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Distinguishing intrinsic photon 
correlations from external noise 
with frequency‑resolved homodyne 
detection
Carolin Lüders & Marc Aßmann*

In this work, we apply homodyne detection to investigate the frequency-resolved photon statistics 
of a cw light field emitted by a driven-dissipative semiconductor system in real time. We demonstrate 
that studying the frequency dependence of the photon number noise allows us to distinguish 
intrinsic noise properties of the emitter from external noise sources such as mechanical noise while 
maintaining a sub-picosecond temporal resolution. We further show that performing postselection 
on the recorded data opens up the possibility to study rare events in the dynamics of the emitter. 
By doing so, we demonstrate that in rare instances, additional external noise may actually result in 
reduced photon number noise in the emission.

Photon correlation measurements are a central backbone of many applications relying on quantum technologies. 
They are employed frequently both as a characterization tool and as a part of communications protocols. For 
purposes of characterization, they are fundamental for tasks as different as determining the single photon purity 
of single photon sources1, monitoring the stable operation of lasers2 and investigating diffusion via fluorescence 
correlation spectroscopy3. For communications protocols, they play a prominent role in monitoring quantum 
light sources to enable secret key distillation4 as well as in advanced protocols that merge chaos communication 
and ghost imaging5. Especially the latter applications require a constant real time monitoring of photon correla-
tions. In most cases, the equal time correlation function g (2)(0) is the central quantity of interest. It is given by

where â† and â denote the photon creation and annihilation of the light field mode of interest, respectively. It 
corresponds to the relative probability to detect photon pairs from the light source, normalized to a light source 
of the same intensity that emits statistically completely independent photons. It is thus a measure of the relative 
variance of the photon number distribution and therefore of photon number noise.

There are different ways to realize photon correlation experiments. For experiments that focus on single 
photons, many of them operate in the regime of discrete variables, so they rely on photon counting. The most 
commonly realized experiment in this respect is the Hanbury Brown–Twiss setup6, which utilizes two detectors 
and correlates their output. This experiment typically employs photo diodes7, which are usually limited to a tem-
poral resolution of hundreds of picoseconds if good detector quantum efficiency is required. In order to achieve 
better temporal resolution, superconducting nanowire detectors may be able to enhance the temporal resolution 
to few picoseconds8 or one may instead utilize streak cameras9–11, two-photon absorption12, up-conversion13 or 
transition edge sensors14.

However, photon-counting experiments are not only sensitive to the intrinsic photon number noise of the 
light field, but may also detect other noise sources, e.g. mechanical vibrations or thermal effects that modify the 
efficiency of coupling the light field to the detector, stray light entering the detector or air turbulence acting on 
free-space light beams. All of these external influences may make the light field look noisier than it actually is 
and will in most cases increase the value of g (2)(0) found in measurements from the intrinsic value of g (2)(0) 
given by the photon statistics of the light field. The correlation measurements outlined above usually require quite 
long integration times to produce a single value of g (2))(0) , which results e.g. in integration times of minutes for 
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state of the art real-time monitoring of quantum light sources in quantum key distribution4. Accordingly, it is 
very difficult to distinguish between intrinsic and external noise contributions to g (2)(0) in such experiments.

Photon counting is not the only way to measure g (2)(0) . Continuous variable approaches, e.g. based on 
phase-averaged sampling of the light field quadratures using homodyne detection require a local oscillator, but 
are known to be reliable and efficient, especially for light fields that are not Fock states15–18. In contrast to photon 
counting approaches, it is already possible to perform measurements of g (2)(0) in real time using homodyne 
detection. Measurement rates of 100 kHz have already been reported20.

Here, we demonstrate that such fast measurements of g (2)(0) open up the possibility to unambiguously dis-
tinguish between intrinsic and external photon number noise as long as the typical timescales on which those 
fluctuations occur differ significantly. As the intrinsic time scale of photon number fluctuations is given by the 
coherence time of the light field, which typically ranges between picoseconds and nanoseconds, while mechanical 
vibrations take place rather on the scale of milliseconds to seconds, this condition is usually well fulfilled. We 
further show that such fast measurements may open up the possibility to identify rare events and demonstrate 
this capability by investigating different kinds of fluctuations in a steady state polariton condensate.

