARP inhibitors, which have not been tested. Nevertheless, a link to cell cycle 

modulation for those references is already reported in the literature. Folate is a methyl donor 

required for DNA synthesis and its deprivation is reported to induce cell cycle arrest in the 

G1/S phase.[229, 230] Also, two PARP inhibitors possessed biosimilarity to DFO. The poly(ADP-

ribose)-polymerase is involved in DNA repair processes and catalyzes the transfer of ADP-

ribose to target proteins involved in nucleic acid metabolism, modulation of chromatin structure 

and DNA synthesis and repair.[231] PARP inhibitors suppress their enzymatic activity and are 

reported to lead to cell cycle arrest in the S/G2 phase.[232, 233] Matrix metalloproteinases 

degrade (glycol)proteins, membrane receptors, cytokines and growth factors of the 

extracellular matrix and at the first glance are not linked to a cell cycle-related activity.[234] 

However, several studies demonstrate that MMPs promote tumor growth and therefore 

inhibitors have been developed as anticancer agents and shown to induce cell cycle arrest.[235, 

236] And lastly, the genetic depletion or small molecule inhibition of the histone demethylase 

LSD1 is reported to lead to an accumulation of cells in the G1 phase of the cell cycle.[237] 

Thus, the biosimilarity of iron-chelating agents and nucleoside analogs, CDK, topoisomerase, 

PARP, MMP-2 and LSD1 inhibitors in the CPA can be attributed to the shared MoA of cell 

cycle arrest in the G1/S or G2 phase. 

However, there is no straight association between adenosine kinase, MAP kinase p38 and 

Wnt/β-catenin inhibition and dopamine 1 receptor activation and cell cycle-related activity.  
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For A-134974, IQ 1 and (±)-SKF-81297, an iron-chelating ability was experimentally excluded. 

However, the pyrimidinylimidazole inhibitors-3-5, A-134974, IQ 1 and (±)-SKF-81297 may 

influence the cell cycle via unknown targets that determine the morphological fingerprint, 

independent of their primary annotated bioactivity. Interestingly, based on its chemical 

structure, A-134974 belongs to the group of nucleoside analogs (Table 11), which could 

explain the classification of this adenosine kinase inhibitor into this cluster. Moreover, 

additional references inhibiting the adenosine kinase have been profiled in the CPA but do not 

appear in the Fe/DNA synthesis cluster. Furthermore, they are not highly similar among their 

target class in the CPA supporting the hypothesis of an additional, not annotated target-related 

effect on the cell cycle.  

Clusters of iron chelators and DNA synthesis modulators have been identified in previous 

morphological studies. Schulze et al.[64] performed morphological profiling after 19 h of 

compound treatment and identified a cluster of DNA modulators and iron siderophores by 

using EdU and a phospho-histone H3 antibody as a mitotic marker. Breinig et al.[129] treated 

cells for 48 h, only stained for DNA and actin, and demonstrated clustering of 1,10-

phenanthroline with cell cycle modulators. In contrast, the CPA was able to identify clusters of 

iron-chelating agents and cell cycle modulators without specific staining for cell cycle markers. 

Thereby, the assay facilitates the coverage of an even broader range of bioactivity, 

independent of cytostatic effects as the majority of the references did not display a reduction 

in cell growth after 24 h of treatment but the cell cycle was already arrested at that time. The 

results presented in this thesis not only expand the set of references that based on their MoA 

belong to the Fe/DNA synthesis cluster but also enabled the identification of novel iron-

chelating agents and DNA synthesis modulators.  

 

Table 9: Target prediction for 8-hydroxyquinoline using web-based cheminformatic tools.[210] 

Website Top predicted activity/target 

PASS Online 

• Corticosteroid side-chain-isomerase 

• Rhamnulose-1-phosphate aldolase 

• Glycosylphosphatidylinositol phospholipase D 

• Antiseborrheic 

• Magensium-protoprophyrin IX minimethyl ester cyclase 

Similarity ensemble 
approach (SEA) 

• Bacterial leucyl aminopeptidase 

• Methionine aminopeptidase 2 

• Solute carrier family 40 member 1 

• NF-kappa-B inhibitor alpha 

• cAMP-specific 3’,5’-cyclic phosphodiesterase 4B 
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Website Top predicted activity/target 

SwissTargetPrediction 

• Methionine aminopeptidase 2 

• Indoleamine 2,3-dioxygenase 

• Mannose-6-phosphate isomerase 

• Proteasome Macropain subunit MB1 

• Tryptophan 2,3-dioxygenase 

SuperPred 

• Adenosine receptor 

• Adrenergetic receptor 

• Androgen receptor 

• Angiotensin II type 2 receptor 

• Arachidonate 5-lipoxygenase 

STITCH 

• Glycerol dehydrogenase 

• Inner membrane protein 

• tRNA(Ile)-lysidine synthase 

• Quinone oxidoreductase 

PPB2 

• Induced myeloid leukemia cell differentiation protein 

• Serotonin receptor 

• Kappa opioid receptor 

• Vascular endothelial growth factor receptor 2 

• P53-binding protein Mdm-2 

 

Several uncharacterized 8-hydroxyquinoline derivatives were identified to be biosimilar to 

DFO. Although this is a known motif for a metal-chelating ligand[102, 127], the applied 

cheminformatic web-based tools failed to predict iron-chelating activity (Table 9). The 

macrocycle 8 and the natural product-inspired compound 9 were identified as novel cell cycle 

modulators and blocked cells in S phase. To investigate the underlying mechanism of action, 

both compounds were explored for their ability to bind DNA and to modulate the activity of the 

topoisomerase I and II as well as selected CDK/cyclin-complexes. However, the compounds 

were inactive in all assays but they may still inhibit these enzymes in cells or target other cell 

cycle regulating proteins. 

Hierarchical clustering of fingerprints, biosimilar to DFO, was performed to examine a potential 

division into subclusters based on the different mechanisms of action. The analysis revealed 

a separation of the mimetics, i.e., antifolates and nucleoside analogs from the protein 

modulating compounds. Also, the so-far uncharacterized compounds 4, 8 and 9 were 

assigned to the correct subcluster. Compound 4, representing the 8-hydroxyquinoline scaffold, 

was correctly allocated to the second subcluster. Furthermore, it was clearly separated from 

compounds 8 and 9 but close to the other iron-chelating agents. This finding demonstrates 

that the CPA predicted iron-chelating activity as a mechanism of action for compound 4, 

independent of chemical similarity. To generalize this observation, other annotated iron 

chelators and cell cycle modulators need to be profiled and experimentally evaluated.  
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In contrast, hierarchical clustering based on only selected staining, e.g., on DNA, actin and 

plasma membrane/Golgi staining, did not divide the cluster into useful subgroups of different 

mechanisms of action. This highlights the benefit of multiplexed morphological profiling, like 

the CPA, that enables identification of clusters that share a MoA and furthermore, has the 

potential to offer insight into the different mechanisms of action, predicting even target-related 

bioactivity. 

Collectively, these findings prove that the CPA is able to identify the modulation of non-protein 

targets such as iron-chelating agents and DNA-targeting compounds. The CPA analysis 

revealed that iron-chelating agents and DNA synthesis modulators form a cluster based on 

the shared MoA of cell cycle arrest in the G1, S or G2 phase, irrespective of chemical similarity 

and annotated targets and activities. Thereby the CPA overcomes the limitation of commonly 

employed target identification approaches like affinity-based proteomics that can only identify 

protein targets. Several web-based cheminformatic tools failed to predict iron-chelating activity 

for the annotated iron chelators Ciclopirox and 1,10-phenanthroline, underlining the need to 

expand the target space that can be identified in these tools. Furthermore, the cluster can now 

be used to identify novel iron-chelating compounds and cell cycle modulators of the G1, S, or 

G2 phase. Finally, the hierarchical clustering of members of the Fe/DNA synthesis cluster 

highlighted that the CPA is technically able to predict even target-related bioactivity by dividing 

the cluster into subclusters of different mechanisms of action. 
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7.2 Bioactivity of tetrahydroindolo[2,3-a]quinolizines 

7.2.1 Tetrahydroindolo[2,3-a]quinolizines accumulate in lysosomes 

The four tetrahydroindolo[2,3-a]quinolizine derivatives 10-13 were subjected to the CPA to 

assess their bioactivity. At 10 µM, 10-12 were only very weakly active in the CPA with an 

induction below 10 %. Interestingly, 10 µM compound 13 strongly induced a phenotypic 

change with an induction value of 57.9 %, and, therefore compound 13 was selected for further 

MoA deconvolution. A comparison of its morphological fingerprint with the reference set 

revealed biosimilarity to 449 references. This large cluster of references comprised different 

targets and bioactivities hampering a target or MoA prediction for compound 13 based on the 

annotated activities of the references. Nevertheless, the cluster provided a first hint towards a 

potential MoA as it is enriched in GPCR ligands and anti-psychotics, which are known to 

accumulate in lysosomes based on their physicochemical properties [44, 140]. Compounds with 

a logP value above 2 and a bpKa between 6.5 and 11 are prone, and therefore predictive, to 

accumulate in lysosomes and increase lysosomal pH.[140] Most of the references are based on 

their physicochemical properties most likely lysosomotropic. Compound 13 has these 

properties with a clogP of 3.7 and a bpKa of 9.1. For this reason, the tetrahydroindolo[2,3-

a]quinolizines 10-13 were tested for their influence on lysosomal staining. Compound 11 was 

inactive in the lysosomotropism assay and also compound 10 was only active at the highest 

concentration of 30 µM. However, compound 12 and, more potently, compound 13 decreased 

the lysosomal staining already at 10 µM. Although compound 11 was inactive, its 

physicochemical properties are predictive of lysosomal accumulation. However, the clogP of 

compound 11 (clogP: 2.1; bpKa: 7.97) is only slightly higher than 2, which could be an 

explanation for the weak lysosomotropic effect. In contrast, compound 10 and 12 have a bpKa 

of 9.64 and 9.65, respectively, and a clogP of 2.95 and 2.75, respectively. Of note, the ion-

trapping behavior of the so-called lysosomotropic compounds as well as the LysoTrackerRed 

DND-99 staining are not selective for lysosomes but concern all organelles with an acidic 

lumen like the Golgi and endosomes.[140, 147] To differentiate between lysosomes and other 

acidic organelles, one would need a fluorescently-labeled version of the compound. Then, a 

co-staining could be performed using a lysosomal marker, e.g., an antibody against the 

lysosome-associated membrane glycoprotein 2 (LAMP2), together with the fluorescently-

labeled compound to localize both, lysosomes, and the compound. Interestingly, the trend in 

activity observed in the lysosomotropism assay reflects the trend in activity in the CPA as 

assessed by the induction values. At 10 µM, compound 10 and 11 possessed very low 

induction values and were inactive or only very weakly active in the lysosomotropism assay. 

Compound 12 and, more potently, compound 13 were active in the CPA as well as in the 
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lysosomotropism assay. This is also reflected by the biosimilarity values among the four 

derivatives, where only compound 12 and 13 were biosimilar (85 %) at 10 µM (Figure 29), 

suggesting that the morphological fingerprint of 10 µM compound 12 and 13 originate from the 

lysosomotropic activity. 

Lysosomotropism is largely cell-type and species independent. As only compound 13 was 

lysosomotropic at 10 µM and was also the only derivative that affected the growth behavior of 

U-2OS, HeLa and L-cells, the effect could be related to the lysosomotropic activity. Moreover, 

a dose of 20 µM compound 13 was toxic after 30 min of treatment. Lysosomotropism has been 

linked to cell death[238], however, the mechanisms are not well studied and understood. The 

more hydrophobic the basic molecules are, the lower the concentration at which they are 

cytotoxic. Hydrophilic basic amines are well tolerated up to millimolar concentrations whereas 

amphiphilic molecules are able to induce cell death at micromolar concentrations.[44] The most 

frequently observed feature of lysosomotropism is cytoplasmic vacuolization, which has also 

been observed for compound 13. As a consequence of lysosomotropic accumulation, 

compartments become enlarged (vacuolated) due to the influx of water to relieve osmotic 

pressure and prevent bursting of lysosomes. The exact role in cytotoxicity is unsolved but a 

prolonged duration of cytoplasmic vacuolization may also lead to irreversible cellular injuries 

and eventually to cell death.[146, 147] Another potential mechanism that could lead to cytotoxicity 

is via inhibition of autophagy upon exposure to lysosomotropic agents. A blocked autophagic 

flux was also observed for 10 µM compound 13. As the autophagic cargo gets degraded by 

lysosomal acid hydrolases, an increased pH would inhibit the degradation of 

autophagolysosomes, which has the potential to initiate cell death.[44, 140, 238] Furthermore, 

lysosomal cell death is induced by a permeabilized lysosomal membrane, which leads to the 

efflux of lysosomal content into the cytosol. Lysosomal membrane permeabilization by 

lysosomotropic compounds cannot be clearly assigned to a certain mechanism but most likely 

reflects multiple ways to permeabilize the lysosomal membrane.[144, 239] 

Treatment with compound 13 at a dose of 10 µM led to cell shrinkage and rounding within the 

first 30 min after compound addition. Cell shrinkage and rounding goes along with changes in 

the actin cytoskeleton. Although compound 13 did not influence the actin polymerization in 

vitro, formation of retraction fibers and deformed nuclei were observed. The nuclear shape is 

preserved by the cytoskeleton.[240] The formation of retraction fibers and the deformed nuclei 

could be a result of a partial loss of adhesion due to the cell rounding induced by compound 13, 

similar to cells that undergo mitosis[241]. Furthermore, compound 12, which did not lead to initial 

cell shrinkage and rounding, did also not lead to the formation of fibers or deformed nuclei. 
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To examine a potential link between the cell shrinkage and rounding and the lysosomotropic 

activity, a co-treatment with the v-ATPase inhibitor Bafilomycin A, responsible for the acidic 

pH in lysosomes, was explored. Therefore, it was expected that lysosomotropic activities of 

the compound will be rescued by the treatment with Bafilomycin A1. However, the co-

treatment did neither reverse the initial cell shrinkage and rounding nor the cytotoxicity induced 

by compound 13, suggesting a lysosomotropism-unrelated effect. However, the actual cause 

remains unsolved. Although Bafilomycin A1 is commonly used as a control inhibitor for the v-

ATPase activity[242-244], it is also reported to disrupt mitochondrial function by acting as a 

potassium ionophore[245]. Therefore, more selective v-ATPase inhibitors like concanamycin A 

or salicylihalamide A, which do not have other known targets[246] could be tested. 

