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Abstract

In this work, the convergence behavior of a time-simultaneous two-grid algorithm for the one-dimensional
heat equation is studied using Fourier arguments in space. The underlying linear system of equations is
obtained by a finite element or finite difference approximation in space while the semi-discrete problem is
discretized in time using the θ-scheme. The simultaneous treatment of all time instances leads to a global
system of linear equations which provides the potential for a higher degree of parallelization of multigrid
solvers due to the increased number of degrees of freedom per spatial unknown.

It is shown that the all-at-once system based on an equidistant discretization in space and time stays well
conditioned even if the number of blocked time-steps grows arbitrarily. Furthermore, mesh-independent
convergence rates of the considered two-grid algorithm are proved by adopting classical Fourier arguments
in space without assuming periodic boundary conditions. The rate of convergence with respect to the
Euclidean norm does not deteriorate arbitrarily if the number of blocked time steps increases and, hence,
underlines the potential of the solution algorithm under investigation. Numerical studies demonstrate why
minimizing the spectral norm of the iteration matrix may be practically more relevant than improving
the asymptotic rate of convergence.

2010 Mathematics Subject Classification: 65M55; 65M06; 65M60
Keywords. Time-simultaneous two-grid; multigrid waveform relaxation; Fourier analysis; heat equation;
spectral norm

1 Introduction
In the numerical solution of unsteady partial differential equations, time stepping techniques are traditionally
used to discretize the continuous problem in time by means of a sequence of spatial subproblems. These have
to be solved one after the other due to their dependence on the solution of the previous time level. This
inherently sequential process prevents the possibility of simultaneously computing the solution in different
time instances and allows only spatial concurrency. While this possibility of parallelization might be sufficient
to significantly improve the performance of the simulation when the overall time horizon is small and the
spatial domain is highly resolved, further parallelization capabilities are desirable when the solution is sought
at many time steps.
For this purpose, various parallel-in-time methods have been developed in the last decades, where the

solution at all (or at least several) considered time steps are (iteratively) computed at once. Typical
representatives of this class are given by the parareal algorithm [LMT01], PFASST [Min10; EM12], MGRIT
[Fal+17a; Fal+17b; Hes+20], space-time multigrid techniques [Hac85; HV95; GN16], and waveform relaxation
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[LRS82; GS98; GK02; HVW95] – to name just a few. Further variants and modifications of parallel-in-time
methods can be found, e.g., in the review articles by Gander [Gan15] or Ong and Schroder [OS20].

The solution technique analyzed in this work provides an improved performance by blocking several time
steps of the fully discretized problem and applying a geometric multigrid solver to the resulting all-at-once
system of equations – interpreted as a space-only problem for vector-valued unknowns. This approach is
highly related to the parabolic multigrid method introduced in [Hac85] and the multigrid waveform relaxation
method developed by Lubich and Ostermann [LO87], in which discrete time integration is performed after
applying a geometric multigrid technique to the spatially discretized problem. Dünnebacke et al. [Dün+19] and
Dünnebacke et al. [Dün+21] shed additional light on this ‘simultaneous-in-time’ methodology by reinterpreting
the approach to make use of more complex smoothing strategies. Furthermore, the authors focused on
practical aspects like the reduced solution time on modern high performance computing (HPC) facilities and
possible extensions to nonlinear problems.
The convergence behavior of this, or slightly modified, solution strategies has already been analyzed in

several publications. For instance, in [LO87; JV96], the authors proved that the spectral radius of the
two-grid iteration matrix does not depend on the number of blocked time steps and, consequently, a uniform
asymptotic rate of convergence can to be expected. On the other hand, local Fourier analysis as introduced
by Brandt [Bra76] was exploited in [VH95; HV95] to investigate the associated spectral norm, at least for the
one-dimensional heat equation. However, the latter results exploit some simplifications by assuming periodic
boundary conditions and, hence, just estimate the exact value when Dirichlet boundary data are prescribed.
To the best knowledge of the authors, no theoretical results regarding strict and explicitly determined bounds
of the spectral norm have been published so far.

Therefore, the present work tries to fill this gap by considering the one-dimensional heat equation using an
equidistant discretization in space by finite elements or finite differences and in time by the θ-scheme. The
analysis presented below guarantees that the solver converges monotonically with respect to the Euclidean
norm even in case of a single (block-)Jacobi smoothing step if an appropriate relaxation parameter is used.
For this purpose, a tensor product approach is employed separating spatial and temporal contributions as
exploited, e.g., in [Reu02; BH01]. By doing so, Fourier arguments can be used in space while tailor-made
bounds are constructed for the resulting temporal subproblems.

This work is organized as follows: In Section 2, foundations of the ‘simultaneous-in-time’ approach are laid
by describing the fully discretized counterpart of the one-dimensional heat equation and summarizing some
important properties. Section 3 introduces general results which will be exploited frequently throughout this
work. Section 4 is concerned with the derivation of a bound for the condition number, which guarantees
well-conditioned all-at-once problems no matter how many time steps are blocked. In Section 5, several
properties of the (block-)Jacobi method/smoother are established while, eventually, the two-grid solver is
introduced and its convergence is analyzed in Section 6.

2 Global space-time discretization
In this work, we focus on the one-dimensional heat equation

∂u(x, t)

∂t
−∆u(x, t) = s(x, t) in Ω× (0, T ), (1a)

u(x, t) = uD on ∂Ω× (0, T ), (1b)
u(x, 0) = u0(x) on Ω, (1c)

where Ω = (0, 1) is the unit interval and T > 0 denotes the final time. Furthermore, the initial data and
external source function are given by u0 : Ω→ R and s : Ω× (0, T )→ R, respectively, while uD : ∂Ω→ R
denotes the prescribed Dirichlet boundary data. For the sake of simplicity, we restrict our attention to the
case of homogeneous boundary conditions and vanishing source terms, i.e., uD = 0 and s = 0, but notice that
the general case can be treated similarly.
The partial differential equation is discretized in space either by finite differences (FD) or in terms of

linear finite elements (FE) using N ∈ N equidistantly distributed nodes located in the interior of the
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domain Ω, i.e., xi := i(N + 1)−1, i = 1, . . . , N . Then the time-dependent vector of degrees of freedom
u(t) =

(
u1(t), . . . , uN (t)

)>
: [0, T ] → RN (approximating the solution u(x, t) in x1, . . . , xN ) solves the

semi-discrete counterpart of (1)

M
du(t)

dt
+ Du(t) = 0 in (0, T ), (2a)

u(0) = u(0) :=
(
u0(x1), . . . , u0(xN )

)>
, (2b)

where M ∈ RN×N and D ∈ RN×N denote the mass matrix and the discrete counterpart of the negative
laplacian, respectively. Obviously, both matrices depend on the underlying discretization technique: While in
the context of linear finite elements, the matrices coincide with

MFE =
1

6
(N + 1)−1


4 1

1 4
. . .

. . . . . . 1
1 4

 , DFE = (N + 1)


2 −1

−1 2
. . .

. . . . . . −1
−1 2


the well-known central difference approximation of the second derivative leads to

MFD = I =


1

1
. . .

1

 , DFD = (N + 1)2


2 −1

−1 2
. . .

. . . . . . −1
−1 2

 (3)

for finite differences. The theoretical investigations presented below highly exploit the fact that all four
matrices have constant diagonal entries, hereafter denoted by mii and dii, and possess a common set of
orthonormal eigenvectors (w(`))`=1,...,N . These vectors can be written as (cf. [Hac13, Section 2.4])

w(`) =
√

2(N + 1)−1
(

sin
(
πk`(N + 1)−1

))N
k=1

, ` = 1, . . . , N

while the associated eigenvalues are given by [Hac13, Section 2.4]

m(`) = 1, d(`) = 2dii sin2
(
π
2 `(N + 1)−1

)
= 2diis

2
` , ` = 1, . . . , N (4)

for finite differences and

m(`) = mii

(
1
2 + cos2

(
π
2 `(N + 1)−1

))
= mii

(
3
2 − sin2

(
π
2 `(N + 1)−1

))
= mii

(
3
2 − s

2
`

)
, ` = 1, . . . , N, (5a)

d(`) = 2(N + 1)
(
1− cos(π`(N + 1)−1)

)
= 2dii sin2

(
π
2 `(N + 1)−1

)
= 2diis

2
` , ` = 1, . . . , N (5b)

otherwise, where we used the abbreviations

s` := sin
(
π
2 `(N + 1)−1

)
, c` := cos

(
π
2 `(N + 1)−1

)
, ` = 1, . . . , N (6)

to simplify notation. Note that in both cases the eigenvalues of D are sorted in a strictly increasing manner,
i.e., d(1) < d(2) < . . . < d(N), and only differ by the scaling parameter h = (N + 1)−1. On the other hand,
the eigenvalues of the mass matrix satisfy m(1) > m(2) > . . . > m(N), which is trivially satisfied for finite
differences due to the fact that m(`) = 1 for all ` = 1, . . . , N . Furthermore, it is easy to verify that the
following inequalities are valid:

0 < d(`) < 2dii, ` = 1, . . . , N, (7)

ζmii 6 m(`) 6 (2− ζ)mii, ` = 1, . . . , N (8)
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Here, the quantity ζ is used to combine inequalities for both discretizations using the values

ζ = 1 for finite differences, ζ = 1
2 for finite elements.

In what follows, we omit the subscripts ‘FE’ and ‘FD’ for the sake of clarity and, whenever necessary,
distinguish between both spatial discretizations by exploiting ζ ∈ { 1

2 , 1}.
It is worth mentioning that the linear finite element discretization based on the lumped mass matrix

M̃FE = (N + 1)−1I provides the same semi-discrete problem as for finite differences, except for a different
scaling. Indeed, we have M̃FE = (N + 1)−1MFD and DFE = (N + 1)−1DFD. Therefore, the below results for
finite differences readily hold for a finite element discretization using the lumped mass matrix, too, and this
special treatment does not have to be considered separately.
After discretization of the heat equation in space using finite differences or finite elements, application

of the two-level θ-scheme, θ ∈ [0, 1], to the system of ordinary differential equations (2) leads to the fully
discretized problem

Au(n+1) + Bu(n) = 0, n = 0, . . . ,K − 1, (9a)
A := M + θτD, B := −M + (1− θ)τD, (9b)

where the constant time increment τ > 0 is chosen so that Kτ = T for some number of time steps K ∈ N.
Therefore, the discrete vector of degrees of freedom u(n) ∈ RN approximates the semi-discrete solution u(·, t)
in t = tn := nτ . In what follows, it is assumed that the time step restriction

κ := ζmii − (1− 2θ)τdii > 0 (10)

is valid. This inequality is particularly satisfied for θ > 1
2 or for sufficiently small time increments τ in the

order of N−2. Thus, the CFL-like condition (10) is similar to commonly used stability conditions and does
not restrict τ artificially.
In problem (9), the solution u(n+1) has to be computed sequentially from time step to time step because

u(n+1) depends on u(n) which again depends on u(n−1) and so forth. Therefore, frequently used parallelization
techniques are only applicable in space which might not be satisfactory if K � N . To avoid this bottleneck
and increase the number of degrees of freedom, we block all time steps and construct a single all-at-once
system of equations

SKu = b :⇐⇒


A
B A

. . . . . .
B A




u(1)

u(2)

...
u(K)

 =


−Bu(0)

0
...
0

 (11)

for computing the global solution vector u =
(
(u(1))>, . . . , (u(K))>

)> ∈ RNK , which contains the discrete
solution u(n) at all time steps n = 1, . . . ,K. Then the global system matrix SK ∈ RNK×NK is a block matrix
composed of K ×K spatial matrices while the right hand side vector b ∈ RNK depends on given data like
the initial condition u(0) (or non-vanishing source terms s and boundary conditions uD).
In the next section, we show that the condition number of SK cannot grow arbitrarily if K increases.

Therefore, system (11) stays well conditioned no matter how the number of blocked time steps is chosen.
The remainder of this work focuses on an adapted two-grid solver for the above mentioned linear system of
equations which uses a (block-)Jacobi method for smoothing purposes as considered in [Dün+21]. We will
see that the so defined algorithm possesses a convergence rate which is bounded from above by a constant
which possibly depends on the CFL number λ = τh−2, but not on the mesh size h, the time increment τ ,
and the total number of time steps K per se.
The key idea of these theoretical investigations is the fact that the matrices αM + βD and (αM + βD)−1

possess the same eigenvectors w(1), . . . ,w(N) as mentioned above for all α, β ∈ R, at least as long as these
matrices exist. In addition, the associated eigenvalues are given by αm(`) + βd(`) and (αm(`) + βd(`))−1 for
all ` = 1, . . . , N , respectively. In particular, the eigenvalues of A and B as defined in (9b) are given by

a(`) = m(`) + θτd(`), b(`) = −m(`) + (1− θ)τd(`), ` = 1, . . . , N (12)
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and satisfy
a(`) − b(`) = 2m(`) − (1− 2θ)τd(`) > 0 (13)

regardless of the considered spatial discretization because

2m(`) − (1− 2θ)τd(`) > 2m(`) > 2ζmii > 0 if θ > 1
2 ,

2m(`) − (1− 2θ)τd(`) > 2
(
ζmii − (1− 2θ)τdii

)
> 0 if θ < 1

2

by virtue of (7), (8), and (10).

3 Preliminary results
Before the time-simultaneous system of equations and a corresponding two-grid solver are analyzed, we first
formulate some general statements which will be exploited frequently in the course of this work.
The first lemma shows that the spectral norm of a 2× 2 block-matrix can be estimated in terms of the

spectral norms of all involved submatrices.

Lemma 1. Let A1, . . . ,A4 ∈ RM×M , M ∈ N, and a1, . . . , a4 > 0 be upper bounds of the corresponding
spectral norm, i.e., ‖Ai‖2 6 ai for all i = 1, . . . , 4. Then the following inequality holds:∥∥∥∥(A1 A2

A3 A4

)∥∥∥∥
2

6

∥∥∥∥(a1 a2

a3 a4

)∥∥∥∥
2

(14)

Proof. To prove the statement, let u1,u2 ∈ RM be arbitrary. We then have∥∥∥∥(A1 A2

A3 A4

)(
u1

u2

)∥∥∥∥
2

=

∥∥∥∥(A1u1 + A2u2

A3u1 + A4u2

)∥∥∥∥
2

=

∥∥∥∥(‖A1u1 + A2u2‖2
‖A3u1 + A4u2‖2

)∥∥∥∥
2

6

∥∥∥∥(a1‖u1‖2 + a2‖u2‖2
a3‖u1‖2 + a4‖u2‖2

)∥∥∥∥
2

=

∥∥∥∥(a1 a2

a3 a4

)(
‖u1‖2
‖u2‖2

)∥∥∥∥
2

6

∥∥∥∥(a1 a2

a3 a4

)∥∥∥∥
2

∥∥∥∥(‖u1‖2
‖u2‖2

)∥∥∥∥
2

=

∥∥∥∥(a1 a2

a3 a4

)∥∥∥∥
2

∥∥∥∥(u1

u2

)∥∥∥∥
2

,

which proves the statement by definition of the spectral norm.

The statements summarized in the following lemma will be used to (sharply) estimate the spectral norm,
spectral radius, and condition number of global matrices by ‘partially diagonalizing’ them by means of the set
of spatial eigenvectors w(1), . . . ,w(N). These results provide the possibility of analyzing the matrix properties
separately for each (spatial) Fourier mode.