Real‑time homodyne detection
In a typical homodyne experiment, the signal of interest is superposed with a strong light field, the local oscil-
lator, on a beam splitter, as depicted in Fig. 1.

These light fields are represented by operators âLO and âS , respectively. The light fields at the two output ports 
of the beam splitter then correspond to the sum (+) and the difference (−) of the local oscillator and the signal 
field:

where φ corresponds to the relative phase between the signal and the local oscillator. The two fields are then 
detected on two separate photodiodes and the difference signal of the two detector outputs is recorded, which 
corresponds to

Here �âLO� approximately becomes 
√
nLO if the local oscillator is an intense and coherent beam with a known 

mean photon number of nLO . This term is directly proportional to the phase-sensitive field quadrature q̂φ of the 
signal light field. It is now possible to calculate g (2)(0) from the moments of the quadrature distribution:

However, it should be noted that these averages only hold for the case of phase-averaged measurements.
Let us now discuss the different timescales present in homodyne experiments and how they open up the 

possibility to distinguish between intrinsic and external photon number noise. First, the signal light field is not 
static, but its phase or amplitude may change randomly on a timescale given by its coherence time. Accordingly, 
it is an important prerequisite for an adequate quadrature measurement that the duration of the local oscillator 
does not exceed the coherence time of the signal light field. Otherwise the local oscillator acts as a filter and the 
quadrature measurement involves only the components of the signal that overlap spectrally with the local oscil-
lator. In the actual experiment, we use pulses from a Ti:sapphire laser with a duration of approximately 120 fs 
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Figure 1.   Schematic of the homodyne detection setup. LO: local oscillator; PBS: polarizing beam splitter; HWP: 
half-wave plate.
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as the local oscillator. The local oscillator is then spectrally filtered to a duration of approximately 1 ps, while 
the coherence times of the signal are on the order of more than 10 ps, which ensures that the pulses are short 
enough for all signals investigated here.

Next, in order to obtain a phase averaged quadrature distribution one has to choose a certain number of 
measured quadratures to perform the averaging process, which in turn corresponds to a certain integration 
time tav . For the experiment performed here, the repetition rate of the laser amounts to 75.39 MHz, which 
corresponds to a delay of 13.3 ns between consecutive pulses. For the signal light fields investigated within this 
manuscript, the coherence times are much shorter than that, so one may safely assume that each quadrature 
measurement randomly samples a different relative phase between the signal and the local oscillator. Under 
such conditions, it has already been shown that approximately 750 quadrature measurements are sufficient to 
achieve a sufficient amount of phase averaging20. As a result, the analysis yields the mean photon number nav 
and the value of g (2)(0) of the signal light field within the approximately 10µs time window needed to perform 
750 quadrature measurements.

One may now repeat this experiment for many consecutive time windows. For a typical stable signal, one 
will get approximately the same mean photon numbers and g (2)(0)-values for each time window. However, it is 
worthwhile to discuss how additional external noise will influence the result. Most external noise sources will 
arise due to some kind of mechanical noise, which typically occurs at frequencies much lower compared to the 
inverse of the 10µs integration time window. Accordingly, external noise will essentially leave the values of g (2)(0) 
unchanged, but it will modify the measured mean photon numbers. The light field will appear as a light source 
of constant relative noise properties that shows a slowly modulated mean intensity. We may now quantify this 
slow photon number noise in terms of

which is the conventional intensity correlation function. This means that Eq. (4) may be used to determine the 
mean photon number nav within a a time window of tav ≈ 10µ s, while Eq. (6) may be applied to quantify the 
statistics of nav over the full duration of the measurement. Accordingly, the averaging processes in these two 
equations are very different.