 

7.2.2 Tetrahydroindolo[2,3-a]quinolizines modulate cholesterol homeostasis 

The lysosomotropic activity of compound 13 seems to influence its morphological fingerprint, 

hampering a MoA prediction that goes beyond this secondary effect, as compound 13 was 

biosimilar to more than 400 reference compounds with diverse annotated targets and 

activities. Therefore, a global proteome profiling was performed to gain more insight into the 

bioactivity of the tetrahydroindolo[2,3-a]quinolizines. Compound 13 and, less potently, 

compound 12 led to an upregulation of proteins involved in cholesterol biosynthesis. The 

upregulation of SREBP-dependent target genes was afterwards experimentally confirmed.  
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Figure 54: Regulation of cholesterol homeostasis adapted from P. J. Espenshade.[247] 

Cholesterol is taken up via endocytosis in form of low-density-lipoprotein (LDL)-bound cholesteryl 
esters. Arrived at the lysosomes, cholesterol is hydrolyzed and exported out of the lysosomes. SREBPs 
are synthesized as inactive precursors anchored in the ER, where cellular cholesterol levels are sensed. 
SREBP interacts with the sterol-sensor Scap (SREBP cleavage-activating protein) that only binds to 
the ER-resident protein Insig1 (Insulin-induced gene protein-1) when cholesterol is bound to Scap. The 
absence of cholesterol disrupts this binding and SREBP-Scap is loaded onto COPII-coated vesicles 
and transported to the Golgi, where two proteases site-1 (S1P) and site-2 (S2P) release the 
transcription factor domain of SREBP that is guided into the nucleus by importin β. Transcription is 
activated by binding of SREBP to the SRE in the promoter region of target genes. 

 

Cholesterol is biosynthesized by all mammalian cells and is a crucial cellular component. It is 

an important regulator of membrane permeability and fluidity, transmembrane signaling 

pathways and for the synthesis of steroid hormones, bile acid and vitamin D. Cholesterol is 

predominantly localized to cell membranes and the majority resides in the plasma membrane. 

The levels of cholesterol are regulated by the interplay between the de novo biosynthesis, 

uptake, and storage. A tight regulation of these mechanisms is crucial as a disturbed 

cholesterol homeostasis can cause several human diseases like the neurodegenerative 

Niemann-Pick type C (NPC) disease, where cholesterol is accumulated in lysosomes. 

Furthermore, a high plasma concentration of cholesterol can lead to an increased risk for 

atherosclerotic heart disease. Mammalian cells obtain cholesterol via receptor-mediated 

endocytosis in form of low-density-lipoprotein (LDL) bound cholesteryl esters.  
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LDL-cholesterol is then transported through the early and late endosomes to the lysosomes. 

The lysosomal acid cholesterol esterase lipase A hydrolyses the ester to the unesterified free 

cholesterol, which subsequently is distributed to the ER and the PM via interacting with sterol 

transport proteins. The two lysosomal proteins NPC1 and NPC2 are responsible for the export 

of cholesterol out of the lysosomes. NPC2 is localized inside the lumen of lysosomes and late 

endosomes and extracts and shuffles cholesterol from internal membranes to the NPC1 

protein that is localized at the limiting membrane. Cellular cholesterol levels are sensed at the 

ER as it is very sensitive to changes in cholesterol level due to its low cholesterol content of 

less than 1 % of the cell’s total cholesterol. Excess cholesterol is esterified by the acyl 

coenzymeA:cholesterol acyltransferase (ACAT) and stored as reservoirs in cytosolic lipid 

droplets or released as a component of plasma lipoproteins. The de novo biosynthesis of 

cholesterol occurs at the ER, requiring more than 30 chemical reactions, and is regulated by 

the transcription factor sterol regulatory element binding protein 2 (SREBP2) via a negative 

feedback mechanism that senses cholesterol and oxysterols. SREBP2 is attached to the ER 

membrane and associated with the SREBP cleavage-activating protein (Scap) and the Insulin-

induced gene protein-1 (Insig-1). Scap has a sterol-sensing domain, which is also the 

cholesterol-dependent binding site for Insig-1. Insig-1 is stabilized by Scap as the binding to 

Scap prevents Insig-1 ubiquitination and degradation. Under cholesterol depleted conditions, 

the binding of Scap to Insig-1 is disrupted and the SREBP2-Scap complex is sorted onto 

COPII-coated vesicles and transported to the Golgi. At this site, the transcription factor domain 

of SREBP gets released via proteolytic cleavage by the two proteases site-1 (S1P) and site-2 

(S2P). The active transcription factor domain is escorted into the nucleus by importin β where 

it activates the transcription by binding to the SRE sequence in the promoter region of target 

genes. Under cholesterol-replete conditions, the SREBP2-Scap-Insig-1 complex is retained in 

the ER membrane as the presence of cholesterol or 25-hydroxycholesterol prevents binding 

of coat proteins to Scap, obviating the assembly of COPII-coated vesicles. [157, 161, 162, 248, 249]  
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Figure 55: Possible influences of lysosomotropic compounds on cholesterol homeostasis. 

Lysosomotropic drugs (LD) increase the lysosomal pH and the hydrophobic part of amphiphilic 
molecules may intercalate within membranes of vesicles in acidic organelles disturbing their 
composition and elasticity. Both can lead to an altered activity of lysosomal proteins, which can result 
in an accumulation of cholesterol within lysosomal membranes as the activity of the proteins, 
responsible for the export of cholesterol, is disturbed. As a result, low cholesterol levels are sensed at 
the ER and the biosynthesis of cholesterol gets activated. Changes in the membrane elasticity and an 
altered lipid raft composition can also inhibit endocytotic uptake. In addition, the degradation of the 
autophagic cargo and the autophagic marker LC3II depends on an acidic pH in lysosomes and may be 
perturbed by lysosomotropic compounds. 

 

Lysosomotropic compounds are reported to alter cholesterol homeostasis and activate 

SREBP signaling (Figure 55).[44, 171, 250-256] As a result of the basicity of lysosomotropic 

compounds, the pH in acidic organelles increases and the hydrophobic part of amphiphilic 

molecules may intercalate within their membranes. The increased pH as well as the altered 

membrane structure can lead to a perturbed activity of lysosomal membrane proteins such as 

the acid sphingomyelinase (ASM)[165], NPC1, phospholipases[164] and the acid ceramidase.[44] 

NPC1 and NPC2 are responsible for the export of cholesterol out of the lysosomes and 

inhibition of their activity by an increased pH[167, 168] leads to an accumulation of cholesterol 

inside lysosomal membranes, mimicking the phenotype of the NPC disease[257]. This in turn 

lowers cholesterol levels at the ER, activating the de novo biosynthesis of cholesterol. In 

addition, a change in the membrane structure and fluidity, as well as an altered lipid raft 

composition due to cholesterol accumulation, may lead to an inhibited uptake of endocytic 

substrates, which has been observed upon exposure of amphiphilic molecules as well as in 

NPC deficient cells.[171, 258, 259]  
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Furthermore, the degradation of the autophagic cargo and the autophagic marker LC3II is 

dependent on an acidic pH[260]. Therefore, the autophagic flux is perturbed upon exposure to 

lysosomotropic compounds and was also observed in NPC deficient cells.[176, 261, 262] 

Only the most active compound 13 led to an accumulation of intracellular cholesterol, most 

likely in acidic organelles like lysosomes, endosomes, and Golgi, and thereby to a disturbed 

cholesterol localization. The data confirmed the hypothesis that the activation of SREBP-

mediated gene expression is not a result of a low total cholesterol level but rather cholesterol 

is hidden from the ER-sensing machinery due to the accumulation in acidic membrane 

compartments. At 10 µM, only compound 13 led to an accumulation of LC3II in the absence 

of Chloroquine without changes in the protein level of p62/SQSTM1, neither in the presence 

nor the absence of Chloroquine. This indicates a perturbation of the autophagic flux and 

excludes an autophagy-enhancing effect as this would have led to a decreased protein level 

of p62/SQSTM1.  

Hence, compound 13 either inhibits the degradation of the autophagic cargo due to an 

increased lysosomal pH or it might act similar to Chloroquine and blocks the fusion of 

autophagosomes and lysosomes. The precise mechanism of how Chloroquine blocks the 

fusion is not completely understood but it is suggested that the impact of Chloroquine on some 

functions of the Golgi and endosomes contribute to the impairment of the fusion.[182] To 

determine if the fusion between autophagosomes and lysosomes is blocked, a tandem 

mCherry-EGFP-LC3 expression cell line can be used to simultaneously monitor 

autophagosomes and autolysosomes.[84, 263] 

The endocytic uptake of transferrin was not affected upon exposure of compounds 10-13. 

Compound 13 might not be hydrophobic enough to alter the membrane composition and 

elasticity in a way that it affects the vesicular transport system because an increased pH alone 

could block cholesterol egress from lysosomes[167, 168]. This result suggests that compound 13 

most likely blocks the autophagic flux by increasing the pH in lysosomes rather than by 

blocking the fusion of autophagosomes and lysosomes as compound 13 does not interfere 

with the endosomal-lysosomal transport system. 

Based on the connection between lysosomotropism and the activation of SREBP-mediated 

gene expression, further proteins related to lysosomal function were identified among the 

proteins modulated by compound 13 supporting the lysosomotropic effect. The three 

lysosomal hydrolases SCPEP1 (retinoid-inducible serine carboxypeptidase), Neu1 (Sialidase-

1) and PPT1 (palmitoyl-protein thioesterase 1) were modulated by compound 13 (Table 15), 

which are direct targets of the master gene transcription factor EB (TFEB).  
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TFEB regulates lysosomal biogenesis and function and is the master transcriptional regulator 

of the CLEAR (Coordinated Lysosomal Expression and Regulation) gene network.[264] 

Considering the connection between lysosomotropism and SREBP-mediated gene 

expression, the proteome profiling data mirrors and confirms the CPA data. Comparing the 

concentration of 10 µM, only compound 13 showed an appropriate induction, the highest 

activity in the lysosomotropism assay and the strongest activation of SREBP-mediated gene 

expression. Although the proteome profiling revealed a manifestation of lysosomotropism, i.e., 

a disturbed cholesterol homeostasis, it can still be seen as a complementary approach, as 

each approach alone gave different hints towards the MoA.[74] The CPA pointed towards 

lysosomotropism and the proteome profiling towards a disturbed cholesterol homeostasis. 

Therefore, the integration of both profiling approaches was necessary to link the findings and 

assign a correct MoA to compound 13. The proteome profiling data alone could have been 

misleading if one is not aware of the connection between lysosomotropism and cholesterol 

modulation.  

Ultimately, the analysis of the proteome profiling data for the most active derivatives 12 and 

13 was dominated by the enrichment of pathways related to cholesterol homeostasis hindering 

a target or MoA prediction which would have gone beyond this adverse effect determined by 

the physicochemical properties. However, for compound 10 and 12 the protein ubiquitination 

pathway was the top predicted pathway, enriched in modulated subunits of the proteasome, 

providing another starting point for MoA identification besides the lysosomotropic activity. For 

this, ubiquitinated proteins could be isolated and identified.[265] Isolation could be performed 

by pull-down approaches using tagged ubiquitin derivatives or affinity reagents that recognize 

endogenous ubiquitin. Ubiquitinated and isolated proteins can be identified via antibodies or 

mass spectrometry and deliver a next hint towards the MoA. 

 

7.3 Many well-known drugs and tool compounds modulate cholesterol 

homeostasis 

The morphological fingerprint of compound 13 shared similarity to the fingerprints of 12.5 % 

of the references (449 of 3580) and 8 % (768 of 9619) of the research compounds, which were 

synthesized by chemists of the MPI, Dortmund. Fingerprint similarity based on 

lysosomotropism has been suggested for modulators of neuronal receptors.[84, 186] Therefore, 

a similar influence was assumed for the references biosimilar to compound 13. 32 structurally 

diverse references with different annotated targets were selected and tested for their influence 

on lysosomal staining and cholesterol homeostasis.  
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Whereas only 18 references were identified as lysosomotropic, 29 references modulated the 

SREBP-dependent gene expression. Except for Ponatinib, which was toxic at all measured 

concentrations, and NU7441 and I-BET151, which strongly inhibited the SREBP-mediated 

gene expression, all other references had an activating effect. The inhibiting activity of the 

DNA-dependent protein kinase inhibitor NU7441 may be attributed to its additional target 

mTOR as the mTOR complex 1 promotes the function of SREBP.[266-268] A possible link 

between the bromodomain inhibitor I-BET151 and cholesterol homeostasis was provided by 

a recent study that highlighted a novel epigenetic mechanism involved in the regulation of lipid 

homeostasis and a decrease in the protein level of HMGCR by the BET inhibitor JQ1.[269] As 

only half of the tested references were lysosomotropic, but the majority modulated the SREBP-

dependent gene expression, the MoA of this cluster is most likely a disturbed cholesterol 

homeostasis rather than lysosomotropism. 

 

 

Figure 56: Physicochemical properties of selected references biosimilar to compound 13. 

Calculated[141] logP value of selected references biosimilar (≥ 75 %) to 10 µM compound 13 plotted 
against their calculated basic pKa (bpKa) value. Grey region corresponds to clogP > 2 and bpKa > 6.5, 
i.e., potentially lysosomotropic. References depicted in red did not decrease the LysoTrackerRed DND-
99 staining (see 6.2.6). 

 

Only two out of the 32 references, the src kinase inhibitor PP2[270] and the P-glycoprotein 

modulator zosuquidar[194], did neither influence the lysosomal staining nor the SREBP-

mediated gene expression.  
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Whereas PP2 did not possess the physicochemical properties predictive for lysosomotropism, 

zosuquidar was predicted as lysosomotropic (Figure 56). In general, compounds may require 

a longer incubation time to accumulate in acidic compartments, e.g., up to four hours, before 

the effect is reversed at later time points due to adaption to lysosomal stress[142], and/or a 

higher concentration. However, as the fingerprint similarity in the CPA was detected after 20 

hours at 10 µM and also the readout of the reporter gene assay was after 24 h at an even 

higher concentration of 30 µM, this could be excluded. The anti-psychotic drug Risperidone 

and the anti-histamine Chlorpheniramine were as well identified to be inactive in the 

lysosomotropism assay although they possess physicochemical properties predictive of 

lysosomotropism.[140] However, the authors of this study did not mention a possible 

explanation that went beyond the incubation time and tested concentration. For PP2 and 

zosuquidar, another possibility could be that they interfere in a different way, e.g., related to 

their nominal target, with the cholesterol homeostasis but without affecting the cholesterol 

biosynthesis. For example, the P-glycoprotein mediates cholesterol redistribution in cell 

membranes and its inhibition may affect cellular cholesterol trafficking.[271] However, the 

reason for the morphological fingerprint similarity between compound 13 and PP2 and 

zosuquidar remains to be clarified. 

