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Study of stochastic aspects in the modeling of the strain-induced
crystallization in unfilled polymers
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The present contribution deals with the mechanical modeling of the crystallization of unfilled polymers under consideration of
stochastic aspects of the process. The framework applied is thermodynamically consistent. The model involves the diameter
of crystalline regions and the distance between these regions as internal variables. The necessary evolution equations are based
on the assumptions for the effective free energy and the dissipation potential of a control volume. A distribution function is
introduced to express the expectation value of relevant quantities. Furthermore, the numerical implementation of probability
integrals is shown. The proposed concepts are of general nature and can be taken as a basis for the modeling of similar
stochastic processes involving the evolution of the internal microstructure.
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1 Introduction

Strain-induced crystallization is a phenomenon in which a part of amorphous polymer chains change their arrangement and
form regular crystalline regions. These changes in the microstructure influence the macrostructural properties as documented
by numerous experimental investigations [1]. The statistic aspects play here an important role, which manifests through the
spatial distribution of crystalline regions and the variation of their size.

2 Statistical mechanical modeling of strain-induced crystallization

Two internal variables are introduced in order to describe the microstructural processes associated with strain-induced crys-
tallization. Variable D specifies the characteristic diameter of a crystalline region under the assumption that the circular form
well approximates the natural shape of crystalline regions, whereas, internal variable r indicates the distance between two
crystalline regions measured between their centers. Here, it holds that aRVE ≥ r ≥ 0, and aRVE represents the size of
the representative volume element (RVE). The work pursues the minimal principle of dissipation potential in order to derive
the evolution laws of the internal variables obeying the second thermodynamic law. According to this theory, the Lagrange
function L consists of the Helmholtz energy rate ψ̇ and the dissipation potential ∆ as follows

L = ψ̇ + ∆ + λc

(
V̇1 − V̇ 1

)
, ψ = ψ1 + ψ2 , ∆ = ∆D + ∆r . (1)

In this assumption, the Helmholtz energy ψ is additively split into a part due to the energy of crystalline regions ψ1 and a part
corresponding to the energy of the amorphous matrix ψ2. These energies represent the statistical average of energies of single
phases

ψ1 = 〈ψ̃1〉 =

∫

Ω

f ψ̃1 dz , ψ2 = 〈ψ̃2〉 =

∫

Ω

(1− f) ψ̃2 dz , f(z) = k1D
2 exp

(
−k2

(
r

aRVE

)k3
)

, (2)

such that z = {D, r,F } is the set of statistically distributed variables and f(z) is the probability distribution function with
constants k1, k2 and k3. The model furthermore assumes the Arruda-Boyce free energy for both phases ψ̃i(F ), i = 1, 2, and
F denotes the deformation gradient. The dissipation potential ∆ is also split into two contributions each of them corresponding
to a single internal variable

∆D = 〈∆̃D〉 =

∫

Ω

f ∆̃D dz , ∆̃D(Ḋ) = (AD +BD)
∣∣∣Ḋ
∣∣∣ , (3)

∆r = 〈∆̃r〉 =

∫

Ω

f ∆̃r dz , ∆̃r(ṙ) = (Ar +Br) |ṙ| . (4)

Here, AD and Ar are material parameters determining the initiation of crystallization process, and BD and Br regulates the
change of these limits depending on load applied. A more comprehensive explanation of this type of potentials is presented
in [2, 3]. Finally, the last term in the Lagrangian in Eq. (1) is introduced to stipulate the equality of the volume fraction of
crystals, also called crystallinity degree (V1), to the corresponding experimental values (V 1), and λc is the Lagrange multiplier
of the equality constraint.
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2 of 2 Section 6: Material modelling in solid mechanics

3 Thermodynamic consistency and derivation of evolution equations

The thermodynamic consistency is ensured by considering the Clausius-Duhem inequality D = P : Ḟ − ψ̇ ≥ 0, which
requires the calculation of the Helmholtz energy rate

ψ̇ =

∫

Ω

∂f

∂D

(
ψ̃1 − ψ̃2

)
Ḋ dz +

∫

Ω

∂f

∂r

(
ψ̃1 − ψ̃2

)
ṙ dz +

∫

Ω

(
f
∂ψ̃1

∂F
+ (1− f)

∂ψ̃2

∂F

)
: Ḟ dz . (5)

Following the Coleman-Noll procedure, the Clausius-Duhem inequality transforms in the reduced dissipation inequality
qD Ḋ + qr ṙ ≥ 0, where qD and qr represent the thermodynamic driving forces

qD =

∫

Ω

2 k1D exp
(
−k2 r

k3
) (
ψ̃2 − ψ̃1

)
dz , qr = −

∫

Ω

k1 k2 k3 r
k3−1 exp

(
−k2 r

k3
) (
ψ̃2 − ψ̃1

)
dz . (6)

With these relationships at hand, the Lagrangian turns into

L = P : Ḟ − qD Ḋ − qr ṙ +

∫

Ω

f
(

∆̃D + ∆̃r

)
dz + λc

(
V̇1 − V̇

)
. (7)

In the next step, the minimization of the Lagrangian with respect to Ḋ and ṙ, the introduction of multipliers λD and λr and
the calculation of the crystallinity degree yield the evolution equations

Ḋ =

∣∣∣Ḋ
∣∣∣

AD +BD

qD∫
Ω
f dz

=
VRVE

V1
λD qD, ṙ =

|ṙ|
Ar +Br

qr∫
Ω
f dz

=
VRVE

V1
λr qr ,

∫

Ω

f dz =
V1

VRVE
, (8)

where VRVE represents the volume of the representative volume element. Note that the different signs of the driving forces in
Eq. (6) lead to an increasing diameter rate Ḋ and a decreasing ṙ during the loading stage. The simulation of the unloading
phase is discussed in our previous works [2, 3].

4 Numerical implementation

A suitable scheme for the numerical solution of probability integrals is provided in the work by Zhou and Nowak [4]. These
authors apply the Gauss-Hermite formula and the probability function of the form as in Eq. (2)c with the constants k1 =
1/(2π), k2 = 1/2 and k3 = 2 for the statistical averaging of an arbitrary function G

∫

Ω

f(z)G(z) dz ≈
m∑

j=1

wj G(zj) , f(z) =
D2

2π
exp

(
−1

2

(
r

aRVE

)2
)

. (9)

Here, m is the number of integration points, zj are integration points and wi weight factors. In the case that G is a polynomial
of the maximum degree of 2m− 1, the integration formula (Eq. (9)) determines the exact solution of the integral.

5 Conclusions

The present work uses the statistical averaging concept for the investigation of the effective behavior of polymers affected by
the strain-induced crystallization. It follows the minimum principle of the dissipation potential, however, the elastic power and
dissipation potential are averaged by using the probability function in terms of characteristic diameter and spacing between
the crystalline regions. The numerical integration over the admissible set for the statistically distributed variables is performed
by using the Gauss-Hermite formula. The model is advantageous in comparison with the well established multiscale strategies
since it does not require an accurate definition of the RVE and of the distribution of nuclei of crystalline regions. Moreover, it
is a promising solution in regard of increasing efficiency of homogenization concepts.
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