In order to clearly distinguish between the two kinds of noise, in the following we will refer to the intrinsic 
photon number noise given by Eq. (1) as g (2)fast(0) . It is worthwhile to emphasize that typical slow measurements 
that integrate for seconds or longer will detect both kinds of noise simultaneously. We may now utilize the fact 
that tav is not a fixed value, but we may choose the integration time freely. As in the experiment each individual 
quadrature is recorded separately, this choice may be performed after the measurements have already been done. 
Accordingly, we may analyze the same set of data using different values of tav . In doing so, one will find different 
values of g (2)fast(0) and g (2)slow(0) for each choice of tav , which correspond to noise components that occur on faster 
and slower timescales compared to tav , respectively. Accordingly, varying tav systematically provides a thorough 
analysis of photon noise at different scales.

Frequency‑dependent photon correlations
To demonstrate the possibility to distinguish intrinsic and external noise using ultrafast homodyne detection, we 
investigate the emission from a non-resonantly excited polariton condensate. The sample is the same one used 
before19 and we used non-resonant cw excitation at the first minimum of the stop band to excite the sample. The 
excitation beam had a ring-shaped spot shape and a diameter of 12µm . The beam shape was realized using a 
Holoeye Pluto phase-only spatial light modulator. For each pump power, the local oscillator was resonant with 
the most intense zero momentum ground state mode, which showed a linear polarization corresponding to one 
of the crystal axes. A more detailed description of our homodyne detection setup, which is shown in Fig. 1, can 
be found in a previous publication20.

In order to provide context to our experiment and our findings, let us briefly summarize how g (2)(0) of a 
polariton condensate depends on excitation power in the literature. In most experiments and theories, below the 
condensation threshold the value of a thermal state g (2)(0) = 2 is expected, because here the thermal phonon 
bath is responsible for polariton relaxation21,22. However, this value can only be observed correctly when taking 
into account the time resolution of the detectors, e.g. of the photo diodes in a HBT setup, see e.g.23,24. An excep-
tion to g (2)(0) = 2 is the case of resonant excitation, where the polaritons can obtain coherence from the pump 
laser25. When increasing the excitation power, g (2)(0) decreases towards a value close to 1 within a narrow range 
of powers in the threshold region, but then increases again towards a value between 1 and 2, which is roughly 
constant over a larger range of powers, see e.g.22,26. This asymptotic value of g (2)(0) depends on several factors. 
One factor is spatial confinement, which suppresses the noise induced by different modes to the condensate and 
therefore enables a smaller value of g (2)(0) nearly reaching 124,27. Similarly, g (2)(0) reaches a smaller value when 
spatially filtering the emission28, because spatial inhomogeneity of the condensate leads to a higher spatial second 
order correlation29. The detuning has an influence on the asymptotic value of g (2)(0) as well30. However, in most 
experiments and theories a value higher than 1 is found due to polariton-polariton scattering22 and fluctuations 
of the reservoir23. Finally, when increasing the pump power even further, photon lasing kicks in, which can be 
observed as a second threshold (depending on detuning) and as a jump in emission energy towards the energy of 
the bare cavity31. Whether this second threshold corresponds to a strong-to-weak-coupling transition or is caused 
by a non-Hermitian phase transition within the strong coupling regime is still a heavily debated open question32.

For the present study, the most important point is that we are always operating at excitation powers above the 
condensation threshold, but below the second threshold towards photon lasing. We use non-resonant excitation, 
have no spatial confinement in the planar microcavity and do not filter the emission spatially, except for the 
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spatial overlap with the gaussian shaped LO. Therefore, g (2)(0) is expected to decrease from a value of 2 towards 
some value between 1 and 2 with increasing pump power, never achieving full coherence. In order to investigate 
the influence of external noise on the values of g (2)(0) measured in the two regimes mentioned above, we compare 
two different pump powers. First, we investigate the polariton condensate far above threshold, where the emission 
is rather stable. Then, we go on to investigate the emission slightly above threshold, where the system response is 
strongly non-linear and the sensitivity to external noise is strong. In both cases, we compare the sample operating 
in a standard manner to the sample operating under added mechanical noise which may arise in typical labora-
tory conditions due to the presence of vibrating pumps or by gently hitting the optical table at one of its edges.