Figure 56 shows that all 7 references without predicted physicochemical properties for 

lysosomotropism also did not influence the lysosomal staining although all of them possess 

either a clogP above 2 or a bpKa above 6.5. This points out the importance of these two 

physicochemical properties as compounds with neither a clogP ≥ 2 alone nor a bpKa ≥ 6.5 

alone reduced the lysosomal staining, which was also observed in previous studies[140, 272]. 

However, they all modulate the SRE-mediated gene expression, except for PP2, supporting 

the hypothesis, that the bioactivity of this cluster is most likely based on an altered cholesterol 

homeostasis and not solely based on lysosomotropism. 

Within the whole cluster of references, which were biosimilar to compound 13, 109 references 

did not exhibit physicochemical properties predictive of lysosomotropism, and known 

cholesterol modulators and sterol-like compounds can be found among them. The sterol-like 

compounds 4-Androsten-4-ol-3,17-dione, 5-alpha-THDOC, alfadolone acetate, 

Epiandrosterone, equilin, estrone, Formestane, Melengestrol acetate and Progesterone 

displayed biosimilarity to compound 13 but do not possess a clogP ≥ 2 and a bpKa ≥ 6.5. Also, 

the statins Mevastatine, Atorvastatine and Fluvastatine, which inhibit the HMG CoA reductase, 

the rate-limiting enzyme of the mevalonate pathway, were not lysosomotropic but activated 

the SRE-dependent gene expression. In addition, the three anti-fungals Isoconazole, 

Itraconazole and Ketoconazole can be found among the references without predicted 

properties for lysosomotropism.  
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Isoconazole inhibits the sterol 14α-demethylase that is required for cholesterol 

biosynthesis[273], the triazole Itraconazole is reported to inhibit cholesterol export from 

lysosomes by binding to NPC1[274] and also Ketoconazole is known to inhibit cholesterol 

synthesis[275, 276]. Furthermore, the v-ATPase inhibitor Bafilomycin A1 (Baf A1) is among the 

references without physicochemical properties predictive of lysosomotropism. Baf A1 leads to 

an increase in lysosomal pH, however, independent of its physicochemical properties. 

Furthermore, Baf A1 is reported to activate SREBP signaling and to activate genes involved 

in lipid synthesis and storage.[242, 277-279] Moreover, morphological clusters based on the 

inhibition of the v-ATPase by Baf A1 or concanamycin derivatives have been identified in 

human cell lines.[64, 280] 

 

Table 10: Connectivity Map (CMap)[41] analysis for Chlorpromazine.  

Top 5 data for chlorpromazine obtained using the summary of cell line results of CLUE (CMAP linked 
user environment) (https://clue.io) with connectivity based on perturbagen or gene knockdown. 
Connectivity to cholesterol-regulating compounds or knockdown of v-ATPase and the lysosomal and 
pH-dependent enzyme acid ceramidase is detected (shown in bold). 
 

 Name Score 

Perturbagen class 

Dopamine receptor antagonist 99.92 

Tricyclic antidepressant 99.90 

T-type calcium channel blocker 99.80 

Sterol demethylase inhibitor 99.71 

HMGCR inhibitor 99.62 

Genetic knockdown 

poly (ADP-ribose) glycohydrolase 99.22 

Protein S (alpha) 97.51 

Acid ceramidase, N-acylsphingosine 

amidohydrolase 
96.86 

ATP6V0B (ATPases / V-type, ATPase, H+ 

transporting, lysosomal 21 kDa, V0 subunit) 
96.79 

ATP6V0C (ATPases / V-type, ATPase, H+ 

transporting, lysosomal 16 kDa, V0 subunit) 
96.72 

 

Furthermore, similar to SGI1776, AEW541 and I-BET151 (Table 5), the CMAP[41, 281] is able to 

reveal a connection between small molecules and v-ATPase knockdown as well as the 

regulation of genes involved in cholesterol biosynthesis as exemplified by the lysosomotropic 

agent Chlorpromazine[143].  

https://clue.io/
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These findings highlight the connectivity based on the shared MoA, i.e., an altered cholesterol 

homeostasis, which leads to a characteristic protein and gene expression signature that can 

even be identified without experimental lab work if gene expression profiles are publicly 

available. This bioactivity can even be expanded to different species as morphological profiling 

in yeast revealed a link between profiles of v-ATPase deletion mutants and the v-ATPase 

inhibitor concanamycin A.[76]  

Prior studies report on modulators of neuronal receptors that cluster based on their 

morphological fingerprint and proposed lysosomal accumulation as a MoA.[84, 186] The analysis 

of the references biosimilar to compound 13 builds on this observation as also many of the 

449 references have a reported lysosomotropic activity like Lapatinib, Sertraline, Bepridil and 

Tamoxifen.[140] However, the observed phenotype was expanded to the modulation of 

cholesterol homeostasis as a common underlying MoA, which has hardly been described for 

most of the compounds in this cluster. Therefore, this cluster can be used to identify not only 

annotated but also novel modulators of cholesterol homeostasis. However, the prediction 

based on morphological fingerprint similarity needs further experimental proof, especially 

because SREBP activation might not be the primary bioactivity if it is caused by the 

physicochemical properties of the compounds.  

Recently, the group of Prof. Waldmann developed a PDE𝛿 proteolysis targeting chimera 

(PROTAC), in analogy to the PDE𝛿 inhibitor deltasonamide 1, and demonstrated that 

deltasonamide 1, as well as the active and inactive PROTAC, led to the activation of 

SREBP.[282] This bioactivity was at that time linked to the primary target PDE𝛿, however, based 

on the present state of knowledge, it is most likely an off-target effect caused by the 

lysosomotropic properties of deltasonamide 1. Deltasonamide 1 has physicochemical 

properties predictive of lysosomotropism (clogP: 3.9; bpKa: 10.05), which was also 

experimentally confirmed (Figure 57C). 
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Figure 57: Influence of deltasonamide 1 and deltazinone 1 on lysosomal staining. 

(A and B) Chemical structures of deltasonamide 1 (A) and deltazinone 1 (B). (C and D) U-2OS cells 
incubated for 1 h with deltasonamide 1 (C), deltazinone 1 (D) or DMSO or Chloroquine as controls prior 
to staining with LysoTrackerTM Red DND-99. Data are mean values ± SD of three independent 
experiments. (E) U-2OS cells were treated for 24 h with 1 µM deltazinone 1 prior to proteome profiling 
using tandem mass tags for quantification by nanoHPLC-MS/MS. Data are mean values ± SD of three 
independent experiments. Experiment performed by Dr. Michael Winzker. Pathway enrichment analysis 
was performed using IPA to determine significantly (FDR < 0.05, Benjamini-Hochberg corrected) 
affected pathways. Top 10 enriched pathways. Red line: p = 0.05. 
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To strengthen this finding, deltazinone 1[283], a PDE inhibitor with different scaffold and 

chemotype (Figure 57B) was analyzed, which in contrast has a clogP of 4.04 and a bpKa 

of - 1.29 that are not predictive of lysosomotropism. This matches with the experimental data 

(Figure 57C). Furthermore, Figure 57E illustrates that a proteome profiling of cells treated with 

deltazinone 1, conducted by Dr. Michael Winzker, did not reveal modulation of proteins 

involved in cholesterol homeostasis. This example demonstrates the importance to raise 

awareness for the frequent modulation of cholesterol homeostasis by the physicochemical 

properties of small molecules to assign correct mode-of-actions. 

In line with that, similar examples may be described in the literature as especially the number 

of high-content imaging and ‘omics studies strongly increased over the last years.[284] For 

example, proteome profiles of the kinase inhibitors Lapatinib, Bosutinib, Sunitinib, and 

Gefitinib formed an unexpected cluster regulating the (chole)sterol synthesis pathway.[285] 

However, these kinase inhibitors are described as lysosomotropic agents in the literature, 

indicating that, in line with the results presented in this thesis, the observed cholesterol 

modulation is most likely caused by the physicochemical properties of the kinase inhibitors.[140, 

286] In addition, Ravindranath et al.[287] analyzed gene expression data from the CMap and 

identified anti-psychotics and calcium channel binders upregulating genes responsible for the 

sterol synthesis and linked this effect to the primary target/MoA. However, well-known 

lysosomotropic drugs like Amitriptyline, Chlorpromazine and Verapamil[142] are among the 

identified compounds and the results may as well be explained by the findings presented in 

this thesis. Furthermore, Zhao et al.[209] screened the Prestwick library for the presence of 

pharmacological inhibitors of the conventional protein secretion pathway that transports 

proteins from the ER to the Golgi and afterwards to the plasma membrane via secretory 

vesicles. They identified 30 compounds (2.5 % of the library) that inhibited protein secretion 

> 50 % at 10 µM. However, the transport of proteins between intracellular membrane 

compartments relies on a balanced cholesterol homeostasis[288] and several FDA-approved 

drugs, reported to be lysosomotropic, are among the identified hits like Perhexiline[289], 

Quinacrine[290], Sertraline[140], Terfenadine[272], Mefloquine[291], Suloctidil[272] and Monensin[292]. 

Hence, their identification as inhibitors of the conventional protein secretion pathway, which 

relies on a balanced cholesterol homeostasis, might as well be a result of their 

physicochemical properties. 

Therefore, the herein identified cluster might additionally be used to explain the regulation of 

genes or proteins involved in cholesterol homeostasis by small molecules, which have so far 

not been linked to the physicochemical properties of the used compounds. As SREBP 

activation is not necessarily linked to the modulation of a compounds’ primary target, biological 
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processes linked to the physicochemical properties need to be carefully evaluated to assign a 

correct MoA. 

The findings presented in this thesis highlight the obviously frequent occurrence of a 

modulated cholesterol homeostasis and lysosomal function by small molecules. Despite the 

frequent appearance, the modulated cholesterol homeostasis is rarely linked to 

lysosomotropism, i.e., to the physicochemical properties of the compounds. There is a need 

to increase the awareness for this type of bioactivity as it can be, and most likely for the 

majority of the cases will be, induced by the physicochemical properties and therefore often 

represents an off-target activity. But the lysosomotropic activity can also be part of the 

therapeutic effect of a drug. Chloroquine, for example, exerts its antimalarial activity mainly by 

increasing pH and accumulation in the food vacuole of the parasites.[293]  

The modulation of cholesterol homeostasis seems to generate a specific gene and protein 

signature and therefore can be identified by profiling approaches. However, the results of both 

profiling strategies, used to investigate the bioactivity of the tetrahydroindolo[2,3-

a]quinolizines, were dominated by this off-target effect. This, firstly, can be misleading towards 

the assignment of incorrect bioactivity if there is low awareness for the connection between 

lysosomotropism and cholesterol homeostasis, and secondly, makes it difficult to identify a 

potential lysosomotropic-independent target or MoA. Furthermore, bioactivity induced by 

physicochemical properties cannot be detected by protein-centric approaches, which are 

commonly used to identify targets of small molecules. Moreover, this kind of bioactivity is often 

unfavorable due to promiscuity for non-therapeutic targets associated with preclinical findings 

of toxicity.[135, 136] Lysosomes are essential organelles responsible for the digestion of old 

organelles, macromolecules and engulfed microbes to keep up cellular homeostasis. They 

play a key role in cellular processes like autophagy, endo- and exocytosis, membrane repair 

and cell death. The importance of lysosomes is also reflected in the number of diseases where 

lysosomal dysfunction is a major contributor such as disorders of the lipid and glucose 

metabolism, infectious diseases, bone diseases, disorders of the immune system and 

neurodegenerative diseases like Alzheimer[294, 295] or Niemann-Pick disease type C (NPC)[296]. 

Lysosomotropic compounds can lead to cytoplasmic vacuolization, induction of oxidative or 

ER stress, impaired intracellular vesicle trafficking, perturbed autophagy[44] and to 

phospholipidosis, where intracellular phospholipids accumulate and induce the formation of 

lamellar bodies[164]. Moreover, the lysosomal and endosomal accumulation of unesterified 

cholesterol and sphingolipids in cells throughout the body is also the hallmark of the NPC 

disease and leads to symptoms like progressive neurodegeneration, enlargement of liver and 

spleen, often resulting in death at an early age.[296, 297]  
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The concentration of the tested drugs, at which an influence on lysosomal pH and SRE-

mediated gene expression was observed, is for many of them higher than their therapeutic 

dose. Therefore, the drugs might not suffer from the lysosomotropism, however, it can often 

be observed that compound concentrations in phenotypic studies are increased until a 

phenotype can be detected. Hence, caution is advised when using compounds at high 

concentrations (i.e., micromolar range) as this increases the chance to impair lysosomal 

function and/or cholesterol homeostasis. Lysosomotropic compounds have been shown to 

accumulate in lysosomes to concentrations that are 100fold higher than their cytosolic 

concentration.[143, 298] Duvvuri and Krise[299] demonstrated that around 40 % of a model 

lysosomotropic amine is associated with lysosomes and thus, this might still decrease the 

effective drug concentration and hence, affect target binding[139] and should therefore be 

considered during drug design and hit optimization. 
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8 CONCLUSION AND PERSPECTIVE 

Profiling the bioactivity of small molecules in an unbiased way using the Cell Painting Assay 

is a powerful approach to predict, investigate and identify mode-of-action based on 

morphological fingerprint similarity to reference compounds and is independent of chemical 

similarity. Not only chemical similarity or similar targets lead to a shared physiological 

response in cells, but also structurally different compounds with different annotated targets 

may induce similar morphological changes due to a shared MoA, defining a cluster. 

This thesis demonstrates that the CPA is able to identify not only annotated but also novel 

iron-chelating agents and cell cycle modulators of the G1/S or G2 phase as they cluster 

together based on the shared MoA of cell cycle arrest. Hierarchical clustering using their 

morphological fingerprints delivered a first insight into the different mechanisms of action 

demonstrating that the CPA would be able to predict even target-related bioactivity within a 

cluster that shares a MoA. However, to generalize this statement, more annotated compounds 

would need to be profiled in the CPA and the bioactivity would need to be experimentally 

confirmed. The mechanism for the two novel DNA synthesis modulators identified in this thesis 

remains unsolved, however, the compounds could be further tested against more CDK/cyclin 

complexes or other proteins involved in DNA synthesis, replication and repair. Of note, iron 

chelators and DNA synthesis modulators are also being investigated as anti-cancer agents 

because of their cytostatic and cytotoxic activity.[300-304] Therefore, the iron chelators 1-7 and 

the two DNA synthesis modulators 8 and 9, identified in this thesis, could be interesting tool 

compounds to study the cytostatic effect and selectivity to cancer cells as potential anti-cancer 

agents. 