Lemma 2. Let A ∈ RM×M , M ∈ N, and S1, . . . , SR ⊂ RM , R ∈ {1, . . . ,M}, be orthogonal subspaces
satisfying S1 + . . .+ SR = RM and ASi ⊆ Si for all i = 1, . . . , R. Then the following identities are valid:

‖A‖2 = max
j=1,...,R

‖A‖2,Sj = max
j=1,...,R

√
λmax,Sj (A

>A), (15)

spr(A) = max
j=1,...,R

sprSj (A), (16)

cond2(A) =
maxj=1,...,R

√
λmax,Sj (A

>A)

minj=1,...,R

√
λmin,Sj (A

>A)
, (17)

where

‖A‖2,S := max
v∈S\{0}

‖Av‖2
‖v‖2

, S ⊆ RM ,

sprS(A) := max
{
|λ|
∣∣ ∃λ ∈ C,v ∈ (S + ıS) \ {0} : Av = λv

}
, S ⊆ RM ,

λmin,S(A) := min
{
λ ∈ R

∣∣ ∃v ∈ S \ {0} : Av = λv
}
, S ⊆ RM ,

λmax,S(A) := max
{
λ ∈ R

∣∣ ∃v ∈ S \ {0} : Av = λv
}
, S ⊆ RM .
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Proof. • To prove statement (15), let u ∈ RM \{0} be arbitrary. Then there exist coefficients α1, . . . , αR ∈
R and normalized vectors w1 ∈ S1, . . ., wR ∈ SR so that

u = α1w1 + . . .+ αRwR, ‖u‖22 = α2
1 + . . .+ α2

R.

Due to the fact that the subspaces S1, . . . , SR are orthogonal to each other and Awj ∈ Sj for all
j = 1, . . . , R, we have (Awj)

>(Awk) = 0 for all j, k = 1, . . . , R, j 6= k, and, hence,

‖Au‖22 = (Au)>(Au) = (α1Aw1 + . . .+ αRAwR)>(α1Aw1 + . . .+ αRAwR)

= α2
1‖Aw1‖22 + . . .+ α2

R‖AwR‖22
6
(

max
j=1,...,R

‖Awj‖22
)(
α2

1 + . . .+ α2
R)

6

(
max

j=1,...,R

(
max

vj∈Sj\{0}

‖Avj‖22
‖vj‖22

))
‖u‖22,

which proves that ‖A‖2 is bounded from above by the right hand side of (15). Equality then follows
directly from the fact that there exist k ∈ {1, . . . , R} and some vector w ∈ Sk \ {0} so that

max
j=1,...,R

(
max

vj∈Sj\{0}

‖Avj‖2
‖vj‖2

)
= max

vk∈Sk\{0}

‖Avk‖2
‖vk‖2

=
‖Aw‖2
‖w‖2

6 ‖A‖2. (18)

• Statement (17) can be shown similarly.

• To show (16), let u ∈ CM be a normalized eigenvector ofA associated with the largest absolute eigenvalue
λ ∈ C. Then there exist coefficients α1, β1, . . . , αR, βR ∈ R and normalized vectors v1,w1 ∈ S1, . . . ,
vR,wR ∈ SR so that

u = (α1v1 + . . .+ αRvR) + ı(β1w1 + . . .+ βRwR), ‖u‖22 = α2
1 + β2

1 + . . .+ α2
R + β2

R = 1,

where ı denotes the imaginary unit, i.e., ı2 = −1. Furthermore, there exists some k ∈ {1, . . . , R} so
that α2

k + β2
k 6= 0 and

v>λ(αkvk + ıβkwk) = δkjv
>λu = δkjv

>Au

= δkjv
>A(αjvj + ıβjwj) = v>A(αkvk + ıβkwk), v ∈ Sj , j = 1, . . . , R.

Therefore, the vector αkvk + ıβkwk ∈ Sk + ıSk is an eigenvector of A corresponding to the largest
absolute eigenvalue λ and, hence,

spr(A) 6 sprSk(A) 6
(

max
j=1,...,R

sprSj (A)
)
.

The other inequality holds trivially by definition.

The above lemma provides a possibility of decomposing the analysis of global matrices into some spatial
subproblems which can be interpreted as a time-simultaneous discretization of a scalar ordinary differential
equation. We will see that the resulting systems of equations have still K unknowns while the corresponding
system matrices are of lower bidiagonal Toeplitz form. The spectral norm of these matrices can be analyzed
using the following theorem.

Theorem 3. Let E,F ∈ RM×M , M > 2, be given by

E =


e1

e2 e1

. . . . . .
e2 e1

 , F =


f1

f2 f1

. . . . . .
f2 f1

 , (19)
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where e1, e2, f1, f2 ∈ R satisfy |f2| < |f1|. Then the spectral norm of F−1E is bounded from above by

‖F−1E‖2 6 max
( |e1 − e2|
|f1 − f2|

,
|e1 + e2|
|f1 + f2|

)
=

{ |e1−e2|
|f1−f2| : η < 0,
|e1+e2|
|f1+f2| : η > 0,

(20)

where η = (f1e2 − f2e1)(f1e1 − f2e2).

Proof. For a detailed proof, the interested reader is referred to the appendix.

The proposed bound (20) will be used in the following sections to prove the monotone convergence with
respect to the Euclidean norm of iterative solvers for the time-simultaneous system (11). Less restrictive
estimates exploiting the submultiplicativity ‖F−1E‖2 6 ‖F−1‖2‖E‖2 do not suffice to show the monotone
convergence for some configurations.
While the estimates established in Theorem 3 will suffice to prove the K-, τ -, and h-independent rate

of convergence of the considered two-grid algorithm, they might be inaccurate if K and/or τ are very
small. Then, for instance, the Gershgorin circle theorem [Ger31] or the eigenvalue estimate as proposed in
[Tar90] might provide more accurate, possibly parameter-dependent bounds. However, the derivation of such
estimates is beyond the scope of this work.

4 Condition number of global system matrix
While the global system of equations (11) algebraically possesses the same solution as the sequential
counterpart (9), blocking several time steps might result in an ill-conditioned problem. This would make the
solution very sensitive to slight perturbations of the system matrix SK and/or right hand side vector b. In
what follows, we prove that this is actually not the case and the condition number is bounded from above by
a value which at least does not depend on K.

Theorem 4. The condition number of the system matrix SK is bounded from above by

cond2(SK) := ‖SK‖2‖S−1
K ‖2 6

max`=1,...,N

(
a(`) + |b(`)|

)
min`=1,...,N

(
a(`) − |b(`)|

) , (21)

where a(`) and b(`), ` = 1, . . . , N , are the eigenvalues of A and B as introduced in (12).

Proof. To begin with, we recall that the matrices A and B posses the same set of eigenvectors w(1), . . . ,w(N).
Therefore, the global system matrix SK satisfies

SK(v ⊗ w(`)) =


A
B A

. . . . . .
B A



v1w(`)

v2w(`)

...
vKw(`)

 =


a(`)I
b(`)I a(`)I

. . . . . .
b(`)I a(`)I



v1w(`)

v2w(`)

...
vKw(`)


= (S

(`)
K v)⊗ w(`), v ∈ RK , ` = 1, . . . , N,

(22)

where ⊗ denotes the well-known Kronecker product and the auxiliary matrix S
(`)
K ∈ RK×K reads

S
(`)
K =


a(`)

b(`) a(`)

. . . . . .
b(`) a(`)

 .

Thus, the subspaces S` = RK ⊗ w(`), ` = 1, . . . , N , are invariant under multiplication with SK , that is,
SKS` ⊆ S`, and, according to Lemma 2, the condition number of SK can be expressed by

cond2(SK) =
max`=1,...,N

√
λmax,S`(S

>
KSK)

min`=1,...,N

√
λmin,S`(S

>
KSK)

=
max`=1,...,N

√
λmax

(
(S

(`)
K )>(S

(`)
K )
)

min`=1,...,N

√
λmin

(
(S

(`)
K )>(S

(`)
K )
)
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because (w(`))`=1,...,N is an orthogonal eigenbasis of RN and similarly as above

S>KSK(v ⊗ w(`)) =
(
(S

(`)
K )>(S

(`)
K )v

)
⊗ w(`) ∈ (RK ⊗ w(`)), v ∈ RK , ` = 1, . . . , N.

The extremal eigenvalues of

(S
(`)
K )>(S

(`)
K ) =


(a(`))2 + (b(`))2 a(`)b(`)

a(`)b(`)
. . . . . .
. . . (a(`))2 + (b(`))2 a(`)b(`)

a(`)b(`) (a(`))2


are now estimated in terms of the Gershgorin circle theorem [Ger31]: While the minimal eigenvalue
λmin

(
(S

(`)
K )>(S

(`)
K )
)
satisfies

λmin

(
(S

(`)
K )>(S

(`)
K )
)
> min

(
(a(`))2 + (b(`))2 − 2a(`)|b(`)|, (a(`))2 − a(`)|b(`)|

)
=
(
a(`) − |b(`)|

)2
+ min

(
0, |b(`)|

(
a(`) − |b(`)|

))
=
(
a(`) − |b(`)|

)2
> 0

by virtue of (13), a(`) + b(`) = τd(`) > 0, and a(`) > 0, the following inequality is valid for the maximal
eigenvalue:

λmax

(
(S

(`)
K )>(S

(`)
K )
)
6 (a(`))2 + (b(`))2 + 2a(`)|b(`)| =

(
a(`) + |b(`)|

)2
Therefore, the condition number is bounded from above by

cond2(SK) =
max`=1,...,K

√
λmax

(
(S

(`)
K )>(S

(`)
K )
)

min`=1,...,K

√
λmin

(
(S

(`)
K )>(S

(`)
K )
) 6

max`=1,...,N

(
a(`) + |b(`)|

)
min`=1,...,N

(
a(`) − |b(`)|

) ,
which proves the statement of the theorem.

In particular, the right hand side of (21) does not depend on the number of blocked time steps K and, hence,
the all-at-once system does not become ill-condition for arbitrary many blocked time steps. Under moderate
time-step restrictions, the above result can basically be used to show that cond2(SK) 6 C(N2 + τ−1) for
some constant C > 0 no matter how the problem is discretized in space and time.

5 Time-simultaneous (block-)Jacobi method
After proving that the all-at-once system of equations (11) does not become ill-conditioned as the number
of blocked time steps increases, we now take a first step towards the definition and analysis of an efficient
solver for this global system. For this purpose, we introduce the (block-)Jacobi method and prove that this
scheme converges (monotonically) for appropriately chosen relaxation parameters. Although the converge
rate is close to 1 and, hence, not satisfactory, we will see in Section 5.4 that a few iterations may suffice to
significantly reduce spatial high-frequency error modes.

5.1 Fundamentals
By merging all temporal unknowns associated with one spatial node into a single ‘macro’ degree of freedom,
the global system (11) can be interpreted as a space-only problem for vector-valued unknowns. This motivates
the introduction of the following damped (block-)Jacobi method for the solution of (11):

u(n+1) = u(n) + ωD−1
K (b− SKu(n)) = ωD−1

K b + J
(Jac)
K u(n), n = 0, 1, . . . (23)

Here, the vector u(0) ∈ RNK is an adequate initial guess, ω > 0 denotes the (fixed) damping parameter,
J

(Jac)
K := D−1

K (DK − ωSK) = IK − ωD−1
K SK ∈ RNK×NK is the iteration matrix of the scheme, and
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IK ∈ RNK×NK denotes the global identity matrix. Furthermore, the preconditioner DK ∈ RNK×NK is set
to the (block-)diagonal of the ‘space-only’ system matrix SK and does not contain any spatial couplings.
More precisely, the block-matrix DK is given by

DK =


Ã

B̃ Ã
. . . . . .

B̃ Ã

 ∈ RNK×NK ,

where Ã ∈ RN×N and B̃ ∈ RN×N are the diagonal matrices associated to A and B, i.e.,

Ã = (mii + θτdii)I, B̃ =
(
−mii + (1− θ)τdii

)
I.

Note that the diagonal entries aii = mii + θτdii of Ã are constant and positive by definition. Thus, the
inverse of Ã is well defined and it can be easily verified that D−1

K ∈ RNK×NK reads

D−1
K =


Ã−1

(−Ã−1B̃)Ã−1 Ã−1

...
. . . . . .

(−Ã−1B̃)K−1Ã−1 · · · (−Ã−1B̃)Ã−1 Ã−1

 . (24)

Therefore, the iteration matrix J
(Jac)
K = D−1

K (DK − ωSK) is defined as a product of two lower triangular
block matrices and, hence, has the same structure. This property is exploited in the following section to
easily determine the asymptotic rate of convergence of (23).

5.2 Spectral radius of Jacobi iteration matrix
While commonly convergence of the (block-)Jacobi method is guaranteed by scaling the solution update using
a positive damping parameter bounded from above by unity, we now prove that this upper barrier can be
slightly relaxed in terms of the CFL number λ = τh−2.

Theorem 5. The spectral radius of the (block-)Jacobi iteration matrix satisfies

spr(J
(Jac)
K ) = spr(J(Jac)) = max

`=1,...,N
|j(Jac,`)| < 1, ω ∈ (0, ω̄) (25)

for all θ ∈ [0, 1], where j(Jac,`) = 1− ωa−1
ii a

(`), ` = 1, . . . , N , denote the eigenvalues of J(Jac) = I− ωÃ−1A
and

ω̄ :=
2mii + 2θτdii

(2− ζ)mii + 2θτdii
> 1. (26)

Convergence can even be guaranteed if ω = ω̄ < 2 by slightly modifying the proof. However, this more
general result would only lengthen the notation and, hence, is omitted for the sake of simplicity.

Proof. To prove the statement of Theorem 5, we first note that J(Jac)
K is a triangular block matrix. Therefore,

its spectral radius coincides with the maximal spectral radius of the diagonal blocks. In case of the (block-)
Jacobi iteration matrix, the block diagonal entries are constant and read J(Jac) = I− ωÃ−1A which implies
spr(J

(Jac)
K ) = spr(J(Jac)). Furthermore, the spatial matrix J(Jac) is symmetric and possesses the eigenvalues

j(Jac,`) = 1− ωa−1
ii a

(`) = 1− ωm
(`) + θτd(`)

mii + θτdii
, ` = 1, . . . , N.

Due to the fact that m(`), d(`) > 0 for all ` = 1, . . . , N , all eigenvalues are smaller than 1 no matter how
ω > 0 is chosen. On the other hand, the eigenvalues j(Jac,`) are bounded from below by −1 because

j(Jac,`) = 1− ωm
(`) + θτd(`)

mii + θτdii
> 1− ω̄ (2− ζ)mii + 2θτdii

mii + θτdii
= 1− 2 = −1

by (7) and (8) if ω ∈ (0, ω̄).
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Therefore, the fixed point iteration (23) converges asymptotically with a rate independent of the number
of blocked time steps K. Additionally, (moderate) overrelaxation is reasonable especially for small time
increments τ and, as we will see in Section 6.4, might significantly improve the asymptotic rate of convergence
of the considered two-grid algorithm.