The results for a stable polariton condensate operated far above threshold are shown in Fig. 2 against the 
inverted integration time

Black data points correspond to a standard measurement, where only standard environmental noise is present. 
Red data points represent measurements in the presence of deliberately added mechanical noise. g (2)fast(0) , which 
is expected to correspond to the true intrinsic second-order correlation function of the light field for large fav , 
shows values between 1.43 and 1.5 in both cases. This small range of values shows that the polariton condensate 
is rather stable against environmental noise for the applied excitation conditions. Still, one may identify three 
intriguing features. First, the value of g (2)fast(0) reduces further for values of fav beyond 100 kHz. Second, in the 
presence of additional external noise, g (2)fast(0) shows a significant increase in the low frequency range below 
50 Hz. Third, even if solely standard environmental noise is present, one finds an increase in g (2)fast(0) below 1 kHz.

The first effect can be explained easily as an artifact of our detection technique. In order to deduce g (2)(0) 
correctly from the experimentally determined quadrature values, it is important to ensure that all relative phases 
between the signal and the local oscillator are sampled equally15. As there is no fixed phase between the local 
oscillator and our signal and the time between two consecutive local oscillator pulses is much longer than the 
coherence time of the polariton condensate, it is ensured that each measured quadrature is measured at a ran-
dom phase between the signal and the local oscillator. However, at high frequencies, the number of quadrature 
measurements used in order to determine the mean photon number and the value of g (2)(0) within a single 
averaging time window may become quite small. At 100 kHz, this number of measured quadratures amounts to 
approximately 750. In accordance with our earlier studies20, for smaller numbers of measured quadratures and, 
equivalently, for higher averaging frequencies fav , it is not guaranteed that all relative phases are sampled equally. 
Thus, the results obtained via homodyning are reliable only for fav up to 100 kHz in our setup.

In order to identify the origin of the other two effects, it is worthwhile to compare the values obtained for 
g (2)(0) versus fav to the Fourier transform of the time-resolved intensity emitted from the sample. A typical 
frequency-resolved Fourier transform amplitude |A(f)| in the presence of external noise is shown in Fig. 3.

Here, one can clearly see that the low-frequency noise below 50 Hz corresponds to a continuum of frequen-
cies. It arises mainly due to vibrations and standard mechanical noise. However, in the frequency range above 

fav =
1

tav
.

10 100 1000 10000 100000
1.0

1.2

1.4

1.6

1.8

g(2)
slow(0):

 additional noise
 no additional noise

g(2)
fast(0):

 additional noise
 no additional noise

g(2
) (0

)

fav (Hz)

Figure 2.   Photon correlation function of a polariton condensate driven far above threshold versus averaging 
frequency fav . Full symbols denote g (2)fast(0) , which corresponds to noise contributions at frequencies above fav , 
while open symbols denote g (2)slow(0) , which corresponds to noise contributions at frequencies below fav . Results 
for standard operation and operation in the presence of additional mechanical noise are compared. Dashed 
lines indicate the region, where g (2)fast(0) represents the intrinsic photon number noise of the emission from the 
sample.
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50 Hz several discrete lines begin to dominate the spectrum, which have an significant influence up to about 
1 kHz. The strongest of these lines appears at a frequency of 420 Hz. These lines appear at multiples of 60 Hz and 
can be traced back to the spatial light modulator used to tailor the shape of the excitation spot. It is a digitally-
addressed spatial light modulator, which uses pulse-width modulation of the driving voltage amplitude in order 
to generate intermediate greyscale values that lie between full and no modulation. To this end, only the dwell 
time in each of the two voltage states of the digital signal is varied at an addressing frequency of 120 Hz. This 
modulation scheme results in significant noise contributions at half the addressing frequency and harmonics 
of that value33. This is a common problem of some spatial modulators, which becomes especially important for 
measurements of photon statistics as this unintended modulation tends to distort the results of experiments. 
Thus, the increased values of g (2)fast(0) below 1 kHz can be traced back to noise components introduced by vibra-
tions and the spatial light modulator.