Furthermore, a second cluster of references was identified in this thesis, that shared a 

modulated cholesterol homeostasis as a MoA. For the most part, this cluster consists of 

lysosomotropic compounds, whose physicochemical properties lead to cholesterol 

accumulation in membranes of acidic organelles thereby disturbing cholesterol localization 

and activating its de novo biosynthesis. Numerous well-characterized drugs share this MoA, 

which is not related to their annotated primary targets and, importantly, impossible to identify 

by commonly applied, target identification procedures designed to determine protein targets. 

The cluster enables the identification of new modulators of cholesterol homeostasis and can 

be used to associate the regulation of corresponding genes or proteins to an effect induced 

by the physicochemical properties of the compounds rather than to their annotated primary 

targets. How cells respond to the exposure of lysosomotropic compounds is not well 

characterized.[142] However, an effect determined by the physicochemical properties is mostly 

unwanted and can be considered as adverse. Moreover, this kind of bioactivity often leads to 
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promiscuity for non-therapeutic targets associated with preclinical findings of toxicity[135, 136] 

further decreasing the success rate of clinical trials in a drug discovery program.[305, 306] 

Therefore, the pharmaceutical industry establishes early safety evaluations of new chemical 

entities more and more to lower compound attrition due to toxicity. Although it is not fully 

understood how lysosomotropism contributes to toxicity, a connection has been 

established[238], and hence, assays that detect lysosomal impairment as early as possible are 

desired.[140] Furthermore, the physicochemical properties should be more intensively 

considered in the hit optimization process to avoid cation trapping and membrane 

intercalation. 

Lysosomotropic activity might not always be undesired as lysosomotropic compounds are 

currently heavily investigated as actors on the endolysosomal host-pathogen interface for the 

inhibition of the Severe Acute Respiratory Syndrome Related Coronavirus 2 (SARS-CoV-2) to 

enter its host cells[307, 308] and to combat the virus-mediated suppression of cholesterol 

synthesis.[309] Moreover, a genome-scale CRISPR loss-of-function screen[309] identified genes 

that are part of the endosomal entry pathway as essential for SARS-CoV-2 infection, including 

subunits of the v-ATPase and NPC1, whose loss of function led to an induction of cholesterol 

biosynthesis. Therefore, loss-of-function mutants of those genes may combat the virus-

mediated suppression of cholesterol synthesis. In line with this, the study demonstrated that 

seven tested inhibitors reduced the viral load by over 100-fold. Six of those hits were also 

biosimilar to compound 13 in the CPA including GSK6853 that led to an approx. 10-fold 

reduction in viral load. Therefore, the herein identified references that modulate cholesterol 

homeostasis, as well as compound 13, could very well be used for the study as anti-SARS-

CoV-2 agents. Moreover, there are several FDA-approved drugs among the herein identified 

cholesterol modulators, which may accelerate the process to identify anti-SARS-CoV-2 agents 

by drug repurposing.  

In general, the identification of on- and off-target interaction networks of promiscuous 

compounds is an important resource to raise awareness, to better understand and make use 

of those poly-pharmacological effects to, e.g., optimize compound selectivity or repurpose 

well-tolerated drugs. This underlines the benefit of unbiased approaches that cover a broad 

range of bioactivity.[1, 35] Furthermore, unbiased profiling is especially important for small 

molecules with non-protein targets as those targets or MoAs are difficult to identify with 

commonly used target identification approaches. The results presented in this thesis 

demonstrate that the CPA is able to overcome this limitation by the successful identification of 

iron-chelating agents and lysosomotropic compounds as non-protein targets. Taken together, 

the CPA and the combination with other profiling approaches can cover the demand for a 

detailed mapping of the bioactivity space to identify potential off-target activity and toxicity as 
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early as possible and to expand the annotation of available reference compounds beyond their 

primary targets. The findings presented in this thesis emphasize the predictive value of the 

CPA to configure the target/MoA identification and validation process more efficiently in terms 

of time, throughput, and covered bioactivity space. 
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CDK Cyclin-dependent kinase 

cDNA Complementary deoxyribonucleic acid 

CECR2 Cat eye syndrome chromosome region, candidate 2 

CLEAR Coordinated lysosomal expression and regulation 

CMAP Connectivity map 

Cmp Compound 

COMAS Compound Management and Screening Center 

Conc. Concentration 

COP Coat protein complex 

CPA Cell Painting Assay 

CQ Chloroquine 

CRISPR Clustered regulatory interspaced palindromic repeats 

Cy5 Cyanine 5 

d Day 

DAPI 4’,6-diamidino-2-phenylindole 
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Abbreviation Definition 

DFO Deferoxamine 

DMEM Dulbecco’s modified eagle’s medium 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DNase Deoxyribonuclease 

DTE Dithioerythritol 

DTT Dithiothreitol 

EBSS Earle’s balanced salt solution 

EDTA Ethylenediaminetetraacetate 

EdU 5-ethynyl-2’-deoxyuridine 

EGFP Enhanced green fluorescent protein 

EGTA Ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid 

EIPA 5-(N-Ethyl-N-isopropyl)amiloride 

Em Emission 

EMEM Eagle’s minimum essential medium 

ER Endoplasmic reticulum 

Ex Excitation 

FACS Fluorescence activated cell sorting 

FADS2 Fatty acid desaturase 2 

FDA Food and Drug Administration 

FDFT1 Squalene synthase 

FDR False discovery rate 

FITC Fluorescein isothiocyanate 

FSC Forward scatter 

g Gravity 

G418 Geneticin 

GPCR G protein-coupled receptor 

GTPase Guanosine triphosphatase 

h hour 
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Abbreviation Definition 

HCL Hydrochloric acid 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HMG-CoA 3-hydroxy-3-methylglutaryl-coenzyme A 

HMGCR 3-hydroxy-3-methylglutaryl-coenzyme A reductase 

HMGCS1 3-hydroxy-3-methylglutaryl-coenzyme A synthase 

HPLC High pressure liquid chromatography 

HRP Horseradish peroxidase 

IDI1 Isopentyl-diphosphate delta-isomerase 1 

Ind Induction 

Insig-1 Insulin-induced gene protein-1 

IPA Ingenuity pathway analysis 

KRAS Kirsten rat sarcoma 

LB Lysogeny broth 

LC3 Microtubule-associated light chain protein 3 

LDL Low-density lipoprotein 

LOPAC Library of pharmacologically active compounds 

LSD1 Lysine-specific histone demethylase 1 

LSS Lanosterol synthase 

MAD Median absolute deviation 

MAP kinase p38 Mitogen-activated protein kinase p38 

MBP Median biosimilarity percentage 

MgCl2 Magnesium chloride 

mH2O Millipore filtered deionized water 

min Minute 

MLL1 Mixed lineage leukemia protein 1 

MMoA Molecular mechanism of action 

MMP-2 Matrix metalloproteinase-2 

MoA Mode of action 

mRNA Messenger ribonucleic acid 



ABBREVIATIONS 

164 
 

Abbreviation Definition 

MS Mass spectrometry 

NaCl Sodium chloride 

Neu-1 Sialidase-1 

NGS Next generation sequencing 

NPC1/2 Niemann-Pick protein C1 and C2 

PARP Poly(ADP-Ribose)-polymerase 

PBS Phosphate-buffered saline 

PCR Polymerase chain reaction 

PDE Phosphodiesterase 

PFA Paraformaldehyde 

PI Propidium iodide 

PIPES Piperazine-N,N′-bis(2-ethanesulfonic acid 

PPT1 Palmitoyl-protein thioesterase 1 

PROTAC Proteolysis targeting chimera 

PVDF Polyvinylidenfluorid 

Ref Reference 

RNA Ribonucleic acid 

RNAi RNA interference 

RNase Ribonuclease 

rpm Revolutions per minute 

RT Room temperature 

S1P/2 Proteases site-1 and site-2 

SARS-CoV2 Severe Acute Respiratory Syndrome Related Coronavirus 2 

Scap SREBP cleavage-activating protein 

SCPEP1 Retinoid-inducible serine carboxypeptidase 

SD Standard deviation 

SDS Sodium dodecyl sulfate 

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SEA Similarity ensemble approach 
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Abbreviation Definition 

s Second 

siRNA Small interfering ribonucleic acid 

SQSTM1 Sequestome-1 

SRE Sterol regulatory element 

SREBP Sterol regulatory element binding protein 

SSC Side scatter 

STARD4 StAR-related lipid transport protein 4 

TCEP Tris(2-carboxyethyl)phosphine 

TEAB Tetraethylammonium bicarbonate 

TEMED Tetramethylethylenediamine 

TFEB Transcription factor EB 

TMT Tandem mass tag 

Tris Tris(hydroxymethyl)aminomethan 

TxRed Texas red 

V Volt 

v-ATPase Vacuolar-adenosine triphosphatase 

WDR5 WD repeat domain 5 

WGA Wheat germ agglutinin 

 

  



APPENDIX 

166 
 

13 APPENDIX 

13.1 Additional data related to 6.1 

Table 11: Structure of references with high biosimilarity (> 75 %) to DFO. 
 

Trivial name Structure Trivial name Structure 

Ancitabine 

 

Palbociclib 

 

Gemcitabine 

 

PHA-793887 

 

Vidarabine 

 

PHA-767491 

 

Floxuridine 

 

Oxindole-

based 

inhibitor-2 

 

Idoxuridine 

 

R547 

 

(S)-(+)-

Camptothecin 

 

BMN-673 

 

Irinotecan 

 

Niraparib 
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Trivial name Structure Trivial name Structure 

Pralatrexate 

 

SP2509 

 

Methotrexate 

 

ARP 101 

 

Pyrimidinylimidazole 

inhibitor-3 

 

(±)-SKF-

81297 

hydrobromide 

 

Pyrimidinylimidazole 

inhibitor-4 

 

A-134974 

 

Pyrimidinylimidazole 

inhibitor-5 

 

IQ 1 
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Table 12: Quantification of the percentage of U-2OS cells in the G1 (DNA content of 2N), S and 
G2 (4N) phase of the cell cycle upon treatment with annotated references.  

Cells were treated with reference compounds or DMSO as a control for 22 h and afterwards pulsed for 
another 2 h with 10 µM EdU (5-ethynyl-2´-deoxyuridine) prior to fixation and staining of DNA with PI. 
DNA content and EdU incorporation were determined by means of flow cytometry. Data are mean 
values of three independent experiments. 

Compound 

Cells / % 

2N 2N-4N 4N 

Mean SD Mean SD Mean SD 

DMSO 46.6 3.5 38.0 6.3 15.3 8.4 

10 µM Deferoxamine 18.1 10.7 78.8 13.2 2.9 2.3 

10 µM Trifluridine 3.5 0.7 93.2 3.2 3.1 2.4 

3.33 µM Arabinocytidine 30.6 9.6 63.3 9.4 5.5 0.5 

3.33 µM Cladribine 15.5 6.6 79.6 9.6 4.5 3.0 

10 µM Fludarabine 70.9 9.7 14.4 11.0 15.0 3.0 

3.33 µM PHA-793887 45.8 1.3 22.4 5.3 31.7 6.2 

30 µM Roscovitine 34.3 5.6 34.4 15.4 29.8 10.6 

3.33 µM Topotecan 26.8 11.4 62.9 16.5 9.9 5.5 

10 µM Ciclopirox 21.3 2.5 73.1 4.1 5.4 2.8 

0.33 µM Doxorubicin 41.5 5.7 3.4 3.5 55.8 9.6 

30 µM Resveratrol 10.8 6.2 84.4 11.1 4.4 4.5 

 

 

Table 13: Quantification of the percentage of U-2OS cells in the G1 (DNA content of 2N), S and 
G2 (4N) phase of the cell cycle upon treatment with compounds 1-9.  

Cells were treated with compounds 1-9 or DMSO as a control for 22 h and afterwards pulsed for another 
2 h with 10 µM EdU (5-ethynyl-2´-deoxyuridine) prior to fixation and staining of DNA with PI. DNA 
content and EdU incorporation were determined by means of flow cytometry. Data are mean values of 
three independent experiments. 

Compound 

Cells / % 

2N 2N-4N 4N 

Mean SD Mean SD Mean SD 

DMSO 47.1 9.3 34.2 15.6 18.3 6.8 

10 µM Compound 1 50.5 20.6 37.2 24.7 10.9 4.8 
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10 µM Compound 2 59.5 15.1 25.0 16.6 14.1 5.3 

10 µM Compound 3 27.9 18.6 58.6 28.4 11.9 8.9 

10 µM Compound 4 37.7 17.9 49.4 21.6 11.5 3.3 

10 µM Compound 5 31.0 10.1 41.5 23.4 26.3 12.9 

10 µM Compound 6 30.7 11.7 59.7 16.1 8.7 4.5 

10 µM Compound 7 54.8 14.3 27.4 21.7 17.0 7.2 

10 µM Compound 8 22.8 10.0 70.5 17.9 6.4 8.1 

10 µM Compound 9 28.2 5.2 68.9 5.8 2.5 0.8 

 

 

13.2 Additional data related to 6.2 

Table 14: Annotated reference compounds with high morphological biosimilarity (≥ 75 %) to 
10 µM compound 13. 