Although the convergence of the (block-)Jacobi scheme is guaranteed by Theorem 5, this method is not a
good solver for the global system (11) per se because the convergence behavior deteriorates as the mesh is
refined no matter how ω ∈ (0, ω̄) ⊆ (0, 2) is chosen, at least when θ > 0 is used.

5.3 Spectral norm of Jacobi iteration matrix
While Theorem 5 ensures convergence of the (block-)Jacobi scheme (23) even for relaxation parameters
greater than unity, we now prove that the iterates converge monotonically, at least for relaxation parameters ω
smaller than 1. This result is shown by exploiting the statement of Theorem 3 and the tensor product
approach as already used in Section 4.

Theorem 6. The (block-)Jacobi scheme (23) converges monotonically with respect to the Euclidean norm
for every relaxation parameter ω ∈ (0, 1] and the iteration matrix J

(Jac)
K satisfies

sup
u∈(RK⊗w(`))\{0}

∥∥J(Jac)
K u

∥∥
2

‖u‖2
= ‖J(Jac,`)

K ‖2 6 B(`), ` = 1, . . . , N (27a)

B(`) := max

(∣∣∣1− ω 2m(`) − (1− 2θ)τd(`)

2mii − (1− 2θ)τdii

∣∣∣, ∣∣∣1− ωd(`)

dii

∣∣∣) < 1, (27b)

where J
(Jac,`)
K ∈ RK×K can be interpreted as the iteration matrix of the spatial Fourier mode w(`) and is

defined by

J
(Jac,`)
K := (DK)−1(DK − ωS

(`)
K ), DK =


aii
bii aii

. . . . . .
bii aii

 ∈ RK×K .

Proof. Again we would like to exploit the above mentioned tensor product approach and, for this, recall
that w(1), . . . ,w(N) are eigenvectors of A, B, Ã, B̃, and Ã−1. Therefore, according to (24), the (block-)Jacobi
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iteration matrix satisfies

J
(Jac)
K w = D−1

K (DK − ωSK)w

=


Ã−1

(−Ã−1B̃)Ã−1 Ã−1

...
. . . . . .

(−Ã−1B̃)K−1Ã−1 · · · (−Ã−1B̃)Ã−1 Ã−1



·


Ã− ωA

B̃− ωB Ã− ωA
. . . . . .

B̃− ωB Ã− ωA



v1w(`)

v2w(`)

...
vKw(`)



=


a−1
ii I

(−a−1
ii bii)a

−1
ii I a−1

ii I
...

. . . . . .
(−a−1

ii bii)
K−1a−1

ii I · · · (−a−1
ii bii)a

−1
ii I a−1

ii I



·


(aii − ωa(`))I
(bii − ωb(`))I (aii − ωa(`))I

. . . . . .
(bii − ωb(`))I (aii − ωa(`))I



v1w(`)

v2w(`)

...
vKw(`)


=
((

(DK)−1(DK − ωS
(`)
K )
)
⊗ I
)
w =

((
(DK)−1(DK − ωS

(`)
K )
)
v
)
⊗ w(`)

for w = v ⊗ w(`) ∈ RNK , where v ∈ RK and ` = 1, . . . , N are chosen arbitrarily. For this reason, we have

J
(Jac)
K (v ⊗ w(`)) = (J

(Jac,`)
K v)⊗ w(`) ∈ (RK ⊗ w(`)), v ∈ RK , ` = 1, . . . , N,

where J
(Jac,`)
K := (DK)−1(DK − ωS

(`)
K ), and the spectral norm of J(Jac)

K can be computed using

‖J(Jac)
K ‖2 = max

`=1,...,N
‖J(Jac)

K ‖2,RK⊗w(`) = max
`=1,...,N

∥∥J
(Jac,`)
K

∥∥
2

= max
`=1,...,N

∥∥(DK)−1(DK − ωS
(`)
K )
∥∥

2
(28)

according to Lemma 2 and due to the fact that w(1), . . . ,w(N) form a basis of RN .
In the remainder of this proof, we show that the spectral norm of J

(Jac,`)
K is smaller than 1 by exploiting

Theorem 3 using E = DK − ωS
(`)
K and F = DK , i.e.,

e1 = (mii + θτdii)− ω(m(`) + θτd(`)), f1 = mii + θτdii,

e2 =
(
−mii + (1− θ)τdii

)
− ω

(
−m(`) + (1− θ)τd(`)

)
, f2 = −mii + (1− θ)τdii.

(29)

This theorem can be employed because the requirement |f2| < |f1| is satisfied whenever the CFL-like
condition (10) holds. Indeed, the value of f2

2 − f2
1 is equal to

f2
2 − f2

1 =
(
−mii + (1− θ)τdii

)2 − (mii + θτdii)
2

= m2
ii − 2(1− θ)τmiidii + (1− θ)2τ2d2

ii −m2
ii − 2θτmiidii − θ2τ2d2

ii

= −2τmiidii + (1− 2θ)τ2d2
ii = −τdii

(
2mii − (1− 2θ)τdii

)︸ ︷︷ ︸
>(2−ζ)mii>0 by (10)

< 0.
(30)

Furthermore, it is easy to verify that the value of B(`) coincides with the bound of (20) for the quantities as
defined in (29). To complete the proof, it suffices to show that both expressions involved in the definition
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of B(`) are smaller than 1: For η > 0, this estimate is true because

(e1 + e2)2 − (f1 + f2)2 = (τdii − ωτd(`))2 − (τdii)
2

= −2ωτ2diid
(`) + ω2τ2(d(`))2 = ωτ2d(`)(−2dii + ωd(`)) < 0

by (7). On the other hand, the inequality |e1 − e2| < |f1 − f2| is satisfied because

(e1 − e2)2 − (f1 − f2)2

=
(
2mii − 2ωm(`) − (1− 2θ)τ(dii − ωd(`))

)2 − (2mii − (1− 2θ)τdii
)2

= ω
(
2m(`) − (1− 2θ)τd(`)

)(
−2
(
2mii − (1− 2θ)τdii

)
+ ω

(
2m(`) − (1− 2θ)τd(`)

))
= ω

(
2m(`) − (1− 2θ)τd(`)

)︸ ︷︷ ︸
>0 by (13)

(
2
(
−ζmii + (1− 2θ)τdii

)︸ ︷︷ ︸
60 by (10)

−2
(
(2− ζ)mii − ωm(`)

)︸ ︷︷ ︸
>0 by (8)

−ω (1− 2θ)τd(`)︸ ︷︷ ︸
>0 by θ < 1

2

)
< 0

for θ < 1
2 while the expression is negative for θ > 1

2 due to

(e1 − e2)2 − (f1 − f2)2 = ω

>0 by (13)︷ ︸︸ ︷(
2m(`) − (1− 2θ)τd(`)

)
·
(
− 2ζmii︸ ︷︷ ︸

>0

+ (1− 2θ)︸ ︷︷ ︸
60

τ (2dii − ωd(`))︸ ︷︷ ︸
>0 by (7)

−2
(
(2− ζ)mii − ωm(`)

)︸ ︷︷ ︸
>0 by (8)

)
< 0.

Therefore, the spectral norm ‖J(Jac,`)
K ‖2 is bounded from above by 1 and the (block-)Jacobi scheme converges

monotonically by (28).

5.4 Smoothing behavior
In the previous section, Theorem 3 was only employed to show the monotone convergence of the (block-)
Jacobi scheme. However, the theorem offers the possibility to perform more detailed investigations of the
convergence behavior by considering individual (spatial) Fourier modes separately. These studies show that
high-frequency error modes are significantly damped for an appropriately chosen relaxation parameter and
motivate the use of multigrid techniques to solve (11).

To analyze the smoothing property of the (block-)Jacobi scheme, we first consider the influence of ω on the
bounds for the error reduction of each (spatial) Fourier mode as introduced in Theorem 6.

Example 7. The bounds B(`) of Theorem 6 are not only bounded by 1, but also guarantee a mesh-independent
reduction of high-frequency error modes for an appropriately chosen relaxation parameter. Figure 1 illustrates
the influence of ω on the bounds B(`) for a finite element discretization whenever s2

` >
1
2 . Although the choice

of λ = τh−2 = 5
6 for θ > 1

2 is practically of minor interest, this setup is considered to present the influence
of both arguments occurring in the definition of B(`). Furthermore, the potentially ‘optimal’ relaxation
parameter ω0 for smoothing high-frequency parts of the error is highlighted. In what follows, this parameter
will be investigated in more detail and used in the two-grid algorithm presented in Section 6.3.

In the following theorem, an explicit formula for ω0 is determined and, based on this choice, an upper
bound for B(`) is derived for every ` = 1, . . . , N .

Theorem 8. If the relaxation parameter ω coincides with

ω0 = max
(2

3
,

2mii − (1− 2θ)τdii
(2 + ζ)mii − 2(1− 2θ)τdii

)
= max

(2

3
,

(2− ζ)mii + κ

(2− ζ)mii + 2κ

)
6 1, (31)

then high-frequency error modes are damped at least with the factor

B(`) 6 E(Jac,`) := max
(1

3
,

(2− ζ)mii

(2 + ζ)mii − 2(1− 2θ)τdii

)
= max

(1

3
,

(2− ζ)mii

(2− ζ)mii + 2κ

)
,

` = 1, . . . , N s.t. d(`) > dii. (32)
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Figure 1: Influence of damping parameter ω on bound B(`) for high-frequency modes of a finite element
discretization using λ = τh−2 = 5

6 . Graphs are highlighted in green whenever maximum in (27b)
attains value of first argument. ‘Optimal’ relaxation parameter is highlighted by ω0.

On the other hand, low-frequency modes are scaled with

B(`) = 1− ωd−1
ii d

(`), ` = 1, . . . , N s.t. d(`) 6 dii (33)

no matter how ω ∈ (0, 1] is chosen.

Proof. The proof of this theorem can be found in the appendix.

The numerical examples presented in Section 6.4 indicate that the damping parameter ω0 (approximately)
minimizes the spectral norm of the two-grid iteration matrix in the limit K → ∞ and, hence, might be
asymptotically ‘optimal’, at least for a few smoothing steps. Therefore, this choice of ω is used in what
follows if not mentioned otherwise and we set

E(Jac,`) := 1− ω0d
−1
ii d

(`), ` = 1, . . . , N s.t. d(`) 6 dii. (34)

Remark 9. In the context of finite differences and θ > 1
2 , the damping parameter ω0 coincides with 2

3 no
matter how N and τ are chosen. Then high-frequency error modes, that is, if d(`) > dii is satisfied, are
damped with B(`) 6 E(Jac,`) = 1

3 .
For a finite element discretization, the relaxation parameter ω0 ∈ [ 2

3 ,
4
5 ] guarantees E(Jac,`) 6 3

5 if θ > 1
2

and d(`) > dii. While in the best case E(Jac,`) = 1
3 for θ > 1

2 , the smoothing behavior deteriorates if λ = τh−2

decreases. For the Crank-Nicolson scheme, i.e., θ = 1
2 , the ‘optimal’ damping parameter reads ω0 = 4

5 and
guarantees E(Jac,`) = 3

5 for all choices of N and τ if d(`) > dii.
In the case of θ < 1

2 , the above theorem does not suffice to guarantee a mesh-independent value of
E(Jac,`) < 1 for high-frequency error modes if equality holds in the CFL-like condition (10), i.e., κ = 0.
Remark 10. For a sequential simulation, that is, K = 1, excellent damping of high-frequency error modes is
obtained for

ωseq =
2mii + 2θτdii

(1 + ζ)mii + 3θτdii
∈
(

2
3 , 2(1 + ζ)−1

)
.

However, the ‘optimal’ damping parameter for K = 1 does not minimize the spectral norm of the two-grid
iteration matrix for K > 1 as we will see in Section 6.4.

6 Time-simultaneous two-grid solver
In the previous section, the (block-)Jacobi scheme for the time-simultaneous system was introduced and its
smoothing behavior for high-frequency (spatial) error modes was analyzed. The results stated in Theorem 8
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motivate the use of spatial multigrid techniques for solution of the all-at-once problem. Therefore, this section
is devoted to the presentation of a two-grid solver and investigations regarding corresponding convergence
rates.

6.1 Fundamentals of coarse grid correction
To define the two-grid solver, let us first introduce the coarse grid correction based on commonly used spatial
coarsening techniques. For this purpose, the number of (inner) fine grid nodes is assumed to be odd and
at least equal to 3, i.e., N ∈ 2N + 1. Then, based on a uniform coarsening/refinement strategy, the mesh
size of the coarse grid reads h̄ = 2h = (N̄ + 1)−1, where the number of spatial unknowns corresponding to
the coarse mesh is given by N̄ = N−1

2 . Therefore, the system matrix of the all-at-once coarse grid problem
exploiting the same time increment τ as used in (11) reads

S̄K :=


Ā
B̄ Ā

. . . . . .
B̄ Ā

 , (35)

where Ā, B̄ ∈ RN̄×N̄ are defined by

Ā := M̄ + θτD̄, B̄ := −M̄ + (1− θ)τD̄

and the matrices M̄ ∈ RN̄×N̄ and D̄ ∈ RN̄×N̄ denote the mass matrix and discrete counterpart of the negative
laplacian discretized on the coarse mesh using finite differences or finite elements. As stated in Section 2,
these spatial matrices possess the same set of eigenvectors

w̄(`) =
√

2(N̄ + 1)−1
(

sin
(
πk`(N̄ + 1)−1

))N̄
k=1

=
√

4(N + 1)−1
(

sin
(
2πk`(N + 1)−1

))N̄
k=1

, ` = 1, . . . , N̄

associated with the eigenvalues

m̄(`) = 2
3 (N̄ + 1)−1

(
3
2 − sin2

(
π
2 `(N̄ + 1)−1

))
= 4

3 (N + 1)−1
(

3
2 − sin2

(
π`(N + 1)−1

))
= 2mii

(
3
2 − 4 sin2

(
π
2 `(N + 1)−1

)
cos2

(
π
2 `(N + 1)−1

))
= mii(3− 8s2

`c
2
`),

(36a)

d̄(`) = 4(N̄ + 1) sin2
(
π
2 `(N̄ + 1)−1

)
= 2(N + 1) sin2

(
π`(N + 1)−1

)
= 8(N + 1) sin2

(
π
2 `(N + 1)−1

)
cos2

(
π
2 `(N + 1)−1

)
= 4diis

2
`c

2
`

(36b)

for finite elements while m̄(`) = 1 and

d̄(`) = 4(N̄ + 1)2 sin2
(
π
2 `(N̄ + 1)−1

)
= (N + 1)2 sin2

(
π`(N + 1)−1

)
= 4(N + 1)2 sin2

(
π
2 `(N + 1)−1

)
cos2

(
π
2 `(N + 1)−1

)
= 2diis

2
`c

2
`

(37)

in the context of a finite difference approximation. In particular, the eigenvalues satisfy

(2− ζ)−1m(`) 6 mii 6 m̄(`) 6 ζ−1m(`), ` = 1, . . . , N̄ , (38)

0 6 d̄(`) = 2ζ−1s2
`c

2
`dii = ζ−1c2`d

(`) = ζ−1s2
`d

(N+1−`) 6 (2ζ)−1dii, ` = 1, . . . , N̄ (39)

due to the fact that d(`) = 2s2
`dii and d

(N+1−`) = 2c2`dii for all ` = 1, . . . , N̄ .
Next, we introduce the spatial grid transfer operators which are given by the commonly used prolongation
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and restriction operators P ∈ RN×N̄ and R ∈ RN̄×N , respectively,

P =
1

2



1
2
1 1

2
. . .

