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Numerical approach for a continuum theory with higher stress gradients
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We use an extended balance of linear momentum derived from stress field analysis of higher order terms in power series
expansion. Thus, the balance equation accounts for higher gradients of stress in the contiguity of continuum points. Interest-
ingly, it does not coincide with the balance of linear momentum from strain gradient elasticity. As shown in [1], it exhibits an
inverse sign for the extended term compared to strain gradient elasticity. We are interested in the mechanical interpretation
of this inversed sign since it seems to inverse the stiffening effect of strain gradient elasticity. Therefore, we set up the weak
form of our extended balance equation by means of Galerkin’s approach. Then, we use the Finite Element Method to approx-
imate the weak form with help of different shape functions. In this context we also use Isogeometric Analysis since it is very
promising for a numerical model with higher gradients.
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1 Introduction

A cubic subdomain of the deformed body in the actual configuration with dimension Lc is to be considered. The nonlinear
stress tensor is approximated via power series expansion up to third order derivatives, see [1]. Lagrangian description of
momentum balance of a static system without body force R up to third order derivatives reads

R := R+R = 0 with R =

∫

V

DivPdV and R =

∫

V

L 2
c

24
DivGradDivPdV . (1)

Here, R is the first order Lagrangian description balance of momentum, R is the higher order Lagrangian description balance
of momentum, P is the first Piola-Kirchhoff stress tensor and the parameter Lc is defined as internal lenght scale.

2 Higher order discrete residual and stiffness

The concept of the isoparametric elements is used for interpolation of displacements ui and coordinates Xi, thus

ui ≈
n∑

I=1

N IuIi and Xi ≈
n∑

I=1

N IXI
i , (2)

where N I are the shape functions, uIi are nodal displacements and XI
i are the nodal coordinates. The total discrete residual

RI
i of a static system without body force is the sum of the first and higher order discrete residuals

RI
i = RI

i + RI
i = 0, (3)

where the higher order terms of the total discrete residual are given by

RI
i = −

∫

V

L 2
c

24

∂LI
k

∂XJ
k

∂Pij

∂XJ
j

dV −
∫

A

L 2
c

24

[
∂Pij

∂XJ
j

LI
k −

∂2Pij

∂XJ
j ⊗ ∂XI

k

]
NJdAk. (4)

The first derivative of the shape functions N I w.r.t. coordinates Xi is defined as LI
i . Discrete stiffness is defined as the first

derivative of the total discrete residualRI
i w.r.t. nodal displacements

KIW
iw = KIW

iw +KIW
iw , (5)

where the higher order terms of the total discrete stiffness are given

KIW
iw = −

∫

V

L 2
c

24

∂LI
k

∂XJ
k

∂2Pij

∂XJ
j ⊗ ∂uWw

dV −
∫

A

L 2
c

24

[
∂2Pij

∂XJ
j ⊗ ∂uWw

LI
k −

∂3Pij

∂XJ
j ⊗ ∂XI

k ⊗ ∂uWw

]
NJdAk. (6)
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3 Higher order discrete derivatives

In Eq. (4) and Eq. (6), higher order stress gradients occur. For instance, a third order gradient of the first Piola-Kirchhoff stress
tensor Pij is demanded and reads

∂3Pij

∂XJ
j ⊗ ∂XI

k ⊗ ∂uWw
=

∂3Pij

∂Fmn ⊗ ∂XI
k ⊗ ∂uWw

∂Fmn

∂XJ
j

+
∂Pij

∂Fmn

∂3Fmn

∂XJ
j ⊗ ∂XI

k ⊗ ∂uWw

+
∂2Pij

∂Fmn ⊗ ∂XI
k

∂2Fmn

∂XJ
j ⊗ ∂uWw

+
∂2Pij

∂Fmn ⊗ ∂uWw
∂2Fmn

∂XJ
j ⊗ ∂XI

k

.

(7)

Here, the deformation gradient Fij is a function of nodal displacements and the discrete gradient of the shape functions LI
i

Fij =
∂ui
∂Xj

+ δij = LI
ju

I
i + δij . (8)

From [2], we know the partial variation of the deformation gradient w.r.t. geometry. The discrete version reads

∂Fij

∂Xk
dXk = − ∂ui

∂Xk

∂dXk

∂Xj
and hence,

∂LI
i

∂XJ
j

= (−1)1
(
LJ
i L

I
j

)
. (9)

Some parts of Eq. (7) require the computation of even higher order gradients of the shape functions. Following Eq. (9), these
can easily be identified as

∂2LI
i

∂XJ
j ⊗ ∂XK

k

= (−1)2
(
LJ
i L

K
j L

I
k + LK

i L
I
jL

J
k

)
. (10)

In the same manner it is possible to compute gradients of shape functions of arbitrary order, presumed sufficient differentiabil-
ity. In this context, isogeometric analysis seems a promising technique, as NURBS are chosen as shape functions, cf. e.g. [3],
which can be easily constructed of higher order. Additionally, the continuity on element boundaries is not necessarily C0.

4 Numerical example

For comparison of the standard solution with the extended model, a shear test is considered and analyesd using IGA. The
number of control points are 9 in x- and 9 in y-direction. The elastic material parameters for the Neo-Hookean material are
Young’s modulus E = 0.05 and Poisson’s ratio ν = 0.3. Fig. (1) illustrates the different deformations and stress distribution in
x-direction for different values of the internal lenght scale.
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Fig. 1: Boundary conditions and Cauchy stress in x-direction presented on the Eulerian Configuration (displacements are not scaled.)

5 Conclusion
In addition to the classical standard solutions it is capable to evolve meaningful microstructural solutions from smooth and
symmetric sets of boundary conditions without any imperfections. The model gives the homogeneous solution without speci-
fying imperfections. The higher gradients of the shape functions can be determined by summation of the products of the first
gradient of the shape functions.
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