Trivial name 
Induction 

[%] 

Biosimilarity to 

10 µM 

cmp 13 [%] 

Cell 

Count 

[%] 

(-)-cis-(1S,2R)-U-50488 tartrate 52.8 92.8 104 

(-)-trans-(1S,2S)-U-50488 hydrochloride 61.8 83.2 92 

(+)-Chlorpheniramine maleate 18.0 78.6 90 

(±) trans-U-50488 methanesulfonate 68.9 87.1 108 

(±)-7-Hydroxy-DPAT hydrobromide 11.6 75.5 89 

(±)-Butaclamol hydrochloride, AY 23028 43.5 90.6 104 

(±)-Octoclothepin maleate 52.3 92.0 103 

(±)-PPHT hydrochloride 44.0 85.9 95 

(±)-Propranolol hydrochloride 10.7 76.0 103 

(R)-Propranolol hydrochloride 6.2 79.0 97 

(R,R)-cis-Diethyl tetrahydro-2,8-chrysenediol 85.0 76.7 66 

(S)-Propranolol hydrochloride 24.4 91.1 98 

1-(1-Naphthyl)piperazine hydrochloride 61.7 81.5 105 

3-(1H-Imidazol-4-yl)propyl di(p-fluorophenyl)methyl 
ether hydrochloride 

33.9 86.3 95 

3-Tropanyl-3,5-dichlorobenzoate 35.8 82.2 89 

Navoban, Tropisetron 24.5 77.6 91 

4-Hydroxytamoxifen 24.0 82.3 96 

5-alpha-THDOC 6.9 76.5 95 
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Trivial name 
Induction 

[%] 

Biosimilarity to 

10 µM 

cmp 13 [%] 

Cell 

Count 

[%] 

6-Chloromelatonin 3.1 76.0 99 

A-77636 hydrochloride 40.4 79.1 84 

Acepromazine maleate 21.8 80.7 102 

Alaproclate hydrochloride 40.2 78.8 91 

Alprenolol hydrochloride 19.7 77.6 105 

Alverine citrate 11.1 81.4 96 

AM1241 49.7 86.0 103 

Aminobenztropine, ABT 2.8 77.9 103 

AMN082 60.1 81.4 98 

Antazoline hydrochloride 4.7 75.7 104 

Antozoline hydrochloride 12.8 85.5 92 

Astemizole 86.9 84.6 90 

Azelastine hydrochloride 56.1 87.3 94 

Benperidol 20.9 83.4 99 

Benztropine mesylate 31.3 83.1 105 

Benzydamine hydrochloride 18.7 81.4 103 

Biperiden hydrochloride 67.4 81.1 102 

BP 897 84.6 83.4 81 

BRL 52537 hydrochloride 57.3 88.5 95 

Bromoacetyl alprenolol menthane 14.2 86.3 86 

BTCP hydrochloride 37.8 75.8 100 

Buspirone hydrochloride 16.2 87.0 99 

BW 723C86 33.2 89.1 102 

Carbetapentane citrate 12.3 79.5 98 

Carvedilol 64.6 87.6 97 

CGS-12066A maleate 19.3 83.6 105 

Chlorcyclizine hydrochloride 54.9 88.0 91 

Chloro-IB-MECA 7.1 79.0 107 

Chloropyramine hydrochloride 34.7 94.0 94 

Cisapride 35.8 86.3 97 

Citalopram hydrobromide 29.4 84.7 102 

Clemastine fumarate 52.5 90.0 91 

Clomiphene citrate (Z,E) 60.6 90.4 99 

Cloperastine hydrochloride 27.6 87.1 100 

CNS-1102, Cerestat, Aptiganel hydrochloride 53.7 88.1 96 

Cortexolone maleate 16.6 82.4 92 
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Trivial name 
Induction 

[%] 

Biosimilarity to 

10 µM 

cmp 13 [%] 

Cell 

Count 

[%] 

Cyclobenzaprine hydrochloride 37.0 89.8 103 

Cyproheptadine hydrochloride 77.0 90.3 91 

Deptropine citrate 36.3 90.6 103 

Desloratidine 26.4 80.8 91 

Dextromethorphan hydrobromide monohydrate 31.8 86.7 90 

Dicyclomine hydrochloride 58.7 80.1 97 

Dihydroergotamine methanesulfonate 49.2 78.0 100 

Dihydroergotamine tartrate 68.9 85.6 100 

Dilazep dihydrochloride 9.5 76.2 101 

Diphenhydramine hydrochloride 8.5 84.4 95 

Diphenylpyraline hydrochloride 27.3 91.6 98 

DO 897/99 3.1 76.7 91 

Domperidone 72.9 83.2 95 

Doxazosin mesylate 10.0 79.3 103 

Ebastine 63.2 88.0 89 

Endoxifen HCl 37.8 79.7 94 

Escitalopram 16.1 85.8 104 

Ethopropazine hydrochloride 27.6 76.8 100 

Fenoterol hydrobromide 7.3 75.1 104 

Fiduxosin hydrochloride 24.7 83.4 100 

FLB 131 11.6 82.9 101 

Fluoxetine hydrochloride, Prozac 47.5 92.7 101 

Fluspidine 70.8 82.4 96 

Fluvoxamine maleate 7.3 78.0 107 

Formoterol 20.0 78.3 94 

Forskolin 19.3 79.6 95 

Fulvestrant 33.5 75.2 95 

GBR-12909 dihydrochloride 47.2 79.9 93 

GBR-12935 dihydrochloride 32.6 90.4 94 

GR 113808 49.1 80.7 94 

GR 127935 hydrochloride 40.9 85.2 99 

GR 4661 68.2 84.9 96 

GR 55562 dihydrobromide 87.7 79.0 100 

Guanabenz acetate, WY-8678 42.0 84.0 96 

GW405833 hydrochloride 50.9 85.1 86 

Hexahydro-sila-difenidol hydrochloride 48.2 88.5 92 
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Trivial name 
Induction 

[%] 

Biosimilarity to 

10 µM 

cmp 13 [%] 

Cell 

Count 

[%] 

Homochlorcyclizine dihydrochloride 42.0 85.7 95 

Hydroxyzine dihydrochloride 37.5 83.7 90 

Ifenprodil tartrate 37.7 89.4 107 

Indatraline hydrochloride, Lu 19-005 55.1 89.9 93 

Ketanserin tartrate hydrate 29.5 76.5 100 

L-687,384 hydrochloride 25.7 90.1 101 

L-703,606, oxalate 5.2 77.3 108 

L-741,626 4.0 79.5 106 

L-750,667 trihydrochloride 37.0 75.8 105 

L-765,314 45.8 86.2 101 

Levallorphan tartrate 12.6 77.2 111 

LP 12 hydrochloride hydrate 41.3 87.7 101 

LP44 53.2 86.6 101 

Mebhydroline 1,5-naphtalenedisulfonate 36.6 84.6 96 

Memantine hydrochloride 4.8 75.8 99 

Mesoridazine besylate 11.7 78.5 95 

Metergoline 28.5 81.7 99 

Methiothepin maleate 68.0 89.1 93 

Methotrimeprazine maleat salt 28.2 87.9 96 

Methoxy-6-harmalan 43.4 88.8 95 

Metixene hydrochloride 8.6 81.1 105 

MRS 1523 21.2 75.2 86 

Naftopidil dihydrochloride, KT-611 dihydrochloride 52.2 84.5 101 

Naloxonazine dihydrochloride 34.7 86.9 89 

Naltriben methanesulfonate, NTB 17.3 83.6 105 

Naltrindole hydrochloride, NTI hydrochloride 37.1 92.6 105 

NAN-190 hydrobromide 12.3 76.1 85 

N-Desmethylclozapine 40.1 87.9 98 

Nebivolol HCl 57.5 85.7 98 

Nefazodone HCl 52.5 78.9 97 

Nisoxetine hydrochloride, LY-94,939 14.9 82.8 110 

N-Methyldopamine hydrochloride, Epinine 
hydrochloride 

14.3 75.9 100 

N-Methylhistaprodifen dioxalate salt 72.7 84.2 86 

Nylidrin 41.3 85.0 102 

Orphenadrine hydrochloride 25.7 89.1 102 
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Trivial name 
Induction 

[%] 

Biosimilarity to 

10 µM 

cmp 13 [%] 

Cell 

Count 

[%] 

Oxybutynin Chloride 7.3 80.9 103 

Oxymetazoline hydrochloride 36.1 79.3 98 

Ozanimod (RPC1063) 2.9 79.1 98 

Paroxetine hydrochloride 37.0 85.9 99 

Penbutolol sulfate 26.4 87.1 107 

Pergolide mesylate 9.0 78.8 107 

Phenylephrine hydrochloride 11.1 76.1 92 

Pimethixene maleate 30.4 86.1 94 

Piperidolate hydrochloride 35.2 86.1 97 

Pirenperone, R-47,465 15.2 83.0 104 

Pizotyline malate 59.9 92.8 102 

p-MPPI hydrochloride 28.3 81.6 104 

PPT 17.4 75.2 92 

Prochlorperazine dimaleate 69.3 87.0 97 

Procyclidine hydrochloride 40.6 77.4 96 

Promethazine hydrochloride 18.5 79.2 110 

R-(+)-8-Hydroxy-DPAT hydrobromide 10.2 76.5 100 

Raloxifene hydrochloride, LY 139481 70.3 84.7 97 

Ritanserin 54.2 86.9 85 

Ro 8-4304 13.0 79.1 91 

S(-)Eticlopride hydrochloride 47.2 84.0 93 

S-(+)-Fluoxetine hydrochloride 25.0 90.6 108 

Salmeterol 39.9 84.4 90 

Salmeterol xinafoate, GR 33343X xinafoate 15.9 84.9 102 

SB 216641 44.7 87.0 94 

SB 242084 dihydrochloride hydrate 27.8 75.4 101 

SCH58261 13.1 78.4 101 

SDZ-205,557 hydrochloride 16.6 79.4 95 

Sertindole 83.1 84.1 92 

Siramesine fumarate salt 50.6 80.4 98 

SKF 95282 dimaleate, Zolantidine 48.7 91.0 96 

Spiperone hydrochloride 38.9 77.3 94 

SR 59230A oxalate 52.5 82.1 102 

Tamoxifen citrate 69.3 89.8 92 

Terfenadine 80.3 88.5 84 

Thiethylperazine malate 59.4 86.8 103 
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Trivial name 
Induction 

[%] 

Biosimilarity to 

10 µM 

cmp 13 [%] 

Cell 

Count 

[%] 

Thioproperazine dimesylate 50.3 89.4 96 

Tomoxetine 28.3 84.0 88 

Toremifene 8.5 87.2 101 

Trihexyphenidyl hydrochloride 29.0 80.0 97 

Trimeprazine tartrate 87.7 81.9 88 

U-62066, Spiradoline mesylate 69.4 77.0 96 

U-69593 3.1 75.3 103 

VER-3323 hemifumarate salt 8.5 82.8 103 

WB-4101 hydrochloride 31.1 77.9 95 

Xylometazoline hydrochloride 16.8 88.5 102 

Zimelidine dihydrochloride monohydrate 24.2 86.7 101 

Zotepine 12.3 79.9 102 

highly selective Sigma 1 receptor. Ki for S1R: 1.3 nM; 
S2R: 837 nM. 

59.4 87.0 97 

Amoxapine 25.4 85.5 107 

Amperozide hydrochloride 48.4 77.4 92 

Aripiprazole 61.1 82.2 110 

Bromperidol 10.9 81.7 96 

Chlorpromazine hydrochloride 43.4 90.6 91 

Chlorprothixene hydrochloride 53.4 89.8 88 

cis-(Z)-Flupenthixol dihydrochloride 35.6 84.0 102 

Clomipramine hydrochloride 53.7 87.3 94 

Clozapine 18.0 81.6 103 

Desipramine hydrochloride 20.7 84.5 101 

Dosulepin hydrochloride 24.4 88.7 92 

Doxepin hydrochloride 5.2 79.4 108 

Drofenine hydrochloride 19.3 76.3 113 

Fluphenazine dihydrochloride 7.6 84.4 98 

Fluspirilene, R 6218 29.9 87.7 108 

Haloperidol 68.4 90.6 93 

Imipramine hydrochloride 13.1 88.0 100 

Maprotiline hydrochloride 42.0 88.9 98 

Norcyclobenzaprine 67.0 85.8 96 

Nortriptyline hydrochloride 52.3 88.2 105 

Olanzapine 39.0 89.3 94 

Opipramol, dihydrochloride 9.5 76.9 87 
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Trivial name 
Induction 

[%] 

Biosimilarity to 

10 µM 

cmp 13 [%] 

Cell 

Count 

[%] 

Perphenazine 10.7 83.7 91 

Pimozide 30.7 81.1 101 

Piperacetazine 54.1 88.0 100 

Promazine hydrochloride 24.5 91.2 101 

Propionylpromazine hydrochloride 43.2 92.1 90 

Protriptyline hydrochloride 32.1 85.3 101 

Reserpine, Methyl reserpate 42.7 84.9 87 

Sertraline hydrochloride 56.1 89.6 103 

Spiperone 15.0 81.7 105 

Trazodone hydrochloride 17.4 86.4 101 

Trifluperidol hydrochloride 4.7 80.2 91 

Triflupromazine hydrochloride 45.3 95.0 100 

Trimipramine maleate 26.3 85.5 102 

Zuclopenthixol hydrochloride 58.4 88.3 102 

SB590885 40.4 87.4 98 

A3 hydrochloride 37.5 82.1 100 

ABT-702 dihydrochloride 21.9 85.7 101 

Asciminib (ABL001) 35.8 78.5 97 

ASP3026 67.2 75.1 71 

AT101 35.1 75.7 91 

Aurora A Inhibitor I 21.9 85.7 90 

Ro 31-8220 Mesylate 82.2 77.7 42 

Autophinib 55.3 75.3 58 

AZ191 50.1 82.0 94 

AZD4547 63.7 89.9 85 

AZD7762 74.8 76.8 76 

AZD9291 32.6 78.5 95 

Bafetinib 48.9 80.8 100 

BLU-285, Avapritinib 75.1 90.3 98 

BMS-536924 60.6 75.5 91 

Cediranib (AZD2171) 24.7 78.1 92 

CGP-74514A hydrochloride 68.7 77.2 56 

DDR1-IN-1 40.6 83.3 101 

DL-Stearoylcarnitine chloride 34.7 78.8 94 

Epiblastin A 77.4 76.7 79 

ERK5-IN-1 19.7 80.6 108 
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Trivial name 
Induction 

[%] 

Biosimilarity to 

10 µM 

cmp 13 [%] 

Cell 

Count 

[%] 

Fimepinostat, CUDC-907 64.4 75.6 67 

Golvatinib (E7050) 32.6 81.1 99 

GSK2292767 33.3 75.7 100 

GSK583 26.4 79.3 96 

GSK'872 (GSK2399872A) 41.6 77.1 102 

GW2974 36.4 89.2 103 

GZD824 77.9 84.3 74 

HG-9-91-01 63.6 81.2 105 

HTH-01-015 74.4 75.2 70 

IKK-16 (IKK Inhibitor VII) 48.0 93.3 101 

Imatinib (STI571) 20.2 78.6 92 

Imatinib Mesylate (STI571) 75.5 84.2 90 

IPI-3063 32.0 78.7 98 

JNK-IN-8 69.4 89.4 94 

KN-62 40.8 87.0 94 

KN-93 Phosphate 9.3 80.6 96 

Lapatinib (GW-572016) Ditosylate 32.1 82.9 103 

Masitinib (AB1010) 13.1 75.7 92 

Miransertib HCl, ARQ 092 88.8 77.9 87 

MK-2206 2HCl 36.8 78.8 98 

ML347, LDN-193719, VU0469381 10.5 76.0 93 

Foretinib 82.7 75.9 37 

ML-7 17.6 78.9 99 

ML-9 70.8 85.0 99 

Naquotinib(ASP8273) 44.4 76.4 108 

Nemiralisib, GSK2269557 43.5 89.5 98 

NU7441 (KU-57788) 25.6 87.8 94 

NVP-ADW742 30.2 84.4 90 

NVP-AEW541 29.7 90.4 102 

NVP-BHG712 48.0 88.0 100 

NVP-BSK805 2HCl 27.5 85.0 90 

Opaganib (ABC294640) 63.7 80.9 95 

OSI-906 (Linsitinib) 35.1 76.3 94 

PD173074 24.2 83.5 92 

PHA-665752 42.1 80.9 94 

PI-103 52.8 83.4 88 
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Trivial name 
Induction 

[%] 

Biosimilarity to 

10 µM 

cmp 13 [%] 

Cell 

Count 

[%] 

PIK-III 48.7 80.8 96 

Pipinib 65.3 92.4 91 

Ponatinib, AP24534 64.6 89.8 63 

PP2, AG 1879 52.3 77.2 101 

PRT-060318 2HCl 55.3 76.9 85 

PRT062607 (P505-15, BIIB057) HCl 79.1 82.4 74 

Regorafenib (BAY 73-4506) 16.8 83.1 93 

SGI-1776 free base 42.7 88.2 96 

Sunitinib, free base 73.4 75.2 59 

T-00127-HEV1 34.7 77.9 97 

Tepotinib (EMD 1214063) 37.3 76.9 94 

TWS119 46.3 76.0 92 

URMC-099 61.7 75.3 95 

Varlitinib 7.3 80.6 101 

Vatalanib 37.0 76.6 95 

VE-822 46.1 85.7 109 

Vemurafenib (PLX4032, RG7204) 0.7 77.1 97 

VPS34 inhibitor 1 68.9 80.3 85 

VPS34-IN1 21.9 82.4 88 

WAY-600 44.9 83.0 98 

WZ4002 61.8 91.7 98 

WZ4003 75.3 85.7 90 

YM201636 29.2 82.0 93 

inhibitor of GSK3-beta. Bioorg Med Chem Lett. 
(2004), 14(9), 2121-2125. 