2
1 1

2
1


, R = (2ζ)−1P> = (4ζ)−1


1 2 1

1 2 1
. . . . . .

1 2 1

 .

These matrices satisfy [Hac13, Section 2.4]

Pw̄(N̄+1) = 0, Pw̄(`) =
√

2c2`w
(`) −

√
2s2
`w

(N+1−`), ` = 1, . . . , N̄ , (40a)

Rw(N̄+1) = 0, Rw(`) =
√

2c2` w̄
(`), Rw(N+1−`) = −

√
2s2
` w̄

(`), ` = 1, . . . , N̄ (40b)

using the quantities s` and c` as defined in (6)

s2
` = sin2

(
π
2 `(N + 1)−1

)
∈ (0, 1

2 ], c2` = cos2
(
π
2 `(N + 1)−1

)
∈ [ 1

2 , 1), ` = 1, . . . , N̄ + 1.

Then the iteration matrix of the coarse grid correction reads

J
(Cor)
K := IK − (IK ⊗ P)S̄−1

K (IK ⊗ R)SK ,

where IK ∈ RK×K is the (temporal) identity matrix. It is easy to verify that J
(Cor)
K is a lower triangular

block matrix possessing the constant diagonal entries

J(Cor) := I− PĀ−1RA

due to the fact that S̄K and SK are triangular block matrices and, hence, the inverse of S̄K also possesses this
structure as observed in Section 5.1 for D−1

K . Furthermore, the iteration matrix of the coarse grid correction
satisfies

J(Cor)span(w(`),w(N+1−`)) ⊆ span(w(`),w(N+1−`)), ` = 1, . . . , N̄ + 1 (41)

J
(Cor)
K (RK ⊗ w(`) + RK ⊗ w(N+1−`)) ⊆ (RK ⊗ w(`) + RK ⊗ w(N+1−`)), ` = 1, . . . , N̄ + 1 (42)

by virtue of (40), which will be important in what follows to estimate the spectral radius and spectral norm
of the two-grid iteration matrix

J
(TG)
K := (J

(Jac)
K )ν1J

(Cor)
K (J

(Jac)
K )ν2 ,

where ν1 ∈ N0 and ν2 ∈ N0 denote the number of pre- and post-smoothing steps, respectively. As we will see,
a few smoothing steps will suffice to significantly reduce the overall error if the relaxation parameter of J(Jac)

K

is chosen appropriately. For this purpose, we consider the case ω = ω0 if not mentioned otherwise, which
results in great reductions of (spatial) high-frequency error modes as observed in Section 5.4.

6.2 Spectral radius of two-grid iteration matrix
We begin with the analysis of the two-grid solver

u(n+1,0) = u(n),

u(n+1,m+1) = u(n+1,m) + ωD−1
K (b− SKu(n+1,m)), m = 0, 1, . . . , ν1 − 1,

u(n+1,ν1+1) = u(n+1,ν1) + (IK ⊗ P)S̄−1
K (IK ⊗ R)(b− SKu(n+1,ν1)),

u(n+1,ν1+m+2) = u(n+1,ν1+m+1) + ωD−1
K (b− SKu(n+1,ν1+m+1)), m = 0, 1, . . . , ν2 − 1,

u(n+1) = u(n+1,ν1+ν2+1),

n = 0, 1, . . . (43)
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by proving that the iterates u(n+1) converge to the exact solution no matter how the relaxation parameter ω ∈
(0, ω̄) and the initial guess u(0) ∈ RNK are chosen. For this purpose, it is shown that the spectral radius of
the iteration matrix J

(TG)
K is smaller than 1. This property can be verified by exploiting the identity

spr(J
(TG)
K ) = spr

(
(J(Jac))ν1J(Cor)(J(Jac))ν2

)
= spr

(
J(Cor)(J(Jac))ν

)
, ν = ν1 + ν2, (44)

which is valid because J
(TG)
K is a triangular block matrix with constant diagonal entries

J(TG) := (J(Jac))ν1J(Cor)(J(Jac))ν2 ∈ RN×N

and the spectral radius of a product of matrices is invariant under cyclic permutations. Recalling that
J(Jac) = I− ωÃ−1A is a symmetric matrix possessing the orthogonal eigenvectors w(1), . . . ,w(N) associated
with the eigenvalues j(Jac,1), . . . , j(Jac,N) as introduced in Theorem 5, we find that

spr(J
(TG)
K ) = max

`=1,...,N̄+1
sprspan(w(`),w(N+1−`))

(
J(Cor)(J(Jac))ν

)
= max
`=1,...,N̄+1

spr
(
J(Cor,`)(J(Jac,`))ν

)
(45)

by Lemma 2 and statement (41), where the matrices J(Cor,`), J(Jac,`) ∈ R2×2 are defined by

J(Cor,`) :=

(
1

1

)
−
( √

2c2`
−
√

2s2
`

)
(ā(`))−1

(√
2

2ζ c
2
` −

√
2

2ζ s
2
`

)(
a(`)

a(N+1−`)

)
=

(
1− ζ−1c4`(ā

(`))−1a(`) ζ−1s2
`c

2
`(ā

(`))−1a(N+1−`)

ζ−1s2
`c

2
`(ā

(`))−1a(`) 1− ζ−1s4
`(ā

(`))−1a(N+1−`)

)
,

J(Jac,`) :=

(
j(Jac,`)

j(Jac,N+1−`)

)
for all ` = 1, . . . , N̄ while

J(Cor,N̄+1) = 1, J(Jac,N̄+1) = j(Jac,N̄+1).

Obviously, we have
spr
(
J(Cor,N̄+1)(J(Jac,N̄+1))ν

)
= |j(Jac,N̄+1)|ν < 1

if ω ∈ (0, ω̄) and ν ∈ N by Theorem 5. The following theorem guarantees that spr
(
J(Cor,`)(J(Jac,`))ν

)
< 1 is

also valid for ` = 1, . . . , N̄ no matter if finite elements or finite differences are used to discretize the heat
equation in space.

Theorem 11. The iterates of the two-grid method (43) converge to the exact solution of (11) for any
relaxation parameter ω ∈ (0, ω̄) and number of smoothing steps ν = ν1 + ν2 ∈ N.

Proof. A detailed proof can be found in the appendix.

For the sake of brevity, we will not go into detail about the derivation of explicit (and sharp) bounds for
the spectral radius of the two-grid iteration matrix. Instead, the following section deals with estimates for its
spectral norm, which shows that the iterates of the two-grid scheme monotonically converge to the exact
solution with respect to the Euclidean norm for the damping parameter ω0.

6.3 Spectral norm of two-grid iteration matrix
Inspired by the observation made in (42), the tensor product approach can also be exploited to estimate the
spectral norm of the two-grid iteration matrix using

‖J(TG)
K ‖2 = max

`=1,...,N̄+1
‖J(TG)

K ‖2,RK⊗w(`)+RK⊗w(N+1−`) (46)
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by virtue of Lemma 2. To simplify the expression on the right hand side of (46), we first note that the
iteration matrix of the coarse grid correction satisfies

J
(Cor)
K (v ⊗ w(N̄+1)) =

(
IK − (IK ⊗ P)S̄−1

K (IK ⊗ R)SK
)
(v ⊗ w(N̄+1))

= (v ⊗ w(N̄+1))−
(
(IK ⊗ P)S̄−1

K (IK ⊗ R)
)(

(S
(N̄+1)
K v)⊗ w(N̄+1)

)
= (v ⊗ w(N̄+1))−

(
(IK ⊗ P)S̄−1

K

)(
(S

(N̄+1)
K v)⊗ (Rw(N̄+1))︸ ︷︷ ︸

=0

)
= (v ⊗ w(N̄+1)) = (J

(Cor,N̄+1)
K v)⊗ w(N̄+1), v ∈ RK

by (22) and (40), where J
(Cor,N̄+1)
K = IK ∈ RK×K . Similarly, the Fourier modes w(1), . . . ,w(N̄) satisfy

J
(Cor)
K (v ⊗ w(`)) =

(
IK − (IK ⊗ P)S̄−1

K (IK ⊗ R)SK
)
(v ⊗ w(`))

= (v ⊗ w(`))−
(
(IK ⊗ P)S̄−1

K

)(
(S

(`)
K v)⊗ (Rw(`))

)
= (v ⊗ w(`))−

√
2

2ζ c
2
`

(
(IK ⊗ P)S̄−1

K

)(
(S

(`)
K v)⊗ (w̄(`))

)
= (v ⊗ w(`))−

√
2

2ζ c
2
`

((
(S̄

(`)
K )−1S

(`)
K v
)
⊗ (Pw̄(`))

)
= (v ⊗ w(`))− ζ−1c4`

((
(S̄

(`)
K )−1S

(`)
K v
)
⊗ w(`)

)
+ ζ−1s2

`c
2
`

((
(S̄

(`)
K )−1S

(`)
K v
)
⊗ w(N+1−`)

)
=
((

IK − ζ−1c4`(S̄
(`)
K )−1S

(`)
K

)
v
)
⊗ w(`) +

((
ζ−1s2

`c
2
`(S̄

(`)
K )−1S

(`)
K

)
v
)
⊗ w(N+1−`)

=
(
JCor,`
K,11 v

)
⊗ w(`) +

(
JCor,`
K,21 v

)
⊗ w(N+1−`),

J
(Cor)
K (v ⊗ w(N+1−`)) =

((
ζ−1s2

`c
2
`(S̄

(`)
K )−1S

(N+1−`)
K

)
v
)
⊗ w(`)

+
((

IK − ζ−1s4
`(S̄

(`)
K )−1S

(N+1−`)
K

)
v
)
⊗ w(N+1−`)

=
(
JCor,`
K,12 v

)
⊗ w(`) +

(
JCor,`
K,22 v

)
⊗ w(N+1−`),

for all ` = 1, . . . , N̄ and v ∈ RK , where the auxiliary matrices JCor,`
K,11 , J

Cor,`
K,12 , J

Cor,`
K,21 , J

Cor,`
K,22 , S̄

(`)
K ∈ RK×K read

JCor,`
K,11 = IK − ζ−1c4`(S̄

(`)
K )−1S

(`)
K , JCor,`

K,12 = ζ−1s2
`c

2
`(S̄

(`)
K )−1S

(N+1−`)
K ,

JCor,`
K,21 = ζ−1s2

`c
2
`(S̄

(`)
K )−1S

(`)
K , JCor,`

K,22 = IK − ζ−1s4
`(S̄

(`)
K )−1S

(N+1−`)
K ,

S̄
(`)
K =


ā(`)

b̄(`) ā(`)

. . . . . .
b̄(`) ā(`)


while ā(`) = m̄(`) + θτ d̄(`) and b̄(`) = −m̄(`) + (1 − θ)τ d̄(`) are the eigenvalues of the spatial coarse-grid
matrices Ā and B̄, respectively. Therefore, the iteration matrix J

(Cor)
K satisfies

(v1 ⊗ w(`) + v2 ⊗ w(N+1−`))>J
(Cor)
K (v1 ⊗ w(`) + v2 ⊗ w(N+1−`))

= (v1 ⊗ w(`) + v2 ⊗ w(N+1−`))>
((

JCor,`
K,11 v1

)
⊗ w(`) +

(
JCor,`
K,21 v1

)
⊗ w(N+1−`)

)
+ (v1 ⊗ w(`) + v2 ⊗ w(N+1−`))>

((
JCor,`
K,12 v2

)
⊗ w(`) +

(
JCor,`
K,22 v2

)
⊗ w(N+1−`)

)
= v>1 JCor,`

K,11 v1 + v>2 JCor,`
K,21 v1 + v>1 JCor,`

K,12 v2 + v>2 JCor,`
K,22 v2

=

(
v1

v2

)>(
JCor,`
K,11 JCor,`

K,12

JCor,`
K,21 JCor,`

K,22

)(
v1

v2

)
=

(
v1

v2

)>
J

(Cor,`)
K

(
v1

v2

)
,

where the matrix J
(Cor,`)
K ∈ R2K×2K is given by

J
(Cor,`)
K :=

(
JCor,`
K,11 JCor,`

K,12

JCor,`
K,21 JCor,`

K,22

)
=

(
IK − ζ−1c4`(S̄

(`)
K )−1S

(`)
K ζ−1s2

`c
2
`(S̄

(`)
K )−1S

(N+1−`)
K

ζ−1s2
`c

2
`(S̄

(`)
K )−1S

(`)
K IK − ζ−1s4

`(S̄
(`)
K )−1S

(N+1−`)
K

)
, ` = 1, . . . , N̄ .
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Using this argumentation, we conclude that the spectral norm of the two-grid iteration matrix coincides with

‖J(TG)
K ‖2 = max

`=1,...,N̄+1
‖J(TG)

K ‖2,RK⊗w(`)+RK⊗w(N+1−`) = max
`=1,...,N̄+1

‖J(TG,`)
K ‖2, (47)

where

J
(TG,`)
K := diag(J

(Jac,`)
K , J

(Jac,N+1−`)
K )ν1J

(Cor,`)
K diag(J

(Jac,`)
K , J

(Jac,N+1−`)
K )ν2 , ` = 1, . . . , N̄ ,

J
(TG,N̄+1)
K := (J

(Jac,N̄+1)
K )ν1+ν2

while diag(J
(Jac,`)
K , J

(Jac,N+1−`)
K ) ∈ R2K×2K is the (block-)diagonal matrix with diagonal entries J

(Jac,`)
K and

J
(Jac,N+1−`)
K . Obviously, the spectral norm of J

(TG,N̄+1)
K satisfies

‖J(TG,N̄+1)
K ‖2 6 (E(Jac,N̄+1))ν = (1− 2ω0s

2
N̄+1)ν = (1− ω0)ν , (48)

where ν = ν1 + ν2 as above. To find upper bounds for the spectral norm of J
(TG,`)
K for all ` = 1, . . . , N̄ , we

first estimate the spectral norm of the four (block-)submatrices of J
(Cor,`)
K and then use Lemma 1.

Lemma 12. The (block-)entries of the auxiliary matrix J
(Cor,`)
K satisfy

‖JCor,`
K,11 ‖2 = ‖IK − ζ−1c4`(S̄

(`)
K )−1S

(`)
K ‖2 6 E

(Cor,`)
11 :=

{
1− c4` : θ > 1

2 or ζ = 1
2 ,

1− c6` : otherwise,
(49)

‖JCor,`
K,22 ‖2 =

∥∥IK − ζ−1s4
`(S̄

(`)
K )−1S

(N+1−`)
K

∥∥
2
6 E

(Cor,N+1−`)
22 :=

{
1− s4

` : θ > 1
2 and ζ = 1,

1− s6
` : otherwise,

(50)

‖JCor,`
K,21 ‖2 =

∥∥ζ−1s2
`c

2
`(S̄

(`)
K )−1S

(`)
K

∥∥
2

6 E
(Cor,`)
21 := 5−2ζ

3 s2
` , (51)

‖JCor,`
K,12 ‖2 =

∥∥ζ−1s2
`c

2
`(S̄

(`)
K )−1S

(N+1−`)
K

∥∥
2

6 E
(Cor,N+1−`)
12 := c2` . (52)

for every ` = 1, . . . , N̄ and no matter which (spatial) discretization technique is used.