The frequency resolved correlation functions clearly show that as fav increases, as soon as it becomes compa-
rable to the frequency of some noise component, the noise component contributions get smoothly redistributed 
from g (2)fast(0) to g (2)slow(0) . These results suggest that in the frequency range between 10 kHz and 100 kHz g (2)fast(0) 
indeed represents the intrinsic photon number fluctuations of the light field emitted from the sample, while 
g
(2)

slow(0) is indicative of external contributions such as mechanical noise. The fact that the deliberate addition of 
external mechanical noise leaves g (2)fast(0) almost unchanged within this frequency range, while g (2)slow(0) changes 
considerably, further supports this assumption.

Having ensured that frequency-resolved second-order correlation functions indeed allow us to distinguish 
intrinsic photon number noise contributions from contributions arising due to external noise sources, we may 
now investigate the polariton condensate operated within its threshold region, where it is considerably less stable. 
Figure 4 shows the frequency-resolved photon-correlation for this case. Again, the system is also perturbed by 
additional mechanical noise for comparison. In the absence of additional noise, g (2)fast(0) changes very little in 
the relevant frequency range between 10 and 100 kHz and takes on values between 1.83 and 1.84. In the low-
frequency range, where photon correlation measurements are usually performed, g (2)fast(0) increases to 2 below 
1 kHz and even to 2.1 at very low frequencies below 50 Hz. These results again show that frequency-resolved 
photon correlations enhance the reliability of the recorded data.

Adding additional external noise enhances the difference between high and low frequencies drastically. 
Between 10 and 100 kHz g (2)fast(0) shows only a moderate increase compared to the results discussed before and 
takes on values of about 1.88. The influence of the additional mechanical noise is almost completely absorbed into 
g
(2)

slow(0) , which increases from 1.17 to 1.68. In the lower frequency ranges, g (2)fast(0) instead increases significantly 
up to values of about 2.3 and 2.8, respectively. In this case, the results of a conventional photon correlation experi-
ment would not show a close correspondence to the true photon statistics of the emitted light field, anymore.

However, it should be noted that even in the high-frequency range, g (2)fast(0) does not necessarily correspond 
exactly to the second-order coherence of the emitted light. The slight increase from 1.83 to 1.88 in g (2)fast(0) , when 
the system is subject to noise clearly shows that. In order to explain the origin of this small residual increase in 
noise, it is worthwhile to discuss the different ways how noise may influence the measured photon number statis-
tics. Most importantly, mechanical noise may change the way how light is collected from the emitter. Mechanical 
instabilities may slightly perturb the alignment of optics and the overlap of the light field with the detector. In 
this case, the noise effectively acts as a slow modulation of the mean emitted photon number, which leaves the 
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Figure 3.   Amplitude of the Fourier transform of the time-resolved intensity emitted from the sample. 
Continuous low-frequency contributions arise due to mechanical noise, while discrete contributions appearing 
at multiples of 60 Hz are a consequence of the pulse-width modulation scheme used by the spatial light 
modulator.
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intrinsic relative photon number fluctuations unchanged. However, as we use optical excitation, mechanical 
noise may also alter the way how the excitation beam is coupled into the microcavity. In this case, the mechanical 
noise acts as a slow modulation of the excitation photon number. As in general the photon number statistics of 
the emitted light will vary with the input photon number, the situation is comparable to a system with a non-
linear optical response excited by a noisy source, which is known to exhibit enhanced output photon number 
noise34,35. As this effect corresponds directly to a modulation of the output photon number fluctuations, it can-
not be eliminated by investigating different values of fav . However, unless the non-linearity is very strong, the 
change in g (2)fast(0) is rather small. Another kind of noise that can occur apart from intensity noise is polarization 
noise or spin noise, which has a flat power spectrum up to the order of 100 MHz36 and therefore also can not be 
suppressed by choosing higher fav.