73.4 89.3 93 

inhibitor of Insulin-like growth factor I receptor.  
Bioorg Med Chem Lett. (2009), 19(2), 373-7. 

15.2 85.8 95 

inhibitor of Insulin-like growth factor I receptor.  
Bioorg Med Chem Lett. (2009), 19(2), 360-364. 

16.2 83.7 100 

inhibitor of PERK. J. Med. Chem. 2012 11.2 82.8 99 

inhibitor of Epidermal growth factor receptor erbB1. 
Bioorg Med Chem Lett.  (2006), 16(17), 4686-4691. 

14.9 82.8 98 

inhibitor of PLK1 kinase. Bioorg Med Chem Lett. 
2009 Feb 1;19(3):1018-21. 

14.5 81.3 102 

GSK-3 inhibitor. Bioorg Med Chem Lett. (2006), 
16(8), 2091-2094. 

39.2 81.1 87 

ATP-competitive Raf kinase inhibitor. Nature. 2010 
May 20;465(7296):305-10. 

25.0 80.8 96 

inhibitor of Akt1. Bioorg Med Chem Lett. 2009 Apr 
15;19(8):2244-8. 

17.3 80.4 100 

binder of B-Raf kinase. Bioorg Med Chem Lett. 
(2008), 18(15), 4373-4376. 

21.2 79.9 88 
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Trivial name 
Induction 

[%] 

Biosimilarity to 

10 µM 

cmp 13 [%] 

Cell 

Count 

[%] 

inhibitor of cRaf1 kinase. Bioorg Med Chem Lett.  
(2000), 10(3), 223-226. 

19.0 79.6 98 

Inhibitor of B-Raf V600E mutant. Bioorg Med Chem 
Lett. 2011 Aug 1;21(15):4436-40. 

83.9 79.5 95 

dual EGFR/ErbB-2 inhibitor. Bioorg Med Chem Lett.  
(2009), 19(5), 1332-1336. 

1.6 79.2 96 

inhibitor of PIP4K2A. Bioorg Med Chem Lett.  (2000), 
10(3), 223-226. 

24.9 78.7 104 

inhibitor of Akt1. Bioorg Med Chem Lett. 2009 Apr 
15;19(8):2244-8. 

74.3 78.3 55 

Inhibitor of B-Raf V600E mutant. Bioorg Med Chem 
Lett. 2011 Aug 1;21(15):4436-40. 

75.3 77.1 83 

inhibitor of Vascular endothelial growth factor 
receptor 2. J Med Chem (2007), 50(18), 4453-4470. 

55.3 77.0 73 

inhibitor of MAP kinase p38 alpha. Organic Letters 
(2005), 7(21), 4753-4756. 

9.0 76.1 88 

dual EGFR/ErbB-2 inhibitor. Bioorg Med Chem Lett. 
(2009), 19(3), 817-820. 

9.8 75.7 101 

inhibitor of Yes1 kinase. Bioorg Med Chem Lett.  
(2007), 17(21), 5886-5893. 

77.5 75.6 91 

AZ 3146 51.8 77.8 109 

(R)-PFI-2 63.9 89.1 98 

AZ6102 67.9 82.5 88 

AZ82, TS-574-B 29.5 81.4 98 

BIX01294 (hydrochloride hydrate) 44.2 86.2 103 

CB-839 38.7 76.4 94 

CONH hydrochloride 2.8 78.2 104 

Ellipticine 73.7 77.6 49 

GSK126 76.5 83.8 95 

GSK343 42.7 91.7 102 

GSK484 (hydrochloride) 58.2 87.4 93 

GSK-LSD1 (Hydrochloride) 3.6 78.5 102 

JQEZ5 32.0 75.9 101 

Ketoconazole 21.4 84.1 92 

LB42708 40.8 78.8 98 

LLY-507 43.0 92.1 111 

Mardepodect (PF-2545920) 26.6 80.6 96 

Mebeverine hydrochloride 18.1 84.4 110 

MS023 48.0 81.1 107 

MS049 (hydrochloride) 43.0 77.7 99 

Nafronyl oxalate 34.4 76.0 100 

Pirlindole mesylate 21.2 90.1 96 
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Trivial name 
Induction 

[%] 

Biosimilarity to 

10 µM 

cmp 13 [%] 

Cell 

Count 

[%] 

Rifabutin 36.4 84.9 95 

Romidepsin 69.1 76.6 74 

SGC0946 45.9 86.3 97 

SGI-1027 32.5 76.2 76 

SKF-525A hydrochloride, Proadifen hydrochloride 29.7 86.1 104 

SRT 1720 81.5 76.8 89 

Tazemetostat, EPZ6438 34.2 88.8 99 

Trequinsin hydrochloride HL 725 29.5 85.5 93 

UNC0638 56.5 87.9 95 

UNC0642 45.8 86.2 93 

UNC1999 47.3 86.0 100 

it is a very potent and highly selective inhibitor of the 

enzymatic activity of Cathepsin C 
39.7 85.4 95 

EHop-016 61.5 90.2 101 

(±)-Verapamil hydrochloride 11.1 79.0 103 

5-(N-Ethyl-N-isopropyl)amiloride, EIPA 72.2 81.4 94 

AMG 9810 33.3 85.5 94 

Amlodipine 15.2 76.7 98 

Aprindine hydrochloride, Amidonal 32.1 91.0 100 

Benoxinate hydrochloride 16.1 85.0 103 

Benzamil hydrochloride 38.3 85.4 88 

Bepridil hydrochloride 54.2 86.9 89 

Cinacalcet HCl 57.9 75.6 109 

Crobenetine 46.5 76.8 94 

Dibucaine 30.6 85.6 107 

Fendiline hydrochloride 7.4 79.0 101 

Flunarizine dihydrochloride 40.1 84.7 100 

IMID-4F hydrochloride 10.4 82.4 103 

Lercanidipine hydrochloride hemihydrate 82.2 79.0 80 

Lidoflazine 70.1 90.0 103 

Loperamide hydrochloride 63.7 92.1 98 

Mibefradil dihydrochloride, Ro 40-5967 10.5 80.5 97 

Nicardipine hydrochloride, YC-93 hydrochloride 74.4 78.9 87 

NNC 55-0396 38.2 88.7 103 

Oxethazaine 79.3 78.9 97 

Phenamil methanesulfonate 68.2 88.9 94 
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Trivial name 
Induction 

[%] 

Biosimilarity to 

10 µM 

cmp 13 [%] 

Cell 

Count 

[%] 

Prenylamine lactate 59.9 89.1 86 

Propafenone hydrochloride 32.8 83.5 92 

Quinidine sulfate 66.3 78.9 83 

Quinine sulfate 57.5 80.5 81 

4-Androsten-4-ol-3,17-dione, 4-OH-A 16.2 80.8 96 

Alfadolone acetate 10.9 84.9 104 

Epiandrosterone 22.1 84.0 101 

Equilin 16.4 85.8 96 

Estrone, Folliculin 14.5 86.3 87 

Formestane 21.8 77.6 110 

Melengestrol acetate 21.1 77.0 104 

Progesterone 46.3 79.2 94 

U-73343 27.1 87.0 101 

Fluvastatin sodium salt 77.9 80.2 102 

Atorvastatin 49.2 81.3 105 

Mevastatin 55.8 82.7 92 

Isoconazole 15.2 82.6 91 

Terconazole 42.1 83.3 102 

Butoconazole nitrate 40.8 81.7 88 

(-)-Epinephrine bitartrate, Adrenaline bitartrate 14.0 77.9 105 

(S)-crizotinib 46.6 84.4 93 

3-Methoxy-morphanin hydrochloride, nor-

Dextromethorphan hydrochloride 
25.4 78.6 98 

5-(N,N-hexamethylene)amiloride 85.5 82.6 86 

A-395 31.3 80.0 92 

Amodiaquin dihydrochloride ;dihydrate 16.2 81.9 103 

Aumitin 25.7 82.6 98 

Azithromycin 10.4 83.4 110 

Bafilomycin A1, Baf-A1 79.3 82.6 91 

Beta-Escin 81.7 80.5 82 

Ceramide 10.4 76.9 106 

Chromopynone 1 21.6 82.0 97 

CPI-637 74.1 77.6 89 

Cyclopamine, V. californicum 20.4 75.2 97 

Deltarasin 85.5 87.5 81 

Dibucaine hydrochloride, ;Cinchocaine hydrochloride 17.1 85.5 98 
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Trivial name 
Induction 

[%] 

Biosimilarity to 

10 µM 

cmp 13 [%] 

Cell 

Count 

[%] 

Dirithromycin 8.5 79.3 100 

Erythromycin 4.8 78.5 104 

Fingolimod (FTY720) HCl 15.0 78.6 98 

GSK-5959 78.9 75.6 76 

GSK6853 49.9 84.7 91 

GX15-070, Obatoclax (mesylate) 92.4 76.1 73 

Halofantrine hydrochloride 52.7 76.2 90 

I-BET151 28.5 79.2 93 

Iofetamine hydrochloride 39.6 81.3 102 

Itraconazole 73.1 88.3 96 

JK 184 84.5 79.8 45 

Lipoxygenin 28.3 88.1 84 

MDL 28170, Z-Val-Phe-CHO 44.0 82.9 95 

Mefloquine 26.8 76.0 101 

Monensin A sodium salt, Rumensin, ;Coban 45 81.9 78.8 79 

MRK-740 18.0 88.7 108 

NVS-CECR2-1 80.1 76.4 73 

OICR-9429 24.4 86.1 103 

PDMP hydrochloride 68.4 79.9 89 

Perhexiline maleate 22.5 79.7 108 

Phenazopyridine hydrochloride 5.9 77.1 99 

PIK-93 28.8 80.1 96 

Quinacrine dihydrochloride 52.0 75.1 88 

SAG 43.9 91.8 97 

Saquinavir mesylate 40.1 76.5 87 

SAR405 47.3 90.0 88 

SGC-CBP30 76.2 78.3 82 

Smoothib 8.1 78.7 88 

Sonidegib (Erismodegib, NVP-LDE225) 26.1 76.9 101 

Spiramycin I,Spiramycin II and, Spiramycin III 35.4 86.5 99 

Tariquidar 46.5 78.2 96 

Tenovin-6 50.8 80.3 96 

Tetracaine hydrochloride 29.9 78.1 97 

TMB-8 hydrochloride 20.0 84.9 106 

U-73122 70.3 76.3 78 

U-74389G maleate 32.8 84.9 91 
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Trivial name 
Induction 

[%] 

Biosimilarity to 

10 µM 

cmp 13 [%] 

Cell 

Count 

[%] 

Zosuquidar (LY335979) 3HCl 47.5 75.6 98 

Dimethisoquin hydrochloride 59.8 92.8 95 

Dipivefrin hydrochloride 50.6 84.0 90 

Levopropoxyphene napsylate 9.5 81.7 104 

Glafenine hydrochloride 17.8 85.4 90 

Diperodon hydrochloride 14.3 81.3 106 

Suloctidil 47.5 86.9 105 

Nitrarine dihydrochloride 14.2 76.5 88 

BI-167107 53.0 75.4 102 

negative control of BI 1002494. 51.6 77.5 75 

 

 

Table 15: Proteins modulated by 10 µM compound 13. 

U-2OS cells were treated for 24 h with 10 µM compound 13 prior to proteome profiling using tandem 
mass tags for quantification by nanoHPLC-MS/MS. Data are mean values ± SD of three independent 
experiments. Log2 (ratio) and p-values (p < 0.05 Benjamini-Hochberg corrected) of up- and down-
regulated proteins. Gene names of proteins involved in the regulation of cholesterol homeostasis and 
lysosomal function were depicted in bold. 
 