Proof. The proof of this result can be found in the appendix.

So far, both components of the two-grid solver, that is, the (block-)Jacobi smoother and the coarse grid
correction, are investigated separately by establishing a priori bounds for the error reduction of each spatial
Fourier mode. In the next theorem, these estimates will be combined to predict the error reduction in each
two-grid iteration with respect to the Euclidean norm.
Strictly speaking, the resulting bound would still depend on the number of spatial grid points N by the

definition of s2
` ∈ [0, 1

2 ]. To get rid of this implicit dependency, we will exploit the continuous counterpart of
s` = sin

(
π
2 `(N + 1)−1

)
for ` = 1, . . . , N which reads sι = sin(π2 ι) for ι ∈ [0, 1] without becoming ambiguous.

In what follows, this notational convention will also be used for quantities like E(Jac,·) and E(Cor,·)
jk .

Theorem 13. The spectral norm of the two-grid iteration matrix is bounded from above by

‖J(TG)
K ‖2 6 E(TG) := max

ι∈[0, 12 ]
E(TG,ι), (53)

where

E(TG,ι) :=

∥∥∥∥(E(Jac,ι)

E(Jac,1−ι)

)ν1
(
E

(Cor,ι)
11 E

(Cor,1−ι)
12

E
(Cor,ι)
21 E

(Cor,1−ι)
22

)(
E(Jac,ι)

E(Jac,1−ι)

)ν2
∥∥∥∥

2

, ι ∈ [0, 1
2 ]. (54)

Proof. Employing Lemma 1, Theorem 8, and Lemma 12, it can be easily verified that

‖J(TG,`)
K ‖2 6 E

(TG,`/(N+1))
2 , ` = 1, . . . N̄ .
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Furthermore, the inequality ‖J(TG,N̄+1)
K ‖2 6 E

(TG, 12 )
2 is valid because

E(TG, 12 ) =

∥∥∥∥(E(Jac, 12 )

E(Jac, 12 )

)ν1
(
E

(Cor, 12 )
11 E

(Cor, 12 )
12

E
(Cor, 12 )
21 E

(Cor, 12 )
22

)(
E(Jac, 12 )

E(Jac, 12 )

)ν2∥∥∥∥
2

= (E(Jac, 12 ))ν
∥∥∥∥
(
E

(Cor, 12 )
11 E

(Cor, 12 )
12

E
(Cor, 12 )
21 E

(Cor, 12 )
22

)∥∥∥∥
2

> (E(Jac, 12 ))ν
∥∥∥∥
(
E

(Cor, 12 )
11 E

(Cor, 12 )
12

E
(Cor, 12 )
21 E

(Cor, 12 )
22

)(
1
1

)∥∥∥∥
2

∥∥∥∥(1
1

)∥∥∥∥−1

2

= (E(Jac, 12 ))ν
√

2
2

∥∥∥∥
(
E

(Cor, 12 )
11 + E

(Cor, 12 )
12

E
(Cor, 12 )
21 + E

(Cor, 12 )
22

)∥∥∥∥
2

> (E(Jac, 12 ))ν
√

2
2

√
(1− 1

4 + 1
2 )2 + (1− 1

4 + 1
2 )2 = 5

4 (E(Jac, 12 ))ν > 5
4‖J

(TG,N̄+1)
K ‖2

by (48). Then the statement of the theorem follows by (47).

The above theorem states that the spectral norm of the two-grid iteration matrix can be bounded from
above by taking the maximum over the spectral norm of certain 2×2-matrices. These matrices do not depend
on the number of spatial grid points or the total size of blocked time steps any more resulting in a rate of
convergence which might only depend on the CFL number λ = τh−2. In what follows, we will see that the
spectral norm of the two-grid iteration matrix is even uniformly bounded from above independently of λ for
some practically relevant configurations.

Corollary 14. In case of finite differences and θ > 1
2 , the two-grid method using the relaxation parameter

ω = ω0 = 2
3 converges monotonically if ν2 > 1 and

‖J(TG)
K ‖2 6 Ê(TG) :=

√
45
16 (1 + ν2)−2( ν2

1+ν2
)2ν2 + 2 · 3−2ν2 < 1. (55)

Proof. For ι ∈ [0, 1
2 ], we have

(E(TG,ι))2 =

∥∥∥∥(E(Jac,ι)

E(Jac,1−ι)

)ν1
(
E

(Cor,ι)
11 E

(Cor,1−ι)
12

E
(Cor,ι)
21 E

(Cor,1−ι)
22

)(
E(Jac,ι)

E(Jac,1−ι)

)ν2
∥∥∥∥2

2

6

∥∥∥∥(E(Jac,ι)

E(Jac,1−ι)

)∥∥∥∥2ν1

2︸ ︷︷ ︸
61 by Theorem 8

∥∥∥∥
(
E

(Cor,ι)
11 E

(Cor,1−ι)
12

E
(Cor,ι)
21 E

(Cor,1−ι)
22

)(
E(Jac,ι)

E(Jac,1−ι)

)ν2
∥∥∥∥2

F

6
(
E(Jac,ι)

)2ν2
((
E

(Cor,ι)
11

)2
+
(
E

(Cor,ι)
21

)2)
+
(
E(Jac,1−ι))2ν2

((
E

(Cor,1−ι)
12

)2
+
(
E

(Cor,1−ι)
22

)2)
=
(
1− 4

3s
2
ι

)2ν2
(
(1− c4ι )2 + s4

ι

)
+ 3−2ν2

(
(1− s4

ι )
2 + c4ι

)
6
(
1− 4

3s
2
ι

)2ν2
(
(1− c4ι )2 + s4

ι

)
+ 2 · 3−2ν2

= s4
ι (1− 4

3s
2
ι )

2ν2
(
5− 3s2

ι − s2
ι (1− s2

ι )
)

+ 2 · 3−2ν2

6 5 9
16 (1 + ν2)−2( ν2

1+ν2
)2ν2 + 2 · 3−2ν2 = (Ê(TG))2,

because s2
ι (1− 4

3s
2
ι )
ν2 attains its maximum at s2

ι = 3
4 (1 + ν2)−1 ∈ (0, 1

2 ). Finally, the bound Ê(TG) is smaller
than 1 due to the fact that

(Ê(TG))2 = 45
16 (1 + ν2)−2( ν2

1+ν2
)2ν2 + 2 · 3−2ν2

6 45
16 (1 + ν2)−2( ν2

1+ν2
)2 + 2 · 3−2 6 45

16 ( ν2

2ν2+ν2
2

)2 + 2 · 3−2 6 45
16 ( 1

3 )2 + 2 · 3−2 = 77
144 .

Corollary 15. In case of a finite element approximation and θ = 1
2 , the two-grid method using the relaxation

parameter ω = ω0 = 4
5 converges monotonically if ν2 > 1 and

‖J(TG)
K ‖2 6 Ê(TG) :=

√
325
144 (1 + ν2)−2( ν2

1+ν2
)2ν2 + 2( 3

5 )2ν2 < 1. (56)
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Proof. For ι ∈ [0, 1
2 ], we have

(E(TG,ι))2 =

∥∥∥∥(E(Jac,ι)

E(Jac,1−ι)

)ν1
(
E

(Cor,ι)
11 E

(Cor,1−ι)
12

E
(Cor,ι)
21 E

(Cor,1−ι)
22

)(
E(Jac,ι)

E(Jac,1−ι)

)ν2
∥∥∥∥2

2

6

∥∥∥∥(E(Jac,ι)

E(Jac,1−ι)

)∥∥∥∥2ν1

2︸ ︷︷ ︸
61 by Theorem 8

∥∥∥∥
(
E

(Cor,ι)
11 E

(Cor,1−ι)
12

E
(Cor,ι)
21 E

(Cor,1−ι)
22

)(
E(Jac,ι)

E(Jac,1−ι)

)ν2
∥∥∥∥2

F

6
(
E(Jac,ι)

)2ν2
((
E

(Cor,ι)
11

)2
+
(
E

(Cor,ι)
21

)2)
+
(
E(Jac,1−ι))2ν2

((
E

(Cor,1−ι)
12

)2
+
(
E

(Cor,1−ι)
22

)2)
=
(
1− 8

5s
2
ι

)2ν2
(
(1− c4ι )2 + 16

9 s
4
ι

)
+ ( 3

5 )2ν2
(
(1− s6

ι )
2 + c4ι

)
6
(
1− 8

5s
2
ι

)2ν2
(
(1− c4ι )2 + 16

9 s
4
ι

)
+ 2( 3

5 )2ν2

= s4
ι (1− 8

5s
2
ι )

2ν2
(
4− 3s2

ι − s2
ι (1− s2

ι ) + 16
9

)
+ 2( 3

5 )2ν2

6 52
9

25
64 (1 + ν2)−2( ν2

1+ν2
)2ν2 + 2( 3

5 )2ν2 = (Ê(TG))2,

because s2
ι (1− 8

5s
2
ι )
ν2 attains its maximum at s2

ι = 5
8 (1 + ν2)−1 ∈ (0, 1

2 ). Finally, the bound Ê(TG) is smaller
than 1 due to the fact that

(Ê(TG))2 = 325
144 (1 + ν2)−2( ν2

1+ν2
)2ν2 + 2( 3

5 )2ν2

6 325
144 (1 + ν2)−2( ν2

1+ν2
)2 + 2( 3

5 )2 6 325
144 ( ν2

2ν2+ν2
2

)2 + 2( 3
5 )2 6 325

144 ( 1
3 )2 + 2( 3

5 )2 = 2491
2566 .

Similarly, bounds can also be derived for θ > 1
2 in case of a finite element approximation and/or by

considering pre-smoothing, too.

6.4 Discussion on (optimal) convergence behavior
When it comes to the convergence analysis of iterative solution strategies, it is common practice to study
the asymptotic rate of convergence. For linear methods, this quantity coincides with the spectral radius of
the iteration matrix and, unfortunately, only approximates the defect reduction after a sufficient number of
iterations. In particular, there is no control over the solution behavior during the first few iterations and,
hence, a priori predictions of the computational cost required to gain a certain number of digits in accuracy
is impossible. For error estimates with respect to a specific vector norm, the corresponding induced matrix
norm of the iteration matrix has to be considered. Thus, the optimal choice of involved parameters may
highly depend on the (matrix) norm under investigation.

For instance, the discrepancy between the spectral norm and the spectral radius of the two-grid iteration
matrix caused by different damping parameters of the (block-)Jacobi smoother is illustrated in Fig. 2 for
a single post-smoothing step. The choice of ωseq seems to be a very good approximation of the optimal
relaxation parameter to minimize the spectral radius, no matter how many time steps K are blocked. While
there is hardly any difference between the spectral radius and the spectral norm for K = 1, that is, a
sequential computation, the latter quantity grows monotonically if K increases and ω is chosen too large.
On the other hand, relaxation of the (block-)Jacobi update using ω0 results in adequate convergence rates
for all considered values of K. Furthermore, the spectral radius and spectral norm of the two-grid iteration
matrix are close to each other for this configuration, or even nearly coincide in case of a finite difference
approximation. Therefore, a uniform and monotone convergence of the solution iterates can be expected and
a rapid error reduction starting from the beginning is guaranteed.
The practical impact of this behavior can be observed in Fig. 3 illustrating the history of the Euclidean

norm of the residual for the two-grid solver corresponding to (11). Here, the initial guess is given by u(0) = 0
and the discrete initial data reads

u
(0)
i =

{
1 : |xi − 1

2 | <
1
5 ,

0 : |xi − 1
2 | >

1
5 .
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K = 1 K = 2 K = 4 K = 8 K = 16 K = 32

K = 64 K = 128 K = 256 K = 512 Spectral radius
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(a) Finite differences.
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Ê(TG)

ω

(b) Finite elements.

Figure 2: Spectral norm (and spectral radius) of two-grid iteration matrix depending on relaxation parame-
ter ω ∈ (0, 1] for ν1 = 0, ν2 = 1, θ = 1

2 , h = 2−4, τ = 2−12.

When ωseq is used to relax the (block-)Jacobi smoother, a uniformly bounded defect reduction cannot be
guaranteed and the Euclidean norm of the residual might even grow initially if the number of blocked time
steps K is too large for a finite element discretization. In contrast to this, the iterates of the two-grid solver
using the damping parameter ω0 converge monotonically to the exact solution so that a certain tolerance, like
10−12, may be reached with less computational effort although the asymptotic rate of convergence deteriorates.

7 Conclusion
In this work, the convergence of a time-simultaneous two-grid solver for the one-dimensional heat equation
discretized in space by finite differences or finite elements and integrated in time using the θ-scheme is
analyzed. Although the dimension of the all-at-once system grows arbitrarily as the number of blocked
time steps increases, the corresponding condition number is bounded from above by a constant which only
depends on parameters of the underlying sequential discretization technique. The proof of this statement
highly exploits a tensor product approach and a spatial Fourier analysis. Both techniques also provide the
possibility to investigate the convergence behavior of the considered two-grid solver. For a specific choice of
the relaxation parameter used by the (block-)Jacobi smoother, explicitly determined bounds for the spectral
norm of the iteration matrix predict a convergence rate which is uniformly bounded no matter how many time
steps are treated simultaneously. Therefore, solution of the all-at-once system just requires computational
costs which are linear with respect to the global number of degrees of freedom and blocking more time steps
does not arbitrarily increase the overall complexity.
Caused by these generalizations and simplifications, the estimates proposed in this work cannot reflect

the improved convergence behavior for very small time increments and/or number of blocked time steps.
Therefore, further efforts have to be invested in achieving more accurate estimates for the convergence rate in
the limit of vanishing time increments. Such results might be beneficial to understand and further improve
solution algorithms which might also exploit temporal coarsening strategies as proposed in [Fra+18; HV95].
Furthermore, extension of the presented results to higher dimensions and more complex geometries might be
of interest to enlarge the practical relevancy.
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Figure 3: History of relative norm of residual, θ = 1
2 , ν1 = 0, ν2 = 1, h = 2−4, τ = 2−12.
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A Appendix
To prove the statement of Theorem 3, some preliminary results have to be summarized.

Lemma 16. The eigenvalues of the Kac-Murdock-Szegö matrix E(ρ) = (ρ|i−j|)Mi,j=1, M > 2, for ρ ∈ (0, 1)
are given by [GS58]

λk(ρ) =
1− ρ2

1− 2ρ cos(γk) + ρ2
, k = 1, . . . ,M, (57)

where γ1, . . . , γM ∈ (0, π) are the roots of

f(γ) = sin
(
(M + 1)γ

)
− 2ρ sin(Mγ) + ρ2 sin

(
(M − 1)γ

)
(58)
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and can be estimated by [Tre10]

(k − 1)π

M
< γk <

kπ

M + 1
, k = 1, . . . ,M.

Therefore, the spectrum of E(ρ) satisfies

σ
(
E(ρ)

)
⊂
(1− ρ

1 + ρ
,

1 + ρ

1− ρ

)
. (59)

Corollary 17. The Kac-Murdock-Szegö matrix E(ρ) is similar to E(−ρ) and, hence, both matrices have the
same eigenvalues.