As our experimental setup records each individual measured value instead of histograms, we may apply even 
more refined statistical tools in order to gain further insights into the system and its response to mechanical 
noise. In our experiment, we subdivide the full set of measured quadrature values into bunches of a fixed num-
ber of consecutively measured quadrature values. Doing so allows us to assign a mean photon number nav to 
each of these bunches. Choosing a fixed bunch length then allows us to determine the statistical distribution of 
these mean photon numbers. As we determine the photon number via homodyne detection, it should be noted 
that the mean photon number corresponds to the mean number of photons present in the signal light field per 
duration of the local oscillator pulse and the mean is taken over many such pulses. The mean photon number 
distribution for pumping slightly above the threshold is shown exemplarily in Fig. 5 for a bunch size of 1000 
consecutively measured quadrature values per bunch, which corresponds to an averaging frequency of about 
75 kHz. The bin width is chosen as 0.1 photons per bin. In the absence of external noise, the photon number 
distribution shows a double-peak structure with two maxima, where one maximum appears at a photon number 
of about 1.15 photons. This value corresponds to standard stable emission of the polariton condensate. Another 
peak of smaller magnitude appears at a photon number of about 0.4, which is mainly caused by the pulse width 
modulation scheme of the spatial light modulator. During the modulation of the voltage, the excitation spot 
and intensity change, which puts the polariton condensate below threshold temporarily. Mechanical noise might 
smear out the photon number distribution further, but seems to be a minor factor compared to the influence of 
the spatial light modulator under standard conditions.

However, when the mechanical noise present is increased drastically and deliberately, the output photon num-
ber distribution changes strongly as is shown by the red dots in Fig. 5. Apart from the added noise the excitation 
conditions are identical to the experimental data shown before. Now, the photon number distribution shows a 
dominating peak at low photon numbers below 0.25, which has a long tail towards higher photon numbers and 
a second small peak at photon numbers close to 1.15, which correspond to standard operation of the polariton 
condensate. Again, it seems reasonable to attribute this change to modulations of the coupling of the excitation 
light field to the microcavity caused by the additional mechanical noise as the response of the microcavity to the 
input light field is strongly non-linear within the threshold region.
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Figure 4.   Photon correlation function of a polariton condensate operated at threshold versus averaging 
frequency fav . Full symbols denote g (2)fast(0) , which corresponds to noise contributions at frequencies above fav , 
while open symbols denote g (2)slow(0) , which corresponds to noise contributions at frequencies below fav . Results 
for standard operation and operation in the presence of additional mechanical noise are compared.
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Tracking rare events with postselected photon correlations
Finally, the full set of information we record makes it possible to obtain further insights into the statistical proper-
ties of our system. As we are able to subdivide the whole emission into separate bunches and tag them according 
to their mean photon number, we may also sort these bunches into freely chosen subsets of interest and determine 
their emission properties. As an example of what is possible, we investigate the following scenario: As already 
outlined above, changes in the mean output photon number observed may have different origins. For example, 
they may be intrinsic to the system under study, they may arise due to modulation of the coupling between the 
emitted light and the detector or they may arise due to modulation of the excitation light field. In order to esti-
mate the performance and stability of a system, it would be beneficial to distinguish between these scenarios. In 
order to achieve that, we now use the quadrature measurement bunches sorted into bins according to their mean 
photon number as used above and determine g (2)(0) for each of these bins individually. Technically, this means 
that we still calculate g (2)(0) according to Eq. (1), but only pick smaller subsets of quadratures, determined by 
the mean photon number of the bunches, for the averaging process. Doing so yields a function g (2)(0, nav) , which 
yields separate values of the second-order correlation function for each mean photon number. As these values 
are deduced from quadrature measurements, these are actually values of g (2)fast(0) , though we omit the index for 
brevity. This function can help to distinguish between the different origins of noise. In the case that mechanical 
noise modulates the coupling between the emitted light and the detector only, the mechanical noise modulates 
only the effective photon number arriving at the detector at a slow frequency. Accordingly, g (2)(0, nav) is not 
expected to change much with nav . On the other hand, if the state of the system changes intrinsically with time or 
if the mechanical noise modulates the input light field pumping the polariton condensate, g (2)(0, nav) is expected 
to vary with nav . Figure 6 shows g (2)(0, nav) against nav both in the presence and absence of deliberately added 
noise. The solid lines show the values of g (2)fast(0) without performing any postselection for comparison. We would 
like to point out that due to the way it is calculated and also due to the different relative frequencies of occurrence 
of the different values of nav , the value of g (2)fast(0) is not given by simple averaging over the values of g (2)(0, nav).