Gene name 
10 µM Compound 13 

Log2 (ratio) p-value 

GMEB2 -0.514083743 7.73841E-14 

EXOC6 -0.472540617 6.34912E-12 

COG7 -0.466577172 1.16076E-11 

DTL -0.44222784 1.26334E-10 

CEP131 -0.440257907 1.52432E-10 

PPT1 -0.395532012 8.73579E-09 

FAM49B -0.390654147 1.32511E-08 

DYM -0.381377518 2.88757E-08 

HNRNPD -0.372069716 6.19797E-08 

EID2 -0.346938074 4.46125E-07 

FIGNL1 -0.341621369 6.66231E-07 

PCTP -0.326981902 1.95107E-06 

DCP2 -0.324651927 2.30566E-06 

TGFB2 -0.315437198 4.41494E-06 

SAMD4B -0.309584945 6.61028E-06 

SDF4 -0.303456366 1.00129E-05 

PDCD2 -0.290772885 2.3084E-05 
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Gene name 
10 µM Compound 13 

Log2 (ratio) p-value 

SNAPC1 -0.289370954 2.52663E-05 

TFAM -0.288827926 2.61632E-05 

KBTBD4 -0.288166195 2.72971E-05 

HMGN2 -0.283088326 3.76905E-05 

CDKN2AIP -0.272970557 7.05824E-05 

TPM2 -0.269599378 8.65956E-05 

KLHL11 -0.268964052 8.99746E-05 

PSMB10 -0.262168556 0.000134814 

SMARCAL1 -0.262094021 0.000135406 

HSPA13 -0.26199472 0.000136199 

UPF3A -0.258494407 0.000167113 

EEF1D -0.257168114 0.000180465 

ANO10 -0.252502561 0.000235838 

CLSPN -0.252315432 0.000238361 

PTPN18 -0.251427948 0.000250677 

GALK2 -0.248995692 0.000287559 

SCPEP1 -0.244628653 0.000366839 

NCOA6 -0.236630738 0.000567378 

SKP2 -0.234966815 0.000620272 

CPSF3L -0.233643487 0.000665576 

TAF6L -0.232634395 0.00070217 

LYAR -0.231650233 0.000739653 

TAF5 -0.224628955 0.001065968 

ERBB2IP -0.224144593 0.001092791 

C5orf22 -0.223571777 0.001125317 

SPTY2D1 -0.223408714 0.001134739 

CDC123 -0.222762451 0.001172801 

PPP1R14C -0.221746519 0.001235027 

MRPL14 -0.221562833 0.001246598 

hCG_2043597 0.280741721 0.001334606 

ANXA4 0.280886441 0.001326929 

CLEC16A 0.282538235 0.001242145 

DDOST 0.282674968 0.001235356 

ENO2 0.282857507 0.001226346 

STXBP1 0.284472942 0.001149212 

GNB1 0.288570613 0.00097322 

ARHGAP31 0.288840652 0.000962547 

LSS 0.289235234 0.000947147 

HGH1 0.289774179 0.000926482 

MAPK7 0.290355593 0.000904657 

CEP152 0.29109323 0.000877653 

RTN1 0.292014092 0.000844991 
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Gene name 
10 µM Compound 13 

Log2 (ratio) p-value 

CAMK2D 0.297675759 0.000667708 

TMEM33 0.300340652 0.000596837 

GRN 0.301309228 0.000572862 

QPRT 0.302353263 0.000548025 

CALM2;CALM1;CALM3 0.306556672 0.000457832 

PHACTR4 0.307595253 0.000437788 

FADS2 0.309862942 0.000396836 

GNPDA1 0.310678869 0.000382999 

CRIPT 0.316090256 0.000302036 

NADSYN1 0.316307336 0.00029915 

LRRC49 0.320201308 0.000251564 

LMAN1 0.321120709 0.000241415 

TBC1D2B 0.321267605 0.000239829 

CNRIP1 0.323652059 0.000215421 

NIN 0.32386142 0.000213393 

CSTB 0.329619884 0.000164162 

PTAR1 0.334618062 0.000130302 

PANK2 0.335514665 0.000124972 

TIMP1 0.34388575 8.42069E-05 

MEAF6 0.348755479 6.66579E-05 

ACSS2 0.35573256 4.74445E-05 

IDI1 0.355847836 4.71763E-05 

KLHL25 0.360750526 3.70122E-05 

HMGCS1 0.360870302 3.67921E-05 

FER;Pe1Fe10 0.361872017 3.4999E-05 

UBXN2B 0.362488627 3.39369E-05 

TRIP11 0.362581044 3.37804E-05 

YES1 0.372843236 2.00826E-05 

MORF4L2 0.380703419 1.33644E-05 

OSGEPL1 0.383294702 1.16654E-05 

BAG1 0.38496837 1.06798E-05 

UTP14A 0.389561921 8.36682E-06 

KIF2C 0.396593034 5.72886E-06 

LPXN 0.401644439 4.34728E-06 

APP 0.402385622 4.17363E-06 

GABARAP 0.408535093 2.96803E-06 

TRAPPC2B;TRAPPC2 0.419963479 1.5553E-06 

SAMD9L 0.420131803 1.54038E-06 

ASCC2 0.436769366 5.83496E-07 

KCMF1 0.437207729 5.68491E-07 

RBFA 0.44029364 4.72906E-07 

STARD4 0.451436609 2.40829E-07 
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Gene name 
10 µM Compound 13 

Log2 (ratio) p-value 

HS1BP3 0.466895074 9.19979E-08 

FDFT1 0.472195894 6.56781E-08 

GOLGB1 0.48451972 2.95895E-08 

CDK5 0.486164004 2.65643E-08 

DBI 0.487911582 2.36784E-08 

EYA3 0.507926226 6.16937E-09 

KLHL18 0.519226074 2.82247E-09 

NEU1 0.550253808 3.03071E-10 

PCBD1 0.567700386 8.1857E-11 

KDELR2 0.569868684 6.93771E-11 

GPNMB 0.570561588 6.57966E-11 

CCM2 0.67520237 1.08238E-14 

KHNYN 0.797926903 6.49975E-20 

TNFSF13B 0.851840854 1.78102E-22 

PARP12 0.860564709 6.61678E-23 

RPRD1A 0.883647799 4.59285E-24 

HAUS2 0.923579454 3.86152E-26 

 

 

Table 16: Proteins modulated by compound 12. 

U-2OS cells were treated for 24 h with 10 µM and 30 µM compound 12 prior to proteome profiling using 
tandem mass tags for quantification by nanoHPLC-MS/MS. Data are mean values ± SD of three 
independent experiments. Log2 (ratio) and p-values (p < 0.05 Benjamini-Hochberg corrected) of up- 
and down-regulated proteins. Gene names of proteins involved in the regulation of cholesterol 
homeostasis and lysosomal function were depicted in bold. 
 

10 µM compound 12 30 µM compound 12 

Gene name log2 (ratio) p-value Gene name log2 (ratio) p-value 

ZMYND8 0.275106 4.41544E-06 ARFIP2 0.363874912 3.50003E-05 

ZBTB8OS -0.1511 0.00074765 CCM2 0.516362131 4.1351E-09 

CCM2 0.331239 3.38521E-08 hCG_2043597 0.576957464 5.02057E-11 

ING1 0.287063 1.67795E-06 GCSH 0.316507041 0.0003212 

CTSD -0.16555 0.000216832 PPT1 -0.523840964 3.71933E-15 

PPT1 -0.36348 2.87743E-16 GPNMB 0.442945629 4.63762E-07 

AP1S1 -0.20632 3.81588E-06 GEMIN2 -0.294866025 9.19822E-06 

UHRF1BP1L 0.257038 1.77374E-05 EYA3 0.475179911 6.35025E-08 

VWA8 0.217128 0.00028256 CENPK 0.36173898 3.89122E-05 

GTPBP10 -0.49932 2.23567E-29 HMGB3 -0.26044628 8.86278E-05 

PIP5K1A -0.1722 0.000118602 APP 0.521319985 2.93336E-09 

PSMD10 0.218746 0.000254602 NEU1 0.570569158 8.1715E-11 

CDC37L1 0.205907 0.000571059 MTMR1 0.406395733 3.77223E-06 
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10 µM compound 12 30 µM compound 12 

Gene name log2 (ratio) p-value Gene name log2 (ratio) p-value 

BRD8 -0.17075 0.00013549 ARAP3 0.299667478 0.000660748 

NIN 0.29252 1.06551E-06 PPP2R5D -0.299114853 6.83266E-06 

EEFSEC -0.17931 6.07512E-05 UQCRC2 0.62341696 1.24209E-12 

UBE2F 0.224507 0.000174752 GABARAP -0.304501593 4.66087E-06 

PPP1R9B 0.213158 0.000363777 FCHO2 0.335772157 0.000134831 

NCALD 0.209428 0.000459535 CLUH -0.344180197 2.29533E-07 

SNCA 0.195426 0.001069989 BAG1 0.310493052 0.000417242 

EXOC6 -0.34463 9.06721E-15 HMGN4 -0.219782293 0.000930115 

FBXO3 0.218738 0.000254744 STK25 0.318064779 0.000299938 

LMO7 -0.27955 3.4157E-10 UBE2C -0.221224949 0.000860825 

DTL -0.14571 0.001156513 KHNYN 0.878137767 1.4062E-23 

FAH -0.19242 1.65816E-05 ARPC3 -0.23409985 0.000423074 

RPS2 -0.27706 4.89919E-10 FANCG 0.463371992 1.33574E-07 

UQCRC2 0.204948 0.000605553 CALU -0.256512105 0.000112983 

GABARAP 0.276932 3.81839E-06 LPXN 0.592305422 1.52496E-11 

MSL1 -0.27581 5.85874E-10 SIN3B 0.35595414 5.16973E-05 

WWP2 -0.22568 4.2037E-07 KLHL18 0.374186128 2.08195E-05 

HMGN4 0.305076 3.63703E-07 PCNT 0.380778402 1.48326E-05 

KHNYN 0.447827 9.28312E-14 NFATC1 -0.275994152 3.28704E-05 

RIPK2 -0.14944 0.000856456 AIFM1 0.302716017 0.000581361 

SH3BGRL 0.250096 2.95796E-05 FADS2 0.346008539 8.34394E-05 

GFPT2 -0.14791 0.000969443 TIMP1 0.314513564 0.000350469 

HMGN2 0.239076 6.49094E-05 CSTB 0.339213014 0.000114911 

DBI 0.247932 3.46018E-05 TYMS -0.249908492 0.00016857 

PSAP -0.15159 0.000718362 HMGN2 -0.315710187 2.06103E-06 

ERCC1 0.217834 0.000270028 S100A6 0.33475849 0.000141293 

TRAPPC2B 0.280591 2.84629E-06 TPM2 -0.248078302 0.00018803 

CPS1 0.236401 7.81809E-05 PSMB1 0.340834856 0.000106516 

MAN1A1 -0.17764 7.12589E-05 APC 0.319837004 0.000277354 

FDFT1 0.267719 7.87752E-06 HMGB2 -0.31854251 1.66982E-06 

CETN2 0.222689 0.000196967 PSMB4 0.314677268 0.000347974 

HSPA13 -0.17867 6.45875E-05 PSMB6 0.307700396 0.000470424 

PSMB3 -0.16706 0.000189468 PSMB5 0.30887568 0.000447315 

SMARCA2 0.247667 3.52704E-05 GRN 0.30088675 0.000627858 

SNRPF 0.279688 3.06127E-06 DDT 0.398378044 5.84169E-06 

TMSB4X 0.675114 3.47475E-29 CPS1 -0.23813273 0.000336244 

COG7 -0.18416 3.79247E-05 HSPA1L 0.35444963 5.56238E-05 

RHOG -0.1474 0.001009926 FDFT1 0.474306732 6.71326E-08 

RBM3 0.198138 0.000912001 LSS 0.352422774 6.13618E-05 

TFAM -0.2252 4.45365E-07 PSMB3 0.328369737 0.000189233 

CDK5 0.369912 7.24681E-10 PSMB2 0.38454175 1.21927E-05 

HNRNPU 0.221732 0.000209707 POLR2J -0.230415195 0.000520305 
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10 µM compound 12 30 µM compound 12 

Gene name log2 (ratio) p-value Gene name log2 (ratio) p-value 

MAPK7 0.583439 3.12905E-22 TPD52 -0.236843273 0.000362005 

HNRNPD 0.396475 4.09931E-11 GFER -0.237237275 0.000353944 

ESPL1 0.39714 3.80562E-11 PSMA6 0.343377203 9.45116E-05 

NCOA6 -0.1742 9.85261E-05 TGFB2 -0.243875504 0.000240996 

GOLGB1 0.535912 5.13804E-19 RPL39P5 -0.236115605 0.000377345 

HSP90AB4P -0.19701 1.03074E-05 TFAM -0.247313604 0.00019677 

HSP90AB2P -0.17476 9.34427E-05 HMGCS1 0.335415244 0.000137074 

C3orf38 0.217032 0.000284302 IDI1 0.440250009 5.44409E-07 

RIF1 0.207543 0.000516442 NCOA6 -0.239774838 0.000305917 

HAUS6 -0.16081 0.000329207 LPIN1 0.422102123 1.56444E-06 

DENND4C -0.17423 9.82275E-05 SNAPC1 -0.432466894 8.26248E-11 

RNF123 0.223067 0.000192142 TWISTNB -0.225566283 0.000680125 

SPTY2D1 0.206045 0.000566272 UQCC2 -0.333920062 5.16625E-07 

RLTPR 0.292202 1.0943E-06 YOD1 0.295317501 0.00079159 

LDOC1L -0.16535 0.000220763 FOCAD 0.315857649 0.000330473 

FIGNL1 -0.18712 2.8297E-05 FAM160B1 0.303207397 0.000569428 

PRUNE -0.18814 2.55705E-05 SPTY2D1 2.999686003 1.0976E-256 

PABPN1 -0.18016 5.60086E-05 FIGNL1 -0.243370399 0.00024823 

NAA40 0.244429 4.44884E-05 DYM -0.321462572 1.34163E-06 

NR2C2AP 0.37771 3.18029E-10 NAA40 0.310219228 0.000422197 

DCP2 0.287675 1.59533E-06 RBFA 0.475215495 6.33587E-08 

MYO18B 0.318687 1.08182E-07 MNS1 -0.25172475 0.000151143 

SAMD9L 0.404892 1.58595E-11 YIPF5 -0.263744563 7.21215E-05 

DHX37 -0.18649 3.01359E-05 STARD4 0.391470641 8.46001E-06 

RPTOR -0.21671 1.1953E-06 PAWR -0.220360562 0.000901743 

APITD1 0.219565 0.000241473 RPRD1A 0.318413734 0.000295359 

ZCCHC7 0.211991 0.000391534 PSMB7 0.292536169 0.000887448 

LEPREL4 -0.22838 3.04649E-07 SDF2 -0.279891968 2.54266E-05 

DVL3 0.40306 1.95328E-11 LARP6 0.354127288 5.6501E-05 

WBSCR16 0.194091 0.001156709 LLPH -0.324252605 1.08662E-06 

CHAMP1 0.257642 1.69553E-05 KLHL25 0.299264342 0.00067197 

UBE2E2 0.256329 1.86988E-05 PARP12 0.785046577 3.70506E-19 

NDNL2 -0.14823 0.000944678 ASCC2 0.375219375 1.9749E-05 

NEDD4L -0.19007 2.10502E-05 OSGEPL1 0.396136463 6.59198E-06 

TEFM 0.314722 1.54802E-07 EPB41L5 0.326093733 0.000209733 

KCTD15 0.324022 6.63647E-08 ACSS2 0.298487365 0.0006941 

PSMB7 -0.17853 6.54393E-05 HAUS2 0.799909294 7.86191E-20 

LARP6 0.259766 1.4457E-05 CDKN2AIP -0.294218361 9.62136E-06 

TTYH3 -0.204 4.90537E-06 ZAK -0.238468647 0.00032982 

PARP12 0.568155 3.61808E-21 CRIPT 0.337803841 0.000122708 

PLEKHA4 0.200599 0.000787625 PDP1 -0.490825713 1.71079E-13 

C2orf44 0.33055 3.61185E-08 GNG12 0.395233631 6.9195E-06 
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10 µM compound 12 30 µM compound 12 

Gene name log2 (ratio) p-value Gene name log2 (ratio) p-value 

MEAF6 0.211249 0.000410186 CTSZ -0.260291249 8.94854E-05 

SCPEP1 -0.14619 0.001113106 TNFSF13B -0.498197854 7.42977E-14 

CHD8 -0.16711 0.000188615   1 

STARD5 -0.20099 6.77389E-06   1 

PDP1 0.220348 0.000229509   1 

PALD1 -0.18009 5.6371E-05   1 

TNFSF13B 0.597883 2.92108E-23   1 

TMED5 -0.16542 0.000219384   1 

STARD13 -0.16088 0.000327323   1 

PCLO 0.467785 7.18421E-15   1 

 

 

Table 17: Proteins modulated by compound 10. 

