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A computational framework for gradient-enhanced damage –
implementation and applications
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A gradient-enhanced damage model is combined with finite viscoelasticity and implemented in an Abaqus user subroutine,
exploiting the heat equation solution capabilities for the damage regularisation, in order to simulate soft polymers. This
regularised damage approach provides the advantage of mesh independent results and avoids localisation effects. In this
work, a self-diagnostic poly(dimethylsiloxane) (PDMS) elastomer is chosen as an example. To this end, an efficient two-step
parameter identification framework is developed to calibrate the corresponding model parameters.
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1 Introduction

Nowadays, the applications of lightweight components in industrial products vastly increases. Consequently, the mass re-
duction, while still maintaining the required mechanical properties, e.g. stiffness or notched bar impact strength, is of high
importance. In addition, in many forming processes or loading cases of the components, the damage initiation starts due to
pore growth. As a result, the material properties change in an uncontrolled manner. Hence, more accurate damage models,
especially those avoiding localisation effects, are required, e.g. the used gradient-enhanced damage model, cf. [1]. For further
applications of the damage model, e.g in combination with finite plasticity, see [2]. Apart form the model development, the
calibration of these complex material models is important. In this work, the damage model is applied to finite viscoelastic-
ity, implemented in an Abaqus UMAT user subroutine and a parameter identification framework was developed in order to
properly calibrate the model parameters. Finally, exemplary results are presented to demonstrate the mesh independence.

2 Gradient-enhanced damage – application to finite viscoelasticity

In order to gain mesh independent results, a variationally consistent gradient-enhanced damage regularisation method pre-
sented by Ostwald et al. [1] is used. Therefore the local Helmholtz free energy potential is extended with two additional
non-local terms, such that the total potential takes the form ψ = ψloc + ψnloc. While the first term of the non-local contribu-
tion contains the gradient of the non-local damage variable φ and is controlled by the regularisation parameter cd, the second
term penalises the deviation between φ the non-local and κ the local damage variable with the penalty parameter βd, so that

ψnloc(F , φ,∇Xφ, κ) = 1
2 cd∇xφ · ∇xφ+ 1

2 βd [φ− κ ]2 . (1)

Following the postulate of maximum dissipation, the evolution equation of the internal damage variable takes the form

κ̇ = λ∂qΦd(F , φ,∇Xφ, κ) , (2)

with λ denoting the Lagrange multiplier, Φd the damage condition and q = −∂d ψ representing the energy release rate.
Consequently, the balance of linear momentum and the Euler-Lagrange equation for the non-local damage field have to be
solved simultaneously. Since the Euler-Lagrange equation governing the non-local damage variable is comparable to the
heat equation, this approach was implemented in an Abaqus user material subroutine (UMAT) by exploiting the solution
capabilities of the heat equation in Abaqus. This technique avoids the necessity of an implementation as a user element
subroutine (UEL) including the difficulties of postprocessing or combination with contact mechanics. An exponential format
is chosen for the damage function incorporating a damage initiation threshold κd, i.e., fd(κ) = 1−d = exp(−ηd〈κ−κd〉),
where fd ∈ (0, 1] and ηd denotes the exponential damage saturation rate. In addition, a volumetric-isochoric split of the local
energy contribution is introduced in order to model the initiation of damage of both terms with different intensities

ψloc(C, κ) = fd(κ)ψvol(J) + fniso

d (κ)ψich(C̄) , (3)

where niso controls the isochoric damage contribution and C̄ := J−2/3C, with C = F t · F and J = det(F ).
In this work, the gradient-enhanced damage framework is applied to a rate-dependent finite viscoelasticity model in order

to model the damage evolution in polymers. In this case, as an example, a self-diagnostic poly(dimethylsiloxane) (PDMS)
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elastomer, generating a chemical response towards mechanical loads, developed by Früh et al. [3], was selected. To this
purpose, considering the material behaviour, the Yeoh energy potential, see [4], is chosen for the isochoric energy contribution
ψich while the volumetric part ψvol follows a standard fashion, so that

ψich =
∑3

i=1
Ci [ tr(C̄)− 3 ]i and ψvol = 1

2 K
[

1
2 [ J2 − 1 ]− ln(J)

]
, (4)

whereK denotes the bulk modulus and Ci represent further material parameters. The viscoelastic model follows [5], such that
a finite strain generalisation of a classic generalised relaxation model with two Maxwell elements is considered. The evolution
of the stress-type internal variables – including relaxation time parameters τi and relative moduli γi – is given by

Q̇i(t) +
1

τi
Qi(t) =

γi
τi

DEV
(
2 ∂C̄ψich(C̄(t))

)
with lim

t→−∞
Qi(t) = 0 . (5)

3 Calibration of the model and mesh-objective results
Considering the large amount of material parameters, a two-step parameter identification framework was implemented. At
first, the Yeoh parametersCi and the relaxation parameters were calibrated with respect to experiments inducing homogeneous
deformation states. Hence, apart from tensile tests, relaxation and creep tests were conducted. In the second step, the already
identified subset of parameters is fixed for the identification of the damage related material parameters comparing the simulated
material response with experimental data from a tensile test incorporating inhomogeneous deformation states. Characteristic
time steps of the experiment with a notched specimen are shown in Figure 1. Figure 2 a) presents the comparison of the
experimentally measured load-displacement-curve with the simulated responses for the initial guess of the damage-related
material parameters as well as the optimised set including two different mesh discretisations. The load-displacement-curves
in combination with the contour plots of the damage value for both mesh discretisations demonstrate mesh-objective results.
For further details, see [6].

a) b)

Fig. 1: Photos of the tensile test with inhomogeneous deformation states of a notched specimen a) at the beginning of the experiment at
t = 2.55 s and b) before the sample starts to tear at t = 1139.8 s; cf. [6].
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Fig. 2: a) Load-displacement curves of the tensile test with the notched specimen reflecting experimental response before rupture and the
simulated results for the initial guess of the identification and the optimised set with two different meshes. b) Distributon of the damage
value of the notched specimen using symmetry properties for a mesh distribution of 1548 and c) 2613 elements.
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