In the absence of additional noise, g (2)(0, nav) takes on a minimal value of about 1.68 for nav of about 1.15, 
which is also the most probable photon number. It seems natural to identify this set of values with the stand-
ard steady state of the polariton condensate for the given excitation conditions. When going away from the 
steady state photon number, g (2)(0, nav) shows a significant asymmetric increase. At lower values of nav , it rises 
almost monotonically up to values well above 2. In principle, this increase might be caused by the two possible 
mechanisms already outlined above: Either the noise modulates the pump beam or the state of the polariton 
condensate which causes the polariton system to take on a new quasi-steady state that shows larger polariton 
number fluctuations or the overlap between the emission and the detector is modulated, which only increases the 
apparent polariton number noise observed at the detector position, but does not really change the steady state 
of the polariton condensate. While it is not possible to completely disentangle these two effects, comparing the 
results to the probability distribution for the occurrence of nav already discussed implies that the second peak in 
that probability distribution observed at mean photon numbers close to 0.4 indeed corresponds to a quasi-steady 
state of the polariton system below threshold. If the mechanical noise instead modulated the overlap between 
the emission and the detector, one would rather expect a continuous redistribution of nav . Further, g (2)(0, nav) 
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Figure 5.   Probability distribution of the mean photon numbers emitted from a polariton condensate ground 
state during the duration of a local oscillator pulse at an averaging frequency of 75 kHz. Black and red dots 
denote the distributions in the absence and presence of deliberately added mechanical noise, respectively.
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takes on values close to the thermal limit of 2 for this subset of nav , which further supports the assumption that 
interpretation that the polariton system operates in a quasi-steady state below threshold for this range of nav . For 
even lower values of nav below 0.3, which are taken on only with low probability, g (2)(0, nav) increases to values 
beyond 2.5, which implies that these subsets of nav correspond to transient states.

Investigating instead values of nav above its most probable value, one finds that for these subsets of nav , the 
postselected correlation function g (2)(0, nav) rises up to values slightly below 2 and then levels at values around 
1.8, close to the mean value of g (2)(0) . As a polariton condensate is a driven-dissipative non-equilibrium sys-
tem, it seems reasonable to attribute these slightly enhanced values to its non-equilibrium character. Due to the 
intrinsic polariton number fluctuations, it is not unexpected that polariton occupation numbers above the most 
probable value occur for limited amounts of time and it is also not unexpected that the system is slightly less 
stable in these instances as indicated by the enhanced level of fluctuations.

The full benefits gained by a detailed analysis of the postselected second-order correlation function g (2)(0, nav) 
become clear when again comparing the results just discussed to the case of a polariton condensate subject to 
strong deliberately added noise. As shown by the red dots in Fig. 6, for nav ranging between 0.5 and 1 photons 
g (2)(0, nav) looks similar to the case without added noise. One may assume that postselection on this range of 
mean photon numbers mostly corresponds to postselection on instants, where the additional noise does not 
result in strong perturbations of the system. For lower values of nav , however, g (2)(0, nav) becomes enhanced 
significantly compared to the results discussed before and may even show values above 3. This increase can be 
traced back to the simultaneous presence of the several modulation mechanisms. As shown already in Fig. 5, 
the probability for such reduced photon numbers to occur is enhanced significantly. This may either be caused 
by reduced coupling of the emitted light to the detector or by reduced coupling of the excitation light field to 
the source. Both scenarios will contribute to the detection events within this range of nav and as both result in 
transient rather than steady states of the polariton system, it seems natural that g (2)(0, nav) takes on enhanced 
values, which reflect that this choice of postselection parameters results in averaging over a broad range of dif-
ferent situations. On the other hand, for values of nav above 1, g (2)(0, nav) actually goes down to values on the 
order of 1.5, which is a value significantly below the noiseless case. While it may seem surprising that adding lots 
of noise may result in reduced output fluctuations for some postselected conditions, this effect may be explained 
by the considerations just mentioned. Again, the two main mechanisms that may modify nav are the coupling of 
the emitted light to the detector and the coupling of the excitation light field to the sample. The first effect may 
result only in reduced values of nav . Assuming reasonable initial adjustment of the optics, adding noise may only 
reduce the effective detection efficiency. Accordingly, postselection on above-average values of nav implies that 
effects that reduce the efficiency of coupling the emission to the detector are small or negligible. The influence of 
modified coupling of the excitation light field to the sample proves to be more complex. In the polariton system, 
the scattering rate towards the condensate depends on the occupation of the condensate itself, the occupation 
of the reservoir and the spatial overlap between both. Especially the last point may increase the scattering rate 
towards the condensate and also influences the number fluctuations of the condensate significantly37–39. Accord-
ingly, there is a small chance that noise-induced changes in the excitation light field may actually increase the 
occupation number of the condensate and put it into a more stable state temporarily. In this case the added noise 
may act as a temporarily enhanced effective pump rate. This is the case in the regime of postselecting on values of 
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Figure 6.   Postselected second-order correlation function g (2)(0, nav) for several mean postselection photon 
numbers nav at an averaging frequency of 75 kHz. Black and red dots denote the correlation functions in the 
absence and presence of deliberately added mechanical noise, respectively. Solid lines represent the values of 
g (2)(0) obtained for the same averaging frequency without performing any postselection.
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nav larger than 1 and explains the surprising fact that in this range the polariton number fluctuations are smaller 
compared to the absence of additional mechanical noise.