U-2OS cells were treated for 24 h with 10 µM and 30 µM compound 10 prior to proteome profiling using 
tandem mass tags for quantification by nanoHPLC-MS/MS. Data are mean values ± SD of three 
independent experiments. Log2 (ratio) and p-values (p < 0.05 Benjamini-Hochberg corrected) of up- 
and down-regulated proteins. Gene names of proteins involved in the regulation of cholesterol 
homeostasis and lysosomal function were depicted in bold. 
 

10 µM compound 10 30 µM compound 10 

Gene names log2(ratio) p-value Gene names log2(ratio) p-value 

CCM2 0.674834 8.85478E-09 CCM2 0.396467 1.57E-08 

hCG_2043597 -0.4212 4.56108E-06 STXBP1 0.278254 7.22E-05 

FAM49B 0.619818 1.28544E-07 hCG_2043597 0.539353 1.48E-14 

EYA3 0.394194 0.000803118 PPT1 -0.27903 1.66E-07 

NIN 0.731661 4.45408E-10 GPNMB 0.246968 0.000427 

KHNYN 0.806981 5.93329E-12 EYA3 0.320612 4.82E-06 

LPXN 0.464159 7.81684E-05 NIN 0.414543 3.4E-09 

HMGN2 0.508677 1.487E-05 EXOC6 -0.2229 2.91E-05 

TRAPPC2B 0.414175 0.000427393 DTL -0.20799 9.6E-05 

PCBD1 -0.41549 6.11978E-06 CEP131 -0.1917 0.000325 

TFAM -0.34399 0.000178166 KHNYN 0.917727 4.2E-39 

CDK5 0.450923 0.000124658 TRAPPC2B 0.418881 2.33E-09 

HNRNPD 0.471276 6.05125E-05 FDFT1 0.247628 0.000412 

GOLGB1 0.412058 0.000457531 HSPA13 -0.18872 0.000402 

CLEC16A -0.39783 1.48414E-05 COG7 -0.21725 4.61E-05 

SPTY2D1 0.547391 3.13728E-06 CDK5 0.440947 3.23E-10 

FIGNL1 -0.34737 0.000153898 MAPK7 0.537709 1.77E-14 
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10 µM compound 10 30 µM compound 10 

Gene names log2(ratio) p-value Gene names log2(ratio) p-value 

RBFA 0.421443 0.000337454 HNRNPD 0.397678 1.42E-08 

PARP12 0.830905 1.3824E-12 NCOA6 -0.37097 3.38E-12 

CDKN2AIP -0.44222 1.49697E-06 GOLGB1 0.54073 1.27E-14 

CRIPT 0.398381 0.000705286 SPTY2D1 3.141836 NaN 

TNFSF13B 0.513 1.25638E-05 MRPL14 -0.17732 0.000886 

   FIGNL1 -0.30627 9.15E-09 

   DYM -0.1865 0.000471 

   DCP2 0.327255 3.05E-06 

   SAMD9L 0.263197 0.000174 

   PARP12 0.356544 3.68E-07 

   MEAF6 0.247989 0.000404 

   HAUS2 0.36299 2.26E-07 

   CDKN2AIP -0.38032 9.58E-13 

   TNFSF13B 0.643716 4.44E-20 

 

 

Table 18: Proteins modulated by compound 11. 

U-2OS cells were treated for 24 h with 10 µM and 30 µM compound 11 prior to proteome profiling using 
tandem mass tags for quantification by nanoHPLC-MS/MS. Data are mean values ± SD of three 
independent experiments. Log2 (ratio) and p-values (p < 0.05 Benjamini-Hochberg corrected) of up- 
and down-regulated proteins. Gene names of proteins involved in the regulation of cholesterol 
homeostasis and lysosomal function were depicted in bold. 
 

10 µM compound 11 30 µM compound 11 

Gene names log2(ratio) p-value Gene names log2(ratio) p-value 

ZMYND8 0.375299 5.165E-05 OTUD5 0.389652 0.000233 

CDC42BPA -0.47973 4.371E-12 CIC 0.403387 0.000139 

CCM2 0.480232 2.249E-07 CDC42BPA -0.50527 2.15E-09 

TTN -0.27401 7.805E-05 CCM2 0.497852 2.56E-06 

SCOC 0.304865 0.0010021 TTN -0.30962 0.000241 

RASSF7 -0.34158 8.339E-07 RASSF7 -0.40974 1.2E-06 

EIF4G3 -0.23475 0.0007179 hCG_2043597 1.460789 2.1E-43 

PPT1 -0.26608 0.0001253 PPT1 -0.42411 5.01E-07 

AP1S1 -0.28996 2.904E-05 EPS8 0.389948 0.000231 

GTPBP10 -0.95879 1.251E-43 AP1S1 -0.3198 0.00015 

VBP1 0.538751 6.348E-09 GTPBP10 -1.03344 2.02E-34 

NIN 0.623737 1.792E-11 APOBEC3B 0.40281 0.000142 

TMEM33 -0.35612 2.785E-07 RIOK3 0.467603 9.99E-06 
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10 µM compound 11 30 µM compound 11 

Gene names log2(ratio) p-value Gene names log2(ratio) p-value 

PHLDB2 0.322637 0.0004992 NIN 0.672574 2.06E-10 

NEDD8-MDP1 0.373444 5.624E-05 TANGO2 0.410951 0.000104 

LMO7 -0.4323 4.405E-10 PPP1R9B 0.410761 0.000105 

NAT1 0.30558 0.0009751 LMO7 -0.5625 2.68E-11 

PPP2R5D -0.3786 4.695E-08 PPP2R5D -0.47332 2.05E-08 

MSL1 -0.32321 3.136E-06 MSL1 -0.43762 2.15E-07 

STXBP3 0.405139 1.247E-05 STXBP3 0.374567 0.000404 

STK25 0.397111 1.846E-05 KHNYN 0.700989 3.46E-11 

KHNYN 0.776296 6.058E-17 LPXN 0.596353 1.74E-08 

FANCG 0.526879 1.351E-08 SAP30 -0.28383 0.000762 

GYG2 0.369188 6.826E-05 MYCBP2 -0.31091 0.000227 

LPXN 0.442366 1.843E-06 TRAPPC2B 0.548577 2.18E-07 

SAP30 -0.24194 0.0004892 MAN1A1 -0.38006 6.64E-06 

MYCBP2 -0.277 6.511E-05 SMARCA2 0.370857 0.000461 

YEATS4 0.321164 0.0005295 RBM5 -0.30042 0.000367 

HMGN1 -0.28527 3.904E-05 PCBD1 -0.3227 0.00013 

TRAPPC2B 0.553436 2.441E-09 TMSB4X 0.69082 6.61E-11 

EEF1A 0.36909 6.857E-05 PPIA -0.51695 9.11E-10 

HIST1H1C 0.308303 0.0008781 RBM3 0.380056 0.000332 

STMN1 0.309552 0.0008367 TFAM -0.28426 0.000748 

MAN1A1 -0.31301 6.356E-06 CDK5 0.503605 1.95E-06 

NUP153 0.399443 1.648E-05 HNRNPU 0.362921 0.00061 

SMARCA2 0.379642 4.226E-05 DNAJC3 0.800352 3.86E-14 

RBM5 -0.26255 0.000154 HNRNPD 0.580688 4.08E-08 

CLTCL1 -0.24249 0.000475 ESPL1 0.392193 0.000212 

TPD52 -0.27075 9.494E-05 NCOA6 -0.45508 6.95E-08 

PCBD1 -0.33556 1.297E-06 LRRC14 0.395729 0.000186 

TMSB4X 0.782417 3.457E-17 FAM98C 0.362854 0.000612 

PPIA -0.45242 6.586E-11 EDRF1 0.358501 0.000711 

TFAM -0.23696 0.0006387 ARID4B -0.30469 0.000303 

CDK5 0.339108 0.0002537 HSP90AB4P -0.47783 1.5E-08 

HNRNPU 0.395036 2.04E-05 C3orf38 0.4901 3.65E-06 

MAPK7 0.42711 4.111E-06 RIF1 0.401328 0.00015 

HNRNPD 0.560403 1.538E-09 YOD1 0.372391 0.000437 

ESPL1 0.363705 8.737E-05 SPTY2D1 0.556556 1.45E-07 

NCOA6 -0.37818 4.86E-08 RLTPR 0.381738 0.000312 

LRRC14 0.389529 2.655E-05 FIGNL1 -0.33237 8.13E-05 

FAM98C 0.337785 0.0002682 NR2C2AP 0.507455 1.63E-06 

ARID4B -0.32164 3.503E-06 ZCCHC7 0.450354 2.1E-05 

HSP90AB4P -0.33492 1.359E-06 RPP25L 0.375317 0.000394 

C3orf38 0.467504 4.644E-07 DOCK8 -0.34611 4.08E-05 

RARS2 -0.25465 0.0002423 NUP35 0.413372 9.45E-05 
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10 µM compound 11 30 µM compound 11 

Gene names log2(ratio) p-value Gene names log2(ratio) p-value 

RIF1 0.374214 5.429E-05 CHAMP1 0.42489 5.99E-05 

YOD1 0.478514 2.483E-07 UBE2E2 0.357716 0.000731 

SPTY2D1 0.57939 4.245E-10 NDNL2 -0.36561 1.47E-05 

FIGNL1 -0.30807 8.883E-06 CFAP54 0.639724 1.49E-09 

DPP8 -0.23765 0.0006159 KCTD15 0.579874 4.26E-08 

GTF2H5 0.341613 0.0002283 LGMN 0.503561 1.96E-06 

NR2C2AP 0.514085 2.993E-08 ACBD6 0.36123 0.000647 

MYO18B 0.605165 6.931E-11 PARP12 0.68586 9.03E-11 

RPAP2 -0.27893 5.785E-05 RWDD1 0.438552 3.43E-05 

RPTOR -0.23252 0.000807 CDKN2AIP -0.38457 5.16E-06 

APITD1 0.34471 0.0002002 CALCOCO1 -0.32589 0.000112 

ZCCHC7 0.529495 1.145E-08 TNFSF13B 0.917605 4.14E-18 

RPP25L 0.316998 0.000625 MAGED1 0.503856 1.93E-06 

SMC1B -0.24056 0.000527 PCLO 0.377678 0.000361 

DOCK8 -0.33547 1.306E-06    

NUP35 0.392705 2.282E-05    

RDH11 -0.25429 0.0002472    

DVL3 0.306508 0.000941    

CHAMP1 0.394449 2.098E-05    

UBE2E2 0.415321 7.506E-06    

NDNL2 -0.35309 3.512E-07    

CFAP54 0.629236 1.192E-11    

NACC1 -0.2364 0.0006581    

KCTD15 0.548652 3.341E-09    

PARP12 0.735483 2.285E-15    

TMX1 0.309767 0.0008297    

RWDD1 0.371918 6.03E-05    

BRD7 0.314459 0.0006908    

AASDHPPT -0.23296 0.0007886    

CDKN2AIP -0.47124 1.032E-11    

PDP1 0.309997 0.0008223    

CALCOCO1 -0.33206 1.672E-06    

ARMCX3 -0.2783 6.014E-05    

DDX19B 0.316956 0.0006261    

TNFSF13B 0.806804 3.547E-18    

TMED5 -0.23777 0.000612    

MRFAP1 0.312651 0.0007416    

PCLO 0.388744 2.756E-05    
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Table 19: Structures of selected annotated reference compounds with high biosimilarity (> 75 
%) to 10 µM compound 13. 

Trivial name Structure Trivial name Structure 

SB 216641 

 

Benoxinate 

 

Ozanimod 

 

Aprindine 

 

Zotepine 

 

EIPA 

 

LP44 

 

Crobenetine 

 

Mardepodect 

 

VE-822 

 

LLY-507 

 

Ponatinib 

 

SGC0946 

 

Nemiralisib 
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Trivial name Structure Trivial name Structure 

EHop-016 

 

WZ4002 

 

SGI-1776 

 

Tenovin-6 

 

NVP-

AEW541 

 

Deltarasin 

 

NU7441 

 

I-BET151 

 

JNK-IN-8 

 

OICR-9429 

 

Avapritinib 

 

GSK6853 

 

Trequinsin 

 

PP2 

 



APPENDIX 

194 
 

Trivial name Structure Trivial name Structure 

NVS-

CECR2-1 

 

Zosuquidar 

 

AZ 3146 

 

NVP-

BHG712 
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13.2.1 Vector maps 

pSyn-SRE-T-Luc 

The pSyn-SRE-T-Luc plasmid was obtained from Addgene (#60444) where it was deposited by Timothy 

Osborne.[91] 
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pSyn-SRE-Mut-T-Luc 

The pSyn-SRE-Mut-T-Luc plasmid was obtained from Addgene (#60490) where it was deposited by 

Timothy Osborne.[90] 
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pRL-TK 

The pRL-TK plasmid was obtained from Promega (E2241). 
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14 EIDESSTATTLICHE VERSICHERUNG (AFFIDAVIT) 

 