Lemma 18. The Hankel matrix E(ρ) = (ρ2M−i−j)Mi,j=1,M ∈ N, for ρ ∈ R is positive semidefinite and the only
non-vanishing eigenvalue is given by its trace while the corresponding eigenvector reads (ρM−1, ρM−2, . . . , ρ0)>.

Proof. The statement of this lemma can be easily verified and, hence, will be omitted.

Based on these results, Theorem 3 can be shown by some algebraic manipulations.

Proof of Theorem 3. First of all, let us consider the special case f2 = 0. Then the matrix F−1E coincides
with f−1

1 E, which is well defined because f1 does not vanish by assumption of the theorem. Therefore, we
have

(F−1E)>F−1E = f−2
1


e2

1 + e2
2 e1e2

e1e2
. . . . . .
. . . e2

1 + e2
2 e1e2

e1e2 e2
1

 .

Obviously, this matrix is positive semidefinite while the maximal eigenvalue is bounded from above by
e2

1 + e2
2 + 2|e1e2| according to the Gershgorin circle theorem [Ger31]. Then the statement of the theorem

directly follows by distinguishing between e1e2 > 0 and e1e2 < 0.
If f2 6= 0, we first note that the inverse of F reads

F−1 =


f−1

1

(−f−1
1 f2)f−1

1 f−1
1

...
. . . . . .

(−f−1
1 f2)M−1f−1

1 · · · −(f−1
1 f2)f−1

1 f−1
1


and, hence,

F−1E =


f−1

1

(−f−1
1 f2)f−1

1 f−1
1

...
. . . . . .

(−f−1
1 f2)M−1f−1

1 · · · −(f−1
1 f2)f−1

1 f−1
1



e1

e2 e1

. . . . . .
e2 e1



=


f−1

1 e1

f−1
1 (e2 − f2f

−1
1 e1) f−1

1 e1

...
. . . . . .

(−f−1
1 f2)M−2f−1

1 (e2 − f2f
−1
1 e1) · · · f−1

1 (e2 − f2f
−1
1 e1) f−1

1 e1



=


s1

s3 s1

...
. . . . . .

sM−2
2 s3 · · · s3 s1

 ,
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where s1 = f−1
1 e1, s2 = −f−1

1 f2 ∈ (−1, 1), s3 = f−1
1 (e2 − f2f

−1
1 e1). Therefore, the symmetric and positive

semidefinite matrix T = (F−1E)>F−1E possesses the entries

tii = s1 · s1 + s3 · s3 + . . .+ s3s
M−1−i
2 · sM−1−i

2 s3

= s2
1 + s3

(M−1−i∑
j=0

s2j
2

)
s3 = s2

1 + s2
3

1− s2M−2i
2

1− s2
2

, i = 1, . . . ,M,

tij = s1 · si−j−1
2 s3 + s3 · si−j2 s3 + s3s2 · si−j+1

2 s3 + . . .+ s3s
M−1−i
2 · sM−1−j

2 s3

= s1s
i−j−1
2 s3 + s3

(M−1−i∑
l=0

s2l
2

)
si−j2 s3

= s1s3s
i−j−1
2 + s2

3

1− s2M−2i
2

1− s2
2

si−j2 = tji, i = 1, . . . ,M, j = 1, . . . , i− 1.

To estimate the largest eigenvalue of T, the matrix can be decomposed into

T = T1 + T2 + T3,

T1 =


s2

1 +
s23

1−s22
− p

. . .

s2
1 +

s23
1−s22

− p

 =
(
s2

1 +
s2

3

1− s2
2

− p
)1

. . .
1

 ,

T2 =


p s1s3 +

s23
1−s22

s2 · · · s1s3s
M−2
2 +

s23
1−s22

sM−1
2

s1s3 +
s23

1−s22
s2

. . .
...

...
. . . s1s3 +

s23
1−s22

s2

s1s3s
M−2
2 +

s23
1−s22

sM−1
2 · · · s1s3 +

s23
1−s22

s2 p



= p


s0

2 s1
2 · · · sM−1

2

s1
2

. . .
...

...
. . . s1

2

sM−1
2 · · · s1

2 s0
2

 ,

T3 =
−s2

3

1− s2
2


s2M−1−1

2 s2M−1−2
2 · · · s2M−1−M

2

s2M−2−1
2

. . .
...

...
. . . s

2M−(M−1)−M
2

s2M−M−1
2 · · · s

2M−M−(M−1)
2 s2M−M−M

2


where

p := s1s3s
−1
2 +

s2
3

1− s2
2

= s3
s1 − s1s

2
2 + s2s3

s2(1− s2
2)

= f−1
1 (e2 − f−1

1 f2e1)
f−1

1 e1 − f−1
1 e1f

−2
1 f2

2 − f−1
1 f2f

−1
1 (e2 − f−1

1 f2e1)

−f−1
1 f2(1− f−2

1 f2
2 )

= (f1e2 − f2e1)
f1e1 − f−1

1 f2
2 e1 − f2(e2 − f−1

1 f2e1)

f1f2(f2
2 − f2

1 )

= (f1e2 − f2e1)
f1e1 − f2e2

f1f2(f2
2 − f2

1 )
=

η

f1f2(f2
2 − f2

1 )
.
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Obviously, the maximal eigenvalue of T3 is bounded from above by zero according to Lemma 18 and the fact
that s2

2 < 1. By Corollary 17, the spectrum of T2 satisfies

σ(T2) ⊆

{[
p 1−s2

1+s2
, p 1+s2

1−s2

]
: ps2 > 0,(

p 1+s2
1−s2 , p

1−s2
1+s2

)
: ps2 < 0

because T2 is positive (negative) semidefinite if and only if p > 0 (p 6 0) holds. Therefore, the maximal
eigenvalue λM (T) of T is bounded from above by

λM (T) 6

s2
1 +

s23
1−s22

− p+ p 1+s2
1−s2 =: B+ : ps2 > 0,

s2
1 +

s23
1−s22

− p+ p 1−s2
1+s2

=: B− : ps2 < 0,
(60)

where the quantities B± are equivalent to

B± = s2
1 +

s2
3

1− s2
2

− p+ p
1± s2

1∓ s2
= s2

1 +
s2

3

1− s2
2

± p 2s2

1∓ s2

= s2
1 +

s2
3

1− s2
2

± 2s1s3

1∓ s2
± 2s2s

2
3

(1∓ s2)(1− s2
2)

= s2
1 +

s2
3 ∓ s2s

2
3 ± 2s2s

2
3

(1∓ s2)(1− s2
2)
± 2s1s3

1∓ s2

= s2
1 +

(1± s2)s2
3

(1∓ s2)(1− s2)(1 + s2)
± 2s1s3

1∓ s2
= s2

1 +
s2

3

(1∓ s2)2
± 2s1s3

1∓ s2

=
s2

1(1∓ s2)2 + s2
3 ± 2(1∓ s2)s1s3

(1∓ s2)2
=

(
s1(1∓ s2)± s3

)2
(1∓ s2)2

=

(
f−1

1 e1(1± f−1
1 f2)± f−1

1 (e2 − f−1
1 f2e1)

)2
(1± f−1

1 f2)2

=
(f−1

1 e1 ± f−2
1 f2e1 ± f−1

1 e2 ∓ f−2
1 f2e1)2

(1± f−1
1 f2)2

=
(e1 ± e2)2

(f1 ± f2)2
.

Then the statement of the theorem follows because ps2 = η
f2
1 (f2

1−f2
2 )

and |f1| > |f2| while

4η = 4f2
1 e1e2 − 4f1f2e

2
2 − 4f1f2e

2
1 + 4e1e2f

2
2

= 4e1e2(f2
1 + f2

2 )− 4f1f2(e2
1 + e2

2)

=
(
2e1e2(f2

1 + f2
2 )− 2f1f2(e2

1 + e2
2)
)
−
(
−2e1e2(f2

1 + f2
2 ) + 2f1f2(e2

1 + e2
2)
)

=
(
2e1e2(f2

1 − 2f1f2 + f2
2 )− 2f1f2(e2

1 + e2
2) + (f2

1 + f2
2 )(e2

1 + e2
2)
)

−
(
−2e1e2(f2

1 + 2f1f2 + f2
2 ) + 2f1f2(e2

1 + e2
2) + (f2

1 + f2
2 )(e2

1 + e2
2)
)

= (e2
1 + 2e1e2 + e2

2)(f2
1 − 2f1f2 + f2

2 )− (e2
1 − 2e1e2 + e2

2)(f2
1 + 2f1f2 + f2

2 )

= (e1 + e2)2(f1 − f2)2 − (e1 − e2)2(f1 + f2)2.

Proof of Theorem 8. First of all, we note that

2mii − (1− 2θ)τdii
(2 + ζ)mii − 2(1− 2θ)τdii

− 2

3
=

6mii − 3(1− 2θ)τdii − (4 + 2ζ)mii + 4(1− 2θ)τdii

3
(
(2 + ζ)mii − 2(1− 2θ)τdii

)
=

2(1− ζ)mii + (1− 2θ)τdii

3
(
(2 + ζ)mii − 2(1− 2θ)τdii

) .
Therefore, the value of ω0 is equal to 2

3 if and only if

2(1− ζ)mii + (1− 2θ)τdii 6 0 (61)
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and, particularly, θ > 1
2 is mandatory. If condition (61) is satisfied and d(`) > dii, the first argument of the

maximum in (27b) is bounded from above by 1
3 because(

ω0
2m(`) − (1− 2θ)τd(`)

2mii − (1− 2θ)τdii
− 1
)
− 1

3
=
(2

3

2m(`) − (1− 2θ)τd(`)

2mii − (1− 2θ)τdii
− 1
)
− 1

3

=
2
(
2m(`) − (1− 2θ)τd(`)

)
− 4
(
2mii − (1− 2θ)τdii

)
3
(
2mii − (1− 2θ)τdii

)

=
4

60 by (8)︷ ︸︸ ︷
(m(`) − 2mii) +2

60︷ ︸︸ ︷
(1− 2θ) τ

>0 by (7)︷ ︸︸ ︷
(2dii − d(`))

3
(
2mii − (1− 2θ)τdii

) 6 0,

(
1− ω0

2m(`) − (1− 2θ)τd(`)

2mii − (1− 2θ)τdii

)
− 1

3
=
(

1− 2

3

2m(`) − (1− 2θ)τd(`)

2mii − (1− 2θ)τdii

)
− 1

3

=
2
(
2mii − (1− 2θ)τdii

)
− 2
(
2m(`) − (1− 2θ)τd(`)

)
3
(
2mii − (1− 2θ)τdii

)
=

4(mii −m(`))− 2(1− 2θ)τ(dii − d(`))

3
(
2mii − (1− 2θ)τdii

) ,

which is nonpositive for finite differences due to the fact that mii = m(`) = 1, θ > 1
2 , and d

(`) > dii while we
have

4(mii −m(`))− 2(1− 2θ)τ(dii − d(`)) = 2(2s2
` − 1)mii − 2(1− 2θ)τ(dii − d(`))

= 2d−1
ii (d(`) − dii)︸ ︷︷ ︸

>0

(
mii + (1− 2θ)τdii

)︸ ︷︷ ︸
60 by (61)

6 0

in the context of linear finite elements. On the other hand, the second argument is not greater than 1
3 due to

the fact that

|1− 2
3d
−1
ii d

(`)| = 1− 2
3d
−1
ii d

(`) 6 1− 2
3 = 1

3 , if d(`) 6 3
2dii,

|1− 2
3d
−1
ii d

(`)| = 2
3d
−1
ii d

(`) − 1 6 4
3 − 1 = 1

3 , if d(`) > 3
2dii

by virtue of (7). Let us now assume that

2(1− ζ)mii + (1− 2θ)τdii > 0. (62)

Then the relaxation parameter ω0 attains the second argument of the maximum in (31) and, hence, the first
expression in the definition of B(`) is bounded from above by (2−ζ)mii

(2+ζ)mii−2(1−2θ)τdii
. Indeed, we have

1− ω0
2m(`) − (1− 2θ)τd(`)

2mii − (1− 2θ)τdii
=

(2 + ζ)mii − 2(1− 2θ)τdii −
(
2m(`) − (1− 2θ)τd(`)

)
(2 + ζ)mii − 2(1− 2θ)τdii

=
(2− ζ)mii +

!
=0︷ ︸︸ ︷

2ζmii − 2m(`) + 4(1− s2
`)(1− ζ)mii

(2 + ζ)mii − 2(1− 2θ)τdii
−

2

>0︷ ︸︸ ︷
(1− s2

`)

>0 by (62)︷ ︸︸ ︷(
2(1− ζ)mii + (1− 2θ)τdii

)
(2 + ζ)mii − 2(1− 2θ)τdii

6
(2− ζ)mii

(2 + ζ)mii − 2(1− 2θ)τdii

because

2ζmii − 2m(`) + 4(1− s2
`)(1− ζ)mii =

{
2− 2 = 0 : ζ = 1,

mii

(
1− 3 + 2s2

` + 2(1− s2
`)
)

= 0 : ζ = 1
2
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and, on the other hand,

ω0
2m(`) − (1− 2θ)τd(`)

2mii − (1− 2θ)τdii
− 1 =

−(2 + ζ)mii + 2(1− 2θ)τdii +
(
2m(`) − (1− 2θ)τd(`)

)
(2 + ζ)mii − 2(1− 2θ)τdii

=
(2− ζ)mii − 4mii + 2(1− 2θ)τdii +

(
2m(`) − (1− 2θ)τd(`)

)
(2 + ζ)mii − 2(1− 2θ)τdii

6
(2− ζ)mii

(2 + ζ)mii − 2(1− 2θ)τdii

due to the fact that

4mii − 2(1− 2θ)τdii −
(
2m(`) − (1− 2θ)τd(`)

)

=


2
(
ζmii − (1− 2θ)τdii

)︸ ︷︷ ︸
>0 by (10)

+2
(
(2− ζ)mii −m(`)

)︸ ︷︷ ︸
>0 by (8)

+ (1− 2θ)τd(`)︸ ︷︷ ︸
>0

> 0 : θ 6 1
2 ,

2 (2mii −m(`))︸ ︷︷ ︸
>0 by (8)

− (1− 2θ)︸ ︷︷ ︸
60

τ (2dii − d(`))︸ ︷︷ ︸
>0 by (7)

> 0 : θ > 1
2 .