Conclusion
In summary, we have demonstrated that homodyne real-time photon correlation measurements open up the 
possibility to distinguish between intrinsic and external photon number noise by investigating their frequency 
dependence. As an example, we investigated the emission from a polariton condensate and could show that it 
is possible to separate intrinsic photon number fluctuations from fluctuations arising due to external influences 
such as mechanical noise and flicker arising due to optical devices based on liquid crystals. We further showed 
that our experimental approach makes it possible to perform postselection on the recorded data. As an example, 
we presented and discussed the counterintuitive result that in rare instances adding strong external noise may 
actually reduce the photon number fluctuations of the emission from a polariton condensate.

From the spectroscopic point of view, one of the main advantages in the technique we have developed is given 
by the fact that it yields a clear criterion which allows researchers to determine whether recorded photon correla-
tion data is reliable or not. It further allows researchers to identify different mechanisms that contribute to photon 
number fluctuations at different frequencies, while it simultaneously preserves a temporal resolution bounded 
only by the duration of the local oscillator and thus yields access to photon number fluctuations on the sub-ps 
scale. From the physical point of view, it allows experimentalists to perform postselective spectroscopy, which 
makes it possible to investigate rare events. We demonstrated this possibility by investigating the fluctuations 
of a nominally steady state polariton condensate at several postselected instantaneous mean photon numbers.

The detection of some kinds of quantum light sources might be improved by our technique as well. For 
example, when detecting squeezed light40,41, one could yield further insights by analyzing the frequency depend-
ence of noise, as in this case the noise is the figure of merit and each additional noise decreases the degree of 
squeezing. Another interesting idea is to excite a polariton system with quantum light e.g. from quantum dots 
and observe the resulting correlations in the polariton emission42, where our method also could be applied. In 
general, every case where noise itself is the desired signal and where a modulation of the mean photon number 
affects the signal can benefit from our method.

As an outlook, it will be interesting to extend this conditional spectroscopy setup to several detection 
channels43. Doing so will open up the possibility to perform conditional measurements of cross-correlations 
between several detection channels44. For example, it will be feasible to monitor how perturbations of the sys-
tem relax back towards the steady state by performing postselection on one detection channel and picking the 
same postselected subset on a second detection channels that measures the emission of the same or a different 
mode at a later time. Investigating different modes will be especially interesting for multimode systems with 
nontrivial correlations, e.g. lasers with multiple modes that show gain competition45, emitters coupled via a joint 
carrier reservoir46 or systems subject to feedback47 and even for molecular aggregates relevant in biochemical 
processes48 . Generally speaking, multichannel homodyne experiments bear great promise for studying steady 
state fluctuations in optical systems that show dynamics on the timescale of few picoseconds, such as strongly 
coupled semiconductor systems where frequency-resolved photon correlations are known to carry detailed 
information about the system49.

Data availability
The raw data generated during the current study are available from the corresponding author on reasonable 
request.
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