Finally, the second argument of the maximum in (27b) satisfies

1− ω0
d(`)

dii
= 1− 2miid

(`) − (1− 2θ)τdiid
(`)

dii
(
(2 + ζ)mii − 2(1− 2θ)τdii

)
=

(2 + ζ)miidii − 2(1− 2θ)τd2
ii − 2miid

(`) + (1− 2θ)τdiid
(`)

dii
(
(2 + ζ)mii − 2(1− 2θ)τdii

)

=
(2− ζ)miidii +

>0 by (62)︷ ︸︸ ︷(
2(1− ζ)mii + (1− 2θ)τdii

) 60︷ ︸︸ ︷
(d(`) − 2dii) +

>0︷ ︸︸ ︷
(4− 2ζ)mii

60︷ ︸︸ ︷
(dii − d(`))

dii
(
(2 + ζ)mii − 2(1− 2θ)τdii

)
6

(2− ζ)mii

(2 + ζ)mii − 2(1− 2θ)τdii
,

ω0
d(`)

dii
− 1 =

2miid
(`) − (1− 2θ)τdiid

(`) − (2 + ζ)miidii + 2(1− 2θ)τd2
ii

dii
(
(2 + ζ)mii − 2(1− 2θ)τdii

)

=
(2− ζ)miidii +

60 by (7)︷ ︸︸ ︷
(d(`) − 2dii)

>0 by (10)︷ ︸︸ ︷(
2mii − (1− 2θ)τdii

)
dii
(
(2 + ζ)mii − 2(1− 2θ)τdii

) 6
(2− ζ)mii

(2 + ζ)mii − 2(1− 2θ)τdii
,

which proves the validity of inequality (32).
To prove identity (33), we have to show the validity of∣∣∣1− ω 2m(`) − (1− 2θ)τd(`)

2mii − (1− 2θ)τdii

∣∣∣ 6 1− ωd−1
ii d

(`)

whenever d(`) 6 dii and ω ∈ (0, 1]. For this purpose, we first note that

(1− ωd−1
ii d

(`))−
(

1− ω 2m(`) − (1− 2θ)τd(`)

2mii − (1− 2θ)τdii

)
= ω

(2m(`) − (1− 2θ)τd(`)

2mii − (1− 2θ)τdii
− d−1

ii d
(`)
)

= ω
2diim

(`) − (1− 2θ)τdiid
(`) − 2miid

(`) + (1− 2θ)τdiid
(`)

dii
(
2mii − (1− 2θ)τdii

) = ω
2(diim

(`) −miid
(`))

dii
(
2mii − (1− 2θ)τdii

) > 0

due to the fact that

m(`)dii −miid
(`) = dii − d(`) > 0 if ζ = 1,

m(`)dii −miid
(`) = mii(

3
2 − s

2
`)dii −mii2diis

2
` = 3

2miidii(1− 2s2
`) = 3

2mii(dii − d(`)) > 0 if ζ = 1
2 .
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On the other hand, we have

(1− ωd−1
ii d

(`))−
(
ω

2m(`) − (1− 2θ)τd(`)

2mii − (1− 2θ)τdii
− 1
)

= 2− ω 2miid
(`) − (1− 2θ)τdiid

(`) + 2diim
(`) − (1− 2θ)τdiid

(`)

dii
(
2mii − (1− 2θ)τdii

)
= 2

2miidii − (1− 2θ)τd2
ii − ω(miid

(`) + diim
(`)) + ω(1− 2θ)τdiid

(`)

dii
(
2mii − (1− 2θ)τdii

)

= 2
(2− ζ)miidii − ω

(
(1− ζ)miid

(`) + diim
(`)
)

dii
(
2mii − (1− 2θ)τdii

) +

>0 by (10)︷ ︸︸ ︷(
ζmii − (1− 2θ)τdii

) >dii−d(`)>0︷ ︸︸ ︷
(dii − ωd(`))

dii
(
2mii − (1− 2θ)τdii

) ,

which is nonnegative either for ζ = mii = m(`) = 1 in case of finite differences or according to

(2− ζ)miidii − ω
(
(1− ζ)miid

(`) + diim
(`)
)

= miidii

(
3
2 − ω(s2

` + 3
2 − s

2
`)
)

= 3
2miidii(1− ω) > 0

for linear finite elements and ζ = 1
2 .

Although the statement of Theorem 11 is true for finite element and finite difference discretizations, we
prove the result by considering both spatial discretization techniques individually.

Proof of Theorem 11 for finite differences. To prove that spr
(
J(Cor,`)(J(Jac,`))ν

)
is smaller than 1 for all

` = 1, . . . , N̄ , we directly estimate the eigenvalues λ± ∈ C of J(Cor,`)(J(Jac,`))ν which are the roots of the
characteristic polynomial p : C→ C

p(λ) = det
(
J(Cor,`)(J(Jac,`))ν − λI

)
= (ā(`))−2 det

(
(ā(`) − c4`a(`))(j(Jac,`))ν − ā(`)λ s2

`c
2
`a

(N+1−`)(j(Jac,N+1−`))ν

s2
`c

2
`a

(`)(j(Jac,`))ν (ā(`) − s4
`a

(N+1−`))(j(Jac,N+1−`))ν − ā(`)λ

)
= (ā(`))−2

((
(ā(`) − c4`a(`))(j(Jac,`))ν − ā(`)λ

)(
(ā(`) − s4

`a
(N+1−`))(j(Jac,N+1−`))ν − ā(`)λ

)
− s4

`c
4
`a

(`)a(N+1−`)(j(Jac,`))ν(j(Jac,N+1−`))ν
)

= (ā(`))−2
(

(ā(`)λ)2 − ā(`)λ
(
(ā(`) − c4`a(`))(j(Jac,`))ν + (ā(`) − s4

`a
(N+1−`))(j(Jac,N+1−`))ν

)
+
(
(ā(`))2 − ā(`)(c4`a

(`) + s4
`a

(N+1−`))
)
(j(Jac,`))ν(j(Jac,N+1−`))ν

)
= (ā(`))−2

(
(ā(`)λ)2 − ā(`)λ

(
s2
`(ā

(`) + c2`)(j
(Jac,`))ν + c2`(ā

(`) + s2
`)(j

(Jac,N+1−`))ν
)

+ 2s2
`c

2
` ā

(`)(j(Jac,`))ν(j(Jac,N+1−`))ν
)
.

Here, the last identity is valid because

ā(`) − c4`a(`) = 1 + 2θτdiis
2
`c

2
` − c4` − 2θτdiis

2
`c

4
` = s2

` + c2` − c4` + 2θτs4
`c

2
` = s2

`(ā
(`) + c2`), (63a)

ā(`) − s4
`a

(N+1−`) = 1 + 2θτdiis
2
`c

2
` − s4

` − 2θτdiis
4
`c

2
` = s2

` + c2` − s4
` + 2θτs2

`c
4
` = c2`(ā

(`) + s2
`). (63b)

Therefore, the eigenvalues λ± satisfy(
ā(`)λ± − 1

2

(
s2
`(ā

(`) + c2`)(j
(Jac,`))ν + c2`(ā

(`) + s2
`)(j

(Jac,N+1−`))ν
))2

= 1
4

(
s2
`(ā

(`) + c2`)(j
(Jac,`))ν + c2`(ā

(`) + s2
`)(j

(Jac,N+1−`))ν
)2 − 2s2

`c
2
` ā

(`)(j(Jac,`))ν(j(Jac,N+1−`))ν .

(64)
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Let us now consider the special case (j(Jac,`))ν(j(Jac,N+1−`))ν 6 0. Then the right hand side of (64) is
obviously nonnegative and can be estimated by

0 6 1
4

(
s2
`(ā

(`) + c2`)(j
(Jac,`))ν + c2`(ā

(`) + s2
`)(j

(Jac,N+1−`))ν
)2 − 2s2

`c
2
` ā

(`)(j(Jac,`))ν(j(Jac,N+1−`))ν

= 1
4

(
s2
`(ā

(`) + c2`)(j
(Jac,`))ν

)2
+ 1

4

(
c2`(ā

(`) + s2
`)(j

(Jac,N+1−`))ν
)2

+ s2
`c

2
` (j(Jac,`))ν(j(Jac,N+1−`))ν︸ ︷︷ ︸

60

(
1
2 (ā(`) + c2`)(ā

(`) + s2
`)− 2ā(`)

)︸ ︷︷ ︸
>− 1

2 (ā(`)+c2`)(ā
(`)+s2`)

6 1
4

(
s2
`(ā

(`) + c2`)(j
(Jac,`))ν − c2`(ā(`) + s2

`)(j
(Jac,N+1−`))ν

)2
(65)

because
(ā(`) + c2`)(ā

(`) + s2
`)− 2ā(`) = (ā(`))2 − ā(`) + s2

`c
2
` = ā(`) (ā(`) − 1)︸ ︷︷ ︸

=θτd̄(`)

+s2
`c

2
` > 0. (66)

Thus, both eigenvalues are real and satisfy

ā(`)|λ±| 6 1
2

∣∣s2
`(ā

(`) + c2`)(j
(Jac,`))ν + c2`(ā

(`) + s2
`)(j

(Jac,N+1−`))ν
∣∣

+ 1
2

∣∣s2
`(ā

(`) + c2`)(j
(Jac,`))ν − c2`(ā(`) + s2

`)(j
(Jac,N+1−`))ν

∣∣
= 1

2

∣∣s2
`(ā

(`) + c2`)|j(Jac,`)|ν − c2`(ā(`) + s2
`)|j(Jac,N+1−`)|ν

∣∣
+ 1

2

(
s2
`(ā

(`) + c2`)|j(Jac,`)|ν + c2`(ā
(`) + s2

`)|j(Jac,N+1−`)|ν
)

= max
(
s2
`(ā

(`) + c2`)|j(Jac,`)|ν , c2`(ā(`) + s2
`)|j(Jac,N+1−`)|ν

)
6 ā(`) max

(
|j(Jac,`)|ν , |j(Jac,N+1−`)|ν

)
< ā(`)

due to the reverse triangle inequality, Theorem 5, (63) and the fact that (j(Jac,`))ν(j(Jac,N+1−`))ν 6 0.
On the other hand, for (j(Jac,`))ν(j(Jac,N+1−`))ν > 0, we can assume that

jmax := max
(
(j(Jac,`))ν , (j(Jac,N+1−`))ν

)
> 0.

Otherwise, consider −(J(Jac,`))ν instead of (J(Jac,`))ν . Then estimate (66) can be exploited as in (65) to prove

1
4

(
s2
`(ā

(`) + c2`)(j
(Jac,`))ν + c2`(ā

(`) + s2
`)(j

(Jac,N+1−`))ν
)2 − 2s2

`c
2
` ā

(`)(j(Jac,`))ν(j(Jac,N+1−`))ν

> 1
4

(
s2
`(ā

(`) + c2`)(j
(Jac,`))ν − c2`(ā(`) + s2

`)(j
(Jac,N+1−`))ν

)2
> 0

(67)

and, hence, both eigenvalues are real and positive because

ā(`)λ± >
1
2

(
s2
`(ā

(`) + c2`)(j
(Jac,`))ν + c2`(ā

(`) + s2
`)(j

(Jac,N+1−`))ν
)

− 1
2

∣∣s2
`(ā

(`) + c2`)(j
(Jac,`))ν − c2`(ā(`) + s2

`)(j
(Jac,N+1−`))ν

∣∣
= min

(
s2
`(ā

(`) + c2`)(j
(Jac,`))ν , c2`(ā

(`) + s2
`)(j

(Jac,N+1−`))ν
)
> 0

by (64) and (67). Furthermore, the maximal eigenvalue λ+ satisfies

ā(`)λ+ = 1
2

(
s2
`(ā

(`) + c2`)(j
(Jac,`))ν + c2`(ā

(`) + s2
`)(j

(Jac,N+1−`))ν
)

+
√

1
4

(
s2`(ā

(`)+c2`)(j
(Jac,`))ν+c2`(ā

(`)+s2`)(j
(Jac,N+1−`))ν

)2
−2s2`c

2
` ā

(`)(j(Jac,`))ν(j(Jac,N+1−`))ν

6 1
2

(
s2
`(ā

(`) + c2`)jmax + c2`(ā
(`) + s2

`)jmax

)
+

√
1
4

(
s2
`(ā

(`) + c2`)jmax + c2`(ā
(`) + s2

`)jmax

)2 − 2s2
`c

2
` ā

(`)j2
max

= 1
2 (ā(`) + 2s2

`c
2
`)jmax +

√
1
4 (ā(`) + 2s2

`c
2
`)

2 − 2s2
`c

2
` ā

(`)jmax

= 1
2 (ā(`) + 2s2

`c
2
`)jmax + 1

2 |ā
(`) − 2s2

`c
2
` |jmax = max(ā(`), 2s2

`c
2
`)jmax < ā(`)

(68)
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by Theorem 5 and due to the fact that 2s2
`c

2
` 6

1
2 6 1 6 ā(`) because λ+ grows monotonically with respect to

(j(Jac,`))ν and (j(Jac,N+1−`))ν . Indeed, for instance, we have

ā(`) ∂λ+

∂(j(Jac,N+1−`))ν
= 1

2c
2
`(ā

(`) + s2
`)

+
1
2

(
1
2

(
s2` (ā(`)+c2` )(j(Jac,`))ν+c2` (ā(`)+s2` )(j(Jac,N+1−`))ν

)
c2` (ā(`)+s2` )−2s2`c

2
` ā

(`)(j(Jac,`))ν

)
√

1
4

(
s2
`
(ā(`)+c2

`
)(j(Jac,`))ν+c2

`
(ā(`)+s2

`
)(j(Jac,N+1−`))ν

)2
−2s2

`
c2
`
ā(`)(j(Jac,`))ν (j(Jac,N+1−`))ν

>
1
4
c2` (ā(`)+s2` )

∣∣
s2` (ā(`)+c2` )(j(Jac,`))ν−c2` (ā(`)+s2` )(j(Jac,N+1−`))ν

∣∣√
1
4

(
s2
`
(ā(`)+c2

`
)(j(Jac,`))ν+c2

`
(ā(`)+s2

`
)(j(Jac,N+1−`))ν

)2
−2s2

`
c2
`
ā(`)(j(Jac,`))ν (j(Jac,N+1−`))ν

+
1
2

(
1
2

(
s2` (ā(`)+c2` )(j(Jac,`))ν+c2` (ā(`)+s2` )(j(Jac,N+1−`))ν

)
c2` (ā(`)+s2` )−2s2`c

2
` ā

(`)(j(Jac,`))ν

)
√

1
4

(
s2
`
(ā(`)+c2

`
)(j(Jac,`))ν+c2

`
(ā(`)+s2

`
)(j(Jac,N+1−`))ν

)2
−2s2

`
c2
`
ā(`)(j(Jac,`))ν (j(Jac,N+1−`))ν

by (67), which is nonnegative because

1
2c

2
`(ā

(`) + s2
`)
∣∣s2
`(ā

(`) + c2`)(j
(Jac,`))ν − c2`(ā(`) + s2

`)(j
(Jac,N+1−`))ν

∣∣
+ 1

2

(
s2
`(ā

(`) + c2`)(j
(Jac,`))ν + c2`(ā

(`) + s2
`)(j

(Jac,N+1−`))ν
)
c2`(ā

(`) + s2
`)− 2s2

`c
2
` ā

(`)(j(Jac,`))ν

= c2`(ā
(`) + s2

`) max
(
s2
`(ā

(`) + c2`)(j
(Jac,`))ν , c2`(ā

(`) + s2
`)(j

(Jac,N+1−`))ν
)
− 2s2

`c
2
` ā

(`)(j(Jac,`))ν

> c2`(ā
(`) + s2

`)s
2
`(ā

(`) + c2`)(j
(Jac,`))ν − 2s2

`c
2
` ā

(`)(j(Jac,`))ν

= s2
`c

2
`(j

(Jac,`))ν
(
(ā(`) + s2

`)(ā
(`) + c2`)− 2ā(`)

)
> 0

according to (66). This proves the statement of Theorem 11 for finite differences by exploiting (45).

Proof of Theorem 11 for finite elements. For finite elements, we first note that J(Cor,`) is singular because

(ā(`))2 det(J(Cor,`)) = (ā(`))2 det

((
1− ζ−1c4`(ā

(`))−1a(`) ζ−1s2
`c

2
`(ā

(`))−1a(N+1−`)

ζ−1s2
`c

2
`(ā

(`))−1a(`) 1− ζ−1s4
`(ā

(`))−1a(N+1−`)

))
= (ā(`) − 2c4`a

(`))(ā(`) − 2s4
`a

(N+1−`))− 4s4
`c

4
`a

(`)a(N+1−`)

= ā(`)(ā(`) − 2s4
`a

(N+1−`) − 2c4`a
(`)) = 0

according to

2s4
`a

(N+1−`) + 2c4`a
(`) = mii(3s

4
` − 2s4

`c
2
` + 3c4` − 2s2

`c
4
`) + θτdii(4s

4
`c

2
` + 4s2

`c
4
`)

= mii(3− 8s2
`c

2
`) + θτdii(4s

2
`c

2
`) = m̄(`) + θτ d̄(`) = ā(`).

(69)

Therefore, the matrix J(Cor,`)(J(Jac,`))ν1+ν2 has a vanishing eigenvalue, too, and its spectral radius coincides
with the absolute value of the trace, that is,

spr
(
J(Cor,`)(J(Jac,`))ν

)
=
∣∣∣tr(J(Cor,`)(J(Jac,`))ν

)∣∣∣
=
∣∣∣(1− 2c4`(ā

(`))−1a(`)
)
(j(Jac,`))ν +

(
1− 2s4

`(ā
(`))−1a(N+1−`))(j(Jac,N+1−`))ν

∣∣∣
= 2(ā(`))−1

∣∣∣s4
`a

(N+1−`)(j(Jac,`))ν + c4`a
(`)(j(Jac,N+1−`))ν

∣∣∣
6 2(ā(`))−1

(
s4
`a

(N+1−`)|j(Jac,`)|ν + c4`a
(`)|j(Jac,N+1−`)|ν

)
(70)

< 2(ā(`))−1
(
s4
`a

(N+1−`) + c4`a
(`)
)

= 1

by virtue of (25) and (69). This proves the statement of Theorem 11 for finite elements by exploiting (45).
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Proof of Lemma 12. To prove the inequalities, we first note that

2m̄(`) − (1− 2θ)τ d̄(`) > 3
2mii > 0, ` = 1, . . . , N̄ (71)

because

2m̄(`) − (1− 2θ)τ d̄(`) = mii(6− 16s2
`c

2
` − 2s2

`c
2
`) + 2s2

`c
2
` (mii − 2(1− 2θ)τdii)︸ ︷︷ ︸

>0 by (10)

> 6mii(1− 3s2
`c

2
`) > 6mii(1− 3

4 ) > 3
2mii if ζ = 1

2 ,

(72)

2m̄(`) − (1− 2θ)τ d̄(`) = 2(1− s2
`c

2
`) + 2s2

`c
2
`

(
1− (1− 2θ)τdii

)︸ ︷︷ ︸
>0 by (10)

> 2(1− s2
`c

2
`) > 2(1− 1

4 ) > 3
2 if ζ = 1,

(73)

due to the fact that s2
`c

2
` ∈ (0, 1

4 ]. We now find upper bounds for the spectral norm of the submatrices by
using Theorem 3, where different values for e1 and e2 are considered while

f1 = m̄(`) + θτ d̄(`), f2 = −m̄(`) + (1− θ)τ d̄(`).

Indeed, the requirement |f2| < |f1| made in this theorem is valid because

f2
2 − f2

1 = −τ d̄(`)
(
2m̄(`) − (1− 2θ)τ d̄(`)

)︸ ︷︷ ︸
>0 by (71)

< 0,

which can be shown as in (30).

• Then, according to Theorem 3, the spectral norm of IK − ζ−1c4`(S̄
(`)
K )−1S

(`)
K is bounded from above by

‖IK − ζ−1c4`(S̄
(`)
K )−1S

(`)
K ‖2 6 max

(∣∣∣1− ζ−1c4`
2m(`) − (1− 2θ)τd(`)

2m̄(`) − (1− 2θ)τ d̄(`)

∣∣∣, ∣∣∣ d̄(`) − ζ−1c4`d
(`)

d̄(`)

∣∣∣)
using the quantities

e1 = (m̄(`) + θτ d̄(`))− ζ−1c4`(m
(`) + θτd(`)),

e2 =
(
−m̄(`) + (1− θ)τ d̄(`)

)
− ζ−1c4`

(
−m(`) + (1− θ)τd(`)

)
.

This bound can be simplified by exploiting the identities

d̄(`) − ζ−1c4`d
(`)

d̄(`)
=
d̄(`) − c2` d̄(`)

d̄(`)
= 1− c2` = s2

`

due to (39) and

1− ζ−1c4`
2m(`) − (1− 2θ)τd(`)

2m̄(`) − (1− 2θ)τ d̄(`)
= 1− c4` + ζ−1c4`

2(ζm̄(`) −m(`))− (1− 2θ)τ(ζd̄(`) − d(`))

2m̄(`) − (1− 2θ)τ d̄(`)

= 1− c4` + ζ−1c4`
2(ζm̄(`) −m(`)) + 2(1− 2θ)τs4

`dii
2m̄(`) − (1− 2θ)τ d̄(`)

, (74)

where the numerator of the last fraction is nonpositive if θ > 1
2 by (38) or due to the fact that

2ζm̄(`) − 2m(`) + 2ζs4
`mii − 2s4

`

>0 by (10)︷ ︸︸ ︷(
ζmii − (1− 2θ)τdii

)
6 mii(3− 8s2

`c
2
` − 3 + 2s2

` + s4
`)

= 3miis
2
`(3s

2
` − 2) 6 0

(75)
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for finite elements because s2
` 6

1
2 for all ` = 1, . . . , N̄ . For ζ = 1 (and θ < 1

2 ), we observe

1− ζ−1c4`
2m(`) − (1− 2θ)τd(`)

2m̄(`) − (1− 2θ)τ d̄(`)
= 1− c4` + c4`

2s4
` − 2s4

`

>0 by (10)︷ ︸︸ ︷(
1− (1− 2θ)τdii

)
2− 2s2

`c
2
` + 2s2

`c
2
`

(
1− (1− 2θ)τdii

)
6 1− c4` + c4`

2s4
`

2(1− s2
`c

2
`)

= 1− c4`
1− s2

`(c
2
` + s2

`)

1− s2
`c

2
`

= 1− c6`
1− s2

`c
2
`

6 1− c6` .

On the other hand, we have

1− ζ−1c4`
2m(`) − (1− 2θ)τd(`)

2m̄(`) − (1− 2θ)τ d̄(`)

= 1− c2`
2c2` − (1− 2θ)τc2`d

(`)

2− (1− 2θ)τ d̄(`)
> 1− c2`

2− (1− 2θ)τ d̄(`)

2− (1− 2θ)τ d̄(`)
= 1− c2` > 0 if ζ = 1,

1− ζ−1c4`
2m(`) − (1− 2θ)τd(`)

2m̄(`) − (1− 2θ)τ d̄(`)
=

2m̄(`) − (1− 2θ)τ d̄(`) − 4c4`m
(`) + 2c4`(1− 2θ)τd(`)

2m̄(`) − (1− 2θ)τ d̄(`)

=
2(m̄(`) − 2c4`m

(`))− (1− 2θ)τdii(4s
2
`c

2
` − 4c4`s

2
`)

2m̄(`) − (1− 2θ)τ d̄(`)

=
2(m̄(`) − 2c4`m

(`) − s4
`c

2
`mii) + 2s4

`c
2
`

>0 by (10)︷ ︸︸ ︷(
mii − 2(1− 2θ)τdii

)
2m̄(`) − (1− 2θ)τ d̄(`)

>
2mii(3− 8s2

`c
2
` − 3c4` + 2s2

`c
4
` − s4

`c
2
`)

2m̄(`) − (1− 2θ)τ d̄(`)
=

6miis
6
`

2m̄(`) − (1− 2θ)τ d̄(`)
> 0 if ζ = 1

2

according to (71).

• To estimate the spectral norm of IK − ζ−1s4
`(S̄

(`)
K )−1S

(N+1−`)
K , we can proceed similarly by replacing

m(`) and d(`) by m(N+1−`) and d(N+1−`), respectively, while s2
` has to be substituted by c2` and vice

versa. However, the numerator occurring in (74) does not have to be nonpositive for ζ = 1
2 and θ > 1

2
while the last inequality of (75) is not valid any more either. However, using the same ideas, we derive

1− ζ−1s4
`

2m(N+1−`) − (1− 2θ)τd(N+1−`)

2m̄(`) − (1− 2θ)τ d̄(`)
6 1− s4

` + s4
`

6miic
2
`(3c

2
` − 2)

2m̄(`) − (1− 2θ)τ d̄(`)
(76)

6 1− s4
` + s4

`

6miic
2
`(3c

2
` − 2)

6mii(1− 3s2
`c

2
`)

= 1− s4
`

1− 3c2`(s
2
` + c2`) + 2c2`

1− 3s2
`c

2
`

6 1− s6
` (77)

for ζ = 1
2 , θ ∈ [0, 1], and c2` >

2
3 , because estimate (76) can be shown as in (74) and (75) while the first

inequality in (77) is valid due to (72). For ζ = 1
2 , θ ∈ [0, 1], and c2` <

2
3 , the same inequality can be

easily verified because

1− ζ−1s4
`

2m(N+1−`) − (1− 2θ)τd(N+1−`)

2m̄(`) − (1− 2θ)τ d̄(`)
6 1− s4

` + s4
`

6miic
2
`(3c

2
` − 2)

2m̄(`) − (1− 2θ)τ d̄(`)
6 1− s4

` 6 1− s6
` .

• Invoking Theorem 3 using e1 = m(`) + θτd(`) and e2 = −m(`) + (1 − θ)τd(`), an upper bound of∥∥ζ−1s2
`c

2
`(S̄

(`)
K )−1S

(`)
K

∥∥
2
is given by

‖ζ−1s2
`c

2
`(S̄

(`)
K )−1S

(`)
K ‖2 6 ζ−1s2

`c
2
` max

(∣∣∣2m(`) − (1− 2θ)τd(`)

2m̄(`) − (1− 2θ)τ d̄(`)

∣∣∣, ∣∣∣d(`)

d̄(`)

∣∣∣), (78)

where

ζ−1s2
`c

2
`

d(`)

d̄(`)
= ζ−1s2

`c
2
`

2s2
`dii

2ζ−1s2
`c

2
`dii

= s2
` .
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Furthermore, it is not necessary to take the absolute value of the first argument in the definition of the
maximum in (78) because

ζ−1s2
`c

2
`

2m(`) − (1− 2θ)τd(`)

2m̄(`) − (1− 2θ)τ d̄(`)
> 0

by (13) and (71). On the other hand, the expression is bounded from above by s2
` for a finite difference

approximation, that is, ζ = 1, because

ζ−1s2
`c

2
`

2m(`) − (1− 2θ)τd(`)

2m̄(`) − (1− 2θ)τ d̄(`)
− s2

` = s2
`

2c2` − (1− 2θ)τc2`d
(`) − 2 + (1− 2θ)τ d̄(`)

2− (1− 2θ)τ d̄(`)

= s2
`

−2s2
`

2− (1− 2θ)τ d̄(`)
6 0

while, in case of finite elements, an upper bound is given by 4
3s

2
` due to

ζ−1s2
`c

2
`

2m(`) − (1− 2θ)τd(`)

2m̄(`) − (1− 2θ)τ d̄(`)
− s2

`c
4
`

1− 3s2
`c

2
`

=
4(1− 3s2

`c
2
`)s

2
`c

2
`m

(`) − 2s2
`c

4
`m̄

(`) − (1− 2θ)τ
(
2(1− 3s2

`c
2
`)s

2
`c

2
`d

(`) − s2
`c

4
` d̄

(`)
)

(1− 3s2
`c

2
`)(2m̄

(`) − (1− 2θ)τ d̄(`))

= s2
`c

2
`

mii(6− 4s2
` − 18s2

`c
2
` + 12s4

`c
2
` − 6c2` + 16s2

`c
4
`)− 2mii(s

2
` − 3s4

`c
2
` − s2

`c
4
`)

(1− 3s2
`c

2
`)(2m̄

(`) − (1− 2θ)τ d̄(`))

+ s2
`c

2
`

=s2`((1−3s2`c
2
`)−c

4
`)60 by (79)︷ ︸︸ ︷

(s2
` − 3s4

`c
2
` − s2

`c
4
`)

>0 by (10)︷ ︸︸ ︷
2mii − 4(1− 2θ)τdii

(1− 3s2
`c

2
`)(2m̄

(`) − (1− 2θ)τ d̄(`))

6 s2
`c

2
`

mii(6− 18s2
`c

2
` − 6(s2

` + c2`) + 18s4
`c

2
` + 18s2

`c
4
`)

(1− 3s2
`c

2
`)(2m̄

(`) − (1− 2θ)τ d̄(`))
= 0

by virtue of the fact that

c4`
1− 3s2

`c
2
`

=
3(1− s2

`)
2

3(1− 3s2
`c

2
`)

=
3− 6s2

` + 3s4
`

3(1− 3s2
`c

2
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=
4− 12s2

`

=c2`︷ ︸︸ ︷
(1− s2

`)−

>0︷ ︸︸ ︷
(1− 3s2

`)
2

3(1− 3s2
`c

2
`)

6
4(1− 3s2

`c
2
`)

3(1− 3s2
`c

2
`)

=
4

3
,

c4`
1− 3s2

`c
2
`

= 1 +
c4` − 1 + 3s2

`c
2
`

1− 3s2
`c

2
`

= 1 +
−1 + c2`(c

2
` + 3s2

`)

1− 3s2
`c

2
`

= 1 +
−1 + (1− s2

`)(1 + 2s2
`)

1− 3s2
`c

2
`

= 1 +
s2
`
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(1− 2s2

`)

1− 3s2
`c

2
`

> 1

(79)

because s2
` 6

1
2 for all ` = 1, . . . , N̄ .

• Finally, inequality (52) can be derived similarly by invoking

ζ−1s2
`c

2
`

d(N+1−`)

d̄(`)
= ζ−1s2

`c
2
`

2c2`dii
2ζ−1s2

`c
2
`dii

= c2` ,

0 6 ζ−1s2
`c

2
`

2m(N+1−`) − (1− 2θ)τd(N+1−`)

2m̄(`) − (1− 2θ)τ d̄(`)
= c2`

2ζ−1s2
`m

(N+1−`) − (1− 2θ)τ d̄(`)

2m̄(`) − (1− 2θ)τ d̄(`)

6 c2`
2m̄(`) − (1− 2θ)τ d̄(`)

2m̄(`) − (1− 2θ)τ d̄(`)
6 c2`

because s2
` 6

1
2 < 1 for ζ = 1 and

ζ−1s2
`m

(N+1−`) − m̄(`) = mii(3s
2
` − 2s2

`c
2
` − 3 + 8s2

`c
2
`) = mii(6s

2
`c

2
` − 3c2`) = 3c2`mii(2s

2
` − 1) 6 0
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in case of a finite element approximation.
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